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Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale

J. Enrique Vázquez-Lozano* and Alejandro Martínez
Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

(Received 25 May 2017; revised manuscript received 16 January 2018; published 7 March 2018)

Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light
can be treated independently. However, at the subwavelength scale these properties appear to be coupled together,
giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence
of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show
that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin)
and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional
relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior
according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the
main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to
its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance
the response of SOI-based effects.
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I. INTRODUCTION

Spin-orbit interaction (SOI) comprises a broad class of
effects very well-known in the branches of atomic and solid
state physics [1,2]. Roughly speaking, such phenomena involve
charged particles moving within a region where there is an
electric field, e.g., that originated by the atomic nuclei or
by the asymmetry in the confinement potential of electrons
in heterostructures. In these contexts, SOI can be conceived
as an effective phenomenon of a relativistic nature wherein
the motion of the particle is coupled with its spin [3]. The
importance of this interaction is noteworthy since it has allowed
to explain the fine-structure energy corrections of hydrogen-
like atoms. Nonetheless, even more important has been the
occurrence of SOI in solids, paving the way to the area of
spintronics [4].

The extension of SOI to optics is attributed to the seminal
work by Liberman and Zel’dovich [5]. Their approach was
based on the conservation of the state of polarization (SoP)
when light propagation was subjected to bending and/or
twisting in an optically inhomogeneous medium. Under this
scheme, they introduced the optical SOI as the mutual interac-
tion between the SoP (spin) and the propagation process (orbit).
This coupling can be simply characterized in a mathematical
way by means of the so-called factorizability (or separability)
condition, which accounts for the mutual influence between
the amplitude and the phase of light.

Akin to mechanical systems, light possesses a set of dynam-
ical properties such as energy, linear momentum, and angular
momentum among others [6]. Due to the vector character of
the electromagnetic fields two types of rotations can be distin-
guished [7,8], giving rise to the corresponding contributions
termed as spin angular momentum (SAM) [9] and orbital
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angular momentum (OAM) [10], respectively. Whereas OAM
is related to the spatial distribution and propagation of the
optical field, SAM is generally determined by the SoP [11,12].
Notice that, from a quantum approach, the correspondence
principle states that each of the two possible spin states of
photons can be identified with the corresponding right- and
left-handed circular polarization. This rule only holds for the
usual longitudinal SAM, closely linked to the plane wave
representation. Still, this picture is in sharp contrast to the
transverse SAM, which is characteristic of evanescent as well
as structured optical fields [13–15]. Taking into account the
above dynamical quantities, from a pragmatic point of view,
the optical SOI is commonly understood as the interplay
and mutual conversion between the different types of angular
momenta [16,17]. However, this definition only emphasizes
into the effects, neglecting its fundamental appearance and
leading to a certain controversy related to the proper way in
which must be performed the separation of the total angular
momentum into the spin and orbital contributions [8,12,18,19].
In this regard, it is noteworthy to mention that this difficulty
may be, in turn, associated with the so-called Abraham-
Minkowski dilemma, a long-standing problem concerning with
an ambiguity that arises from the real definition of the linear
and angular momentum for optical radiation in media. Even
though there are a number of influential papers claiming to have
solved it (see, e.g., Refs. [20,21]), this challenging problem
still remains as a subject of current interest and debate [22,23].
Notice also that, in relation to the above example regarding
the homonymous phenomenon occurring either in atomic or in
solid state physics, the interplay between the different kinds of
angular momenta play the same role in this case as the spin-
dependent splitting in the electronic energy levels, namely, just
as an observable effect but not as the ultimate reason leading
to the classical emergence of intrinsic SOI of light.

In the past few years, SOI of light has been the subject
of intense research activity. Huge efforts have been devoted
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to investigate novel photonic applications and functionalities
(for a complete overview on this issue see Ref. [24] and
references therein), paying little attention to the fundamental
theory underlying its origin. In this regard it has only been
argued that, since photons are relativistic spin-1 particles,
SOI of light is inherent to Maxwell’s equations [25], arising
from the transversality condition [26] and described in terms
of the geometric Berry phase formalism [27]. Furthermore,
the close relation between SOI and the intrinsic spin Hall
effect of light has been extensively studied, both theoretically
and experimentally [28]. The latter manifests itself as a
topological spin-dependent transport of photons taking place
in inhomogeneous media as well as in free space, thereby
ensuring the conservation of the total angular momentum
[29]. Additional spin-related optical phenomena such as the
aforementioned transverse spin [30], topological insulators
[31], or spin-momentum locking [32], leading to the so-called
spin-controlled unidirectional excitation [33], have been re-
cently demonstrated as manifestations of the quantum spin Hall
effect of light [34]. The vast and unified body of knowledge that
exists around SOI is evident. Nonetheless, as already stated, its
occurrence is ultimately justified from elementary effects such
as the Rytov-Vladimirskii-Berry rotation, the Imbert-Fedorov
transverse shift, or the optical Magnus effect [5]. In addition,
it is important to stress that the subwavelength character of the
optical SOI is a prescription that, although widely assumed
and confirmed both experimentally and numerically by means
of rather qualitative arguments stemming from its effects, to
the best of our knowledge, still remains without any reliable
analytical demonstration that supports it.

In this paper we aim to provide further understanding into
the classical emergence of optical SOI. From a full-vector
description based on the multiple-multipole method [35], we
demonstrate analytically that SOI of light is a phenomenon
that naturally and necessarily comes into play at the subwave-
length scale, even in homogeneous media. Indeed, by using
the formalism of vector spherical wave functions (VSWFs)
[36] in combination with the above-mentioned factorizability
condition, we find an additional relative phase that introduces
an extra term enclosing the main features of SOI, i.e., it prevents
the amplitude-phase separability, but solely in the near-field
region. Although it seems a somewhat trivial standpoint, this is
certainly the key point to demonstrate the universal occurrence
of optical SOI at the nanoscale. Of course, this approach satis-
fies the overall prescriptions underlying the SOI of light, i.e., it
is implicit in the Maxwell’s equations, and is ultimately related
to the transversality condition of the electromagnetic fields.
Importantly, our results also allow us to identify accurately
the region wherein SOI-based phenomena naturally emerge.
Therefore, besides providing a more fundamental definition for
the near-field region in terms of the factorizability condition,
they may be used to facilitate or improve the setups for the
experimental observation of SOI-based effects.

II. OVERVIEW OF FULL-VECTOR WAVES

To start with, let us consider an arbitrary electromagnetic
wave which propagates in a homogeneous medium. By means
of the angular spectrum representation, this field can be
expressed as a superposition of elementary plane waves, each

having a well-defined SoP, constant over the whole space

E(r) = (αe1 + βe2)E0(r)eiφ(r), (1)

where α and β are arbitrary complex constants describing
the normalized SoP (|α|2 + |β|2 = 1), e1,2 are two orthogonal
unit vectors, E0 is the scalar field profile, and φ is the phase
distribution. As pointed out above, following Ref. [5], SOI
of light is envisioned from a fundamental approach as the
mutual influence between the SoP and the phase distribution.
Hence, owing to the factorized form of the plane wave in
Eq. (1), the mutual interaction between the SoP and the phase
vanishes, avoiding the occurrence of SOI. This is the usual
picture in macroscopic geometrical optics [37], wherein light
is characterized by means of propagating rays which, in turn,
can be described as a field expansion into local plane waves.
This scalar-like scheme can also be extended to the zeroth
order of the paraxial approximation [5,27]. Nevertheless, at the
nanoscale, near or beyond the diffraction limit, this usual treat-
ment based on the plane-like waves seems to be pretty naive.
Furthermore, due to the extraordinary properties of the angular
momentum associated to evanescent fields [30], the under-
standing of SOI-based effects for such kinds of fields deserves a
special approach (for further details on this issue see Ref. [38]).

Close to the sources, or in the near-field region of the
processes wherein light-matter interaction takes place, the
spatial field distribution of electromagnetic waves displays
complex shapes. Therefore, to deal with nontrivially structured
optical fields, it becomes necessary to perform a full-vector
wave analysis [35]. Regardless of the spatial distribution,
any optical field can be generally expressed as a multipole
expansion [36], i.e., as a proper linear combination of the vector
spherical harmonics (VSH). In this way, the electromagnetic
field can be regarded as that radiated from a point-like source
[39], thus providing a suitable tool to deal with phenomena
occurring at the subwavelength scale. This includes the
SOI of light as well [40], which has been experimentally
demonstrated to induce subtle observable effects upon the
far-field via imaging systems [41]. Hence, instead of the
plane-wave basis, VSWFs seems to be a better choice to
accomplish a full description of processes at the nanoscale.

It is well known that in a source-free, homogeneous,
isotropic, and linear medium, the time-independent electro-
magnetic fields can be obtained from the vector Helmholtz
wave equation

∇ × [∇ × �(r)] − k2�(r) = 0, (2)

where �(r) can be either the electric or magnetic field, k =
nω/c is the wave number, and n = √

εμ is the refractive index,
with ε and μ being the corresponding relative permittivity
and permeability of the medium. Although there exist several
conventions to define the VSH, throughout this work we will
follow that given in Ref. [42] as follows:

Rlm(�) = erYlm(�), (3a)

�lm(�) = Nlr∇Ylm(�), (3b)

�lm(�) = Nlr∇Ylm(�) × er , (3c)

where Nl = 1/
√

l(l + 1) is a normalization constant, Ylm(�)
are the scalar spherical harmonics of order (l,m), and � ≡
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(θ,ϕ) represents the standard angular coordinates (i.e., polar
and azimuthal angles, respectively). Taking into account that
the VSH form an orthogonal and complete set of basis vectors,
any source-free electric (or magnetic) field can be expanded in
terms of the VSWFs as follows:

E(r) =
∞∑
l=1

l∑
m=−l

αlmETE
lm (r) + βlmETM

lm (r), (4)

where αlm and βlm are the multipole expansion coefficients
(also called beam-shape coefficients), and ETE

lm ≡ E
(
)
l �lm

and ETM
lm ≡ E

(�)
l �lm + E

(R)
l Rlm are, respectively, the mutu-

ally perpendicular transverse electric (TE) and transverse
magnetic (TM) multipole fields of (l,m) order [43]. It is
important to note that, in each of both subsets of solutions, each
element verifies individually the vector Helmholtz equation
(2). Furthermore, the radial dependence of each VSWF is
incorporated into the E

(·)
l functional coefficients and appears

separately from the angular coordinates, thereby allowing
an independent treatment. To determine their specific form
we should substitute this last expression (4) into the vector
Helmholtz equation (2). In this manner, it can be demonstrated
that the radial distribution is given in terms of the solutions
of the spherical Bessel differential equation, which explicitly
reads as follows [36,37]:

E
(R)
l (r) = fl(kr)

Nlkr
, (5a)

E
(�)
l (r) = [krfl(kr)]′

kr
, (5b)

E
(
)
l (r) = fl(kr), (5c)

where fl(kr) ≡ {jl(kr),yl(kr)} are the l-dependent Bessel-like
functions, and the prime denotes differentiation with respect to
the dimensionless variable kr . Notice that since there are two
independent solutions [jl(kr) and yl(kr), being the spherical
Bessel functions of the first and second kinds, respectively],
any linear combination will also be a proper solution. This
provides the physical meaning for the radial functions de-
pending on the specific situation. Indeed, if we consider a
time-harmonic dependence of the form e−iωt , to describe
propagating spherical waves (purely outgoing or incoming) we
will use the spherical Hankel functions h

(±)
l (kr) = jl(kr) ±

iyl(kr). On the other hand, singularity-free spherical Bessel
functions jl(kr) are appropriate functions for representing
standing or regular waves.

III. OPTICAL SPIN-ORBIT INTERACTION

A. Intrinsic evolution of the SoP

Unlike the aforementioned plane-wave scheme, where the
SoP of each field was conserved over the whole space, it can
be readily observed that the SoP of the multipole fields is
spatially inhomogeneous. This fact is precisely the first hint
into the emergence of intrinsic SOI at the nanoscale, even in
homogeneous media. We illustrate this idea in Fig. 1 by means
of the amplitude ratio and the phase-delay profiles between
the longitudinal (∝ Rlm) and transverse (∝ �lm) components
of different propagating TM modes of (l,l) order over the xy
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FIG. 1. Amplitude ratio (upper panel) and phase delay (lower
panel) between the longitudinal and transverse components for differ-
ent propagating TM multipole fields of (l,l) order with l ∈ [1,9], over
the xy plane. The inset shows the locally normalized instantaneous
intensity distribution of the ETM

4,4 mode, whose spatially varying
polarization ellipse along the x axis is schematically depicted at the
bottom. For comparison, the evolution of the SoP for the ETM

6,6 mode
is also plotted. The color coding used in the evolution of the ellipses
illustrates the transition from the near- to the far-field zone according
to the scale represented in Fig. 3, with the corresponding values for
the azimuthal mode order l.

plane. By considering the electric field contribution, it should
be noted that TE modes are purely transverse, and therefore,
the SoP manifests essentially a plane-like behavior, except for
the attenuation factor 1/kr ensuring the energy conservation.
Instead, TM modes enclose generally the joint action of
the longitudinal field component (with a possible transverse
SAM), together with the transverse one, owning the main
features of SOI (see more details below). The upper panel of
Fig. 1 shows that, in the near-field zone |ETM(R)

lm |/|ETM(�)
lm | > 1,

namely, the dominant contribution for these individual (l,l)
modes is due to the longitudinal component. This crucial
remark, according to which the transverse field component
is screened by the longitudinal one, agrees with the already
predicted difficulty into the experimental observation of optical
SOI [24,25]. On the other hand, the phase delay curves reveal
the presence of a relative phase between both components,
causing an intricate evolution of the polarization ellipse along
the trajectory. Remarkably, the most significant variation takes
place in the near-field region, i.e., where the relative phase
changes drastically from π/2 to π , and coincides with the range
for which the amplitude ratio is maximum. As expected, in the
far-field limit, the relative phase becomes a constant value and
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the amplitude ratio goes to zero, thus forcing the polarization
plane to keep it purely orthogonal to the propagation direction.
Still, an additional intriguing property is the presence of a
minimum in the envelope curve of the amplitude ratio that
occurs only for the ETM

3,3 mode. Indeed, in Fig. 1 we can
see that for each (l,m) order there is an absolute maximum
value in the amplitude ratio. Surprisingly, the trend in their
magnitudes with respect to the azimuthal mode order l is not
trivial, showing a minimum for l = 3. Therefore, according
to the above arguments, this could enable to set a suitable
multipole field distribution to facilitate the observation of
SOI-based effects [44]. Finally, it should be noted that the
regions which we refer to as the near- and far-field zone are
ultimately determined by the azimuthal index l (also called
topological charge), which is in turn tied to the intrinsic OAM
of the corresponding mode [10]. As it will be shown below,
we can find a more accurate definition for these regions via
the spin-orbit factorizability condition, thus endowing it with a
more fundamental sense and removing the arbitrariness related
to the dependence on the distance from the source [36].

B. Factorizability condition and SOI term

In the following, neglecting the angular distribution, we
will show how amplitude (leading to the SoP’s modulation)
and phase are intrinsically coupled together in the near-field
region of propagating spherical waves. To elucidate this effect
we start by writing the spherical Bessel functions from the
recursive Rayleigh’s formulas

jl(kr) = (−kr)l
[

1

kr

d

dkr

]l( sin kr

kr

)

= 1

kr
[Pl(kr) cos kr + Ql(kr) sin kr], (6)

yl(kr) = −(−kr)l
[

1

kr

d

dkr

]l(cos kr

kr

)

= 1

kr
[Pl(kr) sin kr − Ql(kr) cos kr], (7)

where Pl(kr) and Ql(kr) are real-valued polynomials of degree
l-dependent. To simplify the analysis, we define the function
Fl(kr) ≡ Pl(kr) + iQl(kr) = Rl(kr)eiφl (kr), from which the
spherical Hankel functions associated with the propagating
waves are given by

h
(+)
l (kr) = Rl(kr)

kr
exp {i[kr − φl(kr)]} = [

h
(−)
l

]∗
, (8)

where the asterisk denotes complex conjugation. From the
latter expression we can observe that, despite the inhomo-
geneous spatial distribution stemming from the phase φl , the
spherical Hankel function behaves locally as a plane wave,
i.e., is expressible as a product of an amplitude multiplied by
a phase factor. Hence, analogously to Eq. (1), we can say that
the scalar function h

(±)
l retains the spin-orbit factorizability (or

separability) condition. This result applies both to the radial-
dependent functional coefficients E

(R)
l and E

(
)
l . However,

in Eq. (5b) one can readily see that E
(�)
l involves the first

derivative with respect to kr , thus yielding the appearance of
a relative phase. Indeed, since F ′

l (kr) = P ′
l (kr) + iQ′

l(kr) =
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FIG. 2. Main features of the SOI term 
(±)
l for different values of

l. Upper panel displays the amplitude ratio between the SOI term and
the whole E

(�)
l function, i.e., |l |/|E(�)

l |. Panel at the bottom shows
the phase distribution of the SOI term. Dashed red (dark gray) and
green (light gray) lines indicate the asymptotic behavior in the near-
and far-field regions, respectively. The inset shows the relative phase
φl(kr) − δl(kr).

(R′
l + iRlφ

′
l)e

iφl = R̃l(kr)eiδl (kr), Eq. (5b) can be rewritten in
the following form:(

krh
(±)
l (kr)

)′

kr
= ±ih

(±)
l (kr) + 

(±)
l (kr), (9)

where we define


(±)
l (kr) ≡ R̃l(kr)

kr
exp {±i[kr − δl(kr)]}. (10)

This l-dependent term (hereafter referred to as the SOI term)
entails the nonseparability of the spin-orbit degrees of freedom
in multipole fields, and therefore provides a suitable bench-
mark for claiming the fundamental emergence of intrinsic SOI-
based effects at the nanoscale (see Fig. 2). In fact, by a straight-
forward calculation it can be found that the relative phase
φl − δl influences dynamically only in the near-field region,
thereby precluding the amplitude-phase separability (see inset
of Fig. 2). Moreover, since the amplitude R̃l vanishes in the
far-field limit, (±)

l → 0, and the factorizability condition is re-
covered, leading, as expected, to the separable plane-like wave
behavior. As displayed in the upper panel of Fig. 3, by gathering
these features, the near and the far-field regions can be simply
and accurately defined via the SOI term as d[φl − δl]/dkr . In
this way, we can set the far-field as the region where the relative
phase is constant with respect to the dimensionless variable kr ,
namely, [φl − δl]′ → 0. On the other hand, according to our re-
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FIG. 3. Schematic representation of the near-field features for the
ETM

4,4 mode. From the SOI term, the near- and the far-field region can
be characterized in terms of the relative phase as d[φl − δl]/dkr .
In the near-field region the spatial distribution of the multipole field
exhibits a complex shape. This manifests itself by means of a rich and
strikingly interesting structure of the local dynamical properties such
as the complex Poynting vector, the orbital and the spin momentum
given in Eqs. (12)–(14) (cf. Ref. [15] for further details on these
properties). On the other side, in the far-field limit the field distribution
tends to be orthogonal to the direction of propagation.

sults, the near-field zone is strongly dependent on the azimuthal
mode order l, and is characterized by [φl − δl]′ → 1/l. It is
important to highlight that, irrespective of the spatial intensity
distribution, the SOI term tends to zero as kr → ∞, thus
confirming the, up to now assumed, intrinsic subwavelength
character of SOI. This would enable the enhancement of
SOI-based effects directly by raising the light intensity, still
preserving the region wherein they appear.

From the above discussion it is worth noticing that the
spin-orbit separability condition resembles the genuine con-
cept of nonlocal quantum entanglement [45]. In fact, this
mathematical structure describing the nonseparability between
different degrees of freedom in a single physical system (SoP
and phase in this case) is often termed as classical entanglement
or correlation [46]. These correlations have already allowed to
find interesting experimental capabilities for the realization of
encoding and processing of polarization-dependent classical
information (see Ref. [47] and references therein).

C. Definition of the near-field region based
on the factorizability condition

The distinction between the near- and the far-field region
is often useful in theories of radiating systems because it

provides a significant simplification in the analysis of the fields.
Therefore, it would be convenient to have a precise condition to
identify them accurately. In the particular case of an oscillating
electric dipole

Edipole = k2

4πε0

[
(er × p) × er

+ (3(er · p)er − p)

(
1

k2r2
− i

kr

)]
eikr

r
, (11)

the near- and the far-field terms are those proportional to 1/r3

and 1/r , respectively [36]. In addition, the term proportional
to 1/r2 is associated with the so-called intermediate-field or
induction zone. These regions are actually characterized by
a reasonable but arbitrary dependence with respect to the
distance from the source r , assuming it as a emitter whose
characteristic dimension d is much smaller than the wavelength
λ and the distance r . This arbitrariness is even more evident for
higher-order multipoles. Nonetheless, it can be demonstrated
that the transverse component of the near-field term of the
electric dipole given in Eq. (11) is closely related to the
SOI term of the corresponding multipole field. Besides giving
a more accurate definition for the above regions in terms
of the spin-orbit separability condition, our approach allows
us to show that the term preventing the factorization solely
influences in the near-field region. Therefore, this example
provides a perfect test for demonstrating the agreement with
the already existing theory, thus showing the universality of the
optical SOI as a phenomenon occurring at the subwavelength
scale. Furthermore, following Ref. [48], we can find a subtle re-
lationship between the near-field distribution given in Eq. (11)
and the cross-polarization of a propagating beam described
within the paraxial approximation. This may be the reason
why the occurrence of SOI has been mostly identified under
these distinct approaches. Indeed, as we have already seen,
in the near-field region, the electric dipole cannot be generally
expressed in a factorized form, and then the polarization and the
propagation are mutually influenced. This behavior is similar to
that of a propagating beam in inhomogeneous media [5], and
is the ultimate responsible for the appearance of SOI-based
effects.

D. Local dynamical properties of multipole fields: Poynting
vector, spin, and orbital momentum

Until now, our analysis has been mainly focused into
the influence of the SOI term on the evolution of the SoP
at the nanoscale. Still, according to the fundamental definition
of the optical SOI, the propagation process must also be af-
fected. Below we will address this remaining issue qualitatively
by showing the behavior of the local momentum densities in
the near-field zone.

It is well known that in the simplest case of homogeneous
plane-like waves the electromagnetic propagation is dictated
by the real part of the complex Poynting vector [36]

� = E∗ × H, (12)

which points in the same direction as the wave vector k.
However, in structured optical fields, it is more convenient
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FIG. 4. Densities of the local dynamical properties for different multipole fields of (l,m) order over the xy plane. Columns 1 to 4 show
the real part of the Poynting vector [Eq. (12)], the orbital and spin momentum [Eqs. (13) and (14)], and the locally normalized electric field
distribution, respectively. The color coding used indicates the transition from the near- to the far-field zone, according to the scale represented in
Fig. 3, for the corresponding value of l. Owing to the complex-shaped spatial field structure of the modes in-plane polarized, the local dynamical
properties present streamlines that are sharply twisted in the near-field region. In fact, despite their seemingly planar character, there arises a
transverse SAM, which is, in turn, responsible for the occurrence of an abrupt switching on the handedness of the spin-momentum near the
source. Insets show a zoom-in view of this feature, underpinned by the nonseparability of the spin-orbit degrees of freedom.

to decompose the latter quantity into the orbital (or canonical)
and the spin contributions, Re[�] = Porbit + Pspin:

Porbit = Im
[
E∗ · (∇)E + H∗ · (∇)H

]
/2, (13)

Pspin = Im[∇ × (E∗ × E) + ∇ × (H∗ × H)]/4, (14)

where we use the notation A · (∇)B = ∑
i Ai∇Bi , and the

proportionality factors are absorbed into the normalization

of the fields. Taking into account this separation, it has been
recognized that the energy transport, characterizing the wave
propagation, is associated with the orbital contribution to the
total momentum of light (i.e., with its local phase gradient). On
the other hand, the solenoidal-like spin-momentum has often
been considered as a virtual divergence-less current. A deeper
understanding of the role played by these properties deserves
further efforts beyond the scope of this work (cf. Refs. [15,49]).
Despite that, by analyzing the influence of the SOI term given in
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FIG. 5. Separate contributions to the local orbital- and spin-momentum densities for the ETM
1,1 mode. Solid and dashed curves in the graphs

show, respectively, the evolution of the radial and the azimuthal components normalized with respect to the corresponding local momentum
density. Lower panels below the plots provides a better visual representation displaying the trajectories associated to the corresponding curves.
In panel (a) the orbital and spin momentum are calculated by considering the whole VSWF, i.e., including both the SOI term and the azimuthal
angular dependence given by the phase term eilϕ . In panel (b) the underlying influence of the SOI term is revealed by removing the azimuthal
dependence. In this latter case, the plane-like contribution to the orbital-momentum density shows a purely radial behavior. The deviation from
the radial direction is due to the nonseparability of the spin-orbit degrees of freedom.

Eq. (10), we can show a number of dynamical characteristics
underlying the occurrence of intrinsic SOI at the nanoscale.
Specifically, as is shown in Fig. 4, the most complex spatial
field distribution arises for the multipole fields of (l,l) order,
polarized over the xy plane. For these modes, the streamlines
describing the spin and orbital energy flows are sharply twisted
in the near-field region, thus showing a vortex-like behavior
(see also Fig. 5). Importantly, as also shown in Fig. 3, the
spin-momentum abruptly switches its handedness. It can be
demonstrated that this intriguing feature, together with the

appearance of a transverse SAM, relies on the nonseparability
of the spin-orbit degrees of freedom, thereby providing a clear
signature of the emergence of intrinsic SOI. Notice that the
existence of the spin momentum does not depend on the SAM,
i.e., there are modes without SAM over the xy plane, still
with a spin-momentum contribution. However, the change on
the handedness of the spin-momentum only occurs for those
modes with transverse SAM. In any case, the overall structure
of the complex Poynting vector involves the joint action of
the two types of momentum and is strongly dependent on
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the factorizability condition encompassed by the SOI term.
Indeed, we can show its effect on the light propagation by
plotting separately the radial and the azimuthal components
for both the orbital- and spin-momentum densities (see Fig. 5).
Although, we only consider the ETM

1,1 mode, corresponding to
a circularly polarized oscillating electric dipole, the present
discussion is extensible to any other higher-order multipole
field. In Fig. 5(a) we first consider the whole VSWF, i.e.,
including the SOI-term, the azimuthal angular dependence
given by the phase eilϕ , and the plane-like part of the wave.
For this case, owing to the presence of intrinsic-OAM, we
can observe that all the contributions to the orbital-momentum
are deviated from the radial direction. Therefore, to isolate
the effect of the SOI term we should remove, by hand, the
azimuthal dependence. By doing so [see Fig. 5(b)], we find that
the plane-like contribution to the orbital momentum is radially
orientated, just as expected. Furthermore, we can observe a
variety of anomalous effects such as the backward flow or the
superluminal propagation. It has been established that these
features are closely related to vortices and evanescent waves
[50]. However, our approach is able to demonstrate that these
effects are actually characteristics of intrinsic SOI.

As a final remark, it should be noted that spin-momentum
locking has been demonstrated to be an inherent property
of evanescent waves [32,33]. This behavior, regarded as a
manifestation of the quantum spin Hall effect of light [34], is
tied to the occurrence of SOI. Indeed, due to the transversality
condition of the electromagnetic fields, ∇ · E = k · E = 0,
it was demonstrated that the transverse SAM and the wave
vector are coupled to each other in such a way that Sevan

⊥ =
(Re[k] × Im[k])/Re[k]2. Remarkably, we can find a similar
relationship between the complex Poynting vector and the
transverse SAM for propagating waves:

Sprop
⊥ = ±Re

[
�(TE/TM)

] × Im
[
�(TE/TM)

]
W(E/H)

, (15)

where W� = |�∗ · �|. It can be demonstrated that the validity
of this result also relies on the nonseparability of the spin-orbit
degrees of freedom, and then, it can be seen as a consequence
of intrinsic SOI of light as well.

IV. CONCLUSION

In summary, building on the already existing theory around
the intrinsic SOI of light, we put forward a suitable theoretical

framework able to explain analytically its main features. The
use of full-vector analysis involving spherical vector waves,
highly appropriate for studying electromagnetic interaction at
the nanoscale, allows us to obtain a factorizability condition
for the electric (or magnetic) field that is only fulfilled in
the far-field limit. In contrast, in the near-field region, both
spin and orbit degrees of freedom get inherently coupled.
It is important to remark that the nonseparability of the
spin-orbit degrees of freedom, together with the transversality
condition, are certainly the most important ingredients to
unveil the mechanism leading to the classical emergence of
the intrinsic SOI of light at the nanoscale. Even though the
occurrence of SOI has already been theoretically reported
in previous works (see, e.g., Refs. [5] and [27]), there the
treatment was based on a perturbative analysis where the
nonseparability between the spin-orbit degrees of freedom
arose from higher-order terms stemming from the paraxial
approximation. Importantly, in those demonstrations light
was assumed to propagate as point-like particles, obeying
Hamiltonian (or Lagrangian) dynamics and thereby neglecting
its wave-like nature. Our finding, however, has the advantage of
describing SOI of light from an analytical full-wave approach,
providing a fundamental insight into the appearance of SOI-
based effects in nano-optics. In spite of the simplicity of our
treatment, it meets the overall prescriptions underlying the
occurrence of optical SOI, showing that it naturally arises
from the fundamental spin properties of Maxwell’s equations
and that necessarily appears at subwavelength distances. Fur-
thermore, by using the spin-orbit factorizability condition, we
can find a more accurate definition for the near-field region,
thus removing the arbitrariness related to the dependence
on the distance from the source. In view of the growing
current interest in the optical SOI, we hope this analysis
can be useful for the development of further optimum appli-
cations of SOI in classical [51] and quantum nanophotonic
devices [52,53].

ACKNOWLEDGMENTS

The authors are grateful to F. J. Rodríguez-Fortuño
for valuable comments and discussions. This work was
supported by fundings from Ministerio de Economía y
Competitividad (MINECO) of Spain under Contract No.
TEC2014-51902-C2-1-R.

[1] H. Mathur, Phys. Rev. Lett. 67, 3325 (1991).
[2] E. I. Rashba, Physica E 34, 31 (2006).
[3] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics

(Interscience, New York, 1965).
[4] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,

S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science 294, 1488 (2001).

[5] V. S. Liberman and B. Y. Zel’dovich, Phys. Rev. A 46, 5199
(1992).

[6] F. J. Belinfante, Physica (Utrecht) 7, 449 (1940).
[7] D. L. Andrews and M. Babiker, The Angular Momentum of Light

(Cambridge University Press, Cambridge, England, 2013).

[8] I. Bialynicki-Birula and Z. Bialynicka-Birula, J. Opt. 13, 064014
(2011).

[9] J. H. Poynting, Proc. R. Soc. London A 82, 560 (1909).
[10] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[11] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, New J. Phys. 15,

033026 (2013).
[12] S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J.

Padgett, F. C. Speirits, and A. M. Yao, J. Opt. 18, 064004 (2016).
[13] A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, Nat.

Photonics 9, 789 (2015).
[14] K. Y. Bliokh and F. Nori, Phys. Rev. A 85, 061801 (2012).

033804-8

https://doi.org/10.1103/PhysRevLett.67.3325
https://doi.org/10.1103/PhysRevLett.67.3325
https://doi.org/10.1103/PhysRevLett.67.3325
https://doi.org/10.1103/PhysRevLett.67.3325
https://doi.org/10.1016/j.physe.2006.02.014
https://doi.org/10.1016/j.physe.2006.02.014
https://doi.org/10.1016/j.physe.2006.02.014
https://doi.org/10.1016/j.physe.2006.02.014
https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1088/2040-8978/13/6/064014
https://doi.org/10.1088/2040-8978/13/6/064014
https://doi.org/10.1088/2040-8978/13/6/064014
https://doi.org/10.1088/2040-8978/13/6/064014
https://doi.org/10.1098/rspa.1909.0060
https://doi.org/10.1098/rspa.1909.0060
https://doi.org/10.1098/rspa.1909.0060
https://doi.org/10.1098/rspa.1909.0060
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1103/PhysRevA.85.061801
https://doi.org/10.1103/PhysRevA.85.061801
https://doi.org/10.1103/PhysRevA.85.061801
https://doi.org/10.1103/PhysRevA.85.061801


CLASSICAL EMERGENCE OF INTRINSIC SPIN-ORBIT … PHYSICAL REVIEW A 97, 033804 (2018)

[15] A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, Phys. Rev. X 5, 011039
(2015).

[16] M. Nieto-Vesperinas, Phys. Rev. A 92, 043843 (2015).
[17] S. Abdulkareem and N. Kundikova, Opt. Express 24, 19157

(2016).
[18] T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H.

Rubinsztein-Dunlop, J. Opt. A 10, 115005 (2008).
[19] E. Leader and C. Lorce, Phys. Rep. 541, 163 (2014).
[20] D. F. Nelson, Phys. Rev. A 44, 3985 (1991).
[21] S. M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).
[22] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, New J. Phys. 19,

123014 (2017); Phys. Rev. Lett. 119, 073901 (2017).
[23] M. G. Silveirinha, Phys. Rev. A 96, 033831 (2017).
[24] F. Cardano and L. Marrucci, Nat. Photonics 9, 776 (2015).
[25] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats,

Nat. Photonics 9, 796 (2015).
[26] K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello,

Phys. Rev. A 82, 063825 (2010).
[27] K. Y. Bliokh, J. Opt. A 11, 094009 (2009).
[28] M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93,

083901 (2004).
[29] D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 102,

123903 (2009).
[30] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Nat. Commun. 5,

3300 (2014).
[31] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H.

MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).
[32] T. Van Mechelen and Z. Jacob, Optica 3, 118 (2016).
[33] F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor,

A. Martínez, G. A. Wurtz, and A. V. Zayats, Science 340, 328
(2013).

[34] K. Y. Bliokh, D. Smirnova, and F. Nori, Science 26, 1448 (2015).
[35] L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge

University Press, Cambridge, England, 2012).
[36] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1998).
[37] M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon,

Oxford, 1987).
[38] I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Bonod, and

C. Rockstuhl, Phys. Rev. A 94, 053822 (2016).
[39] Rigorously speaking, a multipole expansion can be performed

for electromagnetic fields emanating from an arbitrarily shaped
source, regardless of its size [35]. Still, localized oscillating

sources whose dimensions are comparable to or smaller than
the wavelength of light are often assumed [36]. This is indeed
the case for the lowest multipole orders, such as the electric or
magnetic dipole fields, or even for the higher multipole orders
as well. Furthermore, for simplicity, the electric dipole fields are
sometimes treated as point-like sources.

[40] O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A.
Ostrovskaya, and C. Dainty, Phys. Rev. Lett. 104, 253601
(2010).

[41] K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-
Herrera, D. Lara, and C. Dainty, Opt. Express 19, 26132
(2011).

[42] R. G. Barrera, G. A. Estévez, and J. Giraldo, Eur. J. Phys. 6, 287
(1985).

[43] Notice that the TE and TM multipole fields are also referred to as
the magnetic and electric multipole fields, respectively (see, e.g.,
Ref. [36]). This terminology is meaningful since it emphasizes
the nature of the source that originates the electromagnetic
radiation. In addition, it also indicates which is the contribution
that actually exhibits the SOI term discussed in the present work.
In fact, from the free-space Maxwell’s equations it is straight-
forward to show that ETE/TM

lm ≡ iHTM/TE
lm , thus demonstrating the

dual symmetry [11,12] (or electric-magnetic democracy [M. V.
Berry, J. Opt. A 11, 094001 (2009)]).

[44] A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant,
and N. F. van Hulst, Nat. Commun. 4, 1750 (2013).

[45] L. J. Pereira, A. Z. Khoury, and K. Dechoum, Phys. Rev. A 90,
053842 (2014).

[46] R. J. C. Spreeuw, Found. Phys. 28, 361 (1998).
[47] A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs,

New J. Phys. 17, 043024 (2015).
[48] A. Aiello and M. Ornigotti, Am. J. Phys. 82, 860 (2014).
[49] A. Y. Bekshaev, K. Y. Bliokh, and M. Soskin, J. Opt. 13, 053001

(2011).
[50] K. Y. Bliokh, A. Y. Bekshaev, A. G. Kofman, and F. Nori, New

J. Phys. 15, 073022 (2013).
[51] A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and

A. Martínez, Nano Lett. 17, 3139 (2017).
[52] B. le Feber, N. Rotenberg, and L. Kuipers, Nat. Commun. 6,

6695 (2015).
[53] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi,

G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song,
S. Stobbe, and P. Lodahl, Nat. Nanotechnol. 10, 775 (2015).

033804-9

https://doi.org/10.1103/PhysRevX.5.011039
https://doi.org/10.1103/PhysRevX.5.011039
https://doi.org/10.1103/PhysRevX.5.011039
https://doi.org/10.1103/PhysRevX.5.011039
https://doi.org/10.1103/PhysRevA.92.043843
https://doi.org/10.1103/PhysRevA.92.043843
https://doi.org/10.1103/PhysRevA.92.043843
https://doi.org/10.1103/PhysRevA.92.043843
https://doi.org/10.1364/OE.24.019157
https://doi.org/10.1364/OE.24.019157
https://doi.org/10.1364/OE.24.019157
https://doi.org/10.1364/OE.24.019157
https://doi.org/10.1088/1464-4258/10/11/115005
https://doi.org/10.1088/1464-4258/10/11/115005
https://doi.org/10.1088/1464-4258/10/11/115005
https://doi.org/10.1088/1464-4258/10/11/115005
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1103/PhysRevA.44.3985
https://doi.org/10.1103/PhysRevA.44.3985
https://doi.org/10.1103/PhysRevA.44.3985
https://doi.org/10.1103/PhysRevA.44.3985
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1088/1367-2630/aa8913
https://doi.org/10.1088/1367-2630/aa8913
https://doi.org/10.1088/1367-2630/aa8913
https://doi.org/10.1088/1367-2630/aa8913
https://doi.org/10.1103/PhysRevLett.119.073901
https://doi.org/10.1103/PhysRevLett.119.073901
https://doi.org/10.1103/PhysRevLett.119.073901
https://doi.org/10.1103/PhysRevLett.119.073901
https://doi.org/10.1103/PhysRevA.96.033831
https://doi.org/10.1103/PhysRevA.96.033831
https://doi.org/10.1103/PhysRevA.96.033831
https://doi.org/10.1103/PhysRevA.96.033831
https://doi.org/10.1038/nphoton.2015.232
https://doi.org/10.1038/nphoton.2015.232
https://doi.org/10.1038/nphoton.2015.232
https://doi.org/10.1038/nphoton.2015.232
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1088/1464-4258/11/9/094009
https://doi.org/10.1088/1464-4258/11/9/094009
https://doi.org/10.1088/1464-4258/11/9/094009
https://doi.org/10.1088/1464-4258/11/9/094009
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.102.123903
https://doi.org/10.1103/PhysRevLett.102.123903
https://doi.org/10.1103/PhysRevLett.102.123903
https://doi.org/10.1103/PhysRevLett.102.123903
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1364/OPTICA.3.000118
https://doi.org/10.1364/OPTICA.3.000118
https://doi.org/10.1364/OPTICA.3.000118
https://doi.org/10.1364/OPTICA.3.000118
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1103/PhysRevA.94.053822
https://doi.org/10.1103/PhysRevA.94.053822
https://doi.org/10.1103/PhysRevA.94.053822
https://doi.org/10.1103/PhysRevA.94.053822
https://doi.org/10.1103/PhysRevLett.104.253601
https://doi.org/10.1103/PhysRevLett.104.253601
https://doi.org/10.1103/PhysRevLett.104.253601
https://doi.org/10.1103/PhysRevLett.104.253601
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1088/1464-4258/11/9/094001
https://doi.org/10.1038/ncomms2769
https://doi.org/10.1038/ncomms2769
https://doi.org/10.1038/ncomms2769
https://doi.org/10.1038/ncomms2769
https://doi.org/10.1103/PhysRevA.90.053842
https://doi.org/10.1103/PhysRevA.90.053842
https://doi.org/10.1103/PhysRevA.90.053842
https://doi.org/10.1103/PhysRevA.90.053842
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1088/1367-2630/17/4/043024
https://doi.org/10.1088/1367-2630/17/4/043024
https://doi.org/10.1088/1367-2630/17/4/043024
https://doi.org/10.1088/1367-2630/17/4/043024
https://doi.org/10.1119/1.4876936
https://doi.org/10.1119/1.4876936
https://doi.org/10.1119/1.4876936
https://doi.org/10.1119/1.4876936
https://doi.org/10.1088/2040-8978/13/5/053001
https://doi.org/10.1088/2040-8978/13/5/053001
https://doi.org/10.1088/2040-8978/13/5/053001
https://doi.org/10.1088/2040-8978/13/5/053001
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1021/acs.nanolett.7b00564
https://doi.org/10.1021/acs.nanolett.7b00564
https://doi.org/10.1021/acs.nanolett.7b00564
https://doi.org/10.1021/acs.nanolett.7b00564
https://doi.org/10.1038/ncomms7695
https://doi.org/10.1038/ncomms7695
https://doi.org/10.1038/ncomms7695
https://doi.org/10.1038/ncomms7695
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1038/nnano.2015.159



