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Abstract

Fluid Structure Interaction is a physical problem where two different
materials, governed by different set of fundamental equation, are coupled
on different ways.

The research on the field of Fluid Structure Interaction experienced
a noticeable growth since the beginnings of the XXth century, by means
of the field of aeroelasticity. During the development of the aerospace
industry in the context of first and second Wolrd War, as the use of lighter
(and softer) materials became mandatory for the correct behavior (and cost
savings) of the produced aircrafts.

During these past years, the use of use of increasingly lighter con-
struction materials has extended to the rest of fields of the industry. As an
example, it could be mentioned the use of solar trackers on the solar energy
sector; the use of light materials on civil engineering or the use of plastic
for some constructive elements in the context of the automotive field. As a
consequence, the accurate prediction of the deformations induced to a fluid
flow over a structure and, if needed, the influence of this deformation on
the fluid flow itself is becoming of primal importance.

This document intends to provide with a deep review of the computa-
tional and experimental reported methodologies already available on the
literature and the previous works performed by other researches in order
to infer a first approximation to the Fluid Structure Interaction Problem.

It will be observed how an important amount of solving methodologies
is available in order to face these problems regarding with the strength
of the interaction. However, a general approximation allowing to pre-
dict this strength as a function of a set of dimensional number is rarely
known. In this sense, a full parametric study will be performed during the
development of Chapter 2 showing which of them are of higher importance.

Once the influence of these parameters is determined, a case of special
interest will be analyzed: aerovibroacoustics. This, is a particular case
of Fluid Structure Interaction where, due to the combination of its non-
dimensional parameters, one directional coupling can be supposed for most
of the cases. Aerovibroacoustics and vibroacoustics will be analyzed by
means of two reference cases, allowing finally to propose a methodology
which could be extended for other related problems.
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Resumen

La Interacción Fluido Estructura consiste en un problema físico en el
que dos materiales, gobernados por conjuntos de ecuaciones distintas, se
acoplan de diferentes formas.

La investigación en el campo de la Interacción Fluido Esructura
experimentó un importante desarrollo desde principios del siglo XX, de la
mano del campo de la aeroelasticdad. Durante el desarrollo de la industria
aeroespacial en el contexto de las guerras mundiales, el uso de materiales
más ligeros (y flexibles) comenzó a hacerse obligatorio para la obtención de
aeronaves con un comportamiento (y costes) aceptable.

A lo largo de los últimos años, el uso de materiales de construcción
cada vez más ligeros, se ha extendido al resto de campos de la industria.
A modo de ejemplo, podría servir el desarrollo de trackers en la produc-
ción de energia solar; la utilización de materiales ligeros en ingeniería
civil o el desarrollo de elementos constructivos de plástico en la indus-
tria del automóvil. Como consecuencia, la predicción con exactitud de las
deformaciones inducidas por un fluido y, si aplica, la influencia de estas
deformaciones en el propio flujo, ha adquirido una importancia vital.

Este documento intenta porporcionar, en primer lugar, una profunda
revisión de los métodos experimentales y computacionales que se han uti-
lizado en este contexto en la bibliografía, así como los análisis en problemas
de este tipo realizados por otros investigadores de cara a presentar una
primera aproximación a la Interacción Fluido Estructura.

Se verá cómo existe una importante cantidad de herramientas y
metodologías aplicables a cualquier tipo de problema y para cualquier
combinación de flujos y estructuras. Sin embargo, no existe una aprox-
imación general que, en función de valores de números adimensionales,
permita establecer cuáles de ellos son los de mayor importancia en este
tipo de problemas. En este sentido, se llevará a cabo un completo análisis
paramétrico durante el desarrollo del Capítulo 2 para establecer cuáles de
ellos son de mayor importancia.

Una vez se establezca la importancia de estos parámetros, se analizará
un caso que es de especial interés en la industria: la aerovibroacústica. Éste
es un caso particular de Interacción Fluido Estructura en el que, debido a
la combinación de parámetros adimensionales, la interacción se puede con-
siderar como prácticamente unidireccional, permitiendo extender estudios
mediante un conste computacional relativamente acotado. La Aerovi-
broacústica y la vibroacústica se analizarán mediante la presentación de
dos casos de referencia, permitiendo proponer una metodología que se
podrá extender a otros problemas similares.
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Resum

La Interacció Fluid Estructura consisteix en un problema físic en què
dos materials, governats per conjunts d’equacions diferents, s’acoblen de
diferents formes.

La investigació en el camp de la Interacció Fluid Esructura va ex-
perimentar un important desenvolupament des de principis del segle XX,
de la mà del camp de la aeroelasticdad. Durant el desenvolupament de
la indústria aeroespacial en el context de les guerres mundials, l’ús de
materials més lleugers (i flexibles) va començar a fer-se obligatori per a
l’obtenció d’aeronaus amb un comportament (i costos) acceptable.

Al llarg dels últims anys, l’ús de materials de construcció cada veg-
ada més lleugers, s’ha estès a la resta de camps de la indústria. A tall
d’exemple, podria servir el desenvolupament de textit trackers en la pro-
ducció d’energia solar; la utilització de materials lleugers en enginyeria
civil, el desenvolupament d’elements constructius de plàstic a la indústria
de l’automòbil. Com a conseqüència, la predicció amb exactitud de les
deformacions induïdes per un fluid i, si escau, la influència d’aquestes
deformacions en el propi flux, ha adquirit una importància vital.

Aquest document intenta porporcionar, en primer lloc, una profunda
revisió dels mètodes experimentals i computacionals que s’han utilitzat
en aquest context en la bibliografia, així com les anàlisis en problemes
d’aquest tipus realitzats per altres investigadors de cara a presentar una
primera aproximació a la Interacció Fluid Estructura.

Es veurà com, encara que existeix una important quantitat d’eines
i metodologies aplicables a qualsevol tipus de problema i per a qualsevol
combinació de fluxos i estructures, no hi ha una aproximació general que,
en funció de valors de nombres adimensionals, permeti establir quins
d’ells són els de major importància en aquest tipus de problemes. En
aquest sentit, es durà a terme una completa anàlisi paramètric durant
el desenvolupament del Capítol 2 per a establir quins d’ells són de major
importància.

Un cop s’estableixi la importància d’aquests paràmetres, s’analitzarà
un cas que és d’especial interès en la indústria: la aerovibroacústica. Això
és un cas particular d’Interacció Fluid Estructura en què, a causa de la
combinació de paràmetres adimensionals, la interacció es pot considerar
com pràcticament unidireccional, permetent estendre estudis mitjançant
un consti computacional relativament acotat. La Aerovibroacústica i la
vibroacústica s’analitzaran mitjançant la presentació de dos casos de refer-
ència, permetent proposar una metodologia que es podrà estendre a altres
problemes similars.
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1. INTRODUCTION

1.1 Introduction

Due to the use of increasingly lighter materials, the interaction between struc-
tures and the fluid flow around or inside them is becoming of crucial importance.
Moreover, due to the increase of available computational power, the prediction of
the phenomena related to Fluid Structure Interaction is becoming an important
research topic in numerous engineering application, such as in micro aerial
vehicles, transport of fluids in elastic structures, energy harvesting devices,
biomedical engineering or bio-inspired systems.

Regarding with the aim and features of the system under study, the prob-
lems of Fluid Structure can be classified in four main groups. Note that in
some cases the classification of a problem in one group or other can be somehow
arbitrary, as sketched on Figure 1.1:

• Vortex Induced Vibrations: In VIV, a fluid flow around a solid object pro-
duces a vortex shedding of very defined frequency. As a consequence, this
solid body will start vibrating at a similar frequency than this shedding.
When the stiffness of the structure is low, both the fluid and the solid fields
are dominated by coupling phenomena. Due to the resulting sinusoidal
excitation these kind of problems are normally related with fatigue-related
failure [4] and/or the emission of tonal noise [5].

• Flow Induced Vibrations: In FIV, a fully turbulent fluid flow produces a
non-stationary load whose Fourier transform has important components
at a wide range of frequencies. As a result, the structure vibrates in a
wide range of frequency with defined peaks on the structural resonances
[6]. These vibrations could lead to sound emission in broadband [7].

• Aeroelasticity: Typically, the role of Aeroelasticity is to find the coupled
response between a stationary airflow and a structure. One of the main
targets of this field is to find zones of FSI unstability which, eventually,
could lead to a catastrophic abrupt failure of the structural system. Some
of the phenomena aeroelasticity deals with are the appereance of diver-
gence, flutter, buffeting or control reversal phenomena [8]. The main
difference which could be found between VIV and Aeroelasticity is that,
for the latter, the flow does not have to necessarily be unsteady in order to
induce coupling.

• Other important field of investigation on FSI could be identified, as those
investigating the effects of fluid flow inside flexible pipes. One important
example could be the phenomenon known as water hammer, where an

2



1.1. Introduction

abrupt change of the conditions of the inner fluid can lead to the appear-
ance of a deformation wave which can lead to the destruction of the pipe
system [9].
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1. INTRODUCTION

Figure 1.1: Proposal of a classification of the different problems of fluid structure
interaction regarding with the research field and applicability
4



1.2. Motivation and Objectives

1.2 Motivation and Objectives

As it has been explained, nowadays, FSI is playing a major role. In consequence,
it is crucial to understand the phenomenology and problems associated with this
kind of problems. As it will be explained later, the methodologies to characterize
particular problems of FSI have spectacularly evolved during the past years,
both experimental (measurements on Wind Tunnel, Particle Image Velocimetry,
Laser Scanner Vibrometry, Digital Image Correlation....) and computational
techniques (RANS, URANS, LES, DES, DNS...). Therefore, with the current
tools, almost any kind of problem can be faced (being the grade of simplifications
only a matter of the available computational resources or the experimental
facilities).

However, and probably due to the interdisciplinary characteristics of this
field, the problem itself has not been so deeply studied as fluid dynamics or solid
structures. Some dimensional analysis have been nevertheless performed in the
literature, leading to the conclusion that, besides the usual non-dimensional
numbers used at fluid dynamics, the behavior of the problem depends strongly
of a non dimensional stiffness parameter, E/ρ∞V 2∞, which can be identified as a
form of the Cauchy number applied to FSI problems, and the relative densities
between the solid and the fluid, ρs/ρ∞.

In accordance with the knowledge of the author, however, there exist a
lack of information on how these numbers can in fact affect the behavior of the
coupled system. Although on some case this can be somehow obvious or intuitive
(for instance, it can be expected that a low velocity flow around a steel plate of
5mm thickness will not be affected by the own vibrations of the plate) in other
cases will not be so.

In fact, it will be of primal interest being able to predict the order of
magnitude of the variables at which the bidirectional coupling between solid
and fluid arises and quantify its importance in order to select the most proper
tools to characterize it.

Therefore, the main aim of the Thesis is performing a recompilation of the
most important existing tools in order to model or measure FSI problems and,
once it is done, propose a non dimensional methodology in order to have a easy
to use guide to predict which kind of coupling is expected and which tool can be
used as a first approximation for any kind of problem.

5



1. INTRODUCTION

1.3 Structure of the work

In order to achieve the stated objectives, the next structure has been followed:

In Chapter 2 a bibliographic review is preformed. Here, the different ex-
isting methods allowing to properly model both the fluid dynamic and solid
structures will be explored. Additionally, it will be seen how they can be sup-
posed to be coupled by means of their boundary conditions. The available
numerical and experimental methods will also be discussed, and the range of
application of each one.

Next, in Chapter 3, a systematic study of how the FSI parameters affect
to the interaction itself is explored. Here, a swept of both the non dimensional
stiffness and mass will be performed for a simplified case of Vortex Induced
Vibrations. Thanks to this, the main zones of coupling will be identified and it
will be seen how, regarding with the combination of non dimensional stiffness
and masses, the most proper numerical methodology can be chosen for the
computation of the problem.

Once this non-dimensional analysis has been performed, Chapter 4 will be
proposed as a validation of this study for the computation of some engineering
vibroacoustic and aerovibroacosutic problems. First, it will be shown how
Chapter 3 developed methodology will allow to have an order of magnitude of the
beginning of two way FSI on the transmission of pressure wave inside a flexible
silencer and, later it will be observed how the dimensional analysis allows to
suppose one way coupling on the simulation of the flow induced vibrations on
the simplified underbody of a car

Finally, at Chapter 5, the main conclusions of the current work will be
exposed, as well as the indication of possible future lines of investigation in
order to improve the capabilities of the presented tools for modeling Fluid
Structure Interaction.
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2.1 Introduction

A moving fluid passing through a structure generates a pressure and shear
stress distribution around it that, when the material is sufficiently flexible,
can give rise to the appearance of noticeable displacements. As a consequence,
these displacement could affect the fluid flow itself, giving rise to a coupled
system whose features can be of importance when characterizing an engineering
system.

Fluid-structure interaction (FSI) is an interdisciplinary subject of interest
to many researchers in the fluid dynamics field. FSI exists in its various forms
in both natural systems and man-made objects. The interaction between a tree
and wind and groundwater interaction with the soil are typical examples of FSI
in nature. FSI for engineered systems occurs in modeling behavior of offshore
platforms with the ocean, flights characteristics of aircraft, or the displacement
field of dams with reservoirs. Although the nature and the interaction between
the solid and fluid within these problems are different, all these problems come
under the category of FSI. It is also important to note that the degree of severity
in interaction between the solid and fluid varies between different problems.
While many cases involve solid deformation as an integral part, there are many
situations in which the solid may be considered to move as a rigid body. It is
also possible to have one-directional coupling between the fluid and solid under
certain circumstances.

Classification in accordance with the nature of the fluid domain

The subject may be divided into two categories, based on the flow physics,
as (a) gas and (b) liquid interaction with solid. While incompressible flow
assumption is always made for liquid-solid interaction, both compressible and
incompressible flow assumptions are made when a gas interacts with a solid.
When the Mach number of the flow is under Ma = 0.30, an incompressible
flow assumption is justified for gas-solid interaction. The main application of
air-solid interaction is the determination of aerodynamic forces on structures
such as aircraft wings. Such study is often referred to as aeroelasticity. Static
aeroelasticity involves the study of the interaction between aerodynamic and
elastic forces, while dynamic aeroelasticity is the topic that normally investigates
the interaction between aerodynamic, elastic and inertial forces. Aerodynamic
flutter or aerodynamic divergence are two of the severe consequences of dynamic
aerodynamic forces and responsible for destructive effects in aircraft and other
structures.
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Classification in accordance with the nature of the solid domain

The subject may also be classified based on the nature of the structure
interacting with a fluid as (a) rigid body and (b) deforming body interaction
with the fluid. Examples where rigid body interaction may often be used in-
clude internal combustion engines, gas and water turbines, ships and offshore
platforms. Although the rigid body-fluid interaction problem is simpler to some
extent, the dynamics of rigid body motion requires a solution that reflects the
fluid forces. Examples of deforming body-fluid interaction include aeroelasticity,
a majority of biomedical applications and poroelasticity. Both the rigid body and
deforming body interaction with a fluid is often strongly coupled, influencing
both fluid and solid forces. Within the deformable body-fluid interaction the
nature of the deforming body may vary from very simple linear elastic models
in small strain to highly complex nonlinear deformations of inelastic materials.
The solid material may also be compressible or nearly incompressible in nature.

Classification in accordance with the numerical tools

In addition to the classification based on the physical nature of the prob-
lems, the fluid-structure interaction may also be classified based on the solution
procedure employed. These classifications include (a) a monolithic approach
in which both fluid and solid are treated as one unified system and (b) a par-
titioned approach in which the fluid and solid are treated as two different
systems coupled through the interface. A partitioned approach is often preferred
in practical engineering applications as this method allows the use of indepen-
dently developed and tested solvers for fluid and solid. Within the partitioned
approach, the coupling between the the fluid and solid may be carried out using
a strongly or weakly coupled approach. Although the weakly coupled approach
is used in aerodynamic applications, it is seldom used in other areas due to
instability issues. Thus, a strongly coupled approach is the one that is preferred
by most researches. This obviously leads to various issues of coupling procedures
at the interface between the fluid and solid.

Due to the emergence of immersed boundary methods in the last two
decades, a further classification based on immersed boundary methods or non-
conforming mesh methods may also be used. In an immersed boundary method
the structure is assumed to be immersed into the fluid and the forces are trans-
ferred between the fluid and solid boundaries. Since only interface forces require
transferring, the need for conforming meshes is eliminated in such methods.
These methods are useful in complex problems of fluid-structure interaction in
which complex mesh regeneration may be difficult to carry out.
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Depending on the importance of these displacements and their velocities,
the own fluid flow could be affected leading to a physical coupling between the
solid and fluid domain and making thus necessary to include the whole system
in the analysis in order to obtain a physically meaningful interpretation.

Traditionally, the aircraft industry has been one of the fields leading the
investigation on Fluid-Structure Interactions. This is because, in this field, since
its early beginning, it has been important using the lightest possible materials.
Therefore, the correct prediction of elastic deformation allows predicting which
flight conditions will not jeopardize the aircraft [10]. It is generally believed
that the catastrophe of Langley’s flight in 1903 was caused by an aeroelastic
instability, as suggested by Hill [11]. As a result, important aeroelasticity
scientific references can be found since the beginning of the XXth century [12].

It can be stated that Fluid-Structure Interactions can be usually visualized
as forming a triangle of disciplines: dynamics (which studies the inertial motion
of complex bodies and structures under a combination of loads), solid mechanics
(which takes into consideration how a structure can be deformed by the action
of a loads) and fluid dynamics (which allows to characterize the pressure and
shear stress distribution generated by a fluid field around a solid body). The
interdisciplinary nature of FSI can be better illustrated by Figure 2.1 ,which is
traditionally called as the Collar’s triangle and was proposed by Professor A.R.
Collar in the 40s [13].

One of the main targets of this chapter is to introduce to the FSI problem
through a brief description of the fields sketched in Figure 2.1 and the phys-
ical causes which can lead to the multiphysics problem. Section 2.2 and will
introduce the physical laws which governs the behavior of the fluid and solid
domains and how each of them can be separately analyzed and characterized
both by computational or experimental tools.
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Figure 2.1: Schematic of the field of Fluid-Structure Interaction

Later, in Section 2.3, an analysis of the origin of the coupling between the
solid and the fluid domains is carried out, concluding how it arises by the own
definition of the boundary conditions. Some considerations of possible strategies
to numerically resolve the interaction will be sketched. This will lead to a
classification of the different FSI problems solved in the literature regarding
with the coupling strength and the most useful tools for their modeling.

In Section 2.5 it will be concluded how, although there exist affordable
methodologies to resolve most of the engineering FSI possible problems, they dif-
fer in their computational cost by orders of magnitude. Nowadays, the selection
of one of the available methodologies is adopted based on the previous experience
of the simulation engineer, as the dimensional analysis of the interaction has
not been fully explored by previous work.

Therefore, Chapter 3 is dedicated to contribute to the fulfillment of this
gap and a proposal of non-dimensional analysis is proposed in order to infer the
strength of FSI for the case of a low Reynolds Vortex Induced Vibrations case.
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2.2 Numerical Tools

2.2.1 Equations of the fluid flow

When dealing with the resolution of a single phase compressible flow, the Equa-
tions governing the flow field can be written, in their conservative form, as
[14]:
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e = e(T, p) ρ = ρ(T, p)
(2.1)

These equations are the equation of mass continuity; the Navier Stokes
equations and the energy equation. Their closure can be achieved by using
a state equation. Here, the variables which completely identify the fluid flow
behaviour can be found to be: ρ is the local fluid density; vi is the ith component
of the velocity vector,~v; p is the local fluid pressure and τi j is the i jth component
of the stress tensor, τ, which, for the case of a Newtonian flow can be expressed in
accordance with Equation 2.2. f i is the ith component of the mass forces vector,
~f ; e is defined as the flow local internal energy; k is the thermal conductivity;
T is the temperature and Q is the source term of energy, which would allow to
model phenomena as chemical reactions and/or heat radiation.

τi j =µ
(
∂vi

∂x j
+ ∂v j

∂xi

)
+

(
µv − 2

3
µ

)
∂vk

∂xk
δi j (2.2)

where µ is the kinematic viscosity and δi j is the Kronecker delta. This set of
equations can be discretized and resolved by numerical methods, as the finite
volume method [15],[16],[17], [18], the finite element method [19], [20], or the
finite differences method [21], [22], among others. Other way to resolve the
fluid domain which is being used recently are the Lattice Boltzmann Methods,
which is a mathematical artifice which emulates the physics of Navier Stokes
equations [23], [24]. It is based on the kinetic theory formulation, which relates
the molecule motion with the macroscopic properties of the fluid [25]. During
the development of the current document, unless explicitly mentioned, the
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2. FUNDAMENTALS OF THE FLUID STRUCTURE INTERACTION

finite volume method will be the preferred discretization when dealing with the
resolution of viscous flows.

Turbulence Modeling

The previous set of equations completely describe any kind of fluid flow and, for
cases of low value of the Reynolds number, lying in the laminar range, their
resolution can be achieved numerically with relatively low computational cost.
However, as the Reynolds number increases the fluid flow becomes irregular,
unsteady and chaotic. Moreover, the scale of the turbulent structures becomes
smaller, leading to the necessity of meshes of lower size in order to capture
them. This affirmation can be reinforced by the observation of Equation 2.3
[14], which relates the Kolmogorov length, η, (the smallest size of the turbulent
structures) with a reference length, Lre f and the Reynolds number, Re. Note
the fast decrease of η with Re.

η

Lre f
∼Re−3/4 (2.3)

Even with the increase of the available computational power which has been
experienced during the past decades, the direct resolution of the equations (DNS,
Direct Numerical Simulation) is not computationally achievable for engineering
turbulent flows in industrial time scales. Some interesting works with DNS
can be found in the literature as, for example Das et al. [26], Hutl et al. [27] or
Friedrich et al. [28], who used DNS to characterize the fluid flow on cases of
simple geometries for incompressible flows.

In order to achieve a computationally affordable resolution of the fluid flow,
some extra assumptions are introduced on the formulation of the fluid flow equa-
tions. Regarding with these assumptions three main methodologies are usually
used to simplify the equations, namely (a) Reynolds Averaged Navier Stokes
(RANS), (b) Large Eddy Simulation (LES) and (c) Detached Eddy Simulation
(DES).

• RANS methodology: These methods are based on the Reynolds time
average: being φ a characteristic variable of the Navier-Stokes equation,
it is decomposed in a mean value, 〈φ〉, and a deviation, φ′. When those
assumptions are substituted at the conservation equations, it can be
observed how an unknown term based on the deviation of the velocity
field arises, 〈−ρu′

iu
′
j〉, which is known as the Reynolds stress tensor. This

term makes the averaged system of equations to be unclosed, and, as a
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consequence, the Reynolds stress must be modeled in order to solve them.
Most of the alternatives to model this stresses are based on the Boussineq
Hypothesis [18], which relates them with a turbulent viscosity, µt and the
turbulent kinetic energy, k.

Different developed models worth to be mentioned at this stage. For in-
stance the Spalart-Allmaras solves and additional transport equation for
the turbulent kinetic energy, k, in order to obtain the turbulent viscosity
[29]; k−ε model uses another additional equation in order to solve the
transport of the turbulent dissipation rate, ε [30] while the k−ω solves
the specific dissipation rate, ω, instead [31]. k−ω SST acts as an inter-
mediate model between k−ε and k−ω [32]. There are other models which
establish an extra transport equation for each component of the Reynolds
stress tensor. They are the so called Reynolds Stress Models (RSM), but,
currently, they are not so widely used due to the comparatively higher
computational expense in comparison with the previous ones [33], [34].

• LES methodology: LES is an inherently transient technique in which
the large scales of the turbulence are directly resolved everywhere in the
flow domain, and the small-scale motions are modeled. One justification
for the LES technique is that by modeling "less" of the turbulence, and
explicitly resolving for more of it, the error in the modeling assumptions
is not as consequential. Furthermore, it is hypothesized that the smaller
eddies are self-similar and, thus, lend themselves to simpler and more
universal models. The downside of the approach is that the computational
expense is higher by orders of magnitude than the RANS methodology
when the Reynolds number is high. LES equations are derived from
Navier Stokes equations by applying a spatial filter. Then, each solution
variable, φ, is decomposed into a filtered value φ̂ and a subgrid value, φ′.
When applyting this methodology to the fluid flow equations, similarly
as occurred with RANS, a new unknown stress tensor term arises from
the effect of the unfiltered values. Normally, in order to resolve this term
the Bousineq Hypothesis is again used. The simplest developed model
for the subgrid viscosity is the Smagorinski subgrid scale model, which
provides a mixing length type formula for this parameter [35]. However
it contains certain limitations, especially for the flow near the walls, as
the model constant is not completely universal (which would lead to a
necessity of DNS resolution at these zones). Other models have been
developed which allows to avoid this problem. As an example, it could
be mentioned the Dynamic Smagorinsky Subgrid Scale Model [36], [37]
or the Wall-Adapting Local-Eddy Viscosity (WALE) Subgrid Scale Model
[38].
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• DES methodology: Detached Eddy Simulation is a hybrid modeling
approach that combines features of RANS simulation in some parts of the
flow and LES in others. The unsteady RANS equations are applicable to
transient situations where the unsteadiness is either imposed, such as
by a time-varying boundary condition, or is inherent, such as the vortex
shedding in a massively separated flow. In the latter case, transient
simulation often yield better results than attempting to use a steady-
state approach. However, successful unsteady RANS simulations requires
the time scales of the turbulence to be disparate from the mean-flow
unsteadiness. Furthermore, the limitations of the turbulence model may
preclude good unsteady results. In this context, DES turbulence models
are set up so that boundary layers and irrotational flow regions are solved
using a base unsteady RANS closure model. However, the turbulence
model is intrinsically modified so that, if the grid is fine engough, it will
emulate a basic LES subgrid scale model in detached flow regions [39].
Then, DES model can be combined with any of the previously mentioned
RANS models. Regarding with how the transition between the RANS
and LES zone is made, multiple variants of the scheme can be found, as
the Delayed Detached Eddy Simulation (DDES) [40] and the Improved
Delayed Detached Eddy Simulation (IDDES) [41].

2.2.2 Equations of the deformable solid

Making use of the equations of mass and momentum conservation, Equation 2.4
for the displacement field of a deformable solid body can be derived [42]:

ρ
∂2

∂t2 ui = ∂

∂x j
σi j +bi (2.4)

Here, ρ represents the density of the solid body; ui represents the displace-
ment of the solid body along the i direction; bi is the ith component of any
volume forces present and σi j are the components of the stress tensor, which
can be related to the strain tensor, εkl = 1

2

(
∂uk
∂xl

+ ∂ul
∂xk

)
, by means of Equation 2.5:

σi j = ci jklεkl (2.5)

where ci jkl are constants which allows to express the relationship between
the strain and stresses for any kind of load condition. However, it is usual
to suppose that, when the solid is istropic and the stress is low enough, the

20



2.2. Numerical Tools

relationship expressed by Equation 2.5 can be further developed and the value
of the constants can be expressed as in accordance with Equation 2.6 [43]:

ciiii =α= E · ν−1
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where E is the solid body Young’s modulus and ν is the Poisson’s ratio. Note how,
once these relationships have been established, Equation 2.4 can be expressed
in vectorial form as a function of only the displacement field:
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here, Q is a differential operator that, for the case of an isotropic linear elastic
solid, can be calculated by using Equation 2.8:
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2.2.3 Coupling of the Fluid and Structural Domains

Once the governing equations of both the fluid and solid domain have been
presented, it is possible to introduce how they can be coupled in order to resolve
the Fluid Structure Interaction problem. As an example, Figure 2.2 shows a
sketch of an arbitrary fluid structure interaction case. Here, Ω f luid represents
the fluid domain, where the set of Equations 2.1 applies and Ωsolid is the solid
domain, governed by the set of Equations 2.4. Three different types of surfaces
can be identified in the system. Different sets of boundary conditions will be
applied in order to obtain the solution of the coupled system:

• Γ f luid is a surface in contact only with the fluid flow, where the usual
boundary conditions of Navier-Stokes equations can be applied.

• Γsolid is a surface where the displacement field of the solid domain is
known by means of a prescribed displacement (displacement boundary
condition) or by its derivatives (solid stress boundary condition).

• ΓFSI is a surface where the fluid domain and the solid domain are in direct
contact, here both the boundary conditions of the fluid flow and the solid
domain must be applied simultaneously, as will be later explained, and is
the region where the coupling between domains arises.

Figure 2.2: Sketch of a general problem of Fluid Structure Interaction. Identifi-
cation of the surfaces where boundary conditions can be applied separately for
fluid and solid Γ f luid, Γsolid and the surface of contact ΓFSI

At the surface ΓFSI the movement of the solid body leads to the appearance
of a wall velocity. In this region the non-slip boundary of condition states that
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the velocity of a point of the wall at the solid domain must be the same than the
velocity of the same point at the fluid domain (for inviscid flows this condition is
transformed and only the wall normal velocity should be computed), as sketched
by Equation 2.9:

vi = ∂ ui

∂t
on ΓFSI (2.9)

In the same way, at the solid part of the interface, some boundary conditions
should be applied on the derivatives of the displacement field. If the structure
was located in void, or in a fluid in rest, it is well known that the value of the
stresses at the interface must be zero in order to ensure the equilibrium of the
surface. When dealing with a Fluid-Structure coupled problem, this condition
must be changed, as the fluid is know applying both normal and shear stresses
at the wall and hence, in order to ensure stress continuity, they should be the
same of the solid stresses at the solid part. This is stated by Equation 2.10:

pδi jn j +τi jn j = ci jkl
1
2

(
∂uk

∂xl
+ ∂ul

∂xk

)
(2.10)

This equation implies that the fluid pressure and shear stress (mainly the
first, normally) will act as a load over the solid system. This load will produce
the appearance of a displacement field which, in fact, will affect the fluid domain
through the non-slip boundary condition (Equation 2.9).
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2.3 Coupling Methodologies

During the past years, an important amount of effort has been focused on
the development of numerical methodologies allowing to compute the coupling
between a solid and a fluid domains. In this section these methodologies will be
analyzed in depth and some important applications taken from the literature
will be explored. These methodologies are summarized below:

• Monolithic methods: in these methods only one solver is used in order
to resolve the interaction. It is a very stable methodology which allows to
use large values of the time step minimizing the numerical instabilities.
The drawback of this method is that it needs the development of ad
hoc software and it is characterized by a need of high computational
requirements, both in the amount of required RAM memory and the
elapsed time by iteration.

• Segregated methods: In these methods, already defined solvers are
used separately for the solid and fluid domains. They can be splited as
follows:

– Explicit coupling: The coupling between solid and fluid domains
is performed in only one inner iteration. As a consequence, the
residuals at the interface can be high which, eventually, can be a
cause of numerical instabilities. When the fluid and structure are
tightly coupled and the density of both materials is similar, the
needed time step must be very small in order to ensure that the
numerical scheme is stable. A typical application of this kind of
methodology is the prediction of the aerodynamic pre and flutter
characteristics, as can be observed at Figure 2.3 where the velocity
and displacement fields are shown at four arbitrary time steps for
the case of the pre stall flutter of a medium aspect ratio flat plate.

– Implicit coupling: The coupling between solid and fluid domains is
performed by means of using inner iterations. As a consequence, the
residuals at the interface can be minimized and it is a methodology
which ensures stability with large time steps. A typical application
of this kind of methodology is the prediction of the aerodynamic
flutter and post flutter characteristics, as can be observed at Figure
2.4 where the velocity and displacement fields are shown at four
arbitrary time steps for the case of the post stall flutter of a medium
aspect ratio flat plate.

– One way coupling: This is the simplest approach. It is supposed
that only one of the domains affect the others and viceversa. De-
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spite its simplicity, as it will be later explained, this method allows
to obtain accurate solutions for a wide range of engineering appli-
cations, specially with those related with flow induced vibrations
and vibroacoustics. Moreover, as fluid flow and structure are only
coupled in one direction, resolving the fluid flow one time allows
obtaining the structural results for a wide range of materials and/or
solid geometries.
During the next pages, a more detailed description of these methods
is provided, at the same time that interesting research applications
of each of them are referred.
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Figure 2.3: Example of application of an explicit segregated approach. Pressure
field over the deformed structure of a coupled system consisting of air flow
around a clamped 3D flat plate of aspect ratio, AR = 4.4 and chord, c = 0.10m.
The plate is subjected to a fluid flow with velocity V∞ = 20m s−1, which corre-
spond to pre stall flutter conditions

Figure 2.4: Example of application of an implicit segregated approach. Pressure
field over the deformed structure of a coupled system consisting of air flow
around a clamped 3D flat plate of aspect ratio, AR = 4.4, and chord, c = 0.10m.
The plate is subjected to a fluid flow with velocity V∞ = 25m s−1, which corre-
spond to post stall flutter conditions
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2.3.1 Monotithic Approach

When the structural and fluid flow are discretized with similar techniques, it
will always be possible to find a system of equations which allows to simultane-
ously solve for both fields for each time step. In particular, the whole complex
interaction problem can be summarized by the equation:

~R(~W)=~0 (2.11)

where ~W ∈RN , being N the number of unknowns. It is therefore possible
to solve previous equation by implementing a Newton-Raphson method, as
sketched in Figure 2.5. In accordance with the work of Michler et al. [44] or
Brummelen et al. [45], using a monolithic scheme, maintenance of the conser-
vation properties at the interface is possible, which guarantees unconditional
stability. Thus, with this approach, the admissible time-step size appears to be
limited only by the required accuracy, and stability conditions are achieved for
higher values of time-step than those used by a similar segregated solver. The
robustness of the monolithic approach comes with the expense of more computa-
tionally demanding algebraic systems to be solved ([46],[47]) and cannot take
advantage of software modularity to the same extent as segregated solvers.

The alleged increase of computational cost of the monolithic approach
against the segregated one [48] is generally attributed to the fact that in a
segregated scheme smaller and better conditioned subsystems are solved instead
of one overall problem [49]. It is also believed to be "difficult to devise efficient
global preconditioners and to maintain state-of-the-art schemes in each solver"
[50] when a monolithic solver is used.

However, and due to its robustness, the monolithic approach is often used
as the optimum tool for the resolution of very tight coupled fluid-solid systems,
although it is normally unsuited for large-scale problems.

This approach has been extensively used on application of fluid flow around
biological systems. For example, see the works of Takizawa et al. [51], where
the coupling between fluid flow and insects wings is computationally studied.
Hwang et al. [52] developed a monolithic code of FSI and tested its capabilities
with very tight coupled systems, as the deformation of a rubber gate. Their
results are shown as an example at Figure 2.6.

This same approach is usually adopted when studying the blood fluid
flow inside veins under conditions of aneurythms or aortic stenosis, as can
be observed from the works of Loon [53], Wu et al. [54] or Leng et al. [55].
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Nevertheless, for lower coupling levels this strategy is marginally used.

Figure 2.5: Schematic of the Newton Raphson algorithm applied to a Monolitic
approach of a FSI problem
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Figure 2.6: Example of the application of a monolithical approach for the com-
putation of the deformation of a flexible gate under the action of a fluid flow
induced pressure. Image taken from [52]
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2.3.2 Segregated Approach

In a segregated approach, the resolution of the fluid domain and the solid domain
are carried out by different solvers. The coupling between them is done through
the dynamic and kinematic conditions at the interface [56]. When the fluid
and solid solvers are separately available, the interaction between the different
physical domains may be carried out via Dirichlet-Neumann coupling. To
understand such a coupling lets assume that the discrete form of fluid equation
and fully discrete form of solid equation are given respectively by Equations
2.12.

Kf ·~v f = ~F f Ks ·~us = ~Fs (2.12)

To strongly couple the two equations, start the iteration with the initial
solutions of solid and fluid variables and solve the fluid equation to determine
the fluid forces at the interface. This is followed by solution of the solid equation
to determine the displacements within the solid domain; calculation of fluid
velocity at the interface from the interface displacements and determination
of new mesh position. Now, check whether or not the interface displacements
converged. If not, the interface velocity values are used to solve the flow equation
again. Continue this iteration between fluid, solid and mesh until interface
displacements are converged. The interface displacements are often converged
quickly using relaxation methods.

Figure 2.9 will show a scheme were the work flow of a segregated methodol-
ogy is sketched for a generic case. This Figure can be interpreted as follows:

• At the beginning of a time step, both the fluid and solid fields are com-
pletely determined. However, it is supposed that they are not in equilib-
rium and, in consequence, variations on them are expected.

• The fluid flow solver is invoked at this stage in order to simulate how
the fluid flow should behave at the next time step, given the interface
positions and velocities.

• As a consequence, the solid domain must be resolved in order to compute
the expected displacements under the previous updated conditions.

• If the expected displacements are high enough, a mesh morphing strategy
has to be followed in order to update the fluid domain.
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• Now, in an iterative manner, the fluid domain is solved again for the
new interface displacements and velocities untill the displacement field
remains unchanged between iterations.

• Once the fluid and solid domain are converged, the loop breaks and a new
time step can be calculated.

Regarding on how the coupling methodology is carried out, it is possible to
follow an explicit (loosely) or an implicit (strongly) coupled methodology.
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Explicit Coupling

Roughly speaking, a explicit (or loosely) methodology is performed when the
coupling is performed in a unique or very few iterations per time step [57],[58],
as will be sketched in Figure 2.10, aiding to understand the low computational
cost of this methodology.

Under these circumstances, if the time step is not low enough, boundary
conditions of continuity of displacement and stresses are not fully satisfied.
As a consequence, this approach does not ensure an exact balance of energy
at the interface. These energy losses have been found to produce numerical
instabilities, specially for incompressible flow, under circumstances of (a) very
high structural displacements; (b) for a given geometry, as soon as the density
of the structure is lower than a certain threshold or (c) for a given structure
density, as soon as the length of the domain is greater than a certain threshold
[59].

Sometimes, the numerical instabilities can be avoided by using sufficiently
small time steps, although, at some circumstances this condition leads to inad-
missible computational costs ([60], [61], [62], [63]). Theoretical explanations
have been reported by Causin et al. [59] (see also Figueroa et al. [64]). Here,
they proved how, for a given stiffness, an explicit segregated strategy leads to
instabilities when Equation 2.13 is complied:

ρs ε

ρ f λadd
< 1 (2.13)

where ρs and ρ f are the solid and fluid densities, respectively. ε is related to
the thickness of the structure and λadd represents an added mass characteristic
length, which increases with the length of the domain (it is the largest eigenvalue
of the so-called added-mass interface operator) and only slightly depends on the
time step size.
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Explicit coupling has been successfully applied to multiple engineering
problems and stabilization techniques can be performed in order to ensure
its applicability even when high displacements are computed. For instance,
Guidoboni et al. [65] used a loosely coupling strategy in order to simulate fluid
flow inside a deformable duct for low Reynolds number, although presented
problems when applying to tight coupled three dimensional systems.

The field where explicit coupling has been most widely applied is aeroelas-
ticity where, normally, only the prediction of the beginning of FSI instabilities is
needed to be modeled. In this sense, it is worth to mention the works of Piperno
et al. [66] or Fourestey et al. [67], where they modeled aeroelastic phenomena
on representative 2D bridge sections; Piperno et al. [68] designed an explicit
coupling procedure to model aeroelastic phenomena on complete 3D wings. In
the work of Farhat et al. [69], they proposed an explicit tool which could even be
used on aeroelastic applications with very tight interaction. Figure 2.7, taken
from [69], shows the application of an explicit method for the computation of the
displacement of a wing geometry. The left image shows the wing tip vertical dis-
placement while the right image shows how the energy conservation is violated
at the interface, which is related with the difficult stabilization of this kind of
methodologies.

Figure 2.7: Example of application of an improved explicit coupling methodology
to an aeroelastic cantilivered wing. Tip displacement (left) and interface energy
violation (right) as a function of time. Figure taken from [69]
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Implicit Coupling

In an implicit (or strongly) coupling scheme, the process sketched at Figure
2.9 is followed with no simplifications, and the solid and fluid domains are
all iteratively solved for each time step until convergence is achieved at the
interface. However, a large number of different options to couple the fluid and
structure exist, as can be seen from [70], [71], [72], [73], [74], [75], [76], [77]
or [78]. These schemes have been, for years, the unique way of circumventing
the numerical instabilities associated with explicit methods. Somehow, this
explains why the development of efficient methods for the resolution of the
coupled non-linear systems arising in implicit coupling has been a very active
field of research. These algorithms have been proven to be energetically stable
(see [61], [79], [80]).

Due to its stability capabilities, implicit coupling can be chosen when
predicting phenomena where strong non-linear interactions between fluid and
solid appear, as, for example, for predicting aeroelastic post-flutter phenomena
[81], [82].

Implicit techniques have been successfully applied for the resolution of
problems where the coupling between the solid and the fluid domain is high.
For instance, Formaggia et al. [83] computationally studied the transmission of
pressure waves inside very flexible pipes. The same problem has been boarded
by Gerbeau et al. [63]. Habchi et al. [84] proposed a new partitioned implicit
strategy and proved its capability for the modeling of a flexible lid-driven cavity
and flexible splitters.

Tezduyar et al. [85] or Takizawa et al. [86] applied segregated implicit
coupling for the prediction of fluid flow around parachutes under different
situations. Rebouillat et al. [87] have shown implicit segregated coupling as a
good approach to model sloshing when the walls of the container are supposed
to be flexible. The approach has also been applied to problems of complex
geometries. For instance, Bazilevs et al. [88], [89] or Hsu et al. [90] showed how
implicit fluid structure interaction methodologies can be used in order to predict
the behavior of a complex system such as a wind turbine of composite blades
under high wind velocities. Figure 2.8 shows a summary of one of their most
important results. Guner et al. [91] recently developed a numerical methodology
to predict flutter behavior using a reduced order modal decomposition for the
modeling of the structural part. Similar results can be found at Jonsson et al.
[92], but using a simpler potential model for the fluid flow.
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Figure 2.8: Example of computation using an implicit methodology the fluid flow
over a flexible wind turbine under very high wind conditions. Contours of fluid
velocity (left) and evolution of blade torque, compared with rigid computations
(right). Figure taken from [90]

Figure 2.9: Schematic of a segregated methodology for the resolution of the
Fluid Structure Interaction problem
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Figure 2.10: Schematic of a segregated explicit methodology for the resolution
of the Fluid Structure Interaction problem
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One way fluid structure interaction

Although not considered by all the authors as a case of Fluid Structure Inter-
action, the one way model of FSI is of crucial importance for analyzing a wide
range of engineering applications. In this case, the flow excites a structure,
but the generated displacements of the second do not significantly affect to the
behavior of the fluid flow. One way coupling is also often found to act on the
other direction: if the elastic forces are much higher than those associated with
the pressure and wall shear stress distribution, the structure displacements can
be supposed to be given and fluid flow should not be used in order to compute
them.

Understanding one way fluid structure interaction is of primal interest in
order to correctly model engineering problems and to ensure this assumption is
made only when it is applicable.

An important amount of examples where this methodology is successfully
employed can be found in the literature. Beginning with the case where the fluid
flow induces one way displacements over a structure, it should be mentioned
the work of Shyang et al. [93] where they performed URANS simulations in
order to obtain the non-stationary pressure field over the blades of a centrifugal
impeller and used them as a boundary condition in order to compute their
vibrational response. Jiang et al. [94] used a similar approach, solving the fluid
using Scale Resolivng Simulations in order to obtain the vibrational behavior
of a full-scale turbomachinery machine and posteriorly used those vibrations
in order to compute the response in terms of radiated noise from the system.
The work was later expanded by Hayashi et al. [95], who explored the effects of
accounting for damping in a simplified version of the previous work. Although
some empirical models have been tried to be developed in order to compute the
induced vibration by turbulent flows (see [96], [97], [98]), they normally only
allows to compute for the effect of the contribution of isotropic turbulence and,
when large anisotropic scales of the fluid motion are of interest, the correct
unsteady resolution of fluid flow equations becomes mandatory.

As it can be deduced from the references, one way fluid structure interaction
plays an important role for the modeling of both fluid induced vibrations and
radiated noise. In nearly all problems of flow-generated noise, the energy source
for sound production is some form of flow unsteadiness. This unsteadiness needs
not always to be turbulent, or random, as there are numerous cases of tonal
sounds that involve sinusoidal disturbances in the fluid. Most other cases of
flow-induced vibration, at low velocity (or Mach number) especially, involve
a restricted region of turbulence that is either free of solid boundaries or in
contact with a body. Figure 2.11, which has been reconstructed from the work
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of Blaje [5] illustrates one example, showing how, between the parameters of
noise generation from a lifting surface passing through unsteady flow, the flow
induced vibration, with characteristic wave length, λs plays an important role
and should be had into account.

Figure 2.11: Illustration of a body subjected to a disturbed flow of scale Λr; body
vibration, us of wave length Λs resulting from surface pressure ph of length
scale Λ f . Figure reconstructed from Blaje [5]

On the other hand of one way fluid structure interactions it should be
mentioned the cases where the rigid body movement and/or deformation of the
structure is completely defined by external forces different from the fluid exerted
ones or is completely described as an external boundary condition. Obviously,
when only a rigid body motion is imposed the equations of the elastic body do
not have to be resolved. In consequence, although some examples of this kind of
systems are going to be shown next, they will not be deeply explored during the
development of this document.

In this last context, one of the most widely used examples of these flows can
be found at the resolution of the unsteady flow inside the cylinder of an internal
combustion engine. In this kind of systems, normally, the motion of the cylinder
is prescribed using the cinematic of the mechanisms when the engine works
under conditions of constant rotational speed. Multiple examples of this can be
found at the literature. As some interesting cases, it should be mentioned the
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works of Broatch et al. [99] or Robert et al. [100].

2.3.3 Mesh motion methodologies

As it was stated during the previous sections, when computationally solving a
problem of fluid structure interaction, if the strength of the interaction is high
enough to provide bi-directional coupling, it is necessary to perform an updating
of the mesh for each time step (explicit coupling) or each coupling iteration
(implicit coupling). Often, the solid domain is treated using a Lagrangian form
of mesh movement and the fluid domain is subjected to the so-called arbitrary
Lagrangian-Eulerian (ALE) method. In an ALE formulation, the mesh is allowed
to move independently of the material points. This independent motion of the
mesh to maintain mesh quality in general is not necessarily always straight
forward.

It is very common to use topology-preserving mesh moving algorithms in
fluid-structure interaction applications. Although a deep description of these
methodologies is out of scope of the present document, it is necessary to provide
with a brief description of some of the most used methods. As an example of mesh
motion methodologies, it could be named the spring analogy; the Delaunay graph
method; the obtainment of the grid method as a solution of partial differential
equations or the Laplacian smoothing.

Spring analogy

In this method, the edges connecting two nodes are assumed to be connected
by a spring that maintains equilibrium. To find the position of node a, the
total force between node a and nodes connected to its must be zero to maintain
equilibrium. Each edge b connected to a is assigned a spring constant.

With this assumptions, it is common practice to use a Gauss-Seidel method
to solve a global equilibrium equation, as Equation 2.14 in order to obtain the
displacement of the nodes:

Ks ·~δ=~0 (2.14)

where ~δ is the displacement of the nodes of the grid. The previous equation must
be solved with known values of the displacements along the moving boundaries.
The linear spring analogy has no control over the angle between edges. For
keeping the angles between edges under control, the method needs to be modified
by incorporating the torsional effects as well to the total force. More information
about this mesh morphing methodology can be found at Burg [101] or Farhat
et al. [102].
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Delaunay graph method

This method follows a one-to-one mapping between the nodes and a background
element. The method starts with generation of a background mesh followed by
allocation of the nodes of a finite element mesh to the background elements. A
finite element node should only belong to one background element. As the struc-
ture moves within a fluid, the background mesh is moved with the structural
movement. This is followed by the mapping of the nodes to the new position
of the background element by means of simple finite element interpolation
using barycentric area coordinates. Thus, the new position of a point within a
background mesh may be written in terms of area coordinates as follows:

~xa =
3∑

b=1
Lb~xb (2.15)

where Lb is the barycentric area coordinate of the background mesh, calculated
based on the original position of the node and the new position of the background
element. For linear triangular elements, this can simply be replaced with
the shape functions. Although simple and robust for a problem with fairly
uniform movement, certain difficulties are faced by the method if element nodes
are shared between two background elements. For instance, if two adjacent
background elements are moving at much different rates, the element shared
by these may be stretched or compressed excessively to create entanglement.
Information about this method could be found at Liu et al. [103]. Boer et al. [104]
proposed an improvement to this scheme in order to preserve mesh orthogonality
near the deforming boundary, Radial Basis Functions, with some modifications,
were shown by Gagliardi et al. [105] to provide acceptable computationally
efficient results even for problems with a big amount of elements.

Radial Basis Functions

With this methodology, a system of radial functions is used to produce a solution
for mesh movement-morphing from a list of source points and their displace-
ments [106], [104]. This approach is valid for both surface shape changes and
volume mesh smoothing.

Radial basis were born as an interpolation tool for scattered data and
consist of a very powerful tool because they are able to interpolate everywhere in
the space a function defined at discrete points giving the exact value at original
points. The behaviour of the function between points depends on the kind of
basis adopted. The radial function can be fully or compactly supported, in any
case a polynomial corrector is added to guarantee compatibility for rigid modes.
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An interpolator, s is introduced in order to have an approximating smooth
function in the same space. At a location~x its value is:

s(~x)=
N∑

i=1
γiϕ

(|~x− ~xki |
)

(2.16)

where ϕ is the so-called radial function, namely defined a scalar function of
the Euclidean distance between source and target points. γi are weights of the
radial basis. A complete description of this method can be found at Lee et al.
[107].

Solution to partial differential equations

It has been shown how, although expensive, moving a mesh by solving an
equilibrium equation appears to be robust and valid for most of the engineering
fluid structure interaction problems [78]. The most general form of equation used
in moving a mesh is an equation of elasticity. This is logical with displacement
boundary conditions prescribed on the boundaries of a domain. The discrete
form of the elasticity equation may be written as

Ñ
Ωt

BTDB(~δn+1 −~δn)dΩ= ~F (2.17)

where B is the matrix that contains the derivatives of shape functions, D is
the elasticity matrix, ~δ is the vector of displacements within the fluid domain
and F contains the prescribed displacements on the solid surface. Additional
information of this technique could be found at [108], [109] or [110].

Laplacian smoothing

Laplacian smoothing is a very simple method which can be used for small
displacements. In this method the coordinate of a node is taken equal to the
average of the coordinates surrounding that node. This method works well if
the displacement is much smaller than the element size. Often this method,
combined with a more general method provides better quality elements. On its
own this method is unsuitable for boundary layer meshes and very fine meshes
close to solid surfaces. See the works of Vollmer et al. [111], Nealen et al. [112]
or Zhou et al. [113].
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2.4 Experimental Methodologies for Fluid
Structure Interaction

In order to perform an experimental characterization of the fluid structure inter-
action, the usual approach is to use a combination of the well established method-
ologies of the experimental fluid mechanics and experimental solid strucutres.
In this sense, the present document tries to show some of the most interesting
techniques used for each one of this fields. Note how a complete listing of all
the available techniques of measurements would be much more extense and,
therefore, it is out of the scope of this text. In this sense, an important am-
mount of work has been performed in order, mainly, to validate the existing
numerical or analytical interactoin models and algorithms. For instance, in the
work of Hessenthaler et al. [114] they provide an easy-to-setup FSI test case
that addresses the need for rigorous testing of FSI algorithms and modeling
frameworks focused on biomedical engineering applications with flow being in
the laminar regime.
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2.4.1 Experimental Methodologies for Fluid Dynamics

Experimental Characterization on Wind Tunnel

In the field of aeroelasticity, wind tunnel is one of the most widely used exper-
imental facilities to characterize the fluid structure interactions of structures
which normally work under high wind speed conditions. A wind tunnel consists
of a tubular passage with the object under test mounted in the middle. Air is
made to move past the object usually by means of a fan system. The test object
is instrumented with suitable sensors to measure aerodynamic forces, pressure
distribution, displacements or strains. Multiple variants of wind tunnel can be
found, but they all can be briefly described by means of the previous sentences.

The earliest wind tunnels were invented towards the end of the 19th century,
in the early days of aeronautic research, when many attempted to develop
successful heavier-than-air flying machines. The wind tunnel was envisioned as
a means of reversing the usual paradigm: instead of the air standing still and an
object moving at speed through it, the same effect would be obtained if the object
stood still and the air moved at speed past it. In that way a stationary observer
could study the flying object in action, and could measure the aerodynamic
forces and displacements being imposed on it.

One of the most difficult problems which arise when facing experimen-
tal characterization of aeroelastic problems is given by the scalability of the
problem. Later, it will be shown how any incompressible-flow fluid structure
interaction case can be characterized, given a geometry, by the Reynolds number,
Re= ρ∞ V∞ Lre f /µ∞; a non dimensional stiffness parameter, K= E/

(1
2 ρ∞ V 2∞

)
,

which expresses the relative importance of elastic and inertial forces and a non
dimensional mass parameter, M = ρs/ρ f , which expresses the relative inertia
between the solid and fluid materials.
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While the influence of the Reynolds number can be explored by the case
of a perfectly stiff body simply by performing a continuous swept of the wind
tunnel velocity, for the case of a flexible object this swept is less straight-forward,
as the fluid velocity also affects (and even more significantly) to the value of
the non dimensional stiffness parameter. This has made that some researchers
incorrectly associate Reynolds number to be the dominant effect on the Vortex
Induced galloping on infinite cylinders, misunderstanding the more important
factor, the non-dimensional stiffness, as will be later shown.

Fortunately, it is well known that if the Reynolds number is high enough
and/or the body under study is characterized for containing abrupt hard edges,
the dependence with this parameter becomes of second order and a paramet-
ric swept of the velocity would correspond to a swept of the non-dimensional
stiffness parameter.

Some examples of aeroelastic and flow induced vibration experiments can be
found in the literature. For instance, Xie et al. [115] studied a 1:4.5 scale model
of a train catenary in wind tunnel and characterized its coupled vibrational
response for different values of wind speed and tension.Bdeiwi et al. [116]
proposed a numerical validation of the pre instability structural deformation of
an aircraft model my measurements on the NASA CRM transonic wind tunnel.
Figure 2.12 shows an example of the mounting of the aircraft model for this
reference (left) and the measured aerodynamic lift coefficient comparing a rigid
and a flexible model (right).

Figure 2.12: Example of application of wind tunnel measurements for the
characterization of the aeroelastic features of an aircraft model. Image taken
from [116]

Particle Image Velocimetry

Particle image velocimetry (PIV) has been used since the mid-1980s to obtain
high spatial resolution two-dimensional velocity field in macroscopic flows. The
experimental procedure is relatively simple to understand. A flow is made visible
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by seeding it with particles. The particles are photographed at two different
times. The images are sectioned into many smaller regions called interrogation
regions. The motion of the group of particles within each interrogation region is
determined using a statistical technique called a cross-correlation.

A typical PIV apparatus consist of a camera, a strobe or laser with an optical
arrangement to limit the physical region illuminated, a synchronizer to act as
an external trigger for control of the camera and laser, the seeding particles
and the fluid under investigation. A fiber optic cable or liquid light guide may
connect the laser to the lens setup. PIV software is used to post-process the
optical images.

Due to its own formulation, PIV is not a well suited tool in order to study
the structural deformations of a fully coupled FSI problem. Nevertheless, this
limitation can be overcome by using PIV in combination with other structural
tools.

Multiple examples can be found in the literature of the PIV technique
applied to problems of Fluid Structure Interaction in a wide range of fields.
For instance, Panciroli et al. [117] used this technique in order to characterize
the fluid flow generated by the impact of a flexible solid body over a initially
stationary water tank, using different materials for the solid body.

Dey et al. [118] used PIV applied to the case of a fluid flow of high viscosity
fluid flowing around a three dimensional flexible cylinder for different values of
the incoming velocity. Figure 2.13 reproduces their results as an example of the
capabilities of this kind experimental of tool.

Other interesting study can be found at Zhang et al. [119]. Here they show
how PIV can be used in combination with Digital Image Correlation (DIC) in
order to fully characterize the fluid flow around a flexible valve plate.
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Figure 2.13: Example of application of PIV for the characterization of the fluid
flow around a flexible cylinder. Image taken from [118]
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2.4.2 Experimental Methodologies for Structural Dynamics

Laser Scanning Vibrometry

The scanning laser vibrometer (LSV) or laser Doppler vbrometer (LDV) was
introduced during the 1980s. It is an instrument which allows fast non-contact
measurements of vibrations.

The operating principle is based on the Doppler effect, which occurs when
light is back-scattered from a vibrating surface. Both velocity and displacement
can be determined by analyzing the optical signals in different ways. A scanning
laser vibrometer integrates computer-controlled X,Y scanning mirrors and a
video camera inside an optical head. The laser is scanned point-by-point over
the test object’s surface to provide a large number of very high spatial resolution
measurements. This sequentially measured vibration data can be used to
calculate and visualize animated deflection shapes in the relevant frequency
bands from frequency domain analysis. Alternatively, data can be acquired in
the time domain to, for example, generate animations showing wave propagation
across structures [120]. In contrast to contact measuring methods the test object
is unaffected by the vibration measuring process.

Some examples worth to be mentioned from the literature. For instance,
Zhang et al. [121] used this technique in order to characterize the interaction
between a fluid flowing inside flexible tubes. It was also used by Garafolo et al.
[122] in order to study the vibrational response of a flat plate under flutter
conditions with different temperatures.

Figure 2.14 (up) shows an example of the mounting of a Laser Vibrometer
for the wall vibration characterization of a flexible plastic made silencer under
conditions of constant velocity inflow and the typical vibration pattern which
can be computed at the walls (bottom).
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Figure 2.14: Example of application of Laser Vibrometry for the characterization
of the vibrational response of a plastic made silencer. Mounting (top) and
displacement response for two different frequencies (bottom)
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Digital image correlation

Digital image correlation (DIC) is an optical method that employs tracking
and image registration techniques for accurate 2D and 3D measurements of
changes in images. This method is often used to measure full-field displacement
and strains, and it is widely applied in many areas of science and engineering,
with new applications being constantly found. Compared to strain gages and
extensometers, the amount of information gathered about the fine details of
deformation during mechanical tests is increased due to the ability to provide
both local and average data using digital image correlation.

The concept of using cross-correlation to measure shifts in datasets has
been known for a long time, and it has been applied to digital images since at
least the early 1970s.

DIC has been proven to be very effective at mapping deformation in macro-
scopic mechanical testing, where the application of specular markers or surfaces
finishes from machining and polishing provide the needed contrast to correlate
images well.

Some examples can be found of the use of this technique (in conjunction
with others) in order to characterize the FSI. For instance, D.R. et al. [123]
presented an application of DIC which, in conjunction with the use of pressure-
sensitive paint allowed to study the behavior of a flexible panel subjected to a
supersonic flow.

Wood et al. [124] used DIC and PIV in order to develop a wind tunnel model
of an air-inflated membrane structure which can be considered to be a correct
simplification of some modern thin wall structures varying the incoming fluid
velocity. Both the internal pressure and Reynolds number were varied in this
study.

Also related with DIC it should to be mentioned the recent application made
by Sousa et al. [125], where they measured the fluid induced displacements of a
rotating RC helicopter blade under the dynamic loading from a rotation of 680
rpm.

Figure 2.15 shows a typical example of the application of this technique for
the identification of both the flexural and torsional behavior of a cantilevered
plate subjected to an almost steady free stream fluid flow. The identification of
characteristic points of the plate allows to compute both the time response of
the vertical displacement and the changes on angle of attack of the tip section.
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Figure 2.15: Example of application of Digital Image Correlation for the identi-
fication of the pre flutter response of a elastic cantilevered polymeric plate at
25m s−1
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2.5 Summary and conclusions

At the beginning of this chapter a very brief introduction of the fluid structure
interaction has been given, while some of the main physical classification and
engineering applications are introduced, depending, mainly, on the strength of
the fluid structure interaction and/or the behavior of the solid body.

Subsequently, in order to illustrate the rise of the fluid structure interaction
and with the aim of presenting the main tools which are normally used for this
type of problems, the numerical approachs commonly used in the literature are
presented.

In this context, the general equations of the fluid flow are introduced, as well
as the equations of the deformable solid. Note how they are presented in their
complete form and ,thus, simplifications and assumptions will be allowed to be
taken depending on the problem of study, as will be shown in later chapters (for
instance, neglecting the influence of viscosity on problems of wave transmission;
modeling turbulence in order to avoid the need of performing DNS; simplifying
the solid body equations in order to obtain the simpler and easier to resolve
Kirchoff-Love plate equations...).

Once the general equations of both domains are introduced it is shown
how the coupling between them arises from the own definition of the boundary
conditions of each domain: On one hand, the fluid non-slip boundary condition
ensures that any displacement computed on the solid part would change the
frontier of the own fluid domain. On the other hand, the boundary condition of
continuity of stresses makes that the fluid pressure and stresses are transmitted
as a load to the solid domain and, in fact, are responsible of its displacements.

Consequently, it was shown how, during the past years, the computational
strategies to numerically resolve the coupled problem have been spectacularly
developed and, in fact, nowadays almost any kind of problem can be computed
(in theory), regardless with the strength of the interaction. The two main
strategies to computationally resolve the coupled problem are then presented:
The monolithic and the segregated approachs.

The monolithic approach is characterized by the use of one only solver for
the discretization of both domains, and can be used to accurately compute any
kind of interaction, but with the drawback of an increased computational cost.

The segregated approach, on the other hand, allows to use already defined
solvers for the fluid flow and for the solid deformation. The coupling between
the domains is performed by an additional step which involves the boundary
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conditions of each physics. Among these methods three main strategies can be
numbered:

• The so-called explicit coupling was one of the first methods to be developed,
with this approximation, the coupling between the domains is performed
in a unique iteration. This methodology is characterized by a low compu-
tational cost, although it can only be applied to problems where the tight
between fluid and solid is medium or low.

• The implicit coupling was later developed in order to overcome the stability
issues of the explicit strategy when the deformations are high or the
density of fluid and solid are similar. With this methodology, the coupling
is performed by means of an additional loop which iteratively invokes both
boundary conditions in order to very accurately couple them.

• Despite its simplicity, the one way coupling strategy should not be mis-
sprized, as a wide range of engineering applications can be found to lie in
this case. Here, it is suppose that one of the domains affect to the response
of the other but the reverse coupling is not appearing, i.e., only one of the
boundary conditions is used in order to solve the problem.

Therefore, it has been seen how it can be considered how, with the avail-
able tools, most of the engineering important problems can now be accurately
modeled or measured. However, from the development of this chapter a reader
will notice how the interaction itself has not been widely studied. In fact, during
the whole development of the chapter the words strength of the interaction
have been intensively used (as are also used in the literature) but no additional
information has been provided about how to compute this strength.

Additionally, the dimensional analysis of these kind of problems has not
been fully analyzed and, in fact, in some situations the system is not correctly
characterized, as some of this features are attributed to a non-dimensional
parameter which should not be the dominant number of the coupled problem.
For instance, it is usual that some researchers attributes the beginning of
important structural coupling to the effects of the Reynolds number. However,
and as shown later, they sometimes depreciate the effect of the non-dimensional
stiffness of the problem, E/(1

2 ρ∞V 2∞), which, in most of the cases, results to be
the dominant parameter of the coupled problem.
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3.1 Introduction

During the developement of the previous chapter, the main equations governing
the Fluid Structure Interaction were presented, and the analysis of the main
contributions on the field was performed. It was seen how a moving fluid passing
through a structure generates a pressure distribution around it that, when the
material is flexible enough, can give rise to the appearance of noticeable dis-
placements. These displacements can, in turn, influence the flow field, resulting
in a coupling process between the fluid and the structure, which is normally
referred to as Fluid-Structure Interaction (FSI).

Due to the use of increasingly lighter materials and to the increase of
computational power availability, the prediction of phenomena related to FSI is
becoming an important research topic in numerous engineering applications,
such as in micro aerial vehicles, transport of fluids in elastic structures, energy
harvesting devices, biomedical engineering or bio-inspired systems.

Thanks to the development of efficient numerical algorithms, some investi-
gations have been performed in the past years in the context of a wide range of
applications. Subhash et al. [126] studied the influence of FSI on the sloshing
phenomenon in a closed vessel assuming inner potential flow; Eisinger et al.
[127] performed numerical simulations in order to predict the onset of the fluid-
elastic vibration in an array of tubes excited by a stationary flow; Young [128]
used numerical simulations to compare the differences in behavior between a
perfectly rigid and a flexible marine propeller, arriving to the conclusion that
FSI can be important for large values of the advance ratio, or Gramola [129],
who studied the effect of the inclusion of a fluid-deformable bump to control the
location of shocks in supersonic supercritical airfoils.

It is apparent that, for the previous works to be possible, important efforts
have been devoted to the development of suitable tools able to account for any
kind of fluid-structure interaction through the solution of the wholly coupled
problem. In this sense, Hubner et al. [130] or Hron et al. [131] developed a
monolithic method that can be used for solving strongly coupled problems, but
providing a disperse matrix due to the large difference in stiffness between the
fluid and the solid. The partitioned approach allows the use of two different
solvers for the fluid and the solid domains, being therefore necessary to perform
the coupling through inner iterations (strong coupling, see Hermann et al. [132])
or at each time step (loose coupling, see Farhat et al. [69]). For more information,
reader is refer to Chapter 2 of the current document, where those methods
where more deeply explained.

When facing a problem of Fluid Structure Interaction, it is crucial to dispose
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of suitable criteria allowing to determine the strength of the interaction and,
consequently, to select the best method to characterize the domain in terms
of both accuracy and computational effort. In accordance with the author’ s
knowledge, such a study has not been properly carried out. In this sense,
it is worth to mention the work performed by Wenyong et al. [133]. In this
paper, the authors performed an interesting wind tunnel parametric study to
predict the onset of the galloping phenomena for the case of a spring supported
cylinder. They varied the incoming flow velocity (and, as a consequence, the
Reynolds number) and came to the conclusion that, above a critical Reynolds,
the galloping phenomenon appears. However, in accordance with the present
work, this conclusion can only be partially assumed as they also varied the value
of the non-dimensional stiffness parameter which, in fact, will be seen to be
the dominant parameter for this kind of predictions. Therefore, the main aim
of this chapter is to identify a set of non-dimensional parameters whose order
of magnitude may allow to determine the strength of the interaction and the
assumptions allowable in each problem considered.

With this purpose, the benchmark problem proposed by Turek et al. [134] is
analyzed, varying both the stiffness parameter

(
K = E/(1

2ρ∞V 2∞)
)
, which can be

considered to be a form of the Cauchy number (Ca) for analyzing FSI systems.
Additionally, the influence of the mass ratio parameter

(
M = ρs/ρ∞

)
will be

analyzed. This problem basically consists of a flexible plate excited by the
unsteady laminar flow induced by a two-dimensional (infinite) cylinder located
upstream and it is normally used in order to test calculation codes [135].

Some additional work on this benchmark case or similar ones has already
been reported. Tang et al. [136] proposed an analytic model to study the flutter
instability for the case of a cantilever flexible plate immersed in a constant veloc-
ity field with a Reynolds number sufficiently high to neglect the effects of fluid
viscosity, concluding that the flutter instability was achieved for a certain value
of the non-dimensional stiffness

(
E/(ρ∞V 2∞)

)
. However, this solution cannot be

directly applied in cases where the flow field cannot be solved analytically.

More recently, Purohit et al. [137] studied a similar problem in order to
characterize the displacement response of a plate, and presented a way of
computing the radiated noise due to both the fluid flow and the plate motion.
They analyzed the evolution of both the fluid field and the solid when the Young
modulus and flow velocity were varied. However, as will be shown later, the
number of points studied was too small to allow for the characterization of
the whole range of possible FSI phenomena. Finally, similar conclusions can
be extracted from the work of Wang et al. [138], who studied numerically the
influence of both the position and the stiffness of the plate on the fluid structure
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interaction domain. As in the previously mentioned work, however, the selection
of only 5 values of the non-dimensional stiffness led to somehow incomplete
results, masking the most important phenomena that can be found in this case.

To conclude, another important related reference can be found in Abdi
et al. [139]. In this work, they perform a parametric study on the influence of
the position of some flexible splitter plates, which are strongly deformed by a
laminar flow detached after an infinite cylinder, although they do not identify
which kind of Fluid Structure Interaction appears in this case.

The work presented in this chapter tries to complement these previous
efforts with a detailed analysis of the Fluid Structure Interaction phenomena
appearing in this workbench problem, and to provide a generalizable method to
predict the interaction strength and thus, the most adequate tool, based on a
parametric study of the most important dimensionless numbers governing these
problems.

With this aim, the structure of this Chapter can be sketched as follows:
In section 4.3.1, the simple case under study will be presented, as well as the
dimensions of the fluid domain which, for reasons of validation, will be the same
as those used by the work of Turek et al. [134]. Later, the equations governing
the behavior of the coupled system will be introduced and non-dimensionalized,
showing which parameters are important for computing a FSI problem.

After that, in section 3.3, the methodology of resolution is validated against
the literature data and the complete analysis of the influence of non dimensional
stiffness, mass ratio parameter and Reynolds number is carried out.

Finally, in section 3.4, the problem is solved, for the lowest Reynolds number,
using one way interaction; segregated explicit approach (with two different
values of the time step) and segregated implicit approach. This will allow the
construction of the interaction map, presented in section 3.5 which is expected
to not be highly influenced by the Reynolds number of the problem.
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3.2 Problem Description

Figure 3.1 shows a sketch of the geometry used, which is similar to the one
described by Turek et al. [134]. The domain consists of a narrow channel
in which a laminar velocity inflow is imposed. In the channel, a rigid two-
dimensional circular cylinder is placed, downstream of which a flexible cantilever
beam is located. The cylinder diameter is taken to be D = 0.1m. Distances
upstream and downstream are Lu = 2D and Ld = 20D, while the width of the
channel is set to H = 4D. The length of the plate is L = 3.5D, with a thickness
h = 0.2D.

The origin of the coordinate system is located at the center of the cylinder.
The inlet velocity is defined using a parabolic profile, in order to simulate a fully
developed laminar flow, as shown in Equation 3.1:

Vinlet

( y
D

)
= 3

2
V∞

[
1−

(
y
D

2D
H

)2]
(3.1)

where V∞ is the mean inlet velocity which, unless otherwise specified, will be
used as the reference value. The flow is assumed to be incompressible, with
density ρ∞ = 1000 kgm−3 and viscosity µ = 1 Pas. The deformable plate was
assumed to be made of an isotropic linear-elastic material, defined by its Poisson
ratio, ν = 0.4; Young Modulus, E and density, ρs. In this work, the system
response was analyzed as a function of stiffness and density. Thus, the stiffness
parameter was varied within the range 2E/ρ∞V 2∞ ∈ [2.8 ·103 −1.5 ·107] whereas
the mass parameter was maintained is varied in the range ρs/ρ∞ ∈ [1−1000].

In order to compare with the results found in the literature, the Reynolds
number was kept constant, with a value Re = ρ∞V∞D/µ = 200, leading to a
value of the free stream mean velocity of V∞ = 2 ms−1.
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Figure 3.1: Sketch (not to scale) of the case

It is well known that, under these circumstances, a vortex shedding is
generated by the rigid cylinder, as can be observed in the works of Kiyoung
et al. [140], Unal et al. [141], [142] or Hwang et al. [143], among others. This
vortex shedding is responsible of the appearance of fluctuating forces, which
excite the structure leading to an unsteady deformation pattern. Depending
on the structural properties of the deformable body, those displacements could
even affect the flow pattern itself, leading to a fully coupled solution, completely
different from the uncoupled solution (Galdi et al. [144]).

In this work, the influence of the body stiffness and mass are analyzed.
In particular, special interest was put on the flow patterns, the magnitude
and frequency of the forces acting over the whole body and the magnitude and
frequency of the displacement of a point located at the tip of the flexible plate.
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3.3 Non-Dimensionalization of the equations

3.3.1 Solid body structural model

Making use of the equations of mass and momentum conservation, Equation
3.2 for the displacement field of a deformable solid body can be derived [42]:

ρ
∂2

∂t2 ui = ∂

∂x j
σi j +bi (3.2)

Here, ui represents the displacement of the solid body along the i direction;
bi is the i-th component of any volume forces present and σi j are the components
of the stress tensor, which can be related to the strain tensor, εkl = 0.5

(
∂uk
∂xl

+ ∂ul
∂xk

)
,

by means of Equation 3.3:

σi j = ci jklεkl = Ec∗i jklεkl (3.3)

where E is a characteristic Young Modulus and c∗i jkl are non dimensional con-
stants which, for the case of an isotropic solid with low stress values are given
by Equation 3.4 [43]:

c∗iiii =α∗ = ν−1
2(ν+1)

(
ν− 1

2
)

c∗ii j j = c∗j jii =β∗ =− ν

2(ν+1)
(
ν− 1

2
)

c∗i ji j = c∗ji ji = χ∗ =
1

2(ν+1)

(3.4)

With these assumptions, Equation 3.2 can be rearranged in vector form in
order to render the equation in dimensionless form in accordance with the flow
variables as follows:

ρ

ρ∞
∂2

∂t∗2


u∗

x
u∗

y
u∗

z

= E
1
2ρ∞V 2∞

1
2

[Q∗]


u∗

x
u∗

y
u∗

z

 (3.5)

Here, u∗
i = ui/Lre f is the ith component of the displacement, non-dimensionalized

using a flow-related reference value, Lre f ; t∗ = tV∞/Lre f is a characteristic time
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of the flow and Q∗ is a non-dimensional differential operator that, for the case
of an isotropic linear elastic solid, can be calculated by using Equation 3.6:

[
Q∗]=


α∗ ∂2

∂x∗2 + χ∗
2

(
∂2

∂y∗2 + ∂2

∂z∗2

) (
β∗+ χ∗

2

)
∂2

∂x∗∂y∗

(
β∗+ χ∗

2

)
∂2

∂x∗∂z∗(
β∗+ χ∗

2

)
∂2

∂x∗∂y∗ α∗ ∂2

∂y∗2 + χ∗
2

(
∂2

∂x∗2 + ∂2

∂z∗2

) (
β∗+ χ∗

2

)
∂2

∂y∗∂z∗(
β∗+ χ∗

2

)
∂2

∂x∗∂z∗

(
β∗+ χ∗

2

)
∂2

∂y∗∂z∗ α∗ ∂2

∂z∗2 + χ∗
2

(
∂2

∂x∗2 + ∂2

∂y∗2

)


(3.6)

Thus, for a given fluid excitation and Poisson ratio, Equation 3.5 is de-
pendent of the values of a non-dimensional stiffness parameter, K = E

1
2ρ∞V 2∞

,

which represents the relative importance of the elastic and fluid forces, and
the non-dimensional mass parameter, M = ρ

ρ∞
, which represents the relative

importance of the solid and fluid inertia. In order to solve the solid domain,
Equations 3.2 are discretized using the Finite Element Method (FEM) via the
commercial software ST AR−CCM+ and written in accordance with Equation
3.7:

M
∂2

∂t2 u+K u= f (3.7)

where M and K are the mass and stiffness matrices, respectively, and f repre-
sents the nodal forces. Those parameters are influenced by both the material and
the shape of the solid body. During the development of this investigation, very
low values of stiffness were expected and, thus, very high displacements were
obtained. As a consequence of this, K is not expected to be constant during the
whole time history. Thus, this matrix need to be updated. A Newton-Raphson
methodology was used with this aim, in a similar way as in the works of Haisler
et al. [145] or Wood et al. [146], resulting in a structurally non-linear behavior
when the displacements are sufficiently large. With the aim of confirming the
necessity of such an update, the results shown below were also compared with
those obtained without updating the matrices.

Finally, the solid beam is discretised using a structured mesh with mid-size
nodes with a constant size of 0.045D, resulting in a solid mesh of 400 cells. As
an example, Figure 3.2 shows the computational solid mesh used in an arbitrary
deformed configuration (top) and in the original non-deformed configuration
(bottom). Notice how, as displacements can be of the order of the characteristic
fluid length, D, the updating of the matrices will be necessary for low stiffness
cases.
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Figure 3.2: Sketch of the solid mesh for a deformed (up) and undeformed (down)
configuration

3.3.2 Navier-Stokes Equations

The flow is governed by the Navier-Stokes equations, which express the laws of
mass and momentum conservation, and are shown next for an incompressible
flow [14].


∂vi

∂xi
= 0

∂vi

∂t
+v j

∂vi

∂x j
=−1

ρ

∂p
∂xi

+ ∂

∂x j

(
τi j

) (3.8)

where vi represents the component in the ith direction of the velocity field; p
represents the pressure field and τi j are the components of the fluid shear stress
tensor. Due to the low Reynolds number used for the current case (Re= 200),
these equations can be solved without introducing any turbulence model with a
relatively coarse mesh; additionally, 2D flow can be assumed, as inferred from
the works of Humphrey et al. [147], Sahu et al. [148] or Smith et al. [149].

In a similar way as it was done with the solid stress equations, the Navier
-Stokes equations can also be non-dimensionalised in order to obtain:


∂v∗i
∂x∗i

= 0

∂v∗i
∂t∗

+ ∂

∂x∗i

(
v∗j v∗j

)
=−1

2
∂

x∗i
p∗+ 1

Re
∂

∂x∗j

(
∂v∗i
∂x∗j

+
∂v∗j
∂x∗i

) (3.9)

Here, v∗i = vi/V∞ is the ith component of the velocity vector non-dimensionalised
with a reference fluid velocity, V∞, and p∗ = p

1
2ρ∞V 2∞

is the static pressure, non-
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dimensionalised by a reference dynamic pressure. These equations were discre-
tised and solved using the commercial software STAR-CCM+. When discretising
the equations it has to be noted that, as the solid body is expected to move, the
contribution of the mesh movement has to be included in the equations. This
can be carried out by the inclusion of a source term, in a similar way as done
in the works of Yu et al. [150], Gao et al. [151] or Demirdzic et al. [152]. More
often, and it is the methodology followed in this work, the inclusion of these
displacements and velocities on the resolution fluid flow is performed by the use
of an Arbitrary Lagrangian Eulerian (ALE) formulation, [153].

In order to discretize the fluid domain, a polygonal mesh is used. The
mesh is set to a size of 7.5×10−3D at the wall; a near-field refinement zone
with a size of 5×10−2D near the body and with a size of 7.5 ·10−2D at the
wake. In order to ensure time-step and grid size independence, as it will be
shown later, the maximum admissible size is set to 2.5 ·10−1D for the whole
domain. These sizes result in an unstructured mesh of N = 50000 cells. About
the time step, ∆t, it is chosen so that ∆tV∞/D = 0.02, which ensured a maximum
value of the Courant–Friedrichs–Lewy (CFL) number below 0.50 for the whole
fluid domain.Figure 3.3 shows a sketch of the fluid mesh for the undeformed
configuration.

Figure 3.3: Sketch of the fluid mesh for the undeformed configuration
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In order to initialize the fluid-structure interaction case, the perfectly rigid
case is solved first. The fluid flow over the undeformed configuration is solved
with an unsteady methodology until a statistically stationary vortex shedding
solution was obtained. As an example, Figure 3.4 shows the contours of non
dimensional vorticity ωD

V∞
for this initial case at four arbitrary time steps. The

Strouhal number for the vertical force was found to be St= 0.107.

Figure 3.4: Contours of vorticity for the initial rigid state
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3.3.3 Coupling of the physical domains

The movement of the solid body leads to the appearance of a wall velocity and
a change of the form of the fluid domain, as can be deduced from the works of
Tallec et al. [61], Souli et al. [153] or Heil [154]. Thus, the fluid mesh must be
changed in accordance with the calculated solid displacements using a morphing
algorithm redistributing the wall displacements over the mesh vertices. The
morpher generates an interpolation field for the region and translate the mesh
vertices to their new positions. More information about the morpher and the
interpolation process can be found at Lee et al. [107] and reader could also refer
to Chapter 2 of this document. As an example, Figure 3.5 shows the deformed
fluid and solid meshes for an arbitrary value of the wall displacements. As very
high mesh displacements are expected, the deformed configuration is always
computed from the original form, in order to ensure the method is capable to
predict periodic response and that the mesh quality is no jeopardized during the
whole calculation.

Figure 3.5: Sketch of the fluid and solid meshes for an arbitrary deformation

The fluid pressure and tangential stresses act over the solid domain surface
by means of the stress compatibility boundary condition, which is shown at
Equation 3.10:

pδi jn j +τi jn j = ci jkl
1
2

(
∂uk

∂xl
+ ∂ul

∂xk

)
n j (3.10)
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Where δi j represents the Kronecker delta and n j is the jth of the normal
vector of the wall where the boundary condition is applied at. These Equations
could be non-dimensionalized in order to obtain:

1
K

·
(
p∗δi j +2

1
Re

τ∗i j

)
n j = c∗i jkl

1
2

(
∂u∗

k

∂x∗l
+ ∂u∗

l

∂x∗k

)
n j (3.11)

Where it can be deduced how, as expected, for a given Reynolds number
and geometry, the strength of the interaction will be highly affected by the
value of the stiffness parameter, K = E/(1

2ρ∞V 2∞), representing the relative
importance between the elastic and the fluid forces and the solid to fluid density
ratio, M = ρs

ρ∞
, which represent the inertial ratio between the moving solid and

the displaced fluid. In fact, it can be observed how the whole incompressible
fluid-structure domain can be expressed as follows:

f

(
u

Lre f
,

v
V∞

,
p

1
2ρ∞V 2∞

,Re,
E

1
2ρ∞V 2∞

,
ρ

ρ f

)
= 0 (3.12)

The interaction problem is faced by appliying four different strategies,
in order to be able to reach a general conclusion for the importance of each
non dimensional number on the determination of the most suited tool. These
strategies are briefly summarized below:

• First, an implicit segregated methodology is performed, with a total of
30 coupling steps. Due to the expected high value of the displacements,
the morphed mesh is computed from the rigid configuration, in order to
ensure that the quality of the grid is maintained, even when displacement
is high. At this stage, an additional distinction is made between using a
linear and a non-linear structural model.

• Additionally, the problem is faced using a one way coupling methodol-
ogy, in order to specify for which range of the problem parameters this
approximation is accurate enough.

• In order to generate an interaction map, indicating the most suitable
strategy for each combination of parameters, the case will be also analyzed
using an explicit coupling with a time step of ∆tV∞/D = 0.02 showing the
zones at which this strategy can provide converged solutions.

• Finally, the problem is solved with an explicit segregated methodology of
very low time step ∆tV∞/D = 0.002.

80



3.3. Non-Dimensionalization of the equations

During the next section, special care will be taken with how the stiffness
parameter, K , affects the coupled response and the force of the interaction; later,
the influence of the mass parameter will be taken into account and finally, it
will be shown how the influence of the Reynolds number is of second order for
computing the importance of the coupling and, therefore, for selecting the most
proper simulation method.
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3.4 Results

3.4.1 Validation of the methodology

In order to validate the numerical methodology described above, a case with
K = 2800 and M = 1 was analyzed in detail and the results were compared with
those of Turek et al. [134] paying special attention to the value of the fluctuating
lift and drag forces and to the horizontal and vertical tip displacement. Once
the pressure and shear stress distribution were calculated around the body, they
can be integrated and non-dimensionalized in order to obtain the total force
coefficients, as indicated by Equation 3.13:

{
CD
CL

}
= 2
ρ∞V 2∞D

Ó
Γ

(−pI+τ) ~n dS (3.13)

where Γ represents a closed surface comprising both the rigid and the flexible
parts of the obstacle and I is the identity matrix. The value of these forces
is shown in Figure 3.6, where good agreement is observed between the two
predictions, both in the level and the frequency of the oscillations. The lift
force oscillates with a frequency given by StCL = 0.137 between CLmin =−0.78
and CLmax = 0.78 whereas the drag force oscillates with a frequency such that
StCD = 2 ·StCL = 0.274 between CDmin = 2.16 and CDmax = 2.39. Points A, B, C
and D simply represent some characteristic time instants of the cycle and are
indicated as they will facilitate the interpretation of Figure 3.8.

Figure 3.6: Drag (left) and Lift (right) coefficients, comparison with the literature

Similarly, the horizontal and vertical tip displacements are shown in Figure
3.7, where again good agreement between the current calculation and the data
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extracted from the literature is observed. It is important to notice that, due to
the non-linearity of the system, the forces and their respective displacements
are not in phase. In fact, a phase shift of φCL ,uy = 115 deg can be observed
between the lift coefficient and the vertical displacement while the phase shift
between the drag coefficient and the horizontal displacement is φCD ,ux = 146°.

Figure 3.7: Horizontal (left) and vertical (right) displacement coefficients, com-
parison with the literature

Figure 3.8 shows four flow states corresponding to a full lift period of
the problem, whereas in Figure 3.9 the limit cycle of the lift coefficient vs the
vertical displacement and the drag coefficient vs the horizontal displacement
are shown, and the points corresponding to the states indicated in Figure 3.8
are highlighted. These figures in conjunction provide an intuitive explanation of
the phenomena governing the fully-coupled Vortex-Induced Vibration present in
this problem, as follows:

• Point (A): three different mechanisms can be identified for the generation
of lift at this stage, their joint contribution resulting in a zero net vertical
force: (1) due to the Coanda effect, the splitter tends to deflect the flow in
such a way that a negative contribution to the lift force is generated; (2)
the splitter experiences a (small) displacement with a net positive velocity
in the y direction, giving rise to fluid forces opposing this movement, and
generating a negative contribution to the lift force, and (3) the vortex which
was previously shed at the bottom side of the plate would produce itself a
positive lift force. The contribution of the three mechanism produces, as a
result, a null net value of the lift coefficient.

• Point (B): the elastic forces tend to return the structure to its equilibrium
state, decreasing the value of the vertical displacement. At the same time,
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a new vortex has been just shed at the upper part of the domain. As a
consequence, at this stage negative lift generation by mechanisms (1) and
(3) is maximized and this variable reaches its minimum value.

• Points (C) and (D): these are specular states from (A) and (B), respectively,
and thus exactly the same explanation can be given for both of them, just
changing the sign of the contribution of the different mechanisms.

Figure 3.8: Evolution of the vortex shedding during a half period. Velocity and
displacement contours. The colormap should be interpreted in a qualitative
manner

Figure 3.9: Representative limit cycles of the problem
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Despite the excellent agreement between the computed response and the
results extracted from the literature, it is interesting to perform a study of how
the grid size would influence the response. In this sense, Figure 3.10 shows the
temporal evolution of the lift and drag coefficients and the displacements for
different meshes: Mesh 0 correspond to a coarse grid with a number of cells for
the fluid domain of N0 = 104; Mesh 1 is a computational mesh with N1 = 2.5·104;
Mesh 2 corresponds to the mesh sketched during Section 3.3, with N2 = 5 ·104.
Finally, the finest mesh, Mesh 4, is conformed by N3 = 1 ·105 elements. Figure
3.10 shows the evolution of the force coefficients and tip displacements for each
of the listed meshes. Note how, when N > N2 the response does not substantially
changes with the chosen discretization. Therefore, as it is computationally
affordable and safer, the third mesh, with N = 5 ·104 elements will be chosen for
the rest of the chapter.

Figure 3.10: Grid independence study, evolution of the lift, drag and tip displace-
ment for different grid resolutions
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3.4.2 Parametric study for a low mass ratio

One of the main objectives of this chapter is to provide a good understanding of
the mechanisms governing the Fluid Structure Interaction of a simple structure
for a wide range of operation parameters. In order to do so, a large number of
different working conditions were simulated, using a more dense distribution
for those zones which exhibit high gradients of the variables of interest, in
order to obtain interpretable global results and to ensure that all the relevant
states are properly considered. In order to infer the most adequate structural
model for each K value, in this section, each working point was calculated using
different assumptions, as follows: (a) 1-way coupling when the displacement of
the structure has a negligible influence over the fluid field; (b) 2-way coupling
with linear displacements (the mass and stiffness matrices of the structure
are assumed to be constant during the whole simulated history) and (c) 2-way
coupling with recalculation of the stiffness matrix of the structure for each time
step (and thus introducing non linear terms in the structural model).

Figure 3.11 (left) shows the value of the maximum lift coefficient for M =
ρ0/ρ∞ = 1, as a function of the non dimensional stiffness parameter, K . Notice
that well differentiated regions can be identified in the maximum lift coefficient
as the relative stiffness is decreased. The average drag coefficient remains
almost constant, and, for reasons of brevity is not shown in this document.
Figure 3.11 (right) shows the dominant Strouhal number of the lift coefficient
and, indeed, the same regions as in the left plot can be identified. For all the
cases studied, the dominant frequency of the drag coefficient results to be twice
the frequency corresponding to the lift coefficient.

Figure 3.12 (left) shows the evolution of the maximum vertical displacement
experienced by the structure tip. The behavior is qualitatively similar to that
observed for the lift coefficient except that, for very low values of the stiffness,
the vertical displacement was found to have a negative slope (duy /dK) < 0,
contrary to the slope shown by the lift coefficient (dCL /dK)> 0, meaning that,
for low values of the non dimensional stiffness, decreasing of this parameter
leads to an increase of the vertical displacement and a decrease of the computed
vertical force.

Figure 3.12 (right) shows the tip averaged horizontal displacement, and
it is observed that it is not noticeable until the stiffness decreases below a
certain threshold value. For relatively softer materials the absolute value of
ux increases abruptly. Additionally, this Figure shows the computed vacuum
eigenfrequency of the structure.
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Figure 3.11: Maximum lift coefficient and averaged drag (left) and frequency of
the lift force (right) for M = 1

Figure 3.12: Maximum lift coefficient and averaged drag (left) and frequency of
the lift force (right) for M = 1
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As it has been explained, Figure 3.11 and Figure 3.12 show up to five clearly
differentiated regions, which are neatly distinguished both by the force and the
coupling mechanism between the structure and the fluid flow. These regions
can be defined as follows. For an easier interpretation of the excited structural
modes, please refer to the following sections:

• Region I. K ∈ [2×106−∞]. A 1-way interaction region where the response
of the structure is completely dominated by the flow and no feedback
occurs. The Strouhal number corresponds to that of the rigid case, as
for the maximum lift coefficient, which remains constant. The maximum
value of the vertical tip displacement is inversely proportional to the
stiffness parameter. The first mode is the dominant structural mode.

• Region II. K ∈ [9.1×105 −2×106]. A flutter-like region, where the fluid
flow injects energy into the structure with a very low value of dissipation.
As a consequence, the displacement abruptly increases up to a value of
approximately uy/D ≈ 0.06. For stiffness values below this range, the
frequency of the displacement is not that of the rigid case anymore, but
instead is controlled by the non-linear coupling between flow and structure,
thus leading to a zone controlled by a lock-in phenomenon. This coupling
produces a narrow, abrupt peak in the lift coefficient, which reaches values
higher than 10. The structure can still be considered geometrically linear,
but the coupling cannot. The first mode is the dominant structural mode.

• Region III. K ∈ [1.6×104 −9.1×105]. A post- flutter region, where both
the force coefficient and the displacement return to a soft-like behavior.
The displacement reaches a maximum of uymax /D ≈ 0.09 for K ≈ 2.6×105

while the same can be observed for the lift coefficient at CLmax ≈ 5.85 for
K ≈ 5.5×105. The structure can still be considered geometrically linear
and any modes other than the first structural mode are excited.

• Region IV. K ∈ [4900−1.6×104]. This new region is characterized by the
onset of the excitation of the second structural mode. Notice how the
assumption of linear structure allows to obtain accurate results for the
lift coefficient, the vertical displacement and the frequency of the forces
for a wide range of K in this region. However, this region delimits the
range of stiffness in which the structural behavior should be considered as
non-linear. Notice also that at the lower limit of this region the frequency
of the perfectly rigid case is virtually the same as the first eigenfrequency
of the isolated structure.

• Region V. K ∈ [0−4900]. In this region the lift coefficient tends to values
lower than those found in the 1-way coupling region. The low value of the
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stiffness leads to deformations which are of the same order of magnitude
as the body characteristic length, so that the linear structural model is
not valid anymore. This region is characterized by a very high increment
of the tip horizontal displacement. The second solid eigenfrequency starts
to be important for the solid movement.

In parallel to the well differentiated regions previously discussed, important
behavior differences can be also observed in the displacement field. Figure 3.13
shows the limit cycle followed by the tip displacement. Figure 3.13 (left) shows
the tip displacement for non dimensional stiffness corresponding to Regions I, II
and III. The trajectory follows a quasi-parabolic path. Figure 3.13 (right) shows
the same parameter but corresponding to regions III, IV and V. Regions I, II, III
and III, IV, V are shown in different plots in order to facilitate the interpretation
of the results. Notice that, as the horizontal displacement becomes significant,
a hysteresis phenomenon can be observed, and the tip reaches the 8-like path
that has been extensively reported in the literature (see, for instance, Bhardwaj
et al. [155], Nayer et al. [156], Wang et al. [138], Gedikli et al. [157] or Sarpkaya
[158]). For a better understanding, two different graphics with different scales
had to be used in this explanation. The displacement corresponding to Region
III is shown both in the left and right plots for comparison.

Figure 3.13: Tip trajectory for stiffness belonging to Regions I, II and III (left)
and III, IV and V (right)
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Figure 3.14: Lift coefficient transient evolution for stiffness belonging to Regions
I, II, III, IV and V

Figure 3.14 shows the time history of the vertical force coefficient values for
K corresponding to each of the regions identified. Due to the numerical setup
descried in Section 4.3.2, the value of the lift coefficient at t = 0 is the same in
all the cases. It can be observed that, except for the case K = 1.04 ·106, all the
responses reach a statistically stationary state for 2tV∞/D > 200. Additionally,
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for the case with K = 1.54 · 106 a statistically stationary CL history can be
considered since the start of the simulation, due to the quasi-1-way coupling.

In the case with K = 1.04 ·106, corresponding to Region II, a completely
different time response was obtained. For 2tV∞/D < 150 the response appears
to be the same as that calculated for the perfectly rigid case, consistently with
the fact that Region II is characterized by a flutter-like instability. However,
the fluid-structure interaction leads to a slow system destabilization which con-
verges to a limit cycle oscillation for 2tV∞/D > 600, characterized by an abrupt
increment of the Strouhal number and by very high values of the force coefficient.
Due to the long characteristic time of this behavior, the computational effort
is higher in this region, simply due to the need of increasing the simulation
time. This result agrees well with those reported by Huang [159] or Tang et al.
[160]-[161].

This fact can be easily observed in Figure 3.15, where four plots represent-
ing the whole history of this case are shown in order to better understand the
phenomenon, that can be described as follows:

• 2tV∞/D= 0 ∈ [0,200] the system behavior is characterized by a low value
of the oscillating lift coefficient with a dominating frequency of St≈ 0.104.
At the end of this period, the unstable behavior starts to be noticeable:
The lift coefficient starts to increase and a new frequency appears at
St≈ 0.305.

• 2tV∞/D= 0 ∈ [200,400] the coupled domain exhibits a bounded value of
CL between -3 and 3. However, no isolated dominating frequency exists.

• 2tV∞/D= 0 ∈ [400,600] during this period only the frequency correspond-
ing to St ≈ 0.305 survives. The lift coefficient starts to increase until
reaching values of CL ≈ 10.

• 2tV∞/D> 600 the fluid-structure coupled response is completely stabilized.
Only one dominating frequency is found and the lift coefficient oscillates
stably with a high amplitude.

91



3. NON-DIMENSIONAL CHARACTERIZATION OF FLUID STRUCTURE

INTERACTION

Figure 3.15: Lift coefficient transient evolution for stiffness belonging to Region
II.
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3.4.3 Parametric study for different values of the mass ratio

Once the behavior of the FSI system for a low value of the mass ratio parameter
has been extensively analyzed it is important to introduce how these results
will be affected by ρs/ρ∞. In order to do these, the previous methodology was
reproduced for a wide number of the non dimensional mass. However, for
reasons of brevity, only three different mass ratios is shown in this subsection.
Additionally, as will be sketched at section 3.5, the solution using an explicit and
a one-way methodologies was obtained. Next results are those corresponding to
the implicit method.

For instance Figure 3.16 (left) shows the evolution of the lift coefficient for
three different values of the non dimensional mass parameter as a function
of E/(1

2ρ∞V 2∞). Note how, for the three sketched cases, the evolution into a 2
way coupled system appears in a form of a flutter-like instability, similarly as it
was previously discussed. However, a new trend can be observed here: As the
mass ratio becomes larger, the instability region appears for higher levels of the
non-dimensional stiffness. Although this fact has been already observed for the
case of the appearance of flutter of wings and airfoils, it has not been observed
on more generic cases, with degrees of freedoms in multiple directions.

Additionally, observe how, for the case of medium mass ratio, exactly the
same regions sketched in the previous section can be observed while, for the
case with M = 100 regions IV and V are not shown. This is due to the following:
as it will be later checked, for very low values of stiffness the higher mass cases
tend to show much higher values of the displacements. In consequence, it was
supposed that, when the displacement exceeds certain threshold, the linear
behavior of the Young’s modulus would not hold anymore and, in consequence,
the data under these circumstances was not taken into consideration during
this work.
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The behavior of the non dimensional dominant frequency of the lift coeffi-
cient (note that, similarly as before it is the same than the vertical deformation
frequency and half the drag coefficient frequency) shows similar qualitative
trends for the three shown values of the non dimensional mass. However, as
similar to the lift coefficient, the beginning of the lock-in phenomenon (at which
the system frequency is dominated by the fluid structural coupling) is observed
for higher values of stiffness when the non dimensional mass is increased. How-
ever, note how the increment on the value of the non dimensional frequency
between the one way and two way coupling zones is reduced as the mass ratio
grows: while for the case of M = 10 the frequency is increased by a factor of
approximately 2.80 this increment is reduced to a factor of 1.90 for the case with
M = 100. This tend is in agreement with the expected decrease on the frequency
sketched by the relationship between the resonance frequency and stiffness and
mass ratio which can be written, in non dimensional form, as Stres = Ci

p
K /M.

Figure 3.16: Maximum lift coefficient (left) and lift dominant frequency (right)
as a function of the non dimensional stiffness for low (M = 1), medium (M = 10)
and high (M = 100) mass ratio

Figure 3.17 shows the evolution of the computed maximum tip vertical
displacement (left) and the average tip horizontal displacement (right) as a
function of the non dimensional stiffness for the same three different values
of the non dimensional mass. Note how, for the higher dimensional mass,
the maximum vertical displacement is obtained for higher values of the non
dimensional stiffness. Furthermore, an interesting conclusion can be extracted
from this picture: regardless the value of M, the maximum vertical displacement
observed in the so-called region II is practically the same, with value uy/D ≈
0.093, so it could be concluded that this parameter should be a function only of
the geometry and Reynolds number.
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Figure 3.17: Maximum vertical displacement (left) and average horizontal
displacement (right) as a function of the non dimensional stiffness for low
(M = 1), medium (M = 10) and high (M = 100) mass ratios

The effects of the coupling between the fluid and solid domains can also be
observed at Figures 3.18, 3.19 and 3.20, where the velocity and displacement
fields are shown for different values of the stiffness for the mass ratio of M = 100,
M = 10 and M = 1, respectively. The first subfigure is always the stiffness value
which corresponds to the case of almost one way coupling. Note how, in all the
cases, the stiffness corresponding to the beginning of the flutter instability is
characterized by a tight coupling between the two fields although the computed
displacement is still in the linear range. The abrupt increment on the Strouhal
number can be observed in all the cases due to the small separation between
the downstream convected vortical structures. It should also be noted how,
for very low values of the stiffness, the second structural mode can be easily
identified from the observation of the displacement field. The displacement field
can be more easily observed at Figures 3.21, 3.22 and 3.23, which show the
vertical displacement of the mean line for different values of the non dimensional
stiffness and mass.
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Figure 3.18: Velocity and deformation fields at an arbitrary time step for the
case with M = 100 and different values of stiffness

96



3.4. Results

Figure 3.19: Velocity and deformation fields at an arbitrary time step for the
case with M = 10 and different values of stiffness
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Figure 3.20: Velocity and deformation fields at an arbitrary time step for the
case with M = 1 and different values of stiffness
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Figure 3.21: Evolution of the mean line vertical displacement as a function of K
for various time steps for the case with M = 100

99



3. NON-DIMENSIONAL CHARACTERIZATION OF FLUID STRUCTURE

INTERACTION

Figure 3.22: Evolution of the mean line vertical displacement as a function of K
for various time steps for the case with M = 10
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Figure 3.23: Evolution of the mean line vertical displacement as a function of K
for various time steps for the case with M = 1
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3.4.4 Influence of the Reynolds Number on the coupling

During the previous sections, the influence of both the non-dimensional stiffness
and the solid to fluid density ratio was analyzed in terms of the kind of coupling.
It was observed how, when the density ratio tends towards high values, the first
fluid structure instabilities rise for higher values of the stiffness. Additionally,
it was observed how the qualitative trends with the stiffness parameter were
maintained independently of the mass ratio.

It could be argued that, during the generation of the previous results, the
influence of the Reynolds number was not taken into account, as this parameter
was maintained constant and equal to Re= 200 during all the simulations. As a
consequence, the main aim of this section will be to analyze the role played by
this parameter on the coupled system.

Therefore, Figure 3.24 represents the evolution of the maximum value of
the lift coefficient and its predominant frequency for the case of low density
ratio, ρs/ρ∞ = 1 for three different values of the Reynolds number. Re is kept
in the laminar range, in order to ensure that the explained methodology is still
valid.

Figure 3.24: Maximum lift coefficient (left) and lift dominant frequency (right)
as a function of the Reynolds number for a low value of the mass ratio, ρ∗ = 1

Observe how, although the value of the coefficient is slightly varied between
curves, the beginning of each zone is still rising for approximately the same
value of the non dimensional stiffness, indicating how Reynolds number is not
the predominant parameter when identifying the coupling strength in a Fluid
Structure Interaction system.

It could be argued that the current study was performed only for values
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of the Reynolds number lying in the laminar range and, therefore, the results
would not be extrapolable to cases where the flow is turbulent. However, the
next reasoning could be given:

The possible influence of the Reynolds number on an FSI system could be
due to (a) the actuation on the stress tensor which can be observed at Equation
3.11 and (b) how the own fluid flow is affected by this parameter by means of
the equation of momentum sketched at Equation 3.5.

It could also be argued that only laminar flows have been analyzed during
this dissertation. However, the results could be extrapolated for the case of
high Reynolds turbulent flows. From inspection of coupling sources (a) and (b)
explained in the previous paragraph, it can be observed, and it is well known
that, when the Reynolds number tends to high values, the corresponding terms
on the equations becomes less important leading to the conclusion of that, for
fluid flows of sufficiently high Reynolds number, the influence of this parameter
becomes of second order. As a consequence, the laminar regime of a fluid, as it
is defined by a low value of the Reynolds number, is highly influenced by this
parameter. If, even at this circumstances of high Reynolds influence on the fluid
flow, the Reynolds number is not of importance for the strength of the coupling,
it could be expected that the parameter will be even less important for turbulent
flows.

Additionally, Figure 3.25 can be referred in order to infer the influence of
the Reynolds number on the tip plate maximum vertical displacement (left)
and its averaged tip horizontal displacement (right). Show how, even with the
already mentioned influence of the Reynolds number on the value of the fluid
forces, the same qualitative behavior is observed for the structural response.
The increase with Reynolds of the predicted maximum vertical displacement
agrees well with the own increase of both the predicted lift coefficient and the
dominant lift frequency.
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Figure 3.25: Maximum tip vertical displacement (left) and average horizontal
tip displacement as a function of the Reynolds number for a low value of the
mass ratio, ρ∗ = 1
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3.5 Interaction strength map

In the previous paragraphs, the behavior of the FSI system for different values
of the non-dimensional stiffness and mass have been extensively studied. As a
consequence, it was observed how different interaction zones with important
differences on the vibration pattern and the forces acting over the structure
were found.

Once this study has been performed, it is necessary to analyze under which
circumstances each of the segregated solvers which were listed during Chapter
2 can be used. This leads to the construction of Figure 3.26, where, depending
on the combination of non dimensional mass and stiffness it can be deduced the
available computational tool which allows one to obtain an accurate solution of
the FSI system:

• The one-way coupling zone can be found at the right part of the interac-
tion map. This zone was defined as that where the differences between
the fully coupled and one way methodologies were below 2 %.

• The Explicit coupling zone was defined as that zone which was possible
to be studied using an explicit methodology with a time step ∆t V∞/ D =
0.02, corresponding to a CFL number below 1 for the whole computational
domain.

• The Transition zone was defined as the combination of mass and stiffness
which can be calculated using an explicit methodology but with a time
step reduced from the one specified in the previous point. Using this
time step or higher resulted in a numerically unstable zone. This area
was constructed as follows: The time step was fixed to ∆t V∞/ D = 0.002,
corresponding to a CFL number below 0.1 for the whole computational
domain. Using higher values of the time step in this area would possibly
lead to a numerically unstable set up.

• The Implicit coupling zone could not be calculated by any of the three
previous methodologies. As a consequence, this zone is necessary to be
analyzed by using implicit coupling. All the calculations in this area were
carried out using the already mentioned time step of ∆t V∞/ D = 0.02.
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Figure 3.26: Identification of the interaction strength and solver strategy as a
function of the stiffness and mass parameters. Darker colors imply stronger cou-
pling and, therefore, necessitiy of more computationally demanding strategies

Note how Figure 3.26 is partially arbitrary, as depends on the choice of
the admissible discrepancy between One-way coupling and Two way coupling
(for the construction of the rightest zone) and the definition of the minimum
admissible time step (for the construction of the transition zone). However, it was
found how changing these parameters did not introduce significant differences
on the resulting map.

From this result some general trends can be extracted which lately could
be applied to engineering cases where the geometry and/or the fluid flow could
be much more complex than those shown during this chapter:

• The value of the non dimensional stiffness below at which one way coupling
can be performed decreases when increasing the relative mass between
the fluid and solid materials. This can be attributed to the increase of the
importance of the solid inertia: once a heavy solid acquires an appreciable
velocity, the fluid energy dissipation becomes of second order. Similar
results have been found at the analysis of wing flutter.

• When the relative mass of the solid with respect the fluid decreases, the
interaction map shows how the band at which explicit coupling can be
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successfully carried out becomes narrower. This result is in accordance
with the already mentioned characteristic of the explicit solver, which
becomes unstable for low values of the density ratio.

The former map can be used as a qualitative tool in order to establish which
kind of coupling it could be expected to appear at similar problems, where a
multiple degree of freedoms deformable solid is excited by a transient fluid flow.
The map could even be more useful if next assumption is made. Assuming
that aerodynamic forces should weakly depend on the thickness of the plate,
it could be argued that the system stiffness should increase with the third
power of the thickness and the mass parameter should linearly depend with
this parameter. As a consequence, the map could be made even more universal

only by multiplying by
(

h
Lre f

)3
the x axis and by

(
h

Lre f

)
the y axis.
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3.6 Summary and conclusions

During the developement of this chapter, a detailed parametric study performed
has allowed taking into account all the possible states of the fluid-structure
system, thus providing a comprehensive framework in which the results of the
studies of Tang et al. [136], Purohit et al. [137] and Wang et al. [138] can be
analyzed in the proper context.

A numerical methodology for the resolution of both an unsteady fluid field
and a solid field has been presented, as well as different methodologies for
simulating the FSI for different coupling strengths.

A non dimensional analysis has been performed and the main parameters
contributing to the Fluid Structure Interaction have been identified.

A complete numerical parametric study on the influence of the non- di-
mensional stiffness parameter, K has been performed for the case of a flexible
plate subject to a non-stationary vortex shedding flow, covering the whole range
of possible FSI couplings. The results have been analyzed in terms of the
non-stationary tip deflections and the forces acting on the body.

Five different coupling regions have been found to exist depending of the
value of K . For region I, it was found that one-way interaction can be assumed.
This region is followed by region II, characterized by an abrupt change of
flow and solid displacement features, and region III where the post-instability
behavior was analyzed. It was found that a linear description of the structure
was valid for simulating stiffness values corresponding to regions I, II and III.
For lower values of non dimensional stiffness the system behavior corresponds
to region IV, where the second structural mode begins to be excited. This region
is followed by region V, characterized by large values of the displacement and
lower values of the lift force. Regions IV and V should be modeled taking into
account geometric non-linearities in the calculation of the stiffness and mass
matrices of the structure.

Later, a full discussion of the influence of the non dimensional mass ratio
over the response and coupling level of the system has been analyzed. In
particular it has been observed how, as a general way, as the solid system
becomes heavier with respect the fluid flow, the zone of fully coupling appears
for more stiff properties of the solid material. Moreover, when the solid becomes
heavier, the transition between region IV and V is characterized by an abrupt
increment of the displacement which would make that the assumption of linear
relationship between stress and strain would become invalid.
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Finally, it has been shown how, depending on the combined value of the
non dimensional stiffness, K , and mass, M, the strength of the FSI interaction
is varied and, in consequence, the optimum tool for obtaining accurate results
with the lower possible computational cost changes in accordance with this
parameter. In particular, as it could be somehow obvious, when the elastic forces
are much higher than the fluid forces (high values of K) the system can be
studied by only using a one-way approach. The end of this one-way zone will be
determined by the value of the non dimensional mass. As a general rule of the
thumb: the higher the value of M the higher the value of K at which coupling
effects becomes of importance.

Once this one-way interaction zone is passed, the coupling between solid
and fluid becomes of importance and, in consequence, it is necessary to use fully
coupled tools. In particular, it was found how explicit methodologies could be
used for this zone and they could be stabilized using a sufficiently low numerical
time step.

It was also found how the stiffness range at which explicit numerical tools
are capable of accurately predicting the coupled fluid depends also on the value of
ρs/ρ∞. Note how, as this parameter becomes lower, the stiffness range at which
this can be done becomes narrower, which agrees with the already mentioned
instability of explicit methods.

Therefore, as a final conclusion, it has been observed how the parame-
ters which dominate the FSI coupling are the called non-dimensional stiffness,
E/(1

2ρ∞V 2∞), and the non-dimensional mass, ρs/ρ∞. The effect of the Reynolds
number, Re= ρ∞V∞Lre f /µ on the determination of this phenomena, is expected
to be of second order. During the development of Chapter 4, an application of
these methods will be made for two different cases of industrial flows:

• First, it will be shown how, similarly as done here, these parameters also
apply for the case of the propagation of pressure waves inside a flexible
expansion chamber silencer.

• Then, these parameters will serve to identify and characterize a one way
coupling system which tries to represent the fully turbulent vibrational
phenomena appearing at the underbody of a moving car
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4.1. Introduction

4.1 Introduction

During the development of Chapter 2 the main available computational and ex-
perimental methods for the characterization of fluid structure interaction cases
were studied. It was shown how, although the available tools have experienced
an important development during the past years, the phenomenology inside
those phenomena has not been fully explored.

As a consequence, Chapter 3 introduced a fully non dimensional analysis
where it was proved how the strength of the fluid structure interaction and,
therefore, the optimum computational methodology for the resolution of the cou-
pling physics is mainly a function of two different non dimensional parameters,
concluding how the relative importance between the elastic and fluid forces plays
an important role when establishing the strength of the interaction between the
fluid and solid domains. It was also observed how, although the coupled field
can be dependent of the Reynolds number, Re, it does not significantly affects to
the strength of the interaction and, therefore, its effects can be safely ignored in
the process of selecting the proper tool for optimal computations.

In fact, an important amount of engineering-like cases would lie inside the
so-called Region I of the results presented during the previous Chapter. Those,
are characterized by relatively low displacements and, therefore, the use of
one way interaction models should be enough to completely describe all the
phenomena appearing in the system.

Given that, during the current Chapter, a special case of Fluid Structure
Interaction, which has become a crucial topic of research during the past years,
are analyzed: FSI applied to vibro-acoustic cases.

Vibrating structures can acoustically excite a surrounding fluid flow and,
consequently, pressure waves will be generated due to this motion. If the
vibrational motion is low (as usual) the excitation can only be appreciated on
the fluid acoustic field and can be neglected its action over the hydrodynamic
flow, which can be analyzed independently.

A special field of virboacoustic can be found in the field of aero-vibro-
acoustics, which can be defined as the transmission of pressure waves through a
structure when the exterior source is specifically an aerodynamic or hydrody-
namic environement [162]. The characterization of an aero-vibro-acoustic field
can be performed using a three steps methodology:
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• First, the exterior flow surrounding the structure is independently simu-
lated.

• If the fields are one way coupled, the vibrational response of the structure
can be considered on a second step, using the fluid flow variables as
boundary conditions for the structural response.

• The vibrational response is used as a boundary condition for a harmonic
acoustic analysis.

During last years, interest on the simulation of aero-vibro-acoustics has
been growing, as can be observed from the observation of the works of Gloerfelt
et al. [163], Lecoq et al. [164] or Amailland et al. [165].

This chapter is therefore used to introduce the methodology applied to the
complete characterization of a vibroacoustic and an aero-vibro acoustic case.
For the first case, the transmission of pressure waves inside a flexible silencer
is analyzed. For the second, the vibrations and radiated noise of a turbulence
excited structure are deeply studied.

During the next subsections, a brief introduction for each of these problems
is provided, taken into consideration how they have been focused in the litera-
ture. Later, Section 4.2 develops a complete example of the vibroacoustics inside
a pressure wave excited flexible expansion chamber. Section 4.3 contains an
analysis of a typical case of aerovibroacoustics, computing the noise radiated
inside a closed chamber by an exterior turbulent flow exiting a flexible plate.
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4.1.1 Fluid Structure Interaction applied to vibroacoustics

Following paragraphs serve as an introduction to an example problem of vibroa-
coustic: the influence of the use of platic light elements for the construction of
acoustic elements, such a silencer. The importance of correctly analyzing this
kind of FSI problem will be analyzed and, during during following sections it
could be inferred how the same conclusions which were analyzed during Chapter
3 are still valid, even for a problem whose features are highly different.

Reduction of noise emissions is currently an important area of interest
because of its practical importance. A document of the World Health Organi-
zation for the European Union [166] showed that near 40% of citizens of the
EU experience road noise of about 55 dB(A). A 30% of European population
experiences road noise over 55 dB(A) during night.

Recent regulations focus their application on an effective reduction of
noise [167]. In order to comply with regulation without jeopardizing engine
performance, various noise control methods have been developed. These kind of
control methods can be categorized as passive or active systems [168].

Active noise techniques allow obtaining a very high reduction of observer
perceived noise. However, this kind of control is associated with some issues
of cost and reliability. Currently, their application on the transport industries
is not approachable. For instance, Linus et al. [169] demonstrated that the
performance of active-noise cancelling headphones is dependent on the noise
environment. Under some circumstances, they showed how its performance
could be unacceptable. In the automotive field it is necessary for a control
mechanism to be useful over the whole range of operation making the use of
this kind of devices currently unreachable.

Due to these limitations, passive noise control is, nowadays, the princi-
pal engineering solution. A general categorization of passive elements can be
split as dissipative or reflective. Dissipative noise control allows a high noise
reduction. For example, Hwang et al. [170] showed how using dissipative vis-
coelastic materials allows an effective noise control. However, porous absorption
materials lose acoustic performance at low frequencies. When the frequency is
low, the thickness of a porous absorber is less than one quarter of the acoustic
wavelength and absorption becomes inappreciable [171].

For reactive noise abatement techniques, part of the sound wave is reflected
towards the source, or back and forth among the elements. Some examples
of these elements are: expansion chambers, Helmholtz resonators, Herschel
Quinke tubes, etc. These elements allow dealing with low frequency noise [172].
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Traditionally, reactive elements have been extensively considered as in-
finitely rigid, i.e. wall displacement and/or velocity is supposed to be negligible
from the fluid behavior point of view. This is effectively true in most of the
current applications in the automotive industry. However, very low density-low
rigidity materials are becoming of interest. As an example it could be useful to
refer to the works of Aydemir and Ebrinç [172], Nunes et al. [173] and Hu et al.
[174].

Some flexible components have been proposed in the field of passive sound
attenuation. For example, Huang [175] analyzed a drumlike silencer, which is
a strongly coupled fluid-structure component. It was shown how the coupling
of the structural eigenfrequencies with the flow leads to a kind of “storage” of
kinetic energy, yielding to an increase of the Transmission Loss (TL) through
the main duct.

Some approximations have been made in this context for some academic
problems. For example, Fan et al. [176] used numerical methods to compute
the fluid-structure interaction of a flexible panel immersed in a fluid flow;
Lawrie [177], Ramamoorthy et al. [178] and Ko [179] analytically approached
the behavior of canonical cases. Gautier et al. [180] performed measurements
on the vibroacoustic phenomena appearing on a flexible rubber tube. Practical
geometries have been studied less extensively, but some references could be cited:
Venkatesham et al. [181] developed an analytical prediction for the radiated
sound from a rectangular flexible expansion chamber; Wang et al. [182] studied
the radiated sound from a rectangular cavity through an elastic panel.

Nevertheless, there exists an important lack of information about the
influence of structural phenomena on the transmission properties, being of
vital importance the quantification of the transmission loss and/or transfer
matrix coefficients. For example, Munjal et al. [183] analytically showed how
transmission loss should increase when decreasing the rigidity of the wall
material. Cummings [184] developed a theoretical model describing acoustic
attenuation in a flexible walled duct passing through a reverberant space.

Due to the mentioned lack of information, during this Chapter, numerical
modelling will be applied to a typical circular-section expansion chamber. This
geometry is characterized via the component acoustic transfer matrix [171] for
the rigid case and for various flexible materials.

The expansion chamber under consideration consists of a cylindrical geom-
etry with only one flexible wall. The reason of selecting this kind of geometry
is mainly due to its simplicity and, thus, to the possibility of inferring gen-
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eral behaviors for more complex geometries. As it will be shown later, due to
the inherently stiffness of this geometry, the material must have a very low
Young modulus in order to show fully coupled fluid structure interactions under
acoustic loads. The main aim of this section is to prove how, when structural
modes are excited, it is necessary to consider couplings and to provide appropri-
ate methodologies to predict the behavior of the acoustic element under these
circumstances. Additionally, it will be observed how, as previously predicted
in Chapter 3, the relationship between elastic and fluid forces determine the
strength of the interaction and how, for usual construction materials, it can be
supposed to be one directional.
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4.1.2 Flow Induced Vibrations applied to aerovibroacoustics

The previous described case tried to face a problem where the unsteadiness of
the flow was imposed by the definition of the boundary conditions. However, for
a wide range of engineering applications this is not the case. For example, in
a case of aerovibroacoustic, the transient nature of the fluid flow arises by the
self-induced turbulence of the fluid flow, even with almost stationary boundary
conditions. This special case requires the use of scale resolving flow simulations,
and is illustrated in the next section by means of a representative example: the
generation of underbody noise in a one way coupled system.

During the past decades, because of the increase use of lightweight mate-
rials for the construction of components in direct contact with a moving fluid,
the accurate prediction of flow-structure interactions (FSI) has become a topic
of primal interest. Aerospace industry has traditionally been one of the main
drivers for research. For instance, it is well known that a wing subjected to cer-
tain values of the flow velocity can experience inadmissible static deformations
(divergence, see Hilderbrand et al. [185]) or periodic time-increasing oscillations
(flutter, see Bisplinghoff et al. [186] or Jeong et al. [187]) which can lead to
mechanical static or fatigue failures.

In this sense, a large number of important engineering problems are related
with the flow around bluff bodies. Therefore, the accurate prediction of FSI
phenomena over the own body or the vibration of structures located at its wake
is of major interest. A specific mention could be given to the work of Schewe
et al. [188], who used wind tunnel measurements in order to predict the loads
acting over a bluff bridge deck cross section; Augier et al. [189] performed a tight
coupled simulation of the FSI phenomena appearing at yacht sails subjected to
a turbulent flow. More recently, Zhang et al. [190] performed Detached Eddy
Simulations (DES) in order to predict the broadband frequency content of the
displacements generated at a high building excited by a turbulent fluid flow
supposing one way coupling. This work was later expanded by Ricci et al. [191],
solving the flow with Large Eddy Simulations (LES).

In the automotive industry, due to the significantly lower working velocities
compared with those expected on aircraft applications, these phenomena less
often lead to a tight-high displacement fluid structure interaction (FSI). However,
understanding and being able to predict FSI is of growing interest. It is well
known that NVH (noise, vibration and harshness) is becoming a crucial topic
of study for automotive manufacturers. Because of stricter regulations and
increasing customer expectations, a major mechanism for the generation of
undesired aerodynamic noise inside the cabin is the excitation of the structure
by the turbulent flow around the vehicle. This fact, in combination with the
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development of increasingly silent engines, explains the increasing interest on
FSI also in automotive applications.

One of the first investigations in this field was carried out by Davies [192]
who studied the excitation of a flat plate under a turbulent boundary layer (TBL)
using modal analysis. Later, increased efforts have been directed to obtain a
correct prediction of this phenomenon as, for instance, in the works of Graham
[193], Howe [194] or Frampton [195]. However, their assumptions are of difficult
application when the flow is dominated by a highly non-isotropic turbulence,
as is the case for the flow downstream of a wall-mounted obstacle, where the
large structures containing the energy of the flow should be accounted for, and
therefore modeled.

A particularly interesting example can be found in the vibrations appearing
under the body of a moving car. In fact, the turbulent unsteady flow generates
a fluctuating pressure which acts on the floor of the vehicle. This fluctuating
pressure induces vibrations on the floor, which are responsible for radiating
noise to the interior of the cabin. Related with this, some interesting studies
can be found in the literature. For instance, Springer et al. [196] numerically
studied a simplified version of the problem: a fluid flow passes over a wall-
mounted obstacle which generates a turbulent wake, and the unsteady pressure
fluctuations excite a thin flat plate which starts to vibrate. However, in their
work they did not provide experimental data about the plate vibrations; they over
predicted the reattachment length over 50 % and a small number of structural
modes were excited which, in principle, disagrees with experiments [197].

Mueller et al. [197] investigated both the structural vibration and acoustic
behavior of flat plates for different materials and sizes exposed to different
excitations. They showed how, for the case were the flow becomes turbulent,
most of the natural modes of vibration of the plate are excited which, as could
be expected, corresponds to a peak in the Sound Pressure Level spectrum for
the corresponding natural frequencies. Schafer et al. [198] investigated the
same simplified geometry as [196], using a very thin flat plate of 40 µm, and
assuming two-way fluid structure coupling, obtaining accurate results for the
flow field, compared with the experiments. However, the prediction of the
induced vibration agreed only qualitatively with the experiments. The main
factor underlying the deviations between numerical and experimental results
could be the low plate stiffness, which leads to large displacements, which are
difficult to predict by using a linear structural model. Furthermore, a plate with
a such small value of structural stiffness, cannot be considered as representative
for most of the cases related with NVH.
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The information presented in this Chapter intends to complement the works
of [198] and [196]. A similar simplified geometry was considered, where a steel
plate of 0.5 mm thickness is located immediately downstream of the obstacle.
Both the fluid domain and the structural vibration are numerically modelled,
making use of different numerical models, and the results are compared with
experiments. It is shown that a one-way interaction model provides accurate
results for both the turbulent fluid flow and the flow-induced vibrations of the
plate. The mechanisms exciting each vibration mode is analyzed in detail. The
capabilities of different turbulence models, such as the Large Eddy Simulation
(LES) or the, computationally less demanding, Reynolds Averaged Navier Stokes
(RANS) are explored and their applicability to predict the flow field and the
plate deformation is assessed.

It will be shown how, as expected after the dimensional analysis of Chap-
ter 3, a one-way interaction model can provide accurate results for both the
turbulent fluid flow and the flat plate flow-induced vibrations. The mechanism
exciting each vibration mode will be analyzed. Capabilities of mean flow turbu-
lence models, as Reynolds Averaged Navier Stokes (RANS) will be explored and
it will be shown that they can provide acceptable values for the time averaged
values of the plate deformation, even when some important assumptions are
introduced in the computation of the fluid flow. The adopted methodology can
be summarized as following. First, the flow field is computed by using LES and
RANS for different grid refinement and compared with the available experimen-
tal data; at the same time, the structural model of the plate was validated by
comparing computational and experimental eigenfrequencies and eigenvectors.
When both the flow and structural model are validated, they are coupled using
a one-way methodology by mapping the CFD pressure solution onto the FEM
structural mesh. Finally, the flow induced vibrations are calculated using this
structural model and analyzed, comparing the response at different frequencies
with the previously computed eigenfrequencies. Figure 4.1 shows a schematic
overview of this workflow for the determination of the vibrational response. in
order to ease the interpretation of the chapter.
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Figure 4.1: Diagram of the working flow for the computation of Flow Induced
Vibrations

Once the structural model has been validated, the unsteady wall velocity
can be used as a boundary condition for calculating the acoustic pressure field
inside the cabin.
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4.2 Application to vibroacoustics. Prediction of the
Transmission Loss in a Flexible Chamber

4.2.1 Acoustic Theoretical Background

For the solution of this problem, two different zones must be considered: A
fluid zone, where sound waves propagate, and a solid zone, which experiences
deformations and accelerations as a response to flow characteristics. In order
to study the transmission characteristics with flexible walls, a fully coupled
case is studied, i.e. as a consequence of wave propagation the solid walls will
experience an unsteady deformation which in turn will also have an effect on
the unsteady flow field [199]. In this section, the governing equations for each
region, which can be derived from the general equations presented in Chapter 3,
are summarized.

Solid continua equations

General equations The equations governing the fluid flow and structural
solid displacement are essentially the same as those presented in the work of
Zienkiewicz et al. [20]. The unsteady governing equations for the solid media
can be written in vector form as follows:

ρ
∂2~w
∂2t

=∇·σ−~b (4.1)

Here, ~w is the vector representing the displacement field of the solid body,
measured from an inertial reference frame;~b represents the volume forces (as
gravity or dissipation); ρ is the material density and σ is the Cauchy stress
tensor [200], which complies with:

σ=σT (4.2)

The closure of the solid displacement equation can be obtained by means of
the, so-called, strain-stress relationships. If the solid strains is defined as:

εi j = 1
2

(
∂wi

∂x j
+ ∂w j

∂xi

)
(4.3)
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The strain-stress equation allows to obtain a relationship between strain
and stress for a given material. For instance, in the case of a linear-homogeneous
solid material:

σi j =λ δi j εi j +2 µ εi j (4.4)

where δi j is the Kronecker delta and λ and µ are the first and second Lamé
parameters, respectively. They are usually expressed as a function of the Young
modulus, E , and Poisson ratio, ν, as follows:

λ= E ν

(1+ν) (1−2ν)
µ= E

2 (1+ν)
(4.5)

Once the equations are closed and suitable boundary and initial conditions
are prescribed, the resulting linear problem can be efficiently solved using the
Finite Element Method (FEM) [20].

Free vibration equations The set of discrete equations describing the solid
structural domain can be obtained by means of the FEM [20] and is written
simply as:

[M]{ẅ}+ [C]{ẇ}+ [K]{w}= { f ext} (4.6)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness
matrix, { f ext} is the vector of nodal forces and {w} is the vector of nodal displace-
ments.

The free vibration problem consists in solving the following problem (with
{w}= {W} e jωt):

−ω2[M]{W}+ jω[C]{W}+ [K]{W}= 0 (4.7)

The values of ω that satisfy the previous equation are the so-called eigen-
frequencies. Any excitation with this frequency can lead to very high values in
the displacement. As it will be seen later, eigenfrequencies must be computed
because of their great importance when analyzing fluid-structure interaction
(FSI) harmonic acoustic problems.
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Fluid motion equations

General equations In this study, the propagation of a velocity/pressure pulse
through a fluid domain has been modelled. The most straight-forward derivation
of the equations governing this system is based on applying the equation of state
in conjunction with the mass, momentum and energy equations [201], which are
given by the following expressions:



p = ρ R T
∂ρ
∂t +∇· (ρ~v)= 0

ρ
(
∂~v
∂t +~u ·∇~v

)
=∇·τ+ρ~fm

ρ
(
∂h
∂t +~v ·∇h

)
= ∂p

∂t +~v ·∇p+∇(k∇T)+φv +Q
dh = cp dT

(4.8)

Euler Equations For the propagation of low to moderate wave amplitudes
the flow can be considered to behave as non-viscous (µ≈ 0) and heat-transfer
dissipative effects can also be neglected (k ≈ 0). Also, body forces and heat
generation will be neglected (see [202] and [203]).

After considering those assumptions, the Euler equations are obtained.
These are given by:



p = ρ R T
∂ρ
∂t +∇· (ρ~v)= 0
∂~u
∂t +~v∇~v =−∇p

ρ

ρ
(
∂h
∂t +~u ·∇h

)
= ∂p

∂t +~v ·∇p
dh = cp dT

(4.9)

For the FSI-coupled case, a morphing mesh scheme is adopted and the
wall-velocity inviscid boundary condition can be expressed simply by:

(
~u f luid ·~n)

wall =~uwall ·~n (4.10)

The previous equation simply states that fluid and solid must have the
same normal velocity components at the interface.
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Wave equation In the context of wave motion, it is usual to assume that the
flow characteristics can be determined as an unperturbed component and a
perturbation, as follows:

ρT (~x, t)= ρ0(~x, t)+ρ(~x, t)
pT (~x, t)= p0(~x, t)+ p(~x, t)
~uT (~x, t)=~u0(~x, t)+~u(~x, t)

(4.11)

where ρ
ρ0

¿ 1 ; p
p0

¿ 1 and |~u|
|~u|0 ¿ 1. Under these circumstances, the Euler

equations can be linearized. Also, it is possible to consider the flow to be
isentropic, allowing one to define a relation between pressure and density
derivatives, as:

(
∂p
∂ρ

)
s
=

(
∂p
∂ρ

)
= a2

0 (4.12)

Where a0 is the unperturbed sound velocity in the flow. Finally, for the case
of no mean flow, the formulation can be further simplified, and a single equation
for the perturbation (acoustic) pressure is obtained:

∇2 p− 1
a2

0

∂2 p
∂2t

= 0 (4.13)

allowing also to obtain the acoustic velocity, which is related to pressure deriva-
tives as follows:

∂~u
∂t

=− 1
ρ0

∇p (4.14)

Helmholtz equation Assuming harmonic dependence with time of the acous-
tics variables (i.e. p = Pe jωt and u = Ue jωt ), it is possible to obtain the
Helmholtz equation, which can be written as [171]:

∇2P + ω2

a2
0

P = 0→∇2P +k2
0 P = 0 (4.15)
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and the corresponding relationship between pressure and velocity:

~U = j
ω ρ0

∇P (4.16)

Eq.(4.15) can be numerically solved by means of a linear FEM [204]. For
the solution of the domain sketched in section 4.2.2, the commercial package
COMSOL was used [205].

4.2.2 Problem Description

The main aim of this study is to characterize a flexible-wall expansion chamber
using time-domain CFD methods, and to compare the results with a frequency
domain FEM solution for the case of no mean flow. A similar problem was
already studied by Broatch et al. [206] for the case of mufflers with rigid walls.

Due to the geometrical characteristics of the fluid domain, the plane wave
condition, f R

a0
¿ 0.29 is sufficiently adequate for the range of frequencies of

interest, i.e. 0< f R
a0

< 0.13. Nevertheless, in order to be able to predict possible
non-planar wave effects while avoiding the use of a too large domain, only one
quarter of a tube was simulated, assuming periodicity in the angular coordinate.

As it will be checked later, the results for this simple case can be considered
as practically axisymmetric. Thus, the simulation of a quarter of a pipe is
considered to be representative enough for representing the whole 3D fluid-
structure interactions.

Fig. 4.2 shows an sketch of the geometry to be studied and characterized.
The radius of the expansion chamber is R = 0.03 m. The solid wall is supposed
to be clamped at the beginning and ending of the expansion chamber. Table 4.1
shows the other dimensions.

In the simulation, the inlet is fed by a known velocity profile. The outlet
section of the tube is extruded a distance Ldiss = 10 R and at its end a dissipative
boundary condition is applied in order to simulate an anechoic termination. The
time evolution of the inlet velocity profile is given by:

v(t)
vmax

=
{

1
2

(
1−cos

(
2 π t

Timpulse

))
t ≤ Timpulse

0 t > Timpulse
(4.17)
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Figure 4.2: Sketch of the geometry

Table 4.1: Geometry dimensions

Variable Value
Chamber radius R 0.03 m

Inlet/Outlet radius r R/2.4
Inlet length L inlet 10 R/3

Outlet length Loutlet 10 R/3
Chamber length Lmuf f 10 R

Dissipation length Ldiss 10 R

Due to the non-linearity of the convective term and the isentropic state rela-
tionship in Euler equations, high values of the velocity or pressure at boundary
conditions could lead to a non-linear response. For the current case, simulations
are performed for excitations up to 10 m/s, where this influence began to be
slightly noted at high frequencies. Thus, a low velocity excitation of vmax = 0.01
m/s was chosen. This value is high enough to not provide numerical inaccuracies
and ensures that the response can be considered to be totally linear for the
whole spectra.

The non-dimensional pulse duration is given by T a0
Lmuf f

= 0.3473 in such a
way that the signal frequency content is high enough to resolve up to the desired
frequency.
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Figure 4.3: Time and frequency response of the inlet velocity profile

Figs. 4.3a and 4.3b show the time and frequency evolution of the inlet
velocity profile. It should be noticed that the cut-off frequency at the boundary
condition fcut Lmuf f

a0
≈ 4.75 is sufficiently high for the current requirements.

During next sections, first, acoustic transmission through the rigid expan-
sion chamber are being calculated by means of a time-domain CFD simulation,
by a FEM wave equation solution and by an analytical calculation. Further-
more, additional numerical calculations are performed for the case of a flexible
expansion chamber, with wall thickness δ

R = 1
15 and different Young modulus, E,

and solid density, ρ.

Liu et al. [207] demonstrated for a similar domain that the acoustic proper-
ties of the flexible muffler are determined by the non-dimensional parameters
listed below, which, as can be observed can be directly derived from the already
non dimensional numbers sketched during the previous Chapter:

L∗
muf f =

Lmuf f
R t∗ = a0·t

Lmuf f
f ∗ = f ·Lmuf f

a0

p∗ = p
ρ0a2

0
D∗ = E δ3

12(1−ν2)R3 ρ0 a2
0

m∗ = ρs δ
ρ0 R

(4.18)

During the development of this work a high mass pipe is assumed. Thus
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the mass parameter is assumed to be constant and equal to m∗ = 56.6. This
allows for the direct examination of the dependency on stiffness.

4.2.3 Numerical and analytical methods

The case of a simple non-deformable expansion chamber has been extensively
studied in the literature: Broatch et al. [206] studied expansion and reversing
chamber mufflers by using a time-domain CFD method; Barbieri et al. [208]
applied the Finite Element Method to study a similar problem. A number of
references can also be found which address the problem analytically (see [171]).

References [206] and [208] allow to conclude that, for the case of linear duct
acoustics when the presence of a mean flow is not important, frequency domain
FEM provides quite similar results while its computational cost is significantly
lower as the time domain does not need to be resolved, being possible to model
only the required frequencies.

For CFD calculations the whole “residence-time” of the wave inside the
domain of interest must be solved in order to obtain an admissible frequency
response. Thus, it is intended here to provide a check of the validity of the
current methods for later comparison in the flexible case.

Analytical formulation

For the analytical plane wave approach of the model, it can be split into five
parts, as shown in Fig. 4.4:

Figure 4.4: Simplified sketch of the geometry
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Analytically, each component of the expansion chamber elements can be
modelled as an acoustic transfer matrix, which relates the acoustic velocity and
pressure at the inlet section with those at the outlet. For an arbitrary acoustic
element it can be stated [171]:

{
pin
uin

}
= [A]

{
pout
uout

}
=

[
A11 A12
A21 A22

] {
pout
uout

}
(4.19)

It follows that, for a linear element consisting of n subelements whose
transfer matrices are known one can write [171]:

[A]= [A1] [A2] · · · [An] (4.20)

where [A i] is the transfer matrix of the i sub-element. The transfer matrix of
each one has been extensively analyzed in bibliography [171].

Once the acoustic matrix of a system is known it is possible to predict the
its acoustical behavior under any harmonic excitation. On the other hand, it is
also possible to predict an important acoustic characteristic of the system as
follows:

On the other hand, it is also possible to predict the transmission loss (TL)
of the system. This parameter represents the quantity of sound power which
leaves the acoustic element, related to the incident power provided that the
outlet is anechoic [171]. It is usually expressed in dB, and can be deduced from
the elements of the transfer matrix:

TL = 10 log10

(
Wout
Win

)
TL = 20 log10

√
Sout
Sin

∣∣∣∣A11+A12· Sin
ρ0a0Sout

+A21ρ0a0
Sin
Sout

+A22

(
Sin
Sout

)2
∣∣∣∣

2

 (4.21)

Where Sout represents the outlet section of the element and Sin is the inlet
section. When Sout = Sin it can be stated:

TL = 20 log10

( |pout|+
|pin|+

)
(4.22)
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|pout|+ and |pin|+ being the progressive pressure wave component at outlet
and inlet, respectively.

Numerical calculation of the transfer matrix As it was shown in the
previous section, the transfer matrix is composed by 4 coefficients. Thus, in order
to determine it from a numerical computation two cases have to be calculated.
Once the frequency content of the acoustic pressure and velocity is known, the
value of the matrix components, for a particular frequency f can be evaluated
as follows:


A11( f )
A12( f )
A21( f )
A22( f )

=


(Pout( f ))Case A (Vout( f ))Case A 0 0

0 0 (Pout( f ))Case A (Vout( f ))Case A
(Pout( f ))Case B (Vout( f ))Case B 0 0

0 0 (Pout( f ))Case B (Vout( f ))Case B


−1 

(Pin( f ))Case A)
(Vin( f ))Case A)
(Pin( f ))Case B)
(Vin( f ))Case B)

 (4.23)

The previous equation can be resolved only when the boundary conditions
of cases A and B are linearly independent in the frequency domain.

Time domain CFD Model

In section 4.2.1 the Euler equations were introduced. In order to solve them, a
general-purpose commercial software, STARCCM+, has been used.

The fluid considered was air. For the working conditions (i.e. p0 = 101325
Pa and T0 = 300 K), this fluid behaves as a perfect gas characterized by a gas
constant R = 287.02 J kg−1K−1, an adiabatic index γ = 1.4, an unperturbed
sound velocity a0 = 347.28 m s−1 and unperturbed density ρ0 = 1.177 kg m−3.

The selection of a mesh size of the fluid volume-domain must be a compro-
mise between the maximum desired frequency resolved (in this case f Lmuf f

a0
=

1.30) and a correct discretization of the circular pipe-domain. In this case this
size was taken to be R

∆x = 24.

About the selection of the time-step, as wave propagation is the phenomenon
of interest, a low acoustic Courant number (CFL) must be set, based on the wave-
speed velocity. In this case, it was taken as CFL = a0 ∆t

∆x < 1→ a0 ∆t
∆x = 1.2 ·10−3.

A visualization of the fluid mesh is shown in Fig. 4.5a. The coupled solid
problem (4.1) was also solved by using the commercial software STARCCM+.
Therefore, a FEM mesh was created to model the solid domain.

Limitations of the time domain solver used during this work lead to the
use of second order 3D solid elements in order to model the solid domain,

139



4. FLUID STRUCTURE INTERACTION APPLIED TO VIBROACOUSTICS

making the solution of the structural problem more CPU consuming than if
shell elements are used. Nevertheless, as the number of elements of the flexible
wall is much lower that for the fluid domain, this element selection will not
become a bottleneck. Thus, the solution of a thin walled solid with 3D elements
requires at least three elements across the thickness [209]. Therefore, the
surface was modeled by using second order hexahedral elements of side R

∆x = 10.
Fig. 4.5b shows a representation of the solid mesh. It should be noted that, as
already mentioned, the use of shell elements could improve the computational
effort with negligible effects in the accuracy of the results.

(a) Finite Volume mesh

(b) Finite Element mesh

Figure 4.5: STARCCM+ mesh visualisation

Description of cases for the numerical determination of the transfer
matrix coefficients using CFD As previously shown, in order to get the
values of the transfer matrix coefficients, resolution of variables for two different
cases must be performed. These cases are hereinafter referred to as “Case A”
and “Case B”. Description of each case is given below.
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Case A For the first case the inlet velocity history is assumed to be known as
shown in Equation (4.17). The outlet of the pipe is set to be anechoic, so that no
pressure reflections are found in this boundary.

Case B For the second case the inlet velocity history is supposed to be known
as shown in Equation (4.17) until the velocity pulse is introduced into the
domain. Once the pulse is introduced, this boundary condition is set to be
anechoic, so that no pressure reflections occur in the inlet.

The outlet boundary condition is set to be a rigid wall, so at this section the
velocity history is supposed to be known and equal to vout(t)= 0.

Frequency domain FEM Model

In section 4.2.1, the Helmholtz Equation was introduced. In order to solve it, the
general-purpose commercial software COMSOL is used. Compromise between
geometry and frequency mesh size requirements can be achieved by using a
uniform mesh size which could be excessive from the frequency point of view,
but adapts well to the geometry [210].

Compared with the CFD model, and due to the linearity of the solved
equation, the mesh requirements are significantly lower for the FEM case. Thus,
for this case mesh size was taken to be R

∆x = 6 for the whole domain, using
quadratic elements. Fig. 4.6 shows a representation of the FEM mesh. As a
disadvantage it can be cited that only linear effects are computed.

Figure 4.6: COMSOL Fluid domain mesh

141



4. FLUID STRUCTURE INTERACTION APPLIED TO VIBROACOUSTICS

The solid domain is modelled using a zero-thickness shell approximation,
which allows lower CPU time consumption with no significant loss of accuracy,
as it was mentioned before. This kind of model allows to account for the whole
thickness in the case of thin walls by only using one surface element.

Description of cases for the numerical determination of the transfer
matrix coefficients using FEM As previously shown, in order to get the
value of the transfer matrix coefficients, solution of variables for two different
cases must be performed. Again, these cases are hereinafter referred to as “Case
A” and “Case B”. Description of each case is given below.

Case A For the first case the inlet pressure is supposed to be harmonic, evolv-
ing in accordance with:

pin(t)= Pin e jωt Pin = 1 Pa (4.24)

The outlet face is assumed to be anechoic. Thus, the acoustic impedance is
known, with value:

Zout = Z0 = ρ0 a0 (4.25)

It should be recalled that, due to the linearity of the Helmholtz equation,
the selection of the inlet pressure is completely arbitrary, because it will have
no influence on the quantification of the acoustic element features.

Case B Case B uses the same inlet conditions as does Case A. The outlet
section is again assumed to behave as a rigid wall. Thus, the acoustic normal
velocity is known, with value:

vout = 0 (4.26)
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4.2.4 Results for the rigid expansion chamber

CFD time domain results

When the maximum inlet velocity is set to vmax = 0.01 ms−1, the maximum value
of the inlet pressure pulse can be found to be pmax = 4.081 Pa. For a correct
time domain CFD simulation, the calculation must be run until the whole inlet
pulse leaves the domain through the non-reflecting boundary conditions. For the
present case all the simulations were performed until a final time of t a0

Lmuf f
= 100.

This value ensures that all the energy supplied at the inlet leaves the domain.

In order to obtain the transmission characteristics of the system it is
necessary to perform a computation of both pressure and velocity at the inlet
and the outlet for each case studied (Case A and Case B). These values are
shown in Fig. 4.7.

Figure 4.7: Time evolution of the pressure and velocity at domain boundaries
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In order to obtain the frequency characteristics of the expansion chamber,
a Discrete Fourier Transform must be applied to the boundary data. It is
thus supposed that a function x(t) can be approximated by a Fourier Series, as
indicated by the following expression:

Xk =
N−1∑
n=0

xn e− j 2·π·k·n
N (4.27)

where xn is the pressure at sampling time n, N is the number of samples and
Xk is the frequency response for the kth frequency. Applying this concept to the
computed time signals the frequency response for each of the cases are obtained.
These are shown in Fig. 4.8. Sampling time is taken to be Ts = 1.2 ·10−3∆x/a0:

Figure 4.8: Frequency response of pressure and velocity at domain boundaries

It should be noticed that, as expected, the frequency response of the velocity
at the inlet for case A is the same as that shown in Fig. 4.3 but it differs for
Case B. The reason of this discrepancy is that, for Case B, the inlet boundary
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condition is assumed to be anechoic, so that the velocity components must be
calculated and, for t > Timpulse, Equation (4.17) is not valid anymore.

FEM frequency domain results

The Helmholtz equation is solved by means of FEM in the frequency domain,
which leads to a significant decrease of the computational cost, compared with
the CFD time domain method.

Fig. 4.9 shows the Sound Pressure Level (SPL) in the domain, for different
excitation frequencies. SPL is defined as:

SPL( f )= 20 log10

( |P( f )|
Pre f

)
Pre f = 20 µPa (4.28)

(a) [ f Lmuf f
a0

= 0.02

(b) f Lmuf f
a0

= 0.25

(c) f Lmuf f
a0

= 0.50

(d) f Lmuf f
a0

= 0.75

(e) f Lmuf f
a0

= 1.00

(f) f Lmuf f
a0

= 1.25

(g) Qualitative color map

Figure 4.9: SPL under different excitation frequencies
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It can be noted from Fig. 4.9 that, for the frequencies f Lmuf f
a0

= 0.25 ,
f Lmuf f

a0
= 0.75 and f Lmuf f

a0
= 1.25 the SPL at the outlet is much lower than the

SPL at the inlet. As it will be shown later, this corresponds to the frequencies of
maximum attenuation. For the frequencies f Lmuf f

a0
= 0.50 and f Lmuf f

a0
= 1.00 the

muffler enters into a resonance mode and no attenuation on the SPL is found.
For higher frequencies 3D effects are easier to be observed at the sudden area
change.

Characterisation of the rigid muffler features

In this section the values of the transfer matrix will be obtained and compared
using the methods presented in previous paragraphs.

The transfer matrix components are shown in Fig. 4.10

Figure 4.10: Transfer matrix coefficients

All the previously explained methods coincide very well for low frequencies.
Some discrepancies appear when quantifying values at higher frequencies.
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Nevertheless, this is mainly due to the onset of 3D effects, which are not taken
into account by the analytical method. It will be later shown how those 3D issues
barely affect the global characteristics of the system, such as Transmission Loss
(and Insertion Loss, Velocity Ratio, etc.).

The Transmission Loss is shown, for each of the methods used, in Fig.
4.11. Notice how the analytical and the Finite Element method are perfectly
coincident for the whole frequency range. At high frequencies the CFD study
predicts a slightly higher value of the Transmission Loss. This could be primarily
due to non-linear effects, which are taken into account in this method but are
not in the analytical and FEM approximations.

Figure 4.11: Transmission Loss as a function of frequency

These results show a nearly perfect agreement between predictions from
a frequency domain FEM and from a time domain CFD calculation. This can
be taken as a demonstration of the validity of both methods for this kind of
problems. The following sections make use of these validated methods for
the prediction of the particular features associated with a flexible expansion
chamber.

4.2.5 Results for the flexible expansion chamber

Flexible wall eigenfrequencies

When analyzing the interaction between the acoustic field and the surrounding
flexible wall, the excitation of the structural modes is of primal interest. It is
thus necessary to perform an uncoupled analysis of those values.
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Table 4.2 shows the first six eigenfrequencies of the quarter pipe, for the
case of wall thickness δ= 0.002 m, wall density ρwall = 1000 kg m−3 and Poisson
ratio ν= 0.33, and for various values of the Young modulus. These frequencies
were calculated using the commercial software COMSOL Multiphysics for the
isolated structure. As will be shown later apparition of axisymmetric modal
shapes occur for higher values of frequency.

Table 4.2: Quarter pipe eigenfrequencies

f Lmuf f /a0

Mode E = 0.1 GPa E = 0.5 GPa E = 1 GPa E = 30 GPa
1 0.103 0.230 0.326 1.784
2 0.178 0.398 0.563 3.084
3 0.286 0.640 0.905 4.956
4 0.409 0.913 1.292 7.076
5 0.426 0.952 1.347 7.376
6 0.436 0.976 1.380 7.558

Fig. 4.12 shows the structural modal shape corresponding to each eigenfre-
quency calculated using COMSOL. Red colors correspond to maximum absolute
values of the displacement while blue colors correspond to duct nodal lines.
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(a) [Modal shape 1 (b) Modal shape 2

(c) Modal shape 3 (d) Modal shape 4

(e) Modal shape 5 (f) Modal shape 6

Figure 4.12: Structural mode shapes
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4.2.6 CFD time domain results

As the inlet tube is perfectly rigid, the maximum value of velocity and pressure
during the pulse injection is exactly the same as in section 4.2.4. The inclusion
of the FSI interaction leads to a significant increment of the computational
cost. Thus, as the Transmission Loss is the most significant parameter when
evaluating the performance of an acoustic element, only Case A is considered in
this section. For the present case, all simulations are performed until a final
time of t a0

Lmuf f
= 100.

Fig. 4.13 and Fig. 4.14 show the time evolution of the pressure field
for different time steps for case A (anechoic outlet), assuming the expansion
chamber as flexible.

For illustration purposes, a parametric study of the influence of the Young
modulus was performed. Fig. 4.13 shows the results for the case with E = 30 GPa
(pure tin) and Fig. 4.14 shows results for the case with E = 1 GPa (polypropylene).
The deformation field of the thin wall is also shown. Notice that the color-scale is
shown in a qualitative manner in order to obtain interpretable representation.

• Fig. 4.13-4.14 a: The whole velocity-pressure pulse has been introduced
into the domain. Because the pulse has not arrived to the expansion zone,
reflections or deformations do not appear yet.

• Fig. 4.13-4.14 b: The pulse reaches the inlet of the expansion chamber.
The pressure is affected exactly by the same phenomena which were
explained in section 4.2.4. An axisymmetric deformation field can be
observed both in the E = 30 GPa and E = 1 GPa being higher in the second
case, as expected.

• Fig. 4.13-4.14 c: The reflected pulse reaches the inlet. The boundary con-
dition v(t)= 0 behaves as a rigid wall, so it is reflected again towards the
expansion chamber again. In the case E = 30 GPa the deformation-pulse
propagates together with the pressure pulse in the expansion chamber. In
the case E = 1 GPa it can be noticed how the low material stiffness leads
to an additional wave.

• Fig. 4.13-4.14 d: The primary pulse reaches the outlet of the expansion
chamber, and here a new partial reflection and transmission are found.
The deformation pulse is also reflected. Note the high qualitative differ-
ence between the E = 30 GPa and E = 1 GPa. In the second case it can be
seen that the number of axisymmetric waves appearing is significantly
higher.
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• Fig. 4.13-4.14 e: The primary pulse reaches the outlet domain section.
Due to the non-reflective boundary condition the outlet behaves as an
anechoic termination. The pressure and deformation pulses continue
travelling inside the expansion chamber, mutually interacting.

• Fig. 4.13-4.14 f: The primary pulse reaches again the inlet of the expan-
sion chamber. Some part of the pulse is reflected towards the outlet, and
some other passes through to the inlet of the domain.

(a) t·a0
Lmuf f

= 0.34 (b) t·a0
Lmuf f

= 0.51

(c) t·a0
Lmuf f

= 0.84 (d) t·a0
Lmuf f

= 1.50

(e) t·a0
Lmuf f

= 1.85 (f) [ t·a0
Lmuf f

= 2.89

(g) Qualitative color map

Figure 4.13: Time evolution of the pressure and velocity pulse for different time
instants and E = 30 GPa
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(a) t·a0
Lmuf f

= 0.34 (b) t·a0
Lmuf f

= 0.51

(c) t·a0
Lmuf f

= 0.84 (d) t·a0
Lmuf f

= 1.50

(e) t·a0
Lmuf f

= 1.85 (f) [ t·a0
Lmuf f

= 2.89

(g) Qualitative color map

Figure 4.14: Time evolution of the pressure and velocity pulse for different time
instants and E = 1 GPa

Another important result, where differences between the rigid and the
flexible cases are found, is the time response of pressure and velocity at the
inlet and the outlet. This time response is shown in Fig. 4.15 and, as it can
be observed, no differences are noticed between the rigid case and the flexible
case with E = 30 GPa. For cases of Young modulus E < 1 GPa the time response
shows significant deviations from the rigid case, specially after some reflections.
It can be seen how, as a general trend, pressure peaks of reflections are lower as
the value of rigidity decreases.
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Figure 4.15: Time evolution of the pressure and velocity at domain boundaries
for Case A. Different material rigidity

Fig. 4.16 shows the time evolution of deformation at a point located in the
mid section of the expansion chamber, at a location (Lmuf f /2,R) for different
wall rigidities. High differences in the displacement can be observed for the
different materials. Fig. 4.16 also shows that the natural modes of the structure
remain unattenuated. This is due to absence of damping in the model.
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Figure 4.16: Time evolution of the wall displacement for Case A. Different
material rigidity

Fig. 4.17 shows the frequency content of this radial displacement history.
It can be observed that the frequency response is identical (except, obviously,
in the absolute value) for the cases with D∗ = 5.85 (E = 30 GPa), D∗ = 0.20
(E = 1 GPa) and D∗ = 0.10 (E = 0.5 GPa). For these values of rigidity, two well-
differentiated peaks are found at f Lmuf f ler

a0
= 0.75 and f Lmuf f ler

a0
= 1.00, which

correspond with the chamber resonance frequencies. However, for the case with
D∗ = 0.02 (E = 0.1 GPa) a completely different response is obtained. A new, more
important peak, appears at f Lmuf f ler

a0
= 0.87, which corresponds to the excitation

of the first axisymmetric natural mode of the structure.
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Figure 4.17: Frequency response of the radial wall displacement for Case A.
Different material rigidity

4.2.7 FEM frequency domain results and characterization of
the flexible muffler

Fig. 4.18 shows the Transmission Loss, calculated using Equation (4.21), for the
flexible case with low Young modulus, E = 0.1 GPa. The two traces correspond to
a calculation using time-domain CFD and a calculation using frequency-domain
FEM.

Fig. 4.18 allows to demonstrate that, as well as for the rigid case (see Fig.
4.11), frequency domain FEM and time domain CFD provide similar results,
with little discrepancies between both methods.
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Figure 4.18: Transmission Loss as a function of frequency for E = 0.1 GPa.
Comparison between time domain CFD model and frequency domain FEM
model

In order to examine the dependence of the acoustic response on rigidity,
Fig. 4.19 shows the evolution of the Transmission Loss response as the Young
modulus is decreased. In order to improve the interpretation of the results, they
all are compared with the perfectly rigid result.

It can be observed that, for the two first cases (E = 1 GPa and E = 0.5 GPa)
non-noticeable differences are encountered between the rigid and the flexible
cases. Nevertheless, for E ≤ 0.2 GPa (D∗ ≤ 0.04) important differences appear.
This coincides with the excitation of the first and second axisymmetric modes of
the structure (see the location of these modes in Table 4.3). Figure 4.20 shows
the modal shape corresponding to the first four eigenfrequencies.

Under these circumstances it can be found that, just before the axisymmet-
ric mode is excited, the fluid-structure coupling leads to an important change in
behavior. Around this frequency a high attenuation point is found immediately
followed or preceded by a sharp pass band of abrupt attenuation drop. This
sharp behavior is due to the strong fluid-structure coupling derived from the
excitation of the natural axisymmetric modes of the structure. Similar behavior
was found in the transfer function studied by Herrmann et al. [211] for the case
of thin hydraulic pipes.
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Figure 4.19: Transmission Loss as a function of stiffness for mass parameter
m∗

l = 57

Table 4.3: Axisymmetric modes for different non-dimensional stiffness parame-
ter, D∗

f Lmuf f /a0

Mode D∗ = 0.02 D∗ = 0.04 D∗ = 0.10 D∗ = 0.20
1 0.45 0.64 1.01 1.43
2 0.89 1.25 1.98 2.80
3 1.21 1.71 2.71 3.83
4 1.33 1.89 2.98 4.22
5 1.37 1.94 3.06 4.33
6 1.39 1.96 3.10 4.38
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(a) Axisymmetric modal shape 1 (b) Axisymmetric modal shape 2

(c) Axisymmetric modal shape 3 (d) Axisymmetric modal shape 4

Figure 4.20: Axisymmetric structural mode shapes

Fig. 4.21 and Fig. 4.22 show the frequency response field of the Sound
Pressure Level and displacement, respectively, for the case A with E = 0.1
GPa. It can be observed that, as previously predicted, the cases of minimum
acoustic losses SLPout ≈ SPL in correspond with the excitation of a structural
axisymmetric mode.

(a) f Lmuf f
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= 0.45 (b) f Lmuf f
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= 0.46

(c) f Lmuf f
a0

= 0.87 (d) f Lmuf f
a0

= 0.89

(e) f Lmuf f
a0

= 1.20 (f) f Lmuf f
a0

= 1.22

(g) Qualitative color map

Figure 4.21: SPL under different excitation frequencies for the flexible case
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= 1.22

(g) Qualitative color map

Figure 4.22: Displacement under different excitation frequencies for the flexible
case
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Fig. 4.23 shows the evolution of the strain and kinetic energy stored in the
solid. Notice how the maximum peak values of both energies correspond to the
excitation of the axisymmetric natural modes.

Figure 4.23: Stored energy as a function of the frequency for E = 0.1 GPa

4.2.8 Partial conclusions

A methodology based on CFD-FEM method has been presented for the Trans-
mission Loss calculation of vibro-acoustic domains both in time and frequency
domain.

A review of the main different techniques used for the characterization of
vibro-acoustic problems has been performed.

To fine-tune the methodology under consideration, different simulations are
performed using both CFD and FEM in order to predict the acoustic performance
of a perfectly rigid expansion chamber. Results show fair agreement between
CFD, FEM and analytic cases.

Similar methods are for the case of an expansion chamber with flexible
walls. Again, the presented models show good agreement for the frequency
range under consideration.

Nevertheless, it is observed that computational requirements of the time-
domain CFD method are various orders of magnitude higher than the require-
ments for the same geometry using a frequency-domain FEM approach.
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General trends of the vibroacoustic response were calculated for a rigid
and a flexible expansion chamber. Results show that, for the current geometry,
the influence of rigidity for a heavy structure is important only for very low
Young modulus. The effect of the structural vibrations becomes important when
excitation of the first and second axisymmetric natural modes of the structure
takes place.

It is demonstrated that, when the inner flow excites the structure at the
resonance frequency, the problem becomes strongly coupled and the influence of
the flexible walls should be taken into account.

Finally, it is illustrated that, for a geometry of the shapes and sizes like the
simplified cylindrical expansion chamber presented during the current work,
the mentioned complete coupling only appears for very low values of the Young
modulus at the frequencies of interests. As this phenomena is mainly due to
the excitation of the natural modes of the structure, mufflers with higher modal
density should experience this phenomena even for higher values of the Young
Modulus.
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4.3 Prediction of Flow Induced Vibration of a flat
plate located after a wall mounted obstacle.
Aerovibroacoustics

4.3.1 Description of the test case

In this section, a simplified under-body flow is modeled which, nevertheless, can
be considered as representative for most of the relevant physical phenomena.
The configuration consists of (1) a channel which walls are considered to be
rigid; (2) a rigid square step which forces a turbulent flow downstream of it,
dominated by large scales, and (3) a thin flexible wall where the magnitude of
the displacement is sufficiently high to allow appreciable deformations (and
noise radiation), but low enough to not noticeably influence the fluid field.

Figure 4.24 shows a sketch of the fluid domain geometry. Lre f = 1.5 cm is
the edge length of the step, which is confined in a channel of 5Lre f in height
and 10Lre f in width. A flow of air, with density ρ∞ = 1.225 kgm−3, viscosity
µ= 1.78 ×10−5 Pas and average velocity V∞ = 22 ms−1, which corresponds to
a Reynolds number of Re = 22710 and a Mach number, Ma = 0.06, enters the
domain from the left. From a fluid dynamic perspective, the obstacle, the plate
wall and the bottom walls are treated with a non-slip boundary condition. The
inlet and the outlet are located sufficiently far such that the frequency response
of the variables of interest is not affected by their location.

It is expected that the boundary layer at the upper wall is sufficiently thin
such that its effects on the vibrational response of the plate can be neglected.
Therefore, in order to keep the computational cost affordable, a slip boundary
condition was used for this wall. For the lateral walls, a similar reasoning could
be given, and a periodicity condition can be stated, in a similar way as in the
work of Schafer et al. [198] or David et al. [212].

The plate is mounted just after the step and covers the whole width of
the channel, with a length of 40/3Lre f . The edges parallel to the flow direction
are clamped, while the contours perpendicular to the flow are mounted in a
simply supported manner. The plate is made of steel, with Young’s Modulus of
E = 200 GPa; density of ρs = 7745 kgm−3; Poisson’s ratio equaling ν= 0.35 and
a thickness of h = 0.5 mm.
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Figure 4.24: Fluid domain geometry sketch
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4.3.2 Numerical methodology

Thin plate structural model

As stated, all walls except the plate are considered infinitely rigid and their
displacements can thus be neglected. In order to predict the deformations at the
plate induced by the fluid flow, the equations for an elastic solid are applied to
this body. However, it is well known that, if the plate is sufficiently thin, those
equations reduce to the equation of a Kirchoff-Love plate, [213], [214], which is
shown in Equation 4.29. In this section, this equation will be used to describe
the structural part, since h/Lre f = 1/30.

E h3

12 (1−ν2)

(
∂4u
∂x4 +2

∂4u
∂x2∂z2 + ∂4u

∂z4

)
+ρsh

∂2u
∂t2 = p (4.29)

Here, x and z are, respectively, the directions parallel and perpendicular to the
flow; u is the normal displacement of the plate (in the y direction) and p is
the pressure acting on the structure. Note that, regardless the strength of the
coupling, the plate will be influenced by the flow forces by means of this last
term, as indicated, among others, by Bathe et al. [215]. In order to investigate
the relative importance of the different parameters on the response of the plate,
Equation 4.29 can be non-dimensionalized and transformed into the frequency
domain, as expressed in Equation 4.30:

(
∂4u∗

∂x∗4 +2
∂4u∗

∂x∗2
∂z∗2 +

∂4u∗

∂z∗4

)
− m∗

k∗ St2 u∗ = Cp

k∗ (4.30)

Here, k∗ = E
6ρ∞V 2∞(1−ν2)

(
h

Lre f

)3 = 2254 is the non-dimensional stiffness
parameter, representing the relative importance of the elastic and pressure
forces acting on the plate; m∗ = 8π2 h

Lre f

ρ0
ρ∞

= 16640 is the non-dimensional
mass, which represents the relationship between the solid and fluid inertia;
Cp = p

1
2ρ∞V 2∞

is the pressure coefficient, and St = f Lre f
V∞

is the Strouhal number.

Both the displacements and the coordinates have been non-dimensionalized with
the length of the obstacle leading to u∗ = u

Lre f
and (x∗, y∗, z∗)=

(
x

Lre f
, y

Lre f
, z

Lre f

)
.

It should be pointed out that, when St= 0, Equation (4.30) can be used to
predict the stationary time-averaged deformation of the plate.

When the plate is not excited by a fluid flow (e.g. the fluid velocity is zero),
Equation (4.30) reduces to an eigenvalue problem, as indicated in Equation 4.31.
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As expected, in that case the response becomes completely independent from
the flow velocity:

(
∂4u∗

∂x∗4 +2
∂4u∗

∂x∗2
∂z∗2 +

∂4u∗

∂z∗4

)
− m∗

k∗ St2 u∗ = 0 (4.31)

An inspection of Equation 4.30 allows to distinguish which level of FSI
coupling may be expected depending on these non-dimensional numbers. It
should be noted that the order of magnitude at which each kind of interaction
appears depends also on the frequency content of the excitation. When the
structure is excited at its resonance frequency, it will tend to experience higher
deformations. The different coupling levels are characterized as follows:

• When k∗ >> 1, equation 4.30 leads to a solution with very low displace-
ments, which will not appreciably modify the fluid domain geometry and
response.

• When k∗ << 1 the pressure forces are several orders of magnitude higher
than the elastic forces, so that the structure experiences deformations
which are comparable to its main dimensions. Thus, the fluid domain
geometry experiences changes and the interaction must be calculated in a
fully coupled way.

A one-way structural excitation can be assumed for the current value of
both the stiffness and mass parameters, as it will be shown later, even for
frequencies near the resonance. Thus, Equation 4.30 is discretized and solved
by the Finite Element Method, making use of the commercial code Virtual.Lab.
The pressure field, obtained making use of the methodologies explained in
the following sections, is mapped onto the structure mesh and used as a load
boundary condition. The plate is discretized by using 50 elements in each
direction.

Large Eddy Simulation

In order to obtain the unsteady pressure fluctuations over the wall downstream
of the step, Large Eddy Simulations have been shown to provide very good
agreement with experiments at low and moderate Reynolds numbers, as can
be checked, for instance, in the works of Yang et al. [216] or Zhengtong et al.
[217]. For Large Eddy Simulations, the Navier-Stokes equations are solved over
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a filtered domain, as shown in Equation 4.32. Note how, due to the low Mach
number of the flow, it is considered to be incompressible:


∂Vi

∂xi
= 0

∂Vi

∂t
+Vj

∂Vi

∂x j
=−1

ρ

∂p
∂xi

+ ∂

∂x j

(
τi j

) (4.32)

Here, Vi and pi are the resolved-scale velocity and pressure, respectively;
τi j is the i j component of the subgrid-scale (SGS) Reynolds stress; ρ0 is the
fluid density, and µ is the dynamic viscosity of the fluid. In the computation
performed here, an implicit filter was used, so that the grid size itself can be
considered to be the filter width.

The subgrid stress tensor results from the interaction between the larger,
resolved eddies and the smaller, unresolved eddies, and is modeled using the
Boussineq approximation, as indicated by Equation 4.33:

τt = 2µtS− 2
3

(
µt∇·~V +ρk

)
I (4.33)

where S is the strain rate tensor and k is the subgrid kinetic energy. In this
work, the subgrid scale turbulent viscosity, µt, was modeled using WALE (Wall
Adapting Local Eddy Viscosity), which has been shown to be less dependent on
the value of the model coefficient, Cw, than the classical Smagorinsky Subgrid
Scale Model (see the works of Nicoud et al. [38] and Smagorinsky [35] for more
information about this topic). The WALE model assumes a mixing-length type
equation for the subgrid scale viscosity, as follows:

µt = ρ∆2Sw (4.34)

being ∆= Cw V 1/3 a length scale parameter dependent of the cell volume V , and
Sw is a deformation parameter, dependent of the strain rate tensor. Here, the
model constant was set to Cw = 0.544, given that this value has been shown to
provide acceptable results both for homogeneous isotropic decaying turbulence
and for channel flows (see, for example, [218] or Malloupas et al. [219]).

The equations are discretized and solved by means of the commercial
software STAR-CCM+. RANS and LES computations are performed over two
different meshes, with approximately 4×106 and 20×106 volume cells. In
order to ensure reproducibility of the results, Table 4.4 shows the mesh size
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at different parts of the fluid domain. For the coarser mesh, the no-slip walls
were meshed using a prism layer with total thickness of 0.012 Lre f and 8 layers,
in order to ensure that the wall y+ lies within the viscous sublayer, as will be
verified later. A time step of ∆t V∞

Lre f
= 0.050 for the first mesh and ∆t V∞

Lre f
= 0.025

for the second, ensure a Courant-Friedrichs-Lewy (CFL) lower than 1 for the
most part of the domain, as can be illustrated by the distribution of CFL, shown
in Figure 4.25. A general qualitative sketch of the computational fluid mesh can
be seen in Figure 4.26.

Table 4.4: Orientative dimensions of the fluid flow meshes

Mesh Parameter Mesh 01 Mesh 02

Farfield mesh size 0.680 Lre f 0.400 Lre f

Down walls mesh size 0.050 Lre f 0.030 Lre f

Step walls mesh size 0.010 Lre f 0.006 Lre f

Near field mesh size 0.050 Lre f 0.030 Lre f

Wake mesh size 0.100 Lre f 0.060 Lre f

Number of elements 4×106 20×106
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Figure 4.25: Ratio of CFL distribution over the entire fluid domain for the
meshes of Nelements ≈ 4×106 (up) and Nelements ≈ 20×106 (bottom)

Figure 4.26: Sketch of the computational fluid mesh

With the mesh resolution used, it is not possible to properly model the
turbulence of the inlet boundary condition and, consequently, laminar-constant
velocity inflow will be considered, similarly as Schafer et al. [198]. The assump-
tion of neglecting the free stream turbulence in the computation can be justified
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as follows: as the vibration response at low-to-medium frequencies is dominated
by the large turbulent structures downstream of the obstacle, this effect is
expected to be of second order importance, as can be verified by the works of
Bearman et al. [220] or Nakamura et al. [221]. For instance, at [220] it can be
observed how, for free stream turbulence values below 6.1% the wall pressure
distribution behind a hard-corners reward facing step and the reattachment
length are only slightly affected by the variation of the turbulence intensity.

Reynolds Averaged Navier Stokes

The Reynolds Averaged Navier Stokes equations allows to obtain a mean flow
solution, which can be used in order to compute parameters as the reatachment
length or the plate static defformations. These equations can be derived from
the complete set of mass, momentum and energy conservation equations, and
are shown next for an incompressible flow [14].


∂〈Vi〉
∂xi

= 0

∂〈Vi〉
∂t

+〈Vj〉∂〈Vi〉
∂x j

= µ

ρ

∂2〈Vi〉
∂x j∂xi

− ∂〈vi v j〉
∂x j

− 1
ρ

∂〈p〉
∂xi

(4.35)

where 〈Vi〉 represents the component in the ith direction of the mean velocity
field, 〈~V 〉 and 〈p〉 represents the ensemble average pressure field.

Closure of the equations (4.35) can only be achieved by modeling the terms
〈ui u j〉 which are commonly referred to as the Reynolds stresses. The selection
of an appropriate turbulence model is of primal importance for the evaluation of
the flow characteristics. The k−ω model with shear stress transport (SST) was
used with this purpose. This turbulence model has been extensively used in the
literature for this type of flows, and has been shown to provide good results for
the pressure coefficient near the step [222]-[223], but over predicting the length
of the reattachment zone in comparison with experiments or Direct Numerical
Simulation [224].

The k−ω SST model was proposed by Menter [32] and is a transitional
model in which the formulation considered varies from the k−ω turbulence
model proposed by Wilcox [225] in the vicinity of the walls, to the k−εmodel away
from the walls, thus solving the main inconveniences of both models. In addition
to a transport equation for the turbulent kinetic energy, k, the k−ε and the k−ω
turbulent models solve a transport equation for the turbulent dissipation rate,
ε, and the specific turbulent dissipation rate, ω, respectively. These variables
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are related by ω∝ ε/k and allow obtaining the turbulent viscosity νt = Cµ k2/ε
(Cµ = 0.09 being a modeling constant). This turbulent viscosity is used to model
the value of the Reynolds stress tensor as:

〈vi v j〉 = 2
3
δi j −νT

(
∂〈Vi〉
∂x j

+ ∂〈Vj〉
∂xi

)
(4.36)

Mapping of the fluid field pressure

As stated, the structural model of Equation 4.30 will be solved assuming one
way coupling model. This means that the vibrational behavior of the plate
is governed by the pressure field generated by the turbulent flow, as can be
observed at the right term of Equation 4.30. However, due to the high value
of the non dimensional stiffness parameter, k∗ = 2254, it is supposed that the
resulting displacements are small enough as they do not affect the behaviour
of the fluid flow. Note that, at this stage, this is only a reasonable hypothesis
which will only be confirmed by the comparison of the computational results
with measurements.

In order to consider the influence of the pressure contribution onto the plate
displacement, note that the finer-volume-mesh CFD solution has to be mapped
onto the coearser FEM grid. In order to do so, while preserving the value of the
nodal forces, a conservative distance mapping scheme is used, with a second
order interpolation, in a similar way as explained by Ullrich et al. [226], [227] or
Jones [228].

Figure 4.27 shows an example on how the mapping process works. Figure
4.27 (up) represents the pressure coefficient of the computed LES fluid flow at
an arbitrary time step while Figure 4.27 (bottom) shows the resulting mapped
pressure field which will be used for the computation of the displacements in
accordance with Equation 4.30. Note how the results are essentially equal,
even though the smallest resolved scales are filtered on the mapped mesh.
However, as the small structures are the less energy containing ones [14] and,
in accordance with Taylor’s hypotheses they will be related with the energy
contained at high frequencies [229] the mapped pressure can be considered to
be accurate enough for low-medium frequencies.
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Figure 4.27: Pressure coefficient distribution at the back plate for: fluid finite
volume mesh (up) and structural finite element mesh (bottom) at an arbitrary
time step of the Large Eddy Simulation solution 171
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4.3.3 Experimental methodology

In order to validate the numerical model, several experimental analyses have
been performed in the KU Leuven silent wind tunnel. The tunnel is generally
used for identification of aeroacoustic sources and acoustic propagation mech-
anism in flow confined environment for the subsonic flow region. A detailed
description can be found in De Roeck et al. [230].

A roots blower is used to generate a time-uniform flow field. In order to
guarantee identical inlet conditions for different measurement campaigns, a
frequency regulator with PID controller, coupled with downstream pressure and
flow rate sensors, is attached to the roots blower. After the roots blower, a heat
exchanger is installed. The presence of the aftercooler is made necessary by
the significant increase of the temperature generated by the roots blower. The
high temperature generates an increase in the speed of sound which alters the
acoustic propagation phenomena. Using the heat exchanger, the temperature
increase is reduced with temperature fluctuations of less than 5 % between
different measurements.

A similar configuration as the one described in section 4.3.1 is used. The
tunnel has a rectangular cross section of 10Lre f width and 5Lre f height. A
steel plate is flush mounted right behind a step with a square cross section of
5Lre f . The step extends over the width of the tunnel cross section. The plate is
20cm long and 15cm wide with a thickness of 0.5mm. In order to obtain a flush
mounted configuration, an external frame is used. The edges of the plate parallel
to the flow direction are clamped between the frame and the duct side walls. The
two sides perpendicular to the flow direction are simply fixed to the frame using
double-sided tape to obtain an approximately simply supported configuration.
The averaged air velocity at the inlet is maintained at V∞ = 22ms−1, with
free stream turbulence intensity lower than 2%. The temperature of the air is
controlled in order to set a Reynolds number of approximately Re = 22710. At
first, in order to validate the plate boundary condition and to identify the modal
behavior of the plate, a modal analysis on the plate for no flow condition has
been performed using hammer test, as explained in Ren et al. [231].

The vibration of the plate under operating condition is measured with
a Polytec scanning vibrometer with a configuration similar to which used by
Roozen et al. [232]. The acquisition is performed on 165 measurement points
regularly spaced over the plate and for each of them 100 averages are performed.
Finally using the Solo PIV laser (for more information, refer to the work of
Butscher et al. [233]) and a high speed camera the flow characteristics are
measured along the tunnel middle plane, normal to the z component, at different
stations along the flow propagation direction, which will allow to accurately
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measure the location of the end of the recirculation bubble, by the inspection of
the velocity field, as will be shown later.
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4.3.4 Results and discussion

Analysis of the fluid flow

One of the main objectives of the current work is to provide a good understand-
ing of the mechanisms governing the flow-induced vibration, and to validate
methodologies currently in use. With these purposes, in this section the main
characteristics of the flow field are analyzed in detail by comparing LES and
RANS results with the experimental measurements.

In order to ensure that the data are independent on the grid resolution it is
recommendable to make a comparison to check that they are almost constant
between each study. Thus, both time averaged and frequency content will be
analyzed. First of all, the predicted forces exerted over the step were computed
and analyzed. These forces are nondimensionlized in accordance with Equation
4.37, where Fy and Fx are the forces perpendicular and parallel to the main
flow, respectively. Their time averaged value, (< CD >,< CL >) and standard
deviation,

(
(< C′2

D >)1/2, (< C′2
L >)1/2)

are shown in Table 4.5 for the different
turbulence modeling (when possible) and grid resolution.

CL = Fy

1/2ρ∞V 2∞Lre f b
CD = Fx

1/2ρ∞V 2∞Lre f b
(4.37)

Table 4.5: Comparison of the force coefficients between RANS and LES compu-
tations for the different mesh resolutions

< CD > (< C′2
D >)1/2 < CL > (< C′2

L >)1/2

LES. Mesh 01 2.173 0.023 1.344 0.033

RANS. Mesh 01 2.062 − 1.214 −
LES. Mesh 02 2.170 0.028 1.435 0.037

RANS. Mesh 02 2.103 − 1.238 −

Note how, for the prediction of the time averaged force coefficients, the
RANS computations can provide with results with a difference of a 5 % and
14% for the prediction of the average horizontal and vertical force coefficients,
respectively. Moreover, the LES computation predicts small variations of these
coefficients around the average value, letting deduce that RANS can provide
acceptable results for those coefficients both quantitatively and qualitatively.
Both the mesh of Nelement ≈ 4×106 and Nelement ≈ 20×106 provide similar
results for the same turbulence modeling. Note how the temporal standard
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deviation of the variables for the finer mesh tends to higher values, suggesting
a higher energy content at medium-high frequencies.

This can be confirmed by Figure 4.28, that shows the time domain response
(up) and the frequency content (bottom) of these forces. This last curve was
calculated applying the fast Fourier transform to the temporal history of the
variables. The sampling length was taken in a way that the terms of the Fourier
series were not substantially changed when adding new samples. It can be
observed that no dominant frequencies exist, and that the spectral content
quickly decays for St > 0.35 . Additionally, note how the frequency content
obtained by the finer mesh is higher, especially at the range of medium high
frequencies.

Figure 4.28: Force time history (up) and frequency content (bottom). Computa-
tion for the mesh with Nelements ≈ 20×106

Another result which is considered to be important in order to evaluate
the predictive capabilities of RANS and LES for the different meshes is the
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reattachment length. The reattachment length is measured using PIV, which
allows to obtain the vectors of the velocity field at a zone near to the location
where the reattachment is expected to lie in, as shown in Figure 4.29 where an
example of the time-averaged field is sketched. The location of the reattachment
length was defined as the place at which the velocity vectors near the down wall
tend to be parallel to the ground (with an angle of less than 0.5deg), with the
same direction as the incoming fluid flow. This zone is represented by the vertical
line of the Figure 4.29 and it was found to be at

(
xreattach/Lre f

)
exp ≈ 10±0.7,

measured from the end of the step.

Figure 4.29: Vectors of time averaged velocity for the identification of the
experimetnal reattachment length

Figure 4.30 shows the contours of the non-dimensionalized time-averaged
velocity obtained with the LES and the RANS methodologies. In both cases,
a small recirculation bubble is found in front of the step, followed by a larger
bubble downstream of the obstacle. Right after this, the flow reattaches again to
the wall at the point highlighted in the figure. Note how, in accordance with the
Figure, the length of the reattachment zone predicted by RANS is noticeably
higher than the same LES prediction.
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Figure 4.30: Time averaged velocity using LES (top) and RANS (bottom) for the
mesh with Nelements ≈ 20×106

From the computational calculations, the reattachment location can be
identified as the point where the time averaged wall shear stress is in the same
direction as the main flow. This criteria is similar to the one stated for the PIV
measurements when the velocity is measured close enough to the wall. This fact
can be easily observed in Figure 4.31, where the non dimensional x component

of the wall shear stress
(

τx
1
2ρ∞V 2∞

)
is shown for RANS and LES computations.

While the LES results are shown for both the finer and coarser meshes, the
RANS is only shown for the fine one in order to ease the interpretation of the
Figure. Notice that, downstream of the step, both RANS and LES calculations
predict the same value for the wall shear stress for non-dimensional distances
below x/Lre f ≈ 5. Nevertheless, the LES scheme predicts that the wall shear
stress reaches zero at a shorter distance, thus leading to a smaller recirculation
bubble. The value of the location of the reattachment length is shown at Table
4.6 for the different grids for LES and RANS. Note how the coarser and finer
LES resolutions allows to obtain a similar value for this parameter.
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Figure 4.31: Average non dimensional wall shear stress after the step (up) and
over the step (bottom) Nelements ≈ 20×106 and identification of the reatahcment
location

Table 4.6: Value of the reatachment mesh for each of the studied computational
calculations. Comparison with the experimental value

Methodology
(
xreattach/Lre f

)
LES. Mesh 01 10.9

RANS. Mesh 01 16.8

LES. Mesh 02 10.7

RANS. Mesh 02 15.7

exp. 10.0

It can be stated then that the agreement between LES and the experiments
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is good for this parameter, for both meshes, whereas the RANS computation fails
in predicting the reattachment length. A reasonable explanation of why RANS
methodology overpredicts the extension of the recirculation zone can be given as
follows: as it can be observed in Figure 4.32, in order to calculate the high values
of turbulent kinetic energy existing in the last part of the shear layer, a zone
with a very high turbulent viscosity ratio (up to µt/µ> 900) is needed. Such high
value of the turbulent viscosity leads to an effective Reynolds number much
lower than the real one. It is well known that, for the case of a medium-high
Reynolds backstep the reattachment length tends to increase when decreasing
the Reynolds number, as it can be found, for instance, in the works of Armaly
et al. [234] or Kostas et al. [235]. Similar results were found by Tropea et al.
[236] or Durst et al. [237] for the case of a wall-mounted 2D obstacle, explaining
why the RANS solution tends to overpredict this parameter.

Figure 4.32: Turbulent viscosity ratio for the RANS computation with the mesh
of Nelements ≈ 20×106

In order to check the resolution of a LES scheme, Celik et al. [238] proposed
an index of quality that has been successfully tested on the works of Lucius et al.
[239], Konnigk et al. [240] or Dastbelaraki et al. [241]. Another useful indicator
derived from these works, which can be used for almost any complex flow, relates
the ratio of the turbulent kinetic energy of the calculated non-filtered structures
(kc) and the kinetic energy introduced by the subgrid-scale (kSGS), as defined in
Equation 4.38 ([38],[14]):

η= kc

kTOT AL
= kc

kc +kSGS
(4.38)

When η> 0.7−0.8 the energy content of the turbulent structures is correctly
resolved (η = 1 means DNS resolution). Both the resolved and the modeled
turbulent kinetic energy can be calculated as defined in Equations 4.39 and
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4.40:

kc = 1
2

(
< v′2x >+< v′2y >+< v′2z >

)
(4.39)

kSGS = Ct
µt

ρ
S (4.40)

Here, v′i = vi−< vi > represents the deviation of the resolved ith component
of the velocity with respect to its time averaged value; Ct = 3.5 is a constant
of the subgrid model; µt represents the turbulent viscosity and S is the strain
tensor computed with the resolved velocity field.

The level of resolution of the LES computation will be analyzed for the
case of the coarser computational grid, with Nelements ≈ 4 ·106, as the finer one
will provide a higher level of resolution. In Figure 4.33 the resolved (top), the
modeled (middle) and the total (bottom) turbulent kinetic energy are shown at
the mid plane. It should be noticed that the computed and total kinetic energy
are quite similar over the whole domain. The most important source of modeled
subgrid kinetic energy can be found at the shear layer just over the step, where
a significant flow velocity gradient exists.

Figure 4.33: Resolved (top), subgrid scale (middle) and total turbulent kinetic
energy at the midplane. Computation for the mesh with Nelements ≈ 4×106
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In order to check the level of resolution of the current simulation, Figure
4.34 shows the ratio of resolved to total turbulent kinetic energy. Observe that,
downstream of the step, it is possible to find a value of η ≥ 0.7 for the whole
domain. Upstream, where the mesh is coarser, a very low resolution zone is
found. Nevertheless, as, in agreement with Figure 4.33, the turbulence kinetic
energy is quite low, and the flow just downstream of the step is highly dominated
by the detached flow, the resolution was considered sufficient for the present
study. Moreover, it should be noted that refining the upstream zone would
lead to a significant increase in the computational cost with small added value.
Figure 4.35 shows the percentile distribution of the ratio of turbulent kinetic
energy (up) and wall y+ for the whole domain. Notice that y+ ≤ 1 for 98% of
near-wall cells and η≥ 0.80 for 92% of the cells.

Figure 4.34: Ratio of resolved over total turbulent kinetic energy at the midplane.
Computation for the mesh with Nelements ≈ 4×106
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Figure 4.35: Distribution of the ratio of resolved over total turbulent kinetic
energy and wall y+. Computation for the mesh with Nelements ≈ 4×106

The unsteady velocity field was constantly recorded in some points of
interest. As an example, Figure 4.36 shows the analysis of the deviation of the
velocity components from their mean value at a point located over the shear
layer, at a point P1, located at the centerline, and defined by x/Lre f = 20/3 and
y/Lre f = 4/3, for the mesh with Nelements ≈ 20×106. The left plot shows the time
history of the velocity while the right one shows its frequency content. Again
the absence of any kind of dominant frequency can be observed.

This is corroborated by the instantaneous velocity field shown in Figure
4.37 for an arbitrary time step at the mean plane and at the wake. In this
Figure, it can be observed how the largest turbulent structures in the field are
approximately of the same size as the obstacle. Also it should be noted how
it is not possible to identify any kind of coherent vortex shedding, which is in
agreement with the non-existence of dominant frequencies.
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Figure 4.36: Velocity time history (up) and frequency content (bottom) at a
point P1, located near to the main shear layer. Computations for the mesh with
Nelements ≈ 20×106
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Figure 4.37: Visualization of turbulent strucures at an arbitrary instant for
the computation with Nelements ≈ 20×106. Contour of instantaneous velocity
field at the midplane (top) and volumetric render of the low velocity at the wake
(bottom)

The spectrum of the kinetic energy content at point P1 is shown in Figure
4.38 (up) for the two different meshes, it should be noted how the refined mesh
allows one to obtain a meaningful higher level of energy. The direct effect of
this will be later explained when examining the prediction of the flexible plate
vibration. Note how the inertial subrange can be identified by the -5/3 slope,
ranging from St= 0.35 up to St= 1.681. For the large scale energy-containing
subrange, the energy spectrum is quite flat, which agrees with the absence of
any kind of dominant frequency. A similar tend can be observed in Figure 4.38
(bottom), where the frequency content of the pressure coefficient at a the point
G5, located at the plate, is shown. Note, how, in a similar way as for the energy
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spectra, higher values of the frequency content are observed for the finer mesh.

Figure 4.38: Energy spectra at the point located near to the shear layer, P1
(up) and frequency content of the pressure coefficient at a point located over the
plate, at point G5. Comparison between different meshes

Structural model validation

As it could be expected, the prediction of the flow-induced vibration is strongly
influenced by the quality of the structural model. Moreover, when the plate is
excited by a turbulent unsteady pressure, with a significant spectral content in
a wide frequency range, a correct estimation of the natural frequencies of the
system becomes vital.

Although it could be argued that, due both to the pre-load state and the
added mass effect, the structural eigenfrequencies will not be the same as those
corresponding to the structure response under the action of a moving fluid, in
fact significant differences should not be expected, due to the low values of the
mean pressure, fluid density and Mach number. Therefore the isolated structure
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model is a good approximation, as verified by the study of Frampton [242].

In Table 4.7 the numerical values of the first 10 eigenfrequencies are
shown. Notice that, although they correspond to the vibration of the plate in
vacuo, they have been non-dimensionalized by using the fluid flow inlet velocity
( f ∗ = f ·Lre f /V∞). The parameters for non-dimensionalization were chosen in
order to maintain the coherence on the presentation of the results of the current
work. From Table 4.7 it can be seen how, despite the simple set of boundary
conditions which was supposed for the current study, the agreement between
prediction and measurement is good.

Table 4.7: Structural eigenfrequencies of the flat plate

f ∗1 f ∗2 f ∗3 f ∗4 f ∗5 f ∗6 f ∗7 f ∗8
Num 0.104 0.143 0.237 0.243 0.292 0.376 0.382 0.461
Exp 0.112 0.140 0.227 0.249 0.295 0.359 0.389 0.425
ε 0.036 0.024 0.043 -0.025 -0.009 0.071 0.020 0.078

Figure 4.39: Calculated modal displacements

To validate the prediction of the modal shapes, the numerical (φnum
i ) and

experimental (φexp
i ) eigenvectors are compared by means of the Modal Assur-
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ance Criteria (MAC) [243] which allows to define a MAC matrix, as stated by
Equation 4.41:

MACi j =
 φnumT

i ·φexp
j∣∣∣∣φnum

i

∣∣∣∣ ∣∣∣∣φexp
i

∣∣∣∣
2

(4.41)

where, MACii = 1 means perfect agreement between the numerical and ex-
perimental mode shape and MACi j = 0 means perfect orthogonality between
the numerical ith and the experimental jth eigenfunctions. Figure 4.40 shows
a visual representation of this matrix, where a good agreement between the
experimental and numerical data can be observed. MAC coefficients are always
above 0.70 at the diagonal and below 0.20 for the terms out of the diagonal.
However, it can be noted how modes 4th and 3rd are slightly superimposed.
This difference can be attributed to the closeness of the frequencies of these
modes (there exist a difference of less than a 3% both in measurements and
computations).

Figure 4.40: Modal Assurance Criterion matrix
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Flow induced vibrations

The detached flow downstream of the step generates a turbulent fluctuating
pressure, which excites the back plate. As a consequence, this structure experi-
ences a time averaged mean displacement due to the action of the time average
pressure and a fluctuating displacement due to pressure fluctuations. Therefore,
the correct estimation of the pressure acting over the plate becomes of crucial
importance for the correct estimation of the displacement. Figure 4.41 (up)
shows the evolution of the time-averaged pressure coefficient downstream, com-
paring the RANS and LES results, computed at the mean line which was shown
at Figure 4.24. Figure 4.41 (bottom) shows the mean displacement appearing in
response to such mean pressure.

Figure 4.41: Time averaged pressure coefficient (up) and mean line plate dis-
placement (bottom) after the step. Comparison between LES and RANS compu-
tations using different meshes

As it can be observed, the LES calculation predicts a lower value of the
pressure in the recirculation bubble. Also, the extension of the low pressure zone
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is less pronounced and the minimum value is located a 30% closer to the obstacle
position. These results are highly in agreement with the best capacity of the
LES computation to accurately predict the extension of the recirculation zone,
as could be deduced from literature comparing the works of Yang et al. [216]
or Werner et al. [244], where the flow over a similar configuration is analyzed
using LES and the works of Schmidt et al. [245] or Ariff et al. [246], who used
RANS in order to characterize the flow. Note how, As the location of the lowest
value of the pressure is not in the center of the plate, the deformation which it
experiences is not symmetric.

Table 4.8 shows a comparison of the main values extracted from Figure
4.41 which are: (i) the location of the point of minimum pressure coefficient,(

x
Lre f

)
cpmin

; (ii) the value of the minimum pressure coefficient, cpmin ; (iii) the

location of the maximum plate displacement
(

x
Lre f

)
uymax

and (iv) the value of the

maximum plate displacement uymax
Lre f

. Note how, despite the location of the mini-
mum pressure coefficient point is highly overpredicted by the RANS calculation
by a 30% in comparison with LES this translates at a difference of only 11% on
the prediction of the location of the point of maximum amplitude.

Table 4.8: Time averaged displacement predictions using different turbulence
modelling and computational grids(

x
Lre f

)
cpmin

cpmin

(
x

Lre f

)
uymax

uymax
Lre f

LES. Mesh 01 2.91 -1.34 5.99 0.0162

RANS. Mesh 01 4.07 -1.47 6.67 0.0149

LES. Mesh 02 2.75 -1.30 5.75 0.0159

RANS. Mesh 02 3.99 -1.44 6.53 0.0144

Figure 4.42 shows the spatial distribution of the time-averaged non-dimensional
displacement of the plate for the LES (top) and RANS (bottom) models. The
point of maximum time-averaged displacement is highlighted in both figures.
It can be observed that, as expected, the displacement field is symmetric with
respect to z axis and the maximum displacement point is displaced towards the
step. This fact is more clearly noticeable for the LES calculation.
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Figure 4.42: Time averaged displacement field with LES (top) and RANS (bot-
tom) computations. Computation with the mesh of Nelements ≈ 20×106

The transient flow field which features have been analyzed so far, induces
a fluctuating pressure field over the plate located at the rear part of the step.
This fluctuating pressure excites the plate, which acquires a vibrational motion
superimposed onto the mean displacement analyzed in Figure 4.41.

Figure 4.43 shows the behavior of the fluctuating pressure at four points on
the plate: point G1, located at x/Lre f = 1; G3 at x/Lre f = 3; G5 at x/Lre f = 5 and
G8 at x/Lre f = 8. All the points were located at the middle plane (z/Lre f = 5).
The frequency content at low frequencies is in agreement with the averaged
pressures shown in Figure 4.41, tending to lower values (closer to atmospheric
pressure) as the point is located farther from the obstacle. Also, from St> 0.15
the frequency content of the pressure for all the shown points tends to rapidly
decay.
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Figure 4.43: Time history (up) and frequency content (bottom) of the unsteady
pressure coefficient at points located over the plate for the mesh of Nelements ≈
20×106

The fluctuating pressure history was used as an excitation for the flat plate,
whose deformations were computed and compared with experimental measure-
ments. Figure 4.44 shows the displacement field for six different frequencies
close to the eigenfrequencies of the structural system. A visual comparison
with Figure 4.39 suggest all the modes participate in the deformation of the
plate at the evaluated frequency range. The modal participation of the first
modes was quantitatively calculated for these frequencies in a similar way as
proposed by Chopra [247]: the response of the structure to a vibratory loading
can be expressed in accordance with Equation 4.42, assuming a system with N
participating modal forms:

u(x, z, f )=
N∑

i=1
ηi( f )φi(x, z) (4.42)
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where φi denotes the ith eigenfunction, which was previously calculated and
shown at Figure 4.39 and ηi represents contribution of the ith mode to the
response of the plate at frequency f . Figure 4.45 shows these values in order to
specify the contribution of the first seven modes to the total response. For an
easier interpretation, they have been scaled so that a value of 1 correspond to
the maximum modal contribution of the first mode for the first frequency.

Note how the frequencies of the 3rd and 4th modes are very close (less
than 3% of separation). Also, it can be easily observed that, at the frequency
of the fourth mode (St≈ 0.243), the contributions of the 3rd and the 4th modes
are comparable, thus supporting the explanation given of why the 4th mode
cannot be clearly observed in the frequency response of the averaged surface
displacement, as will be stated later.

Figure 4.44: Frequency response of the plate displacement under the action of
the turbulent pressure field at different frequencies
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Figure 4.45: Modal contribution of each eigenvector to the total displacement of
the plate under the action of the turbulent pressure field at different frequencies.
Only the first 7 modes are shown

Additionally, Figure 4.46 (up) shows the spatial-average frequency response
of the displacements over the plate, which are calculated as stated in Equation
4.43.

ūy( f )=

√√√√Î
plate u2

y( f )dA

Aplate
(4.43)

Figure 4.46 (up) shows a comparison between the experimental and com-
puted spatial-averaged vibration of the plate for a range of frequencies ranging
from f ·Lre f /V∞ ≈ 0 to f ·Lre f /V∞ ≈ 1.300 ( f = 1900Hz). Note how, for frequen-
cies below f ·Lre f /V∞ ≈ 0.800, both the coarse and the fine mesh provide results
which are excellent in agreement with those deduced from the experiments. For
frequencies above this value it is shown that the computations with the coarse
mesh tend to underpredict the level of the displacement although, as expected,
exhibiting the peaks at the same frequencies than the other computation.

As opposed to the pressure spectrum, some peaks can be observed in the
displacement spectrum. The plate resonates at all its eigenfrequencies, which
can be visually identified from Figure 4.46 and compared with the eigenvectors
shown in Figure 4.39. Only the 4th structural mode is hardly observed in the
figure, but as it is very close to that of the third mode it may be masked in the
frequency response. The discrepancy between computations for medium values
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of the frequency can be explained due to the filtering effect which the gross mesh
exhibits over the energy content.

In order to compare with previous works, Figure 4.46 (bottom) shows the
results which were obtained by Schafer et al. [198]. Note how, as the plate
characteristics are different, current results can only be qualitatively compared
with this. Nevertheless, it is important to note how the current computation
provides more accurate results both in excitation level and peaks location.

There are, however, some discrepancies between the current calculation
and the experiments. For example, a discrepancy of an 8 % was found on the
prediction of the first eigenfrequency. This can mainly due to the approximations
made on the boundary conditions. Using non-infinitely stiff boundary conditions
could provide a better prediction, but it is out of the scope of this contribution.
The same reasoning could be argued in order to explain why there are some
discrepancies at the peaks location at high frequencies.

Figure 4.46: Mean displacement spectra for the current calculation (up) and
collection of the displacements results taken from Schafer et al. for a plate of
thickness h = 40 µm (bottom)

194



4.3. Prediction of Flow Induced Vibration of a flat plate located after a wall
mounted obstacle. Aerovibroacoustics

Extension of the case and computation of the radiated noise

Once the vibration response has been computed and validated against experi-
ments, it is possible to extend it in order to deduce the influence of the different
structural parameters, or even the own fluid parameters on the response. In fact,
if it is assumed that the dependence with Reynolds number is approximately
negligible and that the geometry is fixed to the already mentioned flat plate,
it was observed how the system will only depend on the relationship between

elastic and fluid forces, E
6(1−ν2)V 2∞

(
h

Lre f

)3
and on the relationship between the

solid and fluid mass, 8π2 h
Lre f

ρ0
ρ∞

.

In this sense, one interesting analysis can be found on the dependence over
the vibration response of the selection of the wall thickness. Note that, when
this parameter is changed, both k∗ and m∗ experiment variation. For instance,
Figure 4.47 shows the evolution of the maximum computed normal displacement
when the thickness of the plate is h/hre f = 1, h/hre f = 2 and h/hre f = 5, being
hre f = 0.5 mm the reference thickness of the previous paragraphs.

Figure 4.47: Maximum displacement spectra for the calculation with the mesh
with N = 20 ·106 elements for different values of the plate thickness

In Figure 4.47 it can be observed how, as it could be expected, the value
of the computed displacement is significantly decreased when increasing the
thickness of the plate. Moreover, due to the cubic dependence of the stiffness
parameter with h and the linear dependence with this parameter of the mass
ratio, a linear dependence of the eigenfrequencies is observed with h. Note how,
additional studies could be performed changing the value of other parameters,
although, for reasons of brevity it will be not carried out during this work.
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Finally, once the vibrational response is computed on the wall, it can be
used as a boundary condition in order to predict the radiated aerovibroacoustic
noise. In order to do this, a rigid chamber is of height Lchamber = 13.3Lre f is
mounted below the flexible plate, as sketched in Figure 4.48. Here, the acoustic
mesh is also shown, which is constructured by second order hexahedral elements
with constant size of ∆x = Lre f /3, which was found to be an accurate size for the
computed lengthwaves.

Figure 4.48: Sketch of the acoustic domain for the computation of vibration-
radiated noise

The chamber is supposed to be filled with air, initially at rest, with den-
sity ρc = 1.225 kg m−3 and a sound velocity of ac = 340 m s−1. Therefore, the
Helmholtz equations, 4.16 are complied inside this volume, and they can be
resolved using the methodology explained in the previous section.

After performing such calculation, Figure 4.49 can be obtained. Here, the
maximum magnitude of the acoustic pressure level inside the chamber is shown.
Note that, instead of non-dimensionalizing by using the usual pre f = 20µ Pa,
the dynamic pressure is used as a reference, in order to make this Figure more
independent from the boundary conditions.

Some interesting conclusions can be extracted from the observation of
Figure 4.49: first, as a general trend, it is found how the sound pressure level
inside the chamber for low frequencies is decreased by orders of magnitude
when increasing the plate thickness. Additionally, it can be observed how, again,
each structural eigenfrequency can be observed as a peak on the frequency
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response. However, some additional peaks can be observed in this calculation,
corresponding with the excitation of the rigid chamber eigenfrequency.

Figure 4.49: Maximum value of the non dimensional acoustic pressure inside
the chamber for different values of the plate thickness

The acoustic pressure field can also be interpreted from the observation
of Figure 4.50. Here, isosurfaces of the absolute value of the non dimensional
acoustic pressure are shown for h/hre f = 1 (first row), h/hre f = 2 (second row)
and h/hre f = 5 (third row). Note that the Figure iith represents the frequency
at which the structural eigenfrequency of the corresponding thickness is excited.
Due to the important magnitude differences between the cases, the colormap
is shown in a qualitative way (despite the maximum and minimum values are
shown at each corresponding subfigure).

Note how, before each mode is excited, the qualitative sound pressure field
is very similar regardless with the value of the plate thickness: A very uniform
distribution is observed (see maximum at minimum values at each case) and a
flat wave-like pattern is found relatively near to the deforming plate.

For higher values of the frequency, in all the cases it can be observed an
important difference between the maximum and minimum computed sound
pressure and more complex patterns on the isosurfaces.
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Figure 4.50: Frequency response of the plate displacement under the action of
the turbulent pressure field at different frequencies
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4.3.5 Partial conclusions

Numerical and Experimental investigations on the flow-induced vibration of a
flat plate have been presented. The plate was excited by the turbulent fluid flow
downstream of a wall-mounted obstacle.

The numerical model was validated using dedicated experiments, both for
the structural eigenfrequencies and the coupled fluid-structure response.

A one-way interaction scheme has been proved to provide good results
for a relatively thin plate (0.5mm) due to the low amplitude of the vibrations
and allows a fully characterization of all the phenomena intervening in the
Flow induced vibrations. For lower values of the thickness of the plate, as is
the case of Schafer et al. [198] one way cannot be assumed anymore, as plate
displacements can highly affect to the behavior of the own flow. However, for
normal working conditions this will not be the case and the current methodology
allows to obtain accurate results with a lower computational cost.

Numerical simulations were performed using RANS and LES, and two
different mesh resolutions, with N ≈ 4×106 and N ≈ 20×106 elements. It was
shown how, although the RANS computations tends to overpredict the location
of the reattachment length it allows to obtain a good representation of the time
averaged plate displacement, considering the low computational requirements of
this methodology, compared with LES computations. Additionally, it was shown
how both grids resolutions allow to obtain similar results when using LES
for the current configuration. However, as a general tend, the high frequency
content of the variables was shown to be more meaningful for the finer mesh.

Both numerical computation and experiments show that almost all the
vibration modes can be identified from the induced vibration field for the studied
frequency range. Fourth vibration mode is less clear due to being close to the
third one. Numerical data and experiments agree well for low frequencies for
the LES .

It was shown how, for low values of the frequency
(

f Lre f
V∞

)
, both grid res-

olutions allows to obtain a correct prediction of the plate mean displacement,
compared with the experiments, both qualitatively and quantitatively. For
higher frequencies, the coarse mesh tends to underpredict the value of the
displacement, due to the lower mesh resolution, which tends to filter the high
frequency energy of small eddies. Nevertheless, under these conditions, the
results of the coarse mesh allows to qualitatively predict the behavior of the
plate.
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As the simulation results agrees well with empirical observations, it has
been shown how the vibration pattern for a plate located after a wall mounted
bluff body is mainly governed by the turbulence generated by the own body,
being the influence of the inflow turbulence of second order.

It has been shown how the vibrational response can be used as a boundary
condition in order to predict the radiated vibration noise for arbitrary chamber
geometries. The capabilities of the one way methodology have been illustrated
by presenting a parametric analysis of the influence of the plate thickness.

4.4 Summary and conclusions

During this chapter, the applicability of the fluid structure interaction concepts
has been illustrated by means of presenting two different engineering like
applications. It has been deduced how a wide number of the industrial fluid
structure interaction cases can be supposed to be coupled in only one direction.
Moreover, during the presentation of the first case it was shown how, by choosing
the proper numerical methodology by means of a previous order of magnitude
dimensional analysis not only a less computationally demanding process can
be followed, but it even allows one to obtain more valuable (and interpretable)
results due to the elimination of some of the important FSI tool possible choices
(see Figure 4.46).

The same methodology was applied to the case of the motion of pressure
waves inside a flexible muffler. Here, it was shown how the most proper reference
velocity for the non dimensionalization could be the pressure wave speed. It
was made a comparison between the results of a monolithic approach using the
Helmholtz equations (using the commercial software COMSOL) and the results
for the same case using a segregated implicit approach to solve the time domain
Euler equations (using the commercial software STAR-CCM+).Additionally, it
was shown how, as expected due to previous work, that important coupling
between fluid and solid appear at low frequencies for a very low value of the
wall Young’s Modulus.

200



4.5. References

4.5 References

[14] S. Pope. Turbulent Flows. Ed. by C. U. Press. Cambridge University
Press, 2009 (cit. on pp. 17, 18, 76, 169, 170, 179).

[20] O. Zienkiewicz, R. Taylor, and P. Nithiarasu. “The Finite Element Method
for Fluid Dynamics”. In: Butterworth-Heinemann (2014) (cit. on pp. 17,
130, 131).

[32] F. Menter. “Zonal two-equation k−ω turbulence model for aerodynamic
flows”. In: AIAA, Orlando, Florida 93 (1986), pp. 93–2906 (cit. on pp. 19,
169).

[35] J. Smagorinsky. “General Circulation Experiments with the Primitive
Equations: Part I, The Basic Experiment”. In: Monthly Weather Review
91 (1963), pp. 99–164 (cit. on pp. 19, 166).

[38] F. Nicoud and F. Ducros. “Subgrid-Scale Stress Modelling Based on
the Square of the Velocity Gradient Tensor”. In: Flow, Turbulence and
Combustion 62 (1999), pp. 183–200 (cit. on pp. 19, 166, 179).

[162] P. Bremner and J. Wilby. “Aero-vibro-acoustics: problem statement and
methods for simulation-based design solution”. In: 8th AIAA/CEAS
Aeroacoustics Conference and Exhibit (2002), p. 2551 (cit. on p. 121).

[163] X. Gloerfelt and J. Berland. “Turbulent boundary-layer noise: direct
radiation at Mach number 0.5”. In: Journal of Fluid Mechanics 723
(2013), pp. 318–351 (cit. on p. 122).

[164] D. Lecoq, C. Pezerat, J. Thomas, and W. Bi. “Extraction of the acoustic
component of a turbulent flow exciting a plate by inverting the vibration
problem”. In: Journal of Sound and Vibration 333 (2014), pp. 2505–2519
(cit. on p. 122).

[165] S. Amailland, J. Thomas, C. Pezerat, and R. Boucheron. “Boundary
layer noise substraction in hydrodynamic tunnel using robust principal
component analysis”. In: The Journal of the Acoustical Society of America
143 (2018), pp. 2152–2163 (cit. on p. 122).

[166] W. H. O. for the European Union. Night Noise Guidelines for Europe.
Tech. rep. 2010 (cit. on p. 123).

[167] E. Union. On the sound level of motor vehicles and of replacement silenc-
ing systems. Regulation (EU) No 540/2014 of the european parliament
and of the council of 16 April 2014. Tech. rep. 2014 (cit. on p. 123).

[168] C. H. Hansen. Understanding active noise cancellation. Spon Press, 2003
(cit. on p. 123).

201



4. FLUID STRUCTURE INTERACTION APPLIED TO VIBROACOUSTICS

[169] Y. L. A. Linus, Y. K. Koh, and H. P. Lee. “The performance of active noise-
cancelling headphones in different noise environments”. In: Applied
Acoustics 122 (2017), pp. 16–22 (cit. on p. 123).

[170] H. D. Hwang, K. Ege, Y. Gerges, and J. L. Guyader. “SmEdA vibro-
acoustic modelling in the mid-frequency range including the effect of
dissipative treatments”. In: Journal of Sound and Vibration 393 (2017),
pp. 187–215 (cit. on p. 123).

[171] M. L. Munjal. Acoustics of Ducts and Mufflers - Second Edition. Wiley,
2014 (cit. on pp. 123, 124, 133, 137, 138).

[172] B. Aydemir and A. Ebrinç. “Effect of Material Properties and Wall Thick-
ness of Polymer Based Intake Manifold on the Engine Radiated Noise
Levels”. In: SAE International 2001-01 (2009), p. 1544 (cit. on pp. 123,
124).

[173] R. F. Nunes, C. F. Nogueira, M. A. Argentino, and D. Hackenbroich.
“Developement of an Air Intake System Using Vibro-Acoustics Numerical
Modeling”. In: SAE International 2001-01 (2001), p. 1519 (cit. on p. 124).

[174] K. Hu, C. Lee, E. Homsi, and D. Moenssen. “Acoustic Modeling and
Radiated Noise Prediction for Plastic Air-Intake Manifolds”. In: SAE
International 2003-01 (2003), p. 1448 (cit. on p. 124).

[175] L. Huang. “Modal analysis of a drumlike silencer”. In: The Journal of the
Acoustical Society of America 112 (2002), pp. 2014–2015 (cit. on p. 124).

[176] H. K. Fan, R. C. Leung, and G. C. Lam. “Numerical analysis of aeroacoustic-
structural interaction of a flexible panel in uniform duct flow”. In: The
Journal of the Acoustical Society of America 137 (2015), pp. 3115–3126
(cit. on p. 124).

[177] J. B. Lawrie. “Analytic mode-matching for acoustic scattering in three
dimensional waveguides with flexible walls: Application to a triangular
duct”. In: Wave Motion 50 (2013), pp. 542–557 (cit. on p. 124).

[178] S. Ramamoorthy, S. Grosh, and J. M. Dodson. “A theoretical study of
structural acoustic silencers for hydraulic systems”. In: The Journal
of the Acoustical Society of America 111 (2012), pp. 2097–2108 (cit. on
p. 124).

[179] S. H. Ko. “Sound Wave Propagation In A Two-dimensional Flexible
Duct In The Presence Of An Inviscid Flow”. In: Journal of Sound and
Vibration 175 (1994), pp. 279–287 (cit. on p. 124).

[180] F. Gautier, J. Gilbert, J. P. Dalmont, and R. P. Vila. “Wave Propagation
in a Fluid Filled Rubber Tube: Theoretical and Experimental Results
for Korteweg’s Wave”. In: Acta Acustica united with Acustica 93 (2007),
pp. 333–344 (cit. on p. 124).

202



4.5. References

[181] B. Venkatesham, M. Tiwari, and M. L. Munjal. “Analytical prediction of
break-out noise from a reactive rectangular plenum with four flexible
walls”. In: The Journal of the Acoustical Society of America 128 (2010),
pp. 1789–1799 (cit. on p. 124).

[182] G. Wang, W. L. Li, J. Du, and W. Li. “Prediction of break-out sound from a
rectangular cavity via an elastically mounted panel”. In: The Journal of
the Acoustical Society of America 139 (2016), pp. 684–692 (cit. on p. 124).

[183] M. L. Munjal and P. T. Thawani. “Prediction of the vibro-acoustic trans-
mission loss of planar hose-pipe systems”. In: The Journal of the Acousti-
cal Society of America 101 (1998), pp. 2524–2535 (cit. on p. 124).

[184] A. Cummings. “The attenuation of sound in unlined ducts with flexible
walls”. In: Journal of Sound and Vibration 174 (1994), pp. 433–450 (cit.
on p. 124).

[185] F. Hilderbrand and E. Reissner. The influence of the aerodynamic span
effect on the magnitude of the torsional-divergence velociy and on the
shape of the corresponding deflection mode. Tech. rep. NACA-TN-926.
Massachusetts, Inst of Tech Cambridge: NACA, 1944 (cit. on p. 126).

[186] R. L. Bisplinghoff, H. Ashley, and R. L. Halfman. Aeroelasticity. Courier
Corporation, 1996 (cit. on p. 126).

[187] U. Jeong and S. Kwon. “Sequential numerical procedures for predicting
flutter velocity of bridge sections”. In: Journal of Wind Engineering and
Industrial Aerodynamics 91 (2003), pp. 291–305 (cit. on p. 126).

[188] G. Schewe and A. Larsen. “Reynolds number effects in the flow around
a bluff bridge deck cross section”. In: Journal of Wind Engineering and
Industrial Aerodynamics 74 (1998), pp. 829–838 (cit. on p. 126).

[189] B. Augier, P. Bot, F. Hauville, and M. Durand. “Experimental valida-
tion of unsteady models for fluid structure interaction: Application to
yacht sails and rigs”. In: Journal of Wind Engineering and Industrial
Aerodynamics 101 (2012), pp. 53–66 (cit. on p. 126).

[190] Y. Zhang, W. G. Habashi, and R. Khurram. “Predicting wind-induced
vibrations of hight-rise buildings using unsteady CFD and modal analy-
sis”. In: Journal of Wind Engineering and Industrial Aerodynamics 136
(2015), pp. 165–179 (cit. on p. 126).

[191] M. Ricci, L. Patruno, I. Kalkman, S. Miranda, and B. Blocken. “Towards
LES as a design tool: Wind loads assessment on a high-rise building”. In:
Journal of Wind Engineering and Industrial Aerodynamics 180 (2018),
pp. 1–18 (cit. on p. 126).

203



4. FLUID STRUCTURE INTERACTION APPLIED TO VIBROACOUSTICS

[192] H. Davies. “Sound from turbulent boundary layer excited panels”. In:
The Journal of the Acoustical Society of America 49 (1971), pp. 878–889
(cit. on p. 127).

[193] W. Graham. “Boundary Layer Induced Noise in Aircraft, Part 1: The
Flat Plate Model”. In: The Journal of Sound and Vibration 192 (1996),
pp. 101–120 (cit. on p. 127).

[194] M. Howe. “Influence of Mean Flow on Boundary Layer Generated Inte-
rior Noise”. In: Journal of the Acoustical Society of America 99 (1996),
pp. 3401–3411 (cit. on p. 127).

[195] K. Frampton. “Power Flow in an Aeroelastic PLate Backed by a Rever-
erant Cavity”. In: Journal of the Acoustical Society of America 102 (1997),
pp. 1620–1627 (cit. on p. 127).

[196] M. Springer, C. Scheit, and S. Becker. “Fluid-struture-acoustic copling
for a flat plate”. In: International Journal of Heat and Fluid Flow 66
(2017), pp. 249–257 (cit. on pp. 127, 128).

[197] S. Mueller, S. Becker, T. Biermeier, F. Schaefer, J. Grabinger, M. Kaltenba-
her, and D. Blanchet. “Investigation of the Fluid-Structure Interaction
and the Radiated Sound of Different Plate Structures Deepending on
Various Inflows”. In: 15th AIAA/CEAS Aeroacoustics Conference (30th
AIAA Aeroacoustics Conference) (2009), p. 3390 (cit. on p. 127).

[198] F. Schafer, S. Müller, T. Uffinger, S. Becker, J. Grabinger, M. Kaltenbaher,
and D. Blanchet. “Fluid-structure-acoustic interaction of the flow past a
thin flexible structure”. In: AIAA journal 48 (2010), pp. 738–748 (cit. on
pp. 127, 128, 162, 168, 194, 199).

[199] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid-
Structure Interaction. Methods and Applications. Wiley, 2013 (cit. on
p. 130).

[200] F. Irgens. Continuum mechanics. Springer, 2008 (cit. on p. 130).

[201] F. Anselmet and P. O. Mattei. Acoustics, Aeroacoustics and Vibrations.
Wiley, 2016 (cit. on p. 132).

[202] Y. Inoue and Y. Gotoh. “Formation of weak shock waves caused by a
sphere pulsating at large amplitude and low frequency”. In: Journal of
Sound and Vibration 145 (1991), pp. 269–280 (cit. on p. 132).

[203] M. J. Lighthill. “Viscosity effect in sound waves of finite amplitude”. In:
Survey in Mechanics 250 (1956), pp. 337–348 (cit. on p. 132).

204



4.5. References

[204] E. C. Romão, M. D. Campos, and L. F. M. Moura. “Application of the
Galerkin and Least-Squares Finite Element Methods in the solution of
3D Poisson and Helmholtz equations”. In: Computers and Mathematics
with Applications 62 (2011), pp. 4288–4299 (cit. on p. 134).

[205] COMSOL Multiphysics 5.2 User’s Guide. 2016 (cit. on p. 134).

[206] A. Broatch, X. Margot, A. Gil, and F. Denia. “A CFD approach to the
computation of the acoustic response of exhaust mufflers”. In: Journal of
Computational Acoustics 13 (2005), pp. 301–316 (cit. on pp. 134, 137).

[207] G. Liu, X. Zhao, W. Zhang, and S. Li. “Study on plate silencer with
general boundary conditions”. In: Journal of Sound and Vibration 333
(2014), pp. 4881–4896 (cit. on p. 136).

[208] R. Barbieri and N. Barbieri. “Finite element acoustic simulation based
shape optimization of a muffler”. In: Applied Acoustics 67 (2006), pp. 346–
357 (cit. on p. 137).

[209] STARCCM+ 12.02.010 User’s Guide. 2016 (cit. on p. 140).

[210] F. J. Fuenmayor, F. D. Denia, J. Albelda, and E. Giner. “H-adaptive refine-
ment strategy for acoustic problems with a set of natural frequencies”. In:
Journal of Sound and Vibration 255 (2002), pp. 457–479 (cit. on p. 141).

[211] J. Herrmann, J. Koreck, M. Matthias, L. Gaul, and O. Estorff. “Frequency-
dependent damping model for the hydroacoustic finite element analysis
of fluid-filled pipes with diameter changes”. In: Mechanical Systems and
Signal Processing 25 (2011), pp. 981–990 (cit. on p. 156).

[212] A. David, F. Hugyes, N. Dauchez, and E. Perrey-Debain. “Vibrational
response of a rectangular duct of finite length excited by a turbulent
internal flow”. In: Journal of Sound and Vibration 422 (2018), pp. 146–
160 (cit. on p. 162).

[213] S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells.
Ed. by McGraw-Hill. 1959 (cit. on p. 164).

[214] G. Warburton. “The vibration of rectangular plates”. In: Proceedings of
the Institution of Mechanical Engineers 168 (1954), pp. 371–384 (cit. on
p. 164).

[215] K. Bathe and H. Zhang. “Finite element developments for general fluid
flows with structural interactions”. In: International Journal for numeri-
cal methods in engineering 60 (2004), pp. 213–232 (cit. on p. 164).

[216] K. Yang and F. J.H. “Large-Eddy Simulation of Turbulent Obstacle Flow
Using a Dynamic Subgrid-Scale Model”. In: AIAA Journal 31 (1993),
pp. 1406–1413 (cit. on pp. 165, 189).

205



4. FLUID STRUCTURE INTERACTION APPLIED TO VIBROACOUSTICS

[217] X. Zhengtong and I. Castro. “LES and RANS for turbulent flow over
arrays of wall-mounted obstacles”. In: Flow Turbulence Combust 76
(2006), pp. 291–312 (cit. on p. 165).

[218] C. Moussaed, M. Salvetti, S. Wornom, B. Koobus, and A. Dervieux. “Sim-
ulation of the flow past a circular cylinder in the supercritical regime by
blending RANS and variational-multiscale LES models”. In: Journal of
Fluids and Structures 47 (2014), pp. 114–123 (cit. on p. 166).

[219] G. Malloupas, G. Goldin, Y. Zhang, P. Thakre, N. Krishnamoorthy, R.
Rawat, D. Gosman, J. Rogerson, and G. Bulat. “Investigation of an In-
dustrial Gas Turbine Combustor and Pollutant Formation Using LES”.
In: ASME Turbo Expo 2017: Turbomachinery Technical Conference and
Exposition (2017) (cit. on p. 166).

[220] P. Bearman and T. Morel. “Effect of free stream turbulence on the flow
around bluff bodies”. In: Progress in aerospace sciences 20 (1983), pp. 97–
123 (cit. on p. 169).

[221] Y. Nakamura and S. Ozono. “The effects of turbulence on a separated and
reattaching flow”. In: Journal of Fluid Mechanics 178 (1987), pp. 477–
490 (cit. on p. 169).

[222] G. Ratnam and S. Vengadesan. “Performance of two equation turbulence
models for prediction of flow and heat transfer over a wall mounted
cube”. In: International Jounral of Heat and Mass Transfer 51 (2008),
pp. 2834–2846 (cit. on p. 169).

[223] S. Archaya, S. Dutta, T. Myrum, and R. Baker. “Turbulent flow past a
surface-mounted two-dimensional rib”. In: Journal of Fluids engineering
116 (1994), pp. 238–246 (cit. on p. 169).

[224] D. Ding and S. Wu. “Direct numerical simulation of turbulent flow over
backward-facing at high Reynolds numbers”. In: Science China 55 (2012),
pp. 3213–3222 (cit. on p. 169).

[225] D. Wilcox. “Multiscale model for turbulent flows”. In: Proceedings of the
24th AIAA Aerospace Science Meeting 24 (1986), pp. 1311–1320 (cit. on
p. 169).

[226] P. A. Ullrich and M. Taylor. “Arbitrary-order conservative and consistent
remapping and theory of linear maps: Part I”. In: Monthly Weather
Review 143 (2015), pp. 2419–2440 (cit. on p. 170).

[227] P. A. Ullrich and M. Taylor. “Arbitrary-order conservative and consistent
remapping and theory of linear maps: Part II”. In: Monthly Weather
Review 144 (2016), pp. 1529–1549 (cit. on p. 170).

206



4.5. References

[228] P. Jones. “First- and second-order conservative remapping schemes for
grids in spherical coordinates”. In: Monthly Weather Review 127 (1999),
pp. 2204–2210 (cit. on p. 170).

[229] G. Taylor. “The spectrum of turbulence”. In: Proceedings of the Royal
Society of London (1938), pp. 476–490 (cit. on p. 170).

[230] W. De Roeck and W. Desmet. “Experimental acoustic identification of flow
noise sources in expansion chambers”. In: Proceedings of ISMA 2018:
International Conference on Noise and Vibration Engineering 1 (2008),
pp. 455–470 (cit. on p. 172).

[231] W. Ren and G. De Roeck. “Structural damage identification using modal
data II: test verification”. In: Journal of Structural Engineering 128
(2002), pp. 96–104 (cit. on p. 172).

[232] N. Roozen, L. Labelle, M. Rychtarikova, and C. Glorieux. “Determining
radiated sound power of building structures by means of laser Doppler
vibrometry”. In: Journal of Sound and Vibration 346 (2015), pp. 81–99
(cit. on p. 172).

[233] D. Butscher, C. Hutter, C. Kuhn, and P. Rohr. “Particle image velocime-
try in a foam-like porous structure using refractive index matching: a
method to characterize de hydrodynamic performance of porous struc-
tures”. In: Experiments in fluids 53 (2012), pp. 1123–1132 (cit. on p. 172).

[234] B. Armaly, F. Durst, J. Pereira, and B. Shonung. “Experimental and
theoretical investigation of backward-facing step flow”. In: Journal of
Fluid Mechanics 127 (1983), pp. 473–496 (cit. on p. 179).

[235] J. Kostas, J. Soria, and M. Chong. “A study of a backward facing step
flow at two Reynolds numbers”. In: 14th Australasian Fluid Mechanics
Conference (2001), pp. 609–612 (cit. on p. 179).

[236] C. Tropea and R. Gackstatter. “The flow over two-dimensional surface-
mounted obstacles at low Reynolds number”. In: Journal of Fluids Engi-
neering 107 (1985), pp. 489–494 (cit. on p. 179).

[237] F. Durst, M. Founti, and S. Obi. “Experimental and computational inves-
tigation of the two-dimensional channel flow over two feces in tandem”.
In: Journal of Fluids Engineering 110 (1988), pp. 48–54 (cit. on p. 179).

[238] I. Celik, Z. Cehreli, and I. Yavuz. “Index of Resolution Quality for
Large Eddy Simulations”. In: Journal of Fluids Engineering 127 (2005),
pp. 949–958 (cit. on p. 179).

[239] A. Lucius and G. Brenner. “Numerical Simulation and Evaluation of
Velocity Fluctuations During Rotating Stall of a Centrifugal Pump”. In:
Journal of Fluids Engineering 133 (2011), pp. 081102-1 - 081102-8 (cit.
on p. 179).

207



4. FLUID STRUCTURE INTERACTION APPLIED TO VIBROACOUSTICS

[240] L. Konnigk, B. Torner, and F. Wurm. “Application of verification methods
on a complex flow field calculated by Large Eddy Simulation: Blood pump
flow”. In: 7th European Conference on Computational Fluid Dynamics
(2018), pp. 1–13 (cit. on p. 179).

[241] A. Dastbelaraki, M. Yaghoubi, M. Tavakol, and A. Rahmatmand. “Nu-
merical analysis of convection heat transfer from an array of perforated
fins using RANS and LES method”. In: Applied Mathematical Modelling
(2018) (cit. on p. 179).

[242] K. Frampton. “The effect of flow-induced coupling on sound radiation
from convected fluid loaded plates”. In: The Journal of the Acoustical
Society of America 117 (2005), pp. 1129–1137 (cit. on p. 186).

[243] M. Pastor, M. Binda, and T. Harcarik. “Modal Assurance Criterion”. In:
Procedia Engineering 48 (2012), pp. 543–548 (cit. on p. 187).

[244] H. Werner and H. Wengle. “Large-eddy simulation of turbulent flow
over a square rib in a channel”. In: Advances in Turbulence 2 (1989),
pp. 418–423 (cit. on p. 189).

[245] S. Schmidt and F. Thiele. “Comparison of numerical methods applied
to the flow over wall-mounted cubes”. In: International Journal of Heat
and Fluid Flow 23 (2002), pp. 330–339 (cit. on p. 189).

[246] M. Ariff, S. Salim, and S. Cheah. “Wall y+ approach for dealing with tur-
bulent flow over a surface mounted cube: Part 2-High Reynolds number”.
In: Proceedings of 7th International Conference on CFD in the Miner-
als and Process Industries CSIRO, Melbourne, Australia (2009) (cit. on
p. 189).

[247] A. K. Chopra. “Modal analysis of linear dynamic systems: physical inter-
pretation”. In: Journal of structural engineering 122 (1996), pp. 517–527
(cit. on p. 191).

208



CHAPTER5
Conclusions and Future Works

Contents

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Figures

209



5. CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

This section shows, as a whole synthesis of the work, the main conclusions
which can be derived from the work done, which has been exposed in the form of
PhD Thesis during this document. First of all next general results should be
addressed:

• During the development of Chapter 2, a whole bibliographic analysis
has been carried out in order to establish the most usual kinds of fluid
structure interaction coupling levels, the main laws governing this and
some examples of the applications of each one. It was seen how, although
the field of fluid structure interaction is on growing development, the
synthesis of the main ideas around it has not been extensively done and,
thank to this, it could be found how that, although it was suggested before,
the dimensional analysis of the coupling had not been properly done in
order to establish the most proper tool from first principles.

• This fact, has directly lead to the development of the Chapter 3. Here,
a relatively simple example of Vortex Induced Vibrations was presented
in its most basic non dimensional form in order to show how, for a given
value of the Reynolds number, the coupling only depends on E/(1

2ρ∞V 2∞)
and ρs/ρ∞. Moreover, for high values of the Reynolds number it can be
expected that its influence on the coupling level will become of second
order.

• Finally, the applicability of the dimensional analysis for the selection of
the proper tool has been proven by means of two different state of the
art FSI coupling problems: a first one consisting on the prediction of the
vibration generated on a flexible plate by a fully turbulent flow field and a
second one consisting on the prediction of the virboacustic behavior of a
flexible silencer due to the motion of pressure waves in its interior.
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5.1. Conclusions

Besides, it is worth to be mentioned the particular conclusions arising from
each of the studies which were carried out during the development of this work.

• Given a Fluid Structure Interaction system, the value of the stiffness
at which transition between one-way and two-way coupling arises, is a
function of the relative mass between the fluid and solid. As the parameter
ρs/ρ∞ becomes higher, the two-way coupling appears for higher values of
stiffness.

• It is possible to deduce a behavior map of the coupling regions in order
to infer the capability of one-way, two-way explicit and two-way implicit
methodologies to resolve each of these regions. From this map it could
be deduced how the applicability explicit methodology, which can be con-
sidered to be as the less computationally demanding strategy, is limited
by the mass parameter. In fact for very low values of ρs/ρ∞, the range of
stiffness at which this methodology can be applied is drastically reduced.

• This methodology can be applied to problems of high Reynolds turbulent
flow induced vibrations, where it was shown how, for a case similar to the
flow encountered at a car’s underbody at normal working conditions, the
one way methodology is not only computationally less demanding, but it
also allows one to obtain more valuable vibration results in comparison
with experiments and with bibliography.

• The methodology has also been proven to be valid for the computation of
the viboacoustic phenomena arising in the inner pressure field of a flexible
expansion chamber-like silencer. Although in this case Euler equations
were used instead of Navier-Stokes viscous equations, it was seen how
the same methodology could be applied. Moreover, it was also shown
how, if correctly carried out, segregated implicit and monolithic two way
methodologies allow one to obtain exactly the same results.
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5. CONCLUSIONS AND FUTURE WORKS

5.2 Future Work

As it has been already said, the most important contribution of the current
document is the presentation of a generic methodology which would allow one
to select the most proper computational tool in order to face with problems of
Fluid Structure Interaction, regardless of the strength of the coupling.

As a consequence, after the work carried out for the development of the
current document, a wide number of possible investigation lines could be opened
with a direct application of these concepts. As an example, some of them will be
listed next. Note that they are plausible lines, as the author of the document
has already been involved in some of them:

• Characterization of the radiated sound due to the wall vibration in the case
of the admission and exhaust systems on Internal Combustion Engines.

• Characterization of the radiated sound due to the wall vibration in the
case of Heating Ventilating and Air Conditioning (HVAC) systems .

• Characterization of the radiated noise due to the action of turbulent flow
at the outer walls of a moving car and how this is radiated inside the own
cabin.

• Analysis of the structural response of solar plates trackers under high
wind conditions, in order to avoid aeroelastic problems, due to the low
value of the torsional stiffness of these solutions.

• Application to the vibration of the blades of a compressor system in order
to characterize possible aeroelastic critical phenomena under extreme
conditions.
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