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Abstract

We will present an overview on the results appeared in the literature

about the study of those functions that preserve or transform a gener-

alized metric.
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1. Introduction

In 1981, J. Borśık and J. Doboš studied the problem of characterizing the class

of functions that preserve metrics, i.e., those functions whose composition with

each metric provide a metric (see [2]). Later in [3], the same authors continued

their study approaching the problem of merging a family of metric spaces into a

single one (we can find a whole study related to these topics in [4]). Both cases

can be seen as the study of functions that transform metrics (a single one or a

family) in metrics. This idea opened a via of research, which is extending the study

of transformations on the different notions of generalized metrics. For instance,
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quasi-metric spaces (see Definition 7), a generalization of metric space in which

the axiom of symmetry is non-demanded, or partial metric spaces (see Definition

9), known also as non-zero distances.

The aforementioned topic, has been tackled in two different senses. On the one

hand, we can find in the literature some studies about functions that transform

a class of generalized metric in the same class. For instance, in [8] it was char-

acterized those functions that transform each quasi-metric (single one or family)

into a quasi-metric, and in [5] it was provided a respective characterization to the

partial metric case. On the other hand, a natural problem, related to the last one,

is to study the functions that convert a class of generalized metrics in a distinct

one. In this last line, we can find in [7] a characterization of those functions that

“symmetrize” quasi-metrics.

In this paper, we have collected some results appeared in the literature about

the topics exposed in the last two paragraphs. In addition, we propose some

observations about open topics of research related to the presented results.

Along the paper we will denote the interval [0,∞[ by R+.

2. Metric Preserving Functions

In this section, we present the main results about the study of those functions

whose composition with each metric provide a metric. We begin by the following

concept introduced by Doboš.

Definition 1. We will say that f : R+ → R+ is a metric preserving function if

for each metric space (X, d) the function df is a metric on X , where df (x, y) =

f(d(x, y)) for each x, y ∈ X .

From now on, we will denote byM the class of all metric preserving functions.

An example of metric preserving function is the following one:

f(x) =
x

1 + x
, for each x ∈ R+.

Accordig to the notation used by Doboš in [4] we have the next definition.
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Definition 2. Let f : R+ → R+ be a function. Then, we will say that

(i) f is amenable if f−1(0) = {0}.

(ii) f is subadditive if for each a, b ∈ R+ it is hold:

f(a+ b) ≤ f(a) + f(b).

In the rest of the paper we will denote by O the class of all amenable functions.

On the one hand, each metric preserving function is amenable and subadditve.

However, in [4] it was introduced the next example to show an amenable and

subbaditive function which is not included inM.

Example 3. Define f : R+ → R+ as follows:

f(x) =

{
x

1+x , if x ∈ Q ∩ R+(Q denotes the set of rational numbers);

1, elsewhere.

On the other hand, every amenable, subadditive and non-decreasing function pre-

serves metrics. Nevertheless, there exists functions in M which are not non-

decreasing such as shows the following instance based on Example 8 in [8].

Example 4. Consider the function f : R+ → R+ given by:

f(x) =





0, if x = 0;

2, if x ∈]0, 1[;

1, if x ∈ [1,∞[.

It is clear that f(1/2) > f(1), but 1/2 < 1.

We continue recalling a notion used in the Doboš’ characterization, which was

introduced by F. Terpe in [9] and it will be crucial for a subsequent discussion.

Definition 5. Let a, b, c ∈ R+. We will say that (a, b, c) is a triangle triplet if

a ≤ b+ c; b ≤ a+ c and c ≤ a+ b.

A metric provides an easy way to construct triangle triplets. Indeed, if we consider

a metric space (X, d) and we take x, y, z ∈ X , then the triangle inequality ensures

that (a, b, c) is a triangle triplet, where a = d(x, z), b = d(x, y) and c = d(y, z).
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Now, we present the enunciated characterization of the class of metric preserving

functions as a modification of the one given by Doboš in [4].

Theorem 6. f : R+ → R+ is a metric preserving function if and only if f satisfies

the following properties:

(1) f ∈ O,

(2) if (a, b, c) is a triangle triplet, then so is (f(a), f(b), f(c)).

3. Quasi-metric and partial metric preserving functions

Borśık and Doboš continued the work exposed in Section 2 characterizing those

functions that merge a family of metric spaces (see [3]). This study was extended

to the context of quasi-metrics in [8] and partial metrics in [5]. In this paper

we are just interested in functions that transform a generalized metric. For this

reason, we have adapted the results of the aforementioned papers to the case that

the family of metrics is formed by a unique element. As in Definition 1, we define

a quasi-metric (or partial metric) preserving function as those functions whose

composition with each quasi-metric (or partial metric) provide another one. We

will denote the class of quasi-metric and partial metric preserving functions by Q

and P , respectively.

Next, let us recall the concept of quasi-metric space.

Definition 7. Let X be a non-empty set and let q be a non-negative real-valued

function on X × X . We will say that (X, q) is a quasi-metric space if for each

x, y, z ∈ X the following is hold:

(q1) q(x, y) = q(y, x) = 0 if and only if x = y;

(q2) q(x, z) ≤ q(x, y) + q(y, z).

Now, we present a characterization of those functions which preserve quasi-metrics.

It is based on Theorem 1 in [8].
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Theorem 8. f : R+ → R+ is a quasi-metric preserving function if and only if f

satisfies the following properties:

(1) f ∈ O,

(2) for each a, b, c ∈ R+, with a ≤ b+ c, it is satisfied that f(a) ≤ f(b)+ f(c).

In [8] it was pointed out that Q (M. Indeed, they provided (the above) Example

4 to show an instance of metric preserving function which is not a quasi-metric

preserving one.

Analogously to the study for quasi-metrics, in [5] it was approached the problem of

characterizing the functions that agregate partial metrics in a single one. In order

to present such a characterization for the one-dimensional case, we will recall the

notion of partial metric space introduced by S.G. Matthews in [6].

Definition 9. Let X be a non-empty set and let p a non-negative real-valued

function on X ×X . We will say that (X, p) is a partial metric space if for each

x, y, z ∈ X the following is hold:

(p1) p(x, x) = p(x, y) = p(y, y) if and only if x = y;

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The next result is an adaptation, to the one-dimensional case, of Theorem 10 in

[5].

Theorem 10. f : R+ → R+ is a partial metric preserving function if and only if

f satisfies the following properties:

(1) f(a) + f(b) ≤ f(c) + f(d) whenever a+ b ≤ c+ d and b ≤ min{c, d},

(2) If max{b, c} ≤ a and f(a) = f(b) = f(c), then a = b = c.

Attending to the preceding characterization, one can observe that the class P is

not included in Q, and consequently, it is not contained in M too. Indeed, a

function f ∈ P is not necessarily included in O. However, in [5] it was shown that

if a partial metric preserving function f is included in O, then f ∈ Q.
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Taking into account the studies presented in this section, it seems interesting

to approach the problem of characterizing those functions that preserve another

classes of generalized metrics as a future work. For instance, among others, the

notion of metric like (or dislocated metric), introduced in [1].

4. Symmetrization of quasi-metrics

In the last two preceeding sections, we have presented some characterizations of

functions that preserve (generalized) metrics. A natural problem to study, related

to the aforementioned topic, is to characterize those functions that transform a

generalized metric into a metric. In fact, it is well-known that each quasi-metric

generates a metric: given a quasi-metric space (X, q), then the function ds given

by ds(x, y) = max{q(x, y), q(y, x)}, for each x, y ∈ X, is a metric on X . Thus,

an interesting topic is to generalize the way of obtaining a metric deduced from

a quasi-metric by means of tranformation functions. This problem was discussed

in [7]. In this section, we will recall some results presented in the aforementioned

paper. With this aim we introduce some pertinent notions.

Definition 11. We will say that Φ : R2
+ → R+ is a metric generating function if

dΦ : X ×X → R+ is a metric on X for every quasi-metric space (X, q), where the

function dΦ is defined by

dΦ(x, y) = Φ(q(x, y), q(y, x)), for each x, y ∈ X.

As we have mentioned above, the function defined by Φmax(a, b) = max{a, b}, for

each a, b ∈ R+, is a metric generating function. Furthermore, it is easy to verify

that the function defined by Φ+(a, b) = a + b, for each a, b ∈ R+, is a metric

generating function too.

Note that a metric generating function is defined on R2
+ instead of R+ contrary

to the case of metric preserving functions. On account of [3], we can extend the

notions of monotonicity and subadditivity of a function to this context from the

one-dimensional framework as follows.

100



An overview on transformations on generalized metrics

Definition 12. Consider the set R2
+ ordered by the pointwise order relation �,

i.e. (a, b) � (c, d) if and only if a ≤ b and c ≤ d, and let Φ : R2
+ → R+. Then, we

will say that:

(i) Φ is monotone if for each (a, b), (c, d) ∈ R2
+, with (a, b) � (c, d), it is hold:

Φ(a, b) ≤ Φ(c, d).

(ii) We will say that Φ is subadditive if for each (a, b), (c, d) ∈ R2
+ it is hold:

Φ ((a, b) + (c, d)) ≤ Φ(a, b) + Φ(c, d).

In a similar way to the one-dimensional case, we will denote by O2 the set of all

functions Φ : R2
+ → R+ such that Φ(a, b) = 0 if and only if (a, b) = (0, 0).

The following is a crucial notion in order to symmetrize a quasi-metric.

Definition 13. Let a, b, c, x, y, z ∈ R+. We will say that the triplets (a, b, c) and

(x, y, z) are mixed triplets if they satisfy the following inequalities:

a ≤ b+ c; b ≤ a+ y; c ≤ a+ z;

x ≤ y + z; y ≤ x+ b; z ≤ x+ c.

In [7] it was observed that this last concept is related to the notion of triangle

triplet. In fact, it was pointed out that (a, b, c) forms a triangle triplet if and only

if (a, b, c) and (a, c, b) are mixed ones.

Now, we can present the promiseed characterization of metric generating functions,

provided in [7].

Theorem 14. Φ : R2
+ → R+ is a metric generating function if and only if it

satisfies the following properties:

(1) Φ ∈ O2.

(2) Φ is symmetric, i.e Φ(a, b) = Φ(b, a) for each (a, b) ∈ R2
+.

(3) Φ(a, x) ≤ Φ(b, y)+Φ(c, z), whenever (a, b, c) and (x, y, z) are mixed triplets.

A natural way to continue the above study is motivated by the fact that each

partial metric generates a metric and a quasi-metric as follows. Let p be a partial
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metric on a non-empty set X . Then, the functions dp and qp given by

dp(x, y) = 2p(x, y)− p(x, x) − p(y, y), for each x, y ∈ X, and

qp(x, y) = p(x, y)− p(x, x), for each x, y ∈ X

are a metric and a quasi-metric on X , respectively.

Thus, an interesting item to approach in the future is to generalize, by means of

transformation functions, the last two constructions.
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