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Abstract The main contribution of the paper is to provide a method to generate continuous
curvature paths in order to perform the kinematic control of a wheeled mobile robot, based on
combinations of clothoids, line segments and circular arcs. Higher benefits on comfort and safety
can be obtained when generating continuous curvature paths. Wheeled mobile robots following
a path with continuous curvature may also get benefit on wheels slippage reduction and low
odometry errors, since transitions are softer with constant curvature rates. For that purpose, a
general continuous curvature path is derived in order to solve problems with different complexity
such as line following problem, path tracking , lane changing and overtaking. Generated paths
take into account lower and upper bounds of sharpness and curvature simultaneously, while it
is not the case of many kinematic controllers. The proposed kinematic controller determines a
whole path to reach a target configuration and it is applied during until the next kinematic
control period.

Keywords: Mobile robots, Automated guided vehicles, Trajectory planning, Path
planning, Kinematic Control.

1. INTRODUCTION

It is well known that comfortability and safety increase
when generating continuous curvature paths and trajec-
tories. These aspects become crucial in transporting peo-
ple or dangerous goods. Wheeled mobile robots following
a path with continuous curvature may also get benefit
on wheels slippage reduction and low odometry errors,
since transitions are softer with constant curvature rates.
However, all these aspects have shown little attention and
most of well known path planners or kinematic controllers
do not take continuous curvature path generation into
account.

In recent years many researchers have used clothoids be-
cause of their interesting geometric properties and their
benefits in comfort and safety. In mobile robotics, clothoids
have been used to generate trajectories in navigation pro-
blems such as: obstacle avoidance Montes and Tornero
(2004), overtaking and lane changing Papadimitriou and
Tomizuka (2003), Montes and Tornero (2007), Wilde
(2009), parking Laumond et al. (1994), K.Jiang et al.
(1999), Gracia and Tornero (2003), among others. In ad-
dition to this, clothoids are commonly used in highway
design del Corral (2001) and coasters Weiss (1998). Road
identification and modeling based on vision systems can be
also carried out with clothoids Corridori and Zanin (2004);
Manz et al. (2010). See Annex A for a clothoid property
summary.
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In order to generate continuous curvature paths, most
of researchers have used clothoids as transitions curves
between lines segments and circular segments and their
combinations Iijima et al. (1981); Kanayama and Miyake
(1985); Scheuer and Fraichard (1996, 1997a,b). Clothoids
are convenient because they provide better comfort (by
increase gradually the centrifugal), desirable arrangement
for superelevation and satisfactory road appearance. The
Standards usually stablish upper bounds on clothoid
sharpness based on these three criteria. In addition to
this, some authors, see Marchionna and Perco (2007) and
the references therein, have shown the inconvenience of
using too large clothoid segments since they can have
a potentially negative effect on driver’s curve perception
and safety. As a consequence, some authors suggest lower
bound on the clothoid sharpness. Moreover, mechanical
constraints on orientable wheels must be also taking into
account when generating a path tracking real vehicle which
implies a boundary on the maximum allowed curvature.

In Scheuer and Fraichard (1996), Elementary paths
were first introduced, a combination of two symmetrical
clothoids with the same homotetical factor. These ideas
were extended in Scheuer and Fraichard (1997a), by intro-
ducing the concept of BiElementary paths, combinations
of two Elementary paths. In BiElementary paths the initial
and final configurations are not necessary symmetric, but
the loci of the intermediate configuration is restricted to
a circle with specific orientations to ensure that each Ele-
mentary path contain symmetrical clothoids. Obviously,
the solution space is significantly limited in those cases
and Elementary and BiElementary paths might not be
appropriate to solve generic problems.



Dubin’s curves were the inspiration in Scheuer and
Fraichard (1997b) to create the SCC-paths (single con-
tinuous curvature paths) and thus simplify the problem of
finding optimal path. Each path is defined as the combina-
tion of a maximum of 7 parts between clothoids, circular
arcs and line segments. In Scheuer and Xie (1999) a non-
holonomic robot without curvature constraints was used
to design a generic planner by combining clothoids and
anti-clothoids segments. In Reeds and Shepp (1990) RS
paths were introduced, and in Fraichard and Desvigne
(1999) were used to create the CC paths that ensure conti-
nuity, by replacing circular arcs to the called CC-turns. In
Fraichard and Ahuactzin (2001) generically global planner
continuous curvature paths for vehicles is described. It
combines existing systems based on collision avoidance
introducing clothoids, lines and circles.

Pure pursuit methods, as Ollero (2001), have been studied
intensively in the past and applied on different approaches,
covering a wide spectrum of applications such as path
tracking, vision-based line following, overtaking maneu-
vers, lateral tracking, parking, etc. The goal is to deter-
mine vehicle’s curvature and velocity that can guarantee
convergence to a specific path or trajectory. It is quite
common in such as methods, to compute goal points based
on current vehicles pose relative to the path so they can be
applied continuously, by recomputing vehicle’s curvature
and velocities based on such a relative pose. However,
to the authors knowledge, none technique can guaranty
continuity on the curvature in order to solve path tracking
problems.

The main contribution of the paper is to provide a method
to generate continuous curvature trajectories in order to
converge to a path, based on combinations of clothoids
with line segments and circular arcs. Different kinds of
continuous curvature paths have been defined in order to
solve problems with different complexity. The simplest one
provides continuous curvatures profiles that cannot change
from positive to negative or vice versa. More complex
solutions provides a general curvature profile that can
cope with changes on curvature sign. The type of solutions
that we provide get the benefits of higher comfortability
and safety. In addition to this, lower and upper bounds
on sharpness and curvature are simultaneously taken into
account, so every trajectory satisfies those constraints. It is
interesting to remark, that the method can be applied off-
line or on-line, as a kinematic controller with continuous
re-computation of proposed trajectories based on the cur-
rents vehicle’s position as in pure pursuit framework.

2. CONTINUOUS CURVATURE PATHS
GENERATION

2.1 Problem Statement

Definition LetR a non-holonomic wheeled robot moving
on a 2D plane with extended state space q = (x, y, θ, κ)T ∈
<2 × S × < containing the robot Cartesian positions x
and y, the robot orientation θ and the curvature κ. The
kinematic model for R is:

q̇(t) =

ẋ(t)
ẏ(t)

θ̇(t)
κ̇(t)

 =

v(t) cos(θ(t))
v(t) sin(θ(t))
κ(t)v(t)
v(t)σ(t)

 (1)

(a) SCC (b) DCC

Figure 1. Variables definition of SCC and DCC paths.

being v(t), σ(t) the velocity and sharpness to describe
a path respectively. Without loss of generality, the
robot configuration is located at the origin qA =
(xA, xB , θA, κA)T with xA = 0, yA = 0 and any arbitrary
orientation θA and curvature κA

1 .

Definition LetR a non-holonomic wheeled robot moving
on a 2D plane with bounded curvature κ ∈ [−κmax, κmax]
and sharpness σ ∈ [σmin, σmax]. The curvature bounds are
due to mechanical constraints of orientable wheels, while
sharpness bounds are introduced to increase safety by
satisfying the following criteria: comfortability, desirable
arrangement for superelevation and road appearance as
discussed on Section 1.

The goal is to generate a continuous curvature path P
connecting the actual robot pose qA to a target configura-
tion qB = (xB , yB , θB , κB)T . Such a target configuration
might be determined as usual in motion planning methods
such as waypoints of a global path or as in pure pursuit
methods by selecting a point at a given distance on the
path to track.

2.2 Continuous Curvature Paths Generation

Definition A single continuous curvature path (SCC) is
composed by a line segment, a first clothoid, a circle seg-
ment (arc) and a second clothoid, as shown in Figure 1(a)
with a curvature profile like the one shown in Figure 2(a).
These paths are similar to the ones defined in Scheuer
and Fraichard (1997b), but clothoids are not neccesarily
symmetric. As particular cases the length of line segment
and arc can be zero and so only two clothoids are necessary,
known as Elementary path Scheuer and Fraichard (1996),
which requires that clothoids to be symmetric (with the
same sharpness and curvature).

Definition Double continuous curvature paths (DCC)
use two single continuous curvature paths (SCC) plus an
additional final line segment to provide a set of general
solutions. The first SCC path is noted with subindex A
and starts at point qA, while the second SCC path is noted
with subindex B finishing at point qB . The configuration
joining both SCC paths is qC = (xC , yC , θC , κC)T , with
κC = 0. Figure 1(b) shows an example of a DCC path
together with the curvature profile in Figure 2(b). It can
be appreciated that in that case, we need to generate
four clothoids named as A1, A2, B1 and B2, two circular
segments ΩA and ΩB and two line segments with length lA,

1 We will assume at the moment the general case where κA = 0 and
give particularize the where where κA 6= 0 later on.



(a) SCC (b) DCC

Figure 2. Curvature Profile of SCC and DCC paths.

Figure 3. Curvature curve selection for different values of
sigma.

lB and lC to properly guarantee the appropriate changes
on the curvature. Particular solutions can be derived using
only four clothoids, obtaining similar solutions of BiEle-
mentary path Scheuer and Fraichard (1997a). However, it
is interesting to remark the generalization of the formu-
lation provided in this section will allow us to generate
a wide spectrum of possible paths with clothoids with
different sharpness that can be indistinctly combined.

Let’s assume that the sharpness of the four clothoids is
given by:

σCA1
= αA1(σmax − σmin)+σmin (2)

σCA2
= αA2(σmax − σmin)+σmin (3)

σCB1
= αB1(σmax − σmin)+σmin (4)

σCB2
= αB2(σmax − σmin)+σmin (5)

being αA1 ∈ [0, 1], αA2 ∈ [0, 1], αB1 ∈ [0, 1] and αB2 ∈
[0, 1] design parameters to be determined.

The maximum curvature of each clothoid is:

κCA1
= κCA2

= min{
√
σCA1

δA,
√
σCA2

δA, κmax} (6)

κCB1
= κCB2

= min{
√
σCB1

δB ,
√
σCB2

δB , κmax} (7)

being δA = |θA − θC | and δB = |θB − θC | the deflection
angles between configurations ∠(qA,qC) and ∠(qC ,qB).
Thus, depending on the selected clothoid parameter and
deflection angle, we obtain a family of curvature curves as
shown in Figure 3.

It can be shown that, the arc of the first circle has zero
length if

√
σCA1

δ =
√
σCA2

δA < κmax, otherwise, the

center of the circle with radius rΩA = κ−1
CA1

whose frame
is located at the origin of the first clothoid is:

xΩA = xCA1
− rΩA sin θCA1

(8)

yΩA = yCA1
+ rΩA cos θCA1

(9)

Figure 4. Clothoid paths defined in four quadrants.

with radius rΩA = κ−1
CA1

, rΩB = κ−1
CB1

and arc an-
gle θΩA = θC − θA − θCA1

− θCA2
, being qCA1

=
(xCA1

, yCA1
, θCA1

, κCA1
)T the final point of the first clothoid

given by Fresnel integrals (see Appendix A:

xCA1
= ±

√
π

σCA1

∫ γCA1

0

cos
π

2
ξ2dξ (10)

yCA1
= ±

√
π

σCA1

∫ γCA1

0

sin
π

2
ξ2dξ (11)

θCA1
= ±

κ2
CA1

2σCA1

(12)

with γCA1
=

√
κ2
CA1

πσCA1
. Eqs. (10) and (11) indicate that

any clothoidal combination is possible (on each quadrant)
and its sign depends on the conditions that we need po-
sitive/negative curvature and positive/negative curvature
rate, as shown in Figure 4. The configurations for the
second qCA2

, third qCB1
and fourth qCB2

clothoids can
be similarly defined as well as the center of second circle
segment, whose arc angle θΩB = θB − θC − θCB1

− θCB2

with radius rΩB = κ−1
CB1

.

The intermediate configuration qC depends on the selected
values αA1 and αA2 for each clothoid as well as selected
values for lA and θC , while the remainder of variables will
be computed upon those values:

qC =

xAyAθA
κA


︸ ︷︷ ︸

origin (qA)

+

lA cos θA
lA sin θA

0
0


︸ ︷︷ ︸

1st line segment (lA)

+

R(θA)

[
xCA1

yCA1

]
−θCA1

−κCA1


︸ ︷︷ ︸

1st clothoid (A1)

+

+

rΩAR(θA−θCA1
)

[
sin θΩA

cos θΩA−1

]
−θΩA

0


︸ ︷︷ ︸

arc (ΩA)

+

R(θC)

[
xCA2

yCA2

]
−θCA2

κCA2


︸ ︷︷ ︸

2nd clothoid (A2)

(13)

On the other hand, the final configuration qB depends on
the selected values αB1 and αB2 for each clothoid and lC ,
θC and lB , while the remainder of variables can be easily
determined:



qB =

xCyCθC
κC


︸ ︷︷ ︸

mid conf. (qC)

+

lC cos θC
lC sin θC

0
0


︸ ︷︷ ︸

2nd line segment (lC)

+

lB cos θB
lB sin θB

0
0


︸ ︷︷ ︸

3rd line segment (lB)

+

+

R(θC)

[
xCB1

yCB1

]
θCB1

κCB1


︸ ︷︷ ︸

3rd clothoid (B1)

+

R(θB)

[
xCB2

−yCB2

]
θCB2

−κCB2


︸ ︷︷ ︸

4th clothoid (B2)

+

+

rΩBR(θC +θCB1
)

[
sin θΩB

1−cos θΩB

]
θΩB

0


︸ ︷︷ ︸

arc (ΩB)

(14)

Equations (13) and (14) have been formulated for the case
for curvature profiles like those shown in Figure 2(b). They
can be generalized to cases where the sign of curvature
doesn’t change even with four clothoids.

In order to reach the target configuration qB , we must
determine appropriate values for lA, lB , lC and θC . With
these parameters, we can reach a specific position xB
and yB , while the appropriate orientation θB will be
compensated with circular arcs and clothoids. This implies
to solve the following equations:

X(θC) = lA cos θA + lB cos θB + lC cos θC (15)

Y (θC) = lA sin θA + lB sin θB + lC sin θC (16)

where the terms X(θC) and Y (θC) represent all the terms
of equations (13) and (14) but the three line segments,
which have been explicitly stated apart here:[
X(θC)
Y (θC)

]
= qB−qA−A1−ΩA−A2−B1−ΩB−B2 (17)

An heuristic criteria to determine lA, lB , lC and θC is to
minimize the length of the overall path while satisfying
equations (13) and (14), thus optimal intermediate orien-
tation is:

θ∗C = arg min
θC

L = lA+lA1+lΩA+lA2+lC+lB1+lΩB+lB2+lB

(18)
subject to (17), where length of clothoids are obtained
form properties stated in Annex A:

lA1 = κA1(θC)σ−1
A1 , lA2 = κA2(θC)σ−1

A2 (19)

lB1 = κB1(θC)σ−1
B1, lB2 = κB2(θC)σ−1

B2 (20)

lΩA = ΩA(θC)κ−1
A1(θC), lΩB = ΩB(θC)κ−1

B1(θC) (21)

In order to solve this problem, we can force any of the
line segments to be zero and then solve the minimization
problem. In general, we will be interested in lB = 0 if
θC 6= θA. Otherwise we have a singular solution that can
be avoided by forcing lC = 0 if θA 6= θB . If θA = θB = θC ,
then we can not provide a valid solution for such value of
θC and therefore path length is set to L = ∞ to discard
these solutions during the minimization step.

On the other hand, in order to extend the scope we need to
consider the case when the actual vehicle’s curvature is not
zero. In that case, we assume that vehicle is indeed located
on a given point of the first clothoid A1 of the DCC path,

whose origin has to be determined. Also, the curvature
of the final configuration point might be distinct from
zero and therefore the origin (or terminal point) of that
clothoid must be also determined. Since clothoid segments
are known a priori, we can compute the points xCA1,s,
yCA1,s, xCB2,e and yCB2,e at which their curvatures are
respectively κCA1,s and κCB2,e, and obtain their tangent
angles θCA1,s and θCB2,e. The origin of the first and fourth
clothoids can be then computed as follows:

q′A =

(
x(t)
y(t)

)
+

R(θ ± θCA1,s)

[
±xCA1,s

±yCA1,s

]
θ(t)± θCA1,s

κCA1,s

 (22)

q′B =

(
xB
yB

)
+

R(θB ± θCB2,e)

[
±xCB2,e

±yCB2,e

]
θB ± θCB2,e

κCB2,e

 (23)

where x, y and θ is the actual vehicle pose and q′A and
q′B are the origins of the clothoids that should replace qA
and qB in Equations 13 and 14.

In that case, when κCA1,s 6= 0, the length of first and third
line segments are set to lA = 0 and lB = 0, while the
middle segment length of the second line segment and its
orientation can be numerically determined using the fixed-
point method from Equations 15 and 16:

θC = arctan
Y (θC)

X(θC)
(24)

2.3 Kinematic Control With Continuous Curvature Paths

Once the DCC path has been computed for the actual
vehicle’s position and for a given target point, we apply
curvature and sharpness profiles during a certain amount
of time T , being T the kinematic control period. Therefore,
only the first T seconds of the computed trajectory will
be taken into account until next control period and the
remainder of the trajectory is not used for immediate
control. However, we need to compute the whole trajectory
since the solution is highly coupled and small changes on
the solutions will affect the overall shape of the DCC path.

In pure pursuit methods, we determine a target confi-
guration by finding a point that is at least separated a
given distance D from the actual robot pose, satisfying
specific application conditions (in order to discard multiple
solutions). These ideas have been applied to solve the
line following problem as well as vehicle lane change or
overtakes. It is out of the scope of the paper to detect
conditions when is more appropriate to perform a lane
change or an overtake, duration of the maneuver, vehicle
speed, etc.

In that sense, in Figure 5 there are several examples of
line following paths based on pure pursuit methods with
different initial configurations and sharpness, with D =
10m. Based on the initial orientation four different typical
paths are obtained which show the flexibility of our path
generation method and its line convergence properties. In
addition, for each case, sharpness, curvature and steering
angle are also depicted in Figure 6 to provide a better
insight about the kind of actions applied, where it can
be appreciated continuous curvature profiles as claimed.



(a) Path with θA = 45o

(b) Path with θA = 135o

(c) Path with θA = 225o

(d) Path with θA = 315o

Figure 5. Examples of line following with different initial
configurations and sharpness. Plot colors with increa-
sing sharpness: red, green and blue.

The sharpness is indeed the curvature derivative and it is
not necessary to be continuous. It is interesting to remark
that paths with different sharpness have been considered
for each case, although there are no significant differences
between of the resulting vehicle’s trace. The ideas of line
following can be extended to generate the trajectories usu-
ally required in standard driving. In particular, Figure 7
shows simplistic examples of a conventional lane changing
and a vehicle overtaking another vehicle.

On the other hand, the kinematic controller can also be
used in combination with path planning methods that pro-
vide a set of waypoints. Again, it is out of the scope of the
paper to determine such waypoints, but we are interested
in performing low level kinematic control to reach all of
them. For that purpose, we set as target configuration
every waypoint with null curvature and orientation point-
ing to the next waypoint. Other approach is to define line
segments between waypoints and follow them using pure
pursuit methods as in previous examples. By doing this,
waypoints are approximated by smooth paths satisfying
curvature and sharpness constraints. Figure 8 describes an
example of the path computed based on just 5 waypoints.

(a) Signals with θA = 45o

(b) Signals with θA = 135o

(c) Signals with θA = 225o

(d) Signals with θA = 315o

Figure 6. Signal profiles of line following examples of
Figure 5. Signal subplots are sharpness (σ [m−2]),
curvature (κ [m−1]) and tangent angle (τ [rd]).

3. CONCLUSIONS

This paper describes a method for generating continuous
curvature paths subject to constraints on curve sharpness
and maximum curvature. The paper first describes Single
Continuous Curvature (SCC) paths, which consist of a line
segment, a circular arc segment and two transition curves
based on clothoids in order to guarantee a continuous
curvature profile. SCC paths are extended to Double Con-
tinuous Curvature paths (DCC), which provide a complete
solution to include curvature profiles with positive and
negative curvatures. It has been shown that SCC and DCC
paths can be applied to solve path tracking problem, where
the DCC paths can cope with any general configuration
and can be easily adapted path tracking based on pure-



(a) Lane Change (b) Overtaking

Figure 7. Example of lane change and overtaking.

Figure 8. Example of path planning.

pursuit methods or combined with standard path planning
methods. We have shown through several simulations that
the proposed kinematic controller can be used in line
following problems, general path tracking based on way-
points and also in particular cases such as lane changing
or overtaking.

Wheeled mobile robots may also get benefit on wheels
slippage reduction and low odometry errors, with softer
transitions and constant curvature rates when the pro-
posed kinematic controller is used. All these aspects be-
come crucial in transporting people or dangerous goods
providing higher comfortability and safety.
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combo, S.A., Barcelona.

Papadimitriou, I. and Tomizuka, M. (2003). Fast lane changing compu-

tations using polinomials. In American Control Conference.

Reeds, J. and Shepp, L. (1990). Optimal paths for a car that goes both

forwards and backwards. Pacific Journal of Mathematics, 145, 367–

393.

Scheuer, A. and Fraichard, T. (1996). Planning continuous-curvature

paths for car-like robots. In Int. Conf. on Intelligent Robots and

Systems.

Scheuer, A. and Fraichard, T. (1997a). Collision-free and continuous-

curvature path planning for car-like robots. In Int. Conf. on Robotics

and Automation.

Scheuer, A. and Fraichard, T. (1997b). Continuous-curvature path

planning for multiple car-like vehicle. In Int. Conf. on Intelligent

Robots and Systems.

Scheuer, A. and Xie (1999). Continuous-curvature trajectory planning

for maneuverable non-holonomic robots. In Int. Conf. on Intelligent

Robots and Systems.

Weiss, D.L. (1998). Dynamic Simulation and Analysis of Roller

Coasters. Ph.D. thesis, University of California, Davis.

Wilde, D.K. (2009). Computing lothoid segments for trajectory genera-

tion. In Int. Conference on Robotics and Automation.

Appendix A. SUMMARY OF CLOTHOIDS

Definition Cornu’s Spiral or Clothoid is defined by the Fresnel integrals

in <2 as follows:

C(γ) =

[
Cx(γ)

Cy(γ)

]
= K


∫ γ

0

cos
π

2
ξ
2
dξ∫ γ

0

sin
π

2
ξ
2
dξ

 (A.1)

where K is the Homotetical factor, i.e.: the scale of the spiral, and γ is

comprises the integration interval. Unfortunately, there is no closed-form

solution to compute Fresnel integrals, however some interesting geometric

properties of clothoids can be analytically computed.

Properties Let C(γ) be a clothoid curve, the so called clothoid parame-

ter A and its homotetical factor are related by K =
√
πA. The tangent

angle τ with respect to the abscissa axis X+ of C(γ) is τ = π
2 γ

2. The

curvature κ and length L of the clothoid C(γ) increase proportionally

with γ for a given Homotetical factor, being the expression κ = π γK
for curvature and L = Kγ for the length. It is straight forward to see

that both, curvature and length are related by the clothoid parameter

as κ = L
A2 , which implies that constant changes on the curvature are

proportional to changes on the length of the curve. The sharpness is

defined as σ ≡ A−2 and therefore the higher the clothoid parameter the

lower the sharpness and vice versa.


