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Abstract 15 

The influences of habitat structure and hydraulics on tropical macroinvertebrate communities were 16 

investigated in two foothill rivers of the Udzungwa Mountains (United Republic of Tanzania) to assist 17 

future Environmental Flow Assessments (EFAs). Macroinvertebrate samples, hydraulic variables and 18 

habitat structure were collected at the microhabitat scale (�	 = 	90). Macroinvertebrate communities 19 

were first delineated (i.e. clustered) through Poisson and negative binomial mixture models for count 20 
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data in a semi-supervised mode by taking into account the sampled river. Then, genetically optimised 21 

Multi-Layer Perceptrons (MLPs) were used to identify the relationship of the most relevant variables 22 

with the delineated communities. Between the three delineated communities exclusively one 23 

community was shared between both rivers. The first and third communities presented similar values 24 

of richness (i.e. number of families) and diversity but the first was characterised by high abundance 25 

and was dominated by Baetidae (43.2%) while Hydropsychidae (36.3%) dominated the third 26 

community. The second community was dominated by Baetidae (33.4%), but it involved low 27 

abundance, richness and diversity samples and encompassed the microhabitats where no-28 

macroinvertebrates were found. The performance of the MLP acknowledged the quality of the 29 

delineation and it indicated that the first community shows a clear affinity for microhabitats with 30 

aquatic vegetation and woody debris and the third for unshaded, fast flowing and shallow microhabitats 31 

on intermediate-sized substrate. Conversely, the second community occurred in deep and shaded 32 

microhabitats with low flow velocity and coarse substrate. These results should enhance the 33 

implementation of ongoing and future EFA studies. 34 
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1 Introduction 40 

The recognition of deleterious human activities on freshwater ecosystems is well recognised 41 

(Zalewski, 2008). For instance, the construction of infrastructure to guarantee water supply for humans 42 
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has led to anthropogenic effects through flow alteration and regulation (Kundzewicz, 2007). These 43 

negative impacts spreading rapidly in developing tropical and sub-tropical countries, where the urgent 44 

need to use water for economic development overrides the implementation of initiatives promoting 45 

environmental protection (Msuya and Lalika, 2017). Environmental protection can be accomplished 46 

through specific actions on living organisms and habitat conservation. Concerning riverine habitats, 47 

the core importance of habitat structure and hydraulics are well recognised (Clifford et al., 2006 and 48 

references therein), and hydrology has been considered as a key variable affecting the dynamics and 49 

distribution patterns of freshwater species populations (see e.g. Schiemer, 2016). In this context, 50 

Environmental Flow Assessment (EFA) has emerged as a fundamental tool to determine the quantities, 51 

quality, and patterns of water flows (i.e. environmental flows or e-flows) to balance the protection of 52 

the natural environment with out-of-stream uses (McClain et al., 2013). Between the different 53 

approaches to EFA, the scientific community currently advocates holistic approaches, which consider 54 

the different components (e.g. riparian vegetation, macroinvertebrate communities and fish 55 

assemblages) and processes (e.g. matter fluxes) of riverine and riparian ecosystems and account also 56 

for human needs. 57 

Among these components, benthic macroinvertebrates are considered as one of the most relevant taxa 58 

to assess the ecological integrity of aquatic ecosystems (e.g. Park et al., 2003). Macroinvertebrates are 59 

ubiquitous, largely dependent on the aquatic environment and are especially sensitive to flow and 60 

stream temperature changes (White et al., 2017 and references therein). Therefore, understanding how 61 

communities can change with respect to environmental variables (i.e. flow and eco-hydraulic 62 

relationships) is a fundamental basis for ecosystem management and EFA (Belmar et al., 2013). In this 63 

regard, clustering techniques can be useful to delineate communities to serve as targets to develop the 64 

necessary eco-hydraulic relationships (Adriaenssens et al., 2007). In accordance, these relationships 65 

have been typically addressed following two-step approaches: first communities are delineated (i.e. 66 

clustered) and then, relationships are inferred (Park et al., 2003). Unfortunately, the former task is not 67 
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easy because over-dispersion and nonlinear-complex interactions occur in datasets consisting of many 68 

species and sampling areas (Adriaenssens et al., 2007; Park et al., 2003). 69 

The aforementioned interactions and nonlinearity triggered the popularity of several sophisticated 70 

statistical and machine learning approaches. For instance, a common technique employed to delineate 71 

macroinvertebrate communities is Self-Organizing Maps (SOMs) (Kohonen, 1982), which is a kind 72 

of artificial neural network (Adriaenssens et al., 2007; Park et al., 2003; Song et al., 2006). However, 73 

SOMs and many other technics require data standardisation – because they are sensitive to data over-74 

dispersion (e.g. Song et al., 2006; Adriaenssens et al., 2007) – which may ultimately determine the 75 

taxa included within each delineated community (Thorne et al., 1999). In this regard, novel clustering 76 

approaches particularly designed to handle count data and over-dispersion, such as Poisson or negative 77 

binomial mixture models (Si et al., 2014), should be particularly well suited to delineate 78 

macroinvertebrates communities. 79 

Despite the aforementioned advances in the analysis of macroinvertebrate communities, studies in 80 

tropical rivers, especially on African streams and rivers, have followed more traditional approaches, 81 

such as non-metric multi-dimensional scaling (e.g. Baker et al., 2016; Dallas, 2004; Niba and 82 

Mafereka, 2015) or several variants related to correspondence and redundancy analysis (e.g. Kasangaki 83 

et al., 2006; Chakona et al., 2009). Additionally, the majority of these studies characterising several 84 

macroinvertebrate-environment relationships have mainly focused on water quality (e.g. Chakona et 85 

al., 2009; Shimba and Jonah, 2016) and land use changes (i.e. natural-forested vs. altered-agricultural) 86 

(e.g. Kasangaki et al., 2008; Chakona et al., 2009), whereas hydrologic and hydraulic variables have 87 

been used less often and exclusively in combination with other environmental predictors (e.g. 88 

Kasangaki et al., 2006; Watson and Dallas, 2013). Small-scale differences in hydraulic conditions 89 

characterised by water velocity, depth and substrate roughness are useful to predict the spatial 90 

distribution of macroinvertebrate assemblages (Brooks et al., 2005). In accordance, eco-hydraulic 91 
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relationships based on macroinvertebrate communities collected at small spatial scales can be 92 

fundamental for EFA (Song et al., 2006). Regrettably, the majority of studies that differentiated spatial 93 

scales have focused on comparing reach-scale and basin-scale features (e.g. Minaya et al., 2013). Thus, 94 

specific studies focuses on these small spatial scales have not been addressed in most territories, 95 

although some have incidentally found relevant differences at sub-reach-scales (Mathooko, 2001; Niba 96 

and Mafereka, 2015) highlighting the importance of the patch scale to detect macroinvertebrate 97 

variation (Boyero and Bosch, 2004). That said, we still lack a comprehensive understanding of 98 

methods to study EFAs and animal communities at small (i.e. microhabitat) scales. 99 

In order to improve our knowledge and provide guidelines for adequate EFAs, this study investigated 100 

the role of habitat structure and hydraulics, at the microhabitat scale, on tropical macroinvertebrate 101 

communities in two tributaries of the Kilombero River located in the foothills of the Udzungwa 102 

Mountains (United Republic of Tanzania). To achieve this aim, (i) the communities were delineated 103 

(i.e. clustered) by means of Poisson and negative binomial mixture models in a semi-supervised mode 104 

by taking into account the sampled river and (ii) the most relevant variables, and the relationship of 105 

these variables with the delineated communities, were sought with genetically optimised artificial 106 

neural networks. Finally, the community preferences and the implications for EFA were discussed for 107 

application in further studies. 108 

 109 

2 Materials and Methods 110 

2.1 Study area 111 

The Kilombero River Basin is characterised by a sub-humid tropical climate with relative humidity 112 

ranging from 70 to 80% with an annual rainfall of about 1200 to 1400 mm and two rainy seasons: a 113 

long rainy season in March to May and a shorter one around October to December (Mombo et al., 114 
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2011). Temperatures normally vary from 20 to 30 °C (Mombo et al., 2011). Human-related activities 115 

such as overgrazing by livestock, agriculture and human settlement are threatening the Kilombero 116 

basin (Elisa et al., 2010). The data were collected to evaluate lower flows (i.e. after water abstraction). 117 

In accordance, the survey was undertaken during one week in the end of January 2015 (i.e. short dry 118 

season preceding the long rainy season). During that and the preceding weeks no higher flows 119 

occurred. 120 

The sampled rivers were the Udagaji and Mgugwe, which are two small unregulated rivers that flow 121 

southwards from the Udzungwa Mountains National Park (Fig. 1). The Udagaji catchment is densely 122 

forested whereas the Mgugwe catchment is covered by forest and shrubs in similar proportions. 123 

Although the Udagaji River has been identified as possible water source for a large irrigation scheme 124 

in the Kilombero Valley (see O’Keeffe et al., 2017), the basin area of the Mgugwe River is larger (213 125 

vs. 25 km2). In accordance, the mean annual flow of the Mgugwe River corresponds to 2.83 m3/s 126 

(1957-1991) whereas that of the Udagaji River corresponds to 0.81 m3/s (1957-1991). The maximum 127 

and minimum elevation of both sampled rivers did not differ significantly (300/325 and 1637/1802 m 128 

a.s.l., respectively) but the mean slope of the Udagaji River is more pronounced (20.2º vs. 16.3º in 129 

Mgugwe River), causing a flashier flow regime. 130 

 131 



7 

 

 132 

Fig. 1. Location of the Udagaji and Mgugwe rivers and the Kilombero River Basin within the United 133 

Republic of Tanzania. 134 

 135 

2.2 Data collection 136 

Macroinvertebrate samples were collected at the microhabitat scale – a subset of a mesohabitat (e.g. 137 

pool or riffle) defining the homogeneous spatial attributes (e.g. depth, mean column velocity, cover 138 

type, and substrate) of physical locations occupied or used by a life stage of a target species or 139 

community sometime during its life cycle (sensu Bovee et al., 1998). Using the kicking method with 140 

a Wildco 500-µm kick net (Yulee, FL, USA), the surveyors quietly moved zigzagging from 141 

downstream to upstream sampling systematically the different microhabitats from shore to shore; the 142 

distance between microhabitats ranged between 10-15 m. In accordance with the developing plans, the 143 
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microhabitat preference models were originally intended to evaluate different management scenarios 144 

for the Udagaji River. Therefore, the total number of microhabitat replicates sampled (n = 90) in the 145 

Udagaji River outnumbered those in the Mgugwe River (nUdagaji = 69 and nMgugwe = 21). In each 146 

replicate, three sub-replicates were sampled kicking the substrate for periods of 60 seconds for each 147 

replicate (Madikizela and Dye, 2003). After collection, samples were preserved using 70% ethanol 148 

and, later in the laboratory, benthic invertebrates were sorted and identified to the family level. No 149 

macroinvertebrates were found in 20 microhabitat replicates (13 in the Udagaji River and 7 in the 150 

Mgugwe River). 151 

The macroinvertebrate community of each microhabitat replicate (thereafter ‘microhabitat’) was 152 

characterised based on abundance, richness and diversity. Macroinvertebrate abundance was 153 

calculated as the total number of individuals per microhabitat (i.e. summing the number of individuals 154 

collected in the three replicates). In addition, rarefaction was used to estimate sample richness (i.e. 155 

number of families present per microhabitat) and the Shannon–Weiner and Simpson diversity indices, 156 

which were calculated using R (R Core Team, 2017) package iNEXT (Hsieh et al., 2016). These 157 

parameters were used to characterise the delineated (i.e. clustered) communities. 158 

Concomitantly to the macroinvertebrate sampling, three hydraulic variables (depth, mean flow velocity 159 

and substrate composition) and four factors characterising the structure of the microhabitat (i.e. 160 

presence and abundance of reeds, aquatic vegetation, log jams and small woody debris and shade) 161 

were measured and scored at three points where each replicate was collected. Later, these values were 162 

averaged to define the environmental conditions of each microhabitat. 163 

Depth (m) was measured with a wading rod (to the nearest cm) and the mean flow velocity of the water 164 

column – hereafter velocity (m/s) – was measured with a propeller current meter (OTT®) at 40% of 165 

the measured depth. The percentage of each substrate class was visually estimated around the sampling 166 

point following a simplification of the American Geophysical Union size scale, namely silt (Ø ≤ 62 167 
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µm), sand (62 µm > Ø ≤ 2 mm), fine gravel (2 > Ø ≤ 8 mm), gravel (8 > Ø ≤ 64 mm), cobbles (64 > 168 

Ø ≤ 256 mm), boulders (Ø > 256 mm) and bedrock (Muñoz-Mas et al., 2012). Later, these percentages 169 

were aggregated into a single value through the dimensionless substrate index (Mouton et al., 2011). 170 

This index is calculated by summing the weighted percentages of each substrate class as follows: 171 

����	
�	�	
����	 = 	0.03	 × 	����	%	 + 	0.04	 × 	�
��	�
����	%	 + 	0.05	 × 	�
����	%	 +172 

	0.06	 × 	������	%	 + 	0.07	 × 	 �����
	%	 + 	0.08	 × 	 ��
�"#	%. Finally, the four factors 173 

characterising the structure of the microhabitat were scored as absent, scarce, normal or abundant (i.e. 174 

from 0 to 3) (Muñoz-Mas et al., 2016b). The microhabitats sampled in the Mgugwe River were deeper 175 

and coarser (Fig. 2). In addition, aquatic vegetation was only present in the Mgugwe River. 176 

 177 

 178 

Fig. 2. Violin plots summarising the microhabitat data collected in the Udagaji and Mgugwe rivers 179 

(Kilombero River Basin – United Republic of Tanzania). Substrate index, reeds, shade, aquatic 180 

vegetation and woody debris are dimensionless. 181 

 182 

The force-directed graph (Fruchterman and Reingold, 1991) based on the correlation obtained with the 183 

R package polycor (Fox, 2010), which is specially designed to handle continuous and categorical data, 184 

indicated that the hydraulic variables (i.e. depth, velocity and substrate index) were significantly 185 

related (Fig. 3). Velocity was positively correlated with substrate, which was negatively correlated 186 

with depth. The factors characterising the structure of the microhabitats were not related and neither 187 
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were with the hydraulic variables, although aquatic vegetation was slightly and positively correlated 188 

to velocity. 189 

 190 

 191 

Fig. 3. Force-directed graph based on the correlation (Pearson r2) between the hydraulic variables and 192 

factors collected at each microhabitat obtained with the R package qgraph (Epskamp et al., 2012). 193 

 194 

2.3 Macroinvertebrate community delineation - data clustering 195 

The macroinvertebrate communities present in the foothill rivers of the Udzungwa Mountains were 196 

delineated based on the abundance of each family (i.e. number of individuals per family) following 197 

the process described in the R package optCluster (Sekula et al., 2017). This package allows finding 198 

the optimal clustering algorithm along with the optimal number of clusters (i.e. communities). In 199 

accordance, a number of different approaches with the potential number of communities (i.e. number 200 

of clusters) are tested and, for each combination, up to nine validity indices are calculated. There is 201 

not a single validity index that outperforms in every situation (Arbelaitz et al., 2013). Therefore, the 202 
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different combinations are subsequently ranked on the basis of the selected validity indices to obtain 203 

the optimal clustering approach and number of clusters (Sekula et al., 2017). 204 

The model-based family of algorithms designed to count data and over-dispersion (i.e. Poisson and 205 

negative binomial mixture models) were tested to delineate between 2 and 9 macroinvertebrate 206 

communities. Standard model-based clustering algorithms assume that data are generated by a mixture 207 

of normal (i.e. Gaussian) probability distributions where each component corresponds to one cluster 208 

(Si et al., 2014). However, the macroinvertebrate counts typically involve large numerical differences 209 

(i.e. over-dispersion), which compelled scientists to recommend data transformation before clustering 210 

(e.g. Adriaenssens et al. 2007). To avoid this step, the tested clustering algorithms – originally included 211 

within the R package MBCluster.Seq (Si, 2012) – employ mixtures of Poisson or negative binomial 212 

distributions (Si et al., 2014). 213 

The package MBCluster.Seq includes six different variants (three Poisson and three negative binomial 214 

alternatives) differing exclusively in the training algorithm used to determine the internal parameters. 215 

The first pair is trained with the Expectation Maximization (EM) algorithm (Dempster et al., 1977), 216 

which is the most popular method for approximating maximum likelihood estimate (Si, 2012). 217 

However, a well-known problem associated with EM is that it can be trapped at local maxima and 218 

consequently fails to reach global maxima (Si, 2012). To overcome this limitation, the package 219 

MBCluster.Seq includes two alternative algorithms, the Simulated Annealing (SA) (Celeux and 220 

Govaert, 1992) and Deterministic Annealing (DA) (Rose, 1998). 221 

Although previous studies indicated that differences among environmental conditions (e.g. different 222 

depth, substrate composition or water quality) are the real drivers of macroinvertebrate communities 223 

(Baker et al., 2016; Costa and Melo, 2008), macroinvertebrate surveys usually collect a limited number 224 

of variables, which may limit the predictive capacity of the incomplete variable set. In such a situation, 225 

a variable describing the origins of the sample (e.g. sampled river) may be a better predictor because 226 
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it implicitly encompasses the variables that have not been accounted for, especially when the sampled 227 

habitats present evident differences (i.e. depth, substrate and particularly the absence of aquatic 228 

vegetation in the Udagaji River). Therefore, although the environmental conditions were not involved 229 

in the community delineation, we ranked the different combinations of clustering techniques and 230 

number of clusters based on two biological validation indices: the biological homogeneity index (BHI) 231 

and the biological stability index (BSI) (Datta and Datta, 2006), which take into account the origins of 232 

each sample (i.e. the river where the sample was collected). This semi-supervised approach measures 233 

whether, on average, genes (i.e. macroinvertebrate communities sampled in each microhabitat) 234 

belonging to the same cluster also belong to the same functional class (i.e. river) (Visconti et al., 2014); 235 

but, unlike other semi-supervised methods, it does not enforce or prevent any particular aggregation 236 

(Jain, 2010). The BHI evaluates how similar defined clusters are by calculating the average proportion 237 

of paired genes (i.e. pair of sampled communities) that are clustered together and have the same 238 

functional class (i.e. were collected in the same river). Conversely, the BSI examines the consistency 239 

of clustering similar biologically functioning genes together (i.e. belonging to the same river). 240 

Observations (i.e. macroinvertebrate families) are removed from the dataset one at a time and the 241 

cluster assignments of genes (i.e. sampled communities) with the same functional class (i.e. belonging 242 

to the same river) are compared to the cluster assignments based on the full dataset. 243 

The function repRankAggreg – originally included within the R package RankAggreg (Pihur et al., 244 

2009) – was used to infer the optimal clustering algorithm along with the optimal number of clusters. 245 

This function performed a weighted rank aggregation of the 6	 × 8	tested combinations following a 246 

Monte Carlo cross-entropy approach to render the optimal number of clusters accounting 247 

simultaneously and equally for the two validity indices (Pihur et al., 2007).  248 

Finally, the abundance, richness and Shannon–Weiner and Simpson diversity indices of the 249 

communities delineated by the optimal clustering approach and number of clusters determined with 250 
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repRankAggreg were compared with the Bayesian test implemented within the R package BEST 251 

(Kruschke, 2013), which provides credible values of the mean, median and standard deviation to infer 252 

their differences. The member and counts of each delineated community were inspected and the 253 

resulting clusters were used in subsequent analyses. 254 

 255 

2.4 Eco-hydraulic relationships inference - neural networks-based classification 256 

The most relevant variables, and the relationship of these variables with the delineated communities 257 

(i.e. clusters), were sought with genetically optimised Multi-Layer Perceptrons (MLPs) (McCulloch 258 

and Pitts, 1943; Rumelhart et al., 1986). MLPs are a kind of feedforward artificial neural network 259 

inspired by the structure of the nervous system with three or more layers of fully-connected neuron-260 

nodes (Olden et al., 2004). Three layered (input-layer, hidden-layer, output-layer) MLPs were 261 

developed with the R package nnet (Venables and Ripley, 2002). The same number of output neurons 262 

as the number of delineated communities (i.e. clusters) was used (Walczak and Cerpa, 1999) and the 263 

outputs of the linear functions were standardised employing the softmax function. This permitted to 264 

infer the suitability, between zero and one, of a given microhabitat to each delineated community in a 265 

comprehensible manner. 266 

To prevent overfitting, we simultaneously sought the optimal weights for each community, number of 267 

neuron nodes and microhabitat variable subset (Goethals et al., 2007). We used a wrapper approach 268 

involving cross-validation and the Genetic Algorithm (GA) (Holland, 1992) implemented within the 269 

R package rgenoud (Mebane Jr and Sekhon, 2011), which is an approach that proved markedly 270 

proficient (see Muñoz-Mas et al., 2016a and therein references) to search them. The optimisation was 271 

performed following a repeated k-fold scheme (10	 × 10%&'(()*+,-.+/-'0), with every fold presenting 272 

a similar proportion of samples per community (i.e. samples per cluster) to the original dataset and the 273 
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performance criterium was the balanced accuracy (i.e. the number of correctly predicted cases 274 

weighted by the rarity of the community), which ranges between 0–1 (Muñoz-Mas et al., 2016c). The 275 

nine different operators that govern the optimisation performed by the GA (Mebane Jr and Sekhon, 276 

2011) were selected to avoid premature convergence, as previously suggested (Muñoz-Mas et al., 277 

2017). In this study, the population size was set after 12'23,+/-'0 	= 10 × (1%,3(/5&( + 1 +278 

	12&5.-%/'&() and the optimisation halted after a similar number of generations without improvement 279 

whereas the maximum number of generations was set to 10 × 12'23,+/-'0. 280 

The variable importance was examined following the Olden approach (Olden et al., 2004), which 281 

calculates the importance as the product of the raw input-hidden and hidden-output connection weights 282 

between each input and output neuron and sums the product across all hidden neurons (Beck, 2016). 283 

The method was implemented using the R package NeuralNetTools (Beck, 2016) and it was calculated 284 

for the 100 MLPs that presented the best generalisation to calculate confidence intervals. Finally, the 285 

modelled relationship between the selected variable subset and the probability of presence of each 286 

delineated community was graphically characterised with partial dependence plots (Friedman, 2001). 287 

Partial dependence plots depict the average of the response variable vs. the inspected variable and 288 

account for the effects of the remaining variables within the model by averaging their effects. The 289 

partial dependence plots were calculated adapting the code appearing in the R package randomForests 290 

(Liaw and Wiener, 2002) and they were likewise calculated for the 100 MLPs that presented the better 291 

generalisation to calculate confidence intervals. 292 

 293 
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3 Results 294 

3.1 Macroinvertebrate communities 295 

A total of 1443 macroinvertebrates were identified. The most abundant order was Ephemeroptera 296 

(49.40%), followed by Trichoptera (21.57%) and Lepidoptera (6.39%), whereas the least abundant 297 

order was Hemiptera (1.48%). The most abundant families were: Baetidae (28.69%), Hydropsychidae 298 

(20.51%) and Leptophlebiidae (14.21%), whereas the least abundant were Tricorythidae (0.07%), 299 

Helodidae (0.07%) and Atyidae (0.07%). 300 

Three macroinvertebrate communities were identified (i.e. the optimal number of clusters was three) 301 

using the Poisson mixture model trained with DA. Community 1 encompassed 12 samples collected 302 

exclusively in the Mgugwe River and the Community 3 included 30 samples collected in the Udagaji 303 

River. Community 2 was the only cluster encompassing samples collected in both rivers, although 304 

most of them were collected in the Udagaji River (39/9) (Table 1). Community 1 presented higher 305 

abundance, although richness and the diversity indices were similar to those of Community 3 (Fig. 4). 306 

Conversely, Community 2 presented the lowest values of abundance, richness and the diversity 307 

indices. 308 

 309 

Table 1. Number of samples per river encompassed within each delineated community. 310 

River/Community Community 1 Community 2 Community 3 
Mgugwe 12 9 0 
Udagaji 0 39 30 

 311 
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 312 

Fig. 4. Violin plots depicting the distribution of the community indices for the three delineated 313 

communities; the tagged percentages depict the differences on median values between communities. 314 

 315 

The analysis per order and family corroborated the aforementioned general pattern in abundance, 316 

although the total number of individuals delineated within Community 3 was higher (Fig. 5). 317 

Therefore, the abundance of the samples included within Community 1 (454 ind./12 samples) was 318 

higher than in Community 3 (595 ind./30 samples) whereas Community 2 encompassed the least 319 

abundant samples (374 ind./48 samples). 320 

Between communities, the most abundant families in Community 1 were Baetidae (43.17%), Pyralidae 321 

(20.04%) and Hydropsychidae (10.79%), whereas Hydropsychidae (36.30%), Leptophlebiidae 322 

(15.63%), Baetidae (15.63%) and Potamonautidae (12.27%) were the most abundant in Community 323 

3. Conversely, Community 2 was dominated by Baetidae (33.42%), Leptophlebiidae (29.95%) and 324 

Perlidae (10.43%); the empty microhabitats (i.e. the 20 microhabitats without macroinvertebrates) 325 

were aggregated to Community 2. 326 

 327 
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 328 

Fig. 5. Violin plots depicting the distribution of the abundance (# of individuals) of each family within 329 

the three delineated communities. The families are sorted first by order abundance and then by family 330 

abundance. 331 

 332 

3.2 Eco-hydraulic relationships 333 

The MLP structure that generalised most over the validation datasets was obtained with three neuron-334 

nodes in the hidden-layer and overweighing Community 2 (57.07%) compared to the other two 335 

communities (Community 1 = 21.33% and Community 3 = 21.60%). The better performance was 336 

obtained with six variables, namely depth, velocity, substrate index, shade, aquatic vegetation and 337 

woody debris and the mean balanced accuracy per community achieved very high values (i.e. 338 

Community 1 = 0.84±0.21, Community 2 = 0.77±0.12 and Community 3 = 0.84±0.11). 339 

The partial dependence plots indicated that Community 1 had a clear affinity for microhabitats with 340 

aquatic vegetation and woody debris and, to a lesser extent, for finer substrates (i.e. sands) (Fig. 6). 341 

Community 2 occurred in deep and shaded microhabitats with low flow velocity and the coarsest 342 
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substrates (including bedrock). Conversely, Community 3 occurred in unshaded, shallow fast flowing 343 

microhabitats with intermediate substrate (i.e. gravel and fine gravel). 344 

 345 

 346 

Fig. 6. Mean partial dependence plots, and confidence interval, of the six selected variables. These 347 

plots depict the relationship between each variable and the probability of presence of the three 348 

delineated communities. 349 

 350 

The variable importance analysis corroborated the trends observed in the partial dependence plots, 351 

with aquatic vegetation and woody debris, followed by velocity, as the most discriminant variables for 352 

Community 1 (Fig. 7). These three variables were likewise the most important for Community 2, 353 

although they presented the opposite effect (i.e. sign). Finally, the most important variables for 354 

Community 3 were velocity, depth and substrate. 355 

 356 
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 357 

Fig. 7. Variable importance computed with the Olden approach (Olden et al., 2004) for the three 358 

delineated communities. 359 

 360 

4 Discussion 361 

A central challenge in community ecology is to understand the mechanisms that shape animal 362 

assemblages. Our study corroborated that habitat structure and hydraulics also play a fundamental role 363 

in shaping the macroinvertebrate communities in the foothill rivers of the Udzungwa Mountains (Baker 364 

et al., 2016; Costa and Melo, 2008). We demonstrated that habitat structure and hydraulics are able to 365 

properly discriminate the macroinvertebrate communities, which, in turn, underlines their importance 366 

as drivers of community composition and abundance. Aquatic vegetation, woody debris, velocity and 367 

substrate index, followed by depth and shade, emerged as the most discriminant variables to 368 

understand macroinvertebrate communities in these tropical running waters. 369 

 370 
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4.1 Macroinvertebrate communities 371 

We demonstrated that the optimal number of communities and clustering algorithm can be found with 372 

the functionalities implemented within the optCluster (Sekula et al., 2017), which allowed us to 373 

determine three types of macroinvertebrate communities in a semi-supervised mode by taking into 374 

account the sampled river. We indicated that exclusively one community was shared between both 375 

rivers. The quality of the aggregation is acknowledged by the results obtained with the MLP, which 376 

achieved very high performance (mean balanced accuracy ≈ 0.80). Compared to previous studies (e.g. 377 

Park et al., 2003; Edia et al., 2010), the MLP presented in this study performed well with three neuron-378 

nodes and six variables, although former studies did not apply exactly the same approach followed 379 

here. Furthermore, the number of delineated communities (i.e. three) was in line with other studies that 380 

used SOM in a similar manner (e.g. Park et al., 2003; Edia et al., 2010). In accordance, the use of 381 

model-based clustering algorithms assuming that data were generated by a mixture of Poisson or 382 

negative binomial probability distributions following semi-supervised mode approaches should be 383 

taken into account as a general framework in further studies pooling data from different river segments 384 

(Si et al., 2014). 385 

Concerning to the macroinvertebrate composition, the most abundant family was Baetidae, which is 386 

globally distributed (Dallas, 2004; Mathooko and Mavuti, 1992), and thus it cannot be considered 387 

particularly indicative, although its low abundance has been stated to be indicative of impoverished 388 

ecological status (Elias et al., 2014; Shimba and Jonah, 2016; Zhang et al., 2018). Another widely 389 

distributed taxa, Diptera, was not abundant compared to the reference sites sampled in other studies 390 

focused on African systems (Dallas and Mosepele, 2007; Kasangaki et al., 2006; Mathooko and 391 

Mavuti, 1992). Therefore, the largest differences between the macroinvertebrate communities of the 392 

Udzungwa Mountains and those sampled in other studies were found for river stretches sampled in the 393 

vicinity of large populations; where the water quality led to markedly different communities dominated 394 
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by individuals of the order Diptera (Elias et al., 2014; Shimba and Jonah, 2016). Although the 395 

composition of the macroinvertebrate communities may remain markedly constant (Dallas, 2004; 396 

McClain et al., 2014), care must be taken in interpreting these results in terms of abundance because 397 

changes in composition may be governed by small and temporary changes (McClain et al., 2014). 398 

 399 

4.2 Eco-hydraulic relationships 400 

We identified aquatic vegetation, woody debris, velocity, substrate index and, to a lesser extent, depth 401 

and shade as the most discriminant variables to understand macroinvertebrate communities in the 402 

studied tropical rivers. In the past, the use of depth and velocity and not the combined effect in the 403 

form of shear stress or Froude number has been criticised (Mérigoux et al., 2009). However, the best 404 

MLP was obtained employing simultaneously velocity, substrate index and depth and considering fully 405 

interacting variables, which has been suggested to increase predictive capacity (Mérigoux et al., 2009). 406 

With this variable set, the MLP achieved very high performance and led us to consider the use of these 407 

derived variables potentially redundant. Former studies faced difficulties to distinguish 408 

macroinvertebrate communities (Adriaenssens et al., 2007) while our results found a clear separation 409 

for the three delineated communities according to key environmental variables (here aquatic vegetation 410 

and substrate index). Nevertheless, the relative narrow spectrum of sampled conditions may have 411 

favoured a better discrimination than other studies that encompassed a larger variability and worked 412 

at a lower taxonomic level (i.e. species level) (e.g. Adriaenssens et al., 2007; Mérigoux et al., 2009), 413 

especially taking into account that in our case several families appeared spread over different 414 

communities. 415 

Interestingly the most relevant variables, and their impact on macroinvertebrate abundance and 416 

composition, fit well with a priori classifications performed in other studies where the available 417 
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habitats were classified as stones, vegetation or sand accounting for the type (bedrock rapid vs. cobble 418 

riffle) and quality (deposition of silt on stones) of the underlying substrate (Dallas, 2007). These 419 

differences between vegetated vs. non-vegetated and sandy vs. coarse substrate have been reported in 420 

other African streams, most likely because some of them compared to others are complex habitats that 421 

provide (i) refuge from current and fish predation, (ii) food supply for herbivores and detritivores, (iii) 422 

attachment for filter-feeding taxa and (iv) exit points for emerging aquatic insects (Chakona et al., 423 

2008). In particular, macrophytes enhance the physical and chemical heterogeneity in aquatic 424 

ecosystems (Phiri et al., 2011), and density increases of vegetation have been related with changes in 425 

invertebrate body size distribution, with large-bodied individuals and taxa generally being more 426 

abundant in dense vegetation owing to the reduction in predation efficiency and foraging success of 427 

fish (Phiri et al., 2011). Thus, our outcomes are in agreement with these considerations highlighting 428 

the key importance of aquatic vegetation in the structure of macroinvertebrate communities. 429 

Similar reasoning can be applied to woody debris because Ephemeroptera and Trichoptera often feed 430 

on leaf litter and/or hide in woody debris (Cummins and Klug, 1979). Usually, the presence of woody 431 

debris is particularly relevant at least for some Trichoptera because it provides the necessary material 432 

to build their characteristic cases (de Moor and Ivanov, 2008). However, this might not be the case in 433 

this study as the identified Trichoptera (Hydropsychidae and Ecnomidae) are caseless (de Moor, 2005). 434 

Still, small woody debris can be of importance to aquatic invertebrates as, for instance, a food source 435 

for many species (e.g. Cummins and Klug, 1979). Although it may be not exempt from controversy 436 

(Aguiar et al., 2017; Lau et al., 2008), it has been stated that in African rivers deforestation and bank-437 

cultivation, and the consequent reduction in the income material, are a main cause of their absence 438 

(Chakona et al., 2009). 439 

The importance of velocity, substrate and depth, which presented the most significant correlations 440 

(Fig. 3), has been highlighted in a number of studies performed in tropical rivers either on the African 441 
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continent (Chakona et al., 2009; Dallas, 2007) or in other tropical regions (Baker et al., 2016; Boyero 442 

and Bosch, 2004). Nonetheless, habitats with the same substrate composition but different flow 443 

velocity or depth often harbour different macroinvertebrate communities (Bauernfeind and Moog, 444 

2000). Setting aside the results obtained for microhabitats with aquatic vegetation, which may mask 445 

the effect of the hydraulic variables, the correlation between velocity and substrate observed in this 446 

study support the view of former studies suggesting that Ephemeroptera and Trichoptera prefer to 447 

inhabit riffle type habitats with coarse substrate (Bauernfeind and Moog, 2000; Chakona et al., 2009; 448 

Mathooko, 2001) because these two orders were abundant in Community 3. However, they were also 449 

significantly abundant – especially Baetidae (Ephemeroptera) – in Community 1, which was related 450 

to sandy substrate. Sandy substrates are usually unstable and disfavour macroinvertebrate settlement 451 

(Duan et al., 2009). Therefore, we hypothesise that microhabitats dominated by sandy substrate, which 452 

presented communities that usually occur in riffles (Duan et al., 2009), were in general near the banks 453 

and subject to lower stresses. Therefore, this spatial distribution may have favoured the establishment 454 

of aquatic vegetation where they feed and find protection from predators, which permits their 455 

proliferation (Masese et al., 2014) and thus, substrate was in this case of minor relevance. In contrast, 456 

the result obtained for the coarsest substrate (i.e. bedrock) does not pose any doubt because this 457 

substrate usually renders little space for the macroinvertebrate refuge (e.g. holes or crevices), which 458 

justifies the impoverished communities found over there (Baker et al., 2016). 459 

Perhaps the most contradicting pattern was that related to water depth because previous studies 460 

performed in other African streams found a positive effect on macroinvertebrate abundance, 461 

particularly on the Ephemeroptera and Trichoptera orders (e.g. Chakona et al., 2009; Masese et al., 462 

2014). Nevertheless, our results accept the view that pools host impoverished macroinvertebrate 463 

communities compared to shallower mesohabitats (e.g. riffles) as observed in other tropical streams 464 

(Baker et al., 2016). We posit that this discrepancy may be caused by the different scales employed in 465 

these studies compared to our study, which was performed at the microhabitat scale and encompassed 466 
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relatively short river segments, whereas the discrepant studies were performed at the mesohabitat scale 467 

encompassing long river segments that lead to a gradient of depth of different nature. 468 

Unlike temperate rivers, in tropical rivers there is certain controversy about the origin of the primary 469 

resources with several authors claiming autochthonous (e.g. periphytic algae and/or cyanobacteria) 470 

prevailing over allochthonous origins (e.g. leaf litter) (e.g. Lau et al., 2008) and others claiming the 471 

opposite (e.g. Aguiar et al., 2017). The results obtained for shade may indicate that the Udagaji and 472 

Mgugwe rivers rely on autochthonous production, although this cannot be considered a general pattern 473 

unequivocally transferable to other African rivers (see e.g. Masese et al., 2014). Nonetheless, in other 474 

tropical streams density and richness were higher when canopy cover was more variable (Boyero and 475 

Bosch, 2004). In accordance, specific research should be performed to elucidate the real causes of such 476 

macroinvertebrate distribution patterns in relation to shade. 477 

 478 

4.3 Potential implications of altered hydraulics and flow regimes 479 

A common practise worldwide is the construction of infrastructure to guarantee irrigation schemes and 480 

water supply for humans with concomitant significant reductions and alterations in river flows. The 481 

studied rivers represent systems with natural flow conditions in which no regulatory facilities are 482 

planned, but the alteration of hydraulics through irrigation schemes would drive deleterious changes 483 

in macroinvertebrate communities and linked components of river food webs. Invertebrate abundance 484 

may vary in response to decreased flow, whereas invertebrate richness commonly decreases along with 485 

habitat diversity (Boyero and Bosch, 2004; Masese et al., 2013). In this regard, and based exclusively 486 

in our results, reductions in river flows and depth that favour the proliferation of macrophytes 487 

(Schoelynck et al., 2018) are likely to increase the areas suitable for the community delineated in 488 

Community 1, although it may not occur in the Udagaji River. However, the consequent reduction in 489 
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flow velocity in the downstream reach may negatively impact Community 3, which also presented 490 

high richness and diversity. Consequently, although the ultimate impact of water abstraction is rather 491 

uncertain, we consider that reductions of river flows caused by water diversion are likely to reduce the 492 

overall abundance of macroinvertebrates as has been demonstrated in other streams of south-eastern 493 

Africa that suffered significant reductions in flows (Chakona et al., 2008; Mathooko and Mavuti, 494 

1992). That said, large irrigation schemes would modify the geomorphology of the streams and the 495 

input of woody material into the river system, which is likely to impact directly shredder species and 496 

indirectly other macroinvertebrates or trophic levels through cascading effects (Chakona et al., 2009; 497 

Kasangaki et al., 2006). However, the mechanism triggering cascading effects might change among 498 

rivers as our results also indicated that shade may be linked to autochthonous primary production 499 

through grazing (i.e. scrapers). Small impoundments can withhold sediments, organic debris, and 500 

nutrients (Mbaka and Wanjiru Mwaniki, 2015), which will expose downstream river segments to a 501 

sediment deficit – fine sediment is likely to flow preferentially trough the irrigation canal with coarser 502 

sediment trapped at the point of water diversion (Taniwaki et al., 2017). The upstream river segments 503 

will be, on the contrary, negatively impacted by the increased depth caused by the impoundment, which 504 

is likely to lead to the impoverished macroinvertebrate communities delineated in Community 2. 505 

Although, it is difficult to predict how most species will respond to new environmental conditions, we 506 

conclude that water abstraction is unlikely to have neutral effect over the macroinvertebrate 507 

communities of the Udagaji and Mgugwe rivers and therefore these practices are not recommended 508 

from an ecological conservation perspective. 509 

This study has not been exhaustive and has neglected some physical and chemical variables. In 510 

accordance, the ultimate type and magnitude of impacts corresponds to complex interactions that 511 

would be observed in the long term (Mbaka and Wanjiru Mwaniki, 2015). Despite increasing concern 512 

about how climate and land-use change and river regulation will affect freshwater ecosystems, 513 

comparatively a few studies have focused on small tropical streams (Taniwaki et al., 2017). Therefore, 514 
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the herein presented results provide valuable information on macroinvertebrate communities and eco-515 

hydrological relationships in tropical streams of East Africa, which should adequately guide further 516 

ecological studies and assist EFAs. 517 

 518 
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