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Abstract

In this paper we prove a Banach-type fixed point theorem and a

Kannan-type theorem in the setting of quasi-metric spaces using the

notion of mw-distance. These theorems generalize some results that

have recently appeared in the literature.
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1. Introduction

In his celebrated fixed point theorem, Banach proved that if (X, d) is a complete

metric space and the map T : X → X is a contraction, i.e., d(Tx, T y) ≤ rd(x, y)

for some r ∈ [0, 1) and all x, y ∈ X , then T has a unique fixed point. Later, in
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[4], Kannan proved that if T is a self map on a complete metric space (X, d) such

that d(Tx, T y) ≤ r(d(x, Tx) + d(y, T y)) for some r ∈ [0, 1/2) and all x, y ∈ X ,

then T has a unique fixed point. Since then, many successful attempts have been

made to improve the Banach and Kannan theorems, mainly in two directions. On

the one hand, by replacing the underlying metric space with a more general space,

for example, a partial metric space, a generalized metric space, a quasi-metric

space etc., and on the other, by finding better contractivity conditions on the map

T . In [3] and [1] the authors extend these theorems by replacing the complete

metric space by a kind of complete quasi-metric space. In this paper we improve

these results using a mw-distances in the contractivity conditions instead of the

quasi-metric.

In order to fix our terminology we recall the following notions.

A quasi–metric on a set X is a function d : X×X → R+ such that for all x, y, z ∈

X : (i) d(x, y) = d(y, x) = 0 if and only if x = y (ii) d(x, y) ≤ d(x, z) + d(z, y).

If the quasi-metric d satisfies the stronger condition (i”) d(x, y) = 0 if and only if

x = y, we say that d is a T1 quasi-metric on X .

A T1 quasi-metric space is a pair (X, d) such that X is a non-empty set and d is

a T1 quasi-metric on X .

Each quasi-metric d on a set X induces a T0 topology τd on X which has as a

base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X :

d(x, y) < ε} for all x ∈ X and ε > 0.

Given a quasi-metric d on X, the function d−1 defined by d−1(x, y) = d(y, x) for

all x, y ∈ X , is also a quasi-metric on X , called conjugate quasi-metric, and the

function ds defined by ds(x, y) = max{d(x, y), d(y, x)} for all x, y ∈ X , is a metric

on X

A quasi-metric space (X, d) is called d-sequentially complete if every Cauchy se-

quence in (X, ds) converges with respect to the topology τd, i.e., there exists z ∈ X

such that d(z, xn)→ 0.
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A quasi-metric space (X, d) is called d−1-sequentially complete if every Cauchy

sequence in (X, ds) converges with respect to the topology τd−1 , i.e., there exists

z ∈ X such that d(xn, z)→ 0.

According to [2], an mw-distance on a quasi-metric space (X, d) is a function

q : X ×X → R+ satisfying the following conditions:

(W1) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X ;

(W2) q(x, ·) : X → R+ is lower semicontinuous on (X, τd−1) for all x ∈ X ;

(mW3) for each ε > 0 there exists δ > 0 such that if q(y, x) ≤ δ and q(x, z) ≤ δ

then d(y, z) ≤ ε.

Obviously, each quasi- metric d on a set X is a mw -distance for the quasi-metric

space (X, d).

2. The results

Lemma 1. Let (X, d) be a quasi-metric space, q an mw−distance on (X, d)

and (xn)n∈ω a sequence in X. If for each ε > 0 there exists n0 ∈ ω such that

q(xn, xm) ≤ ε for all n,m ≥ n0, n 6= m, then (xn)n∈ω is a Cauchy sequence in

(X, ds).

Proof. Let ε > 0. By (mW3), there exists δ > 0 such that if q(y, x) ≤ δ and

q(x, z) ≤ δ then d(y, z) ≤ ε. By hypothesis, there exists n0 such that q(xn, xm) ≤

δ/2 whenever n,m ≥ n0, n 6= m. Then, q(xm, xm) ≤ q(xm, xn) + q(xn, xm) ≤

δ/2+ δ/2 = δ whenever n,m ≥ n0, n 6= m. Consequently, d(xn, xm) ≤ ε whenever

n,m ≥ n0. Therefore, d
s(xn, xm) ≤ ε for all n,m ≥ n0. �

Theorem 2. Let T be a self mapping of a d−1-sequentially complete quasi-metric

space (X, d) and let q be an mw−distance on (X, d). If there exists r ∈ [0, 1) such

that

q(Tx, T y) ≤ rq(y, x)

for every x, y ∈ X then there exists z ∈ X such that d(Tz, z) = 0. Moreover, if

Tu = u then q(u, u) = 0.
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Proof. Fix x0 ∈ X. For each n ∈ ω let xn = T nx0. Then

q(xn, xn+1) ≤ r
nmax{q(x0, x1), q(x1, x0)}

q(xn+1, xn) ≤ r
nmax{q(x0, x1), q(x1, x0)}

for all n ∈ ω.

Let ε > 0 and let m > n. Then

q(xn, xm) ≤ q(xn, xn+1) + · · ·+ q(xm−1, xm) ≤

(rn + · · ·+ rm−1)max{q(x0, x1), q(x1, x0} ≤

rn

1− r
max{q(x0, x1), q(x1, x0)}.

Similarly, if m < n, then

q(xn, xm) ≤
rm

1− r
max{q(x0, x1), q(x1, x0)}.

Hence, there exists n0 ∈ ω such that q(xn, xm) ≤ ε whenever n,m ≥ n0, n 6= m.

From Lemma 1, we have that (xn)n∈ω is a Cauchy sequence in (X, ds).

Since (X, d) is d−1-sequantially complete, there exists z ∈ X such that d(xn, z)→

0.

Next we prove that q(xn, z)→ 0.

Let n ∈ ω be fixed. Since, q(xn, ·) is lower semicontinuous on (X, τd−1), we have

that given ε > 0 there exists m0 > n such that

q(xn, z)− q(xn, xm) < ε

for all m ≥ m0.

Then

q(xn, z) ≤ q(xn, xm) + ε ≤
rn

1− r
max{q(x0, x1), q(x1, x0)}+ ε.

Consequently, q(xn, z)→ 0.

Now, since q(Tz, xn) = q(Tz, Txn−1) ≤ rq(xn−1, z), we have taht q(Tz, xn)→ 0.

Let ε > 0. By (mW3) there exists δ > 0 such that if q(x, y) < δ and q(y, z) < δ

then d(x, z) < ε.
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Since q(Tz, xn)→ 0, there is n1 ∈ N such that q(Tz, xn) < δ for every n ≥ n1.

Since q(xn, z)→ 0, there is n2 ≥ n1 such that q(xn, z) < δ for every n ≥ n2.

Thus, if n ≥ n2 we have that q(Tz, xn) < δ and q(xnn, z) < δ. Therefore d(Tz, z) =

0.

Finally, if Tu = u then

q(u, u) = q(Tu, T 2u) ≤ rq(Tu, u) = rq(u, u)

and this implies that q(u, u) = 0. �

The following example shows that previous theorem can be applied for an appro-

priate mw-distance on a quasi-metric space (X, d) but not for d.

Example 3. Let X = [0, 1] and let d be the the quasi-metric on X given by

d(x, y) = max{y − x, 0}, for all x, y ∈ X . (X, d) is d−1-sequentially complete.

Define T : X → X as Tx = x2/2 and let q be the mw−distance given by q(x, y) =

x+ y, for all x, y ∈ X. Then,

q(Tx, T y) =
x2

2
+
y2

2
≤
x

2
+
y

2
=

1

2
(y + x) =

1

2
q(y, x).

Thus, all conditions of Theorem 1 are satisfied. Nevertheless, the contraction

condition of Theorem 1 is not satisfied for d. Indeed, suppose that there exists

r ∈ (0, 1) such that d(Tx, T y) ≤ rd(y, x), for all x, y ∈ X. Then

d(T
r

2
, T r) =

r2

4
≤ rd(r,

r

2
) = 0,

and this is a contradiction.

Corollary 4. Let T be a self mapping of a d−1-sequentially complete T1 quasi-

metric space (X, d) and let q be an mw−distance on (X, d). If there exists r ∈ [0, 1)

such that

q(Tx, T y) ≤ rq(y, x)

for every x, y ∈ X then T has a unique fixed point. Moreover, if Tu = u then

q(u, u) = 0.
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Proof. By Theorem 1, there exists z ∈ X such that d(Tz, z) = 0, and this implies

that Tz = z because X is a T1 space.

If we suppose that Tv = v, then q(v, z) = q(Tv, T z) ≤ rq(z, v) ≤ r2q(v, z), so that

q(v, z) = 0. Since, q(z, z) = 0, by (mW3) we have that d(v, z) = 0, i.e., v = z. �

Definition 5 (Definition 2 of [3]). A d-contraction on a quasi-metric space (X, d)

is a mapping T : X → X such that there is r ∈ [0, 1) satisfying d(Tx, T y) ≤

rd(x, y) for all x, y ∈ X .

A d−1-contraction on a quasi-metric space (X, d) is a mapping T : X → X such

that there is r ∈ [0, 1) satisfying d(Tx, T y) ≤ rd(y, x) for all x, y ∈ X .

Corollary 6 (Corollary 8 of [3]). Let (X, d) a T1 quasi-metric space d−1-sequentially

complete. Every d−1-contraction on (X, d) has a unique fixed point.

Corollary 7 (Theorem 7 of [3]). Let (X, d) a T1 quasi-metric space d-sequentially

complete. Every d−1-contraction on (X, d) has a unique fixed point.

Proof. Let d0 = d−1, then (X, d0) is a T1 d
−1
0 -sequentially complete quasi-metric

space. If T is a d−1-contraction on (X, d), then

d0(Tx, T y) = d(Ty, Tx) ≤ rd(x, y) = rd0(y, x),

i.e., T is a d−1
0 -contraction on (X, d0). Applying Corollary 2, we have that T has

a unique fixed point. �

Theorem 8. Let T be a self mapping of a d−1-sequentially complete quasi-metric

space (X, d) and let q be an mw−distance on (X, d). If there exists k ∈ [0, 1/2)

such that

q(Tx, T y) ≤ k(q(Tx, x) + q(Ty, y))

for every x, y ∈ X then there exists z ∈ X such that d(Tz, z) = 0. Moreover, if

Tu = u then q(u, u) = 0.

Proof. Fix x0 ∈ X. For each n ∈ ω let xn = T nx0. Then

q(xn+1, xn) ≤ k(q(xn+1, xn) + q(xn, xn−1)).
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Put r = k
1−k < 1. We have

q(xn+1, xn) ≤ rq(xn, xn−1).

Hence, by (W1),

q(xn+1, xn) ≤ r
nq(x1, x0),

for all n ∈ ω.

Let ε > 0 and let n,m ∈ N. Then

q(xn, xm) ≤ k(q(xn, xn−1) + q(xm, xm−1))

≤ k(rn−1 + rm−1)q(x1, x0)

Therefore there exists n0 ∈ ω such that q(xn, xm) ≤ ε whenever n,m ≥ n0. From

Lemma 1 it follows that (xn)n∈N is a Cauchy sequence.

Since (X, d) is complete, there exists z ∈ X such that (xn) converges to z with

respect to the topology τd−1 , i.e., d(xn, z)→ 0.

Next we show that q(xn, z)→ 0. Let n ∈ ω be fixed and let ε > 0 . Since q(xn, ·)

is lower semicontinuous, there exists m0 > n such that

q(xn, z)− q(xn, xm) < ε

for all m ≥ m0.

Therefore

q(xn, z) ≤ q(xn, xm) + ε ≤ 2kq(x1, x0)r
n−1 + ε.

This implies that q(xn, z)→ 0.

Now we prove that q(Tz, z) = 0 : Indeed,

q(Tz, z) ≤ q(Tz, Txn) + q(Txn, z) ≤ k(q(Tz, z) + q(Txn, xn)) + q(xn+1, z) ≤

kq(Tz, z) + kq(xn+1, xn) + q(xn+1, xn) + q(xn, z) ≤

kq(Tz, z) + (k + 1)rnq(x1, x0) + q(xn, z),

for every n ∈ ω. Then,

q(Tz, z) ≤ kq(Tz, z),

and so q(Tz, z) = 0.
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Since q(Tz, T z) ≤ 2kq(Tz, z), it follows that q(Tz, T z) = 0. Finally, from condition

(mW3) we obtain that d(Tz, z) = 0.

Moreover, if Tu = u, then

q(u, u) = q(Tu, Tu) ≤ 2kq(u, u)

and hence q(u, u) = 0. �

Corollary 9. Let T be a self mapping of a d−1-sequentially complete quasi-metric

space (X, d). If there exists k ∈ [0, 1/2) such that

d(Tx, T y) ≤ k(d(Tx, x) + d(Ty, y))

for every x, y ∈ X then T has a unique fixed point.

Proof. From Theorem 2, taking q = d we obtain that there exists z ∈ X such that

d(Tz, z) = 0. Now we show that Tz is a fixed point of T .

Since ds(Tx, T y) ≤ k(d(Tx, x) + d(Ty, y)), for all x, y ∈ X, we have

ds(T 2z, T z) ≤ k(d(T 2z, T z) + d(Tz, z)) = kd(T 2z, T z) ≤ kds(T 2z, T z).

Therefore ds(T 2z, T z) = 0, i.e, T 2z = Tz.

Suppose that u, v are fixed points of T. Then ds(u, v) = ds(Tu, T v) ≤ k(d(Tu, u)+

d(Tv, v)) = 0, and thus u = v. �

Corollary 10 (Theorem 2.5 of [1]). Let T be a self mapping of a d-sequentially

complete quasi-metric space (X, d). If there exists k ∈ [0, 1/2) such that

d(Tx, T y) ≤ k(d(x, Tx) + d(yTy))

for every x, y ∈ X then T has a unique fixed point.

Proof. Let d0 = d−1. Then (X, d0) is a d−1
0 -sequentially complete quasi-metric

space. Since

d0(Tx, T y) = d(Ty, tx) ≤ k(d(x, Tx) + d(y, T y)) =

= k(d0(Tx, x) + d0(Ty, y)),

from Corollary 4, it follows that T has a unique fixed point. �
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It is well known that the Banach and Kannan theorems are independent, therefore

Theorem 2 and Theorem 8 are also. However, for the sake of completeness we

include here two examples that illustrate this fact.

Example 11. Let X = [−1, 1] and let d be the the quasi-metric on X given by

d(x, y) = max{y − x, 0}, for all x, y ∈ X. (X, d) is d−1-sequentially complete.

Define T : X → X as Tx = −x/2 and let q = d. We can apply Theorem 1 to

T because if x > y, then d(Tx, T y) = (−y/2 + x/2) ∨ 0 = 1
2 (−y + x) = 1

2d(y, x),

and if x ≤ y, then d(Tx, T y) = 0. Nevertheless, T does not satisfy the condition

of Theorem 2. Indeed, if x = −1/2 and y = −1 then d(Tx, T y) = 1/4 and

(d(Tx, x) + d(Ty, y)) = 0.

Example 12. Let X = [0, 1] and let d be the quasi-metric on X given by d(x, y) =

max{y − x, 0}, for all x, y ∈ X. (X, d) is d−1-sequentially complete. Define T :

X → X as Tx = 1/3 if x 6= 1 and T 1 = 0 and let q = d. We can apply

Theorem 2 to T. Indeed, if x < 1/3, d(T 1, 1) + d(Tx, x) = 1 = 3d(T 1, T x),

and if x ≥ 1/3, d(T 1, 1) + d(Tx, x) = 2/3 + x ≥ 1 = 3d(T 1, T x). Consequently,

d(T 1, T x) ≤ 1
3 (d(T 1, 1) + d(Tx, x)). Note that d(Tx, T 1) = 0 for every x ∈ X.

T does not satisfy the contraction condition of Theorem 1 because d(T 1, T 2
3 ) =

1/3 = d(23 , 1) > rd(23 , 1) for all r ∈ (0, 1).
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