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Abstract

This book is aimed at covering the bases on random variables, random vectors
and stochastic processes, necessary to be able to address the study of stochastic
models based mainly on random and stochastic differential equations. The ap-
proach of the text is fundamentally practical. The theoretical results, including
demonstrations of a more constructive nature, are combined with numerous ex-
amples and exercises chosen with the aim of instructing in fundamental ideas
and interpretations. At the end of each chapter two appendices have been
included. The first appendix contains a collection of carefully chosen prob-
lems for the reader to work on the main contents of the chapter, and also to
study, through the proposed problems, some theoretical extensions that have
not been dealt with throughout the corresponding chapter. Therefore, solving
these proposed exercises is an excellent opportunity to go beyond the contents
developed in each chapter. In the second appendix, we have included the res-
olution of some exercises using the Mathematica� software. These exercises
have been selected just to illustrate how to carry out basic computations.

The reader can find abundant bibliography to expand the contents of this book.
Some texts, on which we have based part of the contents of the chapters, are:
for random variables and vectors, Casella and Berger 2006; De Groot 1988;
Quesada and García 1988, and for stochastic processes, Allen 2010; Çinlar
1975; Durret 2016; Karlin 1966; Karlin and Taylor 1981; Prabhu 2007. The
following texts can also be very useful, if the interested reader wants to connect
the contents of this book with the theory and applications of random differ-
ential equations (Soong 1973) and Itô stochastic differential equations (Allen
2007; Kloeden and Platen 1992).
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Chapter 1

Random Variables

In this chapter we will introduce the main definitions, concepts,
properties and results related to univariate random variables. We
will start by defining probability spaces, which consist of a sample
space, a σ–algebra of events and a probability measure. Having an
underlying probability space, one can define the concept of random
variable as a Borel measurable map from the sample space. Each
random variable has an associated probability distribution, which is
described through the distribution function, probability density or
mass function, moment generating function, characteristic func-
tion, etc. The main statistical properties of a random variable are
obtained via probabilistic operators, such as the expectation and the
variance. These probabilistic operators satisfy certain important
inequalities that will be both stated and proved. We will study the
Hilbert space L2(Ω) of random variables with well-defined expecta-
tion and variance. Finally, we will introduce the different types of
convergence of a sequence of random variables.

1.1 Preliminaries on Probability Spaces and Univariate
Random Variables

Roughly speaking, Probability Theory studies random experiments. The set of
all possible outcomes of the random experiment is called sample space. Each
event (collection of outcomes) has a certain probability of occurrence. A real
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Random Variables

univariate random variable associates each outcome with a real value. Let
us see some examples of these mathematical objects, and afterwards we will
proceed with the formal definitions.

Example 1.1.1 Tossing coins.

Down below, we describe the relevant objects of the random experiment of
tossing two fair coins from a probabilistic standpoint.

• Random experiment: Tossing a pair of fair coins (or equivalently, flip-
ping a coin twice), which may give as a result heads-heads (h, h), heads-
tails (h, t), tails-heads (t, h) or tails-tails (t, t).

• Sample space: The set of possible outcomes, that is,

Ω = {ω1 = (h, h); ω2 = (h, t); ω3 = (t, h); ω4 = (t, t)} .
• Outcomes: ω1, ω2, ω3 and ω4.
• Elementary events:

E1 = {ω1} , E2 = {ω2} , E3 = {ω3} , E4 = {ω4} .
• Compounded events: In Table 1.1, we describe some compounded events.

Notice that, to express events mathematically, knowing Set Theory be-
comes very useful. In particular, being proficient in the handling of
unions (∪), intersections (∩) or complementaries (c) of sets is very
important.

Events Mathematical description
A = to get at least a head A = E1 ∪ E2 ∪ E3 = (E4)

c

B = to get just a head B = E2 ∪ E3 = (E1 ∪ E4)
c

C = to get 3 heads C = ∅ = Ωc

D = to get at least a head or a tail D = Ω = ∅c

Table 1.1: Some compounded events expressed using operations sets. Example 1.1.1.

• Random variables: We exhibit two examples of univariate random vari-
ables X and Y . The first one counts the number of heads when tossing
two coins. The second one computes the difference in absolute value
between the number of heads and tails. Notice that both X and Y are
maps from Ω to R, which are evaluated at each outcome ω ∈ Ω.

X = number of heads ⇒ X : Ω → R
ωi → X(ωi) ∈ {0, 1, 2}

X(ω1) = 2, X(ω2) = X(ω3) = 1, X(ω4) = 0.

2



1.1 Preliminaries on Probability Spaces and Univariate Random Variables

Y = difference in absolute value between heads and tails

Y : Ω → R
ωi → Y (ωi) ∈ {0, 2}

Y (ω1) = Y (ω4) = 2, Y (ω2) = Y (ω3) = 0.

Hence, we say, informally, that a real random variable is a function with domain
Ω and codomain or support (S) the set of the real numbers R. In the previous
example:

S(X) = {0, 1, 2} , S(Y ) = {0, 2} .

Example 1.1.2 Trading assets.

Down below, we describe the random experience concerning stocks from a
probabilistic point of view.

• Random experimenta: Stock traded in the Spanish index IBEX-35.
• Sample space:

Ω = {every social, economic outcome that determines the stock prices}.
• Outcomes: ω ∈ Ω (any social, economic outcome).
• Elementary events:

Eω = {ω} , ω ∈ Ω.

• Compounded events: A =
⋃

j∈J ωj = a set of social, economic outcomes.
• Random variable:

X = value of a share of ACS tomorrow.

We will be interested in evaluating probabilities like:

P[{ω ∈ Ω : 36 < X(ω) ≤ 40}], P[{ω ∈ Ω : X(ω) ≥ 36.9}].
These probabilities will depend on the probability distribution associated
to X.

Observe that, in contrast with the random experiment of flipping two coins,
now we do not know the sample space Ω explicitly. This is not important, as
we are just interested in the codomain of the random variable X, which is a
subset of R.

aIf we knew how the variables that determine the value of the shares of this Spanish financial
index change, it would not be a random experience!

3



Random Variables

To formalize and better understand these concepts, we need to introduce im-
portant results belonging to the realm of Probability Theory. Both experi-
ments described in Examples 1.1.1 and 1.1.2 are not predictable, in the sense
that they appear according to a random mechanism that is too complex to be
understood by using deterministic tools.

To study problems associated with the random variable X, one first collects
relevant subsets of Ω, the events, in a class FΩ called a σ–field or σ–algebra.
In order for FΩ to contain all those relevant events, it is natural to include all
the ω in the sample space Ω and also the union, difference, and intersection of
any events in FΩ, the set Ω and its complement, the empty set ∅.
Coming back to Example 1.1.2 of the market share, if we consider the price X
of a stock, not only should the events {ω ∈ Ω : X(ω) = c} belong to FΩ, but
also

P[{ω ∈ Ω : a < X(ω) < b}], P[{ω ∈ Ω : b < X(ω)}], P[{ω ∈ Ω : X(ω) ≤ a}],
and many more events that may be relevant. So, it is natural to require that
elementary operations such as ∪ (union), ∩ (intersection), c (complementary)
on the events of FΩ will not land outside the class FΩ. This is the intuitive
meaning of a σ–algebra.

Definition 1.1.1 σ–field (or σ–algebra) and measurable space.

Given a set Ω, a σ–field FΩ is a collection of subsets of Ω satisfying the fol-
lowing conditions:

i) ∅,Ω ∈ FΩ (we really only need to impose that either ∅ ∈ FΩ or Ω ∈ FΩ,
because of the next condition ii)).

ii) If A ∈ FΩ, then Ac ∈ FΩ.

iii) If A1, A2, . . . ∈ FΩ, then
∞⋃
i=1

Ai ∈ FΩ.

The pair (Ω,FΩ) is called a measurable space (or probabilizable space). The
elements of FΩ are referred to as measurable sets (or events in the Probability
Theory).

Using the previous conditions adequately one can deduce that many other sets
lie in FΩ:

4



1.1 Preliminaries on Probability Spaces and Univariate Random Variables

• Finite or countable infinite intersections:

A1 ∩A2 = ((A1)
c ∪ (A2)

c)
c ∈ FΩ,

∞⋂
i=1

Ai =

( ∞⋃
i=1

(Ai)
c

)c

∈ FΩ.

• Differences: A \B = A ∩Bc.

To summarize, a σ–algebra is closed under finite and countable infinite unions,
intersections, differences, etc.

Example 1.1.3 Some elementary σ–fields.

We show the most elementary σ–fields, say the trivial one, F1, the one as-
sociated to a partition, F2, and the whole set of parts of Ω (its power set),
F3:

• F1 = {∅,Ω}, the smallest σ–field (the trivial one).
• F2 = {∅,Ω, A,Ac}, where A ⊂ Ω.
• F3 = 2Ω = {A : A ⊂ Ω}, the biggest σ–field (called the power set of Ω).

In general the power set 2Ω is unnecessarily too big. This motivates the concept
of σ–field generated by a collection of sets. One can prove that, given a collec-
tion C of subsets of Ω, there exists the smallest σ–field σ(C) on Ω containing
C. We call σ(C) the σ–field generated by C. Notice that

σ(C) =
⋂

{G : C ⊂ G, G is σ–algebra} .

If C were a σ–algebra, then it would coincide with σ(C).

Example 1.1.4 σ–field generated by a collection of sets.

All the basic σ–algebras presented in Example 1.1.3 are actually σ–algebras
generated by a collection C of subsets of Ω:

• F1 = {∅,Ω} = σ(∅), i.e., C = ∅.
• F2 = {∅,Ω, A,Ac} = σ({A}), i.e., C = {A}.
• F3 = 2Ω = σ(F3), i.e., C = F3.

Furthermore, if we consider a finite partition, say P = {A1, . . . , An} of Ω,
the σ–field generated by P is made up of all the unions Ai1 ∪ . . . Ain , where
{i1, . . . , in} is an arbitrary subset of {1, . . . , n}. Therefore, the σ–field σ(P)
has 2n elements.

5
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Exercise 1.1.1 Computing some σ–algebras.

Consider the random experience of flipping a coin twice (see the Exam-
ple 1.1.1 for the notation). Compute:

a) The smallest σ–algebra containing both {ω1} and {ω2}, which is denoted
by σ({ω1, ω2}).

b) The biggest σ–algebra containing {ω1} and {ω2}.
Solution: Recall the definition of the sample space as

Ω = {ω1 = (h, h), ω2 = (h, t), ω3 = (t, h), ω4 = (t, t)} .
It contains the set of possible outcomes.

a) We have

σ({ω1, ω2}) = {∅, {ω1}, {ω2}, {ω1, ω2}, {ω3, ω4}, {ω1, ω3, ω4}, {ω2, ω3, ω4},Ω}.
b) Recall that the biggest σ–algebra is always the power set 2Ω.

An important σ–algebra on R, called the σ–algebra of Borel, is presented in
the following example. In the context of random variables, this is in fact the
most important σ–algebra on R.

Example 1.1.5 σ–field of Borel.

The σ–field of Borel is defined as the σ–algebra generated by the collection of
semi-open intervals (a, b] in Ω = R:

FR = BR = σ({(a, b] : −∞ < a < b < ∞}).
All the intervals of the form (a, b], unions of such intervals and intersections
and complements of all the resulting sets belong to this σ–algebra. This results
in a wide variety of intervals (open, semi-open and closed) as well as other
sets that belong to the σ–field BR. For instance:

• (a, b) =
⋃∞

n=1(a, b− 1
n
] ∈ BR.

• {x} =
⋂∞

n=1(x− 1
n
, x] ∈ BR.

Although it is possible to construct odd sets that do not belong to BR, in
practice nearly any event that we may imagine belongs to BR.
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1.1 Preliminaries on Probability Spaces and Univariate Random Variables

It is important to emphasize that alternative but equivalent definitions for BR

exist:

BR = σ({[a, b] : −∞ < a < b < ∞}),
BR = σ({[a, b) : −∞ < a < b < ∞}),
BR = σ({(a,∞) : −∞ ≤ a < ∞}),
BR = σ({(−∞, b) : −∞ < b ≤ ∞}),

etc. These equivalences may be proved by establishing the double inclusion,
⊂ and ⊃.

The σ–algebra BR may also be defined as the one generated by the open
subsets of R.

Given A ⊂ R, we may define the σ–algebra of Borel on A as

BA = {A ∩B : B ∈ BR}.
This is the σ–algebra generated by the open sets in the relative topology of A,
or by the relative intervals in A (i.e., (a, b] ∩A).

Definition 1.1.2 Probability measure.

Given Ω a set and a σ–algebra FΩ of Ω, a probability measure is a map P :
FΩ → [0, 1] satisfying the following conditions:

i) The probability of the whole set Ω is 1: P [Ω] = 1.

ii) Additivity property: P

[ ∞⋃
n=1

An

]
=

∞∑
n=1

P[An] if An ∩ Am = ∅, n = m :

n,m ≥ 1.

From these conditions many others can be derived:

Proposition 1.1.1 Properties of the probability measure.

The probability measure P satisfies the following properties:

i) The probability of the empty set is zero, P[∅] = 0.

ii) For each A ∈ FΩ, P[Ac] = 1− P[A].

7
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iii) For each A,B ∈ FΩ,

P [A ∪B] = P [A] + P [B]− P [A ∩B] .

iv) The measure P is monotonic: If A ⊂ B, then P[A] ≤ P[B].

v) Subadditivity property (Boole’s inequality):

P

[ ∞⋃
i=1

Ai

]
≤

∞∑
i=1

P[Ai], ∀A1, A2, . . . ∈ FΩ.

vi) Continuity property: If {An : n ≥ 1} ⊂ FΩ is an increasing sequence
of events (i.e., An ⊂ An+1, for each n ≥ 1) with A = ∪∞

n=1An, then
P[A] = limn→∞ P[An].

Analogously, if {An : n ≥ 1} ⊂ FΩ is a decreasing sequence of events
(i.e., An ⊃ An+1, for each n ≥ 1) with A = ∩∞

n=1An, then P[A] =
limn→∞ P[An].

Proof:

i) Take A1, A2, . . . = ∅ and apply the additivity property: P[∅] = ∑∞
n=1 P[∅].

This is only possible if P[∅] = 0.

ii) In the additivity property, take A1 = A, A2 = Ac, and A3 = A4 = . . . = ∅.
Then 1 = P[Ω] = P[A] + P[Ac] +

∑∞
i=3 P[∅] = P[A] + P[Ac].

iii) Let A1 = A ∩ Bc, A2 = B ∩ Ac, A3 = A ∩ B, and A4 = A5 = . . . = ∅.
Then Ai ∩Aj = ∅ for i = j and A∪B = A1 ∪A2 ∪A3. By the additivity
property, P[A∪B] = P[A1] +P[A2] +P[A3]. Notice that A = A1 ∪A3 and
B = A2∪A3, with A1∩A3 = A2∩A3 = ∅. Then P[A] = P[A1]+P[A3] and
P[B] = P[A2]+P[A3]. Thus, we derive P[A∪B] = P[A]+P[B]−P[A∩B].

iv) If A ⊂ B, then B = A ∪ (B\A), therefore P[B] = P[A] + P[B\A] ≥ P[A].

v) Take B1 = A1, Bi = Ai\ ∪i−1
j=1 Aj, for i ≥ 2. Notice that P[Bi] ≤ P[Ai],

i ≥ 1, by the monotony of the probability measure. The sets B1, B2, . . . are
pairwise disjoint and ∪∞

i=1Bi = ∪∞
i=1Ai. Then, by the additivity property,

P

[ ∞⋃
i=1

Ai

]
= P

[ ∞⋃
i=1

Bi

]
=

∞∑
i=1

P[Bi] ≤
∞∑
i=1

P[Ai].

8



1.1 Preliminaries on Probability Spaces and Univariate Random Variables

vi) Suppose that {An : n ≥ 1} ⊂ FΩ is an increasing sequence of events.
Take B1 = A1, Bi = Ai\ ∪i−1

j=1 Aj = Ai\Ai−1, for i ≥ 2. Notice that
P[Bi] = P[Ai]− P[Ai−1]. Then

P[A] = P

[ ∞⋃
i=1

Bi

]
=

∞∑
i=1

P[Bi] = lim
n→∞

n∑
i=1

P[Bi] = lim
n→∞

P[An].

The case in which {An : n ≥ 1} ⊂ FΩ is a decreasing sequence of events
is analogous, by working with the complementary Ac

n instead. �

Example 1.1.6 Bonferroni’s inequality.

In Proposition 1.1.1–iii) we have shown that P [A ∪B] = P [A] + P [B] −
P [A ∩B] . Since P [A ∪B] ≤ 1 and after some rearranging,

P [A ∩B] ≥ P [A] + P [B]− 1.

This inequality is a special case of what is known as Bonferroni’s inequality
(see Exercises 3 and 4 of Appendix 1.A). Bonferroni’s inequality allows us
to bound the probability of a simultaneous event (the intersection) in terms
of the probabilities of the individual events. This inequality is particularly
useful when it is difficult (or even impossible) to calculate the intersection
probability, but some idea of the size of this probability is desired. Let us
suppose that A and B are two events and each has probability 0.95. Then the
probability that both will occur is bounded below by

P [A ∩B] ≥ P [A] + P [B]− 1 = 0.95 + 0.95− 1 = 0.90.

Observe that unless the probabilities of the individual events are sufficiently
large, Bonferroni’s bound is a useless (but correct!) negative number.

Definition 1.1.3 Probability space.

The triplet (Ω,FΩ,P) where:

i) Ω is the sample space,

ii) F ⊂ 2Ω is the σ–field of Ω,

iii) P : FΩ → [0, 1] is the probability measure,

is called a probability space.

9
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So far we have introduced the concept of random variable in a rough sense.
Next we formalize its definition.

Definition 1.1.4 Real random variable.

We say that X : Ω → R is a real random variable if

X−1(A) ∈ FΩ, ∀A ∈ BR,

being BR the σ–algebra of Borel. In words of measure theory, X is Borel mea-
surable.

According to this definition, given B ∈ BR, the set {ω ∈ Ω : X(ω) ∈ B} =
{X ∈ B} is an event of FΩ, whose probability can be computed:

P [{ω ∈ Ω : X(ω) ∈ B}] = P [X ∈ B] .

Example 1.1.7 Probability measure in the random experiment of tossing
a pair of fair coins.

In the first random experiment of tossing a pair of fair coins, see Exam-
ple 1.1.1, we define P[{ωi}] = 1

4
, for each i ∈ {1, 2, 3, 4}. Then

P [{ω ∈ Ω : X(ω1) = 2}] = P [{ω ∈ Ω : X(ω4) = 0}] = 1/4.

Example 1.1.8 Flipping a coin until a tail shows.

For this random experiment one has the following objects:

• Ω = {ω1, ω2, ω3, . . .}, ωi= the outcome where i− 1 tosses are heads (H)
and the i–th toss is a tail (T): ω1 = T , ω2 = (H,T ), ω3 = (H,H, T ),
etc.

• FΩ = {∅, {ω1}, {ω2}, . . . , {ω1, ω2}, {ω1, ω3}, . . .} is a σ–algebra of Ω such
that {ωi} ∈ FΩ (it is the power set of Ω).

• Event: B = {the first tail occurs after an odd number of tosses}, i.e.,
B = {ω1, ω3, ω5, . . .} ∈ FΩ.

• P [{ωi}] =
(
1
2

)i defines a probability measure in Ω.

On account of the previous theory, one gets:

P [B] =
∞∑
i=1

P [{ω2i−1}] =
∞∑
i=1

(
1

2

)2i−1

=
2

3
.
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1.2 Conditional Probability

1.2 Conditional Probability

So far all the probabilities have been calculated with reference to the sample
space Ω, however often we have additional information about random exper-
iments that allow us to update the sample space. In such a case we want to
be able to update probabilities taking into account the new information. This
leads to the following concept.

Definition 1.2.1 Conditional probability.

If A,B ∈ FΩ and P[B] > 0, then the conditional probability of A given B is
defined as

P[A|B] =
P[A ∩B]

P[B]
.

Remark 1.2.1 Some observations about conditional probability.

• Analogously to Definition 1.2.1, we can define

P[B|A] =
P[A ∩B]

P[A]
, A,B ∈ FΩ,

provided P[A] > 0.

• Since P[B|B] = 1, intuitively we can think that the original sample space
has been updated to B. In particular, if A ∩ B = ∅, i.e., A and B are
disjoint (also called incompatible or mutually disjoint) events, P[A|B] =
P[B|A] = 0 as expected.

Example 1.2.1 Computing conditional probabilities.

Let us suppose that a hat contains ten cards numbered from 1 to 10.
The sample space of the random experiment of drawing a card from
the hat is Ω = {1, 2, . . . , 10}, and the probability of the event A =
{the number of the drawn card is 10} is P[A] = 1/10. Now, let us as-
sume that one of the cards is drawn and that we are told that its num-
ber is at least 5. The new sample space, with the updating information,
is B = {5, 6, 7, 8, 9, 10}. With this information the updated (conditional)

11
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probability of event A is

P[A|B] =
P[A ∩B]

P[B]
=

1
10
6
10

=
1

6
>

1

10
= P[A].

Observe that A ∩B = {10}.
From the definitions of conditional probabilities P[A|B] and P[B|A], one de-
rives the following ‘turning around’ conditional probability relationship termed
Bayes’ Rule:

P[A|B] = P[B|A]
P[A]

P[B]
.

The following result generalizes the previous formula for the case that the
sample space is partitioned into a set of events.

Proposition 1.2.1 Bayes’ Rule.

Let A1, A2, . . . be a partition of the sample space Ω of a probability space
(Ω,FΩ,Ω) and let B be any event of FΩ. Then, for each i = 1, 2, . . .,

P[Ai|B] =
P[B|Ai]∑∞

j=1 P[B|Aj]P[Aj ]
.

Proof: Since A1, A2, . . . is a partition of the sample space,

B = (A1 ∩B) ∪ (A2 ∩B) ∪ · · · ,
being each Ei = Ai ∩ B, i = 1, 2 . . ., disjoint, i.e., Ei ∩ Ej = ∅, i, j = 1, 2, . . .,
i = j (notice that Ei may be the empty set). Then applying firstly the additiv-
ity property of the probability measure (see Definition 1.1.2) and secondly the
definition of conditional probability, one gets

P[B] =
∞∑
j=1

P[Aj ∩B] =
∞∑
j=1

P[B|Aj ]P[Aj ].

This relationship is sometimes referred to as Total or Partition Probability
Rule.

12



1.2 Conditional Probability

Now, using again the definition of conditional probability and this last relation-
ship, one obtains

P[Ai|B] =
P[B|Ai]P[Ai]

P[B]
=

P[B|Ai]P[Ai]
∞∑
j=1

P[B|Aj ]P[Aj ]

.

�

Example 1.2.2 Applying Bayes’ Rule.

Morse code uses ‘dots’ and ‘dashes’ in the following proportion: 3 : 4. Let us
suppose that there exist interferences on the transmission line so that dots and
dashes can be mistakenly received with probability 1/5. Using this information
and Bayes’ Rule, we can compute the probability of correctly receiving a dot.
Indeed, let us define the events

A1 = {dot sent}, A2 = {dash sent},
which define a partition in the sample space. Observe that

P[A1] =
3

7
, P[A2] =

4

7
.

Then, if we define the event B = {receive a dot}, then by the Total Proba-
bility Rule,

P[B] = P[B|A1]× P[A1] + P[B|A2]× P[A2]

=
4

5
× 3

7
+

1

5
× 4

7
=

16

35
.

Finally, we compute the probability of correctly receiving a dot using the
Bayes’ Rule:

P[A1|B] =

4

5
× 3

7
16

35

=
3

4
.

Observe that often the occurrence of an event, say B, does not make any effect
on the occurrence of another event A. So,

P[A|B] = P[A].

13
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If this holds, then using this relationship along with Bayes’ Rule, one derives

P[B|A] = P[A|B]
P[B]

P[A]
= P[A]

P[B]

P[A]
= P[B].

As a consequence, neither A nor B affect each other. On the other hand, using
the definition of conditional independence one gets

P [A] = P [A|B] =
P [A ∩B]

P [B]
⇒ P [A ∩B] = P [A]P [B] .

These facts motivate the following definition:

Definition 1.2.2 Pair of independent events.

We say that A,B ∈ FΩ are independent events if

P [A ∩B] = P [A]P [B] .

The following result is very intuitive in terms of Set Theory.

Proposition 1.2.2 Some properties about independent and complementaries
events.

Let A, B ∈ FΩ independent events. Then, the following pairs of events are
also independent:

i) A and Bc.

i) Ac and B.

i) Ac and Bc.

Proof: Because of their similarity, we only prove the first statement.

i) According to Definition 1.2.2, it is enough to prove that P[A∩Bc] = P[A]P[Bc].
Observe that using the definition of conditional probability, A and B are inde-

14
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pendent and by Proposition 1.1.1–ii), one obtains

P[A ∩Bc] = P[A]− P[A ∩B] = P[A]− P[A|B]P[B]

= P[A]− P[A]P[B] = P[A](1− P[B])

= P[A]P[Bc].

�

So far we have introduced the concept of independence for two events, and we
have obtained some consequences. Now, we extend the concept of indepen-
dence for a collection of events.

Definition 1.2.3 Mutually/simultaneous independent events and pairwise
independent events.

We say that A1, . . . , An ∈ FΩ are mutually or simultaneous independent events
if

P [Ai1 ∩ . . . ∩Aik ] = P [Ai1 ] · · ·P [Aik ] ,

for all 1 ≤ i1 < i2 < . . . < ik ≤ n, 1 ≤ k ≤ n.

We say that A1, . . . , An ∈ FΩ are pairwise independent events if

P[Ai ∩Aj ] = P[Ai]P[Aj ], ∀ 1 ≤ i < j ≤ n.

The following example shows why mutually or simultaneous independence has
required an extremely strong condition.

Example 1.2.3 Pairwise independence does not imply mutually indepen-
dence.

Let Ω = {ω1, ω2, ω3, ω4}, with FΩ = 2Ω and P[{ωi}] = 1
4
, 1 ≤ i ≤ 4. Consider

the events
A = {ω1, ω2}, B = {ω1, ω3}, C = {ω1, ω4}.

Then
A ∩B = B ∩ C = A ∩ C = A ∩B ∩ C = {ω1},

15
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so that

P[A ∩B] = P[A]P[B], P[A ∩ C] = P[A]P[C], P[B ∩ C] = P[B]P[C],

which implies pairwise independence, but

P[A ∩B ∩ C] =
1

4
= 1

8
= P[A]P[B]P[C],

so there is no mutually independence.

Remark 1.2.2 About the term independence.

In general, the word “independence” stands for “mutually/simultaneous inde-
pendence”. Sometimes, this is also referred to as “complete independence”.
Recall that this is stronger than “pairwise independence”. Therefore, the term
“independence’ in Probability Theory must be carefully used for the sake of
accuracy.

1.3 Probability Distribution of a Univariate Random
Variable

Definition 1.3.1 Distribution function (d.f.).

The function defined as

FX(x) = P [X ≤ x] = P [{ω ∈ Ω : X(ω) ≤ x}] ∈ [0, 1], ∀x ∈ R,

is the d.f. FX(x) of the random variable X.

Proposition 1.3.1 Properties of the d.f.

The d.f. FX of any arbitrary random variable, say X, possesses the following
key properties:

i) It is nonnegative.

ii) It is monotonically increasing.

iii) It is right-continuous.

iv) lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

16



1.3 Probability Distribution of a Univariate Random Variable

Proof:

i) The nonnegativity of FX follows from the nonnegativity of the probability
measure.

ii) The fact that FX is monotonically increasing follows from the monotony
of P, see Proposition 1.1.1–iv).

iii) The function FX is right-continuous because of the continuity of P, see
Proposition 1.1.1–vi). Indeed, let x ∈ R and consider a sequence xn > x
such that xn → x as n → ∞. Then (−∞, x] = ∩∞

n=1(−∞, xn], therefore

FX(x) = P[X ≤ x] = lim
n→∞

P[X ≤ xn] = lim
n→∞

FX(xn).

iv) If xn → −∞ as n → ∞, then ∩∞
n=1(−∞, xn] = ∅, so

0 = P[∅] = lim
n→∞

P[X ≤ xn] = lim
n→∞

FX(xn),

by the continuity of P, see Proposition 1.1.1–vi). The analysis for the
case xn → ∞ can be performed analogously. �

Notice that the probability of X lying in an interval (a, b] or the probability of
X being a point x may be calculated as follows:

P [{ω ∈ Ω : a < X(ω) ≤ b}] = FX(b)− FX(a),

P [{ω ∈ Ω : X(ω) = x}] = FX(x)− lim
ε→0+

FX(x− ε).

With these probabilities, we can approximate the probability of the event {ω ∈
Ω : X(ω) ∈ B} for very complicated subsets B of R. Notice that FX is a
continuous function at x if and only if P[X = x] = 0. It can be proved that,
in general, the number of discontinuities of FX is at most countable (this is
because of its monotony).

Definition 1.3.2 Distribution of a random variable.

The probability

PX [B] = P [X ∈ B] = P [{ω ∈ Ω : X(ω) ∈ B}] ,
for B ∈ BR, is the probability distribution or probability law of the random
variable X. The probability law of X is fully determined by its d.f., FX .
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Definition 1.3.3 Discrete distributions and probability mass function (p.m.f.).

We say that X has a discrete probability distribution if its d.f. is expressed as

FX(x) =
∑

k: xk≤x

pk, x ∈ R, where pk = P [X = xk] ,

⎧⎪⎨
⎪⎩

0 ≤ pk ≤ 1,
∞∑
k=1

pk = 1.

The set of values pk are usually termed the p.m.f. of X.

Remark 1.3.1 Some important observations about p.m.f.’s and d.f.’s

For a discretely distributed random variable X, we would like to emphasize the
following facts:

• The d.f. FX(x) can have jumps (it is right-continuous). Its plot is similar
to an upstairs. See Figure 1.1 (left) in the context of Example 1.3.1.

• The d.f. and the corresponding distribution are discrete. A random vari-
able with such a distribution is a discrete random variable.

• A discrete random variable assumes only a finite or countably infinitely
many values: x1, x2, . . . with probabilities pk = P [X = xk], respectively.
As previously indicated, pk is referred to as the p.m.f. See Figure 1.1
(right) in the context of Example 1.3.1.

• The probability that X lies in a Borel set B ∈ BR is given by PX [B] =
P[X ∈ B] =

∑
k: xk∈B pk.

Example 1.3.1 Binomial and Poisson distributions.

In this example we show two important discrete distributions. In Table 1.2,
we give the explicit expressions for the p.m.f. of the Binomial and Poisson
distributions.

Random Variable Distribution
X ∼ Bi(n; p), n ∈ N, 0 ≤ p ≤ 1 P [X = k] =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n

X ∼ Po(λ), λ > 0 P [X = k] = e−λ λk

k!
, k = 0, 1, . . .

Table 1.2: P.m.f. for the Binomial and Poisson distributions. Example 1.3.1.

Let us see two practical problems in which the Binomial and Poisson distri-
butions arise:
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1.3 Probability Distribution of a Univariate Random Variable

• Binomial: Let X= the number of ill patients living in separate rooms
of a hospital. Assume that 30% are ill and the hospital has 50 patients.
Calculate the following probability P [X = 15].

In this case, X ∼ Bi(n = 50; p = 0.3), therefore

P[X = 15] =

(
50

15

)
0.315(1− 0.3)50−15 = 0.122347.

• Poisson: Let X= the number of cars arriving at a petrol station every
minute. Assume that, on average, 3 cars per minute usually arrive
there. Calculate the following probability P [X = 5].

In this case, X ∼ Po(λ = 3) (the average of a Poisson distribution is
its parameter λ, see Exercise 1.4.1). Then

P[X = 5] = e−3 · 3
5

5!
= 0.100819.

In Figure 1.1, we show the d.f. and the p.m.f. of a Binomial random variable
with fixed parameters.

(a) Binomial d.f. (b) Binomial p.m.f.

Figure 1.1: Left: D.f. of X ∼ Bi(n = 5; p = 0.6). Right: P.m.f. of X ∼ Bi(n = 5; p =
0.6). Example 1.3.1.

Example 1.3.2 Geometric distribution.

In this example we introduce an important discrete distribution, referred to as
Geometric distribution, that appears when tossing for a head. Suppose we do
an experiment that consists of tossing a coin until a head appears. Observe
that this example is strongly related to the random experiment described in
Example 1.1.8. Let p the probability of a head on any given toss, and define
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