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Abstract

Despite the importance of Bayesian inference and the growth of Bayesian
research, today, most undergraduate teaching is still based on frequen-
tist statistics. A way of facilitating the introduction of students to the
Bayesian world is to strongly reinforce the basic concepts behind the Bayesian
philosophy. In this work, a simple Labview® program for reinforcing and
illustrating the basic concepts underlying Bayesian inference is presented.
This program may be used in a computer lab session, or as an online ap-
plet for the students to revise the concepts after the class or in a Massive
Open Online Course (MOOC) course.

Keywords: Bayesian inference, Labview®, Pseudo-random number gen-
eration, Biased coin simulation, Bias estimation.

Resumen

A pesar de la importancia de la inferencia Bayesiana y el crecimiento de
la investigación Bayesiana, hoy por hoy, la mayoŕıa de los planes de es-
tudio de grado todav́ıa se basan en la estad́ıstica frecuentista. Una forma
de facilitar la introducción de los estudiantes al mundo Bayesiano es re-
forzar los conceptos básicos de la filosof́ıa Bayesiana. En este trabajo, se
presenta un programa implementado en Labview® para reforzar e ilustrar
los conceptos básicos que subyacen a la inferencia Bayesiana. Este pro-
grama se puede usar en prácticas informáticas, o como un applet en ĺınea
para que los estudiantes revisen los conceptos después de clase o en un
curso online masivo y abierto (MOOC, por sus siglas en inglés).

Keywords: Inferencia Bayesiana, Labview®, Generación de números
pseudoaleatorios, Simulación de una moneda sesgada, Estimación del sesgo.
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1 Introduction

The result known nowadays as the Bayes’ theorem can be tracked down to the paper
of a nonconformist English minister,the Reverend Thomas Bayes, “An essay towards
solving a problem in the doctrine of chances” (Bayes 1763) posthumously published
in 1763. This paper contains what is arguably the first detailed description of the
elementary probability theory theorem associated with his name today. However,
it was the XVIIIth century french scientist, Pierre-Simon Laplace, who introduced
a general version of this result in his 1774 paper “Mémoire sur la probabilité des
causes par les événements” (De Laplace 1774). This early Bayesian inference, called
at the time “inverse probability”, was largely used until the 1920s to approach a large
variety of problems ranging from celestial mechanics, medical statistics and reliability
to jurisprudence (Stigler 1986). Even if the Bayes’ theorem has around 250 years of
history, and the method of inverse probability that flowed from it dominated statistical
thinking into the XXth century, the adjective “Bayesian” was not introduced into the
statistical lexicon until relatively recently (Fienberg 2006). It is believed that the
adjective was first used in print by Ronald Aylmer Fisher in the introduction to his
1921 paper “On the probable error of a coefficient of correlation deduced from a small
sample” (Fisher 1921). After the 1920s, “inverse probability” was largely replaced by
a collection of methods that came to be called frequentist inference. Leonard Jimmie
Savage set the stage for the neo-Bayesian revival in his book (Savage 1972), but it
was the discovery of Markov chain Monte Carlo methods, which solved many of the
computational problems that prevented the generalized use of Bayesian methods, that
triggered a dramatic growth of the applications of these methods (Berger and Wolpert
2004).

After its revival at the end of last century, Bayesian inference has come to stay, and the
number of fields in which it has been successful and usefully applied grows day by day.
Just to cite some of them: biology (Huelsenbeck et al. 2002) and cosmology (Trotta
2008), in Sciences; neuroimaging (Friston et al. 2002) and hydrology (Kuczera 1999),
in Engineering; and psychology (Wagenmakers et al. 2018) and economics (Koop and
Korobilis 2010), in Social Sciences. The great utility and versatility of the Bayesian
approach makes it a key concept not only for future scientists and engineers, but
also for Social Science students. No undergraduate should graduate without at least
understanding the basic concepts behind Bayesian inference (Sedlmeier 1997). Despite
the importance of Bayesian inference and the growth of Bayesian research, today, most
undergraduate teaching is still based on frequentist statistics; and Bayesian statistics
are only introduced in some advanced graduate courses (Berry 1997).

Some of the reasons that are generally cited for explaining the absence of Bayesian
statistics in undergraduate curricula are:

� The inherent difficulty of Bayesian statistics is too high for being taught at an
elementary level.

� Frequentist methods still dominate in the substantive disciplines, so students
must be taught these methods.

� The Bayesian approach is inherently subjective, and therefore is does not meet
the objectivity standards required by Science.
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On the one side, the first statement is totally wrong. In the Bayesian framework, there
are only a few key basic ideas, from which all the calculations and inferences flow. The
two main concepts in the Bayesian world are that uncertainties are represented by
probabilities; and, of course, the Bayes’ theorem itself. In contrast to the logical and
intuitive interpretations of the Bayesian statistics, frequentist methods, though being
relatively easy to apply, are nearly impossible to understand: in general, students in
frequentist courses learn very well how to calculate confidence intervals and p-values,
but they cannot give correct interpretations to these values (Berry 1997).

On the other side, the second statement is (at least for the moment) relatively right:
the world of Science is still dominated by the frequentist perspective, though in the
last years this is starting to change. However, even if seen as antagonists, frequentist
and Bayesian frameworks are not excluding, and students can be exposed to both
approaches. So, even if it is true that students should be taught frequentist methods,
this does not imply that Bayesian methods have to be left out of the undergraduate
curricula.

Finally, regarding the last reason of the list, Bayesian inference is, indeed, subjective;
or at least, it builds a framework to incorporate subjectivity to the analysis (i.e.
through the prior distribution). It is generally thought, both by educated and not so
educated people, that Science is objective. Frequentists deduce from this argument
that statistics must also be objective. However, the first premise is wrong (Berger
and Berry 1988), as Stephen Hawking discusses in his 1988 book (Hawking 1988):
Science advances with scientists modifying their opinions as new experimental data
or information is gathered, and with scientists trying to convince other scientists of
the correctness of their opinions.

So, the 3 main reasons why Bayesian inference is not universally taught at an un-
dergraduate level are not such. And since the reasons why the Bayesian framework
is excluded of undergraduate curricula are completely invalid, it seems reasonable to
start incorporating it to undergraduate curricula as soon as possible. However, it is
true that introducing Bayesian methods may be traumatic for freshmen students since
learning the basics of the Bayesian approach requires developing logical thought pro-
cesses. Students need both, intelligence and willingness to expend effort in thinking.
And not all students meet these requirements to the same degree. The students who
have the most trouble when introduced to Bayesian statistics are those who cannot
unlearn the problem solving strategy developed in many high school mathematics
courses, consisting in solving problems by plugging values in formulas, and where
thinking is strictly optional (Berry 1997). A way of facilitating the introduction of
students to the Bayesian world is to strongly reinforce the basic concepts behind the
Bayesian philosophy in the first sessions devoted to this topic, in order to make sure
that students completely understand the basic ideas behind this approach, rather
than overwhelming them with the details of the Bayesian methods.

In this work, a simple Labview® program for reinforcing and illustrating the basic
concepts underlying Bayesian inference is presented. The program consists in a com-
puter simulation of a very basic experiment: the estimation of the bias of an unfair
(or fair) virtual coin. This program may be used in a computer lab session, for the
teacher to explain the concepts while the students are “playing” with the program;
or as an online applet for the students to revise the concepts after the class, or in a
Massive Open Online Course (MOOC) course.
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2 A quick reminder: Bayesian versus frequentist approach

The main big difference between both statistics schools is the definition of probability
itself. In the frequentist world, probabilities are also frequentist: probabilities repre-
sent long run frequencies. For instance, a probability of 0.4 of obtaining a “Heads”
when tossing a coin, indicates that if that coin was tossed an infinite number of times
(i.e. many times) the result will be “Heads” in 40% of the tosses. On the contrary,
in the Bayesian world, probabilities are degrees of belief, and therefore, they can be
used to represent the uncertainty in any event or hypothesis. For example, in the
Bayesian approach it is totally fine to talk about the probability that “Donald Trump
will win the US presidential race in 2016”; whereas a frequentist would claim that
such probability is ill-defined since the event is not repeatable, and therefore, the
concept of “long run frequencies” is not applicable.

Statistic inference consists in estimating a population parameter using data obtained
from a sample. The difference in the probability definition between both frameworks
leads to a profound nuance between frequentist inference and Bayesian inference.
The first considers the parameter that is being estimated as a unknown constant pa-
rameter; and tries to find the most likely value of that parameter that is consistent
with the available sample data (i.e. maximum likelihood method). On the contrary,
the later considers the parameter that is being estimated as a random variable with
a probability distribution that represents the uncertainty in that unknown parame-
ter; and updates that probability distribution using the available sample data. The
Cthaeh illustrates very well the difference between both approaches in his online blog
PROB(A)BILISTIC WORLD (The Cthaeh 2016), where he compares the answer that
would give a frequentist and the one that would give a Bayesian when faced to the
question of estimating the average height of adult females:

Frequentist

“I don’t know what the mean female height is. However, I know that its
value is fixed (not a random one). Therefore, I cannot assign probabilities
to the mean being equal to a certain value, or being less than or greater
than some other value. The most I can do is collect data from a sample of
the population and estimate its mean as the value which is most consistent
with the data.”

Bayesian

“I agree that the mean is a fixed and unknown value, but I see no problem
in representing the uncertainty probabilistically. I will do so by defining
a probability distribution over the possible values of the mean and use
sample data to update the distribution.”
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(a) Heads (b) Tails

Fig. 1: Virtual coin

3 The experiment description

The virtual experiment considered in this work is a very simple experiment: we have
a biased virtual coin, and we want to determine its bias by tossing it (i.e. simulating
a toss) multiple times. As any “normal” coin, the considered virtual coin has two
sides, Heads and Tails, as it can be seen in figure 1. The goal is to estimate its bias
which in this context is defined as P(Heads). By definition, this parameter is bounded
between 0 and 1.

In this work the following convention will be used: random variables will be denoted by
capital letters, whereas random variable values will be denoted by the corresponding
lower case letter. Moreover, density functions (for continuous random variables) will
be represented by f , and probability functions (for discrete random variables) will be
represented by P .

In this case, the “experimental data” used to estimate the unknown parameter are
the results of one (or more) tosses of the virtual coin. Y denotes the random variable
“result of one toss”. Since one toss only has two possible outcomes, Y is a binary
discrete random variable: y = 0 (i.e. Tails) or y = 1 (i.e. Heads); and it is distributed
according to a Bernoulli distribution of parameter P(Heads).

Since this work is framed in the Bayesian approach, here the unknown parameter (i.e.
the bias, P(Heads)) is considered as a random variable, X. Since the bias of a coin
can be any real value between 0 and 1, X is a continuous random variable for which
x ∈ [0; 1].

The Bayes’ theorem for a continuous parameter and discrete data states that:

fX|Y (x|y) =
fX(x) · PY |X(y|x)

PY (y)
∝ fX(x) · PY |X(y|x) (1)

Where fX(x) corresponds with the prior probability distribution, that carries the
information (or lack of it) known before tossing the coin. PY |X(y|x) is the likelihood
(not to be confused with the frequentist likelihood), and gives the probability of
observing y when the parameter is equal to x. Finally, fX|Y (x|y) corresponds with
the posterior probability distribution, that carries the information known after tossing
the coin. It is built by updating the prior knowledge with the experimental data (i.e.
result of the toss).
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On the one side, since Y is distributed according to a Bernoulli distribution of pa-
rameter x, the likelihood is given by:

PY |X(y|x) = xy · (1− x)(1−y) (2)

On the other side, the prior used before the first toss is selected according to the prior
knowledge on the coin. For instance, in the case that no information at all is known
about the coin, the definition of bias still gives some information (i.e. it is between 0
and 1). In that case a uniform prior will be used:

fX(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
(3)

Other prior can be used in case that some prior information about the coin is available.
For example, if the coin is suspected to be a fair coin, a Gaussian centered around 0.5
prior should be used. On the contrary, if the coin is suspected to be an unfair coin
with a tendency to Heads, a Beta picked around 0.8 should be used.

After the first toss, the initial prior will be updated using the result of the toss,
obtaining the posterior distribution. This posterior distribution represents the total
information about the coin after the first toss. And therefore, this distribution will
be the prior distribution used for the second toss. So, in subsequent tosses, the prior
is the posterior obtained after the previous toss.

4 Implementation in Labview®

Figure 2 shows the front panel of the Labview® virtual instrument (VI) implemented
in this work. It is divided in two separate blocks. On the one side, the first block is
used for defining the experiment: the bias of the virtual coin, the number of tosses and
the prior distribution (v.g. uniform, normal or beta). On the other side, the second
block displays the results of the experiment, in real time. These results include the
toss result, the calculated posterior distribution and the point estimates (i.e. mean,
median, mode and probable interval). All these results are refreshed after each virtual
toss.

Since Labview® cannot work with continuous variables, the continuous random vari-
able X was discretized uniformly in its definition domain (i.e. [0; 1]). In this context,
the x-functions (i.e. fX(x), PY |X(y|x) and fX|Y (x|y)) are represented by Np dimen-
sional vectors, where Np denotes the number of discrete values of x considered in
the discretization. The implemented program allows the user to select the step size,
∆x. The selection of this step size should be done in order to achieve a balance be-
tween precision and computational time. All the results presented in section 5 where
obtained for a step size of 1 · 10−5.

The virtual coin was implemented using Labview®’s pseudo-random number gen-
erator. For each toss, the generator generates a pseudo-random number uniformly
distributed between 0 and 1. If the generated number is lower than the bias of the
virtual coin, selected by the user in the experiment definition block of the VI’s front
panel, then the result of the toss is Heads; otherwise the result is Tails.
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(a) Experiment definition

(b) Experiment results

Fig. 2: Labview® virtual instrument front panel
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(c) P(Heads) = 0.8

Fig. 3: Evolution of the posterior distribution with the number of tosses

After each one of the Nt (selected by the user) tosses, the program calculates the
posterior distribution by componentwise-multiplying vectors fX(x) and PY |X(y|x)
(equation 1). In order to avoid that numbers become too big (which would lead to an
out of range error), the calculated posterior is normalized by numerically integrating
the calculated vector. For the first iteration (i.e. toss), the prior selected in the
experiment definition block of the VI’s front panel, is used; whereas for the following
iterations, the posterior of one iteration is saved to be used as the prior of the following
one.

After calculating the posterior, the program calculates the point estimates. On the
one hand, it calculates the mean, the median and the mode of the values stored in
vector fX|Y (x|y). On the other hand, the program uses the posterior probability
distribution, to calculate the p (selected by the user) centered confidence interval,
which is the x interval that leaves p/2 probability tails out of the interval.

5 Result discussion

Figure 3 shows the evolution of the posterior distribution with the number of tosses
starting with a uniform prior (i.e. no prior information on the coin), for 3 different
virtual coins: a fair coin (i.e. P(Heads) = 0.5), and two unfair coins (P(Heads) = 0.2
and P(Heads) = 0.8).

In all three cases, it can be observed that the posterior distribution narrows with
each new toss, and its central position tends to the actual bias of the virtual coin.
With these results, students can verify that Bayesian inference is able to correctly
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Fig. 4: Evolution of the posterior distribution with the number of tosses of a P(Heads) =
0.8 biased virtual coin, for different priors

estimate the bias of the coin, if a sufficient number of experimental data (i.e. tosses)
is available. Moreover, students can visualize how getting more experimental data (i.e.
more tosses) reduces the uncertainty on the parameter that is being estimated (i.e.
narrower posterior distribution). Finally, watching how the posterior distribution
changes in real time with each new toss, can help students understand the basic
concept of Bayesian inference: new experimental data is used to update the current
knowledge.

Another hot topic in the Bayesian world is how the prior selection affects the inference
results; actually, the subjectivity in the prior selection is one of the main arguments
that frequentists use against Bayesian inference. Students can use the Labview®
program to visualize this. Figure 4 shows the evolution of the posterior distribution
with the number of tosses of a unfair virtual coin with a P(Heads) = 0.8 bias, for three
different priors: a uniform prior (i.e. no prior information on the coin), a normal prior
centered in 0.5 (i.e. the coin is thought to be fair), and a beta prior picked around
0.8 (i.e. the coin is suspected to the unfair and prone to Heads). And table 1 gives
the point estimates obtained after 1000 tosses, en each of the aforementioned three
cases.

With these results, students can clearly see how the prior selection has a great effect
on the inference results for few tosses; but the effect of the prior selection dilutes out
when the number of experimental data increases. They can understand that when
little experimental data is available, the prior selection is very important since it has
a great effect on the inference results; whereas when a lot of experimental data is
available, the prior selection losses all its importance since it has no effect on the
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Table 1: Point estimates after 1000 tosses of a P(Heads) = 0.8 biased coin, for different priors

Point estimate U(0; 1) N (0.5; 0.1) β(5; 2)

Mean 0.800 0.780 0.800

Median 0.797 0.780 0.804

Mode 0.797 0.780 0.804

inference results. From this observation, students can understand the reason why all
serious Bayesian inference studies include a sensitivity analysis on the prior selection
(i.e. it is a way to determine whether the experimental data set is sufficiently big or
not). Finally, with this example, students can see the underlying meaning behind each
prior, and therefore they can understand how the prior literal information (v.g. “the
coin is thought to be a fair coin”) can be encoded in a probabilistic prior distribution
(v.g. normal distribution centered in 0.5).

6 Conclusions

In conclusion, the Labview® program presented in this work can be used for rein-
forcing and illustrating the basic concepts underlying Bayesian inference: namely, the
prior and posterior distributions, and how the first is updated using experimental
data to get the latter. The program uses a very simple example to illustrate these
concepts: the estimation of the bias of a virtual coin. By using the program students
can achieve multiple outcomes, some of which are:

1. Verify that Bayesian inference is able to make accurate estimations, if a sufficient
number of experimental data is available.

2. Visualize how getting more experimental data reduces the estimation’s uncer-
tainty.

3. Understand how prior information can be encoded in the prior distribution.

4. Realize the importance of the sensitivity analysis on the prior selection.

This program may be used in a computer lab session, for the teacher to explain the
concepts while the students are “playing” with the program; or as an online applet
for the students to revise the concepts after the class, or in a Massive Open Online
Course (MOOC) course.
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