
PISALA project. Intelligent Sensorization for Line tracking with 

Artificial Vision 
 

Vicent Girbés, Leopoldo Armesto, Josep Tornero 

(Instituto de Diseño y Fabricación, Universidad Politécnica de Valencia, Spain) 

 

Abstract 
 
This paper presents an artificial vision embedded solution for detecting painted lines on the floor, in the context of the 

Research Project PISALA (Industrial Prototype for Automatic Line Tracking with Artificial Vision), whose main 

objective is to provide vision-based solutions for Automated Guided Vehicles (AGVs). In addition the paper proposes a 

procedure for evaluating robustness and accuracy of line-detection algorithms including qualitative and quantitative tests 

for detecting specific situations such as images with multiple lines or lines with spurious objects, lines with different 

colors, etc. The paper also considers the algorithm’s sensibility with respect to extrinsic camera calibration errors, in 

order to define the bounds of the detection area. As a result, low cost robust algorithms for line detection can be 

evaluated. The examples for validation have been implemented on the embedded vision system CMUCAM3. 

 

1 Introduction 

Nowadays, there are several commercial solutions with 

self-guided vehicles, or AGVs (Self-Guided Vehicles), see 

for example [1, 2, 3] among others. These vehicles have 

traditionally been guided by magnets, wires or laser 

located in specific areas of the store. Another type of 

guidance is based on inertial navigation, in which 

accelerometers and gyroscopes, along with transponders 

embedded in the ground to find the position of the vehicle. 

The major disadvantage of traditional AGVs is its limited 

flexibility to adapt to the changing environment, the cost 

associated with the infrastructure required, sometimes 

can’t modify its route, etc. 

To increase the degree of autonomy of AGVs, researchers 

have developed in recent decades, many tools to solve 

problems that traditionally occur in mobile robotics, such 

as simulation [4], localization and map construction 

(SLAM) [5], navigation and path planning [6, 7, 8], the 

coordination between robots, and so on. In this regard, 

increasingly are required more sensors with high 

processing power and abstraction, such as vision systems, 

which are becoming increasingly important due to the 

continuous improvement of technology. Take for example 

the implementation ROBOLIFT © [9], which uses a vision 

system to detect artificial marks on the floor. In [10] and 

[11], the problem for load and unload pallets is solved 

using a vision system. 

In [12, 13, 14], were developed several industrial 

applications with AGVs, where various proposals were 

made primarily automation, defining hardware and 

software architectures, oriented to teleoperation of 

vehicles, autonomous navigation or line tracking by 

artificial vision. 

In [15], system in which a vehicle is capable of following a 

white line on the floor and a state transition algorithm that 

allows them to detect bifurcations through pattern 

recognition was developed. In [16] used a vision system 

with a LADAR range images to produce a military vehicle. 

The aim is to detect the edges of the road for the vehicle to 

move independently. In the field of agriculture, we find 

various solutions of autonomous agricultural vehicles or 

semi-autonomous with the ability to detect bias own lines 

or lines of culture, see [17] as an example. Similarly in 

[18] describes a robot capable of removing paint from 

ships following their own lines. 

This article is framed within the context of AGVs, 

describing a procedure for validating line detection 

algorithms with vision systems. This procedure considers 

the validation of line detection on images through 

qualitative and quantitative analysis. Qualitative analysis is 

based on a set of images; while quantitative analysis 

provides line detection robustness and accuracy as well as 

parameter sensibility, defining the limits of extrinsic 

parameter calibration errors that can be affordable without 

significant detriment on the robustness of the line detection 

process. The line detection algorithm that has shown high 

robust performance and it has been specially designed for 

processors with limited computational and memory 

resources. The proposed algorithm has been implemented 

and validated on the CMUCAM3 [19], a low-cost 

embedded vision system commonly used in robotics. 

The paper presents some results of the project PISALA 

(Spanish acronym for Industrial Prototype for Automatic 

Line Tracking with Artificial Vision), whose main 

objective is to provide vision-based solutions for 

Automated Guided Vehicles (AGVs). An industrial 

forklift, as shown in Figure 1, has been automated for 

autonomous applications. In particular, vision-based 

tracking of painted lines on the floor has been 

implemented (see Figure 2) but also fully autonomous 

navigation without artificial landmarks, intelligent manual-

assisted driving in which the drivers co-exists with and 

intelligent system designed to reduce the risk of collisions 

and vehicle remote teleoperation. Section 2 describes the 

algorithm for detecting lines on images. Section 3 provides 

a qualitative validation of the line detection algorithm, 

while Section 4 provides quantitative data to analysis of 



robustness and accuracy of the proposed algorithm and 

parameter sensibility to calibration errors. Finally, Section 

5 draws conclusions and discusses future work. 

Figure 1 Automated industrial forklift for line-tracking 

applications. 

 

Figure 2 Vision-based line tracking application. 

2 Robust Line Detection on Images 

This section describes an algorithm for detecting lines with 

their parameters. The algorithm has been specifically 

designed to run on processors with low computational and 

memory resources like the CMUCAM3 embedded vision 

system. Therefore, the algorithm must be as simple as 

possible while robustly detect lines on images. The input 

data is a grayscale image of 176x144 pixels, which 

corresponds to low-resolution mode with YCrCb format 

(we only use the channel Y). 

The following assumptions have been taken into account: 

 The orientation of the line is usually vertical, and 

therefore the detection algorithm will work better the 

more vertical the line in the image is. Although, in 

practice, the algorithm can detect lines close to 

horizontal axis, failures on such as cases might be 

affordable. 

 The contrast on the line and the image background is 

not necessary high. Usually the line is assumed to be 

black colored, while no specific background color is 

assumed. For that purpose, our algorithm uses a 

background compensation process. 

 The background of the image can contain soil (for 

example an oil slick) or objects that might disrupt the 

perception of the line. 

 The image can contain several lines and only the most 

significant line from the left and right sides are 

considered. 

Algorithm 1 shows the pseudocode and a detailed 

description of algorithms steps. The first step of the 

algorithm corresponds to a simple background 

compensation step that uses an operation that computes for 

each pixel the maximum and minimum of its neighbors 

with 4-connectivity. In this sense, the background 

compensation performs first a minimum operation 

followed with a maximum operation with the neighbor 

pixels at N=1 pixel distance to the central pixel to filter out 

image noise. Then, repeats the maximum operation several 

times followed with the minimum operation, also repeated 

several times, with neighbor pixels at N=10 pixel distance 

to the central pixel. Minimum and maximum operations 

are defined as follows: 

                                            
                                            

where      is the pixel intensity value at x and y 

coordinates. 

The purpose is to obtain a uniform image with the 

background color that will be subtracted from the original 

image. Figure 3 shows two image examples and the image 

background compensated. 

The next algorithm step, in line 2, performs a edge 

detection algorithm with potential line points. For this 

purpose, we search for changes in contrast per row. 

Candidate points require rising and falling transitions of 

the intensity values, but also the expected thickness of the 

line on the image plane taken into account the line 

perspective, so that spurious point pairs that do not match 

this criterion can be easily filtered out. 

Our edge detection approach is a simplistic solution to 

avoid standard edge detection algorithms that will require 

more computational time and resources. Since this 

procedure is simple and prone to detect a large number of 

spurious edges, for that purpose lines from 5 to 12 of the 

algorithm represent the implementation of the RANSAC 

algorithm [20], [21], [22]. As a result of the algorithm 

provides a subset of points that can be robustly fitted to a 

line model defined by the well-known angle-distance 

model              . Figure 4 shows parameter 

definitions, where (xi,yi) and (xf,yf) are the Cartesian 

coordinates with respect to the reference frame of the 

image of the starting and ending points, respectively; ρi 

distance to the reference point the camera initial distance 

from the system ρf reference chamber end; Φi is the angle 

about the x axis of the starting point; Φf is the angle about 

the x axis of the end point, and ρ and Φ are the line model 

parameters. 



  
(A) (B) 
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Figure 3 Examples of background compensation. (A) and 

(C) original images and (B) and (D) are the corresponding 

background compensated image. 

 

1. Compensates the background of the image from 
consecutive operations of maximum and minimum 
with neighboring pixels. 

2. For each row, determine the edges of the line 
based on the difference of intensity of neighboring 
pixels (search on the left and right of image). 

3. Repeat the process steps 3 through 12 separately 
for the edges of the left and right edges. 

4. Initialize "counter" to zero and "N" (the number of 
iterations to be executed) to 1. 

5. While (N> counter). 
6. Randomly select two rows. 
7. Calculate the line parameters "rho" and "phi" 

passing through selected points. 
8. For the rest of the points, calculate the distance 

orthogonal to the line calculated. 
9. Sort, Inliers points and those whose distance is 

smaller than a certain threshold. 
10. Inliers If the number exceeds the number of inliers 

found so far, then save the current solution and 
calculate the remaining number of iterations N = 
log (p) / log (1-portion of inliers2), where p = 0.01 
the expected probability to have an undetected 
spurious. 

11. Increase "counter" on a drive and if they have 
reached the maximum number of iterations 
allowed, exit with failure. 

12. End Repeat. 
13. Calculate the line parameters only with 

Orthogonal Regression Inliers points. 
14. Calculate the intermediate line. 

Algorithm 1.  Algorithm used to obtain the characteristic 

parameters that define the line detected. 

Figure 4 Representation of the line in the distance-angle 

space  

Line parameter estimation, in line 13, is straight forward 

[23]:  
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Line extrema are computed based on the first and last 

inliers points projected onto the line model: 
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3 Line Detection Qualitative 

Validation 

The algorithm has been tested with different lighthing 

conditions and line colours. Figure 5 shows a set image 

examples used to qualitatively validate the line detection 

algorithm. In the first two columns we can see a set of 

images with different line shapes, orientations and colours. 

In particular, the first column depicts detected edge points, 

while in the second column only inliers points and detected 

lines are shown. In third and fourth columns we can see a 

set of images with lines together with some objects in 

order to validate the spurious filtering capabilities of 

RANSAC. It can be appreciated from selected images that 

the algorithm performs successfully even with images with 

is low contrast between the line and the background. The 

algorithm provides as estimation the line with the highest 

number of points rejecting spurious data. 

 

 



    

    

    

    
Figure 5 Qualitative analysis of line detection algorithm. Images on even columns show the results of the edge detection 

process while images on even columns show the filtered points and the estimated lines. 

 

 

4 Line Detection Quantitative 

Validation 

In order to provide quantitative data a robot set-up is used 

to validate the algorithm. The set-up includes a KR/15 

KUKA industrial robot arm holding the camera, as shown 

in Figure 6, together with a turntable for moving lines. 

This allows us to generate combinations of camera 

positions and line rotations with ground truth data. The 

robot moves perpendicular to the line (𝑅 ) with increments 

of 30mm and the turn table rotates (ψ) with increments of 

10º. 

Based on these experiments, we have obtained statistic 

results of the robustness and accuracy of the algorithm. It 

is possible to map sensibility parameters with respect to 

extrinsic calibration errors of the camera. 

4.1 Robustness and Accuracy Analysis 

The goal is to analyze the robustness and accuracy of the 

algorithm for different movement combinations, which 

have been classified into small motions (ψ ∈ [-10°, 10°] 

and 𝑅  ∈ [-30 𝑚𝑚, 30 𝑚𝑚]), medium motions (ψ ∈ [-40°, 

40°] and 𝑅  ∈ [-90 𝑚𝑚, 90 𝑚𝑚]) and large motions (ψ ∈ 

[-70°, 70°] and 𝑅  ∈ [-150 𝑚𝑚, 150 𝑚𝑚]). 

 

Figure 6 Set-up consisting of a Vision System 

CMUCAM3 together with KR/15 KUKA robot arm and a 

turntable for "ground-truth" data. 



Therefore, 9 experiments are classified as small rotations 

and translations, 63 experiments as medium and 165 

experiments (all of them) are included in the large set. The 

experimentation has been done with two different line 

boards: one board contains a line with a white background 

(see Figure 3 (A)) while the other the background is grey 

stained, to represent a more realistic situation (see Figure 3 

(B)). 

Based on the estimated line parameters, the error with 

respect to ground truth data is computed. We classify each 

experiment as true positive (TP) if the estimation error in 

distance is      𝑚𝑚 and in angle      . On the other 

hand, a false positive case (FP) satisfies      𝑚𝑚 or 

     . Finally, negative results (N) are those cases 

where the algorithm was not able to detect a line due to 

lack of detected edge points. Based on this classification, 

we evaluate the robustness of our algorithm with respect to 

the type of experiment (small, medium or large) and the 

type of background (white or gray stained). In addition to 

this, we also evaluate the accuracy of TP cases based on 

the following criteria: estimation with high accuracy 

requires      𝑚𝑚 and      , medium accuracy 

results implies   𝑚𝑚        𝑚𝑚 and       
   , and otherwise the accuracy is low. 

Table 1 shows robustness and accuracy results obtained for 

detecting lines with white background while Table 2 

shows robustness and accuracy results for the case with the 

gray stained background. 

 

WHITE BACKGROUND 

# Images 
Rotation and 

translation 

ROBUSTNESS ACCURACY 

TP FP N H M L 

9 Small 100 0 0 100 0 0 

63 Medium 100 0 0 74.6 25.4 0 

165 Large 100 0 0 73.33 24.85 1.82 

Table 1 Robustness and Accuracy of Line Detection 

Algorithm with white background. 

 

GREY STAINED BACKGROUND 

# Images 
Rotation and 

translation 

ROBUSTNESS ACCURACY 

TP FP N H M L 

9 Small 100 0 0 88.88 0 11.11 

63 Medium 98.41 1.59 0 58.06 38.71 3.23 

165 Large 91.52 8.48 0 45.63 48.12 6.25 

Table 2 Robustness and Accuracy of Line Detection 

Algorithm with grey stained background. 

 

(A) (B) 

Figure 7.  TP and FP selected cases for discussion. 

 

It can be seen that all experiments with white background 

perform successfully and has been classified as TP. For the 

gray stained case, the percentage of TP case is very high 

over 91.5% of experiments (14 over 165). Figure 7(B) 

shows one of the FP cases, where it can be appreciated that 

due to line orientation, very few points were considered as 

edges and as a consequence an spurious line is detected 

instead. Despite of that, figure 7(A) shows a TP case with 

similar complexity. 

4.2 Parameter Sensibility to Extrinsic 

Calibration Errors 

Using the previously described set-up, artificial motions on 

the robot wirst have been generated to reproduce angle 

extrinsic calibration errors on yaw and pitch angles, see 

Figure 8 for the definition of these angles of the camera 

mounted on a PTU. The goal is to evaluate how these 

calibration errors affect to the estimation and in particular 

to robustness and accuracy. 

In particular, we are generating a sweep of yaw (α) and 

pitch (β) angles, with the following set of values,        

α={-10º,-5º,0º,5º,10º} and β=[25º,30º,35º,40º,45º}. For 

each angle combination, we are reproducing all the 165 

experiments for the grey stained background case. 
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Figure 8.  Coordinate systems of the camera turret. 

 

Figure 9 shows the robustness sensibility map to 

calibration errors, where the color bar values represent 

percentage of TP cases. As expected, robustness is affected 

simetrically with respect to the yaw angle with a ±4º 

bounds without detriment. On the other hand, pitch angle 

calibration errors seriously affect to robustness, specially 

for cases where the camera points to horizont due to image 

perspective. 

Moreover, Figure 10 shows the results of accuracy 

sensibility map to calibration errors, where the color bar 

represents percentage of high accuracy cases. In this case, 

the accuracy is affected simetrically by both angles, 

altough the pitch angle has more influence, obtaining poor 

accuracy results if this angles is not properly estimated. 

Therefore, appropiate calibration of pitch angle is crucial 

for this kind of applications, since robustness and accuracy 

are seriously affected by camera perspective. 



 

Figure 9 Robustness sensitivity to calibration errors, 

where α is yaw angle and β is pitch angle. 

 

Figure 10 Accuracy sensitivity to calibration errors, 

where α is yaw angle and β is pitch angle. 

5 Conclusions and Future Work 

The paper has presented a robust line detection algorithm 

with application to line tracking with AGVs. The 

algorithm has been validated using both, qualitative and 

quantitative results: as qualitative evaluation, we have 

provided several examples of line detection under different 

conditions (colors, shapes, etc.); as quantitative evaluation, 

we have provided robustness and accuracy tables showing 

very high performance. Therefore the paper has described 

a procedure for evaluating robustness and accuracy of line-

detection algorithms including qualitative and quantitative 

tests. 

In addition to this, the study on parameter sensibility bring 

us to the conclusion that calibration errors on pitch angle 

affect to image perspective with higher detriment on 

robustness and accuracy than errors in yaw angle. 

As future work, we plan to integrate visual-servoing 

techniques to control PTU including the vehicle motion. In 

addition, it will be combine line tracking and obstacle 

avoidance algorithms for more complex applications. 
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