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Abstract

The great ubiquity and utility of genetic algorithms (GAs) in nearly every
field of Sciences and Engineering, makes them essential for future scien-
tists and engineers. For this reason GAs should be covered in scientific and
engineering graduate curricula. In this work, a simple NetLogo® model
is presented. Its goal is to introduce GAs in such way that students new
to the field can grasp the basic concepts behind GAs while they discover
the model. This model may be used in a computer lab session, as an on-
line applet for the students to revise the concepts after the class, or in a
Massive Open Online Course (MOOC) course.

Keywords: Genetic algorithm, Optimization, Control strategy design, Netlo-
go®, Engineering soft computing techniques.

Resumen

La gran ubicuidad y utilidad de los algoritmos genéticos (AGs) en ca-
si todos los campos de las Ciencias e Ingenieŕıas, los convierte en una
herramienta esencial para los futuros cient́ıficos e ingenieros. Por esta
razón, los AGs deben incluirse en los planes de estudios de posgrado en
Ciencias e Ingenieŕıas. En este trabajo, se presenta un modelo simple de
NetLogo®, cuyo objetivo es presentar los GAs de tal manera que los estu-
diantes nuevos en el campo puedan comprender los conceptos básicos que
hay detrás de dichos algoritmos mientras exploran el modelo. Este mode-
lo puede usarse en prácticas informáticas, como una applet en ĺınea para
que los estudiantes revisen los conceptos después de clase, o en un curso
online masivo y abierto (MOOC, por sus siglas en inglés).

Keywords: Algoritmo genético, Optimización, Diseño de una estrategia
de control, Netlogo®, Técnicas de soft computing en ingenieŕıa.
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1 Introduction

The idea of an algorithm that emulates biological evolution (i.e. Darwinian evolution)
was first proposed by Alan Turing in 1950 (Turing 1950). Shortly after, the first com-
puter simulations of evolution started appearing in literature. First, the 1954 paper
(Barricelli 1954) of the Italo-Norwegian mathematician Nils Aall Barricelli. And then,
the series of papers (Fraser 1957a; Fraser 1957b; Barker 1958a; Barker 1958b; Fra-
ser 1960a; Fraser 1960b; Fraser 1960c) of the Australian quantitative geneticist Alex
Fraser. Fraser’s works already included all the essential elements of what today are
known as genetic algorithms (GAs). After these germinal works, computer simulation
of evolution started gaining importance in the Biology field during the early 1960s.

The first applications of artificial evolution to solving optimization problems are at-
tributed to Barricelli and Bremermann. The first reported the use of an artificial
evolution algorithm to optimize the playing strategy for a simple game (Baricelli
1962); whereas the latter, Hans-Joachim Bremermann, a mathematician and biophy-
sicist of the University of California-Berkeley, published a series of papers in which a
virtual population was subjected to recombination, mutation, and selection in order
to find solutions for optimization problems (Crosby 1973). However, it was not until
the works of Rechenberg and Schwefel, in the early 1970s, that artificial evolution
became a widely recognized optimization method (Davis 1991).

In this temporal frame, two techniques based on artificial evolution appeared inde-
pendently: GAs and evolutionary programming (EP). The first, were first proposed
in the early 1970s by John Holland as a mean to find good solutions to problems that
were otherwise computationally intractable (McCall 2005). The concept originated
from the studies on cellular automata that Holland and his students conducted at
the University of Michigan. Holland laid the theoretical foundations of GAs with the
Holland’s Schema Theorem and the related building block hypothesis (Holland 1992).
The latter, originally developed by Lawrence J. Fogel, has in common with GAs that
they attempt to evolve a string representation through a series of fitness-based evo-
lutionary steps in order to get an optimum solution. Although of independent origin,
the two fields have grown together, and today, “evolutionary computation” or “evo-
lutionary algorithms” are sometimes used as an umbrella term for the whole area
(Whitley 1994).

In modern computer science, GAs are defined as a family of computational models ba-
sed on a metaheuristic inspired by Darwinian evolution. The basic idea behind these
algorithms is to encode a potential solution of a specific problem using a chromosome-
like data structure; and then apply selection, recombination and mutation operators
on a population of such chromosomes in order to search for the fittest individual (i.e.
the optimum) (Whitley 1994). A typical GA implementation starts with a randomly
generated population of chromosomes. Then, the “goodness” of each individual of the
population is quantified using the fitness function associated with the specific problem.
A selection operator allocates reproductive opportunities in such a way that the chro-
mosomes associated to fitter individuals are given more chances to “reproduce” than
the chromosomes associated to lower fitness individuals. After that, recombination
(i.e. intensification) and mutation (i.e. exploration) operators are applied in order to
obtain the next generation population of chromosomes. This process is repeated a
sufficiently large number of times.
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(a) θ = 0,1 (b) θ = 0,5 (c) θ = 1,0

Figura 1: Different environments for RoboBee

Today, GAs have been applied successfully to a very broad range of practical problems
in Science and Engineering (Karr y Freeman 1998). Some examples of such problems
are the design of a digital communications network (Davis y Coombs 1987), electro-
magnetic engineering (Johnson y Rahmat-Samii 1997), the AEGIS combat system
design (Kuchinski 1985), image enhancement and segmentation (Paulinas y Ušinskas
2007) and molecular modeling (Devillers 1996), amongst many others. The great ubi-
quity and utility of GAs in nearly every field of Sciences and Engineering, makes them
essential for future scientists and engineers. Consequently, GAs should be covered in
scientific and engineering graduate curricula.

In this work, a simple NetLogo® model is presented. The goal of this model is to
introduce GAs in such way that students new to the field can grasp the basic concepts
behind GAs while they discover the model; and they can visualize the role of each one
of the GA’s parameters as they “play” with the model. In order to illustrate the basic
concepts of GAs, the model uses the example of RoboBee, a virtual robotic bee that
needs to be programmed for automatically pollinating virtual plants. The model uses
a GA to obtain the best strategy for RoboBee. This model may be used in a computer
lab session, for the teacher to explain the concepts while the students are “playing”
with the model; or as an online applet for the students to revise the concepts after
the class, or in a Massive Open Online Course (MOOC) course.

2 RoboBee, the automatic pollinator bee

The example of RoboBee is inspired in Robby, the robot, invented by Melanie Mit-
chell and described in pages 130 to 142 of her book “Complexity: A Guided Tour”
(Mitchell 2009). In turn, Robby was inspired by the Herbert robot developed at the
MIT Artificial Intelligence Lab in the 1980s.

RoboBee is a virtual robotic bee that lives in a 2D virtual world in which both, space
and time, are discrete. This virtual world consists in a 10 × 10 grid, enclosed by a
wall. This could model a robotic bee placed inside a closed greenhouse. Some of the
grid squares contain non-pollinated plants. θ denotes the fraction of grid squares that
contain plants. Figure 1 shows examples of different environments for RoboBee.

RoboBee is meant to fly around the world, pollinating the non-pollinated plants.
Initially, RoboBee always starts at the bottom left corner of the world (i.e. where its
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recharging pod is located). On the one hand, the insect robot has a vision range of 1
square. Therefore, at any given position, it is able to “see” the content of 5 squares:
the 4 squares that surround its current square (North, South, West and East) and
its current square. There are 3 different options for the content of a given square:
empty (or already pollinated plant), non-pollinated plant or wall. On the other hand,
in each discrete time step, RoboBee can do one action out of its list of available
actions. This lists contains 6 elements: move 1 square North, South, East, West or in
a random direction; or execute the pollinating protocol. When the pollinating protocol
is executed in a square containing a non-pollinated plant, the plant is pollinated and
becomes a pollinated plant (i.e. an empty square for the robot). On the contrary, when
the pollinating protocol is executed in a square that does not contain a non-pollinated
plant, the pollination tool may get damaged. Another potential hazard for the robot
is bumping into walls. Because of this, both, bumping into walls and executing the
pollinating protocol in a square which does not contain a non-pollinated plant, should
be avoided.

The goal is to develop a strategy (i.e. control program) for RoboBee, so that the
robot pollinates the maximum number of plants while avoiding to bump against walls
and misexecuting the pollinating protocol. In order to quantify the efficiency with
which the robot performs its job, the following system of rewards and penalties was
considered:

For each non-pollinated plant that is successfully pollinated: +10 points.

For each bump against a wall: -5 points.

For each execution of the pollinating protocol in a square which does not contain
a non-pollinated plant: -1 point.

Given a certain environment and a given strategy, the score of the robot is defined as
the sum of the rewards and penalties obtained by the robot after Nm movements in
the considered environment according to the given strategy.

In order to fulfill the goal (i.e. develop the control strategy of the RoboBee) two
approaches will be considered. On the one hand, students will design “by hand” a
control strategy for the robot. An example of the control strategies that students
could propose, is:

If there is a non-pollinated plant in my current square

Then Execute the pollinating protocol

If there is a non-pollinated plant in a neighbor square

Then Move to that square

Otherwise Move randomly

On the other hand, a GA will be used in order to design the control strategy without
any human intervention in the design process. Then, the efficiency (i.e. score) of the
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Cuadro 1: Structure of RoboBee’s rule matrix

Inputs

Case Id. N S E W C Output

1 NP NP NP NP NP Move N

2 NP NP NP NP P Move E
...

...
...

...
...

...
...

243 W W W W W Move E

strategy proposed by the students will be compared to the one of the strategy designed
by the GA.

A strategy can be defined using words, as in the aforementioned example; or it can
be defined as a rule matrix. A rule matrix consists in a matrix that lists the output
action for each one of all the possible input combinations. Since there are 5 inputs (N,
S, E, W and C) and 3 possibilities for each input (No plant, NP; Plant, P; Wall, W),
then the rule matrix will have 243 (i.e. 35) rows: it will give the output (i.e. action
performed in that situation) for each one the cases. Table 1 shows the structure of
a rule matrix for RoboBee. For instance, the first row of that matrix means that if
there are no non-pollinated plants in any of the 5 squares the bee can see, then the
bee moves north. It should be noted that not all the cases in the matrix are possible:
for example, case 243 is not possible, since there cannot be a wall simultaneously in
the 5 squares the bee can see. However, for programming convenience, these cases are
not removed from the rule matrix.

Since there are 6 possible actions, the space of possible strategies contains 6243 can-
didates. It is obvious that a brute force method (i.e. try all the possible strategies,
one after the other) is not possible in this case. In order to be able to run a GA
the chromosome structure must be defined. The first step is to numerically code the
6 possible actions: a number between 0 and 5 can be assigned to each action. The
chromosome (i.e. strategy) consists in the list of the numerical codes of the actions
that the robot will perform in each one of the 243 cases defined in the rule matrix
(in the order defined in the matrix). In other words, the chromosome will be a vector
of 243 elements, each element being a integer number between 0 and 5: the chromo-
some consists in 243 genes with 6 possible alleles each one. Since in this case all the
genes have the same alleles, it is not necessary to convert the chromosome to a binary
chromosome; and the decimal one can be used as is in the GA.

After defining the chromosome, the next step before being able to run a GA, is defining
the fitness function. In this case, the fitness function was defined as the average score
of the strategy after testing it in Ne randomly generated environments.

The GA can then be applied:

1. An initial population of Np random chromosomes (i.e. vectors of 243 elements
between 0 and 5) is generated.
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2. The fitness of each chromosome is evaluated by simulating the corresponding
strategy in Ne randomly generated environments, and averaging the scores ob-
tained in each simulation.

3. The offspring generation is generated by applying a reproduction operator fo-
llowed by a mutation operator to the parental population. The reproduction
operator (i.e. selection and recombination) is defined by the tournament size,
Nt: only the Nt best individuals of the population are selected for breeding. The
reproduction is done by randomly selecting two parents of the breeding pool
(with a probability proportional to their fitness), and performing a crossover of
their chromosomes around a randomly selected crossover point. The mutation
operator replaces with a mutation probability of λm, a random element in the
children’ chromosome by a random number between 0 and 5.

4. Once an new population of Np children has been obtained, the process is repea-
ted from step 2.

3 The NetLogo® model

NetLogo® is a multi-agent programmable modeling environment, designed by Uri
Wilensky, that can be downloaded for free from its official web page (Wilensky 1999).
The NetLogo® model presented in this work is based on Melanie Mitchell’s NetLo-
go® model of Robby, the robot (Mitchell, Tisue y Wilensky 2012). Figure 2 shows
the front panel of the model. The user interface allows the user to select the problem
parameters (the plant fraction, θ; and the rewards and penalties), the fitness calcu-
lation parameters (the numbers of environments each strategy is tested in, Ne; and
the number of movements simulated in each environment, Nm), and the parameters
of the GA (the population size, Np; the tournament size, Nt; and the mutation rate,
λm).

During the execution of the GA (figure 2a), the best fitness plot is updated in real
time: after each generation is calculated, the fitness of the best individual of the
generation is represented on the plot. This representation is useful for identifying
when the GA has converged. Furthermore, in the dialog box (i.e. the middle text
box), both, the best chromosome and its score, are displayed after each generation is
calculated. Once the GA has been run, the strategy associated to the best chromosome
of the final population can be simulated (figure 2b). For that simulation, a new random
environment can be generated, and then, the actions of the RoboBee can be observed:
the path of the robot (and how it pollinates plants) can be followed in the bottom
right diagram, while the different actions of the bee are displayed in the central
dialogue box. The numeric label next to the bee represents the score of the bee at
that particular time step.

The model requires a relatively high amount of time to converge when run on a 2018
state-of-the-art laptop. For this reason, when using it in the context of a computer
lab practice, it would be more interesting to present the model during the class and
then have the students run the model in order to study the effect of the different
parameters as a homework assignment, rather than expecting to fully run the model
during the class.
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Congreso IN-RED (2019)93

http://creativecommons.org
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(a) Running the GA

(b) Simulating the best strategy

Figura 2: Front panel of the RoboBee NetLogo® model
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4 Results and discussion

One of the things that students can study using the NetLogo® model presented in
this work, is the effect of the GA parameters. Figures 3 and 4 show the fitness plots
obtained for different values of the GA parameters, for θ = 0,5. These plots are the
representation of the population fitness for each generation. Figure 3 studies the effect
of the population size, Np; whereas figure 4 studies the effect of the mutation rate,
λm. In these figures, the red dashed line indicates the maximum achievable fitness (i.e.
based on the total number of plants in the environment and the reward for pollinating
one of them); while the gray dashed line marks the average fitness obtained by the
human-designed strategy example described in section 2.

All the presented fitness curves display the same overall shape: a relatively noisy
curve, that initially increases with the generation number, and finally converges to a
final fitness. On the one hand, the initial increase of the fitness curve is due to the
fact that, initially, the best chromosome of the population gets better and better (i.e.
higher fitness) thanks to the guided evolution process. On the other hand, the noise
is generated by the fact that the fitness function is a stochastic function, since the
environments in which the strategy is tested are generated randomly. An easy way to
reduce the noise variability is to increase the number of environments in which each
strategy is tested in.

In figure 3 it can be observed that for the 3 considered values of Np, the fitness
curves converge to the same final fitness, but they do it at different convergence rates.
Therefore, the population size does not affect the chromosome the GA converges to,
but it does affect the speed (i.e. required number of generations) at which it converges.
For higher Np the GA converges faster: it requires less generations to reach its final
fitness. This is due to the fact that for larger Np, more offspring chromosomes are
generated in each generation (i.e. more cases are explored in each generation). The
effect of Np on the convergence rate is not linear: For instance, increasing Np from 55
to 110 (factor 2 increase) reduces the number of generations required to reach the final
fitness from nearly 2000 to a little bit below 500 (factor 4 reduction); while increasing
Np from 110 to 220 (factor 2 increase) reduces the number of generations required to
reach the final fitness from around 500 to nearly 250 (factor 2 reduction). Increasing
the population size increases proportionally the computational time required for each
generation. Consequently, there is an optimum population size, which in this case is
around 110.

In figure 4 it can be observed that the mutation rate has a strong effect on the fi-
nal fitness value, though the problem parameters remain the same (i.e. the optimum
strategy is the same in the 3 cases). On the one side, in the case λm = 0 (i.e. no
mutation operator), the fitness improves slightly in the first generations and then
does not improve further. This is because removing the mutation operator eliminates
the exploration function of the GA, that then only performs its intensification fun-
ction. Without the diversification generated by the mutation operator, an endogamy
problem arises and causes a premature convergence (i.e. does not converge to the
optimum solution) of the GA. On the other side, in the case λm = 0,05 (i.e. high
mutation rate), the high mutation rate causes disruptive effects: the traits that lead
to an evolutive advantage are lost within a few generations due to the great number of
mutations. Consequently, there is an intermediate optimum mutation rate that should
be big enough to avoid the endogamy problem, but at the same time, should be small
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enough to avoid disruptive effects due to mutations. In this example, the optimum
mutation rate is around 0.013.

Another thing that students can study using the NetLogo® model presented in this
work, is the effect of the problem parameters (i.e. plant fraction, rewards and penal-
ties) on the optimum strategy for RoboBee. For instance, figure 5 gives the optimum
chromosome for different plant fractions. In the aforementioned figure, the different
alleles are encoded using color: move North (white), move East (black), move South
(red), move West (blue), move randomnly (Green) and execute the pollinating pro-
tocol (yellow).

Comparing the chromosomes with each other, 3 types of chromosomatic regions can
be identified: invariable regions, that remain constant with θ; high variability regions,
that are different for every θ; and θ-trend regions, that present a gradual change
with θ. An example of the first type is gen 10, which optimum allele is move South
for every θ. Gen 10 corresponds to the situation in which there is a non-pollinated
plant in the South square, and all the other visible squares are empty (or contain an
already pollinated plant). The results indicate that in any environment (i.e. for any
θ) the optimum action in the aforementioned situation is move South. An example
of the second type is gen 243, which optimum allele changes randomly from one θ to
another. In general, type 2 gens are useless gens (i.e. gens that encode non-possible
situations, as discussed in section 2), and therefore the optimum allele found for such
gens is purely random since it has no real effect on the fitness of the strategy. For
instance, gen 243 corresponds to the situation in which there is a wall in the 5 visible
squares, which is obviously not possible! Finally, gen 2 is an example of the third
type: its optimum allele in execute the pollinating protocol for θ between 0.2 and 0.8,
and changes to move East for θ = 1. This gen corresponds to the situation in which
the current square contains a non pollinated plant, while the other 4 visible squares
are empty. This results indicate that in environments with low and moderate plant
fractions, the best option in the aforementioned situation is to execute the pollinating
protocol; but in fully planted environments, that is no longer the case. In short, type
I regions form the basic scaffold of the optimum strategy, which does not depend
on the plant fraction. This scaffold is nuanced by type III regions, that carry the
plant fraction dependent parts of the strategy. Finally, type II regions are just useless
regions of the genome.

Similarly to the above analysis, students could use the NetLogo® model presented in
this work, in order to analyze the effect of the rewards and the penalties. For instance,
they could study how the optimum strategy would change if much more importance
was given to wall crash avoidance (i.e. higher wall penalty).

A final thing students can reflect on using this model is why the GA-designed strategy
performs better than the human-designed strategy, as it can be observed in figure 3.
These reflections can make students improve their design skills. For instance, one of
the features that makes the GA-designed strategy win the human-designed strategy, is
the emergence of a memory-like mechanism, illustrated in figure 6. In this simple way,
the GA-designed strategy is able to implement a memory, in a robot that actually
has no memory.
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(b) θ = 0,4
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(c) θ = 0,6
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(d) θ = 0,8
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(e) θ = 1,0

Figura 5: Best chromosome for different environments
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Initial state Step 1 Step 2 Step 3 Final state

(a) Human-designed strategy

Initial state Step 1 Step 2 Step 3 Final stateStep 4

(b) GA-designed strategy

Figura 6: Emergence of a memory-like mechanism in the strategy designed by the GA

5 Conclusions

In conclusion, the NetLogo® model presented in this work can be used to present
and illustrate, using a real application example, the basic concepts of GAs. By using
the model, students can achieve multiple outcomes, some of which are:

1. Understand how a real application example can be modeled in order to apply a
GA on it.

2. Study the effect of the GA parameters.

3. Analyze how the optimum strategy changes when the problem settings change.

4. Identify interesting strategic features that emerge from the GA.

This program may be used in a computer lab session; or as an online applet for the
students to revise the concepts after the class, or in a Massive Open Online Course
(MOOC) course. Due to its computation time requisites, when using the model in the
context of a computer lab practice, it is more interesting to present the model during
the class and then have the students run the model as a homework assignment, rather
than expecting to fully run the model during the class.
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— (1958b). “Simulation of genetic systems by automatic digital computers. IV. Se-
lection between alleles at a sex-linked locus”. En: Australian Journal of Biological
Sciences 11.4, págs. 613-626.
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