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Abstract

The influences of habitat structure and hydrautinstropical macroinvertebrate communities were
investigated in two foothill rivers of the UdzungWiuntains (United Republic of Tanzania) to assist
future Environmental Flow Assessments (EFAs). Masr@rtebrate samples, hydraulic variables and
habitat structure were collected at the microhalsitale £ = 90). Macroinvertebrate communities

were first delineated (i.e. clustered) through Bamsand negative binomial mixture models for count
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data in a semi-supervised mode by taking into aacthe sampled river. Then, genetically optimised
Multi-Layer Perceptrons (MLPs) were used to idgntiife relationship of the most relevant variables
with the delineated communities. Between the thdedéineated communities exclusively one
community was shared between both rivers. Thedmsitthird communities presented similar values
of richness (i.e. number of families) and diverdityt the first was characterised by high abundance
and was dominated by Baetidae (43.2%) while Hydropslae (36.3%) dominated the third
community. The second community was dominated bgtiBae (33.4%), but it involved low
abundance, richness and diversity samples and g¢rass®d the microhabitats where no-
macroinvertebrates were found. The performancehef MLP acknowledged the quality of the
delineation and it indicated that the first comntyrshows a clear affinity for microhabitats with
aquatic vegetation and woody debris and the thirdiishaded, fast flowing and shallow microhabitats
on intermediate-sized substrate. Conversely, tlsersk community occurred in deep and shaded
microhabitats with low flow velocity and coarse stibte. These results should enhance the

implementation of ongoing and future EFA studies.

Keywords

Africa; Artificial neural network; Community ecolggCount data; Environmental flow assessment;

Semi-supervised clustering

1 Introduction

The recognition of deleterious human activities foeshwater ecosystems is well recognised

(zalewski, 2008). For instance, the constructiomfsastructure to guarantee water supply for husnan
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has led to anthropogenic effects through flow atten and regulation (Kundzewicz, 2007). These
negative impacts spreading rapidly in developiogittal and sub-tropical countries, where the urgent
need to use water for economic development ovesride implementation of initiatives promoting
environmental protection (Msuya and Lalika, 20JE)vironmental protection can be accomplished
through specific actions on living organisms anditeé conservation. Concerning riverine habitats,
the core importance of habitat structure and hyarmare well recognised (Clifford et al., 2006 and
references therein), and hydrology has been comrsldes a key variable affecting the dynamics and
distribution patterns of freshwater species poputat (see e.g. Schiemer, 2016). In this context,
Environmental Flow Assessment (EFA) has emergadasdamental tool to determine the quantities,
quality, and patterns of water flows (i.e. envirental flows or e-flows) to balance the protectién o
the natural environment with out-of-stream uses @M et al., 2013). Between the different
approaches to EFA, the scientific community cuttyeatlvocates holistic approaches, which consider
the different components (e.g. riparian vegetatiomacroinvertebrate communities and fish
assemblages) and processes (e.g. matter fluxesleahe and riparian ecosystems and account also

for human needs.

Among these components, benthic macroinvertebestesonsidered as one of the most relevant taxa
to assess the ecological integrity of aquatic estesys (e.g. Park et al., 2003). Macroinvertebrates
ubiquitous, largely dependent on the aquatic envirent and are especially sensitive to flow and
stream temperature changes (White et al., 201 Tedacences therein). Therefore, understanding how
communities can change with respect to environnhevaaables (i.e. flow and eco-hydraulic
relationships) is a fundamental basis for ecosystamagement and EFA (Belmar et al., 2013). In this
regard, clustering techniques can be useful tmeate communities to serve as targets to devetp th
necessary eco-hydraulic relationships (Adriaenssems., 2007). In accordance, these relationships
have been typically addressed following two-stepragches: first communities are delineated (i.e.

clustered) and then, relationships are inferredk(Bgal., 2003). Unfortunately, the former tasko
3
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easy because over-dispersion and nonlinear-comiesactions occur in datasets consisting of many

species and sampling areas (Adriaenssens et @I; Park et al., 2003).

The aforementioned interactions and nonlinearityggred the popularity of several sophisticated
statistical and machine learning approaches. Rbamte, a common technique employed to delineate
macroinvertebrate communities is Self-OrganizingpM§SOMs) (Kohonen, 1982), which is a kind
of artificial neural network (Adriaenssens et aDQ7; Park et al., 2003; Song et al., 2006). Howeve
SOMs and many other technics require data starsddioin — because they are sensitive to data over-
dispersion (e.g. Song et al., 2006; Adriaenssers.,e2007) — which may ultimately determine the
taxa included within each delineated community {hlecet al., 1999). In this regard, novel clustering
approaches particularly designed to handle couatatad over-dispersion, such as Poisson or negative
binomial mixture models (Si et al., 2014), should particularly well suited to delineate

macroinvertebrates communities.

Despite the aforementioned advances in the anatysisacroinvertebrate communities, studies in
tropical rivers, especially on African streams aivers, have followed more traditional approaches,
such as non-metric multi-dimensional scaling (dgker et al., 2016; Dallas, 2004; Niba and
Mafereka, 2015) or several variants related toespondence and redundancy analysis (e.g. Kasangaki
et al., 2006; Chakona et al., 2009). Additionalhe majority of these studies characterising sévera
macroinvertebrate-environment relationships havaip&ocused on water quality (e.g. Chakona et
al., 2009; Shimba and Jonah, 2016) and land usegeldi.e. natural-forested. altered-agricultural)
(e.g. Kasangaki et al., 2008; Chakona et al., 200B¢reas hydrologic and hydraulic variables have
been used less often and exclusively in combinatiath other environmental predictors (e.g.
Kasangaki et al., 2006; Watson and Dallas, 2018jalEscale differences in hydraulic conditions
characterised by water velocity, depth and sulestraughness are useful to predict the spatial

distribution of macroinvertebrate assemblages (Bsoet al., 2005). In accordance, eco-hydraulic
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relationships based on macroinvertebrate commsnit@lected at small spatial scales can be
fundamental for EFA (Song et al., 2006). Regrettable majority of studies that differentiated salat
scales have focused on comparing reach-scale aimd$@ale features (e.g. Minaya et al., 2013). Thus
specific studies focuses on these small spatidesdsave not been addressed in most territories,
although some have incidentally found relevaneddhces at sub-reach-scales (Mathooko, 2001; Niba
and Mafereka, 2015) highlighting the importancetlod patch scale to detect macroinvertebrate
variation (Boyero and Bosch, 2004). That said, wik Isck a comprehensive understanding of

methods to study EFAs and animal communities atlgh&a microhabitat) scales.

In order to improve our knowledge and provide glinds for adequate EFAs, this study investigated
the role of habitat structure and hydraulics, at tficrohabitat scale, on tropical macroinvertebrate
communities in two tributaries of the Kilombero Rivliocated in the foothills of the Udzungwa
Mountains (United Republic of Tanzania). To achiévie aim, (i) the communities were delineated
(i.e. clustered) by means of Poisson and negathantial mixture models in a semi-supervised mode
by taking into account the sampled river and (ig most relevant variables, and the relationship of
these variables with the delineated communitieseve®ught with genetically optimised artificial
neural networks. Finally, the community preferenmed the implications for EFA were discussed for

application in further studies.

2 Materialsand Methods

2.1 Study area

The Kilombero River Basin is characterised by a-lsutmid tropical climate with relative humidity
ranging from 70 to 80% with an annual rainfall dbat 1200 to 1400 mm and two rainy seasons: a

long rainy season in March to May and a shorter anoeind October to December (Mombo et al.,
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2011). Temperatures normally vary from 20 to 3QMdmbo et al., 2011). Human-related activities
such as overgrazing by livestock, agriculture anchéin settlement are threatening the Kilombero
basin (Elisa et al., 2010). The data were colletdezl/aluate lower flows (i.e. after water absicagt

In accordance, the survey was undertaken duringvae in the end of January 2015 (i.e. short dry
season preceding the long rainy season). During &hd the preceding weeks no higher flows

occurred.

The sampled rivers were the Udagaji and Mgugweg¢kvhre two small unregulated rivers that flow
southwards from the Udzungwa Mountains NationakRBig. 1). The Udagaji catchment is densely
forested whereas the Mgugwe catchment is coveretbtest and shrubs in similar proportions.
Although the Udagaji River has been identified asgible water source for a large irrigation scheme
in the Kilombero Valley (see O’Keeffe et al., 20,ltHe basin area of thdgugwe River is largef213

vs. 25 knf). In accordance, the mean annual flow of the MgudRiver corresponds to 2.83%m
(1957-1991) whereas that of the Udagaji River cpoads to 0.81 #s (1957-1991). The maximum
and minimum elevation of both sampled rivers ditldifier significantly (300/325 and 1637/1802 m
a.s.l., respectively) but the mean slope of thedadgaRiver is more pronounced (20 16.3° in

Mgugwe River), causing a flashier flow regime.
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Fig. 1. Location of the Udagaji and Mgugwe rivensl ahe Kilombero River Basin within the United
Republic of Tanzania.

2.2 Datacollection

Macroinvertebrate samples were collected at theahabitat scale — a subset of a mesohabitat (e.qg.
pool or riffle) defining the homogeneous spatidtibitites (e.g. depth, mean column velocity, cover
type, and substrate) of physical locations occugiedised by a life stage of a target species or
community sometime during its life cyclseisu Bovee et al., 1998). Using the kicking method with
a Wildco 500um kick net (Yulee, FL, USA), the surveyors quietiyoved zigzagging from
downstream to upstream sampling systematicallylitierent microhabitats from shore to shore; the

distance between microhabitats ranged between 10-1%baccordance with the developing plans, the
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microhabitat preference models were originally maed to evaluate different management scenarios
for the Udagaji River. Therefore, the total numbemicrohabitat replicates samplad< 90) in the
Udagaji River outnumbered those in the Mgugwe RiW®tagaji = 69 and Rgugwe = 21). In each
replicate, three sub-replicates were sampled kickine substrate for periods of 60 seconds for each
replicate (Madikizela and Dye, 2003). After colleat samples were preserved using 70% ethanol
and, later in the laboratory, benthic invertebratese sorted and identified to the family level. No
macroinvertebrates were found in 20 microhabitaticates (13 in the Udagaji River and 7 in the

Mgugwe River).

The macroinvertebrate community of each microhab#plicate (thereafter ‘microhabitat’) was
characterised based on abundance, richness andsitliveMacroinvertebrate abundance was
calculated as the total number of individuals paramabitat (i.e. summing the number of individuals
collected in the three replicates). In additiomefaction was used to estimate sample richness (i.e
number of families present per microhabitat) amdShannon—Weiner and Simpson diversity indices,
which were calculated using (R Core Team, 2017) packag¥EXT (Hsieh et al., 2016). These

parameters were used to characterise the delingatedlustered) communities.

Concomitantly to the macroinvertebrate samplinggethydraulic variables (depth, mean flow velocity
and substrate composition) and four factors charsatg the structure of the microhabitat (i.e.
presence and abundance of reeds, aquatic vegetltgpjams and small woody debris and shade)
were measured and scored at three points whereealadate was collected. Later, these values were

averaged to define the environmental conditionsagh microhabitat.

Depth (m) was measured with a wading rod (to tlaest cm) and the mean flow velocity of the water
column — hereafter velocity (m/s) — was measurdtl wipropeller current meter (OTT®) at 40% of
the measured depth. The percentage of each sebdtaas was visually estimated around the sampling

point following a simplification of the American Gghysical Union size scale, namely silt {42

8
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pm), sand (62 um > & 2 mm), fine gravel (2 > & 8 mm), gravel (8 > & 64 mm), cobbles (64 >

@ <256 mm), boulders (& > 256 mm) and bedrock (MuRile=-et al., 2012). Later, these percentages
were aggregated into a single value through theedsionless substrate index (Mouton et al., 2011).
This index is calculated by summing the weightett@atages of each substrate class as follows:
substrate index = 0.03 X Sand % + 0.04 X Fine Gravel % + 0.05 X Gravel % +

0.06 x Cobble % + 0.07 X Boulder % + 0.08 x Bedrock %. Finally, the four factors
characterising the structure of the microhabitatenseored as absent, scarce, normal or abundant (i.
from 0 to 3) (Mufioz-Mas et al., 2016b). The microitats sampled in the Mgugwe River were deeper

and coarser (Fig. 2). In addition, aquatic vegetatvas only present in the Mgugwe River.

1.29 4 8— 1.0 3.0 1.0 3.0+
1.0 ~ 0.5 2.5 —~ 0.5 25
~ 37 6 ’ i, 0
—~ 0.8 \; 3 = —~ 2.0 ‘é 2 2.0
& & s L 0.6 L $ 067 =
< 0.6 2 2 NS < 3 15 2 3 15
Q S = i) S 50
S S 2 S 0.4 = D 0.4+ =
Q 044 = = R Y o0+ - S 1.0
N A = 5 = N
=T 0.2 < 0.2 =3
0.2 o5} - 0.5 : 0.5
0.0 0 0 0.0 0.0 0.0 0.0

B Udagaji B Mgugwe

Fig. 2. Violin plots summarising the microhabitatta collected in the Udagaji and Mgugwe rivers
(Kilombero River Basin — United Republic of TanzagniSubstrate index, reeds, shade, aquatic

vegetation and woody debris are dimensionless.

The force-directed graph (Fruchterman and Reind®€]) based on the correlation obtained with the
R packagepolycor (Fox, 2010), which is specially designed to hamdietinuous and categorical data,

indicated that the hydraulic variables (i.e. depthlocity and substrate index) were significantly
related (Fig. 3). Velocity was positively correlatevith substrate, which was negatively correlated

with depth. The factors characterising the striectfrthe microhabitats were not related and neither
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were with the hydraulic variables, although aguaégetation was slightly and positively correlated

to velocity.
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Aq. veg, '_
-1

Shade

Fig. 3. Force-directed graph based on the coregidfPearsor?y between the hydraulic variables and

factors collected at each microhabitat obtaineth #eR packageygraph (Epskamp et al., 2012).

2.3 Macroinvertebrate community delineation - data clustering

The macroinvertebrate communities present in tloghflh rivers of the Udzungwa Mountains were
delineated based on the abundance of each fanelynumber of individuals per family) following
the process described in tRepackageoptCluster (Sekula et al., 2017). This package allows finding
the optimal clustering algorithm along with the iopl number of clusters (i.e. communities). In
accordance, a number of different approaches Wwetpbtential number of communities (i.e. number
of clusters) are tested and, for each combinatiprto nine validity indices are calculated. Theye i

not a single validity index that outperforms in gvsituation (Arbelaitz et al., 2013). Thereforee t
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different combinations are subsequently rankecherbisis of the selected validity indices to obtain

the optimal clustering approach and number of elgs{Sekula et al., 2017).

The model-based family of algorithms designed tontalata and over-dispersion (i.e. Poisson and
negative binomial mixture models) were tested ttndate between 2 and 9 macroinvertebrate
communities. Standard model-based clustering dlgos assume that data are generated by a mixture
of normal (i.e. Gaussian) probability distributiombere each component corresponds to one cluster
(Si et al., 2014). However, the macroinvertebratents typically involve large numerical differences
(i.e. over-dispersion), which compelled scientistsecommend data transformation before clustering
(e.g. Adriaenssens et al. 2007). To avoid this, skeptested clustering algorithms — originallylirted
within the R packageMBCluster.Seq (Si, 2012) — employ mixtures of Poisson or negabinomial

distributions (Si et al., 2014).

The packag®BCluster.Seq includes six different variants (three Poisson imee negative binomial
alternatives) differing exclusively in the trainiaggorithm used to determine the internal pararseter
The first pair is trained with the Expectation Mazation (EM) algorithm (Dempster et al., 1977),
which is the most popular method for approximatmgximum likelihood estimate (Si, 2012).
However, a well-known problem associated with EMhiat it can be trapped at local maxima and
consequently fails to reach global maxima (Si, 300 overcome this limitation, the package
MBCluster.Seq includes two alternative algorithms, the Simula#dhealing (SA) (Celeux and

Govaert, 1992) and Deterministic Annealing (DA) §801998).

Although previous studies indicated that differenaenong environmental conditions (e.g. different
depth, substrate composition or water quality)theereal drivers of macroinvertebrate communities
(Baker et al., 2016; Costa and Melo, 2008), maeitebrate surveys usually collect a limited number
of variables, which may limit the predictive caggaf the incomplete variable set. In such a situmt

a variable describing the origins of the samplg.(gampled river) may be a better predictor because

11
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it implicitly encompasses the variables that haselh®en accounted for, especially when the sampled
habitats present evident differences (i.e. deptibstsate and particularly the absence of aquatic
vegetation in the Udagaji River). Therefore, altilothe environmental conditions were not involved
in the community delineation, we ranked the difféereombinations of clustering techniques and
number of clusters based on two biological valmaindices: the biological homogeneity index (BHI)
and the biological stability index (BSI) (Datta addtta, 2006), which take into account the origihs
each sample (i.e. the river where the sample wiecbed). This semi-supervised approach measures
whether, on average, genes (i.e. macroinvertebratemunities sampled in each microhabitat)
belonging to the same cluster also belong to threedanctional class (i.e. river) (Visconti et 2014);

but, unlike other semi-supervised methods, it da#senforce or prevent any particular aggregation
(Jain, 2010). The BHI evaluates how similar definkcsters are by calculating the average proportion
of paired genes (i.e. pair of sampled communitiba} are clustered together and have the same
functional class (i.e. were collected in the saiwer)y. Conversely, the BSI examines the consistency
of clustering similar biologically functioning gemdogether (i.e. belonging to the same river).
Observations (i.e. macroinvertebrate families) ramoved from the dataset one at a time and the
cluster assignments of genes (i.e. sampled comms)wtith the same functional class (i.e. belonging

to the same river) are compared to the clustegas®snts based on the full dataset.

The functionrepRankAggreg — originally included within thdk packageRankAggreg (Pihur et al.,
2009) — was used to infer the optimal clusterirgpathm along with the optimal number of clusters.
This function performed a weighted rank aggregatibthe6 x 8 tested combinations following a
Monte Carlo cross-entropy approach to render th&map number of clusters accounting

simultaneously and equally for the two validity ices (Pihur et al., 2007).

Finally, the abundance, richness and Shannon-Wener Simpson diversity indices of the

communities delineated by the optimal clusteringrapch and number of clusters determined with

12
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repRankAggreg were compared with the Bayesian test implementatinvihe R packageBEST
(Kruschke, 2013), which provides credible valuethefmean, median and standard deviation to infer
their differences. The member and counts of eadimedged community were inspected and the

resulting clusters were used in subsequent analyses

2.4 Eco-hydraulic relationshipsinference - neural networ ks-based classification

The most relevant variables, and the relationshijn@se variables with the delineated communities
(i.e. clusters), were sought with genetically ojsieal Multi-Layer Perceptrons (MLPs) (McCulloch
and Pitts, 1943; Rumelhart et al., 1986). MLPsaignd of feedforward artificial neural network
inspired by the structure of the nervous systerh witee or more layers of fully-connected neuron-
nodes (Olden et al., 2004). Three layered (inpygrahidden-layer, output-layer) MLPs were
developed with th& packagennet (Venables and Ripley, 2002). The same number tpubuneurons

as the number of delineated communities (i.e. ets¥twas used (Walczak and Cerpa, 1999) and the
outputs of the linear functions were standardisegleying thesoftmax function. This permitted to
infer the suitability, between zero and one, ofveiy microhabitat to each delineated community in a

comprehensible manner.

To prevent overfitting, we simultaneously sougta tiptimal weights for each community, number of
neuron nodes and microhabitat variable subset (fatseet al., 2007). We usedvaapper approach
involving cross-validation and the Genetic Algomtl{GA) (Holland, 1992) implemented within the
R packagergenoud (Mebane Jr and Sekhon, 2011), which is an approlaahproved markedly
proficient (see Mufioz-Mas et al., 2016a and theref@rences) to search them. The optimisation was
performed following a repeated k-fold schem® (X 10.,oss—varidation), With every fold presenting

a similar proportion of samples per community &&mples per cluster) to the original dataset hed t
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performance criterium was the balanced accuraey the number of correctly predicted cases
weighted by the rarity of the community), which gas between 0-1 (Muioz-Mas et al., 2016c). The
nine different operators that govern the optim@atperformed by the GA (Mebane Jr and Sekhon,
2011) were selected to avoid premature convergas@reviously suggested (Mufioz-Mas et al.,
2017). In this study, the population size was s#eraN,qpuiation = 10 X (Nepysters +1 +

Npreaictors) @nd the optimisation halted after a similar numtifegenerations without improvement

whereas the maximum number of generations wa® 4@t X Ny,,p14ti0n-

The variable importance was examined following @lden approach (Olden et al., 2004), which
calculates the importance as the product of thamput-hidden and hidden-output connection weights
between each input and output neuron and sumsrdigieigt across all hidden neurons (Beck, 2016).
The method was implemented using RheackagdéNeuralNetTools (Beck, 2016)and it was calculated
for the 100 MLPs that presented the best genetialisto calculate confidence intervals. Finallye th
modelled relationship between the selected variableset and the probability of presence of each
delineated community was graphically charactensigd partial dependence plots (Friedman, 2001).
Partial dependence plots depict the average ofdtgonse variables. the inspected variable and
account for the effects of the remaining variablathin the model by averaging their effects. The
partial dependence plots were calculated adaptigdade appearing in tigpackageandomForests
(Liaw and Wiener, 2002) and they were likewise glted for the 100 MLPs that presented the better

generalisation to calculate confidence intervals.
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3 Reaults

3.1 Macroinvertebrate communities

A total of 1443 macroinvertebrates were identifi#tie most abundant order was Ephemeroptera
(49.40%), followed by Trichoptera (21.57%) abepidoptera (6.39%), whereas the least abundant
order was Hemiptera (1.48%). The most abundantizswere: Baetidae (28.69%), Hydropsychidae
(20.51%) and Leptophlebiidae (14.21%), whereasleéhst abundant were Tricorythidae (0.07%)),

Helodidae (0.07%) and Atyidae (0.07%).

Three macroinvertebrate communities were identified the optimal number of clusters was three)
using the Poisson mixture model trained with DAnm@aunity 1 encompassed 12 samples collected
exclusively in the Mgugwe River and the Communityp@uded 30 samples collected in the Udagaiji
River. Community 2 was the only cluster encompags@mples collected in both rivers, although
most of them were collected in the Udagaji Rived/@3 (Table 1). Community 1 presented higher
abundance, although richness and the diversitg@&sdivere similar to those of Community 3 (Fig. 4).
Conversely, Community 2 presented the lowest vahfeabundance, richness and the diversity

indices.

Table 1. Number of samples per river encompasstdnr@ach delineated community.

River/Community Community 1 Community 2 Community 3
Mgugwe 12 9 0
Udagaji 0 39 30

15
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Fig. 4. Violin plots depicting the distribution die community indices for the three delineated

communities; the tagged percentages depict therdiites on median values between communities.

The analysis per order and family corroborated dfementioned general pattern in abundance,
although the total number of individuals delineatedhin Community 3 was higher (Fig. 5).
Therefore, the abundance of the samples includéddnvCommunity 1 (454 ind./12 samples) was
higher than in Community 3 (595 ind./30 samplesemgas Community 2 encompassed the least

abundant samples (374 ind./48 samples).

Between communities, the most abundant famili€ammunity 1 were Baetidae (43.17%), Pyralidae
(20.04%) and Hydropsychidae (10.79%), whereas Hyglrchidae (36.30%), Leptophlebiidae
(15.63%), Baetidae (15.63%) and Potamonautida@7%) were the most abundant in Community
3. Conversely, Community 2 was dominated by Baeti(g8.42%), Leptophlebiidae (29.95%) and
Perlidae (10.43%); the empty microhabitats (i.e #) microhabitats without macroinvertebrates)

were aggregated to Community 2.
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Fig. 5. Violin plots depicting the distribution tife abundance (# of individuals) of each familyhivit
the three delineated communities. The familiessareed first by order abundance and then by family

abundance.

3.2 Eco-hydraulic relationships

The MLP structure that generalised most over ttieation datasets was obtained with three neuron-
nodes in the hidden-layer and overweighing Commugit(57.07%) compared to the other two
communities (Community 1 = 21.33% and Community 21-60%). The better performance was
obtained with six variables, namely depth, velqc#tybstrate index, shade, aquatic vegetation and
woody debris and the mean balanced accuracy pemaoity achieved very high values (i.e.

Community 1 = 0.84+0.21, Community 2 = 0.77+0.18 &ommunity 3 = 0.84+0.11).

The partial dependence plots indicated that Comiyudnhad a clear affinity for microhabitats with
aguatic vegetation and woody debris and, to a lesdent, for finer substrates (i.e. sands) (Fig. 6

Community 2 occurred in deep and shaded microhabiwéh low flow velocity and the coarsest
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Fig. 6. Mean partial dependence plots, and conéeenterval, of the six selected variables. These

plots depict the relationship between each varianld the probability of presence of the three

delineated communities.

The variable importance analysis corroborated tleds observed in the partial dependence plots,

with aquatic vegetation and woody debris, follovegdrelocity, as the most discriminant variables for

Community 1 (Fig. 7). These three variables wekewise the most important for Community 2,

although they presented the opposite effect (ign)sFinally, the most important variables for

Community 3 were velocity, depth and substrate.
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Fig. 7. Variable importance computed with the Oldgproach (Olden et al., 2004) for the three

delineated communities.

4 Discussion

A central challenge in community ecology is to wstEnd the mechanisms that shape animal
assemblages. Our study corroborated that hahitettste and hydraulics also play a fundamental role
in shaping the macroinvertebrate communities iridb#hill rivers of the Udzungwa Mountains (Baker
et al., 2016; Costa and Melo, 2008). We demonstriduat habitat structure and hydraulics are able to
properly discriminate the macroinvertebrate commes which, in turn, underlines their importance
as drivers of community composition and abundaAgeatic vegetation, woody debris, velocity and
substrate index, followed by depth and shade, emdels the most discriminant variables to

understand macroinvertebrate communities in thvegéctl running waters.
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4.1 Macroinvertebrate communities

We demonstrated that the optimal number of comnasénd clustering algorithm can be found with
the functionalities implemented within tlaptCluster (Sekula et al., 2017), which allowed us to
determine three types of macroinvertebrate comnasnib a semi-supervised mode by taking into
account the sampled river. We indicated that exablys one community was shared between both
rivers. The quality of the aggregation is acknowksdi by the results obtained with the MLP, which
achieved very high performance (mean balanced acgwsr0.80). Compared to previous studies (e.g.
Park et al., 2003; Edia et al., 2010), the MLP ené=d in this study performed well with three neuro
nodes and six variables, although former studidsndt apply exactly the same approach followed
here. Furthermore, the number of delineated cominegr{i.e. three) was in line with other studieatth
used SOM in a similar manner (e.g. Park et al. 32@lia et al., 2010). In accordance, the use of
model-based clustering algorithms assuming thad dedre generated by a mixture of Poisson or
negative binomial probability distributions follomg semi-supervised mode approaches should be
taken into account as a general framework in fughedies pooling data from different river segnsent

(Si et al., 2014).

Concerning to the macroinvertebrate compositioa,ttost abundant family was Baetidae, which is
globally distributed (Dallas, 2004; Mathooko andwf, 1992), and thus it cannot be considered
particularly indicative, although its low abundari@es been stated to be indicative of impoverished
ecological status (Elias et al., 2014; Shimba amthll, 2016; Zhang et al., 201&nother widely
distributed taxa, Diptera, was not abundant contptwehe reference sites sampled in other studies
focused on African systems (Dallas and Mosepel®72®&asangaki et al., 2006; Mathooko and
Mavuti, 1992). Therefore, the largest differencesMeen the macroinvertebrate communities of the
Udzungwa Mountains and those sampled in otheresuaere found for river stretches sampled in the

vicinity of large populations; where the water qiydked to markedly different communities dominated
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395 Dby individuals of the order Diptera (Elias et &0Q14; Shimba and Jonah, 2016). Although the
396 composition of the macroinvertebrate communitiesy memain markedly constant (Dallas, 2004;
397 McClain et al., 2014), care must be taken in in&lipg these results in terms of abundance because

398 changes in composition may be governed by smaltemgorary changes (McClain et al., 2014).

399

400 4.2 Eco-hydraulicrelationships

401 We identified aquatic vegetation, woody debrispedl, substrate index and, to a lesser extenthdep
402 and shade as the most discriminant variables t@mstehd macroinvertebrate communities in the
403 studied tropical rivers. In the past, the use gitdeand velocity and not the combined effect in the
404 form of shear stress or Froude number has beaaised (Mérigoux et al., 2009). However, the best
405 MLP was obtained employing simultaneously velo@tyhstrate index and depth and considering fully
406 interacting variables, which has been suggestetttease predictive capacity (Mérigoux et al., 2009
407  With this variable set, the MLP achieved very hpgitformance and led us to consider the use of these
408 derived variables potentially redundant. Former digts faced difficulties to distinguish
409 macroinvertebrate communities (Adriaenssens e2@07) while our results found a clear separation
410 forthe three delineated communities accordingetpdnvironmental variables (here aquatic vegetation
411 and substrate index). Nevertheless, the relativeowaspectrum of sampled conditions may have
412 favoured a better discrimination than other stutles encompassed a larger variability and worked
413 at a lower taxonomic level (i.e. species levely (Adriaenssens et al., 2007; Mérigoux et al., 2009
414 especially taking into account that in our caseesmvfamilies appeared spread over different

415 communities.

416 Interestingly the most relevant variables, andrthmipact on macroinvertebrate abundance and

417 composition, fit well witha priori classifications performed in other studies whére available
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habitats were classified as stones, vegetatioara accounting for the type (bedrock raysdcobble
riffle) and quality (deposition of silt on stones)) the underlying substrate (Dallas, 2007). These
differences between vegetatexd non-vegetated and sandy coarse substrate have been reported in
other African streams, most likely because sontberh compared to others are complex habitats that
provide (i) refuge from current and fish predati@n,food supply for herbivores and detritivoréis)
attachment for filter-feeding taxa and (iv) exitigs for emerging aquatic insects (Chakona et al.,
2008). In particular, macrophytes enhance the phlsand chemical heterogeneity in aquatic
ecosystems (Phiri et al., 2011), and density irsgs®f vegetation have been related with changes in
invertebrate body size distribution, with large-laotlindividuals and taxa generally being more
abundant in dense vegetation owing to the reductiggredation efficiency and foraging success of
fish (Phiri et al., 2011). Thus, our outcomes aragreement with these considerations highlighting

the key importance of aquatic vegetation in thecttire of macroinvertebrate communities.

Similar reasoning can be applied to woody debrembse Ephemeroptera and Trichoptera often feed
on leaf litter and/or hide in woody debris (Cummamsl Klug, 1979). Usually, the presence of woody
debris is particularly relevant at least for somiefoptera because it provides the necessary rahteri
to build their characteristic cases (de Moor arahby, 2008). However, this might not be the case in
this study as the identified Trichoptera (Hydropgsglae and Ecnomidae) are caseless (de Moor, 2005).
Still, small woody debris can be of importance qoi&ic invertebrates as, for instance, a food sourc
for many species (e.g. Cummins and Klug, 1979hdlgh it may be not exempt from controversy
(Aguiar et al., 2017; Lau et al., 2008), it hasrbetated that in African rivers deforestation aadis
cultivation, and the consequent reduction in treoine material, are a main cause of their absence

(Chakona et al., 2009).

The importance of velocity, substrate and depthichvipresented the most significant correlations

(Fig. 3), has been highlighted in a number of ssigierformed in tropical rivers either on the Adnc
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continent (Chakona et al., 2009; Dallas, 2007nhasther tropical regions (Baker et al., 2016; Boyer
and Bosch, 2004). Nonetheless, habitats with timesaubstrate composition but different flow
velocity or depth often harbour different macroirtebrate communities (Bauernfeind and Moog,
2000). Setting aside the results obtained for nhigbitats with aquatic vegetation, which may mask
the effect of the hydraulic variables, the coriielatbetween velocity and substrate observed in this
study support the view of former studies suggestitad Ephemeroptera and Trichoptera prefer to
inhabit riffle type habitats with coarse substr@auernfeind and Moog, 2000; Chakona et al., 2009;
Mathooko, 2001) because these two orders were abtimd Community 3. However, they were also
significantly abundant — especially Baetidae (Epbéeaptera) — in Community 1, which was related
to sandy substrate. Sandy substrates are usuatghle and disfavour macroinvertebrate settlement
(Duan et al., 2009). Therefore, we hypothesiserthatohabitats dominated by sandy substrate, which
presented communities that usually occur in riffleean et al., 2009), were in general near the §ank
and subject to lower stresses. Therefore, thisamhstribution may have favoured the establishimen
of aquatic vegetation where they feed and find gotodn from predators, which permits their
proliferation (Masese et al., 2014) and thus, sabstvas in this case of minor relevance. In caitra
the result obtained for the coarsest substrate lfedrock) does not pose any doubt because this
substrate usually renders little space for the piacertebrate refuge (e.g. holes or crevices), Wwhic

justifies the impoverished communities found oVeré (Baker et al., 2016).

Perhaps the most contradicting pattern was thateelto water depth because previous studies
performed in other African streams found a positeféect on macroinvertebrate abundance,
particularly on the Ephemeroptera and Trichopteders (e.g. Chakona et al., 2009; Masese et al.,
2014). Nevertheless, our results accept the vieat plools host impoverished macroinvertebrate
communities compared to shallower mesohabitats (éflgs) as observed in other tropical streams
(Baker et al., 2016). We posit that this discreyamay be caused by the different scales employed in

these studies compared to our study, which waspeéed at the microhabitat scale and encompassed
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relatively short river segments, whereas the dmamestudies were performed at the mesohabitat scal

encompassing long river segments that lead todiagraof depth of different nature.

Unlike temperate rivers, in tropical rivers thesecertain controversy about the origin of the pryna
resources with several authors claiming autochtbsr{e.g. periphytic algae and/or cyanobacteria)
prevailing over allochthonous origins (e.g. le#kl) (e.g. Lau et al., 2008) and others claimimg t
opposite (e.g. Aguiar et al., 2017). The resultmioled for shade may indicate that the Udagaji and
Mgugwe rivers rely on autochthonous productio@lgh this cannot be considered a general pattern
unequivocally transferable to other African rivésse e.g. Masese et al., 2014). Nonetheless, @r oth
tropical streams density and richness were higlh@nvwecanopy cover was more variable (Boyero and
Bosch, 2004). In accordance, specific researchldh@uperformed to elucidate the real causes df suc

macroinvertebrate distribution patterns in relatioshade.

4.3 Potential implications of altered hydraulics and flow regimes

A common practise worldwide is the constructioméfastructure to guarantee irrigation schemes and
water supply for humans with concomitant significeeductions and alterations in river flows. The
studied rivers represent systems with natural femmditions in which no regulatory facilities are
planned, but the alteration of hydraulics througlyation schemes would drive deleterious changes
in macroinvertebrate communities and linked comptsef river food webs. Invertebrate abundance
may vary in response to decreased flow, whereastgbrate richness commonly decreases along with
habitat diversity (Boyero and Bosch, 2004; Masés#.£2013). In this regard, and based exclusively
in our results, reductions in river flows and deptiat favour the proliferation of macrophytes
(Schoelynck et al., 2018) are likely to increase #neas suitable for the community delineated in

Community 1, although it may not occur in the UdaBaver. However, the consequent reduction in

24



490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

flow velocity in the downstream reach may negativieipact Community 3, which also presented
high richness and diversity. Consequently, althatinghultimate impact of water abstraction is rather
uncertain, we consider that reductions of rivewBacaused by water diversion are likely to rediee t
overall abundance of macroinvertebrates as has demonstrated in other streams of south-eastern
Africa that suffered significant reductions in flewWyfChakona et al., 2008; Mathooko and Mavuti,
1992). That said, large irrigation schemes wouldlifiyathe geomorphology of the streams and the
input of woody material into the river system, whis likely to impact directly shredder species and
indirectly other macroinvertebrates or trophic lewrough cascading effects (Chakona et al., 2009;
Kasangaki et al., 2006). However, the mechanisgyéring cascading effects might change among
rivers as our results also indicated that shade Ipgaijinked to autochthonous primary production
through grazing (i.e. scrapers). Small impoundmeats withhold sediments, organic debris, and
nutrients (Mbaka and Wanjiru Mwaniki, 2015), whiehil expose downstream river segments to a
sediment deficit — fine sediment is likely to flgreferentially trough the irrigation canal with ceer
sediment trapped at the point of water diversicaen{ivaki et al., 2017). The upstream river segments
will be, on the contrary, negatively impacted bg thcreased depth caused by the impoundment, which
is likely to lead to the impoverished macroinvertggb communities delineated in Community 2.
Although, it is difficult to predict how most spesiwill respond to new environmental conditions, we
conclude that water abstraction is unlikely to haweutral effect over the macroinvertebrate
communities of the Udagaji and Mgugwe rivers argtafore these practices are not recommended

from an ecological conservation perspective.

This study has not been exhaustive and has nedlscie physical and chemical variables. In
accordance, the ultimate type and magnitude of atspeorresponds to complex interactions that
would be observed in the long term (Mbaka and Wamjlwaniki, 2015). Despite increasing concern
about how climate and land-use change and riveulaign will affect freshwater ecosystems,

comparatively a few studies have focused on smagdidal streams (Taniwaki et al., 2017). Therefore,
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the herein presented results provide valuable mmébion on macroinvertebrate communities and eco-
hydrological relationships in tropical streams @sEAfrica, which should adequately guide further

ecological studies and assist EFAs.

5 References

Adriaenssens, V., Verdonschot, P.F.M., Goethals,M?, De Pauw, N., 2007. Application of
clustering techniques for the characterization atrainvertebrate communities to support river

restoration management. Aquat. Ecol. 41, 387-38i81@1007/s10452-005-2836-0

Aguiar, A.C.F., Neres-Lima, V., Moulton, T.P., 20Relationships of shredders, leaf processing and
organic matter along a canopy cover gradient ipitad streams. J. Limnol. Vol 77, No 1.

doi:10.4081/jlimnol.2017.1684

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pétkelk|., Perona, |., 2013. An extensive comparative
study of cluster validity indices. Pattern Recognit 46, 243-256.

doi:10.1016/j.patcog.2012.07.021

Baker, K., Chadwick, M.A., Kahar, R., Sulaiman, Z.Wahab, R.A., 2016. Fluvial biotopes influence
macroinvertebrate biodiversity in SoutBast Asian tropical streams. Ecosphere 7, e01479.

doi:10.1002/ecs2.1479

Bauernfeind, E., Moog, O., 2000. Mayflies (Inse&phemeroptera) and the assessment of ecological
integrity: a methodological approach. Hydrobiologia 422, 83l—

doi:10.1023/A:1017090504518

Beck, M., 2016. NeuralNetTools: Visualization andalysis Tools for Neural Networks.

Belmar, O., Velasco, J., Gutiérrez-Canovas, C.|adelDiaz, A., Millan, A., Wood, P.J., 2013. The

26



537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

influence of natural flow regimes on macroinversgbrassemblages in a semiarid Mediterranean

basin. Ecohydrology 6, 363—-379. doi:10.1002/eca4127

Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnak€rB., Taylor, J., Henriksen, J., 1998. Stream
habitat analysis using the instream flow incremientathodology. U.S. Geological Survey

Information and Technology, Fort Collins, CO (USA).

Boyero, L., Bosch, J., 2004. The Effect of Rifflea®e Environmental Variability on
Macroinvertebrate Assemblages in a Tropical Streddydrobiologia 524, 125-132.

doi:10.1023/B:HYDR.0000036127.94781.3c

Brooks, A.J.J., Haeusler, T., Reinfelds, I., Wiltig, S., 2005. Hydraulic microhabitats and the
distribution of macroinvertebrate assemblages ifflesi Freshw. Biol. 50, 331-344.

doi:10.1111/}.1365-2427.2004.01322.x

Celeux, G., Govaert, G., 1992. A classification ElMyorithm for clustering and two stochastic

versions. Comput. Stat. Data Anal. 14, 315-3321001016/0167-9473(92)90042-E

Chakona, A., Phiri, C., Day, J.A., 2009. PoterfbalTrichoptera communities as biological indicator
of morphological degradation in riverine systems.ydibbiologia 621, 155-167.

doi:10.1007/s10750-008-9638-z

Chakona, A., Phiri, C., Magadza, C.H.D., Brendorck2008. The influence of habitat structure and
flow permanence on macroinvertebrate assemblagetemporary rivers in northwestern

Zimbabwe. Hydrobiologia 607, 199-209. doi:10.100@/%0-008-9391-3

Clifford, N.J., Harmar, O.P., Harvey, G., PettsEG2006. Physical habitat, eco-hydraulics andrrive
design: a review and re-evaluation of some pomdacepts and methods. Aquat. Conserv. Mar.

Freshw. Ecosyst. 16, 389—-408. doi:10.1002/aqc.736

27



559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

S77

578

579

580

Costa, S.S., Melo, A.S., 2008. Beta diversity meamn macroinvertebrate assemblages: among-site
and among-microhabitat components. Hydrobiologi8, 3881-138. doi:10.1007/s10750-007-

9145-7

Cummins, K.W., Klug, M.J., 1979. Feeding EcologyStfeam Invertebrates. Annu. Rev. Ecol. Syst.

10, 147-172. doi:10.1146/annurev.es.10.110179.a0D105

Dallas, H.F., 2007. The effect of biotope-speatenpling for aquatic macroinvertebrates on refezenc
site classification and the identification of emvimental predictors in Mpumalanga, South

Africa. African J. Aquat. Sci. 32, 165-173. doi2989/AJAS.2007.32.2.8.205

Dallas, H.F., 2004. Seasonal variability of macventebrate assemblages in two regions of South
Africa: implications for aquatic bioassessment. igdn J. Aquat. Sci. 29, 173-184.

doi:10.2989/16085910409503808

Dallas, H.F., Mosepele, B., 2007. A preliminary\ay and analysis of the spatial distribution of
aguatic invertebrates in the Okavango Delta, BatswaAfrican J. Aquat. Sci. 32, 1-11.

doi:10.2989/AJAS.2007.32.1.1.138

Datta, S., Datta, S., 2006. Methods for evaluatingtering algorithms for gene expression datagusin

a reference set of functional classes. BMC Bioimfatics 7, 397. doi:10.1186/1471-2105-7-397

de Moor, F.C., 2005. Variation in case constructidnrrichoptera larvae in southern Africa, in:
Tanida, K., Rossiter, A. (Eds.), Proceedings ofith#h International Symposium on Trichoptera,

Osaka. Tokai University Press, Kanagawa (Japargk®glapan), pp. 107-114.

de Moor, F.C., Ivanov, V.D., 2008. Global diversitfycaddisflies (Trichoptera: Insecta) in freshwate

Hydrobiologia 595, 393-407. doi:10.1007/s10750-6Q13-2

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Ntaxm Likelihood from Incomplete Data via the

28



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

EM Algorithm. J. R. Stat. Soc. Ser. B 39, 1-38.

Duan, X., Wang, Z., Xu, M., Zhang, K., 2009. Effeftstreambed sediment on benthic ecology. Int.

J. Sediment Res. 24, 325-338. doi:10.1016/S1002{6RY60007-8

Edia, E.O., Gevrey, M., Ouattara, A., Brosse, ®4i@ne, G., Lek, S., 2010. Patterning and predjctin
aguatic insect richness in four West-African colastgers using artificial neural networks.

Knowl. Manag. Aquat. Ecosyst. 06p1-06p15. doi:161/Rmae/2010029

Elias, J.D., ljumba, J.N., Mgaya, Y.D., Mamboya,AF. 2014. Study on Freshwater
Macroinvertebrates of Some Tanzanian Rivers assisBar Developing Biomonitoring Index
for Assessing Pollution in Tropical African Regions). Ecosyst. 2014, 1-8.

doi:10.1155/2014/985389

Elisa, M., Gara, J.l., Wolanski, E., 2010. A reviefnthe water crisis in Tanzania’s protected areas,
with emphasis on the Katuma River—Lake Rukwa edesysEcohydrol. Hydrobiol. 10, 153—

165. doi:10.2478/v10104-011-0001-z

Epskamp, S., Cramer, A.0.J., Waldorp, L.J., Scnaittn, V.D., Borsboom, D., 2012. qgraph:

Network Visualizations of Relationships in PsychameeData. J. Stat. Softw. 48, 1-18.

Fox, J., 2010. polycor: Polychoric and Polyseriatr€lations.

Friedman, J.H., 2001. Greedy function approximat®mgradient boosting machine. Ann. Stat. 29,

1189-1232. d0i:10.1214/a0s/1013203451

Fruchterman, T.M.J., Reingold, E.M., 1991. Grapdng by force-directed placement. Softw. Pract.

Exp. 21, 1129-1164. doi:10.1002/spe.4380211102

Goethals, P.L.M., Dedecker, A.P., Gabriels, W.,,L®k De Pauw, N., 2007. Applications of artificial
neural networks predicting macroinvertebrates iestiwaters. Aquat. Ecol. 41, 491-508.

29



603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

doi:10.1007/s10452-007-9093-3

Holland, J.H., 1992. Genetic algorithms. Sci. A7 266—72.

Hsieh, T.C., Ma, K.H., Chao, A., Mclnerny, G., 20IBEXT: an R package for rarefaction and
extrapolation of species diversity (Hill numbersd)lethods Ecol. Evol. 7, 1451-1456.

doi:10.1111/2041-210X.12613

Jain, A.K., 2010. Data clustering: 50 years beyBntheans. Pattern Recognit. Lett. 31, 651—-666.

doi:10.1016/j.patrec.2009.09.011

Kasangaki, A., Babaasa, D., Efitre, J., McNeilage, Bitariho, R., 2006. Links Between
Anthropogenic Perturbations and Benthic Macroireladte Assemblages in Afromontane

Forest Streams in Uganda. Hydrobiologia 563, 23%-84i:10.1007/s10750-005-0009-8

Kasangaki, A., Chapman, L.J., Balirwa, J., 2008.nd.ause and the ecology of benthic
macroinvertebrate assemblages of high-altituddoegst streams in Uganda. Freshw. Biol. 53,

681-697. doi:10.1111/].1365-2427.2007.01925.x

Kohonen, T., 1982. Self-organized formation of togaally correct feature maps. Biol. Cybern. 43,

59-69. doi:10.1007/BF00337288

Kruschke, J.K., 2013. Bayesian estimation supesstaeT test. J. Exp. Psychol. Gen. 142, 573—-603.

doi:10.1037/a0029177

Kundzewicz, Z.W., 2007. Global freshwater resourtas sustainable development. Ecohydrol.

Hydrobiol. 7, 125-134. doi:10.1016/S1642-3593(0 1y 7

Lau, D.C.P., Leung, K.M.Y., Dudgeon, D., 2008. Whlaes stable isotope analysis reveal about
trophic relationships and the relative importantallmchthonous and autochthonous resources
in tropical streams? A synthetic study from HongnKo Freshw. Biol. 54, 127-141.

30



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

doi:10.1111/}.1365-2427.2008.02099.x

Liaw, A., Wiener, M., 2002. Classification and regsion by randomForest. R News 3, 18-22.

Madikizela, B.R., Dye, A.H., 2003. Community compias and distribution of macroinvertebrates
in the Umzimvubu River, South Africa: a pre-impoumeht study. African J. Aquat. Sci. 28, 137—

149. doi:10.2989/16085910309503778

Masese, F.O., Kitaka, N., Kipkemboi, J., Gettel,MG. Irvine, K., McClain, M.E., 2014.
Macroinvertebrate functional feeding groups in Kamyighland streams: evidence for a diverse

shredder guild. Freshw. Sci. 33, 435-450. doi: 1861675681

Masese, F.O., Omukoto, J.O., Nyakeya, K., 2013mBiuitoring as a prerequisite for sustainable water
resources: a review of current status, opportunaied challenges to scaling up in East Africa.

Ecohydrol. Hydrobiol. 13, 173-191. doi:10.1016/pkgd.2013.06.004

Mathooko, J.M., 2001. Temporal and spatial distrdruof the baetid Afroptilum sudafricanum in the

sediment surface of a tropical stream. Hydrobi@aft3, 1-8. doi:10.1023/A:1017502421985

Mathooko, J.M., Mavuti, K.M., 1992. Composition asehsonality of benthic invertebrates, and drift

in the Naro Moru River, Kenya. Hydrobiologia 232-4%6. doi:10.1007/BF00014611

Mbaka, J.G., Wanjiru Mwaniki, M., 2015. A globalview of the downstream effects of small
impoundments on stream habitat conditions and nraedebrates. Environ. Rev. 23, 257-262.

doi:10.1139/er-2014-0080

McClain, M.E., Kashaigili, J.J., Ndomba, P., 20Exvironmental flow assessment as a tool for
achieving environmental objectives of African watelicy, with examples from East Africa. Int.

J. Water Resour. Dev. 29, 650-665. doi:10.1080/06920.2013.781913

McClain, M.E., Subalusky, A.L., Anderson, E.P., BesS.B., Melesse, A.M., Ndomba, P.M.,

31



647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

Mtamba, J.0.D.D., Tamatamah, R.A., Mligo, C., 20C@bmparing flow regime, channel
hydraulics, and biological communities to inferil@cology relationships in the Mara River of

Kenya and Tanzania. Hydrol. Sci. J. 59, 801-81818d.080/02626667.2013.853121

McCulloch, W.S., Pitts, W., 1943. A logical calcslaf the ideas immanent in nervous activity. Bull.

Math. Biophys. 5, 115-133. doi:10.1007/BF02478259

Mebane Jr, W.R., Sekhon, J.S., 2011. Genetic opditioin using derivatives: The rgenoud package

for R. J. Stat. Softw. 42, 1-26.

Mérigoux, S., Lamouroux, N., Olivier, J.M., Doléd&:, 2009. Invertebrate hydraulic preferences and
predicted impacts of changes in discharge in aelarger. Freshw. Biol. 54, 1343-1356.

doi:10.1111/}.1365-2427.2008.02160.x

Minaya, V., McClain, M.E., Moog, O., Omengo, F.n&er, G.A., 2013. Scale-dependent effects of
rural activities on benthic macroinvertebrates physico-chemical characteristics in headwater

streams of the Mara River, Kenya. Ecol. Indic. B26—122. doi:10.1016/j.ecolind.2013.03.011

Mombo, F.M., Speelman, S., Van Huylenbroeck, G.JI&le]., Pantaleo, M., Moe, S., 2011.
Ratification of the Ramsar convention and sustdemaletlands management: situation analysis

of the Kilombero Valley wetlands in Tanzania. JrisgExt. Rural Dev. 3, 153-164.

Mouton, A.M., Alcaraz-Hernandez, J.D., De Baets,®oethals, P.L.M., Martinez-Capel, F., 2011.
Data-driven fuzzy habitat suitability models forotain trout in Spanish Mediterranean rivers.

Environ. Model. Softw. 26, 615-622. doi:10.1016/ys0ft.2010.12.001

Msuya, T.S., Lalika, M.C.S., 2017. Linking Ecohylbhgy and Integrated Water Resources
Management: Institutional challenges for water ngana@ent in the Pangani Basin, Tanzania.

Ecohydrol. Hydrobiol. doi:10.1016/j.ecohyd.201 7@}

32



669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

Mufoz-Mas, R., Fukuda, S., Vezza, P., Martinez-Cdpe 2016a. Comparing four methods for
decision-tree induction: A case study on the inv@asberian gudgeon (Gobio lozanoi; Doadrio

and Madeira, 2004). Ecol. Inform. 34, 22—34. dailDA6/].ecoinf.2016.04.011

Mufoz-Mas, R., Gar6fano-Gémez, V., Andrés-DoménéciCorenblit, D., Egger, G., Francés, F.,
Ferreira, M.T., Garcia-Arias, A., Politti, E., Re® R., Rodriguez-Gonzalez, P.M., Steiger, J.,
Vallés-Moran, F.J., Martinez-Capel, F., 2017. Exiplp the key drivers of riparian woodland
successional pathways across three European rieaches. Ecohydrology 10, e1888.

doi:10.1002/ec0.1888

Mufoz-Mas, R., Martinez-Capel, F., Schneider, Moulbn, A.M., 2012. Assessment of brown trout
habitat suitability in the Jucar River Basin (Spaf@omparison of data-driven approaches with
fuzzy-logic models and univariate suitability cusveSci. Total Environ. 440, 123-131.

doi:10.1016/j.scitotenv.2012.07.074

Mufoz-Mas, R., Papadaki, C., Martinez-Capel, Fgafis, S., Ntoanidis, L., Dimitriou, E., 2016b.
Generalized additive and fuzzy models in environ@leflow assessment: A comparison
employing the West Balkan trout (Salmo farioidesir&man, 1938). Ecol. Eng. 91, 365-377.

doi:10.1016/j.ecoleng.2016.03.009

Mufoz-Mas, R., Vezza, P., Alcaraz-Hernandez, JMartinez-Capel, F., 2016c. Risk of invasion
predicted with support vector machines: A caseystud northern pike (Esox Lucius, L.) and

bleak (Alburnus alburnus, L.). Ecol. Modell. 3423%134. doi:10.1016/j.ecolmodel.2016.10.006

Niba, A.S., Mafereka, S.P., 2015. Benthic macraitelwate assemblage composition and distribution
pattern in the upper Mthatha River, Eastern CapattBAfrica. African J. Aquat. Sci. 40, 133—

142. doi:10.2989/16085914.2015.1028323

O’Keeffe, J., Graas, S., Mombo, F., McClain, M.120Stakeholder-enhanced environmental flow

33



692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

assessment: The Rufiji Basin case study in TanzRnar Res. Appl. 1-9. doi:10.1002/rra.3219

Olden, J.D., Joy, M.K., Death, R.G., 2004. An aateircomparison of methods for quantifying
variable importance in artificial neural networksing simulated data. Ecol. Modell. 178, 389—

397. doi:10.1016/j.ecolmodel.2004.03.013

Park, Y.-S., Céréghino, R., Compin, A., Lek, S.Q20Applications of artificial neural networks for
patterning and predicting aquatic insect speci@mgss in running waters. Ecol. Modell. 160,

265-280. doi:10.1016/S0304-3800(02)00258-2

Phiri, C., Chakona, A., Day, J.A., 2011. The effetplant density on epiphytic macroinvertebrates
associated with a submerged macrophyte, Lagarasipicdolius Obermeyer, in Lake Kariba,

Zimbabwe. African J. Aquat. Sci. 36, 289-297. d2i2P89/16085914.2011.636907

Pihur, V., Datta, S., Datta, S., 2009. RankAggesgR package for weighted rank aggregation. BMC

Bioinformatics 10, 62. doi:10.1186/1471-2105-10-62

Pihur, V., Datta, S., Datta, S., 2007. Weightedk@ggregation of cluster validation measures: atglon

Carlo cross-entropy approach. Bioinformatics 23)7H4.615.

R Core Team, 2017. R: A language and environmerdtétistical computing.

Rose, K., 1998. Deterministic annealing for clusiggr compression, classification, regression, and

related optimization problems. Proc. IEEE 86, 22139. doi:10.1109/5.726788

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 198@arning representations by back-propagating

errors. Nature 323, 533-536. doi:10.1038/323533a0

Schiemer, F., 2016. Building an eco-hydrologicaniework for the management of large river

systems. Ecohydrol. Hydrobiol. 16, 19-25. doi:1Q4/fQecohyd.2015.07.004

34



713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

Schoelynck, J., Creélle, S., Buis, K., De Mulder, Hmsens, W.-J., Hein, T., Meire, D., Meire, P.,
Okruszko, T., Preiner, S., Roldan Gonzalez, Rin&dl, A., Temmerman, S., Troch, P., Van
Oyen, T., Verschoren, V., Visser, F., Wang, C., &l J.-W., Folkard, A., 2018. What is a
macrophyte patch? Patch identification in aquatiosgstems and guidelines for consistent

delineation. Ecohydrol. Hydrobiol. 18, 1-9. doil@16/j.ecohyd.2017.10.005

Sekula, M., Datta, S., and Susmita Datta, 201 Clogter: Determine Optimal Clustering Algorithm

and Number of Clusters.

Shimba, M.J., Jonah, F.E., 2016. Macroinvertebrasdsioindicators of water quality in the Mkondoa
River, Tanzania, in an agricultural area. African Aquat. Sci. 41, 453-461.

doi:10.2989/16085914.2016.1230536

Si, Y., 2012. MBCluster.Seq: Model-Based ClustefmgRNA-seq Data.

Si, Y., Liu, P., Li, P., Brutnell, T.P., 2014. Mddaased clustering for RNA-seq data. Bioinformatics

30, 197-205. doi:10.1093/bioinformatics/btt632

Song, M.-Y., Park, Y.-S., Kwak, I.-S., Woo, H., Ghol.-S., 2006. Characterization of benthic
macroinvertebrate communities in a restored striganmsing self-organizing map. Ecol. Inform.

1, 295-305. d0i:10.1016/j.ecoinf.2005.12.001

Taniwaki, R.H., Piggott, J.J., Ferraz, S.F.B., Maé&i, C.D., 2017. Climate change and multiple

stressors in small tropical streams. Hydrobiolat$8, 41-53. doi:10.1007/s10750-016-2907-3

Thorne, R.S.J., Williams, W.P., Cao, Y., 1999. Tiiftuence of data transformations on biological
monitoring studies using macroinvertebrates. W&es. 33, 343—-350. do0i:10.1016/S0043-

1354(98)00247-4

Venables, W.N., Ripley, B.D., 2002. Modern AppliSthtistics with S, Fourth. ed. Springer-Verlag

35



735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

New York, New York (USA). doi:10.1007/978-0-387-26¢2

Visconti, A., Cordero, F., Pensa, R.G., 2014. Lagerg additional knowledge to support coherent

bicluster discovery in gene expression data. InBka Anal. 18, 837-855.

Walczak, S., Cerpa, N., 1999. Heuristic principi@esthe design of artificial neural networks. Inf.

Softw. Technol. 41, 107-117. doi:10.1016/S0950-%88®0116-5

Watson, M., Dallas, H.F., 2013. Bioassessment imesyperal rivers: constraints and challenges in
applying macroinvertebrate sampling protocols. &n J. Aquat. Sci. 38, 35-51.

doi:10.2989/16085914.2012.742419

White, J.C., Hannah, D.M., House, A., Beatson, 3/J). Martin, A., Wood, P.J., 2017.
Macroinvertebrate responses to flow and stream¢eatyre variability across regulated and non-

regulated rivers. Ecohydrology 10, e1773—-n/a. @i:002/ec0.1773

Zalewski, M., 2008. Rationale for the “Floodplairedaration” from environmental conservation
toward sustainability science. Ecohydrol. Hydrob#)I107-113. doi:10.2478/v10104-009-0008-

X

Zhang, M., Mufoz-Mas, R., Martinez-Capel, F., Qu, Xhang, H., Peng, W., Liu, X., 2018.
Determining the macroinvertebrate community indicaitand relevant environmental predictors
of the Hun-Tai River Basin (Northeast China): Adstilbased on community patterning. Sci. Total

Environ. 634, 749-759. doi:10.1016/j.scitotenv.202821

36



