UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO

Modelado de las prestaciones de un motor monocilíndrico de investigación mediante una herramienta 1D

TRABAJO FINAL DE MÁSTER

REALIZADO POR:

Javier Rodríguez Martínez

DIRIGIDO POR:

Dr. Jaime Martín Díaz

Dr. Diego Blanco Cavero

TITULACIÓN: Máster Ingeniería Aeronáutica

ESCUELA: ETSID Valencia, Julio de 2019

RESUMEN

El objetivo del proyecto es el modelado de las prestaciones de un motor monocilíndrico de investigación por medio de una herramienta 1D que permite simular todos los fenómenos fluidodinámicos relevantes.

El proyecto consiste en tres partes: primero se ha realizado el montaje del modelo partiendo de información que se ha obtenido directamente del banco de pruebas. La segunda parte consiste en la puesta a punto del modelo mediante calibración y validación basándose en medidas experimentales disponibles obtenidas en banco de ensayos. Por último, se ha llevado a cabo un estudio paramétrico modificando variables de operación del motor y analizado su respuesta mediante el modelo.

Palabras clave: motor monocilíndrico, herramienta 1D, montaje, banco de pruebas, calibración, validación

RESUM

"L'objectiu del projecte és el modelatge de les prestacions d'un motor monocilíndrico d'investigació per mitjà d'una ferramenta 1D que permet simular tots els fenòmens fluid-dinàmics rellevants. El projecte consistix en tres parts: primer s'ha realitzat el muntatge del model partint d'informació que s'ha obtingut directament del banc de proves. La segona part consistix en la posada al punt del model per mitjà de calibratge i validació basant-se en mesures experimentals disponibles obtingudes en banc d'assajos. Finalment, s'ha dut a terme un estudi paramètric modificant variables d'operació del motor i analitzat la seua resposta per mitjà del model."

Paraules clau: motor monocilíndrico, ferramenta 1D, muntatge, banc de proves, calibratge, validació.

ABSTRACT

"The objective of the project is the modeling of the performance of a single-cylinder research engine by means of a 1D tool that allows to simulate all the relevant fluid-dynamic phenomena." The project consists of three parts: first, the assembly of the model has been carried out of information that has been obtained directly from the test bench, the second part consists of the development of the model by means of calibration and validation based on available experimental measurements obtained in a test bench. Finally, a parametric study has been carried out modifying variables of engine operation and analyzed their response through the model. "

Keywords: single-cylinder engine, 1D tool, assembly, test bench, calibration, validation

AGRADECIMIENTOS

Quiero agradecer la oportunidad que me han ofrecido de realizar este proyecto que no hubiera sido posible sin la inestimable colaboración de mi tutor Jaime Martín y sobre todo a la ayuda de mi cotutor Diego Blanco que ha estado ahí para ayudarme y resolver cualquier duda y problema que me ha ido surgiendo.

Agradezco a mi familia por el apoyo durante todos estos años de estudio de la Ingeniería que ya son unos cuántos sin el cual igual lo hubiera dejado Y me hubiera dedicado a otras cosas más fáciles.

A mis compañeros ya sean de los cuatro años del Grado en León o los dos de Máster en valencia ya que me han hecho bastante más amena la tarea de llegar a ser Ingeniero.

Javier Rodríguez Martínez

Julio 2019

ÍNDICE

Contenido

ME	MORIA		18
1.	INTRO	DUCCIÓN	18
	1.1	Justificación y antecedentes	18
	1.2	Objetivos	18
2.	Herra	mientas	19
	2.1	Experimentales	19
	2.2	Teórica	20
3.	Metod	dología	21
	3.1	Estructura del proyecto	21
	3.2	Calibración	21
	3.2.1	Componentes principales del motor	22
	3.2.2	Ajuste del flujo másico de aire por medio del controlador PID	26
	3.2.3	Ajuste de los coeficientes de flujo (cd) de las válvulas	26
	3.3	Validación	26
4.	Consti	rucción del modelo y calibración	27
	4.1	Cilindro	27
	4.1.1	Características principales:	27
	4.1.2	Principal	29
	4.1.3	Fricción	29
	4.1.4	Geometría del cilindro	29
	4.1.5	Orden de ignición	30
	4.1.6	Norma RLT	30
	4.2	Línea de Admisión	31
	4.2.1	Condiciones de contorno de admisión	31
	4.2.2	Conducto de admisión	31
	4.2.3	Medidor de volumen de Aire	34
	4.2.4	PID controlador flujo de masa	34
	4.2.5	Remanso grande	37
	4.2.6	Colector de admisión	38
	4.2.7	Conductos de admisión a las válvulas	40
	4.2.8	Válvulas de admisión	42
	4.3	Línea de escape	45

	4.3.1	Válvulas de escape	45
	4.3.2	Conductos de escape a las válvulas	47
	4.3.3	Colector de escape	49
	4.3.4	Conducto de escape	53
	4.3.5	Remanso Escape	55
	4.3.6	Condiciones de contorno de escape.	56
	4.4	Línea de EGR	56
	4.4.1	Conducto EGR	57
	4.4.2	Intercambiador	59
	4.4.3	Remanso pequeño	59
	4.5	Válvula de contra presión	60
	4.6	Línea de combustible de combustible	61
	4.6.1	Tasa de Inyección de combustible	61
	4.6.2	Cronometraje general	61
	4.6.3	InjectionDriver	61
	4.6.4	Propiedades del combustible	62
5.	Valida	ción de los resultados	65
	5.1	Flujo de masa	66
	5.2	Presión al cierre de admisión	67
	5.3	Temperatura al cierre de admisión	68
	5.4	Masa atrapada al cierre de admisión	69
	5.5	Presión instantánea en la admisión casos 1 2 3	70
	5.6	Presión instantánea en el escape casos 1 2 3	71
	5.7	Presión instantánea en la admisión casos 4 5 6	72
	5.8	Presión instantánea en el escape casos 4 5 6	73
	5.9	Presión instantánea en la admisión casos 7 8 9	74
	5.10	Presión instantánea en el escape casos 7 8 9	75
	5.11	Presión del cilindro caso 1 2 3 - 1000 RPM	76
	5.12	Presión del cilindro caso 4 5 6 - 2000 RPM	77
	5.13	Presión del cilindro caso 7 8 9 - 3000 RPM	78
6.	Conclu	usiones y trabajos futuros	79
	6.1	Estudios para el futuro	80
7.	Presu	puesto	81
	7.1	Coste de mano de obra	81
	7.2	Coste de material	82
	7.3	Presupuesto total	82

8.	Anexos	83
9.	Bibliografía	. 90

Figura 1. Motor de la sala 5 CMT	19
Figura 2.Colector de admisión	23
Figura 3. Explosión de válvulas de admisión y escape	23
Figura 4. Colector de escape	24
Figura 5. Calibre y metro para realizar las medidas en el banco de ensayo	25
Figura 6. Sensores de presión instantánea	25
Figura 7. Conducto de admisión	31
Figura 8. Medidor de volumen de Aire	34
Figura 9. Esquema del controlador PID y EGR en el motor	36
Figura 10. Remanso grande	37
Figura 11. Colector de admisión	39
Figura 12. Conductos de admisión a las válvulas	40
Figura 13. gráfico del levantamiento en los conductos de admisión	43
Figura 14. Gráfico de los coeficientes de flujo	
Figura 15. Valores del levantamiento de escape	46
Figura 16. Gráfico CD escape	47
Figura 17. Conductos de escape a las válvulas	47
Figura 18. Colector de escape	50
Figura 19. Conducto de escape	53
Figura 20. Remanso Escape	55
Figura 21. Conducto EGR	57
Figura 22. Comparación del Flujo de masa, datos experimentales vs datos referencia	66
Figura 23. Comparación de la presión al cierre de admisión, datos experimentales vs datos refer	
Figura 24. Comparación de la temperatura al cierre de admisión, datos experimentales vs datos	;
referencia	
Figura 25. Comparación de la masa al cierre de admisión, datos experimentales vs datos refere	
	69
Figura 26. Comparación de la presión instantánea en la admisión para los casos 1 2 3 valores	
experimentales vs valores del modelo	70
Figura 27. Comparación de la presión instantánea en el escape para los casos 1 2 3, valores	
experimentales vs valores del modelo	71
Figura 28. Comparación de la presión instantánea en la admisión para los casos 4 5 6, valores	
experimentales vs valores del modelo	72
Figura 29. Comparación de la presión instantánea en el escape para los casos 4 5 6, valores	
experimentales vs valores del modelo	73
Figura 30. Comparación de la presión instantánea en la admisión para los casos 7 8 9, valores	
experimentales vs valores del modelo	74
Figura 31. Comparación de la presión instantánea en el escape para los casos 7 8 9, valores	
experimentales vs valores del modelo	
Figura 32. Presión del cilindro caso 1 2 3 - 1000 RPM	
Figura 33. Presión del cilindro caso 4 5 6 - 2000 RPM	
Figura 34. Presión del cilindro caso 7 8 9 - 3000 RPM	78

Tabla 1. Datos principales del motor	20
Tabla 2. Variables más importantes a la hora de calibrar el modelo	22
Tabla 3. Condiciones de contorno de admisión. Datos principales	31
Tabla 4. Condiciones de contorno de admisión. Configuración del aire	31
Tabla 5. Características principales del conducto de admisión	32
Tabla 6. Estado inicial del conducto de admisión	33
Tabla 7. Configuración térmica	33
Tabla 8. Configuración del Therm_In 1	33
Tabla 9. Configuración del Therm_In 2	33
Tabla 10. Configuración principal del PID controlador flujo de masa	34
Tabla 11. Límites del PID controlador	35
Tabla 12. Inicialización del PID controlador	35
Tabla 13. Configuración principal del Remanso grande	37
Tabla 14. Geometría de los conductos en el tramo después del remanso	37
Tabla 15 Configuración principal del colector de admisión	39
Tabla 16. Configuración principal de los conductos de admisión a las válvulas	40
Tabla 17. Configuración térmica de los conductos de admisión a las válvulas	40
Tabla 18. Configuración del therm cul Split1	41
Tabla 19 Configuración del therm cul Split2	41
Tabla 20. Datos de contorno	41
Tabla 21. Tiempo de las válvulas de admisión	42
Tabla 22. Lift	42
Tabla 23.Coeficientes de descarga	43
Tabla 24. Temperatura de la pared definida por el objeto de referencia	27
Tabla 25. Objeto de transferencia de calor	28
Tabla 26. Objeto de flujo	28
Tabla 27. Inicialización	28
Tabla 28. Características principales del objeto del motor	29
Tabla 29. Fricción	29
Tabla 30. Geometría del cilindro	29
Tabla 31. Características principales de la variable geom-1	30
Tabla 32. Pistón a manivela descentramiento	30
Tabla 33. Orden de ignición	30
Tabla 34. Norma RLT	30
Tabla 35. Tiempo de las válvulas de escape	45
Tabla 36. Levantamiento de escape	45
Tabla 37. Coeficientes flujo de escape	46
Tabla 38. Características principales conductos de escape a las válvulas	48
Tabla 39. Condiciones ambientales de escape	48
Tabla 40. Características Térmicas	48
Tabla 41. Therm cul Split_out 1	48
Tabla 42. Therm cul Split_out 2	
Tabla 43. Datos de contorno	49
Tabla 44. Características principales Colector de escape	50
Tabla 45. Estado inicial del conducto de escape	52
Tabla 46. características térmicas	52

Tabla 47. therm_out 1	
Tabla 48. therm_out 2	53
Tabla 49. Características principales Conducto de escape	53
Tabla 50. Estado inicial del conducto de escape	54
Tabla 51. Características térmicas	55
Tabla 52. Características principales del remanso de escape	55
Tabla 53.Condiciones de contorno de escape	
Tabla 54 Configuración principal del EGR	
Tabla 55. Características principales del Conducto EGR	57
Tabla 56. Características principales del Intercambiador	
Tabla 57. Características principales del Remanso pequeño	59
Tabla 58Características principales de la válvula de contra presión	
Tabla 59. Características térmicas	60
Tabla 60. Tasa de Inyección de combustible	61
Tabla 61. Cronometraje general	61
Tabla 62. InjectionDriver	61
Tabla 63. Propiedades del combustible	62
Tabla 64 Propiedades del combustible	62
Tabla 65. Costes Ingeniero	81
Tabla 66. Costes Ingeniero Industrial (Tutor)	81
Tabla 67. Coste del material	82
Tabla 68. Presupuesto total	82
Tabla 69. valores del lift de admisión	86
Tabla 70. valores del lift de escape	88

MFMORIA

1. INTRODUCCIÓN

El objetivo es el modelado 1D de un motor monocilíndrico de investigación de encendido provocado.

Se ha desarrollado el montaje del modelo partiendo de información que se ha obtenido directamente del banco de pruebas. Para posteriormente realizar la puesta a punto del modelo mediante calibración y validación basándose en medidas experimentales disponibles de ensayos.

Para ello se ha seguido una metodología clara para ir ajustando paso a paso los parámetros del modelo.

1.1 Justificación y antecedentes

Cada vez se comprende mejor y se entienden los procesos que ocurren dentro de la cámara y sus mecanismos fundamentales, por eso hay una evolución hacia el futuro. Para un estudio en un futuro cercano del control de las emisiones.

La tendencia a observar es que se apreciarán que los factores se tornarán más restrictivos. Por tanto, se continuará con los estudios acerca de los motores de combustión interna para poder alcanzar el objetivo de que los motores sean cada vez mejores competitivamente desde la perspectiva de las prestaciones y emisiones.

Este proyecto forma parte de la investigación del departamento CMT-Motores Térmicos, como complemento de la herramienta de diagnóstico CALMEC y los métodos de optimización y estimación del funcionamiento de los motores de combustión interna.

1.2 Objetivos

Modelado 1D de un motor monocilíndrico de investigación de encendido provocado.

Se ha llevado a cabo un estudio con 9 casos diferentes en los que varían presiones y régimen del motor, se conocen las condiciones atmosféricas y otros parámetros fundamentales del funcionamiento, dichos puntos se pueden dividir en tres grupos en los que varía el régimen de giro: casos 1, 2 y 3 de 1000 rpm casos 4,5 y 6 de 2000 rpm y los casos 7,8 y 9 de 3000 rpm.

Los siguientes parámetros serán clave a la hora de validar el modelo.

- Gasto másico de aire
- > La presión instantánea de admisión y de escape en sus respectivos colectores.
- > La temperatura al cierre de admisión
- La masa atrapada en el cilindro al comienzo del ciclo cerrado.
- La presión en el cilindro

2. Herramientas

2.1 Experimentales

Se describe el motor utilizado proporcionando una ficha técnica con los parámetros más relevantes del mismo, como se observa en la tabla 1.

El motor del cual se ha realizado el modelado es un motor monocilíndrico de investigación de encendido provocado., del que disponemos de datos de referencia.

El motor se encuentra instalado en una sala de ensayo, en la figura 1 se muestra un esquema de la misma dónde se muestran el circuito principal de gas, así como los circuitos auxiliares de agua, aceite y combustible.

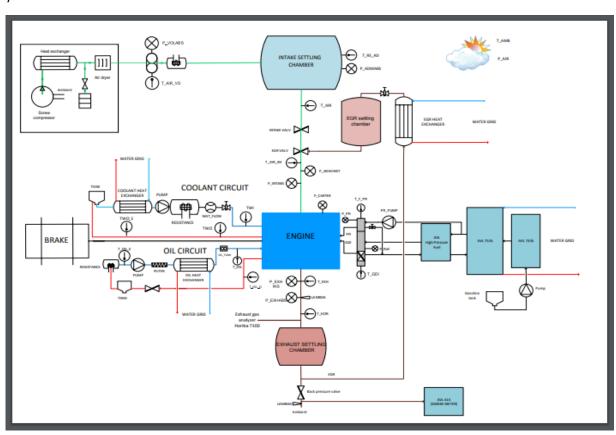


Figura 1. Esquema de la instalación de la sala de ensayo

Tabla 1. Datos principales del motor

Datos principales		
Número de cilindros	1	[-]
Sistema de ignición: 0 compresión, 1 chispa	1	[-]
Relación de compresión	11.5	[-]
Número de tiempos:	4	[-]
Cilindrada	0.000454167	[m³]
Diámetro del cilindro	0.082	[m]
carrera	0.086	[m]
Longitud Biela	0.144	[m]
Longitud de la manivela	0.043	[m]
Movimiento del gas: [S] swirl, [T] tumble	Tumble	[-]

2.2 Teórica

2.2.1 Calmec

Calmec es una herramienta para el diagnóstico de la combustión desarrollada por el departamento de máquinas y motores térmicos de la universidad.

Esta herramienta utiliza como variable principal la presión en cámara, así como otras variables de funcionamiento tales como la temperatura de admisión y los parámetros geométricos del motor, el objetivo es el cálculo de la ley de combustión basándose en el primer principio de la termodinámica.

En lo que respecta a los resultados obtenidos por Calmec, los más importantes para este trabajo son:

- La temperatura al cierre de admisión
- > La masa atrapada
- La presión en el cilindro

2.2.2 GT-POWER

Es el programa de modelado 1D empleado para realizar el proyecto.

Es el software de simulación de motores muy importante en el mercado, utilizado por fabricantes para el diseño y desarrollo de sus motores.

3. Metodología

3.1 Estructura del proyecto

Se realiza una breve introducción al contenido de los puntos posteriores que componen la estructura del proyecto.

- 1. Se ha construido un modelo simple del motor que se tiene que modelar como objetivo para tener una primera aproximación. Se ha comenzado construyendo el modelo de un motor simple monocilíndrico, definiendo sus principales elementos: Condiciones de contorno de admisión, conducto de admisión Colector de admisión, válvulas de admisión, cilindro, Motor, Válvulas de escape, colector de escape, conducto de escape, condiciones de contorno de escape. En cada uno de los elementos se han ido introduciendo los datos y condiciones experimentales. Éstos se verán reflejados cuando se expliquen más detalladamente cada parte. Se han dispuesto de modelos 3D procedentes del programa de diseño Inventor, de los cuáles se han podido extraer de forma exacta su geometría.
- 2. Además de estos componentes existen otros que forman parte del motor del banco de ensayos del que se han obtenido las medidas para su calibración, tales como: Medidor de caudal de Aire, controladores, Válvula EGR, Remansos: Admisión y de Escape e Intercambiador. Se mide en el banco de ensayo de la geometría de estos elementos de los que no se dispone su diseño 3D. Se dispuso de un metro y un calibre para realizar sobre el banco de ensayos las mediciones necesarias para determinar la geometría de los componentes anteriores de forma exacta.
- 3. Se procederá a la calibración del modelo dónde se han ajustado parámetros como los coeficientes de descarga
- 4. Una vez calibrado se validarán los resultados con los que se tienen de referencia procedentes de anteriores experimentos comprobando su aproximación y error.

3.2 Calibración

Una vez definido el motor monocilíndrico con sus elementos: Condiciones de contorno de admisión, conducto de admisión Colector de admisión, válvulas de admisión, cilindro, Motor, Válvulas de escape, colector de escape, conducto de escape, condiciones de contorno de escape. En cada uno de los elementos se han ido introduciendo los datos y condiciones experimentales.

Otros componentes del motor del banco de ensayos del que se han obtenido las medidas para su calibración, tales como: Medidor de caudal de Aire, controladores, Válvula EGR, Remansos: Admisión y de Escape e Intercambiador. Se mide en el banco de ensayo de la geometría de estos elementos de los que no se dispone su diseño 3D.

Variables más importantes a la hora de calibrar el modelo

Tabla 2. Variables más importantes a la hora de calibrar el modelo

			caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
rpm	RPM	Engine Speed	1000	1000	1000	2000	2000	2000	3000	3000	3000
P_out	bar	Press (Abs)	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
T_out	С	Temp	41.2	43.3	44.2	48.8	44.1	44.4	57	55.5	54.2
P_amb_In	bar	Press (Abs)	1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.045
T_amb_In	С	Temp	20.8	21.5	22.5	22.2	22	22.2	22.5	22.6	22.6
Mass_Flow_ PID	kg/h	Target for the Input Signal	14.85	21.427	29.617	34.088	48.308	65.343	48.718	67.831	91.832
THEAD	С	Head Temp	81.026	88.598	91.254	94.359	93.303	95.306	97.410	97.064	98.670
TPISTON	С	Piston Temp	76.223	82.935	88.473	89.398	86.532	90.999	91.322	90.763	93.853
TCYLINDER	С	Cylinder Temp	74.934	81.639	83.667	86.343	83.227	83.795	87.038	85.568	84.150

3.2.1 Componentes principales del motor.

- > Condiciones de contorno de admisión
- Colector de admisión
- válvulas de admisión
- > cilindro
- Motor
- Válvulas de escape
- > colector de escape
- > conducto de escape
- > condiciones de contorno de escape

En cada uno de los elementos se han ido introduciendo los datos y condiciones experimentales.

Se han dispuesto de modelos 3D procedentes del programa de diseño Inventor de los cuales se puede extraer de algunos elementos su geometría exacta.

Tales como:

> Colector de admisión

Figura 2.Colector de admisión

Explosión de válvulas de admisión y escape

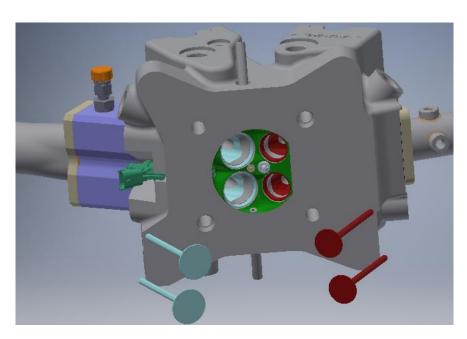


Figura 3. Explosión de válvulas de admisión y escape

> Colector de escape

Figura 4. Colector de escape

Además de estos componentes existen otros que forman parte del motor del banco de ensayos del que se han obtenido las medidas para su calibración, tales como:

- > Medidor de caudal de aire
- Controlador PID
- Válvula EGR
- Remansos: Admisión y escape
- > Intercambiador de calor en la línea del EGR
- Válvula de contrapresión

Se mide en el banco de ensayo de la geometría de estos elementos de los que no se dispone su diseño 3D.

Se dispuso de un metro y un calibre para realizar sobre el banco de ensayos las mediciones necesarias para determinar la geometría de los componentes anteriores.

Figura 5. Calibre y metro para realizar las medidas en el banco de ensayo

La geometría no está diseñada en 3D, pero se expondrán sus medidas geométricas en el desarrollo posterior del modelo.

Para realizar el primer ajuste del controlador PID, el EGR y los coeficientes de las válvulas se ha llevado a cabo sobre un modelo simplificado solo contando desde:

El sensor de presión instantánea de admisión hasta el sensor de presión instantánea del colector de escape de manera que así se podía imponer estas condiciones de admisión, en dichos extremos se impuso la presión instantánea de cada caso, se disponían los datos experimentales en los colectores de admisión y de escape para calibrarlo.

Se ven las figuras donde se encuentran estos sensores de presión instantánea:

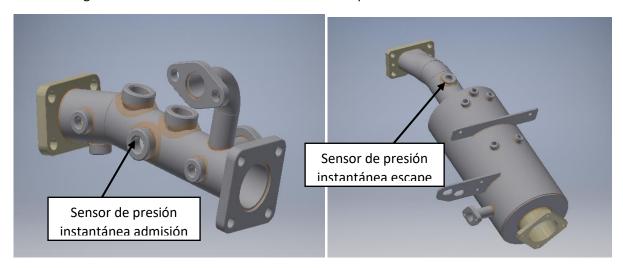


Figura 6. Sensores de presión instantánea

Una vez correctamente calibrado se añadirán el resto de componentes que forman la instalación.

3.2.2 Ajuste del flujo másico de aire por medio del controlador PID

Lo que se desea es que el medidor de aire nos mida la cantidad de flujo deseada que se dispone de las medidas experimentales disponibles.

Posteriormente se desarrolla de manera más explícita.

3.2.3 Ajuste de los coeficientes de flujo (cd) de las válvulas

Una vez definido el PID, se procedió a ajustar los coeficientes descarga de admisión y escape de las válvulas.

Se realizaron numerosas simulaciones intentando conseguir que su funcionamiento nos acercara al gasto de flujo de aire deseado. Hasta que se encontró con la combinación de coeficientes que funcionó.

Estos se mostrarán más adelante.

Una vez calibrado los coeficientes de las válvulas se añaden todos los componentes que conforman la instalación y se simula para observar los resultados.

3.3 Validación

Las variables que se han empleado para validar el modelo son las siguientes:

- Gasto másico de aire
- La presión instantánea de admisión y de escape en sus respectivos colectores.
- La temperatura al cierre de admisión
- La masa atrapada en el cilindro al comienzo del ciclo cerrado.
- > La presión en el cilindro

Resultados que se comprobarán al final del proyecto.

4. Construcción del modelo y calibración

En este apartado se encuentran los componentes de la instalación:

- Admisión
 - o Condiciones de contorno de admisión
 - Conducto de admisión
 - Medidor de aire volumétrico
 - o PID
 - o Remanso de admisión
 - Colector de admisión
 - Válvulas de admisión
- Escape
 - Válvulas de escape
 - Conducto de escape
 - Colector de escape
 - o Remanso de escape
 - o Condiciones de contorno de escape
- Cilindro
- EGR
- Fuel

Es necesario como partes básicas en nuestro modelado del motor los siguientes:

A medida que se establecen las especificaciones del motor nos podemos encontrar con valores que desconocemos pero que son típicos de esos tipos de motor. Para ello se define con la palabra 'ign' significa ignorar y 'def' significa por defecto. A medida que defina los objetos, notará muchos valores de 'ign' y 'def' que se llenan previamente. Estos valores precargados representan elecciones típicas.

4.1 Cilindro

4.1.1 Características principales:

Tabla 3. Temperatura de la pared definida por el objeto de referencia

twall				
Temperatura de la culata	[THEAD]	Según cada caso		
Temperatura del pistón	[TPISTON]	Según cada caso		
Temperatura del cilindro	[TCYLINDER]	Según cada caso		

4.1.1.1 Objeto de transferencia de calor

Tabla 4. Objeto de transferencia de calor

Modelo de transferencia de calor	WoschniGT
Multiplicador de convección general	1
Relación cabeza / área de perforación	1
Relación pistón / área de perforación	1.04694659
Multiplicador de radiación	ign
Evaluación de la temperatura de	híbrido
convección	

4.1.1.2 Objeto de flujo

Principal

Tabla 5. Objeto de flujo

Flow model					
Versión Modelo	V2016				
Objeto de la bowl de pistón	ign				
Diámetro de la región de la cabeza (borde)	ign	mm			
Diámetro de la región de la cabeza (máximo)	ign	mm			
Altura de la región de la cabeza	ign	mm			

Tabla 6. Inicialización

Remolino (condición impuesta o inicial)	V2016
Tipo para Swirl	0
Caída (condición impuesta o inicial)	0
Tipo para Tumble	0.1
Resistencia a la turbulencia (condición impuesta o	tumble_number
inicial)	
Tipo de resistencia a la turbulencia	1
Escala de longitud turbulenta, normalizada	norm_turb_intens
(impuesta o condición inicial)	
Resistencia media al flujo, normalizada (condición	0.008
inicial)	

4.1.2 Principal

Tabla 7. Características principales del objeto del motor

FI				
Tipo de motor	4-stroke			
Especificación de velocidad o carga	speed			
La velocidad del motor	[RPM]	Según casos		
Objeto de fricción del motor o FMEP	friction			
Inicio de Ciclo (CA en IVC)	-130			

4.1.3 Fricción

Tabla 8. Fricción

	friction				
Parte constante de FMEP	0.4	bar			
Factor de presión pico del cilindro	0.005				
Factor de velocidad media del pistón	0.09	bar/(m/s)			
Factor de velocidad cuadrática media del pistón	9e-4	bar/(m/s)^2			
Velocidad del motor al entrar en la banda de transición de fricción	def	RPM			

4.1.4 Geometría del cilindro

Tabla 9. Geometría del cilindro

Atributo	1
Objeto de geometría de cilindro	geom-1
Objeto de inercia de manivela deslizante	ign

Se define la variable geom-1 que se compone de 3 partes:

4.1.4.1 geom-1

Tabla 10. Características principales de la variable geom-1

principal				
cabezal	82	mm		
Carrera	86	mm		
Longitud de la biela	144	mm		
Índice de compresión	11.5			
Altura de espacio	0.8	mm		
libre de TDC				

Tabla 11. Pistón a manivela descentramiento

pistón a manivela compensada					
Descentramiento del 0.5 mm					
pistón					
Convención de trazo	true-stroke				
Convenio de ángulo	piston-position				
TDC					

4.1.5 Orden de ignición

Tabla 12. Orden de ignición

Orden de ignición				
Atributo 1				
Número de cilindro	1			
Intervalos de disparo	0			

4.1.6 Norma RLT

Tabla 13. Norma RLT

Estado de referencia para la eficiencia volumétrica	Cond_ambient_In
Nombre de la parte para colector volumétrico ef. Referencia	admision4
RLT para el cálculo de la carga porcentual	ign
Nombre de la tabla de carga del 100%	ign
Convenio de movimiento nominal accionado (solo EngCylGeomUser)	Dynamic

4.2 Línea de Admisión

4.2.1 Condiciones de contorno de admisión

Tabla 14. Condiciones de contorno de admisión. Datos principales

Presión	[P_amb_In]	bar
Temperatura	[T_amb_In]	k
Composición	aire	

Importante: Se han impuesto las condiciones ambientales de temperatura y de presión en la admisión.

Para el atributo "Composición", GT-ISE espera un objeto de referencia que describa la composición fluida del ambiente de admisión.

El aire se conforma de:

4.2.1.1 Aire

Tabla 15. Condiciones de contorno de admisión. Configuración del aire

	Fracción de volumen
N2 -vap	0.767
O2-vap	0.233

4.2.2 Conducto de admisión

Esta parte se desarrollará completamente en un punto posterior dónde estarán definidos todos los conductos que conforman esta parte.

Está formado por 12 diferentes partes que tienen longitudes y diámetros diferentes.

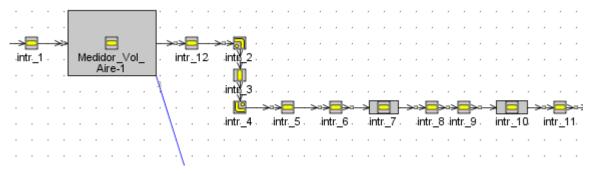


Figura 7. Conducto de admisión

Conectará las condiciones de contorno de admisión con el puerto de admisión. Se definirá dentro del componente dos pestañas, la principal y la térmica:

Este conducto de admisión se divide en muchos conductos pequeños con sus longitudes y diámetros. Se encuentra definido en la tabla 5 de forma exacta su geometría.

Principal

Tabla 16. Características principales del conducto de admisión

	Intr_1	Intr_2	Intr_3	Intr_4	Intr_5	Intr_6	
Diámetro en el	55.8	55.8	55.8	55.8	51.2	65	mm
extremo de							
admisión							
Diámetro en el	55.8	55.8	55.8	55.8	51.2	65	mm
extremo de escape							
Longitud	855	110	120	110	25	30	mm
Longitud de	32.8						mm
discretización							
Nombre inicial del	Cond_ambient_In						
estado							
La rugosidad del material	suave						

	Intr_7	Intr_8	Intr_9	Intr_10	Intr_11	Intr_12	
Diámetro en el extremo de admisión	63	65	51.2	59	66.6	55.8	mm
Diámetro en el extremo de escape	63	65	51.2	59	66.6	55.8	mm
Longitud	870	30	25	485	30	325	mm
Longitud de discretización	32.8						mm
Nombre inicial del estado	Cond_ambient_In						
La rugosidad del material	suave						

La longitud de discretización es uno de esos atributos que no es intuitivo. El solucionador divide las tuberías en subvolúmenes, sobre los cuales se realizan los cálculos. La longitud del sub-volumen es la longitud de discretización. Para el modelado del motor, el valor recomendado de la longitud de discretización es 0.4 * (diámetro del orificio del cilindro) en el lado de admisión, y 0.55 * (diámetro del orificio del cilindro) en el lado del escape.

Estado inicial del conducto de admisión

Tabla 17. Estado inicial del conducto de admisión

Cond_ambient_In				
Presión [P_amb_In] bar				
Temperatura	[T_amb_In]	k		
Composición	aire			

Se establecen las condiciones de admisión de presión, temperatura y la composición del gas de admisión que será aire.

> Térmica

Tabla 18. Configuración térmica

Temperatura de la pared calculada			
Objeto de las condiciones de frontera externa therm_In			
del muro			
	therm_in		
Propiedades de la capa de pared objeto			
Temperatura inicial de la pared	[T_IW]		

siendo:

> therm_In 1

Tabla 19. Configuración del Therm_In 1

therm_cul_In 1			
Emisividad de la superficie	0.8	mm	
Grosor de la capa	5.0	mm	
Material de la capa Objeto	Acero inoxidable		

> therm_In 2

Tabla 20. Configuración del Therm_In 2

therm_cul_In 2			
Temperatura de convección externa	[T_amb_In]	k	
Coeficiente de convección externa	20	W/(m^2-K)	
Temperatura del fregadero de radiación externa	[T_amb_In]	k	

Para el parámetro [T_amb_In] se han definido diferentes casos según el régimen. se mostrará más adelante.

4.2.3 Medidor de volumen de Aire

Posee la misma configuración que todos los conductos de admisión, pero aquí se aplicará un control mediante un PID para que el modelado se ajuste al experimental. Su posición es justo después del elemento de conducto de admisión 1.

Se desarrollará junto con el PID

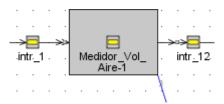


Figura 8. Medidor de volumen de Aire

4.2.4 PID controlador flujo de masa

Nos controlara la cantidad de gasto másico que se produce en el medidor de volumen de aire.

> Principal

El término [Mass_Flow_PID] hace referencia al flujo de masa d aire que se ha impuesto en cada uno de los 9 casos para que el modelo se ajuste a los resultados experimentales.

Tabla 21. Configuración principal del PID controlador flujo de masa

Principal			
Objetivo para la señal de admisión	[Mass_Flow_PID]		
Ganancias especificadas			
Ganancia proporcional	0.1		
Ganancia Integral	0.5		
Ganancia derivada	0		
Constante de tiempo derivada	def		

Límites

Tabla 22. Límites del PID controlador

Límites		
Escape mínima	0	
Máxima escape	55	
Tasa de escape mínima/mín	ign	


> Inicialización

Tabla 23. Inicialización del PID controlador

Inicialización		
Dwell Duration Type	ciclos	
Dwell Duration	3	
Initial Output	10	

En la figura 9 se muestra la configuración del controlador PID, el medidor volumétrico de aire y el EGR8ése se desarrollará más profundamente en un punto posterior).

Lo que se desea es que el medidor de aire nos mida la cantidad de flujo deseada que se dispone de las medidas experimentales disponibles. Para calibrarlo se ha utilizado un PID controlador que se ha definido de la siguiente manera:

	1	2	3	4	5
PID	Mass Flow rate boundary (kg/h)	input	output	Orífice Diameter (mm)	
EGR	Air Mass Flow rate (kg/h)	EGR mass Flow rate (kg/h)	EGR valve diameter	Mass Flow rate boundary (kg/h)	Orífice Diameter (mm)

- > El PID controlador actúa sobre el medido volumétrico de aire
- El EGR es un conducto que comienza en el remanso de escape y actúa sobre la parte en la que se conecta con el colector de admisión

4.2.5 Remanso grande

Tenemos varios remansos en la distribución de nuestro motor, en la parte del conducto de admisión se encuentra el remanso grande definido de la manera siguiente:

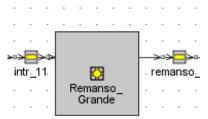


Figura 10. Remanso grande

Principal

Tabla 24. Configuración principal del Remanso grande

Principal				
Volume 250 L				
Surface Area	def	mm^2		
Initial State Name	Cond_ambient_In	Definida ya		

Después de este remanso continúan más conductos de admisión hasta llegar a la admisión a través de orificio.

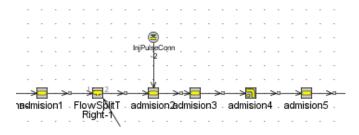
Después del remanso grande hay 4 tramos de conducto que unen éste con la admisión.

Mantienen las mismas condiciones térmicas que toda la admisión. Solo variando la geometría que se definirá después.

Tabla 25. Geometría de los conductos en el tramo después del remanso

	remanso_1	remanso_2	remanso_3	remanso_4	
Diámetro en el extremo de admisión	55.4	58.4	58.4	53.4	mm
Diámetro en el extremo de escape	def				mm
Longitud	200	80	30	135	mm

Longitud de discretización	32.8		mm
Nombre inicial del estado	Cond_ambient_In		
La rugosidad del material	suave		


Condiciones térmicas pared iguales que el conducto de admisión.

4.2.6 Colector de admisión

El siguiente paso es crear un objeto que describa el puerto de admisión del motor. Está formado por 6 partes.

Por lo general, los coeficientes de flujo para las válvulas de los cilindros se obtienen de un banco de flujo utilizando la culata real. Estos coeficientes de flujo contienen inherentemente todas las pérdidas de flujo presentes en los puertos. Por este motivo, se seleccionan los atributos del botón de opción Sin pérdida de presión y Pérdidas de presión cero de las curvas y Tonos para que no se impongan injustamente pérdidas de presión adicionales.

Teniendo en cuenta que la selección de estos botones de opción es matemáticamente equivalente a establecer el multiplicador de fricción, el coeficiente de pérdida progresiva y el coeficiente de pérdida inversa en 0.

Mantiene las mismas propiedades térmicas que el conducto de admisión.

Los elementos se han definido a partir de las medidas reales del conducto de admisión del motor 5405 Del colector de admisión se dispuso de su diseño en 3D gracias a la geometría que estaba desarrollada con un programa de diseño 3D, Inventor 2019:

Figura 11. Colector de admisión

Se definen sus propiedades:

> Principal

Tabla 26 Configuración principal del colector de admisión

	Principal Princi					
	Admision1	Admision2	Admision4	Admision5	Admision6	
Diámetro en	55	125	48.3	48.3	48.3	mm
el extremo de admisión						
Diámetro en	55	125	48.3	48.3	48.3	mm
el extremo de escape						
Longitud	28	224.6	71.4	27	81.3	mm
Longitud de discretización	32.8					mm
Nombre inicial del estado	Cond_ambient_In					
La rugosidad del material	suave					
Radio de giro				50		mm
Ángulo de giro				30		deg

La condición inical de estado es la misma que la de admisión (Cond_ambient_In).

Las condiciones térmicas de la pared son las mismas que en conducto de admsión

4.2.7 Conductos de admisión a las válvulas

Para acceder a las válvulas de admisión el conducto se divide en dos subconductos que se dirigen hacia la admisión de las válvulas

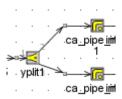


Figura 12. Conductos de admisión a las válvulas

Este conducto se ha realizado de forma exacta a partir del diseño CAD de inventor 2019 y se han definido el diámetro, longitud y ángulo de desviación del conducto de manera exacta gracias al programa 3D GEM que se encuentra dentro del GT POWER que permite determinar las dimensiones de una pieza se tiene previamente su diseño CAD en 3D.

Principal

Tabla 27. Configuración principal de los conductos de admisión a las válvulas

Principal				
Volume 151630 mm^3				
Surface Area	def	mm^2		
Initial State Name	Cond_ambient_In			

> Térmica

Tabla 28. Configuración térmica de los conductos de admisión a las válvulas

Temperatura de la pared calculada			
Objeto de las condiciones de frontera externa	therm_cul_In_Split		
del muro			
	therm_cul_In_Split		
Propiedades de la capa de pared objeto			
Temperatura inicial de la pared	[THEAD]		

> therm cul Split1

Tabla 29. Configuración del therm cul Split1

therm_cul_In_Split 1			
Emisividad de la superficie 0.8 mm			
Grosor de la capa	5.0	mm	
Material de la capa Objeto Acero inoxidable			

therm_cul_In 2

Tabla 30 Configuración del therm cul Split2

therm_cul_In_split 2				
Temperatura de convección externa	[Tcool]	K (ver casos según régimen)		
Coeficiente de convección externa	[CONV_CUL_ADM]	W/(m^2-K) (ver casos según régimen)		
Temperatura de radiación externa	[Tcool]	K (ver casos según régimen)		

El coeficiente de convección externa depende del régimen del motor y se calcula según la expresión siguiente:

> Datos de contorno

Tabla 31. Datos de contorno

Número	1	2	3
Angulo de eje X (3D)	0.001268756	150.177	150.177
Ángulo y eje Y (3D)	90.0	119.823	60.177
Ángulo ángulo de eje Z (3D)	90.00127	89.9989	89.9989
Longitud característica	66.289	38.204	38.204
Diámetro de expansión	43.093	31.933	31.933

4.2.8 Válvulas de admisión

> Tiempo

Tabla 32. Tiempo de las válvulas de admisión

tiempo			
Ángulo de sincronización de la leva	0	crank angle	
Referencia de anclaje de	TDCFiring		
sincronización de levas			
Referencia de la matriz de elevación	Theta=0		
de sincronización de levas			

Levantamiento

Tabla 33. Lift

Juego de válvulas	0
Objeto de dependencia de perfil variable	ign
Permanecer en la elevación máxima	ign
Multiplicador de ángulo	1
Ancla para multiplicador de ángulos	Theta=0
multiplicador	1

Gráfico del levantamiento en los conductos de admisión

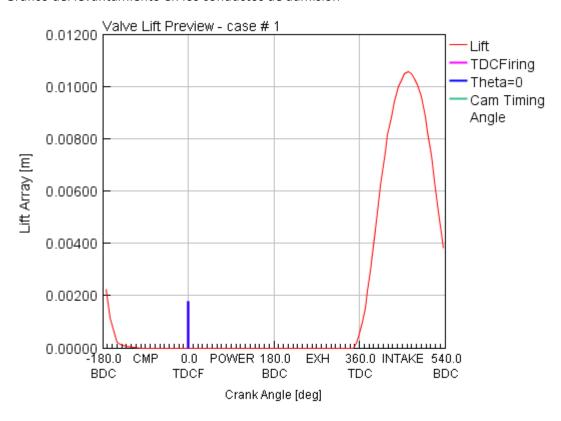


Figura 13. gráfico del levantamiento en los conductos de admisión

Coeficientes de descarga

Tabla 34.Coeficientes de descarga

Atributos	ref	CD adelante	CD reversa
1	0.0	0.5	0.4
2	1.0	0.5	0.4
3	2.0	0.5	0.4
4	3.0	0.5	0.4
5	4.0	0.5	0.4
6	5.0	0.5	0.4
7	6.0	0.5	0.4
8	7.0	0.5	0.4
9	8.0	0.5	0.4
10	9.0	0.5	0.4
11	10.0	0.5	0.4
12	11.0	0.5	0.4

Los valores de la columna de referencia pertenecen a l área definida de cortina Gráfico

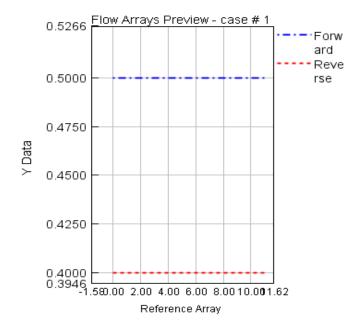


Figura 14. Gráfico de los coeficientes de flujo

4.3 Línea de escape

Se comienza definiendo las válvulas de escape.

4.3.1 Válvulas de escape

> Tiempo

Tabla 35. Tiempo de las válvulas de escape

tiempo		
Ángulo de sincronización de la leva	0	crank angle
Referencia de anclaje de sincronización de levas	TDCFiring	
Referencia de la matriz de elevación de sincronización de levas	Theta=0	

> Levantamiento en el escape

Tabla 36. Levantamiento de escape

Juego de válvulas	0
Objeto de dependencia de perfil variable	ign
Permanecer en la elevación máxima	ign
Multiplicador de ángulo	1
Ancla para multiplicador de ángulos	Theta=0
multiplicador	1

Gráfico del levantamiento de escape

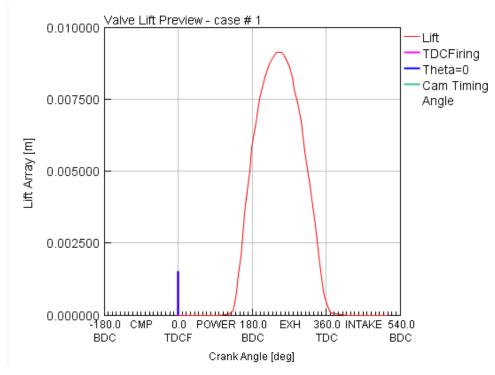


Figura 15. Valores del levantamiento de escape

Coeficientes flujo

Tabla 37. Coeficientes flujo de escape

Atributos	ref	CD adelante	CD reversa
1	0.0	0.4	0.5
2	1.0	0.4	0.5
3	2.0	0.4	0.5
4	3.0	0.4	0.5
5	4.0	0.4	0.5
6	5.0	0.4	0.5
7	6.0	0.4	0.5
8	7.0	0.4	0.5
9	8.0	0.4	0.5
10	9.0	0.4	0.5
11	10.0	0.4	0.5
12	11.0	0.4	0.5

Los valores de la columna de ref pertenecen al área de cortina que se ha desarrollado.

Gráfico

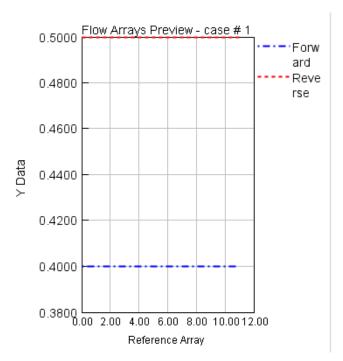


Figura 16. Gráfico CD escape

4.3.2 Conductos de escape a las válvulas

En el conducto de salida se juntan los dos conductos en uno.

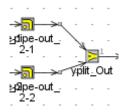


Figura 17. Conductos de escape a las válvulas

Este conducto se ha realizado a partir del diseño CAD de inventor 2019 y se han definido el diámetro, longitud y ángulo de giro del conducto de manera exacta gracias al programa 3D GEM que se encuentra dentro del GT POWER que permite determinar las dimensiones de una pieza si tienes previamente su diseño CAD en 3D.

Principal

Tabla 38. Características principales conductos de escape a las válvulas

Principal			
Volume	151630	mm^3	
Surface Area	def	mm^2	
Initial State Name	Cond_ambient_out		

> Condiciones ambientales de escape

Tabla 39. Condiciones ambientales de escape

Temperatura de la pared calculada		
Presión [P_out] ver casos		
Temperatura	[T_out] ver casos	
Composición	aire	

> Térmica

Tabla 40. Características Térmicas

Temperatura de la pared calculada		
Objeto de las condiciones de frontera externa del muro therm_cul _ out _Split_		
	therm_cul _ out _Split_	
Propiedades de la capa de pared objeto		
Temperatura inicial de la pared	[THEAD]	

therm cul Split_out 1

Tabla 41. Therm cul Split_out 1

therm_cul _Split_out 1		
Emisividad de la superficie 0.8 mm		
Grosor de la capa	0.4	mm
Material de la capa Objeto	Acero inoxidable	

therm_cul_Out 2

Tabla 42. Therm cul Split_out 2

therm_cul _Split_out 2			
Temperatura de convección externa	[Tcool]	K (ver casos según régimen)	
Coeficiente de convección externa	[CONV_CUL_ECH]	W/(m^2-K) (ver casos según régimen)	
Temperatura del fregadero de radiación externa	[Tcool]	K (ver casos según régimen)	

La expresión del coeficiente de escape depende del régimen y tiene la siguiente forma:

> Datos de contorno

Tabla 43. Datos de contorno

Número	1	2	3
Angulo de eje X (3D)	0.01094925	154.747	154.747
Ángulo y eje Y (3D)	90.0	115.253	64.747
Ángulo ángulo de eje Z (3D)	90.01095	89.9901	89.9901
Longitud característica	80.561	44.537	44.537
Diámetro de expansión	35.249	25.065	25.065

4.3.3 Colector de escape

El siguiente paso es crear un objeto que describa el puerto de escape del motor. Está formado por 3 partes.

Mantiene las mismas propiedades térmicas que el conducto de escape.

Los elementos se han definido a partir de las medidas reales del conducto de escape del motor monocilíndrico. Del colector de escape se dispuso de su diseño en 3D gracias a la geometría que estaba desarrollada con un programa de diseño 3D, Inventor 2019:

Figura 18. Colector de escape

Se definen sus propiedades:

Principal

Tabla 44. Características principales Colector de escape

Principal			
	escape_1	escape_2	
Diámetro en el extremo de admisión	36	36	mm
Diámetro en el extremo de escape	36	36	mm
Longitud	145	54.4	mm
Longitud de discretización	41		mm

Nombre inicial del estado	Cond_ambient_out		
La rugosidad del material	suave		
Radio de giro		15	mm
Ángulo de giro		24	deg

> Estado inicial del conducto de escape

Tabla 45. Estado inicial del conducto de escape

Cond_ambient_out			
Presión [P_out] bar			
Temperatura	[T_out]	k	
Composición	aire		

Ambos temperatura y presión estan definidos para los distintos casos de operación, mas adelante se definirán.

Para la pestaña térmica se ha señalado la parte que nos calcula la temperatura de pared, las propiedades de esta capa de la pared, y las condiciones externas así cómo la temperatura inicial de la pared.

Térmica

Tabla 46. características térmicas

Temperatura de la pared calculada					
Objeto de las condiciones de frontera externa therm_out					
del muro					
	therm-out				
Propiedades de la capa de pared objeto					
Temperatura inicial de la pared	[T_EXW]				

siendo:

➤ therm_out 1

Tabla 47. therm_out 1

therm_cul_In 1					
Emisividad de la superficie	0.8	mm			
Grosor de la capa	2.5	mm			
Material de la capa Objeto	Acero inoxidable				

therm_out 2

Tabla 48. therm_out 2

therm_cul_In 2						
Temperatura de convección externa	[T_EXT_COLLECTOR]	k				
Coeficiente de convección externa	5	W/(m^2-K)				
Temperatura del fregadero de radiación externa	[T_EXT_COLLECTOR]	k				

Para el parámetro [T_EXT_COLLECTOR] se han definido diferentes casos según el régimen. se mostrará más adelante.

4.3.4 Conducto de escape

Esta parte se desarrollará completamente en un punto posterior dónde estarán definidos todos los conductos que conforman esta parte.

Está formado por 8 diferentes partes que tienen longitudes y diámetros diferentes.

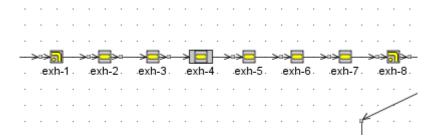


Figura 19. Conducto de escape

Conectará el colector de escape con la válvula de contrapresión, (entre el conducto de escape y el de contrapresión se encuentra un remanso de escape del que sale la toma de EGR). Se definirá dentro del componente dos pestañas, la principal y la térmica:

Este conducto de escape se divide en muchos conductos pequeños con sus longitudes y diámetros. Se definirá más adelante de manera exacta.

Principal

Tabla 49. Características principales Conducto de escape

Principal Princi									
	exh-1	exh-2	exh-3	exh-4	exh-5	exh-6	exh-7	exh-8	

Diámetro en el extremo de admisión	38.35	38.35	50.8	48.6	50.8	38.35	38.35	65	mm
Diámetro en el extremo de escape	38.35	38.35	50.8	48.6	50.8	38.35	38.35	65	mm
Longitud	87	35	28	309	28	105	114	110	mm
Longitud de discretización	41								mm
Nombre inicial del estado	Cond_amb_out								
La rugosidad del material	suave								
Radio de giro	55							70	mm
Ángulo de giro	90							90	deg

La longitud de discretización es 0.55 * (diámetro del orificio del cilindro) en el lado del escape.

> Estado inicial del conducto de escape

Tabla 50. Estado inicial del conducto de escape

Cond_ambient_out					
Presión	bar				
Temperatura	[T_out]	k			
Composición	aire				

Ambos temperatura y presión estan definidos para los distintos casoa al variar el regimen, más adelante se definirán.

Para la pestaña térmica se ha señalado la parte que nos calcula la temperatura de pared, las propiedades de esta capa de la pared, y las condiciones externas así cómo la temperatura inicial de la pared.

> Térmica

Tabla 51. Características térmicas

Temperatura de la pared calculada				
Objeto de las condiciones de frontera externa	therm_out			
del muro				
	therm-out			
Propiedades de la capa de pared objeto				
Temperatura inicial de la pared	[T_EXW]			

4.3.5 Remanso Escape

Tenemos varios remansos en la distribución de nuestro motor, en la parte del conducto de admisión se encuentra el remanso grande definido de la manera siguiente:

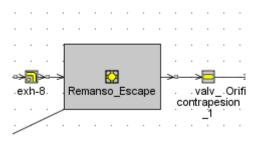


Figura 20. Remanso Escape

Principal

Las condiciones principales son las mismas

Tabla 52. Características principales del remanso de escape

Principal					
Volume	250	L			
Surface Area	def	mm^2			
Initial State Name	Cond_ambient_out				

> Térmica

Temperatura de la pared calculada					
Objeto de las condiciones de frontera externa therm_cul_out					
del muro					
	therm_cul_out				
Propiedades de la capa de pared objeto					
Temperatura inicial de la pared	[T_EXW]				

4.3.6 Condiciones de contorno de escape.

Se establecen las condiciones de escape de presión, temperatura y la composición del gas de escape que será aire.

Principal

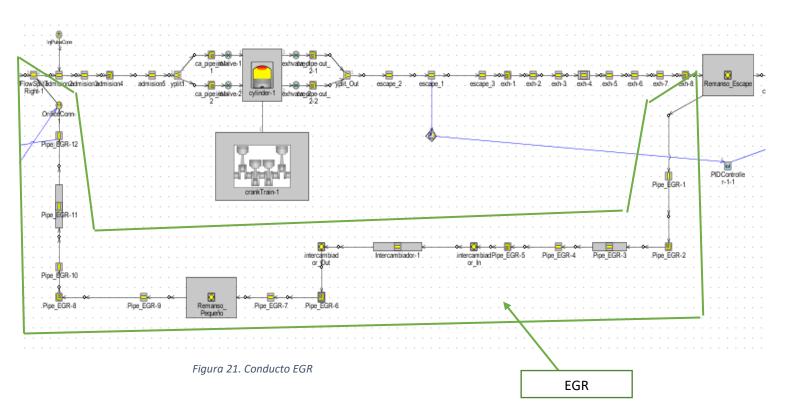
Tabla 53. Condiciones de contorno de escape.

Presión	[P_amb_out]	bar
Temperatura	[T_amb_out]	k
Composición	aire	

Importante: Se han impuesto las condiciones ambientales de presión y temperatura del gas en el escape, los datos se muestran en los anexos según los casos estudiados.

4.4 Línea de EGR

Principal


Tabla 54 Configuración principal del EGR

Principal					
Fracción objetivo de EGR (EGR / (Air + EGR))	[TasaEGR]				
Fracción de EGR objetivo total (cuando hay varias	ign				
rutas de EGR presentes)					
Parte de conexión de flujo	48				

En esta calibración ducho valor siempre es 0, debido a que son casos de arrastre. Sin embargo, es importante su correcta configuración debido al impacto que tienen dichos conductos en las ondas de presión que viajan por los mismos.

Está conectado son el medidor de volumen de aire mediante un sensor con un output de control de flujo de masa y otro sensor al conducto EGR 11. A su vez se conecta con un actuador unida a un orificio que conecta con el colector de admisión.

Del remanso de escape sale un conducto EGR que se conecta a la admisión (entre el conducto de admisión1 y admisión 2. Dentro de este conducto existe un remanso pequeño además de un intercambiador.

Este conducto de admisión se divide en muchos conductos pequeños con sus longitudes y diámetros. Se definirá más adelante de manera exacta.

4.4.1 Conducto EGR

Tabla 55. Características principales del Conducto EGR

Principal								
	Pipe_EGR- Pipe_EGR- Pipe_EGR- Pipe_EGR- Pipe_EGR-							
	1		2	3	4	5		

Diámetro en el extremo de admisión	31.9		33.1	36.2	30.5	31.9	m m
Diámetro en el extremo de escape	def		33.1				m m
Longitud	200	63	1190	24	55	55	m m
Longitud de discretizació n	41						m m
Nombre inicial del estado	Cond_amb _In						
La rugosidad del material	suave						
Radio de giro		40			35	35	m m
Ángulo de giro		90			90	90	ō

	Principal						
	Pipe_EGR- 7	Pipe_EGR- 8	Pipe_EGR- 9	Pipe_EGR- 10	Pipe_EGR- 11	Pipe_EGR- 12	
Diámetro en el extremo de admisión		16.3	30.5	26.4	18.9	18.4	m m
Diámetro en el extremo de escape		Def					m m
Longitud	245	48	220	50	625	65	m m
Longitud de discretizació n		32.8					m m
Nombre inicial del estado		Cond_amb ient_In					
La rugosidad del material		suave					
Radio de giro		30					m m
Ángulo de giro		90					ō

El estado inicial es el ya definido como condiciones ambientales de admisión: Cond_amb_In

Para la pestaña térmica se ha señalado la parte que nos calcula la temperatura de pared, las propiedades de esta capa de la pared, y las condiciones externas así cómo la temperatura inicial de la pared. Son las mismas que el conducto de admisión.

4.4.2 Intercambiador

Sirve para enfriar los gases del EGR antes de introducirlos al motor

Tiene las mismas características que un conducto de admisión excepto los siguientes parámetros:

Tabla 56. Características principales del Intercambiador

Está formado por dentro por conductos pequeños idénticos	19
Se le ha impuesto temperatura de la pared	25.7
Multiplicador de transferencia de calor	500

Este valor de multiplicador de transferencia se utiliza para asegurar que la temperatura del gas es la misma que la del refrigerante

4.4.3 Remanso pequeño

Mismas características que el remanso grande de la admisión excepto claro el volumen, ya que es más pequeño.

Tabla 57. Características principales del Remanso pequeño

Volumen	150	L	
---------	-----	---	--

4.5 Válvula de contra presión

Principal

Tabla 58Características principales de la válvula de contra presión

	Principal	
Diámetro en el extremo de admisión	65	mm
Diámetro en el extremo de escape	65	mm
Longitud	220	mm
Longitud de discretización	41	mm
Nombre inicial del estado	Cond_ambient_Out	
La rugosidad del material	suave	

El estado inicial es el ya definido como condiciones ambientales de escape: Cond_amb_out

Para la pestaña térmica se ha señalado la parte que nos calcula la temperatura de pared, las propiedades de esta capa de la pared, y las condiciones externas así cómo la temperatura inicial de la pared. Son las mismas que el conducto de escape.

> Térmica

Tabla 59. Características térmicas

Temperatura de la pared calculada						
Objeto de las condiciones de frontera externa	Therm_ out					
del muro						
	Therm_ out					
Propiedades de la capa de pared objeto						
Temperatura inicial de la pared	[T_EXH]					

4.6 Línea de combustible de combustible

Cuya posición se encuentra en el conducto de admisión 3. Más tarde se definirá.

Se definen tres pestañas:

4.6.1 Tasa de Inyección de combustible

Tabla 60. Tasa de Inyección de combustible

Rate		
Tasa de entrega del inyector	def	Kg/h
Ancho de pulso de inyección	0.5	ms
Masa inyectada	[Minj]	Varía según casos

4.6.2 Cronometraje general

Tabla 61. Cronometraje general

Timing general		
verdadero objeto de referencia del controlador	InjectionDriver	Ver
Tiempo de inyección	[soinj-corr]	Varía según casos
Bandera de tiempo de inyección	injection-start	
Ubicación del inyector (solo tubos)	0.21	
Temperatura del fluido inyectado	300	k
Objeto fluido	indolene-combust	Ver
Fracción fluida vaporizada	1	

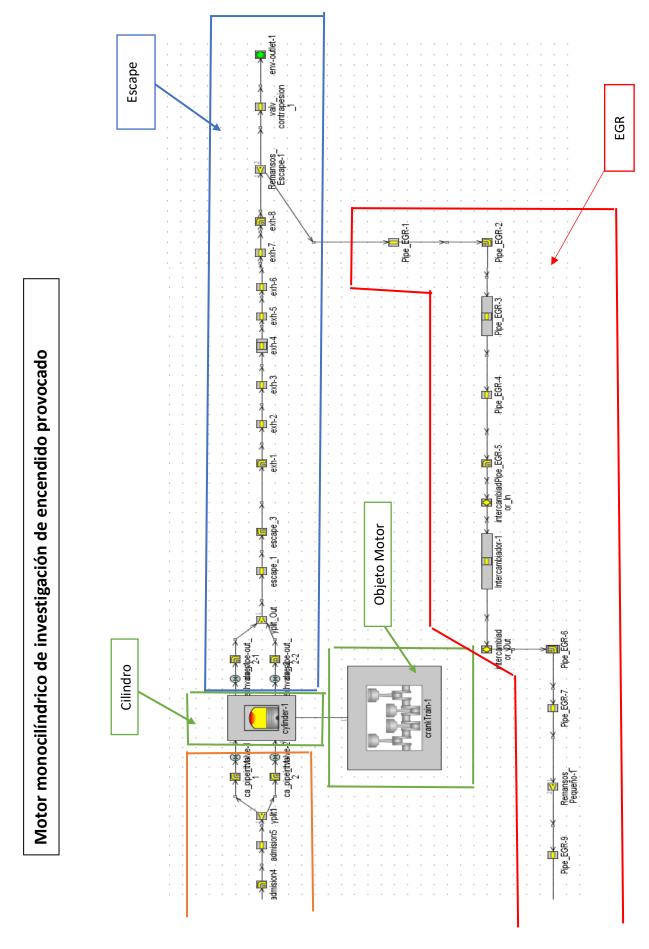
Siendo:

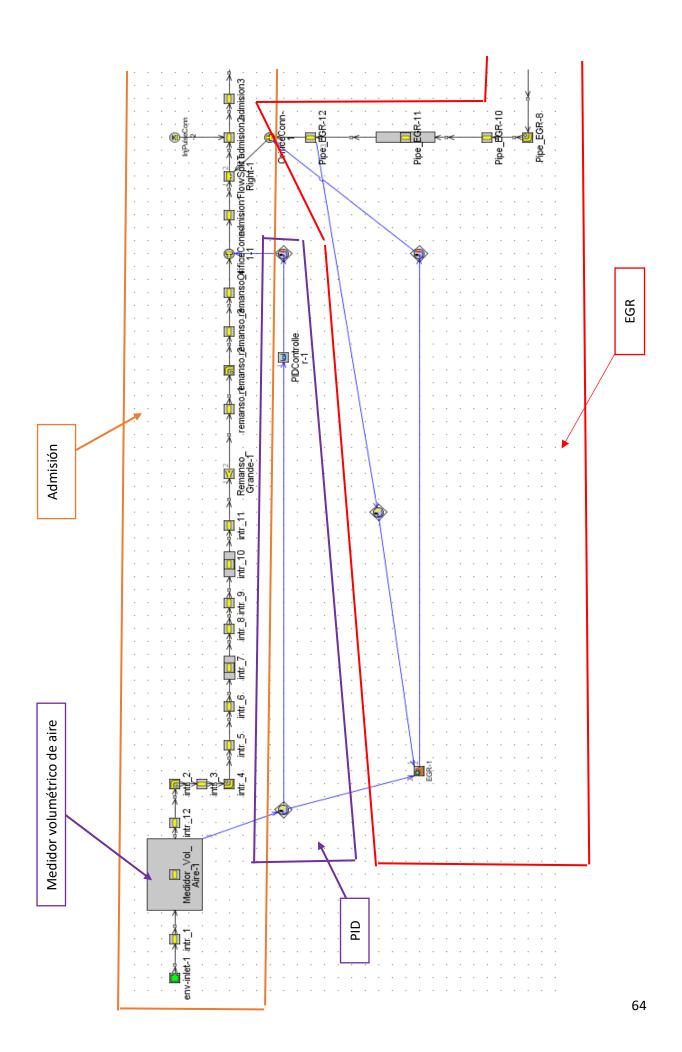
4.6.3 InjectionDriver

Tabla 62. InjectionDriver

InjectionDriver						
Velocidad de rotación	[RPM]	Varía según casos				
720 grados por ciclo	0.8	mm				
Ángulo al inicio de la simulación	2.0	mm				
Ángulo de envoltura	Acero inoxidable					

4.6.4 Propiedades del combustible


Tabla 63.Propiedades del combustible


	Main	
Objeto fluido de vapor	indolene-vap	ver
Calor de vaporización a 298K	350000	J/kg
Densidad	750	kg/m^3
Entropía absoluta a 298K	2872.56	J/kg-K

Propiedades

Tabla 64 Propiedades del combustible

Principal		
Peso molecular	ign	
Átomos de carbono por molécula	7.93	
Átomos de Hidrógeno por Molécula	14.8	
Átomos De Oxígeno Por Molécula	0	
Átomos de nitrógeno por molécula	0	
Átomos de azufre por molécula	0	
Átomos de Argón por Molécula	0	
Valor mínimo de calefacción	42822590	J/kg
Temperatura crítica	568.8	k
Presión crítica	24.9	bar
Entropía absoluta a 298K	3643.35	J/kg-K

5. Validación de los resultados

Una vez que se ha construido de forma satisfactoria el modelo se mostrarán los resultados más significativos del funcionamiento del motor comparados con los datos experimentales.

Se mostrarán los resultados de los siguientes parámetros de operación del motor:

- Flujo de masa
- Presión al cierre de admisión
- Temperatura al cierre de admisión
- Masa total atrapada al cierre de admisión
- Presión instantánea en la admisión
- Presión instantánea de escape
- Presión en el cilindro

5.1 Flujo de masa

		caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
Mass_Flow_referencia	kg/h	14.85	21.42	29.61	34.12	48.36	65.34	48.71	67.83	91.79
Average Mass Flow Rate (Inlet)	kg/h	14.95	20.80	28.23	32.98	46.38	62.04	48.72	67.06	89.21

Figura 22. Comparación del Flujo de masa, datos experimentales vs datos referencia

- La línea azul muestra los valores flujo de masa experimentales.
- La línea verde muestra los valores del del flujo de masa que mide el PID en el medidor volumétrico de aire del modelo obtenidos con el programa 1D GT-Power
- La línea negra muestra el error promedio entre los experimentales y los obtenidos en el proyecto, el resultado es muy bueno ya que no supera en ningún caso el 5 % de error.

5.2 Presión al cierre de admisión

		caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
Presión_ cierre_de _Admisión ref	bar	1.26	1.69	2.24	1.32	1.82	2.40	1.26	1.71	2.29
Pressure at Cyl. Cycle-Start GT-	bar	1.24	1.73	2.33	1.37	1.91	2.55	1.41	1.92	2.53

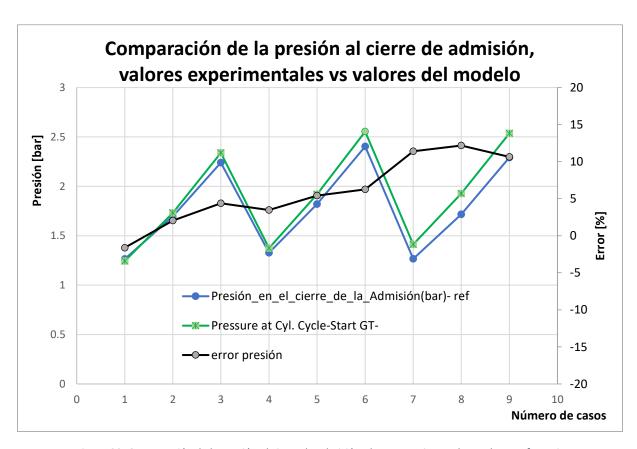


Figura 23. Comparación de la presión al cierre de admisión, datos experimentales vs datos referencia

- La línea azul muestra los valores de presión al cierre en la admisión obtenidos en el Calmec.
- La línea verde muestra los valores del cierre de admisión que según la configuración del motor corresponden a la presión ciclo cuando empieza en el cilindro obtenidos del modelo con el programa 1D GT-Power
- La línea negra muestra el error promedio entre los datos calculados del Calmec y los medidos con el modelo, el erro ese encuentra en torno al 10% en algunos casos, es un poco grande debido a que estos valores procedentes del Calmec son calculados y tienen cierto grado de incertidumbre.

5.3 Temperatura al cierre de admisión

		caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
Temp_cierre_de admisión- ref	К	340.52	318.32	305.11	332.39	322.16	314.69	328.24	320.21	315.42
Tempat Cyl. Cycle-Start GT	К	333.28	337.32	337.90	347.50	345.57	344.07	352.15	349.22	345.66

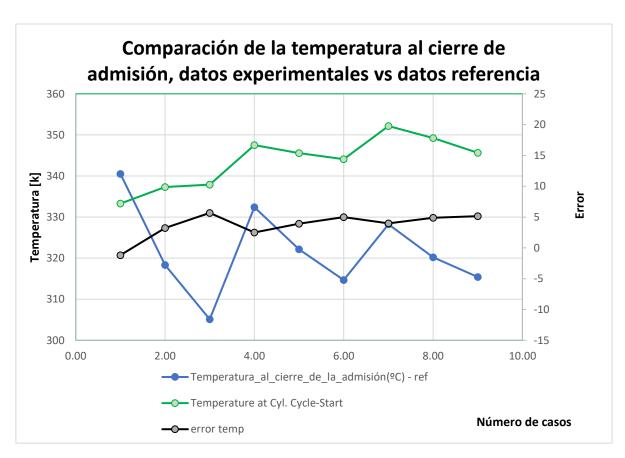


Figura 24. Comparación de la temperatura al cierre de admisión, datos experimentales vs datos referencia

- La línea azul muestra los valores de temperatura al cierre en la admisión proporcionados por Calmec.
- La línea verde muestra los valores del cierre de admisión que según la configuración del motor corresponden a la temperatura del ciclo cuando empieza en el cilindro obtenidos experimentalmente con el programa 1D GT-Power
- La línea negra muestra el error promedio entre los datos calculados del Calmec, estos valores están por debajo del 5 % en prácticamente en todos los casos.

5.4 Masa atrapada al cierre de admisión

		caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
Masa_ cierre _Admisión- ref	g	0.56	0.81	1.12	0.61	0.86	1.16	0.58	0.81	1.10
Total Mass Trapped at Cyl. Cycle-Start	g	0.56	0.77	1.04	0.59	0.84	1.12	0.60	0.83	1.11

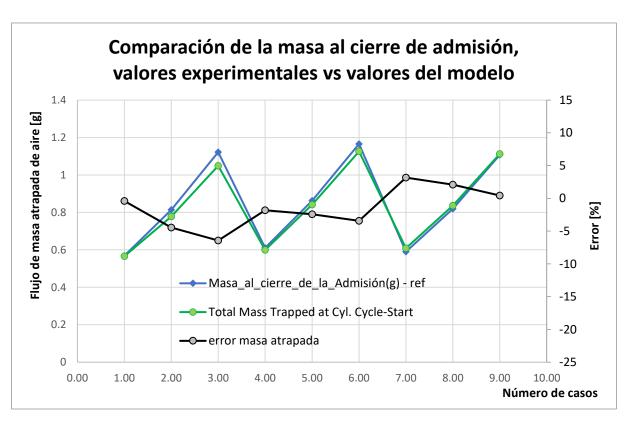


Figura 25. Comparación de la masa al cierre de admisión, datos experimentales vs datos referencia

- La línea azul muestra los valores de referencia de la masa atrapada en el cierre de admisión
- La línea verde muestra los valores obtenidos experimentalmente del total de la masa atrapada obtenida con el programa 1D GT-Power
- La línea negra muestra el error promedio y puede observarse que funciona muy bien con un error no superior al 5 % en ningún caso.

5.5 Presión instantánea en la admisión casos 1 2 3

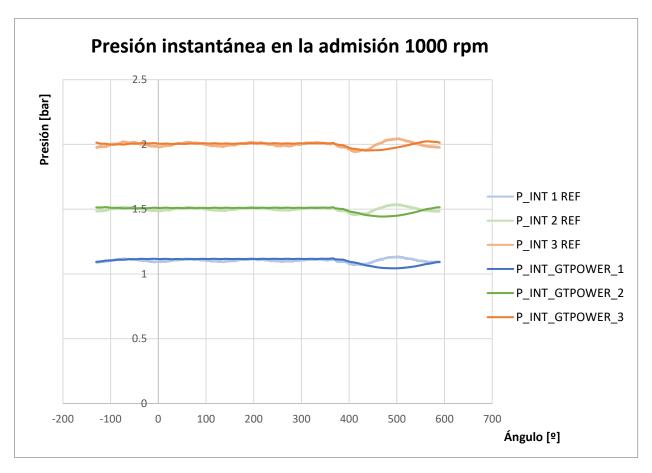


Figura 26. Comparación de la presión instantánea en la admisión para los casos 1 2 3 valores experimentales vs valores del modelo

> Se puede ver que la presión instantánea en la admisión obtenida en el modelo se ajusta prácticamente de forma perfecta a los datos experimentales.

5.6 Presión instantánea en el escape casos 1 2 3

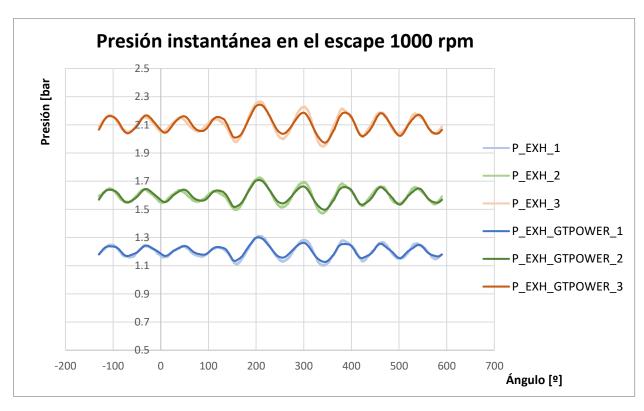


Figura 27. Comparación de la presión instantánea en el escape para los casos 1 2 3, valores experimentales vs valores del modelo

➤ La presión instantánea en el escape del modelo se ajusta de forma prácticamente exacta a la experimental. Corroborando la exactitud de la geometría del modelo y confirmado que la acústica del modelo se ajusta perfectamente.

5.7 Presión instantánea en la admisión casos 4 5 6

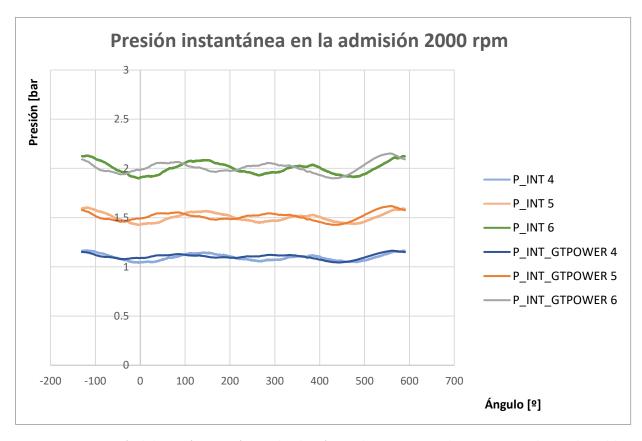


Figura 28. Comparación de la presión instantánea en la admisión para los casos 4 5 6, valores experimentales vs valores del modelo

> Se puede ver que la presión instantánea en la admisión obtenida en el modelo se ajusta un poco peor que en los casos a régimen de 1000 RPM, esto puede ser, cómo ya comenté, que haya algún error en los datos de referencia.

5.8 Presión instantánea en el escape casos 4 5 6

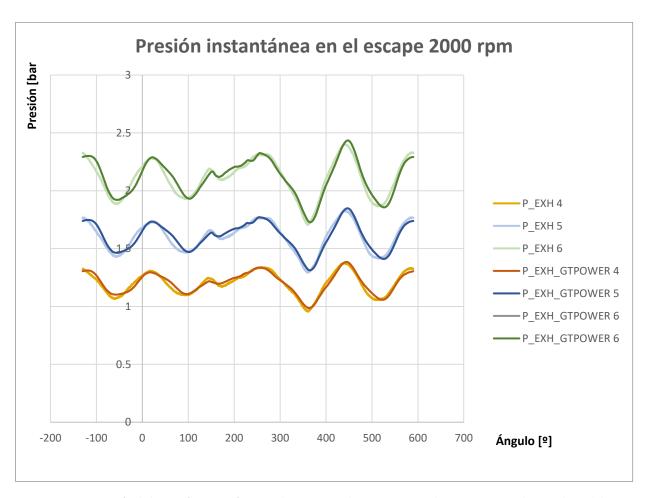


Figura 29. Comparación de la presión instantánea en el escape para los casos 4 5 6, valores experimentales vs valores del modelo

> Ya que la presión instantánea de escape se ajusta perfectamente lo que muestra la exactitud con que se corrobora que se ha realizado la geometría del modelo que reproduce la acústica de manera muy precisa.

5.9 Presión instantánea en la admisión casos 7 8 9

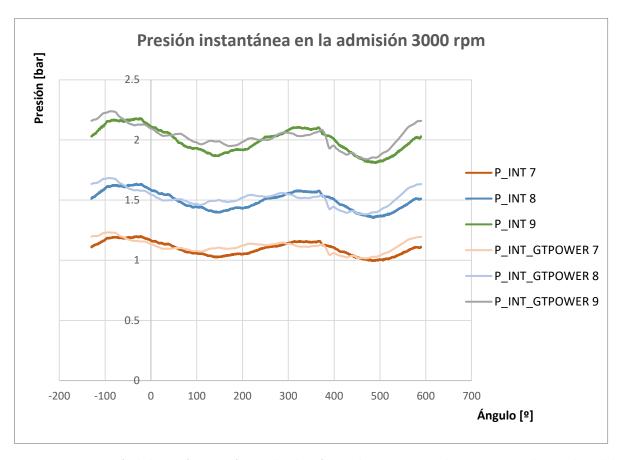


Figura 30. Comparación de la presión instantánea en la admisión para los casos 7 8 9, valores experimentales vs valores del modelo

- La presión instantánea en la admisión se ajusta un poco mejor que la de 2000 RPM, se puede ver que se va acercando mejor a la forma deseada.
- Muestra la exactitud con que se ha desarrollado el modelo que reproduce la acústica de manera muy precisa.

5.10 Presión instantánea en el escape casos 7 8 9

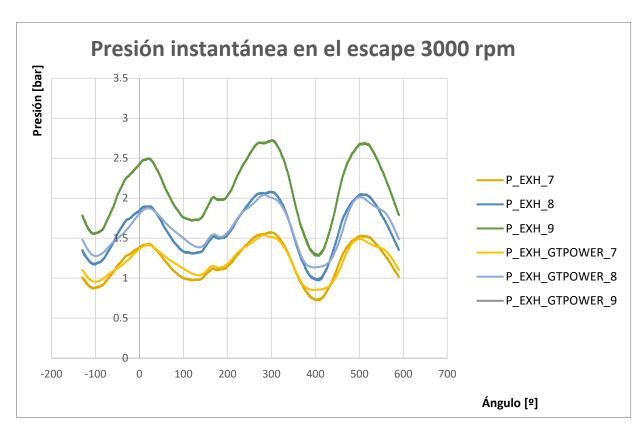


Figura 31. Comparación de la presión instantánea en el escape para los casos 7 8 9, valores experimentales vs valores del modelo

Ya que la presión instantánea de escape de nuevo se ajusta perfectamente lo que muestra la exactitud que continúa en la afirmación de que se ha realizado la geometría con precisión del modelo que reproduce la acústica de manera muy precisa.

5.11 Presión del cilindro caso 1 2 3 - 1000 RPM

Se observan las 3 juntas

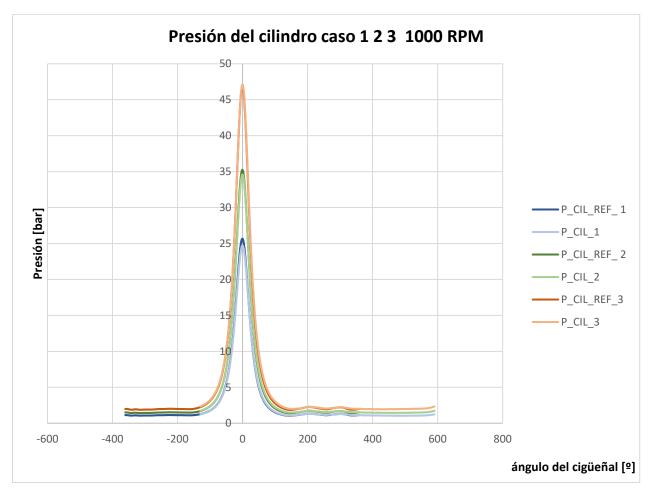


Figura 32. Presión del cilindro caso 1 2 3 - 1000 RPM

Se observan los tres distintos casos que funcionan a un régimen de 1000 RPM y se observa que los resultados son muy buenos en cada uno de ellos ajustándose de forma muy precisa.

El error entre los puntos máximos es el siguiente:

	Máx REF	Máx GT-POWER	Error (%)
Caso 1	25.66	24.71	3.68
Caso 2	35.25	34.58	1.89
Caso 3	46.84	47.08	0.51

5.12 Presión del cilindro caso 4 5 6 - 2000 RPM

Se observan las 3 juntas

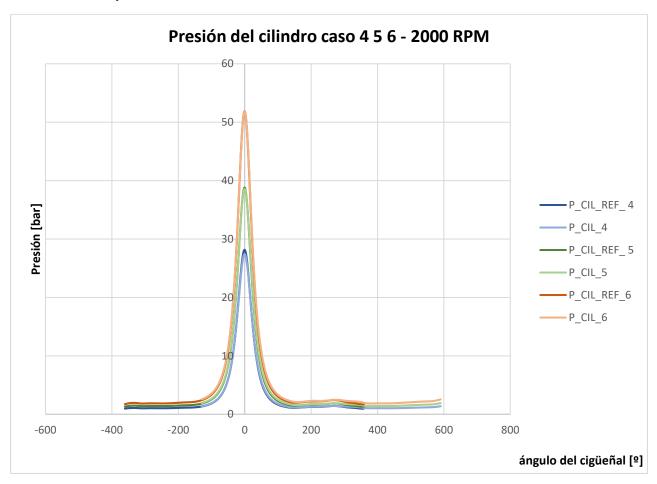


Figura 33. Presión del cilindro caso 4 5 6 - 2000 RPM

Se observan los tres distintos casos que funcionan a un régimen de 2000 RPM y se observa que los resultados son muy buenos en cada uno de ellos ajustándose de forma muy precisa.

	Máx REF	Máx GT-POWER	Error (%)
Caso 4	28.14	27.40	2.62
Caso 5	38.78	38.54	0.62
Caso 6	51.82	51.76	0.11

5.13 Presión del cilindro caso 7 8 9 - 3000 RPM

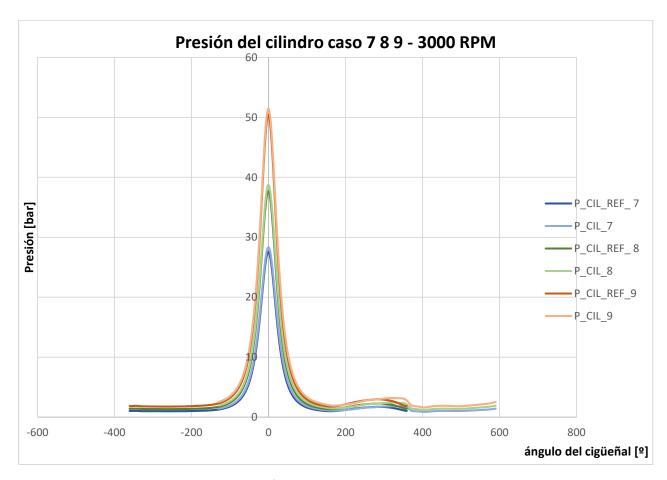


Figura 34. Presión del cilindro caso 7 8 9 - 3000 RPM

Se observan los tres distintos casos que funcionan a un régimen de 3000 RPM.

Se ajusta perfectamente la presión del cilindro el modelo a la experimental del Calmec, prácticamente están superpuestas, por lo que se confirma que el modelo desarrollado funciona de forma muy precisa.

	Máx REF	Máx GT-POWER	Error (%)
Caso 7	27.54	28.32	2.82
Caso 8	37.67	38.73	2.80
Caso 9	50.39	51.43	2.07

6. Conclusiones y trabajos futuros

Tras todos los análisis efectuados y la construcción del modelo de puede observar que se ha construido un modelo que refleja de manera muy precisa cómo funciona el motor monocilindrico de estudio, comparando los resultados que se tenían de referencia de cómo debería funcionar y los resultados experimentales obtenidos que muestran que son prácticamente los mismos.

- ➤ El gasto de masa de aire prácticamente sale el mismo que los datos de referencia observando que el error promedio no supera el 5% en ningún caso por lo que el modelo se comporta de un modo que se acerca mucho al real.
- ➤ En la presión al cierre de admisión se observa que de modo que aumenta el régimen (RPM) se va incrementando el erro llegando en los últimos casos a 3000 RPM a un error ligeramente superior al 10%. Esto podría deberse a un error en el cálculo de las condiciones de referencia.
- ➤ En el caso de la temperatura al cierre de admisión el error se mantiene también en buenos valores con un error que no supera al 5 6 % en ningún caso.
- Para la masa al cierre de admisión también se observan unos resultados muy cercanos a cómo debe de funcionar estando por debajo el error del 5% en todos los casos.

En el estudio de las presiones instantánea de admisión y escape se observa que:

Para los 9 casos:

- La presión instantánea en la admisión y de escape se ajusta perfectamente lo que muestra la exactitud con que se ha realizado la geometría del modelo que reproduce la acústica de manera muy precisa
- A medida que aumenta el régimen la presión instantánea de admisión se ajusta un poco peor, pero en general va muy bien modelo.

Para la presión en el cilindro

• En los 9 casos se observa que se ajusta de manera muy precisa la presión siendo el error entorno al 2 % en todos los casos en el punto máximo que es donde se aprecia una pequeña diferencia, sale por lo que son muy buenos resultados.

6.1 Estudios para el futuro

Los siguientes puntos pueden suponer futuros estudios del modelo:

- 1. Mejora de las condiciones de admisión para ajustar mejor si cabe la presión instantánea en la admisión.
- 2. En futuros trabajos sobre este proyecto se procederá a ajustar la combustión en el modelo, ya se ha comenzado a estudiar el modelo empezando por ajustar los parámetros del cilindro que controlan la velocidad de llama en la combustión.

7. Presupuesto

En este documento va a ser presentado el coste estimado de este TFM. Dicho coste tiene en cuenta la mano de obra, es decir, el coste de las personas que se han visto involucradas en su realización. A parte de la mano de obra, también se ha considerado el coste de todos los elementos materiales necesarios para su realización. En los siguientes apartados serán descritos de manera más detallada.

7.1 Coste de mano de obra

El coste total de la mano de obra necesaria para este TFM ha dado como resultado el siguiente desglose:

> Ingeniero

Tabla 65. Costes Ingeniero

TRABAJADOR	UNIDADES (horas)	COSTE UNITARIO (€/h)	COSTE (€)
Realización proyecto con GT_POWER	166	26	4316
Análisis y obtención de resultados	55	26	1430
Redacción del documento	75	26	1950
		Total	7696

Doctor Ingeniero Industrial (Tutor)

Tabla 66. Costes Ingeniero Industrial (Tutor)

TRABAJADOR	UNIDADES (horas)	COSTE UNITARIO (€/h)	COSTE (€)
Supervisiones y corrección del trabajo	35	48	1680
		Total Doc. Ing. Industrial	1680

Total mano de obra (€)	9376	
------------------------	------	--

7.2 Coste de material

El coste material se ha estimado teniendo en cuenta el medio utilizado, en este caso un ordenador y el software utilizado

Tabla 67. Coste del material

Material	Unidades (horas)	Coste unitario (€/h)	Coste (€)
GT-POWER	305	1	305
Microsoft Office 2019	45	0.9	40.5
		Total Material (€)	345.5

7.3 Presupuesto total

Una vez desglosados los costes de mano de obra y materiales

Tabla 68. Presupuesto total

Coste de mano de obra (€)	9376
Coste material (€)	345.5
Total sin IVA(€)	9721.5
IVA (21%)	2041.515
Total TFM (€)	11763.015

8. Anexos

Las primeras tablas muestran los datos de referencia para el ajuste del motor antes del encendido

			caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
u	RPM	Engine Speed	1000	1000	1000	2000	2000	2000	0008	3000	3000
M	ی	Initial Wall Temperature	20.8	21.5	22.5	22.2	72	22.2	22.5	22.6	22.6
XW	3	Initial Wall Temperature	41.2	43.3	44.2	48.8	44.1	44.4	25	55.5	54.2
lor	2	External Convection Temperature	74.7	82.2	94.6	86.8	84.1	84.9	9′./8	86.7	85.2
nj	mg	Injected Mass	0	0	0	0	0	0	0	0	0
npress_Ratio_ENGINE		Compression Ratio	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
aEGR	fraction	Target EGR Fraction (EGR/(Air+EGR))	0	0	9	0	0	0	0	0	0
ss_Flow_PID	kg/h	Target for the Input Signal	14.85	21.4272	29.6172	34.0884	48.3084	65.3436	48.7188	67.8312	91.8324
ntabs	bar	Pressure (Absolute)	1.116	1.51	700.7	1.106	1.51	2.008	1111	1.511	2.01
scabs	bar	Pressure (Absolute)	1.205	1.596	2.103	1.199	1.599	2.105	1.197	1.602	2.104

			caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
T_EXT_COLLECTOR	2	External Convection Temperature	42	42	42	42	42	42	42	42	42
THEAD	2	Head Temperature	81.026508	81.026508 88.598395 91.2544176 94.3599117 93.3030441 95.3063113 97.4104008 97.0642269 98.6706086	91.2544176	94.3599117	93.3030441	95.3063113	97.4104008	97.0642269	98.6706086
TPISTON	2	Piston Temperature	76.2237831	76.2237831 82.935922 88.4735808 89.3988315 86.5323658 90.9999076 91.3225818 90.7634039 93.8530875	88.4735808	89.3988315	86.5323658	90.9999076	91.3225818	90.7634039	93.8530875
TCYLINDER	2	Cylinder Temperature	74.9340449	74.9340449 81.6392212 83.6678891 86.3438293 83.2270278 83.7958553 87.0380917 85.5681261 84.1503833	83.6678891	86.3438293	83.2270278	83.7958553	87.0380917	85.5681261	84.1503833

Temperatura

			caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
CONV_CUL_ADM	W/(m^2-K)	External Convection Coefficient	9103.311	9103.311	9103.311	14185.95		14185.95 14185.95	18388.95	18388.95	18388.95
CONV_CUL_ECH	W/(m^2-K)	External Convection Coefficient	1606.467	1606.467	1606.467	2503.404	2503.404	2503.404	3245.109	3245.109	3245.109

Condiciones generales

Convección

Condiciones ambientales

			caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
P_out	bar	Pressure (Absolute)	1.205	1.596	2.103	1.199	1.599	2.105	1.197	1.602	2.104
T_out	C	Temperature	41.2	43.3	44.2	48.8	44.1	44.4	57	55.5	54.2
P_amb_In	bar	Pressure (Absolute)	1.116	1.51	2.007	1.106	1.51	2.008	1.111	1.511	2.01
T_amb_In	0	Temperature	20.8	21.5	22.5	22.2	22	22.2	22.5	22.6	22.6

Características del inyector

		caso 1	caso 2	caso 3	caso 4	caso 5	caso 6	caso 7	caso 8	caso 9
SOINJ		-149	-149	-149	-149	-149	-149	-149	-149	9 -149
soinj-corr	deg	571	571	571	571	571	571	571	571	1 571

Nombre_del_Ensayo	Nº Cilindro	Masa_al_cierre_de _Admisión(g)	Presión_en_el_cierr eAdmisión(bar)	Presión_en_el_P MI(bar)
1000A_1100_2(Cilindro_1)	1	0.568228322	1.264606152	1.115386594
1000A_1500_3(Cilindro_1)	1	0.814422004	1.696425377	1.490718439
1000A_2000_3(Cilindro_1)	1	1.121508758	2.240567797	1.972147843
2000A_1100_2(Cilindro_1)	1	0.610901811	1.328586608	1.12127246
2000A_1500_3(Cilindro_1)	1	0.862849429	1.820176495	1.529598431
2000A_2000_2(Cilindro_1)	1	1.165726278	2.403926932	2.02444527
3000A_1100_2(Cilindro_1)	1	0.589905811	1.267035093	1.049693223
3000A_1500_4(Cilindro_1)	1	0.819070959	1.717495155	1.422443201
3000A_2000_2(Cilindro_1)	1	1.107380054	2.291853856	1.887180142

Nombre_del_Ensayo	Presión_ máxima(bar)	Temperatura_al_ cierre_ admisión(ºC)	Temperatura_ máxima(ºC)	Temperatura media_ culata(ºC)
1000A_1100_2(Cilindro_1)	25.65929734	67.5222822	473.91544	81.026508
1000A_1500_3(Cilindro_1)	35.24820949	45.32120497	437.6604795	88.59839495
1000A_2000_3(Cilindro_1)	46.78070879	32.11190615	413.4336719	91.25441763
2000A_1100_2(Cilindro_1)	28.13855956	59.39993212	479.7426942	94.35991172
2000A_1500_3(Cilindro_1)	38.77926879	49.16472304	458.2395184	93.30304407
2000A_2000_2(Cilindro_1)	51.82284339	41.69089027	447.9486503	95.30631132
3000A_1100_2(Cilindro_1)	27.54659081	55.24876052	485.1188478	97.4104008
3000A_1500_4(Cilindro_1)	37.67010267	47.2173162	470.1358362	97.06422694
3000A_2000_2(Cilindro_1)	50.38973491	42.42480526	459.8885771	98.67060864

Nombre_del_Ensayo	Temperatura_ media_ _válvulas(ºC)	Temperatura_m edia_ _cilindro(ºC)	Temperatura_me dia_del_material _ culata(ºC)	Temperatura_ media _pistón(ºC)
1000A_1100_2(Cilindro_1)	85.50293193	74.93404491	77.41584297	76.22378305
1000A_1500_3(Cilindro_1)	93.24269062	81.63922122	84.85200458	82.93599215
1000A_2000_3(Cilindro_1)	96.13336458	83.66788912	87.31864316	88.47358081
2000A_1100_2(Cilindro_1)	99.77528094	86.34382928	89.9913834	89.39883147
2000A_1500_3(Cilindro_1)	99.83501312	83.22702779	88.03379308	86.53236576
2000A_2000_2(Cilindro_1)	102.6370995	83.79585526	89.39280806	90.99990758
3000A_1100_2(Cilindro_1)	104.1812457	87.03809171	91.94861789	91.32258177
3000A_1500_4(Cilindro_1)	104.2207158	85.56812612	91.29119147	90.76340387
3000A_2000_2(Cilindro_1)	107.7369081	84.15038332	91.35713322	93.85308751

valores del lift de admisión

Tabla 69. valores del lift de admisión

0	Crank Angle (4-stroke)	m
1	0.0	0.0
2	7.811934901	0.0
3	122.3869801	0.0
4	193.9963834	0.0
5	255.1898734	0.0
6	320.2893309	0.0
7	347.6311031	0.0
8	354.1410488	1.9003E-4
9	358.0470163	4.07553E-4
10	367.1609403	9.87613E-4
11	372.3688969	0.00153142
12	377.5768535	0.002147734
13	384.0867993	0.002945317
14	393.2007233	0.00450423
15	404.9186257	0.006208157

16	414.0325497	0.007513293
17	419.2405063	0.008129607
18	427.0524412	0.008782175
19	433.562387	0.009398489
20	441.3743219	0.00997855
21	447.8842676	0.010232326
22	454.3942134	0.010486103
23	462.2061483	0.01055861
24	470.0180832	0.010486103
25	476.5280289	0.010304834
26	481.7359855	0.010051057
27	489.5479204	0.009616012
28	498.6618445	0.008818429
29	503.8698011	0.008274622
30	511.681736	0.007368278
31	518.1916817	0.006389426
32	526.0036166	0.005193051
33	536.4195298	0.003815408
34	546.835443	0.002256495
35	555.9493671	0.001132628
36	567.6672694	3.35045E-4
37	571.5732369	2.26284E-4
38	576.7811935	1.17523E-4
39	588.4990958	4.5E-5
40	621.0488246	0.0
41	675.7323689	0.0

valores del lift de escape

Tabla 70. valores del lift de escape

0	Crank Angle (4-stroke)	m
1	0.0	0.0
2	26.039783	0.0
3	63.79746835	0.0
4	100.2531646	0.0
5	124.9909584	4.5E-5
6	132.8028933	1.53776E-4
7	138.0108499	4.07553E-4
8	143.2188065	8.06344E-4
9	147.124774	0.001386405
10	152.3327306	0.002038973
11	157.5406872	0.002764048
12	162.7486438	0.003561631
13	167.9566004	0.004286707
14	174.4665461	0.005011782
15	179.6745027	0.005809366
16	190.0904159	0.006679456
17	197.9023508	0.007513293
18	210.9222423	0.008274622
19	221.3381555	0.008709668
20	230.4520796	0.00892719
21	239.5660036	0.009108459
22	251.283906	0.009108459
23	259.0958409	0.008999698
24	265.6057866	0.008818429
25	272.1157324	0.008600906
26	277.323689	0.008274622
27	282.5316456	0.007839577
28	290.3435805	0.007368278
29	299.4575045	0.00671571
23	233.7373043	0.000/13/1

30	308.5714286	0.00566435
31	320.2893309	0.004467976
32	333.3092224	0.003126586
33	342.4231465	0.002002719
34	351.5370705	0.001060121
35	356.7450271	6.61329E-4
36	363.2549729	2.98792E-4
37	369.7649186	8.13E-5
38	384.0867993	4.5E-5
39	408.8245931	0.0
40	510.3797468	0.0
41	720.0	0.0

9. Bibliografía

- > GT-SUITE engine performance tutorial
- ➤ GT-POST_Tutorials. PDF