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ABSTRACT 

The climate warming effect on the development of the pedunculate oak (Quercus 

robur L.) during the dormancy state and dehardening development was studied by the 

simulation of different growth conditions.  

The seed material used was obtained from 9 different origins from Poland to South 

Finland, to ascertain the most appropriate origin to grow in South Finland.  

In greenhouses they were simulated two future climatic conditions belonging to the 

years 2030 and 2100, using the scenario A1B, as well as two conditions of humidity. To 

find out the state of dormancy and the dehardening ability, we used a freezing test to 

simulate the injuries caused by the frosts.  

In dormancy experiment, the seedlings of the year 2030 presented null injuries and a 

high rate of survival. On the contrary, by the year 2100 the injuries were 50%. In the 

dehardening experiment, it was observed that the late frost was a huge threat to the 

survival, since the mortality increased by 30 % in two weeks. Among all the origins, the 

one that presents better adaptability was the one from Ruissalo.  

The results of this thesis supports the theory that climate warming will increase the 

risk of frost damage of the one year old seedlings of pedunculate oak in South Finland.  
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1. INTRODUCTION 

 

1.1 Climate change 

Some observations describing the overall image of a world warming up and other 

changes in the climate system are listed. The average global temperature at the 

surface has increased by 0.6 ± 0.2 ° C since the late XIX century.  It is very likely that 

precipitation has increased by 0.5 to 1% per decade in the XX century at most middle 

and high latitudes of the Northern Hemisphere continents (IPCC 2001). Most of the 

observed global warming over the last 50 years is likely to have been caused by an 

increasing concentration of greenhouse gases, but we cannot exclude the natural 

climate variability in a regional scale as a potential explanation for the trend in Finland 

(Jylhä et al. 2004). 

Climate change in Intergovernmental Panel on Climate Change (IPCC 2001) usage 

refers to any change in climate over time, whether due to natural variability or as a 

result of human activity. This usage differs from that in the Framework Convention on 

Climate Change (UNFCCC 1999), where climate change refers to a change of climate 

that is attributed directly or indirectly to human activity that alters the composition of 

the global atmosphere and that is in addition to natural climate variability observed 

over comparable time periods. 

The most remarkable forcing agents that cause climate change have been the 

increases in atmospheric concentrations of greenhouse gases. The current data 

sets show the human influence on atmospheric concentrations of these agents, 

although most of the gases originate from both natural and anthropogenic. The 

main gases responsible for climate change are carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O), and halocarbons (CFC) (IPCC 2001). 

The gas most responsible for climate change is also the greenhouse gas mostly 

produced by humans, which is the carbon dioxide. The concentration of CO2 in 

the atmosphere has increased from 280 ppm in 1750 to 367 ppm in 1999. The present 

CO2 concentration has not been surpassed in the last 420,000 years and has not 

probably occurred, even during the past 20 million years, either (IPCC 2001). 

From studies of climate change impacts and adaptations, Jylhä and Laapas (2009) 

illustrate the estimated temporal evolution of CO2 emissions and the atmospheric CO2 

concentration in Finland (Figure 1). The tendencies are based in 3 different scenarios, 

which are documented by Jylhä et al. (cited in Jylhä and Laapas 2009). In our 

experiment we used the A1B scenario for the simulations of climate change. 
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Figure1. (a): Estimated temporal evolution of the emissions and (b): atmospheric 

concentration of carbon dioxide under three Special Reports on Emissions Scenarios 

(SRES) greenhouse gas. Figures for the SRES scenarios are based on IPCC (2001). (Jylhä 

and Laapas 2009 and Jylhä et al. 2009). 

Jylhä et al. (2004) reported that the annual mean temperatures in Finland increased by 

about 0.7ºC from 1901 to 2000. In contrast to temperature, the annual mean 

fluctuation of precipitation anomalies do not show any statistically significant trend 

over the 20
th

 century. The Finnish Research Programme of Climate Change (SILMU) 

proposed a climate scenario for the Nordic countries, when the scenario specifies a 

warming rate of 0.45ºC per decade in Finland. Johannesson (1995) suggested that 

temperature changes in the winter were larger (0.6ºC per decade) than in the summer 

period (0.3ºC per decade).  

Jylhä, et al. (2009) illustrates on Figure 2 the predictions of mean temperature in 

Finland using three scenarios. The scenario used in our experiment was the A1B. For 

the year 2030 the annual average temperature predicted is practically the same in all 

of the scenarios. However, the simulations done for the year 2100 have differences 

among themselves, with our scenario in the middle. The annual average is close to 5 

positive degrees; for the summer period the temperature is less than in the winter, 

being the temperature simulated for our experiment of 4 positive degrees. 

It is projected that there will be an increase in global average water vapor, evaporation 

and precipitation. Thus, if it is assumed that the rate of relative precipitation increase 

is proportional to the rate of warming, it will arrive at a ratio of about 3 to 4% per ºC of 

warming using relatively low values of the ratio of precipitation (Johannesson 1995). 
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Figure2. Annual mean temperature in Finland modeled and projected employing three 

SRES scenarios. The figure is based on figures of Jylhä et al. 2009. 

Talkkari (1996) predicted that the most drastic changes will take place in northern 

latitudes, which are mostly covered by boreal forests, and the predicted global climate 

change is among the major factors affecting future forest development in the boreal 

zone. 
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1.2   Pedunculate oak (Quercus robur L.) 

 

1.2.1 Distribution 

Pedunculate oak have the widest geographic distribution among European white oaks 

(Figure 3a). It is distributed in Europe from northern Spain to southern Scandinavia and 

from Ireland to Eastern Europe and reaches the Ural Mountains (Zanetto et al. 1994; 

Ducousso and Bordacs 2004). 

Most of the present South Finland was submerged when the ice receded at the end of 

the last ice age about 10,000 years ago. This area has been, and still is, subject to rapid 

land uplift. Colonization of the newly emerged ground in the South and simultaneous 

decline in the North have made the whole distribution of oak in Finland shift towards 

South and West (Figure 3). In a way, the process could be seen as the last phase of the 

post-glacial colonization of Europe by oaks, only now towards south (Vakkari et al. 

2005). 

Repo et al. (2007) show that the population of pedunculate oak in Finland is strongly 

fragmented and growing at the northern margin of the species’ European distribution 

and it can only be found in the south of Finland (Figure 3b). It is the only oak species in 

Finland, even the closely related sessile oak (Quercus. petraea) is absent and hence 

introgression between the species does not affect genetic variability (Mattila et al. 

1994; Vakkari et al. 2005). 

The cooling climate and expansion of Norway spruce led to a long-lasting decline of 

oak populations and, starting about 300 years ago, the stands were further fragmented 

and potentially restricting the flow of genes among local stands owing to increasing 

human pressure for more agricultural land (Mattila et al. 1994). Oak populations have 

also been exploited as a source of valuable timber and even destroyed on some 

occasions. Vakkari et al. (2005) found genetic structural differences in the populations 

in Finland, because of the fragmentation, and it is affected by population size and age 

of the population site. Planting of oak is not common in Finland, and the low number 

of haplotypes and the sharpness of the contact zone support the idea that man-

mediated seed transfer has not been very extensive in the past, either. 
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Figure3. a) Natural distribution area of Quercus robur in Europe. b) Natural distribution 

area of Quercus robur in Finland, where its distributions is limited to the south. 

Compiled by members of the EUFORGEN Network. (Ducousso and Bordacs 2004). 

SOUTHERN FINLAND b) 

a) 
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1.2.2 Description, morphology and habitat 

Quercus robur L. is a deciduous tree which belongs to the Fagaceae family and is also 

synonymous of Quercus pedunculata Ehrh. Pedunculate oak is a large tree that reaches 

30–40 m in height and it is a long-lived tree that can live even longer than 800 years. 

The morphology of the top is broad and rounded or irregular and has a trunk straight, 

short and thick in individual specimens, with thick and tortuous branches with bark 

greyish or whitish, very cracked and brownish tonality in old trees (Ducousso and 

Bordacs 2004). 

The adult leaves are large, glabrous, shortly stalked, with 5 - 7 lobes and auriculate at 

the base, in alternating arrangement with elongated stipules early falling and they are 

dark green and shiny in the front and lighter beneath. It is monoecious and 

allogamous, anemophilous and predominantly outcrossing. The flowers are unisexual; 

the male flowers grouped in catkins pendulums, while the females are solitary and 

axillaries. Trees usually reach seedbearing age at between 40 and 100 years old. The 

fruit are an acorn, 2-2.5 cm long, which are long peduncle (having a peduncle of 3-7 cm 

long).  Acorns fall from cups and sprout next spring, and the oak seedlings keep their 

seed-leaves within the husk, and send up sturdy shoots bearing first scale-leaves, then 

typical leaves (Edlin 1978, Galán 1998 and White 2005). 

Pedunculate oak can grow on most types of soil, but preferentially grows on rich, 

humid soils from sea level to 1800m.  It needs a humid cold climate, where there are 

few signs of summer drought (Galán 1998 and Ducousso and Bordacs 2004). 

Natural hybridization in oaks has been reported in many studies. In European white 

oaks hybridization is asymmetric: Quercus petraea preferentially pollinates Quercus 

robur, but the closely related Quercus petraea is absent in Finland and long-distance 

pollen flow is (probably) not as efficient so in more central areas (Vakkari et al. 2005). 

 

1.2.3  Role in biodiversity and utilization 

Pedunculate oak have a huge role in biodiversity, since the tree supports a wealth of 

organisms which benefit from the food, support and shelter it supplies. Its acorns are 

rich in starch and provide food for birds and small mammals, and the leaves are eaten 

by insects. Gall wasps lay their eggs inside the leaves, where their larvae then secrete a 

chemical causing the leaf to mutate and form a gall (oak apple). In years with a high 

population of caterpillar or moth larvae almost all the leaves on a tree can be eaten, 

yet the English oak is able to survive this. In autumn the soft leaves break down easily 
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to form a rich leaf mould beneath the tree, supporting a wealth of invertebrates and a 

range of fungi (Kew Royal Botanic Gardens 2011). 

At around 200 years old branches start to die back and fall when hit by severe storms. 

This dead wood is a vital habitat for invertebrates (White 2005). Even after its death 

the English oak continues to support biodiversity. The decaying wood can host a vast 

array of fungi and its hollow trunks provide roosting sites for owls and hibernation 

sites for bats (Kew Royal Botanic Gardens 2011). 

They have been planted and managed for timber and barrel staves, for tanning leather, 

for hundreds of years. Notably used for furniture, ship and house building until the 

start of the twentieth century when iron became more successful material of 

choice (Galán 1998 and White 2005). One of the reasons why they were used so 

widespread was that the oak is able to withstand changes in humidity. Their acorns are 

also suitable for cattle and pig feed (Galán 1998).  

The use of pedunculate oak is also widely applied for ornamental use and for planting 

in parks, gardens and botanical gardens in the temperate regions of most continents 

for its aesthetic value (White 2005). Especially in Finland, this species is relevant for 

the ornamental use since it is the only species of oak that has a natural distribution. 
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1.3 Plant adaptation to northern areas  

Plants are subjected, and must adapt to many different abiotic stresses (water, 

temperature…), low temperature may be the most critical determinant of plant 

distributional limits (Salisbury & Ross, cited in Lennartsson 2003). In northern areas, 

low temperature is the major environmental factor limiting the growth, development 

and the geographical distribution of plants (Lindén 2002). 

During the period of 1971-2000 in the south of Finland (Helsinki Kaisaniemi), the 

annual variation of the absolute temperature shows a wide variation of 65
o
C between 

summer temperature with 31
o
C and winter with -34

o
C (Finnish Meteorological 

Institute). To withstand these variations of temperature and prevent the death, the 

trees have to synchronize the annual temperature cycle closely with their internal 

annual cycle of cold hardening and dehardening (Sakai and Larcher cited in 

Lennartsson 2003).  

 

1.3.1. Cold acclimation  

Cold acclimation is the ability to withstand the subsequent freezing temperatures in 

response to a period of low but non-freezing temperatures, in order to survive frosts 

by avoiding freezing through protecting their vital organs. (Xin and Browse 2000). 

Several factors may affect the level of cold hardiness attained (Sakai and Larcher, cited 

in Lennartsson 2003), e.g. nutritional status, the occurrence of pest, diseases, and 

drought, but the two most important factors are light and temperature. Gordon (1970) 

concludes that their results indicate that acclimation is induced by short days and frost 

or low temperature. Aversely, Anisko (cited in Lennartsson 2003) found in a recent 

study, by the modeling of cold hardening for several taxa of deciduous woody plants, 

that the initiation of the cold hardening process induced by growth cessation and 

dormancy is internally regulated and independent of temperature. 

 The temperature has a modulator effect and is externally regulated and dependent on 

the accumulated chill or heat. Winter and spring changes of cold hardiness are mainly 

dependent on ambient air temperature. Temperature has a direct effect on short-term 

changes in hardiness: the level of hardiness increases as temperature drops and 

decreases as it rises (Lindén 2002).  

Induction of dormancy involves the cessation of growth, the build-up of cryoprotective 

substances (e.g. sugars and proteins), the down-regulation of photosynthesis and 

respiration, the shedding of leaves, and the development of dormant buds. These 
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active physiological changes in a tree are fundamentally important for the subsequent 

phase of physical cold hardening (Lambers et al., cited in Lennartsson 2003). Effective 

hardening in winter can be achieved by a two-step acclimation of 1 – 2 weeks, starting 

at a temperature of 0º to -3ºC and then, dropping from -5º to -10ºC (Sakai and Larcher, 

cited in Lennartsson 2003). Dormancy gradually develops through different stages, 

starting with the predormancy state and ending with the true dormant state, in which 

plants can no longer be activated by temporary warming, a state that is attained in 

November- December (Larcher , cited in Lennartsson 2003).  

The ultimate survival of woody plants is dependent, on not only the maximal capacity 

of cold hardening, but also on the timing and rate of both cold acclimation and loss of 

cold hardening, the stability of cold hardiness, and the ability to reacclimate after 

unseasonably warm periods (Larcher, cited in Lindén 2002).The correct timing of cold 

hardening and dehardening is important for the growth and survival of oak (Jensen 

and Deans, cited in Repo et al. 2007). At the onset of winter, woody plants are more 

responsive to hardening stimuli than to dehardening temperatures. During deep 

dormancy, hardiness variation is reduced in both directions. However, in late winter, 

after dormancy release, plants are more easily dehardened and less easily rehardened 

(Heide, cited in Lindén 2002). After the breaking of endodormancy, only the xylem had 

the capacity to reharden (Warmund et al., cited in Palonen and Lindén 1999). For the 

winter survival of raspberry, the retention of cold hardiness once attained and the 

capacity to reharden after a warm period are possibly the most crucial factors (Palonen 

and Lindén 1999). 

Breaking of dormancy and the commencement of growth can only occur after 

extensive periods of chilling, with temperatures between -3ºC and 12ºC and an 

optimum of 3 and 5ºC. The induction of dehardening is triggered by the reduction in 

the critical day length and temperature is important because it governs the speed at 

which terminal buds are formed, being both factors are the most essential 

(Lennartsson 2003). So, even if there is an extended thaw in early winter, the trees will 

not start growing (Lambers et al., cited in Lennartsson 2003).  

For woody plants the most hazardous times of the year, with respect to frost injuries, 

is are the autumn (when cold hardening has not been fully completed) and the spring 

(when dehardening may have started). For both of these times, frosts can be severe 

and frequent. (Sakai and Larcher, cited in Lennartsson 2003). Repo et al. (2007) 

suggested that in the case of pedunculate oak, injuries to the phloem, cambium and 

cortex, would be detrimental in the early stages of cold hardening. Thus therein lies 

the importance of proper acclimatization synchronized with the annual climatic cycle 

(Lennartsson, 2003). If the plant fails to give adequate acclimatization will be given a 

process of freezing. 
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1.3.2. Frost damage and risk of frost damage 

Extracellular freezing subjects cell membranes to various types of stress, involving a 

physical effect of the low temperature per se, freeze-induced reduction in the surface 

area and solute concentration effects, freeze dehydration of the protoplasm, (Sakai 

and Larcher, cited in Lindén 2002). The water potential of ice is lower than that of 

liquid water. Consequently, extracellular ice crystals grow by drawing water from cells 

until the water potential of ice and cell are equal, thus dehydrating the cell contents. 

The water potential of ice falls as temperature falls, hence cellular dehydration 

becomes progressively greater as temperature falls (Gusta et al., cited in Pearce 2001) 

Freeze may occur for other reasons, for example, cells that deep supercool will die if 

their capacity for supercooling is exceeded. 

 Oaks belong to a species with deep-supercooling in their xylem ray parenchyma cells, 

whereas cells of other tissues without such a property may avoid freezing by means of 

dehydration (George et al., 1982, cited in Repo et al. 2007). Other factors include: large 

ice masses affecting tissue or organ structure; embolisms in xylem vessels; disease, 

which may enter through lesions or exacerbate damage (Pearce 2001). These stresses 

may cause irreversible alterations in the structure and functioning of cell membranes 

and thus, bring about cell death. (Lindén 2002).  

Signs of freezing injury can be detected by visual examination of the plants, 

externalizing, usually, develop a brown or yellowish color on injured tissues (Howell 

and Weiser, cited in Lindén 2002). 

Climate change may play an important role in development and survival trees. 

Johannesson (1995) reported that the annual mean temperatures and precipitation in 

Finland could increase. Thus, the risk of snow damage could increase compared to the 

present day. This is because, the frequency of snowfalls at temperatures of around 

zero could increase. Consequently, the snow damage risk may increase. (Nykänen et al. 

1997). Also the variability in minimum temperature may increase in a warmer climate. 

This could lead to an increased probability of frost damage even in the absence of 

warming if the state of frost hardiness of the plant cannot track the increased 

variability in temperature (Kramer and  Hänninen 2009). 

The distribution of tree species in northern latitudes is conditioned primarily by the 

capacity of acclimation to low temperatures. Weather conditions during the preceding 

summer and fall are relevant for successful overwintering at high latitudes, due to 

their impact on the annual cycle of vegetative growth (Lindén 2002). Pedunculate oak 

(Quercus robur L.) grows on the border of its northernmost distribution range in 
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southern Finland. Repo et al. (2007) hypothesized that short growing seasons and 

insufficient cold hardiness during autumn, and the consequent frost damage, are key 

factors that restrict the northward growth of oak. 

 

1.4.  How to test cold acclimation? 

Due to the importance of cold acclimation for winter survival of northern plants, it 

was necessary to establish a method to determine levels of plant cold hardiness, 

dormancy and dehardening and thereby to obtain data of injury and survival levels 

(Lindén 2002).  

To standardize the freezing test protocol, Levitt (cited in Lindén 2002) proposed the 

following steps as basic requirements: 

1. The plants must be inoculated to ensure freezing. 

2. Cooling must occur at a standard rate. 

3. A single freeze must be used for a standard length of time. 

4. Thawing must occur at a standard rate of warming. 

5. Post-thawing conditions must be standardized. 

Using the methodology of cooling simulation, the temperature is lowered at a rate of 1 

to 2ºC/h to imitate natural frost events. A common approach is to use a fixed rate of 2 

to 6ºC/h (Lindén 2002), but in nature the rate is usually less (Levitt 1972). As shown by 

Harrison et al. (cited in Lindén 2002), the rate of cooling is critical in the temperature 

range where the amount of unfrozen water is sufficient to cause injury. Lennartsson 

(2003) exposed that the most crucial aspects of freeze tests are the control of initiate 

ice formation at -2 °C to avoid supercooling, to apply slow cooling (3 °C/h) to ensure 

equilibrium freezing, and finally to apply slow thawing. Freezing tests can be evaluated 

by assessing the plant’s capacity for regrowth after freezing and the extent of visible 

injuries and the mortality of seedlings (Lennartsson 2003). 

Lindén (2002) in her doctoral thesis, Measuring cold hardiness in woody plants, lump 

together different alternative methods with in regard to the common controlled 

freezing tests. The content of dry matter or soluble carbohydrates, as well as 

carbohydrate composition, is often correlated with plant or tissue cold hardiness. 

Others  investigations have show the relationship between the quality or quantity of 

amino acids, proteins and lipids and the level of cold hardiness (e.g. Yoshida, 

Khanizadeh et al., Arora and Wisniewski , Arora et al., cited in Lindén 2002). Additional 
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methods used to determine cold hardiness without freezing include electrical 

impedance analysis (Coleman, Repo et al., Repo et al., Väinölä and Repo, cited in 

Lindén 2002) and measurement of the ability to withstand plasmolysis (Siminovitch 

and Briggs, Levitt, cited in Lindén 2002). The indirect hardiness indicators often work 

well for some plants or tissues, or under certain conditions, yet none of them can be 

trusted as a general measure of cold hardiness in all plants (Lindén 2002). 

 

1.5 Aim of study 

The main aim of this master thesis was to assess the effects of climate warming in the 

process of cold acclimation of one year old seedling of pedunculate oak (Quercus robur 

L.). The target of this study was to deal with the state of deep dormancy and the 

process of dehardening. 

In the experiment we tried to find out the difference of behavior among all origins and 

between Finland and more Southern seedlings. And get the most adequate origin for 

growth in South Finland in future conditions.  

We intended to find out how frost damage affects on the seedlings, analyzing the 

injuries and survival. To do that, the seedlings were subjected to different previous 

summer conditions of temperature and humidity, for the years of 2030 and 2100 

simulated. All this was replicated with the aim of knowing the cold acclimation rate 

too.   

With all this, we tried to ascertain the viability of the natural oak stands in South 

Finland, as well as their use as ornamental trees in future years.  
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2.  MATERIAL AND METHODS 

 

2.1. Plant material 

The oak acorns (Quercus robur L.) were collected from 9 different areas (Figure 4), 

using seeds from the forest, orchard and urban parks (Table 1). The most seeds origin 

came from the southern Finland, but there was also from other countries of north of 

Europe, so we made two big useful groups to analyze. The first group appointed 

“Finland” with seeds only from the south of Finland, and the other appointed “more 

Southern” with seeds from southern Sweden, Latvia and north Poland.  

There were two different types of stands; one a natural stands origin and the other 

planted. In Malmi origin seed is probably source from Estonia, and the Annalapuisto 

seeds came from Finland (Pulkkinen pers. comm.).  

Thus entries has been divided into three categories, depending upon the typology of 

stand in which acorns were extract 

- Park: The stand is definitely planted and the genetic origin of the trees is 

undefined. 

- Forest stand: In all probability its origin is natural, but due to the uncertainty of 

its origin cannot be excluded that have been artificially planted. 

- Seed orchard: The trees were planted by man with the purpose to 

produce acorns for commercial exploitation. 

The material was collected during the summer of 2008 except the seeds from Poland 

that had been collected during the summer of 2007.  
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1- Helsinki: 
- Malmi 

- Annalanpuisto 

 

2- Turku area: 

-       Kaarina 

-       Ruissalo 

-       Paraninen  

 

3- Raasepori 

 

4- Bjuv 

 

5- Jankaulsnava 

 

6- Kozienice 

 

Figure 4. Location of the different origins of pedunculate oak acorns in Europe and 

Finland. Helsinki and Turku area have more than one sample used for the experiment. 
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 Table 1. Origin and characteristics of the oak seeds used. 

Group Country Origin Area Type of place Type Latitude (N) Longitude(E) Day degrees 

Finland 

Finland Helsinki Malmi Park Planted 60°14'195'' 25°1'647'' 1250 

Finland Helsinki Annalanpuisto Park Planted 60°12'745'' 24°58'459'' 1250 

Finland Kaarina Katariinanlaakso Forest stand Natural 60°24'713'' 22°16'344'' 1250 

Finland Turku Ruissalo Forest stand Natural 60°25'525'' 22°7'512'' 1250 

Finland Raasepori Tenhola Forest stand Natural 60°0' 472'' 23°5'729'' 1250 

Finland Parainen Parainen Forest stand Natural 60°14'844'' 22°13'276'' 1250 
  

 
 

   
  

  
 

 

 

  
  

More 

Southern 

Sweden Söderåsen Söderåsen Forest stand Natural 56° 5' 037" 13º 14' 574" 1550 

Latvia Jankaulsnava Jankaulsnava Seed orchard Planted 56°41'187" 25°58'129'' 1650 

Poland Kozienice Kozienice Forest stand Natural 51°58'553'' 21°55'117'' 1900 
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2.2.  Conditions 

 

2.2.1 Previous summer condition 

The present study was carried out in Finnish Forest Research Institute’s 

Haapastensyrjäa Unit (60º 37’ 04’’, 24º 25’ 4’’, 125 meters a. s. l.) There were two 

dates of sowing; the first acorns were sowed the 8.04.2009 for the condition of year 

2100 and the second date was the 29.04.2009 for the condition of year 2030. The 

seeds were sowed in a box of 40 spaces and the boxes were collocated randomly in 

tables of 36 boxes. The growth substrate used was 100% of peat the type of Kekkilä 

White 420 W with ph of 5.5 and 2.0 mS/cm of conductivity.  The fertilizing used was 

NPK 16-4-17 with the nutrient proportion of 9.0% for NO3-N and 6.5% for NH4-N. 

For the same experiment (for both, dormancy to dehardening) have simulated 

different growing conditions in greenhouses. On the one hand we have two types of 

controlled temperatures that simulate the future growth condition of the Year 2100 

and Year 2030.  

The temperature used to simulate the thermal conditions provided for the years 2030 

and 2100 were obtained  by adding day and night +1°C to year 2030 and +4°C to year 

2100 to the outside temperature of Haapastensyrjä breeding station in the year 2009. 

The temperature inside of the greenhouse never fell below of 0°C and the light hours 

of the material was not manipulated. Temperature sum of the Year 2100 had 2355 

days degrees and for Year 2030 had 1615 dd, and the original temperature sum in the 

Year 2009 was 1270 dd. 

In the greenhouse the moisture was also controlled to obtained different growth 

condition and simulates the effects of this variable in the experiment.  They were 

controlled by two different water treatments; the wet moisture condition with 700 

mm/m
2
/year and the dry moisture condition with 260 mm/m

2
/year. The quantity of 

water per week was 7.0 l/box for wet treatment and 1.75 l/box for dry treatment. 

These values correspond to double amount of water for the wet moisture and 50% less 

to the dry moisture compared to the long term local average rainfall measured in 

Jokioinen (research station). The irrigation process was manually using a hosepipe in 

both treatments. Wet moisture material was irrigated twice per week and dry material 

was only once per week. The situations of boxes were changed randomly three times 

to minimize the location effects. 

For each moisture and temperature conditions, the same replications were done with 

the 9 different seeds origins for dormancy and 8 for dehardening experiment.  For 
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each origin were done 4 and 5 replications, for dehardening and dormancy experiment 

respectively, according to the number of freezing tests necessary for the experiment.  

And finally, each freezing test had 4 seedlings (Table 2 and 3). 

 

Table 2. Number of oak material in dormancy experiment. 

Dormancy 

Temperature Moisture Origin Freezing tests Total seedlings 

Year 2100 
Wet 9 5 180 

Dry 9 5 180 

Year 2030 
Wet 9 5 180 

Dry 9 5 180 

Total 720 

 

Table 3. Number of oak material in dehardening experiment. 

Dehardening 

Temperature Moisture Origin Freezing tests Total seedlings 

Year 2100 
Wet 8 4 128 

Dry 8 4 128 

Year 2030 
Wet 8 4 128 

Dry 8 4 128 

Total 512 

For each condition used, i.e. for each combination of temperature, moisture, origin 

and finally the different freezing test dates, were sowed four seedlings replicates. 

 

2.2.2 Growth conditions during dormancy experiment 

After the summer growth and hardening testing all the material was transferred to 

outside on the day 16.11.2009. The place was partly covered with plastic, but had open 

ceilings. The material in these conditions did not have any temperature control and 

could suffer a lot of minus temperatures.  But the seedlings should acclimate correctly 

and be in deep dormancy.  

When the dormancy testing started, the boxes from the outside cold storages were 

taken into the same greenhouse of previous summer growth.  In the greenhouses the 

temperature never was less than +2ºC. To evaluate the effect of frost in relation with 



 Material and Methods 

22 

 

the length of high temperature treatment, the material was subject to one freeze 

testing per week.  

 

2.2.3 Growth conditions during dehardening experiment 

In dehardening experiment all the material was in outside condition for the purpose of 

getting a natural timing of dehardening as the length of high temperatures and night 

length.  Like in dormancy experiment, the material was subject to one freeze testing 

per week, corresponding the first material tested with a night length of 8hours and 25 

minutes and the last one a night length of 6 hours and 25 minutes.  

 

2.3.  Freeze testing 

The freezing tests were made to simulate the frost occurring in the hibernation periods 

in order to ascertain the effects produced on the seedlings when they are in the state 

of dormancy and dehardening. The freezing test was an operation that affects 

the variables analyzed such as injuries, survival and height growth. 

All material used was submitted to the freezing test and  were made different 

replications   with the same conditions (seed origins, temperature and humidity) in 

order to ascertain the importance of the frost effect on seedlings depending on the 

day on which frost occurs. The freezing test experiment period started the last week of 

2009 and ended the 8th week of 2010 for the dormancy experiment and for the 

dehardening experiment started the 17th week of 2010 and ended the 20th week of 

2010. 

Freezing test process was consisting to transfer the material to be tested in a cold 

chamber with an automatically controlled temperature. The original temperature of 

the chamber was 5°C and from 21:00 the temperature cooled down constantly 3 º C 

per hour to reaching a minimum temperature of -10 º C at 2:00. During next two hours 

the temperature remained constant and then begins to warm up 3°C/h for 5 hours 

until 9:00 when it reached the initial temperature (Fig 5).  After the freezing test the 

boxes were returned to their original condition in the greenhouse. 
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Figure 5. Freezing test process; temperature variation in the time. 

 

2.4.  Data processing 

 First, the entries that had not germinated or were dead before the freeze test were 

removed. 

• Height before the freeze test:  We measured the height of the seedlings before 

they were subjected to the freeze test. 

• The material was subjected to the freeze test according to the protocol 

described above. 

• The percentage of seedlings survival after the freezing test was calculated.  

• The before and after freezing test high data of seedlings that were used to 

calculate the percentage of seedlings injuries produced after the freezing test. 

 

2.5.  Statistical analysis 

Once the experimental data was obtained, the data was processed to determine the 

source effects; temperature, moisture, origin and freeze test day. Those sources have 

direct influence on the plants growth and development, the survival and the injuries in 

the dormancy and dehardening process. 

The statistical software used to perform every analysis was the SYSTAT 9 for Windows. 

With this program it was obtained all necessary statistical information to get the 

results, as well as to do the relevant tables, graphs and figures. The Analysis of 

Variance (ANOVA), was used to find out the results of the various models raised. In the 

Time 21:00 
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analysis, on one hand, the independent variables were: temperature condition, 

moisture condition, seeds origin and time of freeze testing. On the other hand, the 

dependent ones were: the seedling height, percentage of survival, percentage of 

injuries and the time of bud formation. 

From this original data, there were summarized the seedling height average and as 

well as the survival and injuries percentage. It was reported that measures of 

variability using the standard deviation with the mean (mean ± SE). Also, all bar graph 

figures had a standard error of 0.6825 as an error bar. 

Correlations analysis between the height before freeze testing and injuries level were 

done using the type Pearson and corrected by the probabilities of Bonferroni. 

For best results it was used for the following data transformations: 

The parameters box edge and table edge representing the edge effect of the boxes 

and tables were created respectively, in the different variables to analyze. This effect is 

due to a competition between the seedlings depending on the location in the box, and 

also that irrigation could reach differently depending on the location of the box at the 

tables. This might affect the values of variables that are analyzed. 

The freezing test did not work properly in all sessions, so we had to remove some 

material with the objective of improve the analysis. Due to the lack of entries required 

to create the survival ANOVA model, a new variable that grouped the seedlings entries 

into two largest groups; Finland and South was created in both experiments.  

• Dormancy experiment: 

The time of freeze testing became in treat time because the first week of treatment 

was the number 51 and therefore, it would have been an error in the testing data 

freeze, so this was named treat time 0. 

In survival model, the origin North Poland was deleted because they had insufficient 

inputs to make a quality analysis. 

• Dehardening experiment: 

In some models, few origins were eliminated because they had insufficient inputs to 

make a quality analysis. 

- Injuries: The origin North Poland in dehardening experiment was deleted. 

- Survival model: The origin North Poland in dormancy experiment and North 

Poland and South Swedish in dehardening experiment were deleted. 
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3.  RESULTS 

 

3.1.  Survival after growth period 

The seedlings survival after growth period was not uniform in all origins (p <0.05).  

Lowest survival corresponds to Polish origin (Figure 6) with 48% (± 7.3%) and the origin 

with high seedling survival percentage corresponds to Parainen (Finland) with 91.4% 

(±6%). Only the origin and its interaction with temperature were significant (Table 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The mean percentage of oak seeds survival according of the origin (day 

degrees). SE = 0.6825 included as an error bar, in all bar figures of the results. 

Table4. Effect of previous summer temperature, origin and moisture and their 

interaction into survival of oaks during the Year 2030 and Year 2100 growth conditions.  

Source Sum-of-Squares df Mean-Square F-ratio P 
      

Origin 8247.227 8 1030.903 3.595 0.004 

Temperature 556.475 1 556.475 1.941 0.173 

Moisture 119.357 1 119.357 0.416 0.523 

O * T 7648.342 8 956.043 3.334 0.006 

O * M 115.207 8 14.401 0.050 1.000 

T * M 0.075 1 0.075 0.000 0.987 

T * M * O 335.980 8 41.997 0.146 0.996 

Error 9749.396 34 286.747   
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3.2.  Height before freezing test 

The mean height was 21.4 mm bigger for the condition Year 2030 with 166.2mm (± 

2.7mm) than for the Year 2100 with 144.8mm (± 2.6mm). For the moisture, the wet 

condition was 13.3 mm bigger than the dry condition, with 162.1mm (± 2.6mm) and 

148.8mm (± 2.7mm) respectively. 

There are some differences among the seedling origin (p<0.001) being the origin 

variable the most relevant (Table 5). The highest oak origin corresponds to the North 

Poland with a 229.3mm ( ±7.2mm) tall average and the lowest height average were the 

seedlings from Parainen in Finland with 111mm (± 5.4mm) (Figure 7). 
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Figure 7. The mean height of oak seedlings according of the origin (day degrees) and 

clustered by growth condition (Year 2030 and Year 2100). 

In addition, among seedlings origins, there were also significant differences between 

the seedling from Finland and more Southern, being the Southern 65 mm taller, with 

197mm (± 3.5mm), than the Finland seedlings with 132mm (± 2.4mm). 
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Table5. Effect of previous summer temperature and moisture condition together with 

origins of oak on the height growth of oaks seedlings during the Year 2030 and Year 

2100 growth condition. 

Source Sum-of-Squares df Mean-Square F-ratio P 
      

Origin 970225.604 8 121278.2 42.619 0.000 

Temperature 92588.656 1 92588.656 32.537 0.000 

Moisture 35854.1 1 35854.1 12.6 0.000 

O * T 33572.361 8 4196.545 1.475 0.162 

O * M 122248.967 8 15281.121 5.37 0.000 

T * M 13411.682 1 13411.682 4.713 0.030 

T * M * O 22764.563 8 2845.570 1 0.434 

Box edge 3793.685 1 3793.685 1.333 0.249 

Table edge 21169.711 1 21169.711 7.439 0.007 

Error 2307834.07 811 2845.665   

The height model shows that origin, temperature and moisture were significant 

(p<0.001). Also the interactions of origin with moisture and the temperature with the 

moisture were significant (Table5).   

The effect of the random moisture in the box into the table was significant (p<0.05), 

but not the same into the box for the seedlings. 
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3.3.  Dormancy 

 

3.3.1. Injuries 

In the seedling growth during previous summer condition of Year 2030 the injuries 

level was almost null in both water treatments, 2.7% (± 2.3%) for the dry condition and 

0.7% (± 2.2%) for the wet condition. On the contrary for the condition Year 2100 the 

injury was much more elevated than the condition Year 2030. The high injuries levels 

were 56.7% (±2.3%) corresponding to the wet condition and 48.2% ± (2.3%) to the dry 

condition (Figure 8). 
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Figure 8. The mean percentage of oak seedlings injuries according of the temperature 

condition (Year 2030 and Year 2100) and clustered by moisture condition (wet and 

dry).  

Most of the injuries level was explained for the previous summer temperature 

conditions (Table 6), there was large differences between the injuries caused to the 

seedlings depending on the temperature of treatment (p <0.001). The injuries 

depending of the large origin variable were similar among the Finland and south 

seedlings being of 1 % of difference. Also the interactions of  temperature*moisture, 

freeze testing week*moisture, large origin* freeze testing week* moisture and 

temperature* freeze testing week*moisture were significant (Table 6) 
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Neither boxes position in the table nor the seedling positions in the boxes were 

significant (Table 6). 

Table 6. Effect of previous summer temperature and moisture conditions together 

with oak origins and the time of testing into the injuries of seedlings  during dormancy 

period. 

Source Sum-of-Squares df Mean-Square F-ratio P 
      

Large Origin 119.735 1 119.735      0.192          0.622 

Temperature 285716.873 1 285716.873      457.756        0.000 

Freeze  testing week 1031.119 4 257.780        0.413          0.799 

Moisture 1104.360 1 1104.360        1.769          0.184 

O * T 2.325 1 2.325      0.004          0.951 

O * F 1444.895 4 361.224        0.579          0.678 

O * M 350.118 1 350.118      0.561          0.454 

T * F 1478.422 4 369.605        0.592          0.688 

T * M 2981.788 1 2981.788      4.777        0.029 

F * M 8835.572 4 2208.893        3.539        0.007 

O * T * F 625.398 4 156.349        0.250          0.909 

O * T * M 64.161 1 64.161      0.103          0.749 

O * F * M 8745.417 4 2186.354        3.503        0.008 

T * F * M 8726.891 4 2181.723        3.495        0.008 

O * T * F * M 5546.734 4 1386.684        2.222          0.066 

Box edge 891.438 1 891.438        1.428          0,233 

Table edge 1438.730 1 1438.730      2.305          0,130 

Error 305842.356 490 624.168   
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3.3.2.  Survival 

The mean survival of seedlings in the previous summer condition Year 2030 was 99.3% 

(± 1.9%), having practically null mortality. In the growth condition Year 2100 the 

survival was less, with 80.5% (± 1.9%) (Figure 9). During the dormancy experiment, this 

difference is statistically significant (p<0.001) (Table 7) 
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Figure 9. The mean percentage of survival in oak seedlings according of the 

temperature condition and clustered by moisture condition (wet and dry). 

The other relevant source that explain the survival of the seedlings was their origin 

(p<0.05). The minimum percentage of survival seedlings per origin was 75% (±3.7%) 

from Malmi origin, and the maximum with 97 (± 3.7%) were Latvia origin (Figure 10). 
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Figure 10. The mean percentage of survival in oak seedlings according of the origin 

(day degrees) and clustered by growth condition (Year 2030 and Year 2100).  

The factors temperature condition and seedling origin was significant, but on the 

contrary any interactions were significant (Table 7).  

Table7. Effect of previous summer temperature and moisture conditions together with 

oak origins and the time of testing into the survival of seedlings during dormancy 

period. 

Source Sum-of-Squares df Mean-Square F-ratio P 
      

Origin 5289.248 7 755.607 3.032 0.008 

Temperature 12228.261 1 12228.261 49.073 0.000 

Freeze  testing week 1092.205 4 273.051 1.096 0.366 

O * T 2687.679 7 383.954 1.541 0.169 

O * F 7659.023 28 273.537 1.098 0.368 

T * F 1030.966 4 257.742 1.034 0.396 

T * F * O 7120.331 28 254.298 1.021 0.457 

Error 16944.444 68 249.183   
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3.4.  Dehardening  

 

3.4.1.  Injuries 

The seedlings injury augmented in all growth condition from 5.2% (± 4.4%) of average 

in the first freeze testing in the week 17 to the week 19 with a 59.1% (± 4.6%) of 

average. After this trend, the injury direction decreased in the last freeze testing week, 

the average was 52.6% (±5.0%), except the growth condition Year 2030 dry where 

injuries still increase (Figure 11). 
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Figure 11. The mean percentage of injuries in oak seedlings according of the freeze 

testing (weeks) and clustered by growth condition (Year 2030 and Year 2100).  

 

Temperature of treatment (p <0.05), the moisture condition (p<0.05) and their 

interaction (p<0.05) explained significantly injuries variation (Table 8) 

Seedlings grown in Year 2030 condition during previous summer had significantly 

lower injuries level than seedlings grown in more warm Year 2100 conditions. There 

were less injuries in dry moisture condition than in the wet condition. The minimum 

injuries were 13.4% (±4.7%) for Year 2030 dry and 35.2% (±4.3%) for the wet condition. 

Otherwise, the maximum injuries were 38.8% (± 4.9%) for the Year 2100 dry and 41.5 

(±4.3%) for the wet condition (Figure 12). 
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Figure 12. The mean percentage of oak seedlings injuries according of the temperature 

condition (Year 2030 and Year 2100) and clustered by moisture condition (wet and 

dry).  

Variations of injuries were explained by previous summer temperature, freeze testing 

week and moisture (Table 8). The variable large origin was not significant (p > 0.05) as 

the differences were less than 0.5 %, thus there were not differences between the 

Finnish and more Southern seedlings. 

There were also some significant interactions to explain the variability; temperature* 

freeze testing week, temperature*moisture, freeze testing week*moisture, large 

origin*temperature* freeze testing week (Table 8). 

The effect of the position of the box in the table was significant (p<0.05), but not the 

seedling position in the boxes.  
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Table 8.  Effect of previous summer temperature and moisture conditions together 

with oak origins and the time of testing into the injuries of seedlings during 

dehardening period. 

Source Sum-of-Squares df Mean-Square F-ratio P 
      

Large origin  4.065 1 4.065 0.004 0.947 

Temperature 10783.164 1 10783.164 11.931 0.001 

Freeze  testing week 95580.102 3 95580.102 0.004 0.000 

Moisture 6544.409 1 6544.409 7.241 0.008 

O * T 3.657 1 3.657 0.004 0.949 

O * F 503.597 3 167.866 0.186 0.906 

O * M 891.104 1 891.104 0.986 0.321 

T * F 22986.459 3 7662.153 8.478 0.000 

T * M 4027.482 1 4027.482 4.456 0.036 

F * M 8394.943 3 2798.314 3.096 0.027 

O * T * F 9993.465 3 3331.155 3.686 0.012 

O * T * M 938.541 1 938.541 1.038 0.309 

O * F * M 4508.667 3 1502.889 1.663 0.175 

T * F * M 6962.153 3 2320.718 2.568 0.054 

O * T * F * M 2208.521 3 736.174 0.815 0.487 

Box edge 1187.051 1 1187.051 1.313 0.253 

Table edge 10015.377 1 10015.377 11.081 0.001 

Error 283793.275 314 903.800   
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3.4.2.  Survival 

The average percentage of survival of the oak seedlings was 83.8% (± 2.7%) during 

dehardening experiment. Previous summer temperature condition did not explain 

(p>0.05) the survival variation (Table 9). The moisture was significant (p<0.05) with 

88.2% (±3.8%) survival for the dry condition and 79.2% (± 3.8%) for the wet condition. 

In the first freeze testing week the survival was around 100% not depending much of 

previous summer growth condition. Then the survival decreased until the freeze 

testing week 19 with 70% (±4.2%) of survival. In the last freeze testing week the 

survival increased up to 79.5% (±4.2%) (Figure 13). 
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Figure 13.  The mean percentage of survival in oak seedlings according of the freeze 

testing (week) and clustered by growth condition (Year 2030 and Year 2100).  

The lowest survival seedling was the origin from Tenhola (Finland) with 68.8% (± 5.5%) 

of average and the highest average was from Ruissalo (Finland) with 95.8% (± 5.1%) of 

survival (Figure 14). 
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Figure 14. The mean percentage of survival of oak seedlings according of the origin 

(day degrees) and clustered by growth condition (Year 2030 and Year 2100).  

Survival variation was explained significantly by origin and freeze testing week and also 

their interaction was significant (Table 9). The temperature condition was not 

significant (P>0.05). 

Table9. Effect of previous summer temperature and moisture conditions together with 

oak origins and the time of testing into the survival of seedlings  during dormancy 

period. 

Source Sum-of-Squares df Mean-Square F-ratio P 
      

Origin 9165.267 6 1527.544        3.134        0.010 

Temperature 411.793 1 411.793      0.845        0.362 

Freeze  testing week 14906.174 3 4968.725       10.195        0.000 

O * T 5709.005 6 951.501        1.952        0.089 

O * F 18407.503 18 1022.639        2.098        0.018 

T * F 1212.672 3 404.224        0.829        0.483 

T * F * O 10135.403 18 563.078        1.155        0.329 

Error 26805.556 55 487.374   
      
 



 Discussion 

37 

 

 

3.5.  The effect of seedlings size on the injuries 

There were in dormancy experiment a negative correlation, r= -0.167 (p= 0.000, N= 

849) between the seedlings size before the freeze testing and the results of the 

injuries. In origin level only Malmi, r= -0.203 (p= 0.041, N= 101) and Sweden, r = -0.326 

(p= 0.001, N= 110) had significant correlations. 

There were also negative correlation r= -0.102 (p= 0.012, N=615) between the 

seedlings height and injuries in dehardening experiment. In origin level only Malmi, r= -

0.215 (p= 0.049, N=84) and Parainen, r= -0.208 (p= 0.001, N=110) had significant 

correlations. 
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4. DISCUSSION 

 

4.1 Experimental process 

Greenhouses create problems because of difficulties in randomize tested material to 

obtain similar kind of growth conditions. Even though the tables were randomized 

three times during growing period the difficulties still persisted. One of the 

main disadvantages was due to the use of automated irrigation in greenhouses. This 

creates effect on the edge of the tables and boxes. This effect consists in unequal 

contribution of water by the irrigation system to the seedlings, depending on the 

location of the boxes in the tables as well as their own seedlings in each box. In the 

ANOVA model we could include these sources as covariates to determine their effects 

on the seedlings. 

The results of the table location, indicate that the error that provides the unequal 

amounts of water supplied by the irrigation system together with the competition of 

plants,  influences in the height of the seedling. This also has an influence in the 

injuries level in dehardening experiment. This results show an error in the process of 

changing the boxes among the tables or in the methodology used. On contrary, in any 

case the boxes not were affected fort the water irrigation, so we can assume that 

seedlings position in the box have no effects.  

There is a relationship between the height of seedlings and the percentage of injuries 

that occur after the freeze testing, having a negative correlation. If the height of 

seedling decreased, the percentage of injuries inflicted by freeze testing tends to 

increase.   

The seedlings’ height depends on their origin. Thus, when analyzing the different 

parameters (injuries and survival) related to previous summer temperature, moisture 

and origin, they will be influenced by the height that also depends on their origins. 

Therefore, the origin is being evaluated twice when using this method. But this has 

little relevance since the correlation is not strong because it is close to 0. 

Experimental measurement of cold hardiness provides a useful means for examination 

of different hardiness characteristics in plants, and for defining the impact of 

environmental factors on the level of hardiness, being possible to test conditions not 

yet available in nature. For testing the cold hardiness level we used the freeze testing, 

being a good system to simulate the frost situation, but not the possible effects of the 

snow cover. 
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The fact of having used greenhouses to simulate the predicted different thermal, as 

well as the use of freeze testing, provides us a methodology easy to use and replicate. 

But this only limits to a laboratory level, and it can be different from the results 

obtained in field experimentation. All in all, Lindén (2002) points out that the results 

from laboratory tests can be used to supplement and accelerate field experimentation.  

 

4.2  Effect of growth condition on oak seedling development 

 

 4.2.1 Survival after growth period 

The average of survival before freeze testing was about 74%, with differences of 

survival among the origins in excess of 25% units of the average. This is the case of 

Polish origins with only 48% survival seedlings (figure 6). Probably this was because 

they were collected in 2008, one year before than the rest of the acorns. García-Fayos 

(2001) asserts that acorns of Fagaceae family, from Mediterranean species, lose their 

viability quickly under ambient conditions, this fact could explain the low survival of 

Polish seedlings before the freeze testing. Excluding Poland origin, there were not 

significant differences among the origins from Finland and the other origins. 

 

4.2.2 Height before freezing test 

The tallest seedlings were from the previous summer temperature condition of year 

2030 with 13% higher than seedlings of year 2100 (Figure 7). In lower temperature 

summer, the oak growth taller (in south Finland) than in high temperature condition. 

This contrasts with Matala (2005) that show that in warming conditions produced by 

climate change the trees should growth taller than in lower summer temperature.   

It was seen that the seedlings from the wet growth condition was 8.2 % taller than dry 

condition. For the pedunculate oak seedlings, the lack of water in the dry conditions 

has a negative effect on their growth.  

Origins had a big influence to the height of the seedlings. The seeds from Finland, with 

a 1250 day degrees in nature growth conditions, had similar growth being the smallest. 

More Southern origins, was about 33% taller than Finland origins. The tallest origin 

was from Poland, which also has the highest day degrees, taking the double of height 

than Parainen. Significantly, there was a relationship between the growth of seedling 

and the day degree of the seed origin, taking taller seedlings in major temperature 

sum. 
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4.3 Dormancy state  

The survival of the seedlings to the winter depends on both the ability to reach the 

maximum capacity of cold hardening, and the timing and rate of cold acclimation, the 

level of cold tolerance during dormancy and the loss of hardening (Lennartsson 2003). 

When the oak seedlings is in deep dormancy then can tolerance temperatures about -

40ºC (Repo et al. 2008). In this experiment we took seedlings from deep dormancy and 

exposed them to warm conditions and noticed that they cannot tolerance even -10ºC 

temperatures without injuries. 

The previous summer growth temperatures seems also have an significant impact on 

the break-down of dormancy. With higher summer temperature, higher injuries during 

dormancy break down experiment. Moisture, by itself, had no significant effect.  

By the year 2030, the seedlings are in a complete state of cold hardiness, in which they 

are capable of bearing the simulated frosts, having null injuries and a survival of almost 

100%. On the contrary, by year 2100 it can be observed that the frosts will have huge 

consequences in the deep dormancy, since there is a 50% rate of injuries and a 20% 

rate of mortality (Figure 8). Thus, comparing the results of both years, we conclude 

that the highest temperatures, during the period of growth, directly affect the risk of 

frost damage and survival during the dormancy state.  

There are variations in the survival among the different origins, but not in injuries, that 

as it is observed in the figure 10, largely owe to the low percentage of survival of 

Malmi and the high ones of Latvia, with a difference of 22% units. Nevertheless,   the 

origin of Malmi is a park type, so it is possible that this fact could slant the results and 

finally the origin is not significant due to its weak value. 

 

 

 

 

 

 

 

 



 Discussion 

41 

 

4.4 Dehardening development  

The most critical periods for the survival of the plants are, rather, the spring and 

autumn periods when cold hardiness levels are low, but frosts are frequent 

(Lennartsson 2003). In our experiment, we found the injuries that are caused by the 

frosts, depending on the time of the annual cycle of the trees, through the freezing 

tests in different dates. According to Kramer and Hänninen (2009), the evaluation of 

the impact of climate change on tree growth requires the synchronization of the entire 

annual cycle.  

The process of dehardening is crucial for the evaluation of the injuries and the survival, 

but unlike in dormancy, the temperature of growth is just significant for the injuries. In 

any case, for the injuries it is relevant and follows the same pattern as in dormancy 

experiment, having also influence the effect of previous summer temperatures. Being 

year 2100 the most vulnerable growth condition to the frosts, with a rate of 15% units 

more injuries than in year 2030.  

There is a great dependence of the survival and mortality with regard to the timing of 

frost (Table 8 and 9). It can be observed that the dehardening process in the figures 11 

and 13 in relation to the injuries and survival. Until the week 18, the seedlings are in 

deep dormancy and are not almost susceptible to the frosts, having injury percentages 

lower than 10% and a survival average of 90%. The next week (19) is the most crucial 

since it begins the real loss of hardening and the seedlings are more sensitive to the 

frosts because they start to growth, presenting percentages of 80% of injury in the 

seedlings in year 2100 and of 50% in year 2030. And having a remarkable decrease of 

the percentage of survival, though the previous summer temperature is not significant 

for the survival (Table 9). From this week onwards, the frosts have a larger effect since 

the resistance to the frosts has been lost. Finally, in the last week analyzed, we observe 

large percentages of injuries and survival, but they are lower and higher, respectively, 

than in the previous week. This fact does not have explication, theoretically it should 

follow the tendency and have more level of injuries and less of survival. We do not 

know the reasons of this fact; it might be due to experimental failures or to the need 

of more experimentation.  

As have been observed, the timing of cold hardening is crucial for the survival of 

seedlings of oak (Jensen and Deans, cited Repo et al. 2007). So the main effect of a 

milder winters temperatures, due to climate change, can bring forward the lost of frost 

resistance in spring and therefore, it can increase the risks of frost damage, especially 

in high latitude ecotypes (Myking and Heide 1995) 

Unlike in dormancy, the moisture does explain some of the variability. We observe that 

the more wet moisture is, in both simulated thermal conditions, the higher the injuries 
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are, and therefore, the least survival with almost 10 % less than in dry conditions. 

Thus, the risk in injuries caused by frosts increases with climate change, since this 

means an increase in moisture.  

Likewise in dormancy, there are variations in survival among the different origins, but 

there are not in injuries. There is no relation between day degrees and origins; the 

maximum percentage corresponds to Ruissalo and the minimum one to Teenhola, 

both being Finnish origins. On the contrary to what Kriebel and Wang have exposed in 

a publication of Beuker (1993) about the bud burst among Northern and Southern 

origins related to days degree; the Northern origins flush earlier than the Southern 

origins, which should affect the injuries caused by the frosts in the Northern origins, 

fact that does not occur in our experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Conclusions 

43 

 

5. CONCLUSIONS 

The results show that there are differences of height between Finland origins with 

more Southern origins. However, these differences are not shown sufficiently in 

injuries and survival levels to assert, that there are significant differences in oak 

seedlings frost damage into both groups. In any case, taking into account the 

percentages of injury and survival of dormancy and dehardening experiments, we can 

assert that the most adaptable origin to climate change will correspond to the one 

from Ruissalo, having a natural origin from a forest stand. On the other hand, the least 

adaptable origins are those from Tenhola and Malmi, having the first one a forest 

stand origin and the last one an origin from a park. Thus, for managing future 

plantations of ornamental oak and avoiding the frost damage, the most appropriate 

origin should be the one from Ruissalo. But, for managing natural stands it should be 

used the suitable seeds to keep the genetic structure (Vakkari et al. 2006) 

Davis and Kabinski (cited in Kramer and Hänninen 2009) have expressed that trees may 

not have adequate genetic diversity to adapt to the changing environmental 

conditions, and in fragment landscapes, rapid climate change has the potential to 

overwhelm the capacity for adaptation in many plant populations and a reduction in 

their ability to resist from environmental perturbations such extreme climatic events 

(Jump and Penuelas 2005). On the contrary, (Hamrick and Godt, cited in Kramer and 

Hänninen 2009) trees have high phenotypic plasticity that allows them to withstand 

large environmental fluctuations during their lifetime.  

Adaptive responses of trees are particularly important at the edges of the geographic 

distribution of trees because demographic processes at the leading edge differ from 

those at the rear edge of a species area (Hampe cited in Kramer and Hänninen 2009). 

At the northern of the distribution of tree species the phenology, particularly the 

timing of the onset of the growing season, is an important adaptive trait, as it balances 

the effect of frost. For Scots pine (Leinonen et al. 1997) the onset of active growth and 

the simultaneous loss of hardening competence caused by high temperatures seem to 

be the essential factors for dehardening of Scots pine, thus higher winter temperatures 

in a changing climate may result in an earlier loss of frost hardiness in winter and 

spring, and increase the risk of damage caused by frosts. 

It is shown in our study that on the one hand, the oak seedlings depend heavily on the 

timing of dehardening. On the other hand, warming summers produced in the year 

2100 increase the risk of frost in dormancy state and during dormancy break-down. So, 

we can conclude that the climate warming will increase the risk of frost damage to 

pedunculate oak in one year old seedlings 
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Also, taking into account the vulnerability of the Finland oak stand due to 

fragmentation (Repo et al. 2007 and Kramer and Hänninen 2009) and the negative 

effects of frosts in the year 2100, we can deduce that the viability of the stands will be 

less than the one presented in year 2030. 

The oak is a very attractive species for the ornamental use in the Southern Finland. But 

when predicting the aptitude of these trees for the future climatic conditions, it should 

be taken into account the results obtained. The thermal conditions that currently 

present cities like Helsinki, due to urban heat island effect, correspond to those 

simulated in the year 2030. The monthly average temperature is around 1.2ºC higher 

in the city center than in Helsinki-Vantaa airport (Hongisto 2005). Damage caused in 

oak seedlings by frost in current years, are lower than those simulated for the thermal 

conditions of the year 2100. Therefore, the aptitude of oak plantations as an 

ornamental tree in parks will decline in future years.  

Thus, with the results obtained, it is required the necessity of following investigating 

the effects of climate change on the growth of first year old seedlings of the oak. We 

do not know whether the effects of climate warming vary considerably in the oaks that 

are older than one year or in adults. Neither do we know the effects that could have 

on the natural stands nor did its threats, (already fragmented and threatened), since it 

has only been used a small-scale simulation and with a greenhouse and not in natural 

conditions.  

Another point to develop deeply would be the study of climate change effects on the 

oak particularly, and boreal forest in general, in the dormancy state. Since there are 

hardly any studies previously realized and its evaluation requires more study.  
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