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Abstract— The main contribution of the paper is to provide
a method to generate continuous curvature paths in order to
converge to a line, based on combinations of clothoids with
line segments and circular arcs. Different kinds of continuous
curvature paths have been defined in order to solve problems
with different complexity. The type of paths that we have
generated get the benefits of higher comfortability and safety.
Generated paths take into account lower and upper bounds
of sharpness and curvature simultaneously, while it is not the
case of other continuous curvature paths such as Elementary [1]
and BiElementary [2] paths. Wheeled mobile robots following a
path with continuous curvature may also get benefit on wheels
slippage reduction and low odometry errors, since transitions
are softer with constant curvature rates.

I. INTRODUCTION

It is well known that comfortability and safety increase
when generating continuous curvature paths. This aspects
become crucial in transporting people or dangerous goods.
Wheeled mobile robots following a path with continuous
curvature may also get benefit on wheels slippage reduction
and low odometry errors, since transitions are softer with
constant curvature rates. However, all these aspects have
shown little attention and most of well known path planners
do not take continuous curvature into account.

In order to generate continuous curvature paths, most
of researchers have used clothoids as transitions curves
between lines segments and circular segments and their
combinations [1], [2], [3], [4], [5]. Clothoids are convenient
because they provide better comfort (by increase gradually
the centrifugal), desirable arragement for superelevation and
satisfactory road appearance. The Standards usually stablish
upper bounds on clothoid sharpness based on these three
criteria. In addition to this, some authors, see [6] and the
references therein, have shown the inconvenience of using
too large clothoid segments since they can have a poten-
tially negative effect on driver’s curve perception and safety.
As a consequence, some authors suggest lower bound on
the clothoid sharpness. Moreover, mechanical constrains on
orientable wheels must be also taking into account when ge-
nerating a path tracking real vehicle which implies bounded
curvature.
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Line following problems have been studied intensively
in the past and can be applied on different approaches,
covering a wide spectrum of applications such as vision-
based line following, path generation for overtakes, lateral
tracking, parking, etc... The goal is to generate a path that
converges to the line within a given maximum time or
distance. However, to the authors knowledge, none technique
can guarranty continuity on the curvature in order to line
following problems.

The main contribution of the paper is to provide a method
to generate continuous curvature paths in order to converge to
a line, based on combinations of clothoids with line segments
and circular arcs. Different kinds of continuous curvature
paths have been defined in order to solve problems with
different complexity. The simplest one provides continuous
curvatures profiles that cannot change from positive to nega-
tive or viceversa. More complex solutions provides a general
curvature profile that can cope with changes on curvature
sign. The type of solutions that we provide get the benefits
of higher comfortability and safety. In addition to this, lower
and upper bound on sharpness and curvature are simulta-
neously taken into account, so every path satisfies those
constrains. It is interesting to remark, that those constrains
have not been considered simultaneously in other continuous
curvature paths such as Elementary [1] and BiElementary [2]
paths.

A. Related Work

In recent years many researchers have used clothoids
because of their interesting geometric properties and their
benefits in comfort and safety. In mobile robotics, clothoids
have been used to generate trajectories in navigation pro-
blems such as: obstacle avoidance [7], overtaking and lane
changing [8], [9], [10], parking [11], [12], [13], among
others. In addition to this, clothoids are commonly used in
highway design [14] and coasters [15]. Road identification
and modeling based on vision systems can be also carried
out with clothoids [16], [17].

One of the simplest approximations for trajectory genera-
tion using clothoids is to use RS-paths [18], concatenating
line segments and circles. The drawback of this technique
is that the resulting curvature is discontinuous and clothoids
must be introduce to guarantee a constant rate of curvature.
In [4] clothoids were initially introduced as transition curves
for these kind of trajectories, while [5] proposed using
clothoids segments to interpolate and connect two points.
In [19] a single continuous curvature path is created with a
sequence of way points. [20] and [21] introduce the concept



of anti-clothoid (the inverse of the clothoid) so that the
trajectory changes from actual curvature of the vehicle to
zero curvature (straight line).

In [1], Elementary paths were first introduced, a combina-
tion of two symmetrical clothoids with the same homotecial
factor. These ideas were extended in [2], by introducing
the concept of BiElementary paths, combinations of two
Elementary paths. In BiElementary paths the initial and final
configurations are not necessary symmetric, but the loci
of the intermediate configuration is restricted to a circle
with specific orientations to ensure that each Elementary
path contain symmetrical clothoids. Obviously, the solution
space is significantly limited in those cases and Elementary
and BiElementary paths might not be appropiate to solve
specific problems, specially the obstacle avoidance problem
or the line following problem with bounded sharpness and
curvature.

Dubin’s curves were the inspiration in [3] to create the
SCC-paths (simple continuous-curvature paths) and thus
simplify the problem of finding optimal path. Each path is
defined as the combination of a maximum of 7 parts between
clothoids, circular arcs and line segments. In [22] a non-
holonomic robot without curvature constrains was used to
design a generic planner by combining clothoids and anti-
clothoids segments. In [23] RS paths were introduced, and in
[24] were used to create the CC paths that ensure continuity,
by replacing circular arcs to the called CC-turns. In [25]
generically global planner continuous curvature paths for
vehicles is described. It combines existing systems based on
collision avoidance introducing clothoids, lines and circles.

In [26], a Chebyshev model is used to approximate Fresnel
integrals and in [27] is developed a rational approximation,
both using the Taylor series expansion. In [28], Fresnel
integral are approximated using a recursive method with
an error less than 6 · 10−10, while in [29] clothoids in the
range [0− π

2 ] are approximated using Bezier curves and B-
splines. In [30] made the estimation of the curve by a pair
of adjacent clothoids. In [31] try to show that third order
polynomial approximation to estimate the curve is a poor
method, because it is very sensitive to noise of the sensors
or the lateral offset of vehicle on the road. A method for
performing a polynomial clothoid approximation by s-power
series can be found in [32] and in [33] the approach is
based on arc splines. Recently, in [9], [34], clothoids were
approximated using Rational Bezier curves, providing a real-
time planner using clothoidal trajectories.

II. CLOTHOID PROPERTIES SUMMARY

Definition Cornu’s Spiral or Clothoid is defined by the
Fresnel integrals in <2 as follows:

C(γ) =

[
Cx(γ)
Cy(γ)

]
= K

[∫ γ
0

cos π2 ξ
2dξ∫ γ

0
sin π

2 ξ
2dξ

]
(1)

where K is the Homotetical factor, i.e.: the scale of the spiral,
and γ is comprises the integration interval. Unfortunately,
there is no closed-form solution to compute Fresnel integrals,

however some interesting geometric properties of clothoids
can be analytically computed.

Properties Let C(γ) be a clothoid curve, the so called
clothoid parameter A and its homotetical factor are related by
K =

√
πA. The tangent angle τ with respect to the abscissa

axis X+ of C(γ) is τ = π
2 γ

2. The curvature κ and length
L of the clothoid C(γ) increase proportionally with γ for a
given Homotetical factor, being the expression κ = π γ

K for
curvature and L = Kγ for the length. It is straight forward to
see that both, curvature and length are related by the clothoid
parameter as κ = L

A2 , which implies that constant changes
on the curvature are proportional to changes on the length
of the curve.

Properties Let C(γ) be a clothoid curve with a constant
velocity v and the sharpness σ ≡ A−2, the curvature
derivative of C(γ) is constant and given by κ̇ = vσ. Clothoid
derivatives can be analytically computed[35] The tangential
and normal components of acceleration are at = 0 and
an = v2κ, respectively, while the tangential and normal
components of rate of acceleration (jerk) are jt = −v3κ2

and jn = v2κ̇ = v3σ respectively.

III. LINE FOLLOWING WITH CONTINUOUS CURVATURE
PATHS

A. Problem Statement

Definition Let R a non-holonomic wheeled robot moving
on a 2D plane with extended state space q = (x, y, θ, κ)T ∈
<2 × S × < containing the robot Cartesian positions x and
y, the robot orientation θ and the curvature κ. The kinematic
model for R is:

q̇(t) =


ẋ(t)
ẏ(t)

θ̇(t)
κ̇(t)

 =


v cos(θ)
v sin(θ)
κ(t)v
vσ

 (2)

being v, σ the velocity and sharpness to describe a path
respectively, both assumed constant for simplicity. Without
loss of generality, the robot configuration is located at the
origin qA = (xA, xB , θA, κA)T with xA = 0, yA = 0, initial
null curvature κA = 0 and any arbritary orientation θA.

Definition Let R a non-holonomic wheeled robot moving
on a 2D plane with bounded curvature κ ∈ [−κmax, κmax]
and sharpness σ ∈ [σmin, σmax]. The curvature bounds are
due to mechanical constrains of orientable wheels, while
sharpness bound are introduces to satisfy comfortability,
desirable arragement for superelevation and road appereance
and increase safety as discussed on section I.

Remark Relaxation of the lower bound σmin = 0 is very
common and in most of the cases feasible even when
generating paths for a mobile robot, although we include
it here in order to provide a general formulation.

The goal is to generate a continuous curvature path P
connecting the robot pose q (with initial null curvature)
to a target configuration qB = (xB , yB , θB , κB)T with



(a) Two clothoids (b) Two clothoids and circular arc

Fig. 1. Solution space with two and four clothoids and optionally circular
arcs and line segments to compensate bias.

separation distance xB = dh, final null curvature κB = 0,
orientation θB and a given vertical separation yB . Without
loss of generality θB = π

2 and dh > 0. It should be remarked
that P may contain not only Cartesian points on the 2D
plane, but also orientations (tangential directions), curvatures
and their derivatives, which can be obtained using clothoid
properties of section II.

Let’s first study how to solve the line following problem
with continuous curvature paths with bounded sharpness
and curvature. Figure 1(a) shows the type of solutions that
can be obtained using two symmetric clothoids. Depending
on the angle between the line and the initial configuration
(deflection angle), clothoid sharpness and curvature can be
adjusted to converge parallel to the line, but in general we
can not guarantee convergence without bias and therefore
an initial line segment is nedded to compensate such as
bias. When deflection angles are too high or bounds are too
tight, two symmetric clothoids can not provide the desired
final orientation and therefore a circular arc segment is
needed to compensate deflection angle in addition to a line
segment to compensate the bias, as shown in Figure 1(b).
The figures show the cases where the bias to be compensated
with the line segments should be positive (PB) of negative
(NB) for their minimum and maximum values. In addition
to this, there might be situations where a change on the
curvature sign is mandatory, as shown in Figure 2(b). In
that particular case, the initial and final orientations are
the same, but in order to compensate the bias, we need to
increase and decrease the curvature, requiring four clothoids
to perform the complete path. Like in the previous examples,
two circular arcs might be needed in case of large deflection
angles or too tight bounds, each of them connecting the
clothoids are their maximum curvature points. Similary, two
line segments might be required to compensate the bias, one
at the beginning of the path as shown in Figure 2(a) or in
between the intermediate clothoids as shown in Figure 2(b).

B. Single Continuous Curvature Path

Definition A single continuous curvature path (SCC) is
composed by a line segment, a first clothoid, a circle segment
(arc) and a second clothoid, as shown in Figure 3(a) with a
curvature profile like the one shown in Figure 3(b). These
paths are similar to the ones defined in [3], but clothoids are

(a) Four clothoids (b) Four clothoids and circular arcs

Fig. 2. Solution space with four clothoids and optionally circular arcs and
line segments to compensate bias.

(a) Variables definition (b) Curvature Profile

Fig. 3. Representative example of a SCC path.

not neccesarily symmetric. As particular cases the length of
line segment and arc can be zero and so only two clothoids
are necessary, known as Elementary path [1], which requires
that clothoids to be symmetric (with the same sharpness and
curvature).

In SCC paths, the arc angle θΩ must satisfy θΩ =
θB − θA − θCA

− θCB
, being θCA

∈]0, κ2
maxσ

−1
min/2] the

tangent angle of the first clothoid, with sharpness σCA
and

maximum curvature κmax and θCB
∈]0, κ2

maxσ
−1
min/2] the

tangent angle of the second clothoid, with sharpness σCB
,

where both tangent angles must satisfy θCA
+ θCB

< δ.
Therefore, δmax ≡ κ2

maxσ
−1
min is the maximum deflection

angle that can be covered only with two clothoids.
Let’s assume that clothoids sharpness are known and given

by:

σCA
= αA(σmax − σmin) + σmin (3)

σCB
= αB(σmax − σmin) + σmin (4)

being αA ∈ [0, 1] and αB ∈ [0, 1] two design parameters.
Note that the clothoids do not need to be symmetric.

Therefore, the curvature κCA
= κCB

of the circle joining
the clothoids must satisfy:

κCA
= min{

√
σCA

δ,
√
σCB

δ, κmax} (5)

obtaining a family of curvature curves for different values of
σ depending on the deflection angle as shown in Figure 4.

It can be shown that, the arc has zero length if√
σCA

δ =
√
σCB

δ < κmax, otherwise, the center of the



Fig. 4. Curvature curve selection for different values of sigma.

Fig. 5. Clothoid paths defined in four quadrants.

circle with radius rΩ = κ−1
CA

whose frame is located at the
origin of the first clothoid is:

xΩ = xCA
− rΩ sin θCA

(6)
yΩ = yCA

+ rΩ cos θCA
(7)

being qCA
= (xCA

, yCA
, θCA

, κCA
)T the final point of the

first clothoid given by Fresnel integrals restated here for

convenience with γCA
=

√
κ2
CA

πσCA
:

xCA
= ±

√
π

σCA

∫ γCA

0

cos
π

2
ξ2dξ (8)

yCA
= ±

√
π

σCA

∫ γCA

0

sin
π

2
ξ2dξ (9)

θCA
= ±

κ2
CA

2σCA

(10)

where qCB
= (xCB

, yCB
, θCB

, κCB
)T is similarly defined.

Eqs. (8) and (9) indicate that any clothoidal combination
is possible (on each quadrant) and its sign depends on
the conditions that we need positive/negative curvature and
positive/negative curvature rate, as shown in Figure 5.

The final configuration qB depends on the selected values
αA and αB , determining the curvatures κCA

and κCB
and

sharpness σCA
and σCB

of each clothoid:

qB=


xA
yA
θA
κA


︸ ︷︷ ︸

origin

+


lA cos θA
lA sin θA

0
0


︸ ︷︷ ︸

1st line segment

+

R(θA)

[
xCA

yCA

]
θCA

κCA


︸ ︷︷ ︸

1st clothoid

+

+

rΩR(θA+θCA)

[
sin θΩ

1−cos θΩ

]
θΩ

0


︸ ︷︷ ︸

arc

+

R(θB)

[
xCB

−yCB

]
θCB

−κCB


︸ ︷︷ ︸

2nd clothoid

(11)

(a) Variables definition (b) Curvature Profile

Fig. 6. Representative examples of DCC paths.

where R(•) is a rotation matrix and lA is the length of the
line segment. Also note that the curvature of the circle is κCA

but doesn’t change, so its contribution to the final curvature
is zero.

For the line following case, It is quite straight forward to
compute the length of segments from Eq. (11) to converge
to the line given αA and αB :

lA =
X

cos θA
(12)

with,

X =xB − xA − yCB
− xCA

cos θA + yCA
sin θA−

− 2rΩ cos(θA + θCA
+ θΩ/2) sin(θΩ/2)

(13)

and the distance where the SCC path will reach the line is:

yB =xCA
sin θA + yCA

cos θA + xCB
+ lA sin θA+

+ 2rΩ sin(θA + θCA
+ θΩ/2) sin(θΩ/2)

(14)

Remark SCC paths have a singular situation when the initial
configuration is aligned with the line without performing
loops. It is quite obvious that with a curvature profile that
can not change the sign it is not possible to perform the
expected “s” shape to converge to the line.

C. Double Continuous Curvature Paths

Definition Double continuous curvature paths (DCC) use
two single continuous curvature paths (SCC) to provide a
set of general solutions. The first SCC path is noted with
subindex A and starts at point qA, while the second SCC path
is noted with subindex B finishing at point qB . The config-
uration joining both SCC paths is qC = (xC , yC , θC , κC)T ,
with κC = 0. Figure 6(a) shows an example of a DCC
path together with the curvature profile in Figure 6(b). It
can be appreciated that in that case, we need to generate
four clothoids named as A1, A2, B1 and B2, two circular
segments ΩA and ΩB and two line segments with length lA
and lB to properly guarantee the appropiate changes on the
curvature. Particular solutions can be derived using only four
clothoids, obtaining similar solutions of BiElementary path
[2]. However, it is interesting to remark the generalization
of the formulation provided in this section will allow us to
generate a wide spectrum of possible paths with clothoids
with different sharpness that can be indistinctly combined.



Let’s assume that the sharpness of the four clothoids is
given by:

σCA1
= αA1(σmax − σmin)+σmin (15)

σCA2
= αA2(σmax − σmin)+σmin (16)

σCB1
= αB1(σmax − σmin)+σmin (17)

σCB2
= αB2(σmax − σmin)+σmin (18)

being αA1, αA2, αB1 and αB2 design parameters to be
determined.

The maximum curvature of each clothoid is:

κA1 = κA2 = min{
√
σCA1

δA,
√
σCA2

δA, κmax} (19)

κB1 = κB2 = min{
√
σCB1

δB ,
√
σCB2

δB , κmax} (20)

being δA = |θA − θC | and δB = |θB − θC | the deflection
angles between configurations ∠(qA,qC) and ∠(qC ,qB).

With out loss of generality and for xA = 0, yA = 0,
xB > 0, θB = π/2, if θA > θB implies that δA > δB
and therefore θC should be bounded between θC ∈ [θA −
π/2, θB ]. On the other hand, if θA ≤ θB , implies that δA ≤
δB and consequently θC ∈ [θB−π/2, θA]. The lower bound
of θC is selected to avoid deflection angles higher than π and
the upper bound to is chosen to ensure that the continuous
curvature paths will converge to the line, avoiding singular
cases.

Let αC an additional design parameter to be determined
so that:

θC =

{
αC(θB−θA+π/2)+θA+π/2 if θA > θB
αC(θA−θB+π/2)+θB+π/2 if θA ≤ θB

(21)

The intermediate configuration qC depends on the selected
values αA1 and αA2, determining the curvatures κCA1

and
κCA2

and sharpness σCA1
and σCA2

of each clothoid:

qC=


xA
yA
θA
κA


︸ ︷︷ ︸

origin

+


lA cos θA
lA sin θA

0
0


︸ ︷︷ ︸

1st line segment

+

R(θA)

[
xCA1

yCA1

]
−θCA1

−κCA1


︸ ︷︷ ︸

1st clothoid

+

+

rΩAR(θA−θCA1)

[
sin θΩA

cos θΩA−1

]
−θΩA

0


︸ ︷︷ ︸

arc

+

R(θC)

[
xCA2

yCA2

]
−θCA2

κCA2


︸ ︷︷ ︸

2nd clothoid

(22)

While the final configuration qB depends on the selected
values αB1 and αB2, determining the curvatures κCB1

and
κCB2

and sharpness σCB1
and σCB2

of each clothoid:

qB=


xC
yC
θC
κC


︸ ︷︷ ︸

origin

+


lB cos θC
lB sin θC

0
0


︸ ︷︷ ︸

1st line segment

+

R(θC)

[
xCB1

yCB1

]
θCB1

κCB1


︸ ︷︷ ︸

1st clothoid

+

+

rΩBR(θC+θCB1)

[
sin θΩB

1−cos θΩB

]
θΩB

0


︸ ︷︷ ︸

arc

+

R(θB)

[
xCB2

−yCB2

]
θCB2

−κCB2


︸ ︷︷ ︸

2nd clothoid
(23)

with xCA1
, yCA1

, θCA1
, xCA2

, yCA2
, θCA2

, xCB1
, yCB1

, θCB1
,

xCB2
, yCB2

and θCB1
similar to those defined in Eqs. (8)

to (10), being radius of arcs rΩA
= κ−1

CA1
, rΩB

= κ−1
CB1

with angles θΩA
= θC − θA − θCA1

− θCA2
and θΩB

=
θB − θC − θCB1

− θCB2
, respectively.

Remark Equations (22) and (23) have been formulated
for the case for curvature profiles like those shown in
Figure 6(b). They can be generalized to cases where the sign
of curvature doesn’t change even with four clothoids.

In order to converge to the line, in Line Following pro-
blem, we must satisfy X = lA cos θA+ lB cos θC . Therefore,
we can find multiple solutions to satisfy this relation. We
have followed the following criteria to select lA or lB :
• Choose positive values (if possible) for lA or lB de-

pending on the sign of X , cos θA and cos θC by forcing
one of the length to be zero. This situation will happen
whenever the signs of X , cos θA and cos θC are different
or cos θA = 0 and cos θC 6= 0 or cos θA 6= 0 and
cos θC = 0. So, for instance, if X > 0 and cos θA > 0,
but cos θC < 0, then we force lB = 0, being lA > 0.

• There might be situations that lA > 0 and lB > 0
because signs of X , cos θA and cos θC are equal. In
those cases, we force one of the values to zero, trying
to converge to the line with the minimum yB . Therefore,
if | cos θA| > | cos θC | then lA 6= 0 and lB = 0, while
if | cos θA| < | cos θC | then lA = 0 and lB 6= 0.

A singular situation can occur if both cos θA = 0 and
cos θC = 0, which means that configurations qA, qC and
qB have the same orientation. Therefore, an appropiate
orientation for qC should be selected to avoid this singularity.

IV. ANALYSIS

The design parameters of DCC paths determine the
clothoid sharpness of each clothoid. The selected combi-
nation of clothoid sharpness not only affects to the final
configuration qB but also to the maximum attained curvature,
the overall length and path derivatives (normal acceleration,
tangential jerk and normal jerk). Therefore, it is necessary
to analyse the effect these design parameters on all these
aspects. For the analysis, the deflection angle has been set
to zero, the start and final configuration have the same
orientation, but the intermediate configuration introduces a
deflection angle of π/2, that is θC = 0 for αC = 0.5.
Although results may change depending on the starting and
intermediate configurations, we consider that is case is one of
the most representative ones. It is interesting to remark that
the analysis has been performed using a constant velocity.

The normal accelerations, tangential jerk and normal jerk
increase with increasing sharpness as shown in Figures
7(a), 7(b) and 7(c). The normal acceleration is a square
root function with respect to the sharpness because an =
v2κ2 = v2 min{

√
σAδ,

√
σBδ, κmax}, the tangential jerk is

linear t = −v3κ2 = −v3 min{σAδ, σBδ, κ2
max} and the

normal jerk is linear with respect to the sharpness jn =
v3 max{σA, σB}.



(a) Normal Acceleration (b) Tangential Jerk (c) Normal Jerk

Fig. 7. Analysis of maximum derivative values for different values of clothoid sharpness.

Fig. 8. Analysis of path length for different values of clothoid sharpness.

On the contrary, in Figure 8, the overall length of the path
can be appreciated against the design parameters αA and αB ,
where in this case, we have restricted each pair of clothoids to
be symmetric. As expected, the length of the path decreases
with increasing sharpness since L = κ

σ = min{
√
σδ,κmax}
σ .

Now, we analyse the effect assigning different values
to the design parameter αC . Again the initial and final
configurations have the same orientation, but now the αA
and αB parameters are kept constant. On the one hand,
Figure 9(a) shows the variation of the length path with
respect to the design parameter αC . It can be appreciated
that minimum length case is for αC = 0.5 which means
that intermediate configuration is perpendicular with respect
to the line and initial configuration, which is the case of
minimum deflection angle. On the other hand, Figure 9(b)
shows the variation of the maximum curvature with respect
to αC , which is again a square root function, since αC affects
linearly to the deflection angle.

V. CONCLUSIONS

This paper describes a method for generating continuous
curvature paths subject to constrains on curve sharpness
and maximum allowable curvature. The paper first describes
Single Continuous Curvature (SCC) paths , which consist
of a line segment, a circular arc segment and two tran-
sition curves based on clothoids in order to guarantee a
continuous curvature profile. SCC paths are extended to

(a) Length (b) Curvature

Fig. 9. Analysis of the influence of αC parameter on length and curvature
of DCC paths.

Double Continuous Curvature paths (DCC), which provide a
complete solution to include curvature profiles with positive
and negative curvatures. It has been shown that SCC and
DCC paths can be applied to solve the line following
problem, where the DCC paths can cope with any general
configuration, while SCC provides a singular solution when
the initial configuration is aligned with the line.

Wheeled mobile robots following a path with continuous
curvature may also get benefit on wheels slippage reduction
and low odometry errors, since transitions are softer with
constant curvature rates.

Design parameters of DCC paths are the clothoid sharp-
ness and the orientation of the intermediate configuration,
which are quite intuitive to determine according to different
criteria. The analysis on DCC has shown that, length, curva-
ture and path derivatives are affected by design paramenters,
where we can clearly see that configurations with symmetric
SSCs provide the most balance situation for derivatives.
All these aspects become crucial in transporting people or
dangerous goods providing higher comfortability and safety.
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