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A B S T R A C T

In this work, we report the focusing effect of a 2D sonic crystal cuboid. The proposed sonic composite lens is vertically extended from a 2-D flat Phononic Crystal
Structure, but it is found to be able to focus waves in a three-dimensional manner. By varying the cuboid size, beam dimensions change and transverse beam width
values smaller than the classical diffraction limit (~0.3 of wavelength) can be obtained. Numerical results have been obtained by Finite Element Method.

As it well known [1] 2D Phononic Crystal (PhC) possesses periodi-
city of the permittivity along two directions, while in the third direction
the medium is uniform instead of 3D PhC in which permittivity mod-
ulation along all three directions. The focusing effect of two-dimen-
sional (2D) [2–8] sonic crystals have been studied intensively during
the last decades. It was pointed out that lattice geometry, scatterers
shape; size and orientation are parameters that play an important role
in sound focusing. By modifying one of these parameters, it is possible
to tune sound beam properties. In this paper, we show a sound crystal
structure, the three-dimensional focusing properties of which are de-
termined by both the 2D internal structure and the 3D external di-
mensions. Therefore, the structure proposed is a 2D internal sonic
crystal of 3D external cuboid shape consisted of square solid rods dis-
tributed on a square lattice immersed in air. Hereinafter referred as
metamaterial cuboid. The side dimensions of the metamaterial cuboid
(Lcuboid) are function of the incident wavelength, λ, as shown in Fig. 1.

Such structure is working below the first band gap, which is below
the first Brillouin Zone as it can be seen in Fig. 1e. Due to the square
geometry of the scatterers, the shape of the equifrequency contours of
the structure for the selected frequency is elliptical [9]. This one, to-
gether to the anisotropy of the metamaterial produce a refraction
phenomenon, which causes the focalization [10]. For a given refractive
index structure of n= 1.2 which is determined from the filling fraction
(ff) through the expression [2] = +n ff1 , the focusing performance
of the structure is evaluate by means the Finite Element Method (FEM)
realized in the commercial software COMSOL Multiphysics. In order to
simplify the model, the results are presented considering the rigid
elements. However, it has been verified that considering fluid-structure
interaction with thermoviscous losses, there are no differences for the

frequencies of interest. Because of the lattice constant value
(a= 0.073λ) the selection of the refractive index is a tradeoff between
the computational time and the physical requirements of the phenom-
enon. In our case, the wavelength is 0.686m that corresponds to 500 Hz
in air, which is marked in blue solid line in Fig. 1e.

Fig. 2 shows the results obtained by illuminating with a plane wave
a rigid cuboid (Fig. 2a) and a metamaterial cuboid (Fig. 2b) with the
same dimensions. It can be observed that for cuboid sizes from 2λ to
3.5λ, while the rigid cuboid is not able to focus, the metamaterial is,
thus a focusing effect is observed. This implies that the cuboid’s total
length, i.e. the diffraction (edge effects), does not determine the main
role for the focusing effect. As can be seen from Fig. 2b, by varying the
cuboid dimensions (3λ and 3.5λ) maintaining the refractive index
constant, a variation in the beam occurs. It is noted that as the cuboid
size is increased, the length of the beam decreases as it narrows and the
sound gain increases. That means that as higher cuboid size a better
quality beam is obtained.

The quality of the beam is usually evaluated by means the Full-
Width at Half-Maximum (FWHM) and the Full-Length at Half-
Maximum (FLHM) values (see Table 1). Fig. 3 represents a cross section
at the point of higher gain. From this cut the FWHM can be evaluated. It
can be observed that FWHM also depends on the cuboid dimensions, as
expected. Accomplishing that as the size of the cuboid increases, the
FLHM decreases and the FWHM (see Table 1). Thus, FWHM values
lower that the diffraction limit (0.5λ) are obtained for cuboid sizes
greater than 3λ. Therefore, a subwavelength beamwidth can be ob-
tained by increasing the size of the cuboid. Fig. 3c shows the curvature
of the pressure wavefront due to the anisotropic relation of the ele-
ments.
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Fig. 4 shows different equispaced planes for three sizes of the cu-
boid. It is interesting to note that with a plane symmetry lens a three
dimensional focal spot can be obtained. It is interesting to note that
with a plane symmetry lens a three dimensional focal spot can be ob-
tained. This phenomenon of focalization is possible, as it has been al-
ready explain, thanks to the characteristics of the equifrequency con-
tour. The elliptic shape of these contours and the dispersion relation
(which defines the group velocity of the wave, vg) which imposes that

vg is normal to these contour, indicates the direction of the pressure
field. In this sense, the vg is perpendicular to the wavefront and
therefore the focalization is achieved. In conclusion, we have presented
a sonic crystal cuboid with 2D internal PhC structure whose focusing
properties depend on its entire 3D dimensions. It was found that it is
possible to obtained 3D sonic wave focusing by 2D periodic internal
structure of 3-D external cuboid shape. It has been shown that by
changing the cuboid size, both the sound pressure enhancement and
FWHM at focus can be modified. FWHM below the diffraction limit can
be achieved. These results could have significant applications in med-
ical ultrasound.
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Fig. 1. (a) 3D scheme of the metamaterial cuboid structure the plane wave travels a long X direction, (b) Plane XY view of the crystal, (c) Zoom of XY plane, where a
is the lattice constant and (d) the filling fraction is the relation between the area occupied by the material and the area of the unite cell. (e) Band structure of the unit
cell along M-Γ-X-M.

Fig. 2. Gain pressure level distribution for different cuboid size and nature (a) rigid cuboid, (b) metamaterial cuboid. The plane wave travels along X axes from
bottom to top in the figures.

Table 1
FLHM and FWHM for rigid and metamaterial cuboid a function of cuboid size.

Lcuboid FLHM FWHM

Rigid Metamaterial Rigid Metamaterial

2λ – >2.9λ – 0.56λ
3λ – 1.17λ – 0.31λ
3.5λ – 0.61λ – 0.29λ
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