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Optical Chirality in Dispersive and Lossy Media

J. Enrique Vázquez -Lozano∗ and Alejandro Mart́ınez†

Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
(Dated: May 15, 2018)

Several dynamical properties such as energy, momentum, angular momentum, and optical helicity
have been recently reexamined in dispersive and lossless media. Here, we address a parallel derivation
for the optical chirality, extending it so as to include dissipative effects as well. To this end, we first
elaborate on the most complete form of the conservation law for the optical chirality, without any
restrictions on the nature of the medium. As a result we find a general expression for the optical
chirality density both in lossless and lossy dispersive media. Our definition is perfectly consistent
with that originally introduced for electromagnetic fields in free space, and is applicable to any
material system, including dielectrics, plasmonic nanostructures, and left-handed metamaterials.

Introduction.—Local dynamical properties such as
energy, linear momentum, and angular momentum,
among others, are conserved quantities for electric and
magnetic fields in vacuum [1, 2]. In fact, leaving aside
the physical meaning, there exists an infinity class of
conserved quantities for free electromagnetic fields [3, 4].
In particular, in 1964 Lipkin demonstrated the existence
of a set containing ten new independent conservation laws
for electromagnetic radiation in vacuum [5]. Originally,
these tensorial quantities were merely conceived as
mathematical entities theretofore unknown, and having
no ready physical significance. That is why they were
collectively referred to as the ij-zilches (which literally
means “nothingness”), where i and j stand for the labels
indicating the tensor indices. Since then, there have
been many efforts in searching for a physically meaningful
picture for these quantities [6–8].

Recent advances in near-field optics attempting to
achieve full spatiotemporal control of light-matter
interactions [9] has led to a renewed interest in Lipkin’s
zilches as a measure of the handedness, or knottedness, of
the streamlines describing highly contorted optical fields
[10]. In this regard, and motivated by the possibility
for enhancing the chiroptical effects (such as circular
dichroism (CD) [11]), which leads to enantioselective
signals far larger than that due to circularly polarized
light (CPL), Tang and Cohen introduced the 00-zilch as
a measure of the local density of optical chirality [12]:

Cvacuum ≡
1

2
[ε0E · (∇× E) + µ0H · (∇×H)] , (1)

where ε0 and µ0 are the permittivity and permeability
of vacuum, respectively, and E(r, t) and H(r, t) are
the local, time-dependent electric and magnetic fields.
Shortly after, this definition for the optical chirality
was successfully used in enhanced CD spectroscopic
measurements for the experimental detection and
characterization of chiral biomolecules [13], thus
confirming its physical significance, and highlighting the
feasibility for practical applications. The extremely high
sensitivity in the chiroptical responses (enhancement
factors up to 6 orders of magnitude were reported)

was attributed to the presence of the incipiently
postulated superchiral fields [14]. However, as pointed
out in Refs. [15, 16], on account of the energy
conservation, there should be an upper bound lowering
those enhancements. In this respect, it was argued
that this fundamental restriction ought to limit the
enhancement factor up to two orders of magnitude [15];
the other four orders should come from the highly twisted
evanescent near-field modes [16, 17]. It then follows
that, essentially, the main requirement for the occurrence
of strengthened chiroptical influence in light-matter
interaction relies on the complexity in the structure
of the electromagnetic field distribution [10, 17, 18].
For this reason, metallic nanostructures represent ideal
candidates for investigating chirality-based applications
and functionalities in nanophotonics [19–26]. It is
certainly surprising, however, that, most of the previous
studies on this issue build on the earliest definition for
the optical chirality density [5], which is only valid for
monochromatic optical fields in free space [12, 14, 16].
Still, there are few works attempting to extend the
definition of the optical chirality density to linear [15],
gyrotropic [27], or dispersive lossless media [28].

Inspired by the latest theoretical results concerning
the dispersive features of the electromagnetic
energy-momentum, the optical orbital and spin angular
momentum [29–31], and the electromagnetic helicity
[32], in this Letter we report on the optical chirality in
lossless and lossy dispersive media. Special emphasis
is placed on the role of the mathematical structure of
the corresponding conservation law. Indeed, building
on previous approaches addressing the electromagnetic
energy density considering dispersion as well as
dissipation [33], we put forward a complete description
for the optical chirality conservation law valid for
arbitrarily structured optical fields. The only restriction
we need to impose relies on the electromagnetic
characterization of the medium, which must be fitted by
Lorentzian line shapes. Hence, our results are completely
general [34], and are applicable to any material system,
including dielectrics, semiconductors, metals, as well
as metamaterials, even with negative refractive index.



2

Further, our findings are perfectly consistent with the
ones so far established for optical fields in free space
[12, 16], thus showing its physical meaningfulness.

Conservation law for the optical chirality.—
Conservation laws and symmetry properties of
a physical system are, arguably, among the most
important cornerstones of modern physics [35]. More
in-depth insights would require the standard Lagrangian
formulation [36]. Indeed, appealing to the principle
of least action, the Noether’s theorem states that, in
the absence of sources (or sinks), conserved quantities
and symmetries can be regarded as equivalent features
[37]. These theoretical concepts are mathematically
described via continuous or discrete symmetry groups,
which are in turn related to the corresponding
physical transformations [38]. Typical examples of
continuous symmetries lead to the conservation of
energy, linear momentum and angular momentum,
which are associated with the invariance under the
universal space-time transformations, i.e., translations
and rotations. An insightful picture of the conserved
quantities, reminiscent of the quantum formalism [39],
allows one to deal with the conserved quantities as
differential operators representing the generators of the
corresponding infinitesimal symmetry transformations.
For the above dynamical properties, the generators
simply involve first derivatives with respect to the
space-time coordinates acting on the electromagnetic
fields, and are given explicitly by {i∂t, i∇}, for the
space-time translations [29], and i (r×∇), for the
spatial rotations [30]. Furthermore, it was recently
demonstrated that the conservation of the optical
chirality is underpinned by i (∂t∇×) [28], which must
be applied on the vector potentials rather than on the
electromagnetic fields. Importantly, these generators
can be used to find the eigenstates of the aforementioned
conserved quantities. In this regard, just as the plane
waves are the eigenstates of the energy-momentum
differential operator, it has been shown that the
corresponding eigenstates associated to the optical
chirality are the circularly polarized plane waves [28].

The above scheme for identifying continuous conserved
quantities only holds in the absence of sources. In the
presence of charges and/or currents, conservation laws
are to be expressed through the continuity equations [40,
41]. Within the electromagnetic field theory, the most
well-known example is perhaps the Poynting’s theorem,
accounting for the energy conservation [1, 2]:

∇ · S =−[E · ∂tD + H · ∂tB + J · E] , (2)

where S ≡ E × H is the Poynting vector, which
represent the energy flux density, and D, B, and J
are the time-dependent electric displacement, magnetic
induction, and electric current density (or charge flux),
respectively. This expression is generally valid, and
can be readily obtained by taking the divergence of

the energy flux density. Likewise, we can derive the
time-dependent conservation law for the optical chirality
from the corresponding chirality flux density [5, 12, 16]:

F ≡ [E × (∇×H)−H× (∇× E)] /2. (3)

With the aid of the structural Maxwell’s equations and
the vector identity, ∇ · (A×B) = B · (∇×A) − A ·
(∇×B), it follows that

∇·F =−[E · ∂t (∇×D) + H · ∂t (∇×B) + SJ ]/2, (4)

where SJ = E ·(∇×J ) is the current-related source-like
contribution. Taking into account the general structure
of the continuity equation [33], Eq. (4) can be recast as

∇ ·F + ∂tC = S, (5)

where

C ≡ 1

2
[E · (∇×D) + H · (∇×B)] , (6)

S ≡ 1

2
[∂tE · (∇×D) + ∂tH · (∇×B)− SJ ] , (7)

are the optical chirality density and the source-like
terms, respectively. It is worth remarking that the
above expressions represent the most general result for
the conservation law of optical chirality, without any
restrictions on the nature of the medium, i.e., they are
valid regardless of the linearity, homogeneity, isotropy,
or dispersion. However, they differ significantly from the
previously established continuity equation [5, 12, 16, 26],

∇ ·F + ∂tCvacuum = Svacuum, (8)

where Cvacumm is the optical chirality density as defined in
Eq. (1), and Svacuum ≡ − [J · (∇× E) + E · (∇×J )] /2
is the source-like term in free space. As discussed
in Sec. II of the Supplemental Material [33], the
essential discrepancy arises on account of the
dispersion-related terms. In particular, it is easy
to prove that C = Cvacuum + Cmedium, where
Cmedium ≡ [E · (∇×P) + µ0H · (∇×M)] /2, and
P and M are the macroscopic polarization and
magnetization fields. Strikingly, up to our knowledge,
these considerations have never been properly analyzed
in previous approaches [12, 15, 16, 28, 42]. In fact,
even though both the dispersion-related and the
dissipation terms are explicitly disregarded in Eq. (8),
it has been widely used for investigating chirality and
chiroptical effects in media where the permittivity is
highly dispersive, including plasmonic nanostructures as
well as metamaterials [19–26]. Thus, as shown below,
the dispersion of the material systems brings about
important corrections into the original expressions for
the optical chirality density [compare Eqs. (1) and (6)]
and the source-like terms of the continuity equation
[compare Eqs. (5) and (8)], and hence, it must be
generally considered.
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FIG. 1. Optical chirality density in (a) lossless and (b) lossy dispersive media. Material parameters correspond to a nonmagnetic
medium (µ = 1) whose permittivity is described by a single Lorentz pole with ωp = ω0. In all the cases, red, gray and blue dashed
lines indicate the curves where the total contribution of the optical chirality in the lossless case is −1, 0 and 1, respectively.

Optical chirality density in lossless dispersive media:
Brillouin’s approach.—For monochromatic electric and
magnetic fields in free space, E(r, t) = Re

[
E(r)e−iωt

]
and H(r, t) = Re

[
H(r)e−iωt

]
, the time-averaged optical

chirality density is given by [12, 16]

Cvacuum =
ω

2c2
Im[E ·H∗], (9)

where bold letters stand for complex field amplitudes
and the asterisk denotes complex conjugation. A
straightforward calculation allows us to show that, for
freely propagating electromagnetic plane waves, the
maximum value of C is achieved for CPL:

C(±)CPL
vacuum = ± ω

2c2
1

Z0
|E|2 , (10)

where Z0 ≡
√
µ0/ε0 is the vacuum impedance, and the

signs + and − correspond to left- and right-handed CPL.
In general, CPL is considered as the paradigmatic

example of field displaying optical chirality, and has
been widely used for chiroptical measurements [13, 14].
Unfortunately, mainly due to the mismatch between the
scales of the wavelength of light and the typical size of
chiral objects [10], chiral responses are inherently very
small [11, 43]. To overcome this drawback, several efforts
have been undertaken in the last decades for improving
the detection schemes [14, 18, 44, 45], with special
emphasis on metallic nanostructures, which are regarded
as well suited platforms for strengthening chiroptical
light-matter interactions [19–26].

Metals are inherently absorptive and highly dispersive.
Something similar happens with semiconductors at
energies around the band gap. These features are
characterized in terms of the electric permittivity ε (and
eventually with the magnetic permeability µ) depending
on the frequency ω. According to the Kramer-Kronig
relations [1], dispersion is necessarily tied to dissipation.

Thus, in order to avoid misleading outcomes, the analysis
of the local dynamical properties have to be carefully
carried out from a material standpoint as well. This
is well known for the electromagnetic field energy in
metals, for which a general treatment has been developed
[1, 2]. Indeed, in a lossless dispersive medium the
energy density is described by the Brillouin’s formula
[46, 47]. Following a similar procedure we may then
obtain a closed expression for the optical chirality density.
For simplicity, we will assume a linear, homogeneous
and isotropic medium such that D = ε0ε(ω)E and
B = µ0µ(ω)H. From the continuity equation as
given in Eq. (4), and using the Fourier transforms,
the instantaneous distribution of the optical chirality
density can be obtained by integrating E · ∂t (∇×D)
and H ·∂t (∇×B) over time. It should be noted that the
integral convergence is constrained by the slowly varying
amplitude approximation [2]. Within this assumption,
the electric contribution reads as

Celec =
i

2c2

∫∫ [
ω2εωµω

ω′ + ω

]
Eω′ ·Hωe

−i(ω′+ω)tdω′dω, (11)

where the subscripts denote the frequency dependence.
By proceeding in the same way for the magnetic
contribution, summing up both expressions, and
integrating them properly over the frequencies ω and
ω′ [33], we can get the time-averaged optical chirality
density in a lossless dispersive media:

Clossless = Re[n(ω)ñ(ω)]Cvacuum =
ω

2

Im[E ·H∗]
vp(ω)vg(ω)

, (12)

where vp(ω) ≡ c/Re[n(ω)] and vg(ω) ≡ c/Re[ñ(ω)],
are the phase and group velocities [48, 49],
respectively, which are in turn expressed in terms
of the complex-valued phase refractive index n(ω) ≡√
ε(ω)µ(ω) and the corresponding dispersion-modified
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group index ñ(ω) ≡ n(ω) + ω [∂n(ω)/∂ω]. A detailed
description of the above derivation as well as the
current-related contribution can be found in Sec. III.B
of the Supplemental Material [33].

It should be noted that the same expression for the
optical chirality density was previously obtained, but
using a more complicated approach (see Eq. (33) in Ref.
[28]). Importantly, this definition [Eq. (12)] reduces
to the standard result [Eq. (9)] for freely propagating
optical fields, i.e., when n = 1. Furthermore, it is
important to emphasize the dependence of Eq. (12) on
the dispersion-related phase and group velocities. From
this simple relation, it is easy to realize that we may
enhance the optical chirality in artificially engineered
materials directly by lowering both velocities [48, 49].
This is specifically accomplished in the vicinity of the
resonance frequency, i.e., in the anomalous dispersion
region [see upper panel of Fig. 1]. However, in a
dispersive and lossy media, there are certain frequency
ranges where the precise physical meaning of the group
velocity turns out to be somewhat unclear [46, 47], and
then the result given by Eq. (12) may not be valid.

Optical chirality density in lossy dispersive media:
Loudon’s approach.—A more physically realistic
description of dispersive media requires careful
considerations of dissipative effects. In this regard,
as previously reported (see, e.g., Refs. [50, 51]), the
expression for the energy density in dispersive and
lossy media crucially depend on the specific model
characterizing the medium. This information is enclosed
within the material parameters, ε and µ [1, 2].

In classical theory, ε can be modeled as a collection of
Lorentz oscillators [2, 52]:

εDrude−Lorentz(ω) = 1−
∑
n

fnω
2
p

ω2 − ω2
n + iωγn

, (13)

where fn, ωp, ωn, ω and γn are, respectively, the
relative strength of the oscillators, the plasma frequency,
the nth resonance frequency, the excitation frequency,
and the nth damping constant. This multi-resonant
model has been proved to fit very well with the
experimental data [34, 53, 54], and thus, it can be
regarded as a generic approach for characterizing the
electric response of any material system for any frequency
and bandwidth. A similar expression can also be
introduced for the magnetic permeability µ, e.g., when
describing negative-index metamaterials consisting of
arrays of split-ring resonators or fishnet-like structures
[55–57]. It should be noted that the latter expression for
ε follows from the dynamic equation of the polarization
field:

∂2Pn

∂t2
+ γn

∂Pn

∂t
+ ω2

nPn = ε0fnω
2
pE loc, (14)

with E loc being the time-varying external electric field.
This relation between the electric and the polarization
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FIG. 2. Optical chirality density for (a) silver [Ag], and (b)
silicon [Si]. Material parameters describing the permittivities
are taken from Refs. [53] and [54], respectively. For
comparison we represent the results for lossless (red dashed
lines) [Eq. (12)] and lossy (blue solid lines) [Eq. (17)]
dispersive media. The gray shaded areas indicate the spectral
ranges with anomalous dispersion behavior.

field is actually the key point to get the general form of
the energy density [50, 51]. Likewise, taking into account
the underlying mathematical structure of the continuity
equation [33], we can use Eq. (14) (and the corresponding
one for the magnetization field) to identify the electric
(and the magnetic) contribution of the optical chirality
density in dispersive and lossy media. To this aim, we
start again from the continuity equation as given in Eq.
(4). Attempting to find the total time derivative for the
electric contribution, we have to express E · ∂t (∇×D)
in terms of the electric and the polarization fields (and
similarly for the magnetic contribution [33]):

E ·∂t (∇×D)=[ε0E · ∂t(∇× E) + E · ∂t(∇×P)] . (15)

In this way, we can also account for the influence of the
medium on the chirality density. In the latter expression,
the first term of the right-hand side can be rewritten as

E · ∂t (∇× E) = ∂t [E · (∇× E)]− ∂tE · (∇× E) , (16)

thereby leading to a total time derivative plus a
residual term. As shown at the end of Sec. III.A
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in the Supplemental Material [33], this residual term
exactly cancel with the one appearing for the magnetic
contribution in vacuum, thus allowing us to recover the
usual expression for the optical chirality in free space
[Eq. (1)]. On the other hand, the second term in the
right-hand side of Eq. (15) can be addressed by using
the dynamic equation for the polarization field given in
Eq. (14) (see Sec. III.A in the Supplemental Material [33]
for further details on this derivation). Following the same
procedure for the magnetic contribution and summing up
both expressions, we finally find that the time-averaged
optical chirality density in a lossy dispersive medium is

Clossy
ω

4c2
Im[(ε(ω)µeff(ω) + εeff(ω)µ∗(ω))E ·H∗]. (17)

where εeff and µeff are the real-valued effective material
parameters, which are defined as

εeff(ω) ≡ 1 +
∑
n

(χ′n + 2ωχ′′n/γn), (18a)

µeff(ω) ≡ 1 +
∑
n

(ξ′n + 2ωξ′′n/γ̃n), (18b)

with χ = χ′+iχ′′ ≡ ε−1 and ξ = ξ′+iξ′′ ≡ µ−1 being the
electric and magnetic susceptibilities. Furthermore, as
pointed out in the Supplemental Material, there are also
a current-related contribution which should be included.

As shown in Fig. 1, both of the above approaches
yield different results. Indeed, whereas Clossless [Eq.
(12)] can display both positive and negative values, the
total contribution of Clossy [Eq. (17)], remains always
positive, with a minimum value of Cvacuum that is reached
in the high-frequency limit. The largest discrepancies
occur close to the resonance frequency. Still, the peaks
for both approaches are almost equal in absolute value.
These signatures can also be appreciated in Fig. 2,
where we plot the optical chirality density of silver
and silicon, as examples of metal and semiconductor,
respectively. Both materials have been modeled using
Eq. (13) with parameters taken from Refs. [53] and
[54]. From the results shown in Fig. 2 it is worth
emphasizing that Clossless overlaps almost exactly with
Clossy for all frequencies, except in the vicinity of the
region of anomalous dispersion, i.e., where dε′/dω < 0.
There, the curves turn out to be drastically separated
from each other, thereby highlighting the importance of
considering dissipative effects.

Equation (17) is the main result of this work. To
the best of our knowledge, it provides the most general
definition for the optical chirality density in dispersive
and lossy media, being applicable to any material
system including plasmonic nanostructures [26] and
left-handed metamaterials [57]. Yet, our definition
differs significantly from the standard formula for optical
fields in free space [12, 16], and even from previous
suggestions attempting to tackle optical chirality in

dispersive media [28, 42]. As discussed in Sec. III of the
Supplemental Material [33], the distinction between our
result and those found in the aforementioned approaches
essentially arises from considering properly the dynamic
response of the time-dependent electromagnetic fields
within a dispersive medium. In this regard, it should
be noted that the time derivative of the fields D
and B, must be expressed as convolution integrals
in the time domain. Furthermore, in this particular
case, regarding lossy dispersive media, the mathematical
structure of the continuity equation plays a central role
in the identification of the optical chirality density as a
conserved dynamical property.

Summary.—We have carried out a theoretical analysis
of the conservation law for the optical chirality. Taking
advantage from previous approaches addressing the
electromagnetic energy density, we have also provided a
parallel derivation for the optical chirality both in lossless
and lossy dispersive media. Remarkably, our description
is completely general, i.e., is valid for arbitrarily varying
radiation fields, and can be applied to any medium,
including dielectrics, semiconductors, as well as highly
lossy material systems such as metals and metamaterials
with negative refractive index. In view of the growing
interest on chirality and chiral light-matter interaction,
we hope that these results will aid the development of
plasmonic and metamaterial nanostructures for advanced
chiroptical applications [17, 57], especially in the
context of enhanced enantioselectivity, detection and
characterization of chiral biomolecules via specifically
designed chiral and nonchiral structures [58, 59].
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