
PISALA project. Intelligent Sensorization for Line tracking with

Artificial Vision

Vicent Girbés, Leopoldo Armesto, Josep Tornero

(Instituto de Diseño y Fabricación, Universidad Politécnica de Valencia, Spain)

Abstract

This paper presents an artificial vision embedded solution for detecting painted lines on the floor, in the context of the

Research Project PISALA (Industrial Prototype for Automatic Line Tracking with Artificial Vision), whose main

objective is to provide vision-based solutions for Automated Guided Vehicles (AGVs). In addition the paper proposes a

procedure for evaluating robustness and accuracy of line-detection algorithms including qualitative and quantitative tests

for detecting specific situations such as images with multiple lines or lines with spurious objects, lines with different

colors, etc. The paper also considers the algorithm’s sensibility with respect to extrinsic camera calibration errors, in

order to define the bounds of the detection area. As a result, low cost robust algorithms for line detection can be

evaluated. The examples for validation have been implemented on the embedded vision system CMUCAM3.

1 Introduction

Nowadays, there are several commercial solutions with

self-guided vehicles, or AGVs (Self-Guided Vehicles), see

for example [1, 2, 3] among others. These vehicles have

traditionally been guided by magnets, wires or laser

located in specific areas of the store. Another type of

guidance is based on inertial navigation, in which

accelerometers and gyroscopes, along with transponders

embedded in the ground to find the position of the vehicle.

The major disadvantage of traditional AGVs is its limited

flexibility to adapt to the changing environment, the cost

associated with the infrastructure required, sometimes

can’t modify its route, etc.

To increase the degree of autonomy of AGVs, researchers

have developed in recent decades, many tools to solve

problems that traditionally occur in mobile robotics, such

as simulation [4], localization and map construction

(SLAM) [5], navigation and path planning [6, 7, 8], the

coordination between robots, and so on. In this regard,

increasingly are required more sensors with high

processing power and abstraction, such as vision systems,

which are becoming increasingly important due to the

continuous improvement of technology. Take for example

the implementation ROBOLIFT © [9], which uses a vision

system to detect artificial marks on the floor. In [10] and

[11], the problem for load and unload pallets is solved

using a vision system.

In [12, 13, 14], were developed several industrial

applications with AGVs, where various proposals were

made primarily automation, defining hardware and

software architectures, oriented to teleoperation of

vehicles, autonomous navigation or line tracking by

artificial vision.

In [15], system in which a vehicle is capable of following a

white line on the floor and a state transition algorithm that

allows them to detect bifurcations through pattern

recognition was developed. In [16] used a vision system

with a LADAR range images to produce a military vehicle.

The aim is to detect the edges of the road for the vehicle to

move independently. In the field of agriculture, we find

various solutions of autonomous agricultural vehicles or

semi-autonomous with the ability to detect bias own lines

or lines of culture, see [17] as an example. Similarly in

[18] describes a robot capable of removing paint from

ships following their own lines.

This article is framed within the context of AGVs,

describing a procedure for validating line detection

algorithms with vision systems. This procedure considers

the validation of line detection on images through

qualitative and quantitative analysis. Qualitative analysis is

based on a set of images; while quantitative analysis

provides line detection robustness and accuracy as well as

parameter sensibility, defining the limits of extrinsic

parameter calibration errors that can be affordable without

significant detriment on the robustness of the line detection

process. The line detection algorithm that has shown high

robust performance and it has been specially designed for

processors with limited computational and memory

resources. The proposed algorithm has been implemented

and validated on the CMUCAM3 [19], a low-cost

embedded vision system commonly used in robotics.

The paper presents some results of the project PISALA

(Spanish acronym for Industrial Prototype for Automatic

Line Tracking with Artificial Vision), whose main

objective is to provide vision-based solutions for

Automated Guided Vehicles (AGVs). An industrial

forklift, as shown in Figure 1, has been automated for

autonomous applications. In particular, vision-based

tracking of painted lines on the floor has been

implemented (see Figure 2) but also fully autonomous

navigation without artificial landmarks, intelligent manual-

assisted driving in which the drivers co-exists with and

intelligent system designed to reduce the risk of collisions

and vehicle remote teleoperation. Section 2 describes the

algorithm for detecting lines on images. Section 3 provides

a qualitative validation of the line detection algorithm,

while Section 4 provides quantitative data to analysis of

robustness and accuracy of the proposed algorithm and

parameter sensibility to calibration errors. Finally, Section

5 draws conclusions and discusses future work.

Figure 1 Automated industrial forklift for line-tracking

applications.

Figure 2 Vision-based line tracking application.

2 Robust Line Detection on Images

This section describes an algorithm for detecting lines with

their parameters. The algorithm has been specifically

designed to run on processors with low computational and

memory resources like the CMUCAM3 embedded vision

system. Therefore, the algorithm must be as simple as

possible while robustly detect lines on images. The input

data is a grayscale image of 176x144 pixels, which

corresponds to low-resolution mode with YCrCb format

(we only use the channel Y).

The following assumptions have been taken into account:

 The orientation of the line is usually vertical, and

therefore the detection algorithm will work better the

more vertical the line in the image is. Although, in

practice, the algorithm can detect lines close to

horizontal axis, failures on such as cases might be

affordable.

 The contrast on the line and the image background is

not necessary high. Usually the line is assumed to be

black colored, while no specific background color is

assumed. For that purpose, our algorithm uses a

background compensation process.

 The background of the image can contain soil (for

example an oil slick) or objects that might disrupt the

perception of the line.

 The image can contain several lines and only the most

significant line from the left and right sides are

considered.

Algorithm 1 shows the pseudocode and a detailed

description of algorithms steps. The first step of the

algorithm corresponds to a simple background

compensation step that uses an operation that computes for

each pixel the maximum and minimum of its neighbors

with 4-connectivity. In this sense, the background

compensation performs first a minimum operation

followed with a maximum operation with the neighbor

pixels at N=1 pixel distance to the central pixel to filter out

image noise. Then, repeats the maximum operation several

times followed with the minimum operation, also repeated

several times, with neighbor pixels at N=10 pixel distance

to the central pixel. Minimum and maximum operations

are defined as follows:

where is the pixel intensity value at x and y

coordinates.

The purpose is to obtain a uniform image with the

background color that will be subtracted from the original

image. Figure 3 shows two image examples and the image

background compensated.

The next algorithm step, in line 2, performs a edge

detection algorithm with potential line points. For this

purpose, we search for changes in contrast per row.

Candidate points require rising and falling transitions of

the intensity values, but also the expected thickness of the

line on the image plane taken into account the line

perspective, so that spurious point pairs that do not match

this criterion can be easily filtered out.

Our edge detection approach is a simplistic solution to

avoid standard edge detection algorithms that will require

more computational time and resources. Since this

procedure is simple and prone to detect a large number of

spurious edges, for that purpose lines from 5 to 12 of the

algorithm represent the implementation of the RANSAC

algorithm [20], [21], [22]. As a result of the algorithm

provides a subset of points that can be robustly fitted to a

line model defined by the well-known angle-distance

model . Figure 4 shows parameter

definitions, where (xi,yi) and (xf,yf) are the Cartesian

coordinates with respect to the reference frame of the

image of the starting and ending points, respectively; ρi

distance to the reference point the camera initial distance

from the system ρf reference chamber end; Φi is the angle

about the x axis of the starting point; Φf is the angle about

the x axis of the end point, and ρ and Φ are the line model

parameters.

(A) (B)

(C) (D)

Figure 3 Examples of background compensation. (A) and

(C) original images and (B) and (D) are the corresponding

background compensated image.

1. Compensates the background of the image from
consecutive operations of maximum and minimum
with neighboring pixels.

2. For each row, determine the edges of the line
based on the difference of intensity of neighboring
pixels (search on the left and right of image).

3. Repeat the process steps 3 through 12 separately
for the edges of the left and right edges.

4. Initialize "counter" to zero and "N" (the number of
iterations to be executed) to 1.

5. While (N> counter).
6. Randomly select two rows.
7. Calculate the line parameters "rho" and "phi"

passing through selected points.
8. For the rest of the points, calculate the distance

orthogonal to the line calculated.
9. Sort, Inliers points and those whose distance is

smaller than a certain threshold.
10. Inliers If the number exceeds the number of inliers

found so far, then save the current solution and
calculate the remaining number of iterations N =
log (p) / log (1-portion of inliers2), where p = 0.01
the expected probability to have an undetected
spurious.

11. Increase "counter" on a drive and if they have
reached the maximum number of iterations
allowed, exit with failure.

12. End Repeat.
13. Calculate the line parameters only with

Orthogonal Regression Inliers points.
14. Calculate the intermediate line.

Algorithm 1. Algorithm used to obtain the characteristic

parameters that define the line detected.

Figure 4 Representation of the line in the distance-angle

space

Line parameter estimation, in line 13, is straight forward

[23]:

 ̂ ̅ ̅ , ̂

 (

) (1)

where, ̅ ̅ are mean values of points and

 are point covariances.

Line extrema are computed based on the first and last

inliers points projected onto the line model:

[

] [

] [

],

[

] [

] [

] (2)

3 Line Detection Qualitative

Validation

The algorithm has been tested with different lighthing

conditions and line colours. Figure 5 shows a set image

examples used to qualitatively validate the line detection

algorithm. In the first two columns we can see a set of

images with different line shapes, orientations and colours.

In particular, the first column depicts detected edge points,

while in the second column only inliers points and detected

lines are shown. In third and fourth columns we can see a

set of images with lines together with some objects in

order to validate the spurious filtering capabilities of

RANSAC. It can be appreciated from selected images that

the algorithm performs successfully even with images with

is low contrast between the line and the background. The

algorithm provides as estimation the line with the highest

number of points rejecting spurious data.

Figure 5 Qualitative analysis of line detection algorithm. Images on even columns show the results of the edge detection

process while images on even columns show the filtered points and the estimated lines.

4 Line Detection Quantitative

Validation

In order to provide quantitative data a robot set-up is used

to validate the algorithm. The set-up includes a KR/15

KUKA industrial robot arm holding the camera, as shown

in Figure 6, together with a turntable for moving lines.

This allows us to generate combinations of camera

positions and line rotations with ground truth data. The

robot moves perpendicular to the line (𝑅) with increments

of 30mm and the turn table rotates (ψ) with increments of

10º.

Based on these experiments, we have obtained statistic

results of the robustness and accuracy of the algorithm. It

is possible to map sensibility parameters with respect to

extrinsic calibration errors of the camera.

4.1 Robustness and Accuracy Analysis

The goal is to analyze the robustness and accuracy of the

algorithm for different movement combinations, which

have been classified into small motions (ψ ∈ [-10°, 10°]

and 𝑅 ∈ [-30 𝑚𝑚, 30 𝑚𝑚]), medium motions (ψ ∈ [-40°,

40°] and 𝑅 ∈ [-90 𝑚𝑚, 90 𝑚𝑚]) and large motions (ψ ∈

[-70°, 70°] and 𝑅 ∈ [-150 𝑚𝑚, 150 𝑚𝑚]).

Figure 6 Set-up consisting of a Vision System

CMUCAM3 together with KR/15 KUKA robot arm and a

turntable for "ground-truth" data.

Therefore, 9 experiments are classified as small rotations

and translations, 63 experiments as medium and 165

experiments (all of them) are included in the large set. The

experimentation has been done with two different line

boards: one board contains a line with a white background

(see Figure 3 (A)) while the other the background is grey

stained, to represent a more realistic situation (see Figure 3

(B)).

Based on the estimated line parameters, the error with

respect to ground truth data is computed. We classify each

experiment as true positive (TP) if the estimation error in

distance is 𝑚𝑚 and in angle . On the other

hand, a false positive case (FP) satisfies 𝑚𝑚 or

 . Finally, negative results (N) are those cases

where the algorithm was not able to detect a line due to

lack of detected edge points. Based on this classification,

we evaluate the robustness of our algorithm with respect to

the type of experiment (small, medium or large) and the

type of background (white or gray stained). In addition to

this, we also evaluate the accuracy of TP cases based on

the following criteria: estimation with high accuracy

requires 𝑚𝑚 and , medium accuracy

results implies 𝑚𝑚 𝑚𝑚 and
 , and otherwise the accuracy is low.

Table 1 shows robustness and accuracy results obtained for

detecting lines with white background while Table 2

shows robustness and accuracy results for the case with the

gray stained background.

WHITE BACKGROUND

Images
Rotation and

translation

ROBUSTNESS ACCURACY

TP FP N H M L

9 Small 100 0 0 100 0 0

63 Medium 100 0 0 74.6 25.4 0

165 Large 100 0 0 73.33 24.85 1.82

Table 1 Robustness and Accuracy of Line Detection

Algorithm with white background.

GREY STAINED BACKGROUND

Images
Rotation and

translation

ROBUSTNESS ACCURACY

TP FP N H M L

9 Small 100 0 0 88.88 0 11.11

63 Medium 98.41 1.59 0 58.06 38.71 3.23

165 Large 91.52 8.48 0 45.63 48.12 6.25

Table 2 Robustness and Accuracy of Line Detection

Algorithm with grey stained background.

(A) (B)

Figure 7. TP and FP selected cases for discussion.

It can be seen that all experiments with white background

perform successfully and has been classified as TP. For the

gray stained case, the percentage of TP case is very high

over 91.5% of experiments (14 over 165). Figure 7(B)

shows one of the FP cases, where it can be appreciated that

due to line orientation, very few points were considered as

edges and as a consequence an spurious line is detected

instead. Despite of that, figure 7(A) shows a TP case with

similar complexity.

4.2 Parameter Sensibility to Extrinsic

Calibration Errors

Using the previously described set-up, artificial motions on

the robot wirst have been generated to reproduce angle

extrinsic calibration errors on yaw and pitch angles, see

Figure 8 for the definition of these angles of the camera

mounted on a PTU. The goal is to evaluate how these

calibration errors affect to the estimation and in particular

to robustness and accuracy.

In particular, we are generating a sweep of yaw (α) and

pitch (β) angles, with the following set of values,

α={-10º,-5º,0º,5º,10º} and β=[25º,30º,35º,40º,45º}. For

each angle combination, we are reproducing all the 165

experiments for the grey stained background case.

XB

ZB

X
E

Z
C

Y
C

Z
E

β

α

Figure 8. Coordinate systems of the camera turret.

Figure 9 shows the robustness sensibility map to

calibration errors, where the color bar values represent

percentage of TP cases. As expected, robustness is affected

simetrically with respect to the yaw angle with a ±4º

bounds without detriment. On the other hand, pitch angle

calibration errors seriously affect to robustness, specially

for cases where the camera points to horizont due to image

perspective.

Moreover, Figure 10 shows the results of accuracy

sensibility map to calibration errors, where the color bar

represents percentage of high accuracy cases. In this case,

the accuracy is affected simetrically by both angles,

altough the pitch angle has more influence, obtaining poor

accuracy results if this angles is not properly estimated.

Therefore, appropiate calibration of pitch angle is crucial

for this kind of applications, since robustness and accuracy

are seriously affected by camera perspective.

Figure 9 Robustness sensitivity to calibration errors,

where α is yaw angle and β is pitch angle.

Figure 10 Accuracy sensitivity to calibration errors,

where α is yaw angle and β is pitch angle.

5 Conclusions and Future Work

The paper has presented a robust line detection algorithm

with application to line tracking with AGVs. The

algorithm has been validated using both, qualitative and

quantitative results: as qualitative evaluation, we have

provided several examples of line detection under different

conditions (colors, shapes, etc.); as quantitative evaluation,

we have provided robustness and accuracy tables showing

very high performance. Therefore the paper has described

a procedure for evaluating robustness and accuracy of line-

detection algorithms including qualitative and quantitative

tests.

In addition to this, the study on parameter sensibility bring

us to the conclusion that calibration errors on pitch angle

affect to image perspective with higher detriment on

robustness and accuracy than errors in yaw angle.

As future work, we plan to integrate visual-servoing

techniques to control PTU including the vehicle motion. In

addition, it will be combine line tracking and obstacle

avoidance algorithms for more complex applications.

Acknowledgments

This work has been partially funded by research projects

GVPRE/2008/034, PAID-06-08-3246, DPI2001-2689-

C03-02 and DPI2009-14744-C03-01.

Literature

[1] C. Lafuente, “AGV: automatizar el transporte y los flujos internos:
flexibilidad, precisión y seguridad,” Manutención y almacenaje, n. 42,

pp. 71–77, 2005.

[2] www.egemin.com.

[3] www.robocoaster.com.

[4] M.B. Duinkerken, J.A. Ottjes, G. Lodewijks, “Comparison of routing

strategies for AGV systems using simulation”, Proceedings of Winter
Simulation, pp. 1523-1530, 2006.

[5] S. Thrun, W. Burgard, D. Fox, “Probabilistic Robotics”, MIT Press,
2005.

[6] K.R.S. Kodagoda, W.S. Wijesoma and E.K. Teoh, “Fuzzy speed and
steering control of an AGV”, The IEEE transactions on control

systems technology, Vol.10, No.1, pp112-120, 2002.

[7] W.S. Wijesoma, K.R.S. Kodagoda and E.K. Teoh, “Stable Fuzzy

State Space Controller for Lateral Control of an AGV”, Journal of

VLSI Signal Processing Systems for Signal, Image, and Video

Technology, Vol. 32, pp189-201, 2002.

[8] M. Brady, H. Durrant-Whyte, H. Hu; J. Leonard, P. Probert;, B.S.Y.
Rao, “Sensor-based control of AGVs”, vol. 1, nº 2, pp. 64-70, 1990.

[9] G. Garibotto, S. Masciangelo, P. Bassino, C. Coelho, A. Pavan, and
M. Marson, “Industrial exploitation of computer vision in logistic

automation: autonomous control of an intelligent forklift truck,” in

Proc. Int. Conf, on Robotics and Automation, vol. 2, 1998, pp. 1459 –
1464.

[10] J. Pagés, X. Armangué, J. Salvi, J. Freixenet, and J. Martí, “A

computer vision system for autonomous forklift vehicles in industrial

environments,” in 9th. Mediterranean Conf. on Control and
Automation, 2001, pp. 379–384.

[11] M. S. J. Yoder, “Automatic pallet engagment by a vision guided
forklift,” in IEEE Conference on Robotics and Automation, 2005.

[12] M. Mora, V. Suesta, L. Armesto, and J. Tornero, “Factory
management and transport automation,” in IEEE Conference on

Emerging Technologies and Factory Automation, vol. 2, 2003, pp.

508–515.

[13] L. Armesto, M. Mora, and J. Tornero, “Supervisión, teleoperación y

navegación de vehículos industriales y su integración en el sistema de
gestión,” Revista Iberoamericana de Automática e Informática

Industrial, vol. 2, pp. 55–63, 2005.

[14] L. Armesto, J. Tornero, AutoTrans: Management and transport

automation in warehouses”, Industrial Simulation Conference, vol. 1,

pp. 236-241, 2005.

[15] Li. W;Xu C.;Xiad, Q; and Xu, X. “Visual Navigation of an

autonomous robot using white line recognition”, Proceedings of the
2003 IEEE Iternational Conference on Robotics and Automation

(ICRA), 2003.

[16] T.H. Hong, T. Chang, C. Rasmussen and M. Shneier, “Road

Detection and Tracking for Autonomous Mobile Robots”, Proceedings

of SPIE Aerosense Conference, Vol. 4715, 2002.

[17] M. Ollis and A. Stentz, “Vision based perception for an automated

harverster”, In proceedings of the IEEE International Conference on

Intelligent Robots and Systems (IROS), vol. 2, pages 1838-1844,

1997.

[18] B. Ross, J. Bares and C. Fromme “A semi-autonomous robot for

stripping paint from large vessels”, The International Journal of

Robotics Research, 22 (7-8), pp. 617-626, 2003.

[19] www.cmucam.org.

[20] M. Fischler and R. Bolles, “Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography,” Comm. ACM, vol. 24, no. 6, pp. 381- 395,
June 1981.

[21] J. Matas and O. Chum, “Randomized RANSAC with Td;d Test,”
Image and Vision Computing, vol. 22, no. 10, pp. 837-842, Sept.

2004.

[22] “Randomized RANSAC with Sequential Probability Ratio Test,”

Proc. Int’l Conf. Computer Vision, vol. 2, pp. 1727-1732, Oct. 2005.

[23] G. Araujo and M. Aldon, “Line extraction in 2d range images for

mobile robotics,” Journal of Intelligent and Robotic Systems, no. 40,

pp. 267–297, 2004.

 (deg)


 (

d
e
g

)

Calibration Errors Sensitivity (ROBUSTNESS)

-5 0 5
25

30

35

40

45

10

20

30

40

50

60

70

80

90

 (deg)


 (

d
e
g

)

Calibration Errors Sensitivity (ACCURACY)

-5 0 5
25

30

35

40

45

35

40

45

50

55

60

65

70

75

80

85

90

http://www.egemin.com/
http://www.robocoaster.com/
http://www.cmucam.org/

