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The Fréchet Schwartz algebra of uniformly convergent Dirichlet

series

José Bonet

Abstract

The algebra of all Dirichlet series that are uniformly convergent in the half-plane
of complex numbers with positive real part is investigated. When it is endowed with
its natural locally convex topology it is a non-nuclear Fréchet Schwartz space with basis.
Moreover, it is a locally multiplicative algebra but not aQ-algebra. Composition operators
on this space are also studied.

1 Introduction and preliminaries

We study the Fréchet space H∞
+ of uniformly convergent Dirichlet series in the half-plane

C0 := {s ∈ C | Re s > 0}. When endowed with its natural topology it is Schwartz, not
nuclear, has a basis and contains isomorphically the space H(Dm) of analytic functions on
the open unit polydisc Dm for each m ∈ N; see Theorem 2.2. Moreover, this space is a
multiplicatively convex Fréchet algebra for the pointwise product, that is not a Q-algebra,
i.e. the set of invertible elements is not open, see Theorem 2.6. Composition operators on
this algebra are studied in Section 3. The motivation for the research in this note comes
from two results about bounded Dirichlet series. The first one is a classical result of Bohr,
that is of central importance in the study of Dirichlet series. It asserts that if f ∈ H∞, i.e.
if f is a bounded analytic function on the half complex plane C0 and it can be represented
as a convergent Dirichlet series f(s) =

∑
n ann

−s for Re s large enough, then the Dirichlet
series converges uniformly in each half-plane Cε := {s ∈ C | Re s > ε}, ε > 0; see Theorem
6.2.3 in [31] and [10]. This means that the abscissa of uniform convergence σu(f) of f
satisfies σu(f) ≤ 0. It also implies that the set of Dirichlet series f(s) =

∑
n ann

−s such that
σu(f) ≤ 0 coincides with the set of holomorphic functions on C0 that are bounded on Cε for
each ε > 0 and that can be represented as a convergent Dirichlet series in C0. The second
motivating result is the following improved Montel principle due to Bayart [4, Lemma 18] (see
also Theorem 6.3.1 in [31]): If (fk)k is a bounded sequence in H∞, then there are f ∈ H∞

and a subsequence (fk(j))j of the original sequence that converges uniformly to f on Cε for
each ε > 0. This result has important consequences for the topological structure of the space
H∞

+ of holomorphic functions on C0 that are bounded on Cε for each ε > 0 and that can
be represented as a convergent Dirichlet series in C0, when H∞

+ is endowed with its natural
locally convex topology defined below. The aim of this paper is to investigate the structure
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of the Fréchet space H∞
+ both as a locally convex space and as a topological algebra as well

as to study continuous composition operators on this space and composition operators that
map a neighbourhood into a bounded subset.

The general theory of Dirichlet series was developed at the beginning of the last century
by Bohr, Hardy, Landau and Riesz, among others. Recently the field showed remarkable
advances, in particular combining functional analytical and complex analytical tools. We
refer to the books [20] and [31], the articles [8], [13], [19] and [29], and the references therein
for more information. If Ω is an open subset of C, the space of holomorphic functions on Ω is
denoted by H(Ω). Moreover, H∞(Ω) stands for the space of bounded holomorphic functions.
Our notation for locally convex spaces, Banach spaces and functional analysis is standard.
See e.g. [23] and [27]. We refer the reader to Mallios, [25], Michael [28] and Żelazko [33]
for terminology concerning topological algebras. Necessary definitions will be recalled when
needed later in the article.

A Dirichlet series is a series of the form f(s) =
∑

n ann
−s with complex coefficients an and

variable s ∈ C. The abscissas of convergence, uniform convergence and absolute convergence
of f are defined as follows (see [1], [22] and [31]):

σc(f) := inf{r
∣∣ ∑

n

ann
−s converges on Cr},

σu(f) := inf{r
∣∣ ∑

n

ann
−s converges uniformly on Cr},

σa(f) := inf{r
∣∣ ∑

n

ann
−s converges absolutely on Cr}.

Here the infima are taken in the extended real line. When the Dirichlet series is nowhere
convergent, the three abscissas are +∞. We have −∞ ≤ σc(f) ≤ σu(f) ≤ σa(f) ≤ ∞. By
the highly non-trivial result of Bohr [10] mentioned above σu(f) coincides with the infimum
of those σ for which the function f(s) =

∑
n ann

−s, possibly by analytic continuation from
a smaller half-plane, is analytic and bounded on Cσ. Recall that H∞ is the Banach space
of all Dirichlet series f(s) =

∑
n ann

−s that converges to a bounded analytic function on C0

endowed with the norm ||f || := sups∈C0
|f(s)|.

2 The Fréchet Schwartz algebra H∞
+

We denote byH∞
+ the space of all analytic functions on the half-plane C0 which are bounded on

Cε for each ε > 0 and that can be represented as a convergent Dirichlet series f(s) =
∑

n ann
−s

in C0. It is endowed with the metrizable locally convex topology defined by the system of
seminorms

Pε(f) := sup
s∈Cε

|f(s)|, f ∈ H∞
+ .

Endowed with this topology H∞
+ is a Fréchet space, i.e. a complete metrizable locally convex

space, that can be written as the projective limit H∞
+ = projk H∞

k , where H∞
k is the Ba-

nach space of all bounded analytic functions on C1/k that can be represented as a convergent
Dirichlet series in C1/k endowed with the norm ||g||k = sups∈C1/k

|g(s)|, g ∈ H∞
k , and the link-

ing maps πk
k+1 : H∞

k+1 → H∞
k are restrictions. We denote by πk : H∞

+ → H∞
k the restriction

map. We refer the reader to [23, Chapter 2] and [27, Chapter 24] for projective topologies
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and projective limits. As mentioned in the introduction, Bohr’s fundamental theorem [10]
(cf. [31, Theorem 6.2.3]) implies that the Banach space H∞ of bounded Dirichlet series in C0

is contained in H∞
+ , and that the later space coincides with the space of all Dirichlet series

f(s) =
∑

n ann
−s such that σu(f) ≤ 0. The space H∞

+ is continuously included in the Fréchet
space H(C0).

Example 2.1 (1) The functions f(s) = (s− 1)/(s+ 1) and f(a) = a−s, a > 1 not a positive
integer, belong to H(C0), they are bounded in modulus by 1, but they are not a convergent
Dirichlet series, hence they do not belong to H∞

+ . See [31, page 140] and [30, page 297].
(2) The function f(s) = (1 − 2−s)ζ(s) =

∑
n(−1)n−1n−s−1 does not belong to H∞, see

[31, page 140]. However, f ∈ H∞
+ since it is easy to see that σa(f) = 0.

We recall that a Fréchet space X with a basis of decreasing, absolutely convex 0-neigh-
bourhoods {Un}∞n=1 is Schwartz if

∀n ∈ N ∃m > n ∀ε > 0 ∃Fε ⊂ X finite such that Um ⊂ Fε + εUn. (2.1)

Therefore, a Fréchet space X is Schwartz if and only if X can be written as a projective limit
via continuous linear linking operators Sn : Xn+1 → Xn, for n ∈ N, with each Xn a Banach
space, such that, for every n ∈ N, there exists m > n with (Sm−1 ◦ . . . ◦ Sn) : Xm → Xn a
compact operator. Every nuclear Fréchet space is Schwartz, see [27, Corollary 28.5]. Further
details about nuclear spaces and Schwartz spaces can be found in [23] and [27].

The definition of Köthe echelon spaces is needed in this section. A sequence B = (bk)k
of functions bk : I → [0,∞), with I an infinite index set, is called a Köthe matrix on I if
0 ≤ bk(i) ≤ bk+1(i), for all i ∈ I and k ∈ N, and if for each i ∈ I there is k ∈ N such that
bk(i) > 0. To each p ∈ [1,∞) we associate the linear space

λp(B, I) :=
{
x ∈ CI : q

(p)
k (x) :=

(∑
i∈I

|bk(i)xi|p
)1/p

< ∞, ∀k ∈ N
}
. (2.2)

Elements x ∈ CI are denoted by x = (xi)i. The spaces λp(B, I), for p ∈ [1,∞[, are called
Köthe echelon spaces of order p; they are all Fréchet spaces (separable if I is countable and

reflexive if p ̸= 1) relative to the increasing sequence of seminorms q
(p)
1 ≤ q

(p)
2 ≤ . . .. In

case I = N, we simply write λp(B). In this case λp(B) has an unconditional basis. A space
λp(B) is Schwartz (resp. nuclear) if and only if for each k ∈ N there is m > k such that
(ak(i)/am(i))i ∈ c0 (resp. (ak(i)/am(i))i ∈ ℓ1); see [27, Proposition 27.10 and Proposition
28.16]. Further details about Köthe echelon spaces and their duals can be found in [7] and
[27, Chapter 27].

Theorem 2.2 The Fréchet space H∞
+ is Schwartz, non-nuclear and the Dirichlet monomials

en(s) = n−s, n ∈ N are a Schauder basis of the space. Moreover, for each m ∈ N, H∞
+ con-

tains an isomorphic copy of the space H(Dm) of holomorphic functions on the m-dimensional
polydisc Dm.

Proof. For each k ∈ N the restriction map πk
k+1 : H∞

k+1 → H∞
k is compact by an application

of the improved Montel principle of Bayart [4, Lemma 18] (see also Theorem 6.3.1 in [31]): If
(fj)j is a bounded sequence inH∞

k+1, then there are f ∈ H∞
k+1 and a subsequence (fj(s))s of the

original sequence that converges uniformly to f in H∞
k . Therefore the space H∞

+ = projk H∞
k

is Fréchet Schwartz.
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To prove that H∞
+ is not nuclear, we show that it contains a complemented subspace

isomorphic to a non-nuclear Köthe echelon space of order one. Let P be the set of prime
numbers p1 < p2 < pn < .... Consider the Köthe matrix B = (bk)k on P by bk(p) :=
p−1/k, p ∈ P, k ∈ N. Define R : H∞

+ → λ1(B,P) by f(s) =
∑

n ann
−s → R(f) := (ap)p∈P

and S : λ1(B,P) → H∞
+ by S((ap)p∈P) :=

∑
p∈P app

−s. The operator R is continuous by

Bohr’s inequality [31, Theorem 6.2.4]. Indeed, fix k ∈ N. If f =
∑

n ann
−s ∈ H∞

+ , then
fk :=

∑
n(ann

−1/k)n−s ∈ H∞, hence
∑

p∈P |ap|p−1/k ≤ sups∈C0
|fk(s)| = sups∈C1/k

|f(s)| =
p1/k(f). The operator S is also continuous, since sups∈C1/k

|S((ap)p∈P)(s)| ≤
∑

p∈P |ap|p−1/k

for each (ap)p∈P ∈ λ1(B,P). Now R ◦ S coincides with the identity on λ1(B,P). This
implies that that S is an isomorphism into and that S ◦ R is a projection in H∞

+ with range
S(λ1(B,P)).

The Köthe echelon space λ1(B,P) is not nuclear. If it were, by the Grothendieck Pietsch
criterion [27, Proposition 28.16], there would be k > 1 such that

∑
p∈P(b1(p)/bk(p)) < ∞,

but b1(p)/bk(p) = 1/p1−1/k > 1/p and
∑

p∈P
1
p = ∞.

For each f(s) =
∑

n ann
−s ∈ H∞

+ , we have f1(s) :=
∑

n(an/n)n
−s ∈ H∞. We can apply

[31, Theorem 6.1.1] to conclude that |an| ≤ n sups∈C1
|f(s)| for each n ∈ N, and hence all

coefficient functionals un : H∞
+ → C, f → an of the Dirichlet monomials en are continuous.

Moreover, σu(f) ≤ 0 for each f(s) =
∑

n ann
−s ∈ H∞

+ . This implies that the partial sums

SN (f)(s) =
∑N

n=1 ann
−s converge to f(s) uniformly on Cε for each ε > 0. This means that

the sequence (SN (f))N converges to f in H∞
+ ; in other words that f can be written as a series∑

n anen converging in H∞
+ . Thus (en)n is a Schauder basis of the space.

Fix m ∈ N. Let 2 = p1 < ... < pm be the first m prime numbers. The map Ψ :
C0 → Dm,Ψ(s) := (2−s, 3−s, ..., (pm)−s) satisfies that Ψ(Cε) is dense in {z = (z1, ..., zm) ∈
Cm | |zi| < (pi)

−ε, zi ̸= 0, i = 1, ...m}. This implies that the map ∆ : H(Dm) → H∞
+ given

by ∆(g)(s) := g(2−s, 3−s, ..., (pm)−s) defines a topological isomorphism into its image. 2

Proposition 2.3 The operator T defined by f(s) =
∑

n xnn
−s → (xn)n defines a continu-

ous non-surjective injection from H∞
+ into λ2(D) for the Köthe matrix D = (dk), dk(n) =

1/n1/k, k, n ∈ N. Moreover, H∞
+ is not isomorphic to λ2(D).

Proof. For each k ∈ N and f(s) =
∑

n xnn
−s ∈ H∞

+ , the function fk(s) =
∑

n(xnn
−(1/k))n−s

belongs to H∞. We can apply Carlson’s identity [31, Theorem 6.2.5] to get
∑

n |xnn−(1/k)|2 ≤
sups∈C0

|fk(s)| = sups∈C1/k
|fk(s)|. This proves the operator T is well defined and continuous.

It is clearly injective. The operator T is not surjective because (1/n1/2)n ∈ λ2(D), but∑
n

1
n1/2n

−s /∈ H∞
+ .

Suppose now thatH∞
+ is isomorphic to λ2(D) for the matrixD as defined in the statement.

This implies that the space H∞
+ is hilbertisable, in the sense that it admits a fundamental

system of seminorms defined by scalar products. Therefore, the complemented subspace
λ1(B,P) constructed in the proof of Theorem 2.2 is also hilbertisable. However, a Köthe
echelon space λ1(A) of order one is hilbertisable if and only if it is nuclear. Here is an argument
to see this statement: if λ1(A) is hilbertisable, then for each k there is l > k such that the
linking map ℓ1(al) → ℓ1(ak) factors through a Hilbert space, see e.g. [21, Proposition 1.4].
Every bounded operator from ℓ1 into a Hilbert space is absolutely summing as a consequence
of Grothendieck’s inequality; see e.g. [14, p. 181]. Consequently, for each k there is l > k such
that the linking map ℓ1(al) → ℓ1(ak) is absolutely summing, and the space λ1(A) is nuclear.
2
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Remark 2.4 Hölder’s inequality implies that the Köthe echelon space λ2(D) of order two
for the Köthe matrix D = (dk), dk(n) = 1/n1/k, k, n ∈ N, that appears in Proposition 2.3 is
continuously contained in the Köthe echelon space λ1(C) of order one for the Köthe matrix
C = (ck), ck(n) = 1/n1/2+1/k, k, n ∈ N. Compare with [26, Theorem 2.2].

Lemma 2.5 For each δ > 0 and each k ∈ N there is a Dirichlet polynomial h such that
h(δ/2) = 0 and sups∈Cδ

|1− h(s)| < 1/k.

Proof. Fix δ < 0. We apply [2, Theorem 3.1] to K = {0} ⊂ {s ∈ C|Re s ≤ 0}, f(s) = 1 for
each s ∈ C, g(s) = 0 on K, σ = δ/2 and ε = 1/(2k) to find a Dirichlet polynomial g such
that |g(0)| < 1/(2k), g(s) =

∑N
n=1 ann

−s and

|1− a1|+
N∑

n=1

|an|n−δ/2 < 1/(2k).

Observe that this implies |1− g(s)| ≤ 1/(2k) for each s ∈ Cδ/2. Set g̃(s) := g(s)− g(0). For
s ∈ Cδ/2 we get |1− g̃(s)| ≤ |1− g(s)|+ |g(0)| < 1/k. Now h(s) := g(s− (δ/2)) is a Dirichlet
polynomial that satisfies h(δ/2) = g̃(0) = 0. Moreover, if s ∈ Cδ, then s − (δ/2) ∈ Cδ/2 and
|1− h(s)| = |1− g(s− (δ/2))| < 1/k. 2

A locally convex algebra is called a Q-algebra if the sets of invertible elements is open.

Theorem 2.6 (1) The Fréchet space H∞
+ is a multiplicatively convex Fréchet algebra for the

pointwise product.
(2) An element f ∈ H∞

+ is invertible if and only if infs∈Cε |f(s)| > 0 for each ε > 0.
(3) The space H∞

+ is not a Q-algebra.

Proof. (1) It is clear that H∞
+ is a Fréchet algebra since it is the countable intersection

of Banach algebras by [31, Theorem 6.2.1]. Moreover it is multiplicatively convex as the
seminorms defining the topology satisfy Pε(fg) ≤ Pε(f)Pε(g) for each ε > 0 and each f, g ∈
H∞

+ .
(2) If f ∈ H∞

+ is invertible, there is g ∈ H∞
+ such that f(s)g(s) = 1 for each s ∈ C0. For

each ε > 0 and each s ∈ Cε, we have |f(s)| = 1/|g(s)| ≥ 1/ sups∈Cε
|g(s)| and infs∈Cε |f(s)| >

0. Conversely, suppose that f ∈ H∞
+ satisfies infs∈Cε |f(s)| > 0 for each ε > 0. We have

g := 1/f ∈ H(C0). Moreover, for each ε > 0 and s ∈ Cε, we have g(s) = gε(s − ε) and g
is bounded in Cε. Finally, for s ∈ C1, we have g(s) = g1(s − 1), which implies that g is a
convergent Dirichlet series for Re s large enough. We have shown g ∈ H∞

+ and fg = 1.
(3) Proceeding by contradiction, assume that H∞

+ is a Q-algebra. Then 1 is an interior
point of the set of invertible elements in the algebra H∞

+ . There are δ > 0 and k ∈ N such that
every h ∈ H∞

+ such that sups∈Cδ
|1 − h(s)| < 1/k is invertible in H∞

+ , in particular h(s) ̸= 0
for each s ∈ C0. This fact contradicts the statement proved in Lemma 2.5. 2

Example 2.7 Clearly every invertible element of H∞ is also invertible in H∞
+ . The Dirichlet

polynomial f(s) = 1−2−s belongs toH∞, it is invertible inH∞
+ by Theorem 2.6, but not inH∞

by [31, Theorem 6.2.1], since infs∈C0 |f(s)| = 0. The inverse of f(s) is 1+2−s+4−s+6−s+ ....
An example of an absolutely convergent Dirichlet series g(s) without zeros on C0 := {s ∈
C|Re s ≥ 0} satisfying infs∈C0

|g(s)| = 0 can be seen in [16, p. 1074]. The Dirichlet monomial
g(s) = 2−s is an invertible element in the space H(C0), but it is not invertible in H∞

+ , for
example by [6, Proposition 1.1].
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Bohr made in [9] a following fundamental contribution, that is called nowadays the Bohr

transform B. To describe it, we denote N0 := N∪{0}, and by N(N)
0 the set of all multi-indices

α = (α1, ..., αn, 0, 0, 0, ...) with αi ∈ N0 for each i. If p = (pk)k is the sequence of prime

numbers and α ∈ N(N)
0 , then we write pα := pα1

1 ...pαn
n . The Bohr transform associates to

each Dirichlet series f(s) =
∑

n xnn
−s a formal power series B(f) :=

∑
α∈N(N)

0

cαz
α by setting

an = cα if n = pα. This bijection preserves topological and measure properties. For example
this transform establishes a Banach algebra isometry between the space H∞ and the Banach
space H∞(Bc0) of bounded holomorphic functions on the unit ball Bc0 of c0. See [4, Section
2], [11], [12], [31, Chapter 4]. We refer to [15] for infinite dimensional holomorphy. The
following result is a direct consequence of Lemma 2.2, Proposition 2.3 and formula (1.4) in
[11].

Proposition 2.8 The Bohr transform B maps f(s) =
∑

n xnn
−s ∈ H∞

+ surjectively into a
formal power series such that for each ε > 0 there is a function gε in the space H∞(Bℓ∞)
of bounded holomorphic functions on the unit ball Bℓ∞ of ℓ∞ such that the coefficients of the
associated formal Taylor series of gε are (apα/p

εα)α∈NN
0
.

3 Composition operators on the space H∞
+

Composition operators on the Hilbert space H2 of Dirichlet series were characterized by
Gordon and Hedenmalm [18]; see also Section 3 of Queffélec’s survey [30]. On the other hand,
Bayart [4, after Corollary 2, p. 217] and [3, p. 65] proved that an analytic map ϕ : C0 → C0

defines a continuous composition operator Cϕ(f) := f ◦ϕ on the Banach space H∞ if and only
if ϕ(s) = c0s +

∑
n cnn

−s with c0 a non-negative integer and φ(s) :=
∑

n cnn
−s a Dirichlet

series convergent in some half-plane. Bayart also proved in [4, Theorem 18] that Cϕ is compact
on H∞ if and only if ϕ(C0) ⊂ Cε for some ε > 0. The study of composition operators on H∞

continued in [24] and [32].
Recall that an operator T : E → E on a locally convex space E is called bounded if there

is a 0-neighbourhood U in E such that T (U) is bounded in E. Every bounded operator is
continuous. In this section we characterize continuous and bounded composition operators
Cϕ on the Fréchet space H∞

+ .

Lemma 3.1 (1) Let ϕ : C0 → C0 be analytic. If Cϕ(f) = f ◦ϕ is a Dirichlet series convergent
in some half-plane for each Dirichlet polynomial f , then ϕ(s) = c0s +

∑
n cnn

−s with c0 a
non-negative integer and φ(s) :=

∑
n cnn

−s a Dirichlet series convergent in some half-plane.
(2) Let ϕ : C0 → C0 be an analytic function such that ϕ(s) = c0s +

∑
n cnn

−s with c0 a
non-negative integer and φ(s) :=

∑
n cnn

−s a Dirichlet series convergent in some half-plane.
If f(s) =

∑
n ann

−s is a Dirichlet series such that σu(f) ≤ 0, then f ◦ ϕ is a Dirichlet series
convergent in some half-plane.

Proof. Part (1) follows from the proof of the necessity in Theorem A, pages 315-317, in
[18]. The proof of part (2) is obtained modifying the proof of the sufficiency in Theorem
A, pages 318-319, in [18]. Only the case c0 = 0 requires some inspection. If φ(s) is con-
stant, the conclusion is easy. If φ(s) is not constant, [17, Lemma 2] implies Re c1 > 0, the
series

∑
n ann

−s converges uniformly in CRe c1/2 and the series formally obtained expanding∑
n ann

−ϕ(s) converges in Cη for η > 0 sufficiently large. A similar argument is implicit in
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Bayart’s result [4, after Corollary 2, p. 217] that if ϕ satisfies the assumptions in (2), then
Cϕ(g) is a convergent Dirichlet function for each f ∈ H∞. 2

The next Lemma is a particular case of [18, Theorem 4.2] (see also [4, Lemma 12] and
[17, Lemma 2]).

Lemma 3.2 Let ϕ : C0 → C0 be an analytic function such that ϕ(s) = c0s +
∑

n cnn
−s

with c0 a non-negative integer and φ(s) :=
∑

n cnn
−s a Dirichlet series convergent in some

half-plane. Then

(1) If φ(s) = c1 for each s ∈ C0, then Re c1 ≥ 0.

(2) If φ(s) is not constant, then it can be extended to an analytic function φ : C0 → C0.
such that for each θ > 0 there is η > 0 such that φ(Cθ) ⊂ Cη.

(3) If φ(s) is not constant, then Re c1 > 0.

Lemma 3.3 Let ϕ : C0 → C0 be an analytic function such that ϕ(s) = c0s +
∑

n cnn
−s

with c0 a non-negative integer and φ(s) :=
∑

n cnn
−s a Dirichlet series convergent in some

half-plane. Then for each ε > 0 there is δ > 0 such that ϕ(Cε) ⊂ Cδ.

Proof. Suppose first that φ is not constant. By Lemma 3.2 (2), given ε > 0 there is η > 0
such that φ(Cε) ⊂ Cη. This implies ϕ(Cε) ⊂ Cc0ε+η.

Now assume that φ(s) = c1 for all s ∈ C0. In case Re c1 > 0, we get ϕ(C0) ⊂ CRe c1 . On
the other hand, if c1 = iτ, τ ∈ R, we must have c0 > 0, since otherwise ϕ(C0) ⊂ C0 would
not be satisfied. Accordingly ϕ(Cε) ⊂ Cc0ε for each ε > 0. 2

Proposition 3.4 Let ϕ : C0 → C0 be analytic.
(1) The composition operator Cϕ is continuous on the space H∞

+ if and only if ϕ(s) =
c0s +

∑
n cnn

−s with c0 a non-negative integer and φ(s) :=
∑

n cnn
−s a Dirichlet series

convergent in some half-plane.
(2) Suppose that the composition operator Cϕ is continuous on the space H∞

+ . Then Cϕ

is bounded on H∞
+ if and only if there is ε > 0 such that ϕ(C0) ⊂ Cε.

Proof. (1) If ϕ(s) = c0s +
∑

n cnn
−s with c0 a non-negative integer and φ(s) :=

∑
n cnn

−s

is a Dirichlet series convergent in some half-plane, then for each ε > 0 there is δ > 0 such
that ϕ(Cε) ⊂ Cδ by Lemma 3.3. Therefore for each ε > 0 there is δ > 0 such that, for each
f ∈ H∞

+ , the function Cϕ(f) is a Dirichlet series convergent in some half-plane by Lemma 3.1
(2), and moreover sups∈Cε

|Cϕ(f)(s)| ≤ sups∈Cδ
|f(s)|. This implies Cϕ(f) ∈ H∞

+ and that
Cϕ : H∞

+ → H∞
+ is continuous.

Conversely, if Cϕ is continuous on the spaceH∞
+ , then Cϕ(f) is a Dirichlet series convergent

in some half-plane for each Dirichlet polynomial f . The conclusion follows from Lemma 3.1
(1).

(2) If there is ε > 0 such that ϕ(C0) ⊂ Cε, then sups∈C0
|Cϕ(f)(s)| ≤ sups∈Cε

|f(s)| for
each f ∈ H∞

+ . This implies that Cϕ(U) is bounded in H∞
+ for the neighbourhood U := {f ∈

H∞
+ | sups∈Cε

|f(s)| ≤ 1}.
Conversely suppose that the operator Cϕ is bounded on H∞

+ for an analytic map ϕ : C0 →
C0 such that ϕ(s) = c0s+

∑
n cnn

−s with c0 a non-negative integer and φ(s) :=
∑

n cnn
−s a
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Dirichlet series convergent in some half-plane. Since Cϕ is bounded, there is ε > 0 such that
for each δ > 0 there is Mδ > 0 such that

sup
s∈Cδ

|f(ϕ(s))| ≤ Mδ sup
s∈Cε

|f(s)| for each f ∈ H∞
+ .

Evaluating this condition for each Dirichlet monomial n−s, we get that for each δ > 0 and
each n ∈ N, sups∈Cδ n−Reϕ(s) ≤ Mδn

−ε. Hence, for each δ > 0 and each s ∈ Cδ, we have
nReϕ(s) ≥ (1/Mδ)n

ε for each n ∈ N. Therefore Reϕ(s) ≥ ε for each s ∈ Cδ. Since δ > 0 is
arbitrary, we conclude ϕ(C0) ⊂ Cε. 2

Proposition 3.4 and the results of Bayart [4] mentioned above imply that the composition
operator Cϕ is continuous (resp. bounded) on the space H∞

+ if and only it is continuous (resp.
compact) on the Banach space H∞.

Example 3.5 (i) If ϕ(s) = c0s + iτ, s ∈ C0, with c0 a positive integer and τ ∈ R, then the
operator Cϕ is continuous but not bounded in H∞

+ .
(ii) If ϕ(s) = c0s+ c1+ c22

−s, with c0 a positive integer and c2 ̸= 0, then Cϕ is bounded in
H∞

+ if and only if Re c1 > |c2|. This is a consequence of a more general result due to Bayart
[5, Corollary 2].
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