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Abstract

Nowadays, the progress in technology has made possible increase the computational power and
thus it has made possible the improvement of flow solvers. This allows to compute with higher
spatial and temporal resolutions as well as save a larger quantity of variables. This together
with the Big-Data revolution, also present in the experimental field, has created a necessity of
post-processing techniques. These are essential in order to treat such a quantity of data.

Data-driven decompositions have become one of the most common methods. These can be used
in experimental or numerical cases in fluid dynamics, with the main purpose of identifying
coherent structures, patterns or building reduced order models (ROM). The identification of
patterns is interesting from the point of view of the turbulence. A flow of this type is composed
by eddies and also by characteristic structures in specific regions of the domain such as walls.
On the other hand, the possibility of building models with reduced degrees of freedom makes
easier the analysis of results, independtly if the source of the data is an experiment or a CFD
simulation.

The decomposition is made via projecting the data into a series of temporal and spatial basis,
also called modes, that are computed following different criteria. In this project, the novel tech-
nique called Multi-scale Proper Orthogonal Decomposition (mPOD) has been developed. This
derives from the Proper Orthogonal Decomposition (POD) which is a energy-based technique.
In POD the modes obtained in the decomposition are optimal in terms of energy content. How-
ever, this can lead to problems when the flow is composed by largely different scales with similar
energy content. In this case, POD is not capable of distinguishing between the different scales
and it gives as a result spectral mixing.

As a solution, mPOD is an hybrid technique that combines the energy optimality of POD and
the spectral purity. The principle of mPOD consists on splitting the data into scales via filtering
banks. In each scale, POD is applied giving as a final result a series of modes optimal in terms
of energy without frequency overlapping between them. The definition of the scales is made
by the user who stablishes the frequency bandwidth of each one. The limiting case is when
each scale is constrained to a single frequency because this is the basis of the Dynamic Mode
Decomposition (DMD). In this project, a theoretical introduction to the POD and mPOD is
given as well as the formulation of its matrix form. This is essential since the mPOD has been
developed in Matlab and this software is a computing environment based on matrixes.

The technique is tested with different numerical cases and a comparision between the results
obtained with the POD is done. This allows to know the main advantages of the technique
and also the limitations of POD. The final purpose of the project is apply the mPOD over
experimental data of an axial turbine. The data was acquired in tests conducted in the facilities
of the German Aerospace Center (DLR).

Considering that these techniques are widely used in different fields, a brief example of its use
with PIV measures has been included. This experimental case corresponds to the velocity field
of an impinging jet onto a flat surface.





Resumen

Hoy en d́ıa, la evolución tecnológica ha hecho posible el incremento de potencia computacional
permitiendo la mejora de los programas de simulación . Esto permite calcular con mayor
resolución espacial y temporal aśı como almacenar mayor cantidad de datos. Esto junto a la
revolución del Big-Data, también presente en el campo experimental, ha creado la necesidad de
técnicas de post-proceso. Estas son esenciales a la hora de tratar tales cantidades de datos.

Los métodos de descomposición basados en datos, se han convertido en una de las técnicas
más comunes. Estos pueden ser usados tanto en casos numéricos como experimentales en el
ámbito de la mecánica de fluidos, siendo el principal objetivo la identificación de estructuras,
patrones y la construcción de modelos de orden reducido (ROM). La identificación de patrones
es interesante desde el punto de vista de la turbulencia. Un flujo de estas caracteŕısticas está
compuesto por torbellinos y estructuras caracteŕısticas de ciertas regiones del campo fluido,
como por ejemplo las paredes. Por otro lado, la posibilidad de generar modelos con un número
reducido de grados de libertad hace más fácil el análisis de los resultados, independientemente
de si los datos son obtenidos en experimentos o simulaciones CFD. Con un número finito y
reducido de modos, el comportamiento del campo fluido puede ser modelado.

La descomposición se hace mediante la proyección de los datos sobre una serie de bases tem-
porales y espaciales llamadas modos, los cuales se obtienen siguiendo diferentes criterios. La
llamada Multi-scale Proper Orthogonal Decomposition (mPOD) es una nueva técnica de de-

scomposición basada en datos. Ésta deriva de la denominada Proper Orthogonal Decomposi-
tion (POD), la cual está basada en criterios energéticos. En POD, los modos obtenidos en
la descomposición son óptimos en términos de enerǵıa. Sin embargo, esto puede conducir a
ciertos problemas cuando el campo fluido está compuesto por escalas de diferente tamaño en-
ergéticamente similares. En estos casos, POD no es capaz de distinguir entre las diferentes
escalas dando lugar a la denominada mezcla espectral.

Como solución, mPOD es una técnica h́ıbrida que combina la optimización energética del
POD y la pureza espectral. La base de esta técnica consiste en separar los datos en diferentes
escalas mediante bancos de filtrado. En cada una de esas escalas, se aplica POD dando como
resultado una serie de modos óptimos en términos de enerǵıa sin solapamiento en el espectro
de frecuencias. La definición de las escalas se hace por el usuario, que establece el ancho de
banda asignado a cada una. El caso limitante seŕıa aquel en el que cada escala está limitada
a una única frecuencia, ya que esta es la base de la técnica Dynamic Mode Decomposition
(DMD). En este proyecto, se ha hecho una introducción teórica a las técnicas POD y mPOD,
aśı como su formulación matricial. Esto es muy útil ya que la técnica se ha programado en
Matlab que es un software basado en matrices.

La técnica ha sido probada con diferentes casos numéricos, además se ha hecho una com-
paración con los resultados obtenidos con POD. Esto permite demostrar las principales ven-
tajas de mPOD y las limitaciones de POD. El objetivo final del proyecto es aplicar la técnica
mPOD sobre datos experimentales de una turbina axial. Estos datos fueron obtenidos mediante
diferentes tests llevados a cabo en las instalaciones del Centro Aeroespacial Alemán(DLR).

Teniendo en cuenta que estas dos técnicas son ampliamente usadas en otros sectores, un breve
ejemplo de su uso sobre medidas PIV ha sido incluido. En dicho experimento se obtuvieron
medidas de velocidad de un chorro impactando sobre una superficie plana.





Resum

Actualment, l’evolució tecnològica ha fet possible l’increment de potència computacional perme-
tent la millora dels programes de simulació. Això permet calcular amb més resolució espacial
i temporal, aixi com emmagatzemar més quantitat de dades. Això al costat de la revolució
del Big-Data, també present en el camp experimental, ha creat la necessitat de tècniques de
post-procés. Aquestes són essencials a l’hora de tractar aquestes quantitats de dades.

Els mètodes de descomposició basats en dades, s’han convertit en un de les tècniques més
comuns. Aquests poden ser utilitzats tant en casos numèrics com experimentals en l’àmbit
de la mecànica de fluids, sent el principal objectiu la identificació d’estructures, patrons i la
construcció de models d’ordre redüıt (ROM). La identificació de patrons és interessant des del
punt de vista de la turbulència. Un flux d’aquestes caracterıstiques està compost per remolins i
estructures caracteŕıstiques de certes regions del camp fluid, com ara les parets. D’altra banda,
la possibilitat de generar models amb un nombre redüıt de graus de llibertat fa més fàcil l’anàlisi
dels resultats, independentment de si les dades són obtingudes en experiments o simulacions
CFD.

La descomposició es fa mitjançant la projecció de les dades sobre una sèrie de bases temporals
i espacials denominades modes, que s’obtenen seguint diferents criteris. L’anomenada Multi-
scale Proper Orthogonal Decomposition (mPOD) és una tècnica de descomposició basada en
dades. Aquesta deriva de l’anomenada Proper Orthogonal Decomposition (POD), la qual està
basada en criteris energètics. En POD, els modes obtinguts en la descomposició són òptims
en termes d’energia. No obstant, això pot conduir a certs problemes quan el camp fluid està
compost per escales de diferent grandària energèticament similars. En aquests casos, POD no
és capaç de distingir entre les diferents escales donant lloc a l’anomenada barreja espectral.

Com solució, mPOD és una tècnica h́ıbrida que combina l’optimizacion energética del POD
i la puresa espectral. La base d’aquesta tècnica consisteix a separar les dades en diferents
escales mitjançant bancs de filtrat. En cadascuna d’aquestes escales, s’aplica POD donant
com a resultat una sèrie de modes òptims en termes d’energia sense solapament en l’espectre
de freqüències. La definició de les escales es fa per l’usuari, qui estableix l’ample de banda
assignat a cada una. El cas limitant seria aquell en el qual cada escala està limitada a una
única freqüència, ja que aquesta és la base de la tècnica Dynamic Mode Decomposition (DMD).
En aquest projecte, s’ha fet una introducció teòrica a les tècniques POD i mPOD, aixı com la
seua formulació matricial. Això és molt útil ja que la tècnica s’ha programat en Matlab que
és un programari basat en matrius.

La tècnica ha estat provada amb diferents casos numèrics, a més s’ha fet una comparació amb
els resultats obtinguts amb POD. Això permet demostrar els principals avantatges de mPOD i
les limitacions de POD. L’objectiu final del projecte és aplicar la tècnica mPOD sobre dades
experimentals d’una turbina axial. Aquestes dades van ser obtingudes mitjançant diferents tests
duts a terme a les instal·lacions del Centre Alemany Aeroespacial (DLR) .

Tenint en compte que aquestes dues tècniques són àmpliament utilitzades en altres sectors,
un breu exemple del seu ús sobre mesures PIV ha estat inclòs. En aquest experiment es van
obtenir mesures de velocitat d’un doll impactant sobre una superf́ıcie plana.
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Chapter 1

Introduction

1.1 Motivation

Turbomachines play an important role not only in aircraft propulsion but also in other sectors
such as the energy, automotive and naval industries. In the last years, the number of aircrafts
have increased and the requirements to accomplish in terms of pollution and performance have
become really demanding for the engine aircraft motivating the evolution of them. This evolu-
tion gives rise to the necessity of developing new and more efficient techniques. These methods
not only make more accurate the numerical simulations but also facilitate the experimental
testing and the acquired data post-processing.

Turbomachines are an essential part of the core engine and consequently its improvement
requires its evolution. In the last decades, new techniques and methods have arisen for the
purpose of increasing the efficiency and reducing the flow leakage in compressors and turbines.
Some of these techniques are the clearance control done by managing the refrigeration system,
or the use of variable bleed valves and variable stator vanes.

The operating clearances in turbomachines are an important source of leakage flow. Sealing
management is fundamental to reduce that flow leakage from pressure side to suction side
in compressors. New technologies such as shrouded stators are being used in compressors in
contrast with the cantilevered stators. In this case, the integration is really complex but the
benefit is that the flow recirculation is limited and therefore the pressure ratio can be raised. In
addition to the difficulties in the design phase and the mechanical construction, the unsteady
aerodynamic behaviour of the flow field in the proximities of the seal has to be considered since
it can affected the turbomachine performance.

A detailed comprehension of the unsteady aerodynamic phenomena is crucial for determining
the less-driving mechanisms. On the base of this information, different strategies can be
derived to improve the aerodynamic design of turbomachinery components and further exploit
the available efficiency join. On the other hand, a precise knowledge of the flow dynamic
behaviour is a key parameter for the structural design of components with a possible weight
reduction as an outlook.
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Chapter 1. Introduction

Computational Fluid Dynamics (CFD) techniques are really useful tools to study the aero-
dynamic of blades passages in turbomachinery. In combination with the high capacity of the
computers, a higher quantity of data can be obtained in numerical simulations as well as in
real experiments. In these cases, the post-processing techniques are required to treat and anal-
yse that amount of data. Besides, data-driven techniques can be used to identify patterns in
both large numerical studies and experimental cases. One of the most useful application of
these techniques consists on obtain Reduced Order Models (ROM) that are capable to model
the flow field in a simpler way using a reduced number of modes. This process makes easier
the interpretation of the results and the analysis of phenomena. Phasing of flow phenomena,
energy level and spatial resolution are all relevant information at such extent.

This project has been conducted in the Turbomachinery Department of the Von Karman
Institute for Fluid Dynamics (VKI). The main aim consisted on developing the Multi-scale
Proper Orthogonal Decomposition (mPOD) in Matlab to process experimental data of axial
turbomachines. The code has been designed to post-processing the pressure field but it can be
easily adapted to treat the velocity field or the temperature field, and also to treat experimental
data from other kind of turbomachines. The data used in this work was acquired in the facilities
of the German Aerospace Center (DLR) for previous projects. This technique combines the
Multi-Resolution Analysis (MRA) via the Discrete Wavelet Transform (DWT) with the Proper
Orthogonal Decomposition (POD) giving as a result an hybrid technique. The POD is the
preceding technique of the mPOD and its foundation is the same for both techniques. The
main difference is that in the mPOD the correlation matrix that describes the flow field is
decomposed into different scales each retaining a non-overlapping portion of the spectra of the
original correlation matrix, then the POD is applied to each scale. In this way, the modes
obtained to represent the flow field are optimal in terms of representative energy, but also
multi-scale phenomena having similar energy content is distinguished.

1.2 Previous projects

This project is focused on the development of the mPOD technique and its application to
analyse the flow field of an axial transonic turbomachine. This technique derives from the
POD so it is necessary to consider a thorough research in this.

Previous projects focused on POD method have been reviewed. Grau [7] gives the mathemat-
ical basis behind this method and validates it with three synthetic cases. Some other projects
like Kenneth et al. [5] employed POD to compute the unsteady aerodynamic and aeroelastic
behaviour of an isolated transonic airfoil and a two-dimensional cascade of airfoils. Cizmas
et al. [1] also used this technique to study the rotor-stator interaction in a turbine through
numerical simulations, very similar study did Rochuon [18] to extract the dominant modes in
this type of interaction.

According to the mPOD method, Mendez projects [15] and [16] are really relevant. The first
one is more focused on the mathematical basis of the technique and its connection with the
Discrete Fourier Transform (DFT) and Dynamic Mode Decomposition (DMD) and a compar-
ision between the three methods is done through three particular cases. The second project
is mainly focused on the flow field of an impinging jet obtained by time-resolved optical mea-
surements and the comparision between the POD and the mPOD applied over the velocity
field.

Countless researchs related to the aerodynamic and turbulent phenomena into axial compres-
sors and their influence in the performance of the compressor have been done, also in turbines.
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Marty [11], Wellborn [20] and Farkas [3] among others have studied this topic numerically with
CFD techniques.

Focused on the flow interface between the combustor and the high-pressure turbine the FP7
project FACTOR should be mentioned. Both experimental [8] and numerical results [4] are
really interesting and data acquired in those experiments is used in this project.

1.3 Objectives

Taking into account that the mPOD technique is a novel post-processing method, it is essential
to approach its study from the base. The mPOD derives from the POD, so the best way to
approach the study is to begin with it. This is the key to define the objectives of the project.

• Understand the POD principles and its mathematical basis. Familiarize with its applica-
tion and its Matlab codification.

• Understand the mPOD principles and its mathematical basis. Understand the differ-
ences with POD and the limitations of the last one. Familiarize with its application and
limitations in comparison with the predecessor.

• Develop a Matlab code with the implementation of the mPOD and test it in differenct
cases.

• Apply the created code to experimental data acquired in real conditions of an state-of-art
axial turbine.

• Understand the physical meaning of some phenomena that takes place into the turboma-
chine.

These objectives allow to determine the different steps to take during the development the
project. These steps or phases are described in the next section.

1.4 Methodology

Given that the objectives have been clearly defined, defining a methodology is essential to
determine the path to follow during the project.

First of all, a literature survey is needed in order to fmiliarize with the application of POD
and mPOD as well as to review the methodology followed in some of the previous projects
mentioned in §1.2. Besides, this literature survey eases to familiarize with the modal analysis
and multiresolution analysis applying the wavelet transform to flow fields with the purpose of
obtain reduced order models. Therefore it is needed to review the theory behing the wavelet
transform and its application to image processing due to the similarity between this and the
processing of experimental data.

Since the main objective of the project is apply the mPOD to experimental data of state-
of-art transonic axial turbomachines, the literature survey should cover the knowledge of the
facilities where the experiments were conducted as well as the comprehension of some unsteady
phenomena that occur during the operation.
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Chapter 1. Introduction

Once the literature survey is finished, a systematic methodology, whose steps are described
below, is defined. It is worth mentioning that the software employed in the project is Matlab,
so all the allusions to programming or running codes are refered to this software.

1. Programme the POD and apply it to a typical synthetic case. This case is being modified
in order to identify the limitations of the method.

2. Programme a filtering routine in both one-dimensional and two-dimensional synthetic
cases.

3. Programme the mPOD and apply it to the same synthetic cases to compare the results
and limitations between both techniques.

4. Apply the mPOD to exprimental data.

5. Analyze the results to understand the physics behind the aerodynamics and unsteady
phenomena in turbomachines.
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Chapter 2

Theoretical Basis

Nowadays, the higher capacity of computers makes that in computational simulations the
number of variables and data is sharply increasing, as well as in experiments. With the
current big-data revolution, post-processing techniques are necessary to treat and analyze the
variables and they can be used in a large number of different industries.

An useful application of these techniques consists on obtaining models of the flow field with a
reduced number of degrees of freedom, what is called Reduced Order Modelling. In some cases,
the number of degrees of freedom in flow solvers can be reduced from a thousand of them to
a few ten and this gives as a result a reduced computational cost and an improvement of the
convergence. The models obtained not only are able to represent the flow field but also are
used to recognize patterns in turbulent flows that in advance resemble chaotic, this patterns
are known as coherent structures and are defined as the deterministic function which is best
correlated on average with the realizations [10].

A data-driven decomposition applied on a flow field is able to model its behaviour by means
of a series of basis elements called modes. Each of these modes is characterized by a temporal
and a spatial structure with a fixed energy contribution. Several post-processing techniques
are currently being developed like Dynamic Mode Decomposition (DMD), Proper Orthogonal
Decomposition (POD), Discrete Fourier Transform (DFT) or Multi-scale Proper Orthogonal
Decomposition (mPOD).

In this chapter, the fundaments of the POD and the mPOD are going to be explained in detail
as well as their relation with the DFT. First of all, as the POD is the preceding technique of
mPOD this one is the first in being developed and analysed. Besides, the limitations of both
techniques are going to be explained and demonstrated in the following chapters with results
from different synthetic and experimental cases.

Since the application of the mPOD requires the definition of a filter bank a slight introduction
of filtering process has been done in this chapter. Besides, some fundaments of the bank filter
construction are reviewed to provide the basis required to the implementation in the mPOD
code thorough some simple synthetic cases.
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Chapter 2. Theoretical Basis

The finality of the project is apply the mPOD to experimental data obtained from axial
turbomachines, and therefore a deep literature survey should be done. As part of this survey,
a review of the most important flow features in a shrouded compressor is done at the end of
this chapter. Through a slight literature review, the behaviour of the flow in the different areas
around the stator stage is reviewed and explained. Also, brief comments about the influence
over the compressor performance are given.

2.1 Proper Orthogonal Decomposition (POD)

As it has been mentioned, POD is a very useful post-processing technique to treat and analyze
large quantities of data to extract synthetic information. This data can be computationally
or experimentally obtained. It can be presented in two different ways, the continuous form
applicable to time-functions and the discrete form to process realizations of variables. Com-
monly, POD is applied to treat turbulent flows trying to identify coherent structures among
the apparent chaos. However, this technique is known by several names like Karhunen-Loeve
decomposition since it has been widely applied in different disciplines like image processing or
signal analysis.

The POD establishes an optimal set of orthogonal basis composed by functions estimated from
a typical eigenvalue problem. That set of basis constituted a series of modes that are energically
optimal considering that a finite number of those modes are able to capture a significant
quantity of energy of an infinite-dimensional process. Besides, the POD basis is unique since
no other decomposition of the same order is able to capture an equivalent quantity of energy.
This is the consequence of the choice of the spatial functions φ(k)(x) in the descomposition of a
vector-valued function u(x, t) showed below. POD is based on the fundament that the spatial
terms of the finite sum are intrinsically determined from the function to approximate. Given
that the sequence of the temporal functions depends on the spatial functions chosen unless
they were orthonormal, orthonormality is a mandatory requirement in POD to have an unique
decomposition.

u(x, t) =

K∑
k=1

a(k)(t)φ(k)(x) (2.1)

Hereafter, all the explanations and mathematical developments are associated with the Snap-
shot POD that is the discrete form that has been commented. Thanks to the connection
between the POD and the Singular Value Decomposition (SVD), the POD modes can be
calculated as a simple matrix factorization.

Let’s assume that the time realizations or snapshots are arranged in a matrix D(xi, tk) = D[i, k]
in which each column correspond with a temporal discretization of the whole spatial grid.

D(xi, tk) = D[i, k] =


d1[1] ... dk[1] ... dnt [1]
. . . . .
. . . . .

d1[ns] ... dk[ns] ... dnt [ns]

 (2.2)

The way the spatial points are arranged in a two-dimensional vector is irrelevant as long as
it was organized, because the results are extracted applying the same procedure. Let imagine
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2.1 Proper Orthogonal Decomposition (POD)

that the samples are obtained from a two-dimensional grid where x ∈ [xi, xf ] and y ∈ [yi, yf ].
All this data has to be arranged in a two-dimensional matrix so all the spatial points have to
be organized in a row.

The main point of a discrete decomposition is to represent the data matrix as a finite sum of
a series of contributions in a similar way than in the equation 2.1.

D[i, k] =

rk(D)∑
r=1

σrφr[i]ψr[k] (2.3)

The construction of a Reduced Order Model (ROM) lies in the truncation of the finite sum
of the expression above at rc < rank(D). Furthermore, the discrete decomposition can be
expressed as a matrix factorization of the form 2.4. The matrices Φ and Ψ contain the spatial
and the temporal structures of the modes while Σ is a diagonal matrix in which each element
is the energy content of each mode. The fact that the matrix Σ was diagonal implies that
defining either Φ or Ψ the other one is fixed and unique.

D[i, k] =

rk(D)∑
r=1

σrφrψ
T
r = ΦΣΨT (2.4)

The next step is clearly defined and it consists on obtaining the matrix of one of the structures,
either the temporal or the spatial. Although there are different manners to proceed, the POD
that is developed and used in this project firstly computes the temporal structures Ψ through
the eigenvectors of the correlation matrix.

The correlation matrix can be obtained applying the expression 2.5 in which the symbol (•)†
represents the Hermitian transpose. This operation is transposition whether the correlation
matrix is real. The second part of the 2.5 is certain as long as the data matrix is real.

K = D†D → K = ΨΛΨT =

rk(D)∑
r=1

λrψrψ
T
r (2.5)

The energy content of the whole dataset can be calculated through the Frobenius norm whose
expression is shown in 2.6 where the different λr values are the eigenvalues of the correlation
matrix.

‖D‖2 = Tr(D†D) = Tr(K) =

rk(D)∑
r=1

λr (2.6)

By merging the expressions 2.4 and the definition of the correlation matrix as done in the first
part of 2.5, it can be demonstrated the orthonormality of the temporal and spatial structures.
From 2.7 it is clear that Λ = ΣΦTΦΣ and since Σ is a diagonal matrix it can be deduced that
ΦTΦ = I, and therefore Λ = Σ2. The previous steps implies that the spatial structures are
also real and orthonormal.
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Chapter 2. Theoretical Basis

K = D†D = (ΦΣΨT )†(ΦΣΨT ) = ΨΣΦTΦΣΨT (2.7)

Once the Singular Value Decomposition of the correlation matrix is done and the temporal
structures are obtained, the next step is the projection of the data in this temporal structures
via the right multiplication as it is shown in 2.8. Since the spatial structures are orthonormal
‖φr‖ = 1, the norm of this projection is a direct way to obtain the energy content of each
mode.

DΨ = ΦΣΨTΨ = ΦΣ

‖DΨ‖ = ‖ΦΣ‖ = ‖Σ‖ → σr = ‖DΨ‖
(2.8)

Only when the matrix Σ is known, the calculation of the spatial structures is possible as in
2.9. In order to save computational cost, avoiding the matrix inversion is necessary, leading to
an element-by-element operation.

Φ = DΨΣ−1 (2.9)

Now that both the temporal and the spatial structures are known as well as the energy content
of each mode, the next step is to choose the number of modes to retain for the construction
of the reduced order model. There are many ways to proceed but the most common options
are related to energy criteria. Some of these criteria consists on only retain those M modes
that contain more than certain value of the total energy commonly about the 90 %, and some
others are linked with the evolution of the slope of the energy plot.

A significant idea to take into account is that the vectors of the spatial Φ and temporal Ψ
structures are organized in the same way than the data matrix. The different structures are
reshaped back following the same procedure as in the data matrix.

After having detailed the general POD process, it is necessary to remark that in this project the
technique is going to be applied to a non-cartesian grid. The POD technique explained above
makes use of the Euclidian definition of the inner product to define the correlation matrix.
Since the spatial grid is cylindrical due to the path followed to measure the data, it originates
a mesh where are largely different areas whereas in a cartesian grid this problem does not exist.
It is therefore necessary to average the Euclidean inner product to weight the contribution of
each point of the mesh to the total energy. The complete averaging process is detailed with a
sample case in §2.1.1.

Although the results of applying the POD to a synthetic case as well as to a experimental
case will be showed and extensively discussed in following chapters, some limitations of this
technique can be already commented. The POD is an energy-based decomposition, and this
means that the decomposition is optimal in a least-square sense as well as in terms of the
representation of the energy present within the data. However, there are some situations
where it becomes really difficult the detection of coherent structures applying this criteria like
the treatment of unsteady phenomena in flows . For example, let’s imagine that different
phenomena ocurring at different frequencies have similar energy content so an energy-based
method cannot distinguish these contributions and this leads to the phenomena called spectral
mixing.
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2.1 Proper Orthogonal Decomposition (POD)

The so called spectral mixing is a really significant problem if the purpose of the POD is
detecting patterns in unsteady flows. This occurs when phenomena are spanned along the
whole frequency and energy spectra, and due to all the POD modes share the full set of
frequencies the distinction of these is not possible. Actually, the spectral mixing is quite
difficult to avoid since in most of the signals obtained in experiments the noise is present and
it usually has a large frequency content. Other possible situation is that the most energetic
modes do not always have relevant meaning so it is difficult to identify physical phenomena.
Because of these limitations it is necessary to find a proper technique to reduce them.

2.1.1 POD averaged

As explained before, not only in the experimental case but also in the synthetic case the
spatial grid is non-cartesian. It is therefore necessary to weight all the inner products of the
POD process. To exemplify the averaging process, a simple synthetic case is explained below.
Concerning the experimental case, the averaging process is identical but the spatial grid is an
annulus sector, so the main difference lies on the way the areas are computed.

Figure 2.1: Spatial grid of the synthetic case

Let C be the circular domain shown in the Figure 2.1, that actually is a simplification of the
real domain which is composed by more spatial points. The averaging process consists on
assigning an area to each node to balance its contribution to the total energy. Each node
represents a measure point in the experimental case, and in the synthetic one it represents a
spatial point where the flow field is computed.

The area assigned to each node is obtained averaging the areas in which each node is con-
tained. The areas of the sample domain Aext and Aint are computed dividing the area of the
annulus obtained with the radial discretization into the number of sectors formed from the
circumferencial discretization.
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Chapter 2. Theoretical Basis

The four red nodes contained in the middle of the circumference are averaged with the four
areas Areaint and the four areas Areaext because each node belongs to two different Areaint
and Areaext. Therefore, the area assigned to each red node is the mean value showed in 2.10.

ARedNodes =
2Aext + 2Aint

4
=

1

2
(Aint +Aext) (2.10)

In the case of the internal and external nodes, the black nodes and the red ones respectively
are only contained in two Areaint or two Areaext. In this case, the area assigned to these nodes
are obtained from 2.11.

ABlackNodes =
2Aint

2
= Aint

ABlueNodes =
2Aext

2
= Aext

(2.11)

This averaging process is done in each inner product of the POD process by a matrix mul-
tiplication. The matrix of areas A has to be arranged in the same way as the samples have
been organized in the data matrix D[i, k]. Each column of the data matrix corresponds to the
measures in a certain node but at different times, since this nodes don’t change the columns
of the matrix of areas are the same.

In the experimental case, the domain is an annulus sector. Although the averaging process
affects the inner products and therefore the same steps, the way the areas are computed slightly
differs from the one explained above.

The steps listed below are those in which the averaging is done. The symbol (�) represents
the Hadamard product that corresponds to a element-by-element matrix multiplication.

• In the calculation of the temporal correlation matrix.

K = (D �A)T ·D (2.12)

• In the projection of the data matrix into the temporal structures.

ΦΣ = (D �A)T ·Ψ (2.13)

• In the calculation of the energy content of each mode and its spatial basis.

Σ =

∥∥∥∥ΦΣ

A

∥∥∥∥→ division element by element (2.14)

Φ =
ΦΣ

A · Σp
→ division element by element (2.15)
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2.2 Multi-scale Proper Orthogonal Decomposition

According to the limitations of the POD commented in the previous section §2.1 it is necessary
to develop a new technique able to overcome those problems. In addition to the energy-based
data-driven decomposition, there is another approach that is the frequency-based criteria.

The frequency-based methods are based on the Discrete Fourier Transform (DFT) and they
assign a single frequency to each mode of the decomposition. A series of pure harmonic modes
are unable to represent phenomena like frequency modulation or frequency and phase jitter.
The most well-known frequency-based method is the Dynamic Mode Decomposition (DMD)
that suits for data-driven stability analysis, but this is not the object of this project.

It is therefore evident that the spectral purity is not a proper approach in the data-driven de-
composition, as well as the energy maximization employed by the POD. One possible approach
developed by Sieber is the Spectral Proper Orthogonal Decomposition (SPOD) and it consists
on pre-filtering the data before computing the traditional POD. However, this method can
modify the correlation matrix specially in unsteady processes causing the non-orthogonality of
the different basis.

The Multi-scale Proper Orthogonal Decomposition (mPOD) is the technique that combines
both approaches. Instead of pre-filtering the correlation matrix, mPOD applies the Multi-
resolution Analysis (MRA) to split the correlation matrix into different scales and then the
typical eigenvalue problem of the classical POD is computed in each scale. The splitting process
can be done via the 2D Wavelet Transform or in a more general way applying a filter bank,
in both cases each scale contains a non-overlapping portion of the spectra of the correlation
matrix.

In this section, the mathematical basis of the mPOD technique as well as its steps are explained
and developed in detail according to the path followed by Méndez [15]. In the following
chapters, the results of applying it to the different synthetic cases and the experimental data
are detailed accompained by the comparison of the results between the POD and the mPOD.

The Multi-resolution Analysis is applied in the frequency domain. This means that the Fourier
Transform of the correlation matrix is needed. This transformation can be done by a matrix
multiplication with the Fourier Matrix ΨF defined in 2.16, where w = exp(2πi/Nt). Hereafter,
ΨF is refered to the Fourier Matrix whereas ΨP makes reference to the temporal basis of the
POD.

ΨF =
1√
Nt


1 1 1 · · · 1
1 w w2 · · · wNt−1

...
...

. . .
...

...

1 wNt−1 w2(Nt−1) · · · w(Nt−1)2

 (2.16)

K̂ = ψFKψF (2.17)

The Discrete Fourier Transform of the correlation matrix 2.17 is necessary to define the fre-
quencies of the filter bank. The filter bank requires the previous definition of the frequency
splitting vector Fv = [f c1 , f

c
2 , ...f

c
M−1]. The values of these frequencies is chosen according to

the analysis of the frequency content of the correlation matrix.
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The filter bank is made up of low-pass filter with f c1 as cut-off frequency, a high-pass filter
with f cM−1 as cut-off frequency and M − 2 band-pass filters. The maximum value that f cM−1
can take is limited (f cM−1 = fs/2) by the Nyquist theorem. There are many ways to obtain
the filters, such as calculating them from a series of low-pass filters or using the functions
implemented in the Signal Processing Toolbox of Matlab. The process of retaining a part of
each scale is shown in the Figure 2.2.

Figure 2.2: Multi-Resolution Analysis of a signal in the frequency domain [15]

Each filter has associated a transfer function Hm. Since the filtering process is done in the
frequency domain, it is applied via the Hadamard product between matrices. Since the filters
are defined via 1D transfer functions, to apply the filtering process is necessary to replicate
this functions to 2D matrices having all the row equal to the 1D transfer function. Let’s denote
H ′m the 2D transfer function of one of the filters, the filtering of the data matrix is can be
computed as in 2.18.

D̂m = D̂ �H ′m = (DΨF )�H ′m → Dm =
[
(DΨF )�H ′m

]
ΨF (2.18)

Introducing 2.18 in the definition of the correlation matrix, it can be computed the correlation
matrix of the scale m.

Km = D†mDm = Ψ̄F

[
(D̂ �H ′m)†(D̂ �H ′m)

]
ΨF = Ψ̄F

[
(D̂†D̂)� ((H ′m)† �H ′m)

]
ΨF (2.19)

Km = Ψ̄F [KF �Hm] ΨF (2.20)

In the expression 2.20 the matrix KF = D̂†D̂ makes reference to the cross-spectral density
matrix whereas Hm = (H ′m)†H ′m is the 2D transfer function of the filter. The cross-spectral
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2.2 Multi-scale Proper Orthogonal Decomposition

density matrix KF has the same eigenvalues of the corresponding correlation matrix in that
scale Km.

An important fact of the filtering process is that if the filter of the scale allows a certain
frequency content, the POD modes at that scale are constrained to that interval of frequencies.

KF = D̂†D̂ = ΨF [D†D]Ψ̄F = ΨFKΨ̄F →
→ K̂ = Ψ̄F [Ψ̄FKFΨF ]Ψ̄F = Ψ̄F Ψ̄FKF

(2.21)

Km = ΨF [K̂ �Hm]ΨF (2.22)

According to the expression 2.22, filtering the original correlation matrix with the appropiate
2D filter gives as a result the correlation matrix at certain scale Km.

The mPOD is a technique that depending on the definition of the splitting vector frequency FV
allows to change from POD to DFT. This means that it can move from the energy optimality
to the spectral purity. Defining an empty splitting vector frequency means that the mPOD is
computed in only one scale in which all the discrete frequencies are allowed for the eigenvectors.
In this case, it would be spectral mixing as it was commented in the previous section 2.1.

On the contrary, the limiting case in which the frequency splitting vector is chosen as Fv →
rFs/(∆tNt) corresponds to the DFT technique. In this case, each scale is restricted to a unique
frequency and pure harmonic modes are considered. The DFT has some limitations most of
which would be adopted by the mPOD such as the poor convergence. However, the possibility
of changing from POD to DFT is one of the most significant advantages of the mPOD.

Between these two limiting cases, there are many different options. With a limited number of
scales, each scale has a single correlation matrix without overlapping spectra. Let imagine that
two different phenomena occur at different scales, this phenomena would therefore be assigned
to different modes.

K ≈ ΨF [K̂ �HL1
]ΨF +

M∑
m=1

ΨF [K̂ �HHm ]ΨF ≈ KL1
+

M−1∑
m=1

KHm (2.23)

Once the frequency splitting vector is defined, according to the analysis of the Fourier Trans-
form of the matrix correlation, the original correlation matrix can be estimated as 2.23. Each
of these scale has its own temporal and spatial basis as showed in 2.24.

K ≈ ΨL1
Σ2
L1

ΨT
L1

+

M−1∑
m=1

ΨHmΣ2
HmΨT

Hm (2.24)

In the ideal case in which the order of the filters could be infinite, there would not be frequency
overlapping between the scales so there would be Nt non zero eigenvalues as maximum. How-
ever, due to the limit in the size of the filters the non zero eigenvalues is higher than Nt. In
this case, mPOD only has to retain the first Nt dominant eigenvalues. To do this, the full set
of eigenvalues is sorted according to the energy content in decreasing order. The new arrange-
ment of the eigenvalues has to be transferred to the temporal and spatial basis independtly of
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the original scale. Let call Ψ0
M the new matrix containing all the new temporal basis in an

ordered way.

Since the perfect spectral separation is really complicated to achieve, the temporal matrix
resultant of the re-arrangement can be non-orthonormal. The reduced QR factorization is
used to compensate the problem as in the expression 2.25.

Ψ0
M = ΨMR→ ΨM = Ψ0

MR (2.25)

After the QR factorization, the last step should be done. From the temporal basis the spatial
ones can be computed and sorted again in descending order according to their energy content.

As well as it happened with the POD technique, the procedure explained above is the general
one. In the case of apply it to a non-cartesian grid, the averaging process is necessary. Instead of
using the Euclidean inner product, the mPOD requires the averaged version. The arrangement
of the areas matrix A has to be done in the same way as the arrangement of the data matrix,
and the steps in which the inner product has to be modified are the same as in the averaged
POD explained in detail in §2.1.1.

To summarize, the steps of the averaged mPOD have been listed below in order to make easier
its programming in a computational software like Matlab.

1. Assemble the data matrix D[i, k] from the snapshots

2. Obtain the correlation matrix via the averaged inner product of the data matrix K =
(D† �A)D

3. Compute the Discrete Fourier Transform of the correlation matrix via K̂ = Ψ̄FKΨ̄F

4. According to the spectra analysis of K̂, define the frequencies of the filter bank, compute
the transfer functions and divide K into different scales

5. Compute the Singular Value Decomposition of each scale Km = ΨmΣ2
mΨT

m

6. Sort the full set of eigenvalues and re-arrange the temporal basis into Ψ0
M

7. Polish the loss of orthogonality thorugh QR factorization (see 2.25)

8. Obtain the spatial basis via the averaged inner product ΦM = DΨMΣ−1
M

9. Finally, sort the modes according to a descending energy contrution and choose the
number of modes to retain

As it has been commented before, the analysis of the power of this technique as well as the
comparison with the POD is done in following chapters.
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2.3 Filter Bank Design

In many different disciplines, the signal processing is required. To do this task, countless tools
and techniques have been developed. For instance, filtering is one of them and it is useful
to suppress the noisy content of a signal or to split the signal into different signals when it
presents spectral mixing.

In this project, the mPOD requires a filtering process to be able to split the correlation matrix
and therefore the phenomena into different scales to afterwards apply the POD. The filter
bank designed requires the definition of the frequency splitting vector (see §2.2) to compute
the different filters. After computing the two-dimensional transfer functions of them, the
filtering is done via matrix multiplication.

To begin with the explanation of the design process, a sample 1D case is explained below.
Since the transfer functions are computed from the one-dimensional filters, the underlaying
principle is common. There are many different types of filters but in the mPOD and therefore
in this example, the Finite Impulse Response filters are used.

Figure 2.3: Synthetic signal

Let’s start with a simple and harmonic signal composed by three different frequencies as can
be see in the Figure 2.3. In this case, these frequencies are known because it is a synthetic
signal composed by three modes so the splitting frequency vector can be directly defined. In a
real case, like the experimental one this project deals with, it is necessary to apply a previous
spectra analysis to identify the main frequencies.
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Chapter 2. Theoretical Basis

Figure 2.4: Spectra analysis and bank filter

The splitting frequency vector Fv = [f c1 , f
c
2 , f

c
3 ] defines a low-pass filter, two band-pass filters

and a high-pass one. The frequency selection is done according to have the peaks in the spectra
analysis more or less centered in the filter. The Figure 2.4 shows the frequency content of the
original signal as well as the windows created by each filter. As it can be observed, there is
a small frequency overlapping between the filters since the windows are not perfectly square.
In this synthetic case, the overlapping is not a problem due to the simplicity of the signal.
As it has been mentioned before, for the implementation of the mPOD the Signal Processing
Toolbox of Matlab has been used.

Figure 2.5: Two-dimensional filter bank

From the expression 2.19, the two-dimesional transfer functions of the filters in mPOD are com-
puted applying the Hadamard product between the transfer function of the one-dimensional
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filters. Defining a frequency splitting vector with two frequencies the resultant filters are like
the ones showed in the Figure 2.5. The sharpness of the filters can produce frequency overlap-
ping, but this problem can be reduced through choosing properly the order of the filters.

In the mPOD, an algorithm has been used to determine the proper order of each filter. The
expression 2.26 shows that algorithm where a = Fs/20 and b = −1/20 which is applied to each
frequency of the vector Fv. Sometimes, if the order obtained is higher than desired, it can be
reduced applying a relaxation factor manually defined.

Nf =

{
Nt Fv ≤ Fs/100

Nt

(
a
Fv

+ b
)

Fv > Fs/20
(2.26)

2.4 Flow analysis

One of the purposes of the application of the mPOD to experimental data from axial turbo-
machines and therefore one of the goals of this project, consists on detecting flow patterns in
the flow field. These patterns can be the explanation to some unsteady phenomena occurring
in the hub region of axial compressors or also in the flow interface between the combustor and
the high-pressure turbine. VKI is currently involved in a project aiming at characterizing the
effects of cavity flows on the performance of a modern high-pressure compressor, leading to the
necessity of describing their unsteady and spatial evolution both in the cavity and the main
stream. In the following, a brief review of these topologies will be provided.

First of all, it should be commented the two different available technologies for the sealing
of the stator integration. On the one hand, the cantilevered stator is the integration used in
the last decades and it offers a flow behaviour similar to the rotor tip flow topology. On the
other hand, a shrouded stator is a more complex solution used recently since it allows leakage
flow reduction and its management. Both techniques have their pros and cons, for example a
general comment is that the cantilevered stator improves the stall margin of the stage but the
pressure rise capabilities are lower than the shrouded stator. Moreover, the shrouded stator
not only has a more complex integration but also the mechanical design.

Figure 2.6: Regions of the analysis

In the following paragraphs, a review of the most significant flow features in a shrouded stator is
done as well as some comments about their impact on the performance of the axial compressor.
The analysis is done by parts dividing the stator stage in different areas like is showed in the
Figure 2.6.

19



Chapter 2. Theoretical Basis

Figure 2.7: Horseshoe vortex evolution

In the first section or the blade passage, the main flow feature is the horseshoe vortex which
pattern can be observed in the Figure 2.7. Its origin is caused by the hub boundary layer
detachment originated by the adverse gradient forces. This gradient also originates the so called
cross flow from the blade pressure side to the adjacent blade suction side. This horseshoe vortex
is splitted into two legs downstream of the leading edge whose development is influenced by
the pressure gradient and the cross flow. The leg placed at the suction side remains attached
to the blade whereas the leg placed at the pressure side meets with the suction side of the
adjacent blade. This generates the interaction between both horseshoes vortex and results in
increasing the loss generation.

Another important flow feature originated in the blade passage is the phenomena called hub
corner stall [9] and it is due to the simultaneous detachment of the blade boundary layer
and the end wall boundary layer. Its formation is triggered by: the adverse pressure gradient
originated in the blade passage, the cross flow and the skewness of the row inlet boundary
layer. The inlet conditions are strongly affected by the operating point of the compressor since
the incident angle is directly related with the loading operating point. Besides, this incidence
also affects to the cross flow formation.

The sencond area to be analysed is the cavity and the flow through it. According to the
existing literature, some authors claim that the stator cavity flow can be studied with three
quantities: the leakage fraction, the leakage flow tangential velocity and the increasing in the
total temperature in the cavity. The leakage fraction is a relation between the recirculating
flow in the cavity and the main flow field. Otherwise, the leakage flow tangential velocity is
created by the dragged flow due to viscous effects. Finally, the increase in the total temperature
also called windage heating is generated by the flow pass through the cavity. The Figure 2.8
corresponds to CFD results that confirm the jet contraction and the vortices developed between
the seal teeth. The windage heating phenomenon is associated with the seal gap so that smaller
clearances increase the temperature in the cavity.
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2.4 Flow analysis

Figure 2.8: Contraction of the jet flow at the rim seal

In the region close to the beginning and the end of the cavity, a vortex appears as a result of
the interaction between the cavity flow and the main stream. According to the Figure 2.9, the
upstream vortex seems to be influenced by the seal gap and therefore by the leakage fraction.
A higher seal gap means a higher leakage fraction and it results in the ejection of the main
vortex outside of the trench. Contrarily, the vortex located downstream is not affected by the
seal gap.

Figure 2.9: Interaction vortex

The behaviour of the upstream vortex directly influences the inlet conditions of the stator since
it provokes skewness in the boundary layer of this region. This is critical for the blade passage
performance and related to the cross flow formation. The leakage flow also induces blockage
in the inlet low span region mainly due to the vortex. Just as some authors claim a higher
seal gap a higher leakage fraction and this results in an increase in the blockage at the blade
trailing edge. The influence of the leakage fraction quantity in the compressor performance is
clear and in some results were found that a 1% increase in the seal tooth clearance it can be
expected a 3% pressure rise penalty and a point drop in stage efficiency.

All the comments given above were connected to a single stage, but a real compressor can
contain up to ten stages and therefore the loss propagation should be considered. The outlet
conditions of one of the stages directly affect to the inlet conditions of the next stage. The
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Chapter 2. Theoretical Basis

following stages losses have a component due to the non-matching inlet conditions and the
losses of their own cavity. According to the literature, the efficiency drop are usually splitted
into three different components: the efficiency drop to the non-matching inlet conditions in
the rotor, the drop due to the pressure loss in the stator, and the efficiency drop due to the
windage heating.

It is evident that the brief review done above is not enough to understand all the flow fea-
tures around a compressor stage. Besides, the origin of most of these features is a complex
combination of different phenomena. However, this slight introduction to the flow topologies
is necessary for the later analysis of the mPOD results of the experimental case.
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Results

In the previous chapter §2, the fundamentals of POD and mPOD have been introduced. From
this theoretical introduction, some key aspects of both techniques have been presented and
explained such as some limitations that should be taken into account. It have also been
presented some procedures to treat the data needed to properly apply POD or mPOD, since
these data-driven decompositions require the data arranged in an orderly way.

In this chapter, the results obtained from the application of the POD and the mPOD are
presented. With these results it will be possible to identify the weaknesses of the energy-based
procedures like POD and the necessity of hybrid techniques that combine the energy-based
principles with the frequency analysis. Both techniques have been applied to the same synthetic
cases. These cases have been purposely defined to test the applicability of both techniques in
different situations and conditions.

After the synthetic cases, POD and mPOD have been used with the actual pressure field on
an axial turbine. These data has been obtained in different experiments conducted in the DLR
facilities. Since in this case, the decomposition has been made over the pressure field instead
of the velocity field some little modifications have been done in the code. Before computing
the decompositions a pre-processing procedure had to be done as well as a deep analysis of the
frequency content of the signal acquired in order to improve the results and its analysis.

In order to analyse from a different perspective the data-driven decompositions, a completely
different experimental case has been included even though it is not related with the purpose
of the project. The case studied is an experiment where the velocity field of an impinging
jet onto a flat surface was measured with the PIV technique. A brief analysis of the results
obtained after applying POD and mPOD is done. It should be mentioned that any of these
techniques can be used as well with numerical data from computational simulations like CFD,
in fact at the beginning of the project it was one of the objectives but the large time of these
simulations made impossible its use.
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3.1 POD: synthetic cases

Just as it has been commented before, the first step consists on testing the POD with a series
of synthetic cases. Firstly, POD will be applied to this series of cases and in the next section
mPOD will be applied to underline the differences in the results. This series of synthetic cases
derives from an original one which has been modified with the purpose of testing some aspects
and provide the best explanation of some phenomena to take into account before using the
techniques.

The synthetic case consists on a circular domain described in two-dimensional polar coordi-
nates. This domain is a simple model of an axial compressor transversal section. In fact, a
more accurate model of the axial compressor section would be an annulus but in this section
the importance lies on the comparison between the different models obtained from the modal
decomposition and the real solution previously defined.

Figure 3.1: two-dimensional domain

The domain used in the synthetic cases is showed in the Figure 3.1. In this domain, the velocity
field of the flow is known and the POD and mPOD have been applied to reconstruct that flow
field with a finite number of modes.

Nθ 26 + 1
Nrad 25

Nnodes 2080
R 1m
tend 2 secs

Table 3.1: Domain data

The parameters that define the domain are shown in the Table 3.1 where Nθ and Nrad are
referred to the number of discretizations done in each coordinate. In this table, the time of the
simulation is also displayed. With the geometry information, the matrix of areas is computed
to do the averaging process.
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3.1 POD: synthetic cases

Vθ = A · r · cos(κ1θ + ωt)

Vr = A · sin2

(
θ

2
+ ωt

)
(3.1)

The velocity field is composed by the tangential and the radial components ~V = (Vθ, Vr).
The expressions of each component in 3.1 are known and dependent on the coordinates of the
domain. The constants A, κ1 and the frequency ω are chosen in each case according to what
has to be demonstrated.

Figure 3.2: Velocity field

In the Figure 3.2, the velocity components of a certain case have been plotted in a polar
coordinates graph for a certain time. It can be appreciated the dependence on the radial
coordinate of the radial velocity Vr which has been plotted for four different radial positions.
However, the tangential velocity Vθ is only dependent on the angular position.

3.1.1 Data arrangement

As it was mentioned in the Chapter §2, the way followed to arrange the data would be the
same to follow to reshape back the spatial and temporal basis. The procedure followed in the
synthetic case is quite different to the one followed with the experimental data, that is the
reason why a section is dedicated to explain it.

In this case, for each time both components of the velocity field are computed in the whole
domain and stored in a two-dimensional matrix in which each position corresponds to a point
of the spatial grid. For example, for the time tj of the simulation the matrix of the tangential
velocity Vθ is like the one showed in 3.2. For the matrix of the radial velocity Vr the shape is
identical.

D
tj
Vθ

=


Vθ[r1, θ1] Vθ[r2, θ1] · · · Vθ[rNR , θ1]

Vθ[r1, θ2]
. . .

...
...

. . .
...

Vθ[r1, θNθ ] · · · · · · Vθ[rNR , θNθ ]


Nθ×NR

(3.2)
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The next step is arrange the matrix D
tj
Vθ

and its equivalent D
tj
Vr

in one column to finally have
a two-dimensional matrix in which each column was a time sample. The matrix in 3.3 shows
the procedure followed for a generic time sample tj . The vector generated has a length equal
to the number of spatial points Nsamples = NradNθ.

D
tj
Vθ

=



Vθ[r1, θ1]
...

Vθ[rNR , θ1]
Vθ[r1, θ2]

...
Vθ[rNR , θ2]

...
Vθ[rNR , θ1]

...
Vθ[rNR , θNθ ]


Nsamples×1

(3.3)

From the expressions showed above, the final data matrix is shaped by as many columns as
time samples, and each column is the vertical concantenation of D

tj
Vθ

and D
tj
Vr

like in 3.4. The
dimensions of the final data matrix are (2Nsamples ×Nt) due to the velocity field is composed
by two components. Let’s imagine in the velocity field three components are considered, the
dimensions of the D matrix would therefore be (3Nsamples ×Nt).

D =

[Dt1
Vθ

]
· · ·

[
D
tNt
Vθ

]
[
Dt1
Vr

]
· · ·

[
D
tNt
Vr

]
2Nsamples×Nt

(3.4)

3.1.2 Normal case

The first case to be solved applying the POD is a normal case in which the flow field is composed
by a tangential and a radial component. Both expressions of the velocity are described by the
equations 3.1. The constants that define the velocity field are presented in the Table 3.2.

A 50
ω 40 rad/s
κ 35 rad/m

Table 3.2: Constants of the flow field

The first step consists on analyzing the energy content of the basis obtained from computing the
Singular Value Decomposition of the correlation matrix. The criteria followed for this case and
the following ones take into account the energy contribution of each mode in comparison with
the first one, that is the most energetic. This statement is always true since both techniques
sort the computed modes in descending order of energy. The graphics used for these analyses
plot the results of the ratio σr/σ1 for r = 1, 2, ... Nm, where Nm makes reference to the total
number of modes obtained in the Singular Value Decomposition.
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Figure 3.3: Energy content

The Figure 3.3 shows that for this case the first five modes contain most of the energy of the
system. Actually, these modes represent almost the 99% of the total energy.

Once the number of modes is selected, the temporal and structural basis are computed. The
figures below show the temporal structures, the figures on the right represent the temporal
evolution whereas the figures on the left represent the frequency content of each mode obtained
with the Fast Fourier Transform (FFT). It should be mentioned that both graphics have been
normalized and therefore the ordinate axis is dimensionless.
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Figure 3.4: Modes

In the figure corresponding to the first mode, it can be observed that it represents the mean
value of the velocity field since the frequency is null and the oscillations are very small around
a constant value.

Also, it can be observed that the rest of the modes has a sinuosoidal evolution and they are
paired. The second and third mode have the same frequency content located at f ' 6Hz which
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corresponds with the frequency ω imposed. However, the temporal evolution shows a π/2 delay
because this mode is related to traveling structures. This phenomena can be clearly observed
in the Figure 3.5 where the modes ψP2

and ψP3
have been plotted in the same graphic. The

π/2 delay is evident and it also is present in the fourth and fifth mode. However, its frequency
is f ' 13Hz which leads to think that these two modes are harmonics of the previous ones.

Figure 3.5: Spectral mixing in ψP2 and ψP3

If the sixth mode is considered, even though is not necessary, it can be observed that this mode
contains frequency content in the whole spectra and in comparison with the rest of the modes,
the temporal evolution seems to be noisy or chaotic. But as it shows the Figure 3.3, its energy
content is almost fifteen magnitude orders lower so the influence in the decomposition of the
system is negligible.

Figure 3.6: Sixth mode

The spatial structures of the first five modes are showed below. It can be observed that the
second and third mode are paired as well as the fourth and fifth. These two pairs of modes
are related to traveling structures and the π/2 delay commented before is also presented in the
spatial structures.
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Figure 3.7: Spatial structures

One possible additional step could be the reconstruction of the flow field from the modes
computed to obtain a Reduced Order Model (ROM). This is one of the most useful applications
that this type of techniques have. Following the expression 3.5, where Nm makes reference to
the number of modes to retain, and then arranging the data in the same way as the computed
basis, it can be obtained a contour plot of the flow at a given time.

D̄ '
Nm∑
r=1

ΨpΣpΦp (3.5)
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Figure 3.8: Original (left) versus approximated (right) flow field

In the Figure 3.8 are presented the contour plots of the flow field. On the left, it is the original
flow field plotted from the original data matrix D whereas the approximation of the flow field is
showed on the right. As it can be observed, both plots are identical and this can be confirmed
with the results displayed in the Figure 3.9. This graphic evinces that considering the number
of modes computed, the error commited is almost null.

Figure 3.9: Convergence of the error

Due to the simplicity of this case the POD modes considered seem to reproduce quite well the
flow behaviour in terms of velocity. The next cases put the POD throught its paces to analyse
the limitations of the technique.
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3.1.3 Noisy case

This second case consists on applying the Proper Orthogonal Decomposition over the same
synthetic case than before but including a noise contribution to each component of the velocity
field. The noise considered is a Gaussian noise characterized by an standard deviation of
σ = 80. The energy content of the different modes is showed in the Figure 3.10 in the same
way as in the previous case. It can be observed that starting at the sixth mode, the energy
content decays and therefore the sixth first modes accumulate most of the energy.

Figure 3.10: Energy content
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Figure 3.11: Temporal basis of the POD modes

In the Figure 3.11 are showed the results of the POD applied to the noisy case. As it can
be observed, the results in terms of frequency content are the same as in the previous case:
the second and third mode have the peak of frequency at f ' 6Hz, whereas the fourth and
fifth mode at f ' 13Hz. This is because the flow field is described by the same velocity
expressions. Otherwise, the temporal evolution of the modes are visibly affected by the noise.
This is the problem commented in the Chapter §2: since the white noise is spanned along the
full frequency range with the same energy spectra, the POD modes cannot filter it.
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The pairing between the second and third mode, as well as between the fourth and fifth mode
can be observed in both graphics as well as in the spatial structures. In this case, showing
the spatial structures of the POD modes do not contribute specially to the understanding of
the results because they are identical to the previous case with some distortion caused by the
noise. This is the reason why these graphics are not presented. In the same way as in the
previous case, the temporal series of the second ψP2

and third ψP3
mode have been togetherly

plotted to clearly appreciate the delay commented.

Figure 3.12: Spectral mixing in ψP2 and ψP3

(a) Original flow field (b) Approximated flow field Nm = 6

(c) Approximated flow field Nm = 150 (d) Approximated flow field Nm = 250
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(e) Approximated flow field Nm = 500

Figure 3.13: Different reconstructions of the flow field

In the same way than in the previous case, the flow field can be reconstructed from the POD
modes. The Figure 3.13 show the comparison between the original flow field and some of the
reconstructions obtained. In this case, the reconstruction obtained from the six POD modes
computed is really different than the original flow field. This is because the first five modes
are the most energetically representative modes but altought they contain almost the 85% of
the total energy, this is not enough to reproduce the original flow field.

Besides, the not considered modes are representative of the noise and considerably distort the
flow field. In terms of energy, these modes are not significant since the evolution of the energy
is very slow (see Figure 3.10). This can be demontrated with the rest of the graphics, they
show different reconstructions with an increasing number of modes, and as it can be seen even
with Nm = 500 the flow field is not equal. This is due to each mode contribute to the distortion
of the flow field. What is more, the flow field modelled with Nm = 5 is very similar to the flow
field of the previous case

Figure 3.14: Convergence of the error

The graphic above explain the phenomena previously commented. As can be observed, con-
sidering a very high number of modes Nm = 1000, the error obtained is high in comparison
with the results of the previous case. The noise added to the original signal is the cause of this.
Although with a few modes the energy computed was high, the reconstruction of the flow field
requires a higher number of modes even though its energy content was lower.
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3.1.4 Same energy case

In the theoretical introduction of the POD in §2.1 has been explained the basis of this technique
and that is a energy-based method. This principle leads to one of the main limitations of the
method that consists on POD being incapable of distinguish between largely different scales
with similar energy content. This problem usually causes spectral mixing in the different POD
modes.

The next synthetic case has been developed to test and demonstrates this limitation. The
velocity field in this case is composed by the tangential and radial component, each one defined
by three contributions called velocity modes as in 3.6.

Vθ =

Vθ1︷ ︸︸ ︷
Aθ1 · r · cos(κ1θ + ω1t) +

Vθ2︷ ︸︸ ︷
Aθ2 · sin(ω2t) +

Vθ3︷ ︸︸ ︷
Aθ3 · cos2(ω3t+ κ3θ)

Vr = Ar1 · sin
(
θ

2
+ ω1t

)
︸ ︷︷ ︸

Vr1

+Ar2 · cos(ω2t)︸ ︷︷ ︸
Vr2

+Ar3 · r · cos3(ω3t+ κ3θ)︸ ︷︷ ︸
Vr3

(3.6)

These modes are in turn characterized by largely different frequencies and constants showed
in the Table 3.3.

Aθ1 25 ω1 2 rad/s
Aθ2 10 ω2 50 rad/s
Aθ3 80 ω3 400 rad/s
Ar1 5 κ1 35 rad/m
Ar2 50 κ2 0 rad/m
Ar3 25 κ3 12 rad/m

Table 3.3: Constants of the flow field

Each temporal contribution is arranged in a different data matrix whose linear combination
gives as a result the final data matrix. In 3.7 is showed how it would be that process.

D =

[
[Dθ1 +Dθ2 +Dθ3 ]
[Dr1 +Dr2 +Dr3 ]

]
(3.7)

The different contributions to the velocities expressions accomplish with the requirement of
having different frequencies contributions but it is necessary to impose that all the contributions
have a similar energy content. This energetic requirement has been achived modifying the norm
of each data matrix. As a example of the process, in 3.8 is showed for two of the components
Dθ1 and Dr2 .

D∗θ1 =
‖Dθ1‖+ ‖Dθ2‖+ ‖Dθ3‖

3 ‖Dθ1‖
Dθ1

D∗r2 =
‖Dr1‖+ ‖Dr2‖+ ‖Dr3‖

3 ‖Dr2‖
Dr2

D∗ =

[
[D∗θ1 +D∗θ2 +D∗θ3 ]
[D∗r1 +D∗r2 +D∗r3 ]

] (3.8)
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Once all the contributions have the same energy content, the data matrix is re-assembled and
POD applied.

Figure 3.15: Energy evolution

The first step before deciding the number of modes is analyse the energy content of the POD
modes obtained from the SVD of the correlation matrix. In the Figure 3.15 is showed the
evolution of the energy according to the number of modes considered. As it can be expected
in this case, due to the complexity of the velocity field and its contributions, the number of
modes to consider has increased in comparison with the previous cases. The first thirteen
modes contains almost the 95% of the total energy. With these number of modes computed,
the results obtained are showed below. Due to the high number of modes obtained, only a
limited number of them are presented in order to make easier the analysis and the comments.
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Figure 3.16: Temporal structures of POD modes

In the graphics above, the temporal structures of some of the POD modes are showed. In all
of them it can be appreciated the spectra mixing phenomenon commented at the beggining.
In some of these, the dominant frequency is the low one such as in the first, second, fourth
and twelfth mode. Whereas in the tenth mode, the main frequency is the largest one. These
differences can be observed in the frequency content graphic where the dominant frequency is
represented by a higher peak, as well as in the time series plot.
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Figure 3.17: Spatial structures

For the interest of the reader, the spatial structures of some of the POD modes computed are
showed in the Figure 3.17. Here, the spectral mixing it can be clearly observed since different
phenomena are present in the spatial respresentations. This problem occurs since the data is
projected along the temporal evolutions, and therefore the spectral mixing is propagated to
the spatial structures.

As commented before, some of the modes are not showed to avoid an excess of graphics, but
the results of these are quite similar. Some of the modes showed spectra mixing, whereas a
few of them are represented by an harmonic related to the imposed frequencies. These results
bring to light one of the most important limitations of POD consisting on being incapable of
distinguishing between largely different scales with similar energy content. This can hinder
the correct identification of interesting patterns or structures in some cases.
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(a) Original flow field (b) Approximated flow field

Figure 3.18: Original versus reconstructed flow field

The reconstruction of the flow field showed in the Figure 3.18 is quite similar to the original
one, also showed in the same plot. This is because though the POD modes present spectral
mixing, and this can be a problem in some cases, the velocity field reconstructed from them is
accurate.

Figure 3.19: Error convergence

The Figure 3.19 shows the evolution of the error with the number of modes. The results reveal
than the error abruptly decreases when more than ten modes are considered.

With this case, it has been able to demonstrate one of the most limiting problem that POD
has. This technique is incapable of differenciating between different scales with a similar energy
content. In the nature of the flows inside turbomachines, these phenomena are quite frequent
and the limitation of the POD prevents the interpretation of the results.
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3.2 mPOD: synthetic cases

After having studied some synthetic cases throught the POD, the next step is apply the mPOD
to these same cases. The main objective is compare the results of both techniques and analyse
the advantages of using mPOD instead of using POD. The first case is a normal case as,
whereas the second and third case are a noisy case and a case in which the same energy
content is imposed over the contributions of the velocity field.

3.2.1 Simple case

The first case in which the mPOD results are analysed is the normal case tested in §3.1.2 so the
expressions of the velocities are the same. As a reminder, the Table 3.4 presents the different
values of the constants that define the velocity field.

A 15
ω 40 rad/s
κ 35 rad/m

Table 3.4: Constants of the flow field

The arrangement of the data follows the same procedure as the explained in §3.1.1 since the
flow field is described by the same expressions and the domain is also the same. In the case of
mPOD, just as it was explained in the theoretical introduction of the method one of the first
steps consists on analaysing the spectra of the correlation matrix to determine the frequencies
of the filter bank.

The Figure 3.20 shows the spectra correlation matrix K̂ and it can be observed that there are
two dominant frequencies at f ' (9, 12)Hz. The filter bank has been designed to split the
data into scales isolating these frequencies with the filter bank. The frequency splitting vector
for the filter bank is fv = [10, 16]Hz. With these frequencies, the correlation matrix is going
to be splitted into three scales.

In the Figure 3.20 are also presented the transfer functions HL1
and HM1

used in this case.
The first transfer function corresponds to the largest scale or what is the same to the low-pass
filter, whereas the second one is the one referred to the first band-pass filter.
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Figure 3.20: Spectra correlation matrix and transfer functions

The next steps of the technique after having defined the filter bank and have obtained the
transfer function of the two-dimensional filters were described in §2.2. The number of mPOD
modes to compute is defined after having analysed the evolution of the energy content showed
in the Figure 3.21 which is very similar to the energy evolution of the POD analogous case.
According to the graphic, the first five modes contain almost the 85% of the system energy so
these are the modes to compute.

Figure 3.21: Energy content of the mPOD modes

In view of the results exposed above, it is clear that considering the first five modes contains
most of the energy of the system. After having selected the number of mPOD modes to
compute, the next step is obtain the structural and temporal basis of the decomposition. This
basis have already been splitted into the different scales as well as sorted in terms of the energy
content.
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Figure 3.22: Temporal structures of the mPOD modes

The Figure 3.22 shows the temporal structures of the modes in terms of frequency content and
the time series of each one. These basis are quite similar to the POD ones exposed in §3.1.2.
The first mode corresponds to the mean value of the flow field since its frequency content is
null. The second and third mode are paired since they have the same frequency content but
they present the same delay than the POD modes. This phenomena also occurs in the fourth
and fifth mode.
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Figure 3.23: Spatial structures of the mPOD decomposition

The Figure 3.23 shows the spatial basis of each one of the modes. The pairing between modes
commented previously can be observed in these graphics since they are identical but with an
spatial delay of π/2. As it has been commented before, this phenomena is related to those
modes that represent traveling structures.
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Figure 3.24: Temporal structures of the sixth mPOD mode

The Figure 3.24 shows the temporal basis of the sixth mode computed to demonstrate that the
irrelevant modes have a non-harmonic behaviour. Since these modes are, from an energetic
point of view unnecessary, their behaviour do not affect to the decomposition.

Figure 3.25: Original versus approximated flow field

Considering the first five modes, the reconstruction of the flow field is very accurate to the
original one. This is demonstrated in the Figure 3.25 for a certain time step of the simulation.
For this case and thanks to its simplicity, POD demonstrated being capable to differenciate
properly the modes in §3.1.2 in spite of the velocity field had two different scales as it can be
seen in the Figure 3.20 but with different energy content.

3.2.2 Noisy case

The next case to be solved is a modification of the previous one. The velocity field has been
redefined adding a Gaussian noise with standard deviation of σ = 80, in the same way as it
was done in the POD analogous case. Alike every previous case, the first step consists on
analysing the energy content of the modes. Considering the same criteria than before, it has
been selected the first five modes since they contain most of the total energy of the system as
it is showed in the Figure 3.26.
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Figure 3.26: Energy content of the mPOD modes
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Figure 3.27: Temporal structures of the mPOD modes

In the Figure 3.27 are showed the temporal basis of the mPOD modes computed. As can
be observed, the frequency content of the modes is the same that the showed in the Figure
3.11 that correspond to the POD modes of the analogous case. This means that the mPOD
modes and the corresponding POD modes are represented by the same harmonics. Besides, the
second and third mode are paired, as well as the fourth and fifth mode as it was commented
previously. The reason of the pairing has already been commented in previous cases.
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Figure 3.28: Spatial structures of the mPOD decomposition

The main difference between the POD results and the mPOD results is that in the last case,
mPOD modes are much cleaner and do not show the noisy behaviour. This can be appreciated
in the graphics on the right for all the modes in comparison with the modes obtained from
POD. These results bring to light that the mPOD technique improves the POD when the
signal or variable to post-process is noisy.
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(a) Original flow field (b) Approximated flow field Nm = 6

(c) Approximated flow field Nm = 50 (d) Approximated flow field Nm = 500

(e) Approximated flow field Nm = 1000

Figure 3.29: Different reconstructions of the flow field
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The Figure 3.29 shows the reconstruction of the flow field from the mPOD computed modes.
As it can be observed, with six modes the reconstruction is far away of the original flow field.
This is caused because the mPOD modes not considered for the decomposition given that
they do not have a representative energy content have a important role in small regions of the
domain to achieve an accurate reconstruction.

In any experimental case, the signal acquired with any kind of sensor are most of the times a
noisy signal due to the nature of the flow and the unsteady phenomena, even more when the
experiment is conducted into a turbomachinery stage. With the previous results, it can be
come to the conclusion that mPOD is better than the POD to post-process noisy signals and
therefore to apply to experimental cases as the ones conducted for this project.

3.2.3 Same energy case

In the same way as it was done with the POD synthetic cases, the next one has been developed
to test the capabilities of the mPOD of distinguishing between different scales with similar
energy content.

The first step consists on analysing the spectra correlation matrix K̂ to be able to define the
frequency splitting vector. The Figure 3.30 shows the spectra of the correlation matrix on the
left, and an enlarged region of it to appreciate better the details. In these graphics can be
appreciated that there are some peaks that correspond with the dominant frequencies located
at f ' (1, 8, 50, 65)Hz. Taking into account these results, the frequency splitting vector
would be fv = (5, 10, 58)Hz in order to aisle the different scales.

Figure 3.30: Spectra correlation matrix and a detail region

With the frequencies for the filter bank defined before, the transfer functions of the two-
dimensional filters look like the ones showed in the Figure 3.31.
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Figure 3.31: Two-dimensional filters

The analysis of the energy evolution of the mPOD modes allows to define the number of them
to be computed. The Figure 3.32 shows that the first thirteenth modes contain around the
95% of the total energy.

Figure 3.32: Energy evolution

In the graphics below, the temporal basis of the mPOD computed modes are showed. There
are some interesting points to comment, however not all the graphics are showed to avoid an
excess of results.
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Figure 3.33: Temporal basis mPOD modes

As it can be appreciated in the Figure 3.33 the first, second and fourth mode correspond to very
large scales or very low frequencies. Their frequency content is centered in the zero frequency,
besides the time series plots show a very slow temporal evolution.

On the other hand, the rest of modes show a high frequency response. In spite of some of
the modes have been purposely hidden, it is necessary to comment that the eighth and ninth
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mode are paired with a phase delay, as well as the eleventh and twelfth modes. With the
exception of the tenth mode, the rest of the mPOD computed modes show a purely harmonic
behaviour without spectral mixing. The tenth mode has a really strong frequency content
centered around f = 0Hz. Therefore, it can be said that this mode corresponds to a low
frequency response and the very small oscillations can be dismissed.

Figure 3.34: Spatial structures

The Figure 3.34 shows the spatial structures of some of the mPOD computed modes. These
are the same modes than the ones shown in the Figure 3.17 with the purpose of making a
comparison between them. The spatial structures of the POD modes show a mixing between
different phenomena that in the mPOD modes does not appear. The most significant difference
it can be observed in the first mode both in the spatial and temporal structures: the POD
mode φP1

show two different phenomena whereas the mPOD mode φM1
the low frequency

phenomenon has been isolated. The rest of the mPOD modes are apparently similar to the
equivalent POD’s but just with one of the phenomena. The tenth mode barely shows a bit of
spectral mixing, but it is clear that one of the phenomena is much stronger.
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Figure 3.35: Original and reconstructed flow field

With all these modes, the recontruction of the flow field is quite precise and the accuracy
obtained is high. This can be observed in the Figure 3.35.

With the results showed above and the corresponding comments, it has been demonstrated
that mPOD is considerably better than POD in such cases like this one. Taking into account
the purpose of the project and the nature of the flows inside the turbomachines, it is obvious
that mPOD has to be considered as first option to post-process the raw signals obtained in
experimental measurements.

3.3 Experimental case: PIV of an impinging jet

In order to giving a different point of sight for the application of POD and mPOD a different
experimental case is presented. In this case, both techniques are applied over the experimental
results obtained from the Particle Image Velocimetry (PIV) of an impinging jet flow onto a
flat surface. This flow is considered to be statiscally stationary. It should be commented that
this case correspond with one of the cases proposed by Mendez M. in his project [15].

Figure 3.36: Experimental set-up

The Figure 3.36 shows the experimental dataset where it can be appreciated the location of
the injector and the domain studied, also called Region of Interest (ROI). The purpose of
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this section is showing the results of the POD and mPOD and the differences in the solutions.
Therefore, explaining the experimental development is not the purpose and the reader is invited
to read the original report for this.

However, it is necessary to give some data of the experimental domain as well as some specific
data needed to the later analysis. The outlet nozzle of the injector has a diameter of H = 4mm
and it is located at 10mm of the ROI. In this case, the results corresponding with the temporal
structures are given in terms of the Strouhal number St = fsH/U0. As it has been done in
the previous cases, the results obtained with the POD are firstly showed and then the ones
obtained with mPOD. The convenient comparisons will be done at the end of the mPOD
section.

It should be commmented that in this case the experimental domain is a cartesian grid and the
averaging process used in all the previous cases is not needed. Since in this case, the velocity
field is the variable of interest and it is composed by both components, the data has to be
arranged in a similar way as it was done in any of the synthetic cases.

In this case, the solutions of both techniques are presented together since it is easier to make
the different comments. First of all, the mandatory step before selecting the number of modes
to compute is checking their energy content. The Figure 3.37 shows the evolution of the energy
in both cases of each mode normalized with the maximum energy.

(a) POD modes energy (b) mPOD modes energy

Figure 3.37: Evolution of the energy

In both cases, the modes show a quite similar energy evolution and ten modes are computed
since it can be achieved around the 95 % of the total energy. The first results presented below
are corresponding to the POD results.
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Figure 3.38: Temporal structures of significant POD modes

The Figure 3.38 shows the temporal basis of some of the POD modes computed. These modes
are the most significant and the comments given about them can be extended to the rest. The
temporal structures are plotted in terms of the Strouhal number, and therefore in terms of
the frequency content instead of the temporal evolution. Taking into account that the original
flow field is known and it can be visualized, is more interesting analyse the results in this way.

As it can be observed in all of the modes presented above, the spectral mixing appears in
the frequency analysis. In the mode ψP2

the spectra mixing is not so evident as in the case
of the mode ψP4

or ψP8
. In any case, this results prove that POD applied over a stationary

case composed by different scales with similar energy content generates modes with spectral
mixing.

Concerning to the spatial structures, it has been showed the same modes as before. It can
be distinguished two different regions in the spatial domain, a free-jet region close to the left
boundary and a wall-jet region in the lower right area. In the Figure 3.39, it can be appreciated
some interesting coherent structures that the POD modes are capable to detect. The second
mode φP2

is more related to the wall-jet region where the significant spectra is located at
low-frequencies as ψP2

shows.
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Figure 3.39: Spacial structures of significant POD modes

On the contrary, the mode φP8
is more related with the free-jet flow and therefore its spectral

content is located around St ' 0.3 as it has been demonstrated in the literature.

Figure 3.40: Spectra correlation matrix

Before computing the mPOD, it is necessary to check the spectra of the correlation matrix K̂.
The Figure 3.40 shows this spectra and an augmented part of it, where it can be observed that
there is a dominant peak at f = 12Hz. It can also be said that there is a significant content
located in the range f ' 150 − 350Hz. Taking this into account the filter bank is defined as
Fv = [160, 350, 815]Hz.
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Figure 3.41: Temporal structures of significant mPOD modes

The Figure 3.41 shows the temporal structures of some of the computed modes in terms of the
Strouhal number. In the different graphics can be observed the absence of spectral mixing. As
the second and fourth mode have the same frequency content in both methods, the comparison
in the spectra clearly demonstrates this. In the case of the eighth and tenth mode, the spectra
is different in both methods so the comparison is not so clear.

According to the results obtained for the spatial structures, the second mode is highly related
to the wall-jet region and thus the low-frequency content is dominant. The tenth mode is
clerly related to the free-jet region and the dominant frequency is around St ' 0.3 as well as it
happened with the POD modes. The fourth and the eighth mode are related with the region
where the stagnation of the jet occurs and therefore the frequency content is similar.
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Figure 3.42: Spatial structures of significant mPOD modes

The main difference between the results showed above is that the POD is not capable of
distinguish between different scales with similar energy content and therefore the spectral
mixing appears. Concerning to the mPOD results, the number of scales in which split the
spectra could be raised and this would lead to an improvement in the frequency resolution. As
it has been commented several times before, one of the advantages of the mPOD is that it can
be moved towards the DFT decomposition increasing the number of frequency bandwidths.

3.4 Experimental case: pressure field in an axial turbine

The present section shows the results obtained after applying the mPOD over real data of an
axial turbomachine. The state-of-art aircraft engines usually operates at high temperatures
and lean conditions in order to meet the emissions targets. The experiments were conducted
as part of the European Comission FP7 project FACTOR (Full Aerothermal Combustor-
Turbine interactiOns Research). The aim of this project was studying the aerodynamic and
thermal features of the interaction between the combustor and the high-pressure turbine with
the purpose of improving the integration between these two elements and the performance of
the core engine. This project was developed by a consortium of European institutions and
companies giving as a result a large quantity of interesting results.

The experiments were conducted in the turbine test rig facilities of the German Aerospace
Center (DLR) in Göttingen, Germany. The different parts of the experimental set-up were
constructed by the different partners of the consortium as well as the experimental probes.
The Von Karman Intitute for Fluid Dynamics provided the fast-response aerodynamic probes
to measure the pressure fluctuations, as well as the instrumentation of the rotating system.
The data-driven decompositions commented in previous sections are going to be applied over
the pressure field of the turbine and therefore some little changes in the code have to be
done. In the synthetic cases as well as in the PIV case, the velocity field was composed by
two components but the pressure is an scalar field so this is one of the main changes. The
geometry of the experiments is largely different than the domain used in the synthetic cases
but this will be commented with more details in the following sections.
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Figure 3.43: Cut-away view of the test section [8]

In the Figure 3.43, it can be seen a cut-away view of the test section. Different colors are used
to distinguish different parts and also the company or institution responsible of its design.

Since the project is not only focused in the aerodynamic features but also on the thermal
conditions of the combustor-turbine interaction, similar conditions of the actual flow during
the performance of the engine have to be achieved. With this purpose a non-reacting combustor
simulator was designed achieving high realistic boundary conditions for the experiments. This
device is composed by a fast electrical heater and a swirling device.

Figure 3.44: Flow distribution and measurement planes [8]

Some of the experiments were conducted with the heater on and some other with the device
off. Since the main interest of this project is focused on the pressure field, the operation of the
heater only had influence over the probes calibration.

In the Figure 3.44, it can be observed the combustor simulator location and the flow distri-
bution. A cooling flow is injected downstream of the swirling device in order to simulate the
real conditions. In this figure, it is also presented different measuring planes where data was
acquired.
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3.4.1 Measuring method

Once the experimental facility has been explained, the next step is to comment how the
experiments were conducted. A single stage of a state-of-the-art turbine was tested and the
pressure and temperature of the flow field was measured on several planes shown in the Figure
3.44. The different measuring planes were strategically placed to measure those variables
and study the flow interaction in the interface combustor-turbine and its influence over the
performance of the core engine. In this project, the data used corresponds to the pressure field
in the plane MP40, and therefore just downstream of the combustor.

The rotor and stator stages have a total of 60 blades and the vanes have a constant height
equal to 45mm from inlet to outlet while the pitch length is equal to 22.5mm. The hub radius
is equal to 223.463mm and the shroud radius 280mm. All these parameters of the geometry
will be used later to create the matrix areas to properly balance the inner products of the
mPOD, in the same way as it was done in all the synthetic cases. All these data is presented
in the Table 3.5.

RHub 223.463mm
RShroud 280mm
Span 45mm
Pitch 22.5mm
Nblades 60

Table 3.5: Turbine geometry

The pressure signal was acquired with a high-response probe with a sampling frequency of
Fs = 500 kHz during two seconds in each position giving a total of one million of temporal
samples. The pressure sensor gives as output a voltage signal and this has to be converted by
means of a calibrating process to actual pressure values. This calibrating process is described
by the expression 3.9 where Vp and Vs are the voltage signals and Pcal,i are a series of calibration
parameters that depend on the inlet conditions.

P = Pcal,1 + Pcal,2Vp + Pcal,3Vs + Pcal,4VpVs + Pcal,5V
2
s (3.9)

The measurements were taken moving the probe point by point describing a spatial grid. The
sensor was moved along the span, starting at a certain pitch position from the hub to the
shroud. Then the sensor is placed in the next pitch position and moved from the shroud to
the hub in the way back. This procedure was done along 41 span points and 42 pitch positions
describing a zigzag. In total, the pressure was measured in 1722 points. Each time the probe
was placed in a certain position it was necessary to wait until the flow field was stabilized
before starting to take measurements. Due to the probe’s dimensions, in the hub region was
necessary to keep 2.5mm of distance. This cut off an interesting region of the domain from
the point of view of results.

In the Figure 3.45, a sketch of the spatial grid described by the pressure probe is showed.
It can be observed the direction followed by the probe marked with arrows along the span
directions. Also, the measurement grid was undersampled to make easier the understanding
of the procedure.
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Figure 3.45: Spatial grid described by the probe

Apart from the measures of the pressure and temperature, a measure of the rotational speed
of the rotor stage was also taken. This speed was measured by means of a sensor placed in
one of the blades of the rotor stage and other sensor in a fixed blade of the stator. Each time
both blades were aligned, the sensor goes to a high value and therefore, the signal indicates
each time a whole revolution is given by the rotor. The Figure 3.46 shows the 1/rev signal.

Figure 3.46: 1/rev signal

Analysing the previous graph, the BPF (Blade Passage Frequency) can be obtained. In
Matlab, an algorithm has been coded to detect when the 1/rev signal is on high value
defining a trigger level. The code detects in which time this blade passage occurs and also it
computes the time difference between two consecutive blade passages. This time difference is
the time the rotor needs to give a revolution and therefore is an indicator of the rotational
speed and the BPF .
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∆t = 0.0078 s→ BPF ' 128.34Hz (3.10)

Given that the sampling frequency of the sensors is very high, they were able to detect any
variation of the rotational speed and this is why in the expression 3.10 the symbol ' is used
even though the variations are less than 1%.

Figure 3.47: Different possitions of the combustor simulator [8]

The combustor simulator was able to slide in the rotational direction allowing different positions
of the hot-streak core. During the experiments, two positions of the combustor were used. In
the first position called Passage (Pa), the core of the combustor is aligned with the passage
between two blades. In the Leading Edge (LE) configuration, this core is oriented to the
stagnation point of the blade. The Figure 3.47 shows both configurations.

Due to the process followed to take the measurements, the data had to be treated before
using it for any purpose. Firstly, each measurement started at a different main blade position
instead of starting the acquisition when this blade passes through the 1/rev sensor. On the
other hand, the measurements were taken point-by-point what means that the raw data is not
simultaneous and therefore the unsteady phenomena captured in one point is measured with
certain delay in the next position.

The first issue was easily solved since the 1/rev signal was available and all the data was
selected to start when the main blade is at the same position. This was done with a Matlab
algorithm that detects the peaks in the signal and extracts the pressure data according to the
first passage.

To solve the second problem, a rephasing of the data had to be done. This procedure consisted
on a FFT of the pressure data. The first measuring position is taken as reference and therefore
the phase of the corresponding data is taken also as reference. This phase is imposed over
the data on the rest of the positions and then, the IFFT (Inverse Fast Fourier Transform) is
computed. The new pressure obtained in this inversion has the same phase in all the locations
and therefore all the phenomena is supposed to be phased.
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3.4.2 Frequency analysis

The next step consists on conducting an spectra analysis over some orderly distributed positions
of the spatial grid. This analysis has been done making use of the standard Fast Fourier
Transform (FFT) and the Power Spectral Density (PSD) following the Welbech’s method
which will be explained afterwards. It should be commented that the signal considered in
these analysis only correspond to the oscillations of the pressure field since the mean value has
been substracted.

Figure 3.48: Positions where FFT and PSD have been computed

The Figure 3.48 shows the spatial grid of the experimental measures and the positions where
both studies have been conducted, the colors used to mark the different points are the same
used in the different graphics to differenciate the results of two different positions and make
easier the comments.

(a) Figure I (b) Figure II
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(c) Figure III (d) Figure IV

(e) Figure V

Figure 3.49: Results of the FFT

Firstly, the results of the analysis done with the FFT are showed in the Figure 3.49. It is
necessary to make some commentaries about the representation before starting to analyse the
graphics. As it has been commented before, the colors used in these graphics are the same as in
the Figure 3.48 to distinguish different radial positions in each plot. The legends of the figures
make use of a radial coordinate r that is the distance from the hub of the turbine to the sensor.
Therefore, the coordinate r = 2.5mm is the closest position to the hub and r = 56.5mm the
closest one to the shroud.

The results presented show a general trend since all the plots present a dominant frequency
placed around f = 473Hz. Besides, the Figures I, II and V show a high content at low
frequencies specially in the middle radial positions. However, the Figures III and IV show a
cleaner frequency content in all the radial positions.

To facilitate the understanding of the results and reduce the chaotic spectra that some positions
have, it is opted to apply the Welbech’s method of Power Spectral Density (PSD) [19]. In
general terms, this method splits the signal into segments taking a modified periodogram of
each section and the final periodogram is an averaging of these.

Assuming that each segment has a finite length L, an overlapping of D samples can be defined
by the user and in this case has been selected to be the 50% of the window length. Before com-
puting the average of the periodograms, each segment is windowed with a Hamming window
of the same length L. To obtain the final results showed below, a parametrical study over the
window length L has been conducted considering L = [2000, 10000, 20000, 40000, 80000]. The
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largest L value would give the best spectral resolution but this could lead to a poor identifica-
tion of the main peaks if the noise level keeps too high. In the end, L = 80000 was selected as
it provides the highest value of the ratio between the main peak energy and the overall PSD.

(a) Figure I (b) Figure II

(c) Figure III (d) Figure IV

(e) Figure V

Figure 3.50: Results of the PSD

As it can be appreciated, in these new plots the results are less chaotic and its understand-
ing and analysis is easier. A general comment for all the positions analysed is that the main
frequency is located at f = 473Hz as it had been commented before. In the positions cor-
responding to the figure II, IV and V a second harmonic at f = 946Hz appears with a
considerable energy content. Some positions of the figures I, II and V show a low-frequency

68



3.4 Experimental case: pressure field in an axial turbine

content quite important even though the mean pressure has been supressed. This positions
are located at the middle span whereas the points closer to the hub and shroud do not present
content in the low-frequency or high-frequency range.

Figure 3.51: Positions where a thorough analysis has been conducted

A thorough analysis has been conducted in those positions in which the low-frequency content
is important. After selecting those interesting points where the frequency content at low-
frequencies show a complex behaviour, the PSD is applied to the surrounding nodes to see
if the phenomena is punctual or it spans a bigger region. In the Figure 3.51 are showed the
positions where a deeper evaluation has been done. The different colors in each enlarged region
have been selected equal to its corresponding plot. A general comment that can be made about
all the graphics showed is that in all of them the second harmonic at f = 976Hz is pressent
with greater or lesser intensity.

(a) Detail figure I (b) Detail figure II
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(c) Detail figure V

Figure 3.52: Detailed analysis of the positions marked

In the Figure 3.52a) it can be appreciated that it is in r = 28.15mm at any of the three pitch
positions where the low-frequency content is located. Besides, those three positions show an
important peak at f ' 3 − 4Hz. On the contrary, none of the rest of the positions present
that behaviour.

The Figure 3.52b) shows a different pattern, only the points located at pitch −13.0◦ present
a low-frequency content being stronger at r = 28.15mm and at a frequency f ' 3 − 4Hz.
Whereas the results in the other two positions are normal.

Finally, in the Figure 3.52c) only the positions located at r = 14.65mm and 17.35mm at
a pitch 3.0◦ show an important low-frequency content so most probably the phenomena is
punctual without spanning to the sorrounding nodes.

Figure 3.53: Mach contours in MP40 [8]

The Figure 3.53 shows the velocity field in terms of Mach number on the plane MP40. Both
graphics correspond to the two different positions of the combustor simulator. For the data
used in this project and therefore treated in the previous analysis, the combustor simulator
was in the Passage (PA) position.
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Figure 3.54: Numerical (left) and experimental (right) pressure maps [4]

Taking into account the positions were a thorough spectra analysis has been carried out, it can
be observed that the vortex cores position coincides with those locations. In those positions,
the low-frequency content can be related to those vortex and the lower speed in those regions.
The existence of the vortex clearly affects the pressure field around its position. These results
can be confirmed with the pressure contours presented in the Figure 3.54. This graphic shows
the numerical and experimental pressure maps where it can be observed the position of the
vortex. This vortex notoriously affects the pressure field creating a low-pressure region around
the its core.

In the Figure 3.49 it could be observed that the spectra in all the shroud positions (green
color) is less energetic in comparison with the rest of the positions. In the Mach contours and
in the pressure maps, it can be observed that the shroud is a region with low velocity and high
pressure.

The peaks in the spectra range could be related to the swirl introduced by the combustor
simulator, as well as the vortex seen in the contour plots showed above. Since the measuring
plane was upstream of the rotor stage, the BPF does not appear in the spectra. This is
because the swirl of the flow is much stronger than the blade passage disturbance traveling
upstream.

3.4.3 mPOD results

After having thoroughly analysed the spectra in those positions where the frequency content
seemed to be more interesting, the next step is compute the mPOD. In this case, only the
mPOD is applied since the POD has been demonstrated not being suitable for this kind of
applications. As it has been commented before, little changes had to be made in the code not
only to post-process the pressure field but also because the experimental spatial grid is quite
different to the domain of the numerical cases.
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Figure 3.55: Correlation matrix (left) and its spectra (right)

The Figure 3.55 shows the correlation matrix K and its spectra K̂. The temporal correlation
matrix shows a regular pattern and a broad frequency range. The spectra correlation matrix
presents a really strong peak located around f ' 500Hz and also less important frequency
content around f ' 950Hz. These results are consistent with the frequency analysis made in
the previous section since all the studied positions showed a similar spectra. Taking this into
account, the purpose of isolating the two phenomena leads to define the splitting frequency
vector as Fv = [100, 700, 1100]Hz. This means that the data have been splitted into four
scales before computing the decomposition.

Figure 3.56: Energy content of mPOD modes

The next step after decomposing the data is to analyse the energy content of each mPOD
mode. The Figure 3.56 shows this energy evolution normalized with the most energetic mode
as well as it has been done previously. Once this modes have been computed, the corresponding
temporal structures are shown in the Figure 3.57. This graphics are presented with the same
structure as in previous sections even though the temporal evolution of the modes are not
easily interpreted. In all the plots, the ordinate axis is dimensionless since it is normalized.
Just the most interesting modes are showed.
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3.4 Experimental case: pressure field in an axial turbine

The temporal structures of the two first modes, ψM1
and ψM2

, show a low-frequency content
corresponding to the large scale movements. Besides, these two modes are the most energetic
ones as it can be seen in the Figure 3.56. The third mode ψM3

clearly presents a spectra that
corresponds to the second scale between f = 100− 700Hz with a strong peak at f ' 500Hz.
This peak was expected since the analysis done showed it as well as the spectra correlation
matrix.
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Chapter 3. Results

Figure 3.57: mPOD temporal structures

The fifth mode ψM5
corresponds to the third scale since its frequency content is limited to

f = 700− 1100Hz. At f ' 950Hz it can be observed the most significant peak even though
this mode shows a very energetic spectra without any predominant peak over the rest. As it
could be observed in the Figures 3.50, 3.52 and 3.55, the harmonic present at this frequency
has a low energy content in comparison with the strongest peak. In this mode, this peak is
not dominant in the spectra range.

The sixth ψM6
and seventh ψM7

modes show a dominant peak located at f ' 500Hz. Taking
into account the previous results, this two modes could be related to traveling structures and
therefore are presented with a π/2 delay in the phase.
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3.4 Experimental case: pressure field in an axial turbine

After having commented the temporal structures, the Figure 3.58 shows the spatial structures
of the mPOD modes presented above.

Figure 3.58: Spatial structures of the mPOD modes

It can be observed that the two first modes, φM1
and φM2

, present a quite similar structures.
On the other hand, even though the sixth φM6

and seventh φM7
mode have the same energy

content, their spatial structures are different. All these graphics show somehow a pattern
but of very difficult interpretation. Besides, all the spatial structures present unexpected and
inconsistent bursts at different locations.

The results interpretation requires a deeper analysis of the experimental data because the two
issues mentioned at the end of §3.4.1 could not have completely been solved. Besides, since
the code has only been tested with one experimental case it cannot be discarded any coding
error. It would be interesting to test the mPOD code with data acquired in different measuring
planes to check if the spectra changes and also to confirm that the arisen problems are not due
to any error in the acquisition process.
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Chapter 3. Results

The results showed above are consistents in terms of spectra content. The point-by-point
analysis done in the previous section, the spectra of the correlation matrix and the frequency
content of the mPOD modes present the same frequency phenomena: the strongest peak
at f ' 500Hz and the harmonic at f ' 950Hz. It is important to remark that any of
the mPOD modes show spectral mixing and therefore the pattern recognition is easier. One
possible solution could be the refinement of the filter bank to narrow the frequency band-width
of each scale and try to reduce the spectra range around the peaks.
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Chapter 4

Conclussions and future work

The big-data revolution and the higher computational power have made that in experimental
cases as well as in simulating processes, the quantity of saved data has considerably increased.
In order to properly and efficiently treat all the data it is necessary to develop the so called
data-driven techniques. There is a wide variety of techniques and each one follows different
criteria to compute the decomposition. In this project, an extensive review of two techniques
has been done. The mathematical basis of POD and mPOD has been reviewed as well as the
corresponding matrix form of the decomposition to give to the reader a perspective and an
idea of the code developed in Matlab.

These types of techniques decompose the data in different modes each one composed by a
temporal and an structural basis. The mPOD directly derives from the POD fulfilling the
optimal energy criteria by which all the modes obtained in the decomposition are arranged
in descending order of energy content. It has been commented and later demonstrated the
limitations of this type of methods and therefore the necessity of hybrid methods capable of
filling the gap between the energy-based and the spectral purity decompositions. Although
this last type of methods have not been used in this project, a brief comment of their basis
has been done.

The POD and mPOD have been firstly tested with a series of analitycal cases to compare the
results of both techniques. In the first synthetic case, same results have been obtained with
the two techniques due to the simplicity of the case and the fact that mPOD applies the POD
over each scale obtained in the splitting process. If one of the scales contains all the energetic
phenomena, both techniques match in their results. Therefore, the splitting of the data in
different scales is interesting and useful if each scale contains different energetic phenomena.

For the second case, the same as the first one with added noise, the modes obtained with both
decompositions were quite similar. The frequency content of all the modes were the same but
the temporal series of the POD modes showed a noisy behaviour that the mPOD modes were
capable of filter. This is one of the commented advantages of the mPOD over the POD: the
higher filtering capability of the decomposition. In view of the results obtained, in this case
the difference is not significant since the possible phenomena present in the data is totally
distinguishable. Undoubtedly, this ability of the mPOD is very useful when a real signal is
treated and it is pretended to detect significant patterns in the flow field.
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Chapter 4. Conclussions and future work

In the third case, it has been proved the weaknesses of the energy-based decompositions. This
is the POD’s inability of differenciating between different phenomena with a similar energy
content. Here is where mPOD has demonstrated that the convenience of splitting the data
into different scales with a non-overlapping frequency content between them. Whereas the POD
modes showed spectral mixing in the temporal structures, the mPOD ones have separated the
different phenomena. Once again, this mPOD strength is really useful when real data is treated
because two main aspects: not always the most energetic phenomena are the most physically
important, and when it is pretended to detect significant structures or interesting patterns the
spectral mixing could be limiting.

A different perspective has been tried by testing POD and mPOD on an experimental case of
the PIV of an impinging jet. The differences between the code used in this case and the one
used for the rest of the cases have been commented and they lie on the different domain in
each case. The POD modes showed an spectral mixing in comparison with the modes obtained
with mPOD. A general comment for the results obtained in this case and in the rest ones is
that the modes related to travelling structures appear in pairs with a phase delay.

When a novel technique like mPOD is developed, there are always some further investigations
that can be done in order to test and evaluate its validity. In this way, different and more
complex synthetic cases can be set out to check the strengths and limitations of the technique.
For sure, also different experimental cases can be tested with the same purpose. One really
interesting use of the mPOD would be using it with numerical results from an CFD unsteady
simulation takinkg into account that this technique requires the input data being ordered
properly.

Since the technique has been coded in Matlab, a possible work for the future could be the
optimization of the code in order to speed up some processes of the code like the experimental
file readings. The code is prepared to compute mPOD over the pressure field of an actual
turbomachine, but it can also be prepared to treat the velocity or the temperature field.

The emission targets are becoming more restrictive and this is promoting new studies like the
FACTOR project. The main goal of this work was improving the numerical and experimental
characterization of the flow interface between the combustor and high pressure turbine in a
core engine. Several measures of significant variables as well as different numerical simulations
were carried out with this purpose. For this Thesis, the experimental data acquired in the
FACTOR project has been used and treated. It was necessary to pre-process the raw data
before using it to correct some deficiencies like missing data or the initial acquisition time.

A thorough analysis of the frequency content along several positions in the experimental grid
has been done where both FFT and PSD techniques were used. This study showed a very
strong peak at a frequency different from the BPF due to the measuring plane was located
upstream of the rotor and downstream of the combustor simulator. This combustor is composed
by a swirling device responsible of this frequency content, at sight of the obtained results. An
harmonic of this frequency appears in some positions with less intensity.

After the spectra study, the mPOD was computed and the results are consistent in terms of
spectra content since the coorelation matrix shows the same peaks that the previous analysis.
In the same way, the spectra of the computed mPOD modes is quite similar since it appears
the most significant peak and also the harmonic. The most energetic modes correspond to the
large scale structures and therefore they present a very-low frequency content.

As it has been previously commented, even though the temporal structures show expected
results, the spatial structures are very difficult to interpret and any clear pattern or structure
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is clearly observed. The solution of this issue would require a deeper previous analysis. Also,
it could be useful using a better solution for the experimental deficiencies commented. The
lack of time it has made impossible checking different solutions or making a more thorough
pre-analysis. For future works, it would be interesting analyse the code, since an error in the
method cannot be dismissed, as well as testing the mPOD with experimental data acquired on
different measuring planes. This would be useful to determine if the arisen problems are not
related to the acquisition of the data.

Another possible work for the future could be post-process the data acquired in the rest of
the measuring planes in the FACTOR project to see if the mPOD is capable of detecting the
unsteady phenomena in different positions along the core engine.
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