
AMBIENT-PRISMA: Distribution and
Mobility in Aspect-Oriented Software

Architectures

Nour Ali Irshaid

Department of Information Systems and Computation
Polytechnic University of Valencia

A thesis submitted in partial fulfilment of the requirements
for the

degree of Master in Software Engineering, Formal Methods
and Information Systems

Supervisor: Prof. Isidro Ramos Salavert

July, 2007

3

TABLE OF CONTENTS

Table of Contents ___ 3

LIST OF FIGURES ___ 9

LIST OF TABles ___ 13

CHAPTER 1 __ 15

INTRODUCTION__ 15

1.1 MOTIVATION AND RATIONALE _________________________ 16

1.2 OBJECTIVES OF THE THESIS____________________________ 18

1.3 Context ___ 19
1.3.1 Distributed Systems__19
1.3.2 Mobility___20
1.3.3 Ambient Calculus ___22
1.3.4 Case Study___24

1.4 STRUCTURE OF THE THESIS____________________________ 24

CHAPTER 2 __ 27

SOFTWARE ARCHITECTURES FOR DISTRIBUTION AND

MOBILITY ___ 27

2.1 Introduction ___ 27

2.2 Basic Concepts of Software Architectures ____________________ 28
2.2.1 Architecture Description Languages (ADLs) ________________________29
2.2.2 Components__30
2.2.3 Connectors___32
2.2.4 Configurations __33
2.2.5 Views___33

2.3 Architecture Description Languages for Distribution and Mobility 34
2.3.1 Darwin__35
2.3.2 C2Sadel ___37
2.3.3 Community __40
2.3.4 MobiS __41
2.3.5 LAM Model__42
2.3.6 π-ADL __43
2.3.7 Con Moto__43

2.4 Comparison ___ 45

2.5 Conclusions ___ 50

CHAPTER 3 __ 53

ASPECT-ORIENTED SOFTWARE DEVELOPMENT FOR

DISTRIBUTED SYSTEMS ____________________________________ 53

3.1 Introduction ___ 53

3.2 Aspect-Oriented Software Development ______________________ 54
3.2.1 Crosscutting Concerns__55
3.2.2 Aspect __56
3.2.3 Weaving___56

3.3 Aspect-Oriented Software Development for Distributed Systems _ 58
3.3.1 Implementation ___61
3.3.1.1 AspectJ___61
3.1.1.1.1 A Pattern for Distribution Aspects (PaDA)_____________62
3.1.1.1.2 The Mobility Aspect Pattern__________________________64
3.3.1.2 General Object to EJB Conversion Helper (GOTECH) Framework __65
3.3.1.3 DJCutter __65
3.3.1.4 PROgrammable extenSions of sErvices (PROSE)________________66
3.3.1.5 AspectIX ___67

3.3.2 Design __68
3.3.2.1 The D-Framework __69
3.3.2.2 Composition Filters _______________________________________72
3.3.2.3 UML All pUrpose Transformer (UMLAUT)____________________73
3.3.2.4 The Disguises Model Approach______________________________74
3.3.2.5 AWED ___76

3.4 Conclusions ___ 76

CHAPTER 4 __ 80

PRISMA__ 80

4.1 Introduction ___ 80

4.2 PRISMA Model Overview _________________________________ 81
4.2.1 Architectural Model__86
4.2.2 Interfaces __88
4.2.3 Aspects ___90
4.2.3.1 Attributes ___91
4.2.3.2 Services __92
4.2.3.3 Valuations __93
4.2.3.4 Preconditions __97
4.2.3.5 Constraints __98
4.2.3.6 Transactions ___99
4.2.3.7 Played_Roles ___100
4.2.3.8 Protocols __101

4.2.4 Simple Architectural Elements: Components and Connectors __________102
4.2.5 Attachments___107

5

4.2.6 Systems __109
4.2.7 Configuration of an Architectural Model __________________________113

4.3 PRISMA Methodology ___________________________________ 114

4.4 PRISMA Case Tool ______________________________________ 117
4.4.1 PRISMA Metamodel in DSL ___________________________________119
4.4.2 PRISMA Modelling Tool ______________________________________120
4.4.3 PRISMANET Middleware _____________________________________121
4.4.4 PRISMA Model Compiler______________________________________123

4.5 Conclusions __ 124

CHAPTER 5 ___ 128

Ambient-PRISMA___ 128

5.1 Introduction __ 128

5.2 Ambient Characteristics in Ambient-PRISMA _______________ 133
5.2.1 Interfaces ___133
5.2.1.1 ICall Interface __134
5.2.1.2 ICapability Interface _____________________________________135
5.2.1.3 IGetLocation Interface ____________________________________136

5.2.2 Aspects __136
5.2.2.1 ACoordination Coordination Aspect _________________________137
5.2.2.2 Mobility Aspect ___138
5.2.2.3 Distribution Aspect ______________________________________141

5.2.3 Weavings___143
5.2.4 Ports___144
5.2.5 Attachments___145
5.2.6 Kinds of Ambients__147

5.3 Ambient-PRISMA Metamodel_____________________________ 149
5.3.1 Connector Package ___150
5.3.2 Ambient Package___151
5.3.3 KindsOfAmbient Package ______________________________________154
5.3.4 Systems Package ___155
5.3.5 Attachments Package__155
5.3.6 AmbientPRISMAArchitecture Package ___________________________159
5.3.7 Data Types Package __160

5.4 Ambient-PRISMA Language ______________________________ 160
5.4.1 Architectural Model___160
5.4.2 ICall Interface ___161
5.4.3 ICapability Interface __162
5.4.4 IGetLocation Interface___162
5.4.5 ACoordination Aspect ___163
5.4.6 MobilityAspect aspect ___165
5.4.7 Distribution Aspect ___169

5.4.8 Ambients ___172
5.4.9 Configuration__174

5.5 Conclusions __ 176

CHAPTER 6 ___ 180

Ambient-PRISMANET_______________________________________ 180

6.1 Ambient Construct ______________________________________ 181
6.1.1 The Mobility Aspect __182
6.1.2 The Coordination Aspect_______________________________________185

6.2 The three kinds of Ambients_______________________________ 186
6.2.1 Group Ambients ___187
6.2.2 Site Ambients ___188
6.2.3 Virtual Ambients ___190

6.3 Distributed Communication _______________________________ 191

6.4 Mobility ___ 194

6.5 Conclusions __ 196

CHAPTER 7 ___ 198

Conclusions and Further Works _______________________________ 198

7.1 Conclusions __ 198

7.2 Further Work___ 203

Bibliography ___ 206

APPENDIX A__ 221

AMBIENT-PRISMA AOADL _________________________________ 221

A.1 ARCHITECTURAL MODEL _____________________________ 221

A.2 INTERFACES __ 221

A.3 ASPECTS__ 222

A.4 Attributes __ 222

A.5 Services __ 223

A.6 Preconditions ___ 223

A.7 Transactions__ 223

A.8 Constraints ___ 224

A.9 Played_Roles ___ 225

7

A.10 Protocol__ 225

A.11 PORTS __ 226

A.12 WEAVINGS__ 226

A.13 Virtual Ambients __ 226

A.14 Site Ambients ___ 227

A.15 Group Ambients __ 227

A.16 COMPONENT__ 228

A.17 CONNECTORS___ 228

A.18 ATTACHMENTS _______________________________________ 229

A.19 CONFIGURATION _____________________________________ 229

APPENDIX B__ 231

AMBIENT-PRISMA SOFTWARE ARCHITECTURE OF THE MOBILE

AUCTION CASE STUDY_____________________________________ 231

B.1 Interfaces __ 231

B.2 Aspects __ 232

B.3 Ambients___ 246

B.4 Components __ 247

B.5 Connectors ___ 249

B.6 Configuration___ 250

INDEX__ 253

9

LIST OF FIGURES

Figure 1 Picco’s classification of Migration_____________________________________22
Figure 2. The Textual and Visual Syntax of Ambient Calculus constructs ______________23
Figure 3. Applying the enter capability to the ambient n ___________________________23
Figure 4. Graphical notation of a composite component pipeline in Darwin taken from

[Mag95] __36
Figure 5. Connectors intermediating between distributed components taken from [Dos99] 38
Figure 6. A mobile component specified in Community taken from [Lop04] ____________41
Figure 7. A structural model in Con Moto taken from [Gru04] ______________________44
Figure 8. (a) The tangling concerns in the traditional applications (b) the separated

concerns in AOSD taken from [Lad03]. __56
Figure 9. Code to handle a distributed client/server object in .NET Remoting __________60
Figure 10. PaDA’s Structure taken from [Soa02a]________________________________63
Figure 11. Fragments of a distributed object in AspectIX taken from [Hau98] __________68
Figure 12. Run-time Architecture for D’s remote objects taken from [Lop97]___________70
Figure 13. Filters in the composition filter model taken from [Ber04]_________________72
Figure 14. Structure of the Disguises Model taken from [Her03] ____________________75
Figure 15. Structure of the distribution aspect taken from [Her03] ___________________75
Figure 16. Crosscutting Concerns in PRISMA software architectures taken from [Per06b] 82
Figure 17.Views of a PRISMA architectural element taken from [Per06b] _____________83
Figure 18. Communication between the white box and the black box views taken from

[Per06b] __83
Figure 19. Systems taken from [Per06b]__85
Figure 20. The package ArchitectureSpecification of the PRISMA metamodel taken from

[Per06b] __87
Figure 21. Syntax of the architectural model in the AOADL ________________________88
Figure 22. The package Interfaces of the PRISMA metamodel taken from [Per06b]______88
Figure 23. The package SignatureOfService of the PRISMA metamodel [Per06b] _______89
Figure 24. Specification of the interface IProcurAuction ___________________________89
Figure 25. The metaclass Aspect of the package Aspects of the PRISMA metamodel taken

from [Per06b] __90
Figure 26. Specification of the header of an aspect with interfaces (ProcurFunct) _______90
Figure 27. Specification of variable attributes of the aspect ProcurFunct aspect ________92
Figure 28. Specification of some services of ProcurFunct aspect_____________________93
Figure 29. Specification of a valuation of in changeMaximumBid of the BidderFunct

aspect___94
Figure 30. Specification of a valuation of in/out searchforlot of the AuctFunct aspect

__96
Figure 31. Specification of a valuation of in/out searchforlot of the ProcurFunct

aspect___97
Figure 32. Specification of a precondition in the BidderFunct aspect _________________98
Figure 33. Specification of a constraint in the ProcurFunct aspect ___________________99
Figure 34. Specification of a transaction in the CustFunct aspect ___________________100

Figure 35. Specification of played_roles of ProcurFunct aspect ____________________101
Figure 36. Specification of protocols of ProcurFunct aspect _______________________102
Figure 37. The package ArchitecturalElements of the PRISMA metamodel taken from

[Per06b] ___103
Figure 38. The package KindsOfArchitecturalElements of the PRISMA ______________105
Figure 39. The package Connectors of the PRISMA______________________________105
Figure 40. Specification of the Customer component type _________________________106
Figure 41. The package Attachments of the PRISMA metamodel taken from [Per06b] ___108
Figure 42. Specification of attachments in the auction software architecture __________108
Figure 43. AttchAuctCnct attachment that connects AuctionCnct and Auction _________109
Figure 44. A possible configuration of AttchCustAuc attachment that connects AuctionCnct

and Customer instances__109
Figure 45. The package Bindings of the PRISMA metamodel taken from [Per06b]______110
Figure 46. The package Systems of the PRISMA metamodel taken from [Per06b] ______111
Figure 47. The Systems package of the PRISMA metamodel taken from [Per06b] ______111
Figure 48. Specification of systems___112
Figure 49. Specification of the Auction Configuration ____________________________114
Figure 50. The methodology of the PRISMA approach ___________________________115
Figure 51. PRISMA CASE PARTS ___118
Figure 52. DSL Tools Framework: Domain Model of PRISMA taken from [Per06b] ____119
Figure 53. PRISMA Type Modelling Tool taken from [Per06b]_____________________120
Figure 54. PRISMANET middleware architecure taken from [Per06b]_______________122
Figure 55. Namespaces of the module PRISMA Execution Model taken from [Per06b] __123
Figure 56. A Customer and Procurement connected through a AgentCustConct________129
Figure 57. A PRISMA Ambient with CBSD and AOSD views_______________________131
Figure 58. A possible Configuration of the Auction Mobile Agent Case Study where the

Procurement instance is in AuctionSite__132
Figure 59. Specification of the ICall Interface__________________________________134
Figure 60. Partial specification of the ICapability Interface _______________________135
Figure 61. Specification of the IGetLocation Interface ___________________________136
Figure 62. Partial specification of the ACoordination Aspect ______________________138
Figure 63. Partial specification of the MobilityAspect aspect ______________________141
Figure 64. Partial specification of an aspect of kind Distribution __________________142
Figure 65. MobileAmb is a mobile ambient ____________________________________143
Figure 66. Predefined weaving between the MobilityAspect aspect and a distribution aspect

called ADist___144
Figure 67. Partial specification of ambients ports _______________________________145
Figure 68. Configuration of the software architecture when Procurement1 is located in

ClientSite ambient __146
Figure 69. Kinds of ambients in a possible network ______________________________149
Figure 70. Connector Package of the Ambient-PRISMA metamodel _________________150
Figure 71. Ambient Package of the Ambient-PRISMA metamodel ___________________152
Figure 72. The KindsOfAmbients package of the Ambient-PRISMA metamodel ________154
Figure 73. The Attachments package of the Ambient-PRISMA metamodel ____________157
Figure 74. OCL constraints for the Attachment metaclass _________________________158
Figure 75. The AmbientPRISMAArchitecture package of the Ambient-PRISMA metamodel

___159

11

Figure 76. The package DataTypes of Ambient-PRISMA__________________________160
Figure 77. Architectural Model template in Ambient-PRISMA _____________________161
Figure 78. Specification of the ICall Interface__________________________________161
Figure 79 .Specification of the ICapability Interface _____________________________162
Figure 80. Specification of the IGetLocation Interface ___________________________163
Figure 81. Specification of the ACoordination Aspect____________________________164
Figure 82. Specification of the MobilityAspect aspect ____________________________167
Figure 83. A distribution aspect of a Site ambient_______________________________170
Figure 84. A distribution aspect of a Group ambient_____________________________171
Figure 85. A distribution aspect of the Root ambient_____________________________171
Figure 86. Specification Template of Ambients__________________________________173
Figure 87. Specification of HostSite ambient ___________________________________173
Figure 88. Specification Template of configurations of ambient-PRISMA architectural

models ___175
Figure 89. Specification of the AuctionConfig configuration _______________________176
Figure 90 Distributed Run-time Environment of Ambient-PRISMANET ______________181
Figure 91. A segment of the Ambient class constructor__________________________182
Figure 92. The MobilityAspect class and the ICapability interface__________183
Figure 93. The AmbientCoordinationAspect class and the ICall interface____185
Figure 94. The three kinds of ambients in Ambient-PRISMANET ___________________187
Figure 95. Specification of the AgentsGroup ambient ____________________________187
Figure 96. . Specification of the HostSite ambient _______________________________189
Figure 97. Specification of the Root ambient ___________________________________190
Figure 98. The Attachment class in Ambient-PRISMANET _____________________192
Figure 99. The Initial Configuration of the Software architecture of the Mobile Agent Case

Study __193
Figure 100 . Specification of the AGADist distribution aspect ______________________194
Figure 101. The Software Architecture when the AgentsGA executes the exit __________195
Figure 102. The AgentsGA becomes a child of AuctionSite ________________________196

13

LIST OF TABLES

Table 1. Comparison of ADLs that address distribution and mobility (Part 1) __________47
Table 2. Comparison of ADLs that address distribution and mobility (Part 2) __________49
Table 3 Comparison of Aspect-Oriented Models that support Distribution _____________77
Table 4. Comparison between Attachments and Bindings _________________________113

15

CHAPTER 1
INTRODUCTION

This thesis presents an approach for supporting the development of distributed and

mobile software systems from an early stage of the software life cycle. Specifically,

the approach describes the characteristics of distributed and mobile software

systems at the software architecture stage combining Aspect-Oriented Software

Development (AOSD) and Component-Based Software Development (CBSD)

techniques. Maintenance and reusability are enhanced by this combination. For the

construction of aspect-oriented software architectures our approach is based on

PRISMA. PRISMA is an approach that combines AOSD and CBSD for describing

complex software architectures. To describe distribution and mobile characteristics

our approach is based on Ambient Calculus. Ambient Calculus is a process algebra

that describes mobility at a high abstraction level. We call the resulting combination

Ambient-PRISMA.

Ambient-PRISMA is supported by a framework that includes a metamodel, a

language and a middleware for developing Ambient-PRISMA aspect-oriented

software architectures. The methodology that we propose adopts automatic

prototyping as proposed by the Model Driven Engineering (MDE). The metamodel is

allows the specification of Ambient- PRISMA architectures using its Aspect-Oriented

Architecture Description Language (AOADL), both in a textual and a graphical way.

The AOADL is independent of development platforms and is based on a formal

language in order to preserve non-ambiguity in the code generation process. Code

generation is supported by the middleware available in the CASE tool prototype.

1.1 MOTIVATION AND RATIONALE

In the last few decades, the information society has undergone important

changes. New technologies have become part of our daily life and the Internet has

been established as a framework for global knowledge. For these reasons, two

important ideas have risen: the world is considered as a whole unit with no

boundaries, and people work in a collaborative way without meeting physically.

These ideas have created the need for software development processes to deal with

complex structures, new non-functional requirements, dynamic adaptation, and

new technologies. In addition, most software systems require the capability to work

with different devices (PCs, laptops, PDAs, smart phones, etc) and through

communication networks in a distributed and secure way. As a result, software

development processes must also take into account the distributed, ubiquitous and

mobile nature of software systems.

The development of software systems with existing characteristics such as

distribution and mobility is a difficult task. Currently, decisions about these

characteristics are usually postponed to late stages of the software life cycle (design

and implementation). As a result, traceability is lost, and the system becomes

bounded to a fixed technological platform. Developers of distributed systems also

have to spend more time programming than solving and considering problems

raised by distribution. Given the complexity of this type of systems, one should

require to software engineering techniques that provide reusability and

maintainability, specify distribution and mobility features in a technology-

independent way and support non-functional requirements such as security or fault

tolerance related to distributed systems.

The specific methods and techniques that we have in mind are:

17

� Software Architecture [Sha96] is considered to be the bridge between the

requirements and implementation phases of the software life cycle. The

software architecture of a system describes its structure in terms of

computational (components) and coordination (connectors) units of

software. Architecture Description Languages (ADLs) specify the functional

and coordination properties of these software units in a formal way.

However, few ADLs provide the needed constructs for describing distribution

or mobility features in an abstract way.

� Component Based Software Development (CBSD) [Szy02] and Aspect-

Oriented Software Development (AOSD) [Fil04] are two techniques that

promise increased lends of reusability, flexibility, and maintainability

through the software development process. CBSD proposes to construct the

system by connecting entities that provide and require services. AOSD

allows the separation of concerns by modularizing crosscutting concerns in

separate entities called aspects. Distribution has been clearly identified as a

crosscutting concern; separating it from the other concerns of the software

system, will decrease cost and efforts to maintain and reuse software.

� Model Driven Engineering (MDE) [Sch06] is a software development

approach based on transformations between models. MDE proposes the

development of software by using models that describe a system in a

technology-independent way. These models can be transformed to

technology dependent models, which describe a system based on a specific

technology.

� A formalism that provides mechanisms to describe distribution and mobility

properties is Ambient Calculus (AC) [Car98a]. AC introduces the concept of

ambient, which represents boundaries where computation occurs.

Ambients can model the location hierarchy encountered in distributed

systems and model the mobility as the crossing of the locations boundaries.

� PRISMA [Per05b] is an approach that integrates the advantages of

Component-Based Software Development (CBSD) [Szy02] and Aspect-

Oriented Software Development (AOSD) [Fil04] to specify software

architectures. This approach has a meta-model [Per05b], formal Aspect-

Oriented Architecture Description Language (AOADL) [Per06a], and a

framework.

An important challenge in the software engineering area is the integration of

software architectures, CBSD, AOSD, and automatic code generation in a unique

approach in order to support the development and maintenance of distributed and

mobile software systems in an efficient way. The framework that we are proposing

integrates all these software engineering techniques to decrease the complexity of

developing distributed and mobile software systems as well as to improve their

quality, reusability and maintainability.

1.2 OBJECTIVES OF THE THESIS

The main goal of this thesis is to investigate how the combination of the techniques

and approaches of CBSD, AOSD, the Paradigm of Automatic Prototyping, and

Ambient Calculus support the development of distribution and mobile software

systems. The result of this combination is a framework that provides the definition of

distributed and mobile software systems improving the reusability, the automatic

code generation and the maintainability of the defined systems.

The main goal of the thesis can be decomposed in several specific objectives:

� To study the related works of distribution and mobility, and how they have

been supported in Architecture Description Languages (ADLs), Aspect-

Oriented Languages, and aspect-oriented ADLs.

� To define a model that integrates PRISMA and Ambient Calculus for the

definition of aspect-oriented architectural models of distributed and mobile

software systems.

� To incorporate primitives to the Aspect-Oriented ADL (AOADL) of PRISMA

for the specification of software architectures based on the defined model.

This language must provide the needed expressiveness to specify the

characteristics of distributed and mobile software systems and must be

19

based on formalisms that ensure the non-ambiguity and correctness of the

specifications.

� To provide a graphical support for the distribution and mobility

characteristics incorporated to the AOADL in order to make a friendly

analysis and design.

� To develop a middleware and a catalogue of code generation patterns. The

middleware must permit the execution of the distributed and mobile

software architectures based on the proposed model and the code

generation patterns must provides the rules to generate automatically the

source code of a specific programming language and distributed platform

from the primitives incorporated to the proposed AOADL.

� To validate the model, the expressiveness of the language and the tool by

developing case studies of distributed and mobile software system.

�

1.3 Context

The context of this thesis is the appliance of software engineering techniques for

distributed and mobile software systems. Specifically, the software architecture and

AOSD techniques are integrated with concepts introduced by AC for specifying

distributed and mobile software systems. In this section, a brief explanation to

distribution, mobility and AC is given. Also, the case study used to illustrate the

work presented in this thesis is presented.

1.3.1 Distributed Systems

<<A distributed system is a collection of autonomous hosts that are connected

through a computer network. Each host executes components and operates a

distribution middleware, which enables the components to coordinate their activities in

such a way that users perceive the system as a single, integrated computing facility.>>

Zahir Tari in [Tar01]

Nowadays, distributed systems are built using distributed object or component

middleware. The role of middleware is to ease the task of programming and

managing distributed applications. It is a distributed software layer, or ‘platform’

which abstracts over the complexity and heterogeneity of the underlying distributed

environment with its multitude of network technologies, machine architectures,

operating systems and programming languages.

1.3.2 Mobility

Mobility is the capability of moving a process, object or component instances

from one computing node to another during the runtime in a distributed system.

Code mobility is the dynamic change of the bindings between code fragments

and locations where they are executed. Code mobility can de defined as the

capability of a distributed application to relocate its components at run-time. A

detailed overview of existing code mobility techniques is given by Fuggetta et al.

[Fug98]. They describe three code mobility paradigms:

� remote evaluation allows the proactive shipping of code to a remote host in

order to be executed;

� Mobile agents are autonomous objects that carry their state and code, and

proac-tively move across the network

� code-on-demand, in which the client owns the resources (e.g., data) needed

for the execution of a service, but lacks the functionality needed to perform

the service.

In this thesis, mobile agents is supported.

Mobility is classified by Picco [Fug98] into weak and strong mobility. Weak

mobility happens in systems where the migrant is a data object which starts

execution from the beginning after migration. Weak mobility transfers the code

21

which may be accompanied by some initialization data, however the state is not

involved. This kind of migration is well known in commercial systems. Strong

mobility occurs in mobile objects which their execution is interrupted for the

migration and once migrated on the destination carries forward executing from the

interrupted point. This form of mobility allows migration of both the code and the

state of the object before interrupting it.

Strong Mobility is supported by two mechanisms: migration and cloning. The

migration mechanism destroys the executing object and transmits it to the

destination. Migration can be proactive and reactive. In proactive migration, the

decision of moving the object is done by itself determining the time and destination.

While in reactive migration the migration decision is determined by another

executing object. The cloning mechanism creates a copy of the executing object at

the new destination without destroying the executing object. As in migration, cloning

can be proactive and reactive.

Weak mobility’s mechanisms are influenced on the direction of code transfer, the

type of code and the time the code is executed at the destination. The code can be

migrated as a standalone or as a code fragment. Standalone code is self-contained

and will be used to instantiate a new object on the destination. A code fragment

must be connected to an already running code. Mechanisms that support weak

mobility can be either synchronous or asynchronous. Figure 1, summarizes Picco’s

classification of migration.

Code Fragment

Migration

Strong Mobility
Weak Mobility

Migration Cloning

Proactive Proactive ReactiveReactive

Code Shipping Code Fetching

Stand-alone Code Fragment

Stand-alone Code FragmentCode Fragment

Migration

Strong Mobility
Weak Mobility

Migration Cloning

Proactive Proactive ReactiveReactive

Code Shipping Code Fetching

Stand-alone Code Fragment

Stand-alone

MigrationMigration

Strong MobilityStrong Mobility
Weak MobilityWeak Mobility

MigrationMigration CloningCloning

ProactiveProactive ProactiveProactive ReactiveReactiveReactiveReactive

Code ShippingCode Shipping Code FetchingCode Fetching

Stand-aloneStand-alone Code FragmentCode Fragment

Stand-aloneStand-alone
Figure 1 Picco’s classification of Migration

Migration is not totally supported by today’s middleware technologies. Therefore,

different proposals have been done to extend the frameworks.

1.3.3 Ambient Calculus

Ambient Calculus [Car98a] (AC) is a process algebra that extends π-calculus

[Mil92] in order to introduce the concept of ambient. An ambient is a bounded place

where computation occurs. Thus, an ambient can be anything with a boundary

such as a laptop, a web page, a folder, etc. Each ambient has a set of running

computations that can control it. These are responsible for moving an ambient. In

addition, an ambient can contain other subambients that have running

computations.

Thus, mobility is performed at an ambient level, i.e. ambients are mobile. Also,

mobility is performed by crossing boundaries of ambients. AC provides mobility and

local communication primitives. These primitives can be expressed in a textual

syntax and in a graphical syntax which is called Folder Calculus [Car98b](see Figure

2). Folder Calculus is a graphical metaphor for AC where ambients are visually

represented as folders.

23

AC uses some of the constructs inherited from π-calculus such as naming,

restriction, parallel processes, inactive process and replication. However, the names

in AC are names of ambients instead of names of channels as in π-calculus.

Therefore, in order to syntactically write that an ambient with name n has process P,

it is written as n[P].

Figure 2. The Textual and Visual Syntax of Ambient Calculus constructs

Some of the primitives that AC provides are called capabilities. Capabilities are

actions that can be performed on ambients. There are three main types of

capabilities: enter, exit and open capabilities. The enter capability orders an ambient

to enter another ambient on its same hierarchy level (see Figure 3). The exit

capability orders an ambient to exit its parent ambient. The open capability dissolves

an ambient leaving the processes that were in it.

Figure 3. Applying the enter capability to the ambient n

1.3.4 Case Study

In order to show how Ambient-PRISMA works, we present an example of an

auction site based on mobile agents. A customer of the auction site is interested in

buying a specific product at a maximum price limit. To keep track of new auctions

offered on the site, the customer designs two mobile agents that take charge of the

purchase. The Procurement agent is responsible for seeking an appropriate product,

and the Bidder agent is in charge of bidding for the product. The two agents have to

collaborate with each other. The customer sends the agents to the auction site where

they act on behalf of the customer. When the purchase is performed, the agents

return to their original location.

1.4 STRUCTURE OF THE THESIS

This work is divided into six chapters. In the following the content of each of the

chapters is briefly described:

Chapter 2 provides an introduction to software architectures and how

distribution and mobility have beed dealt at an architectural level. First the chapter

presents the main concepts and properties of software architecture. Then, different

Architecture Description Languages that have dealt with distribution and mobility

are presented. Finally, a comparison of these approaches is presented and discussed

in order to analyze the state of art of distribution and mobility in software

architectures.

Chapter 3 introduces Aspect-Oriented Software Development (AOSD) and how

AOSD has dealt with distribution and mobility. First the chapter presents the main

concepts and properties of AOSD. Then, different approaches that have

implemented distributed and mobile software systems using Aspect-Oriented

Programming are presented. Then, different approaches that have dealt with

distribution and mobility at the the design level are also presented. Finally, a

25

comparison of the aspect-oriented approaches that have dealt with distribution and

mobility at the design level is discussed.

Chapter 4 presents PRISMA. PRISMA is an approach that integrates AOSD and

software architectures. This chapter provides an overview of the PRISMA model by

presenting its metamodel. Also, the software architecture of the Auction System case

study is specified in PRISMA using the Aspect-Oriented Architecture Description

Language (AOADL). Finally, the PRISMA CASE tool of PRISMA is presented.

Chapter 5 presents Ambient-PRISMA. Ambient-PRISMA enriches the PRISMA

approach with primitives in order to specify aspect-oriented software architectures of

distributed and mobile software systems. This chapter enriches the PRISMA

metamodel and the AOADL. Also, the case study of the AuctionSite is used to

demonstrate Ambient-PRISMA properties.

Chapter 6 presents Ambient-PRISMANET. Ambient-PRISMANET is a

middleware that implements Ambient-PRISMA in .NET in order to execute Ambient-

PRISMA models. This chapter presents how Ambient-PRISMA primitives have been

implemented.

Chapter 7 sums up the main contributions of the work and suggest some future

works.

27

CHAPTER 2
SOFTWARE ARCHITECTURES FOR
DISTRIBUTION AND MOBILITY

2.1 Introduction

The origin of software architecture evolved from Parnas proposal of simplifying the

construction of complex and large systems by modularization [Hof00]. Software

Architecture is a discipline that focuses on the design and specification of overall

system structure. A system structure is organized from elements that are composed

into more complex ones until the overall system structure is obtained. Software

architecture also deals with structural issues related to its elements such as their

communication protocols, their data access, their functional assignment, and their

physical distribution [Sha96].

Software architecture bridges the gap between the requirements phase and the

implementation phase of the software development process. It is the first step for

designing a system that needs to fulfil a collection of desired properties which can be

functional and non-functional. Software architecture is an abstract representation of

the system that hides implementation, algorithms or data structure details [Bas03].

At the architectural level requirements are reasoned to satisfy certain properties

such as throughput, consistency, and capacity need to be satisfied [Sha96].

The objective of this chapter is to present how distributed and mobile software

systems have been described at the software architectural level. In section 2.2, the

basic concepts of software architectures are introduced. The objective of this section

is not to provide the reader with an analysis or a summary of the state of art of the

concepts and properties of software architectures. These issues have been already

treated in other works such as in [Per97], [Sar97], [Kog95] and [Med00]. The

objective is to give the reader an introduction to the basic concepts of software

architectures that support his/her understanding in the next sections and chapters

of this thesis. Section 2.3, gives an overview of the available Architecture Description

Languages (ADLs) found in the literature that have addressed distributed and mobile

software systems. Section 2.4, presents a comparison among the ADLs presented in

section 2.3. Finally, section 4.5 presents conclusions of the comparison performed in

2.4.

2.2 Basic Concepts of Software Architectures

Over the past few years several definitions of Software architecture have been

proposed. Some of them are listed below:

<<A set of architectural elements that have a particular form. The elements may be

processing elements, data elements or connecting elements.>>

Perry and Wolf in [Per92]

<<Software architecture [is a level of design that] involves the description of

elements from which systems are built, interactions among those elements, patterns

that guide their composition, and constraints on these patterns.>>

Shaw and Garlan in [Sha96]

<< Architecture is defined by the recommended practice as the fundamental

organization of a system, embodied in its components, their relationships to each other

and the environment, and the principles governing its design and evolution.>>

29

ANSI/IEEE Std 1471-2000 [IEE00]

<<The software architecture of a program or a computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them.>>

Bass, Clements,and Kazman in [Bas03]

It can be noticed, that each definition presents different issues. However, it can

be concluded that each definition is concerned with structure and behaviour.

Structure describes how the system is made up of interconnected units called

components. Behaviour is referred to the visible behaviour caused by the interaction

of the systems components to achieve the overall functionality of the system.

In the following the basic concepts used in software architecture are described.

2.2.1 Architecture Description Languages (ADLs)

Most box-and-line diagrams of architectural designs are not precise enough for

analyzing completeness, consistency or correctness. As a result ADLs emerged. An

ADL is a language that describes software architectures by providing a textual

syntax and usually a graphical support. The purpose of ADLs is to aid the

understanding and communication of software systems. Many ADLs can be found

in the literature, each emerged for different purposes and domains. Examples of

ADLs are Rapide [Luc95] which allows architectural modelling, simulation, analysis

and code generation capabilities, Wright [All97] which supports the formal

specification and analysis of interactions between components, and SADL [Mor95]

which focuses on formal architectural refinement. A comparison of different ADLs is

provided in [Med00].

In [Sha94b] and [Sha96], Shaw and Garlan, elaborate six properties that

characterize an ideal ADL from other languages:

� Composition: The language should allow its user to divide a complex

system hierarchically into smaller parts or compose a system from

independent elements.

� Abstraction: The language should permit both the identification of

elements of a high level structure and their roles in a system.

� Reusability: A fundamental objective of an ADL is to allow the reusability of

components, connectors, and architectural patterns of software

architecture, even in a different context of the architectural system they were

originally developed for.

� Configuration: The language should clearly separate the description of

elements from the structures (or composite elements) which they participate

in. Also, an ADL should support dynamic reconfiguration. Medvidovic

argues that configuration fundamentally characterizes ADLs from other

languages [Med00].

� Heterogeneity: ADL should be independent of the language used for

implementing each component. The ADL should also permit the

combination of multiple architectural patterns.

� Analysis: It should be possible to perform analysis of the architectural

descriptions. This is related to the use of formal methods in order to define

semantics properties without ambiguity.

Medvidovic and Taylor [Med00] explain that an ADL provides the description of

the building blocks of software architectures. These building blocks are components

(see section 2.2.2), connectors (see section 2.2.3) and configurations (see section

2.2.4). Also, it is important to provide tool support for an ADL in order to make it

more useful.

2.2.2 Components

Components are the loci of computation and state [Sha96]. Examples of

components are clients, servers, databases, and filters. Each component has an

interface which specifies the set of services (messages or operations) that it provides

31

and the services it requires of other components. In ADLs, the points of interaction

between a component and its environment are called ports. Ports segment the

interface of a component. A port can be a service or a set of services of a component

interface. The ports of a component provide a black box view of a component where

only its interface is visible to the environment.

A typical definition of components is the following:

<< Software components are binary units of independent production, acquisition,

and deployment that interact to form a functioning system. Composite systems

composed of software components are called component software >>

Clemens Szyperski [Szy02]

Meyer presents seven criteria for describing a component:

<<A component is a software element that:

 1. May be used by other software elements (its clients).

 2. May be used by clients without the intervention of the component's developers.

 3. Includes a specification of all dependencies (hardware and software platform,

versions, other components).

 4. Includes a precise specification of the functionalities it offers.

 5. Is usable on the sole basis of that specification.

 6. Is composable with other components.

 7. Can be integrated into a system quickly and smoothly. >>

Bertran Meyer in [Szy00]

Mainly, a component is the unit of decomposition of a system. It should be a

reusable unit that does not have dependencies with other elements of a system.

Also, a component should be easily integrated in a system.

2.2.3 Connectors

Connectors describe the interactions among components. Connectors were first

introduced by Mary Shaw in [Sha94a] to separate computation from coordination. In

this way, a separation of concerns is achieved. Examples of connectors are

procedure call, event broadcast, database protocols, and pipes. Connectors imply a

runtime mechanism for transferring control and data around a system [Bas03].

Most ADLs explicitly provide connectors as first-class entities that are

independent of the components they connect and allow communication protocols

among components to be reused. Some ADLs, such as Darwin [Mag95], Leda

[Can01] and Rapide [Luc95] do not consider connectors as first-class citizens and as

a result they cannot be named nor reused.

In [Sha96], Shaw and Garlan explain the importance of separating connectors

from components for the following reasons:

� Connectors can be quite sophisticated elaborating complex definitions.

� Connectors’ definition should be localized. Having connectors localized

supports the maintenance and an improve design of interactions.

� Connectors are abstract. Connectors may be parameterizable and may

define different kinds of interactions that are adapted to the components

they coordinate at instantiation time. A connector can be instantiated as

many times as necessary.

� Connectors may require distributed support.

� Components should be independent. An interface of a component is defined

independently of which components will use it or how they use it.

� Connectors should be independent. Connectors should be able to mediate

components that can be dynamically changing.

� Relations among components are not fixed. A component can interact with

many components and its interaction with each component is different.

� Systems reuse patterns of composition.

33

2.2.4 Configurations

Configurations or topologies describe architectural structures which consist of

connected components and connectors. A configuration is a specific structure of a

concrete system. In some ADLs such as Acme these are called systems [Gar03].

Configurations are defined by connecting components and connectors (if supported

by an ADL) or components and components by connections (or sometimes called

attachments). Configurations may also be hierarchical i.e. a configuration can be a

single component that is part of another configuration.

Configurations enable assessment of concurrent and distributed properties of

architecture such as deadlocks, performance, reliability, and security [Med00]. A

configuration follows constraints and patterns described in an architectural style.

Mary Shaw and Garlan define an architectural style as:

<<An architectural style defines a family of systems in terms of a pattern of

structural organization. More specifically, an architectural style determines the

vocabulary of components and connectors that can be used in instances of that style,

together with a set of constraints on how they can be combined. These can include

topological constraints on architectural descriptions (e.g., no cycles). Other constraints,

having to do with execution semantics, might also be part of the style definition>>

Shaw and Garlan in [Sha96]

2.2.5 Views

Mostly, software architectures describe the structures of large and complex

software systems. To ease the complexity and address large systems, the structure

of software architectures can be separated into different views. A view is a

representation of a set of architectural elements and the relations among them

[Cle05]. As a result, each view allows stakeholders to examine and analyze a specific

set of concerns of the software architecture.

Kruchten proposes the 4+1 model of views which has been adapted to UML

[Kru95]. This model proposes the organization of an architecture using the Logical

View, the Process View, the Development View, and the Physical View. Bass et. al

propose three views: the Module View, the Component-Connector View and the

Allocation View [Bas03].

A representation of the software architecture which all view models agree for

their importance is the distribution view. In [Bas03], it is called the Deployment Style

which is part of the Allocation View and in [Kru95] it is called the Physical View. In

this view, elements of other views are allocated to different physical units (hardware).

This view of the architecture allows analyzing how requirements are met by

characteristics of hardware such as CPU properties, memory properties and

bandwidth.

2.3 Architecture Description Languages for
Distribution and Mobility

An important characteristic of distributed systems is location-transparency. This

means that elements of a distributed system should be provided with the same

functionalities as if they were in a centralized system. This implies that:

� Clients are not aware of where their servers are located in order to perform

communications.

� Resources are accessible even though they are distributed

� Elements can move without others noticing it i.e. they are accessible and are

able to communicate with the elements and resources in their new location.

In software architectures, components are defined independently of with whom

they communicate with and the coordination of interactions is performed by

connections or connectors. In this way, software architecture is a technique that can

be used to provide location transparency to elements of a distributed system.

35

Describing software architectures of distributed systems is a mechanism for

analyzing non-functional properties of a system such as performance, reliability, and

security. Different architectural decisions can be made in allocating architectural

elements to the nodes of a network in order to fulfil properties such as response time

or latency.

Software architecture is a useful approach for modelling mobile systems since

they are a typical example of complex and dynamic systems that need to be adapted

and reconfigured to resources, network, non-functional requirements such as fault

tolerance, security, and performance. Also, mobile architectural elements can be

used in order to improve the efficiency and flexibility of software architectures of

distributed systems.

Basically, ADLs that support the description of mobile software architectures

should provide mechanisms for describing dynamic systems. Surveys have been

performed on different dynamic ADLs such as in [Cue02] and [Bra04]. However,

ADLs for mobile distributed systems should introduce other characteristics. In this

section, an overview of the ADLs that have addressed distributed and mobile

software systems are presented.

2.3.1 Darwin

Magee, Dulay and Kramer at the Imperial College in London were the creators of

Darwin, one of the first ADLs that has focused on the specification of software

architectures for distributed systems [Mag95]. Darwin has a textual and a graphical

notation. It describes configurations by binding components which provide and

require services. Also, Darwin allows the construction of composite components by

binding other components with their composite components.

Figure 4. Graphical notation of a composite component pipeline in Darwin

taken from [Mag95]

In Figure 22, a pipeline that is composed of filter instances is defined using the

graphical notation of Darwin. It can be observed that the filled circles are the services

that components provide and the empty circles are the services that components

require. A binding between two subcomponents is performed by connecting a

required service of a component with a provided service of another one. Bindings

between a composite component and a subcomponent can also be performed in

order to allow a required or a provided service to be visible at the composite

component level. For example, between F[0] and the pipeline and the F[n-1] and the

pipeline.

As it can be noticed, Darwin does not provide connectors as first-class entities for

modelling interactions among components. The authors of Darwin argue that a

connector is not needed as a first-class entity. If complex interactions need to be

modelled, a component can perform this functionality without the necessity of

having two different types of architectural elements.

Darwin supports the configuration of distributed component instances and their

remote communication. Component instances are distributed on different machines

by using a Darwin expression that assigns an integer to each instance. For example,

to assign that each filter instance of Figure 22 is distributed the following Darwin

expression is used F[k]@k+1. These integer expressions are then mapped by the

runtime system to real machine addresses and the component instances are

configured on those machines.

37

To allow remote communication among components, the authors in [Mag97a]

and [Mag97b], model a component called LOCATE which stores the locations of

instances. This component allows other components connected to it, to query the

locations of other components. However, this component is an artefact of the

modelling technique and not a primitive of the architecture.

Darwin has used π-calculus to specify a formal semantics of its bindings. π-

calculus is elegantly used to formalize remote communication between components

by transmitting references between processes (components) in messages. Although

Darwin only supports a constrained dynamic manipulation of the structure, since

runtime changes must be known a priori, π-calculus is appropriate in order to

describe its dynamic structures.

Darwin has been used in developing distributed programmes in C++ using an

environment called Regis [Mag94]. Regis provides components of a system to be

instantiated at configuration time as well as at runtime. Regis also supports a parser

and a compiler for Darwin bindings. However, the implementations of the

components are not generated by the compiler but are implemented in a traditional

programming language. Darwin has also been used in the CORBA environment to

specify the overall architecture of component-based applications [Mag97b].

However, in the literature, new advances to Darwin in constructing software

architectures with mobile components cannot be found. Since Darwin is based on π-

calculus only, mobility can only be simulated by the movement of channels. It lacks

primitives to express the movement of components that cross boundaries.

2.3.2 C2Sadel

C2Sadel is an event-based ADL which was originally designed for supporting the

description of user interface systems [Tay95]. C2Sadel only supports an

architectural style called C2. This style is able of describing dynamic and distributed

software architectures thanks to its potential usage of connectors. The C2 style

follows a layered approach. C2Sadel has a framework and code generator called

DRADEL for generating skeletons of applications [Med99].

Architectures in C2Sadel are described in terms of components, connectors and

topologies. Components maintain a state and perform computations. Each

component has an interface which consists of a set of messages that may be

requested (top interface) or notified (bottom interface). Connectors bind components

together to form architectures. Connectors are responsible of routing, broadcasting

and filtering messages. The unique feature of C2 connectors is that they do not have

a particular defined interface. Their interface is a function of the interfaces of

components attached to it. This is called context reflective interfaces. The topology of

the architecture is defined by connecting the tops of components to bottoms of

connectors and bottoms of components to tops of connectors. Also, in C2,

connectors can be connected and a component can only be connected to a single

connector.

Figure 5. Connectors intermediating between distributed components taken

from [Dos99]

39

C2 provides distributed components to communicate through encapsulating

middleware technology access through connectors [Dos99]. The approach consists of

implementing a single virtual software connector using a set of segmented

connectors. Segments of the virtual connector are linked across the network. Figure

5 shows how connector segments connect distributed components. Shaded ovals

represent network boundaries (e.g. hosts). In Figure 5 (a), messages sent to any

segment of a virtual connector are broadcast to other segments. In Figure 5 (b), the

virtual connector is separated into a top segment and a bottom segment. The

connector segments are connected by a middleware. As a conclusion, each host of

the distributed system has a connector segment. The connector segments shown in

Figure 5 are implemented by the C2 framework.

C2 provides an implementation infrastructure for providing mobility [Med01].

Basically, mobility is provided by evolving the configuration of the distributed

software architecture. Evolution is provided by a component called Admin that is

connected to each segment connector of the distributed system. To support mobility

of a component the Admin component invokes methods for disconnecting and

deleting a mobile component connected to its segment connector. Then, the Admin

component connected to another segment (on another host) adds the component

and attaches it to its segment.

C2Sadel is an ADL that has been designed focusing on the real development of

applications from its software architectures. However, it does not provide explicit

primitives for modelling mobility in a platform independent way. For example, the

mobility provided in C2 highly depends on the implementation infrastructure. In this

way, distribution and mobility properties cannot be automatically generated from

C2Sadel specifications. Neither, automatic deployment of components can be

performed by the tools. Also the mobility that C2Sadel provides is restricted to

software components, i.e. connectors in C2Sadel are not mobile.

2.3.3 Community

Community [Fia03] is an ADL that is based on category theory [Fia04] and on

parallel design languages. An advantage of Community in comparison with other

ADLs is that it separates distribution as well as computation, coordination and

configurations [Lop02]. The Community Workbench [Oli05] is a tool that provides

an environment for defining Community configurations, verifying them and probe

specific scenarios.

In Community, components and connectors are called designs. Designs consist

of input, output and private channels as well as private and shared actions. Input

channels read data from the environment, output channels produce data that can

be read by the environment and private channels produce data that cannot be read

by the environment. Private actions represent internal computations and their

execution is under control of the design. Shared actions represent interactions

between the design and the environment.

In Community, space is modelled in an abstract way through a abstract data

type called loc. Loc models the positions of space depending on the notion that the

modelled system needs. In this way, Community can model different kinds of

mobility. A position (location) is assigned to any constitute of a design i.e., channels

and actions are location-aware.

In Community, the smallest unit that can be mobile is any constitute of a

component design. A design is extended with location variables that are similar to

channels. Thus there are input locations and output locations. Input locations are

under the control of the environment whereas output locations are controlled by the

design. In Community, distribution connectors synchronize the location variables of

different component designs. This allows the ability to define different mobility

patterns. For example, a distribution connector specifies which component can

change the location of another component.

41

Figure 6. A mobile component specified in Community taken from [Lop04]

Figure 6 shows a mobile component specified in Community. It can be observed

that the design has the outloc channel. This models that the location of the mobile

component is controlled by the environment. Also, it can be observed that each

channel and action is assigned with a location using @ expression. In this case, all

constitutes of the component are located in l.

Currently, Community is one of the most expressive ADLs for modelling and

analyzing distributed and mobile systems. It allows an analyst to simulate different

mobility behaviours using the Community Workbench. However, Community

models the change of location as a change of value without considering dynamic

reconfiguration of the mobile entity with the environment. Community also does not

focus on developing mobile and distributed software systems.

2.3.4 MobiS

MobiS [Cia98] is a specification language that extends PoliS [Cia99] for mobility.

PoliS is a coordination language that is based on a multiple tuple-space and multi-

set rewriting model. PoliS has been declared to be also an ADL because it separates

coordination from computation.

MobiS introduces spaces as first class entities that can move and are

hierarchically structured i.e. tuple spaces can be nested. MobiS considers spaces as

software architecture components that can be composite. A MobiS space can

contain three types of tuples: ordinary which are ordered sequences of values,

program tuples, which represent agents, and space tuples, which contain

subspaces. A program tuple can change its parent space.

Communication between two components is performed by putting tuples that

represent messages in the same space. Mobility in MobiS is modelled by the

consumption and production of space tuples by rules. A movement is performed

step by step in a tree hierarchy of spaces. MobiS defines an architectural style for

different units of mobility [Cia99]. MobiS uses spaces to represent both components

and multicast channels that support communication among components.

MobiS is expressive enough to fine-grained mobility. However, MobiS does not

provide an explicit primitive for locations. It uses spaces both to model components

and locations. MobiS also focuses on model checking, although in the literature no

model checker has been found for MobiS.

2.3.5 LAM Model

LAM [Xu03] is an architectural model that is formalized with Prt net (a high level

formalism of Petri nets) [Gen87]. It does not explicitly provide a proper textual syntax

since it only defines a model basing on Prt nets.

In LAM, components represent locations of mobile agents. A component is made

up of an environmental part and an internal connector. Internal connectors connect

agents with components. Both components and connectors are represented as PrT

nets. Agent mobility is represented by the transition firing at runtime which moves

an agent from a component to another through the connector.

LAM models in a realistic way logical mobility, since the movement of an agent is

performed by deactivating and disconnecting it from an environment and then by

reactivating it and connecting it to an arrival environment. Also, mobility is

performed taking into account the tree structure of components. However the

mobility in LAM is restricted to agents. In LAM, agents can have dynamic

connections whereas components are immobile. Thus, LAM models differently

components and agents.

43

2.3.6 ππππ-ADL

π-ADL is a formal ADL that defines the behaviour and structure of software

architectures [Oqu04]. It is based on π-calculus for defining its semantics. π-ADL

supports a textual notation as well as a UML profile for providing a graphical

notation [Oqu06]. In π-ADL, an architecture is described in terms of components,

connectors, and their composition. A composite component is defined by connecting

components and connectors and by connecting the composite component and its

internal architectural elements.

π-ADL provides the definition of dynamic software architectures through

parameterization. In this way, the number of components and connectors of

architectures is assigned at runtime using a parameter. π-ADL simulates mobility of

software architectural elements by dynamically deleting a subcomponent from a

composite component and adding it to another component.

However, the dynamic adaptability that π-ADL provides is limited since changes

have to be anticipated. For example, the composite component has to have a

component type defined in its specification in order to allow that component to move

to it. Also, π-ADL does not explicitly support location and mobility which are

essential for modelling distributed and mobile software systems instead it simulates

them by using components and composite components. In this way, the analysis

and generation of a software system does not deal with specific properties of

distributed systems.

2.3.7 Con Moto

Con Moto is one of the most recent ADLs that have been developed to address

mobile and distributed systems [Gru04][Gru05][Sch06] . The architectural model is

specified in a behavioural model and a structural model. In Con Moto, the

behavioural model uses polyadic π-calculus for expressing non-functional properties

and message passing of components in a distributed system. In the structural

model, Con Moto provides primitives to describe the structure of a distributed and

mobile system. Con Moto also has both textual language which is an XML dialect

and a graphical notation (see Figure 7).

Figure 7. A structural model in Con Moto taken from [Gru04]

Con Moto distinguishes between logical and physical components. Physical

components are devices such as PDAs or servers and logical components model

software components. The great differences between logical and physical

components are that physical components act as execution environments for logical

components and physical components have resource constraints. For example in

Figure 7, the uniPOS Server and the uniPOS Client are physical components and the

Offer, OfferLogic and the OfferStorage are logical components. Also, Con Moto

distinguishes between physical and logical connectors. Physical connectors connect

physical components such as the one between uniPOS Server and uniPOS Client in

Figure 2. Logical connectors allow logical components to communicate. Logical

connectors can be embedded in many physical connectors. For example in Figure 2,

Offer can communicate with OfferLogic.

45

In Con Moto, components are the smallest entity of mobility. Components that

are marked with an M, as observed in Figure 2, indicate that a component is mobile.

However, no information is available for knowing how to specify that a component is

mobile or not in the textual language. Also, Con Moto does not provide a precise

dynamic model in order to specify how mobility causes the reconfiguration of the

structure of the software system.

In conclusion, although Con Moto is a recent approach that is still in

development, it is a step forward in the state of art for mobile software systems. This

is because it includes explicit primitives for deploying components and supports

non-functional properties. Also, it focuses on simulating the behaviour of distributed

systems. However, Con Moto needs to define a formal model for mobility in order to

be applied to more realistic examples. It does not provide an expressive language for

specifying when components move or how. Also, Con Moto does not provide code

generation of its specified software architectures to technological platforms.

2.4 Comparison

There are many features that can be used in order to compare and analyze the ADLs

presented in section 2.3. However, the features that are of interest in the scope of

this thesis are the ones related with distribution and mobility. The paper of Roman

et.al [Rom00] is an appropriate starting point for discovering features that are

essential for models that support mobility. In this paper, a framework for viewing

mobility is described. They propose that space and coordination are the most

important dimensions to be considered for dealing mobility and that models which

provide mobility are differentiated on how they assume the unit of mobility, location

and context which highly depends on the coordination mechanisms that a model

provides. In the following, the features that have been considered in the comparison

are explained:

� Location: Locations represent the different positions where a mobile entity

can move in space. Locations, in a model, have to be explicitly dealt as first-

class entities and be distinguished from other entities of the model.

Locations as first-class entities of a model enable the modelling of space and

specify where a mobile entity can and cannot move.

� Mobility Support: This feature describes how the architectural model

supports the movement of a mobile entity. Basically, mobility support

determines what implications are caused when an entity is moved.

� Unit of Mobility: Represents the smallest entity of a model that is allowed to

move. This feature is important because it represents which entities a model

enables to move.

� Location-Awareness: This feature determines whether an entity can be

aware of its current location or not. Being aware of the current location of a

entity is important because it allows an entity to take decisions depending

on his current location.

� Migration Decision: This feature specifies when and what causes an entity

to move. This feature is associated with the terms passive and autonomous

mobility. Passive mobility is the movement of an entity caused by the

environment. Autonomous mobility is the movement of an entity caused by

the same entity.

� Coordination: The coordination mechanisms that a model supports

determine the context that is seen by each entity. The coordination

mechanisms should be specified separately from the functionality of the

entity. Since a basic characteristic of ADLs is the separation between

coordination and computation all ADLs support this characteristic.

Therefore, what differentiates the coordination feature in ADLs is whether

they support connectors or not.

� Formalism: Models have to be formal enough in order to enable a precise

description of the semantics of the distribution and mobility properties that

ADLs provide. The formalism chosen should provide the primitives needed

to specify mobility features.

� Graphical Support: ADLs provide graphical support in order to be usable.

Most ADLs do provide one. However, the objective of this comparison is to

47

discover which ADLs provide a graphical notation for specifically describing

the distribution and mobility primitives. A basic graphical notation for

distributed systems is the ability to provide a deployment notation, i.e., a

graphical notation for specifying where entities are distributed.

� Middleware: Middleware support the software development task by

implementing models in a specific technology. Middleware implement the

distribution and mobility primitives that a model provides. In this

comparison the objective is to discover to what extend ADLs have been used

to develop distributed and mobile systems.

� Tool Support: A tool supports a developer during the development process

through providing facilities and guides. Some of the facilities can be

modelling support, verification, code generation, code execution, and

simulation. The objective of this comparison is to discover what facilities do

ADL tools provide for distribution and mobility.

A comparison table has been developed from the features and the approaches

analyzed in the above section. This table is divided into two separate tables (

Table 1 and Table 4) due to the limitation of the page dimensions.

Table 1. Comparison of ADLs that address distribution and mobility (Part 1)

Location Mobility
Support

Unit of
Mobility

Location-
awareness

Migration
Decision

Darwin

An integer
value that
represents a
machine

No support Not defined No
Location-
awareness

No Support

C2Sadel A border
connector on
each host.

Reconfiguring
the
architecture

Components
mobile, all
connectors
static

No
Location-
awareness

Passive

Location Mobility
Support

Unit of
Mobility

Location-
awareness

Migration
Decision

Community A value of an
Abstract Data
Type

Change in a
value

Fine grained
mobility of a
component
design

Location-
aware

Both
autonomous
and passive
mobility

MobiS Spaces that
are composite
components

Consuming
and
producing
spaces tuples
by rules

Spaces Not
explicitly

Both
autonomous
and passive

LAM Model Components
nested in a
tree
structure

Reconfiguring
the
architecture

Mobile
Agents,
components
and
connectors
are static

Not
explicitly

Both
autonomous
and passive
mobility

π-ADL composite
components
represent
locations

Reconfiguring
the
architecture

sub-
components
are mobile

Not
explicitly

Both
autonomous
and passive
mobility

Con-Moto Physical
Components

Reconfiguring
the
architecture

Components
are mobile

No
Location-
awareness

Not clear

49

Table 2. Comparison of ADLs that address distribution and mobility (Part 2)

Coordination Formalism Graphical
Support

Middleware Tool Support

Darwin

Binding
among
components,
No explicit
notion of
connector

π-calculus Support but not
for distribution

Implemented
on CORBA for
remote
invocations

Compiler
generates C++
code and
automatic
distributed
configuration

C2Sadel Explicit
support for
connectors
that provide
distribution
and mobility

Semi-
formal, first
order logic.

Support but not
for distribution

Supports
remote
invocations
and code on
demand
mobility

Generates
application
skeletons

Community Explicit
support for
connectors
that provide
distribution
coordination

Category
theory

Support but not
for distribution

No support Modelling,
verification
and
simulation
tool

MobiS No explicit
notion of
connectors

multiple
tuple-space
based on
PoliS

No graphical
Notation

No support No support

LAM Model Explicit
support for
connectors

PrT Nets PrT Nets
notation

No support No support

Coordination Formalism Graphical
Support

Middleware Tool Support

π-ADL Explicit
support for
connectors

π-calculus UML profile but
without
deployment
notation

Unavailable
information

Code
generation to
Java, visual
modelling,
verification
tools.
Unavailable
information
for
distribution
support.

Con-Moto No explicit
notion of
connector.
Logical and
physical
connections.

Semi
formal,
Behaviour
based on π-
calculus
but
structure is
not formal

Own graphical
notation for
deployment

No support Simulation
Tool

2.5 Conclusions

From the features that have been taken into account in the comparison, the state of

art of the ADLs that have dealt with distributed and mobile systems can be

summarized as follows:

� The notion of location has been introduced as: a new type of connector, a

new type of component, a value of a data type, and a composite component.

In the case when it has been introduced as a composite component the

notion of location is quite ambiguous since the same concept is used for

both representing locations and hierarchical compositions.

� The support of mobility highly depends on how the notion of location is

introduced in the ADL. When location is represented by a value, mobility is

supported by the change of this value. When location is supported by

51

architectural element (component, connector, composite component)

mobility is supported by reconfiguring the software architecture.

� Components are the units of mobility provided by ADLs. Connectors have

not been considered to be mobile entities.

� Few ADLs allow there elements to be location aware.

� Most ADLs provide passive and autonomous mobility.

� Most ADLs provide connectors as first-class entities in order to provide

complex coordination mechanisms. However, the interesting approaches are

those that provide special coordination mechanisms for distribution such as

Community and C2Sadel.

� ADLs have been formalized by using formalisms that do not explicitly

provide first-class entities for distribution and mobility.

� Most ADLs provide a graphical support to model components, connectors

and configurations. However, an ADL that provides the graphical support for

distributing architectural elements is needed. Providing a graphical support

for describing the distribution and mobility issues allow the ADL to be more

usable. Con-Moto has a friendly notation to distinguish between logical

components and the locations where these components are assigned.

� The only ADLs that have been implemented on a specific middleware have

been Darwin and C2Sadel. However, Darwin does not provide mobility and

the mobility that C2Sadel allows is restricted.

� Each ADL provides tool support with a different focus. For example, Darwin

allows the automatic configuration of components to locations. C2Sadel

provides skeleton code generation. Community and Con-Moto focus on

simulation. π-ADL provides many tools however, there was not any

information available to analyze to what extend does it support code

generation of distributed and mobile code.

As a conclusion, the state of art needs to be updated with an ADL that provides:

� Location as a first-class entity

� Location as an architectural element in order to support mobility through

reconfiguring the architecture.

� Location-awareness to its distributed elements.

� All architectural elements to be mobile entities.

� The modelling of both passive and autonomous mobility.

� Distributed coordination mechanisms.

� A formal basis with an appropriate formalism that enables locations and

mobility as primitives.

� A graphical notation of the distribution and mobility primitives of its ADL.

� An implementation to a specific technological middleware.

� Tool support for the modelling, verification and code generation of the

distributed and mobile code.

53

CHAPTER 3
ASPECT-ORIENTED SOFTWARE
DEVELOPMENT FOR DISTRIBUTED

SYSTEMS

3.1 Introduction

Since the term “software crises” emerged in the late 1960s, the decrease of software

complexity was a matter to be dealt in software engineering techniques and the

software development processes. During the 1970s, Parnas proposed the term

modularization as a criterion to simplify software development and improve software

understanding and quality [Par72]. Modularization decomposes complex software

systems into smaller parts called modules. The practice of dividing software into

different areas of interest is widely referred to as Separation of Concerns (SoC)

[Dij74]:

<<We know that a program must be correct and we can study it from that

viewpoint only; we also know that it should be efficient and we can study its efficiency

on another day. . . But nothing is gained—on the contrary—by tackling these various

aspects simultaneously. It is what I sometimes have called "the separation of

concerns." >>

Edsger Dijkstra in [Dij74]

SoC is a technique where software can be built in an incremental way. Different

developers specialized on specific areas can develop modules of specific concerns. In

this way, SoC provides maintainability, traceability, improves comprehension, and

makes software evolve in a flexible way.

Object-Oriented Software Development (OOSD) [Boo04] is an approach that

follows SoC. OOSD provides a flexible way of building software from core concerns

that are modularized (classes) and by offering mechanisms where these concerns

can be reused and adapted (inheritance and association). However, as nowadays

software systems have become more sophisticated new concerns which mainly deal

with non-functional requirements have to be taken into account. These concerns

usually intermix (crosscut) the systems functionality. OOSD comes short in

modularizing crosscutting concerns and as a consequence software becomes less

reusable, adaptable and maintainable.

Aspect-Oriented Programming (AOP) [Kic97] supports separation of concerns by

modularizing code that crosscuts the software system in separate entities called

aspects. In this way, the code is not tangled nor scattered in multiple entities. As a

result, the code is better localized, maintained and reused. Aspect-Oriented Software

Development (AOSD) [Fil04] emerged in order to apply techniques of separating

crosscutting concerns to all phases of the software development process.

This chapter provides an introduction to aspect-oriented software development,

shows how the development of distributed software systems benefit from AOSD

techniques and how different AOSD approaches have addressed distributed

software.

3.2 Aspect-Oriented Software Development

AOSD emerged from AOP. The early contributors to AOP [Kic97] were Cristina

Lopes and Gregor Kiczales at the Palo Alto Research Centre (PARC) of the Xerox

Cooperation. Kiczales was the leader of the team that created AspectJ [Kic01]

55

[Lad03] [Mil04], the first practical implementation of AOP and, currently, the most

extended one. In December 2002, the AspectJ project was transferred from Xerox to

the open source community at eclipse.org [ASP07].

After the great success of AOP, the concepts and techniques that AOP provides

have been taken to earlier phases of the software life cycle such as requirements

[Bri02] [Ras02], and analysis and design phases [Suz99] [Aks94]. In this way, AOSD

emerged in order to improve the level of modularity, reusability, evolution and

maintainability in software development. In this section the basic concepts of AOSD

are going to be presented.

3.2.1 Crosscutting Concerns

A crosscutting concern is behaviour or data that is spread in different modules.

Crosscutting concerns can be non-functional requirements such as security,

logging, authentication, etc or functional concerns that are spread among different

modules. Crosscutting concerns cause the following:

� Tangling of Concerns: Tangling of Concerns is caused when a module

contains multiple concerns at the same time (see Figure 22(a)). As a result,

the module is less maintainable, reusable, and comprehensible.

� Scattering of Concerns: Scattering of concerns is caused when a single

concern is defined in many modules such as performance concerns.

Scattering of concerns provoke identical definitions to be repeated in

multiple modules.

(a) (b)

Figure 8. (a) The tangling concerns in the traditional applications (b) the

separated concerns in AOSD taken from [Lad03].

3.2.2 Aspect

An aspect is a software entity that provides mechanisms for encapsulating

crosscutting concerns. Figure 22(b) shows the elegancy that is achieved through

aspects in the modularization and the localization of the crosscutting concerns of

Figure 22(a). An aspect normally contains declarations similar to the ones of a class

and can contain, depending on the aspect language, the mechanisms that specify

the interactions of an aspect with the underlying system. For example, in AspectJ

aspects are the following (see section 3.2.3 for definition of pointcuts and advice):

<<Aspects are units of modular crosscutting implementation, composed of

pointcuts, advice, and ordinary Java member declarations.>>

Gregor Kizcales et al. [Kiz01]

3.2.3 Weaving

Weaving is the process that combines the concerns of the system (which can be

modularized in aspects and objects) following the weaving rules. The weaving rules

specify how the aspects are integrated with the rest of the system. Weaving rules

must not be specified in the core entities (e.g. classes) since a basic concept in AOSD

is obliviousness [Fil00] i.e. the core entities are unaware of the woven aspects. In this

way, the system can be changed only by changing the weaving rules.

57

In AspectJ, the weaving rules are defined in the aspect entity. In order to define

the weaving rules it introduces three concepts:

� Join points: Join points are well-defined points in the structure of a program

where aspect behaviour can be attached. The most common elements of a

join point are method calls.

� Pointcuts: A pointcut selects a set of join points and collects context about

these join points. For example, which class a join point belongs to or the

arguments of a method. A pointcut allows the aspect to do something with a

single statement in many places (this is called quantification [Fil00])

� Advice: Advice is the behaviour to be executed at a join point that has been

selected in a pointcut. An advice can execute before, after or around a join

point. The advice makes AOSD oblivious since the join point is unaware that

the advice is executed.

 In AspectJ, aspect reusability is lost, since aspects are defined for a specific

context. In other approaches such as JAsCo [Suv03] or MINOS [Mez01] weaving

rules are defined in external entities to aspects. For example, in JAsCo, these entities

are called hooks. Hooks are generic, reusable, and can be considered a combination

of AspectJ’s pointcuts and advice. The initialization of a hook with a specific context

is done by making use of connectors.

Two weaving models are distinguished:

� Static Weaving: Static models are those in which the aspects and non aspect

entities are declared as separate entities, however at compilation time the

two entities are combined into one. This model has the drawback that at

execution time the aspects cannot be manipulated. As a result, aspects fail

to gain a high level of evolution, maintenance and reusability. Examples to

this model are AspectJ [Kic01] and Composition Filters [Aks94] (see section

3.3.2.2).

� Dynamic Weaving: In this model the separation of the aspects and non-

aspects entities is conserved at all moments even at execution time. Aspects

can be woven and unwoven at run-time. Examples to this model are the

PROgrammable extenSions of sErvices (PROSE) platform that provides

dynamic AOP for Java [Pop02] (see section 3.3.1.4), JAsCo [Suv03], the

Disguises Model [San98] (see section 3.3.2.4) and the Dynamic Aspect-

Oriented middleware Framework (DAOF) [Pin02].

3.3 Aspect-Oriented Software Development for
Distributed Systems

Distributed applications are inherently more complex to develop than centralized

ones because of the additional requirements caused by partitioning the software

system across the network (e.g., handling of communication, replication, naming

and synchronization between system components, network failures, management of

load balancing, etc). The development of distributed systems can be facilitated by

achieving a level of transparency where all issues related with distribution are

hidden. Middleware technology such as CORBA [COR07], Java Remote Method

Invocation (RMI) [RMI07] and .NET Remoting [Ram02] have been used to simplify

the development of distributed applications and provide some type of transparency.

The different technological middleware offer constructs that solve a number of

problems such as remote access, fault tolerance and security. However, applications

that need these kinds of primitives have to introduce them in an inelegant way. For

example, Figure 9 shows the code of a C# class that its objects offer and request

services to and from other remote objects using .NET Remoting. The code in italics

shows the code related to distribution.

As it can be observed, the same module (in this case the class) has code that is

concerned with functionality and remote access. Thus distribution-related concerns

such as remote access (distributed communication) crosscut the code of a

distributed application. This tangled code (sometimes referred to as spaghetti code)

affects the implementation of the methods (as it can be observed in the Start()

method) and also in the class hierarchy (the class has to derive from

59

MarshalByRefObject). As a result, the code of the class SearchAgent cannot be

reused because it has the tangled distribution code. Also, the class SearchAgent

cannot benefit from inheritance since it needs to inherit from MarshalByRefObject

and C# does not allow multiple inheritance.

When AOSD techniques are used, all the code related to remote access can be

separated into an aspect and then it can be weaved with all the existing classes that

need remote access. In this way, the distributed application has a higher quality

since maintenance, reusability and understanding of the remote access concern is

improved. AOSD is a promising technique for developing distributed systems since

it separates concerns that crosscut them. In addition to the remote access concern

depicted in Figure 9, [Sub05] detects other crosscutting concerns found in

distributed applications such as synchronization, fault tolerance and security.

using System;
using System.Collections;
using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.IO;

namespace DistributedSearchAgents {
 public class SearchAgent : MarshalByRefObject, INotification {

 ...
 public SearchAgent(string[] keywords, string origin, ArrayList
locationsToVisit){

 }

 private void Search(){

 }

 public void Start(){
 Console.WriteLine("Agent " + this.ToString() + " starting");
 SearchAgent pal = (SearchAgent)
 Activator.GetObject(typeof(SearchAgent),

"tcp://dofi.dsic.upv.es:39876/SearchAgent.rem");

 }
 static void Main(string[] args){

 SearchAgent myAgent = new SearchAgent(keywords,

"tcp://klaatu.dsic.upv.es",locationsToVisit);
 // Remoting
 TcpChannel channel = new TcpChannel(39876);
 ChannelServices.RegisterChannel(channel);

 // Published Object
 RemotingServices.Marshal(myAgent,"SearchAgent.rem");
 Console.WriteLine("SIMULATION START");
 Console.WriteLine("");
 myAgent.Start();
 Console.WriteLine("Simulation finished. Keypress to exit.");
 Console.ReadLine();
 }
 }//end SearchAgent

}//end namespace DistributedSearchAgents

Figure 9. Code to handle a distributed client/server object in .NET Remoting

In the following, an overview of the different approaches that have addressed

AOSD for distributed systems is going to be presented. The objective is to provide a

notion of the research works that have been developed to deal with AOSD and

distribution at the implementation and at the analysis and design phases of the

software life cycle.

61

3.3.1 Implementation

This section presents how AOP languages and platforms have been used to

implement distributed and mobile applications.

3.3.1.1 AspectJ

AspectJ [Kic97] is a general purpose language that extends the Java object-

oriented programming language in order to incorporate aspects. In AspectJ, the base

code is programmed using Java objects and in order to define aspects, AspectJ is

used. AspectJ provides the aspect construct that contains: pointcuts, advice, and

Java constructs. The aspect, pointcuts and advice concepts have been previously

introduced in sections 3.2.2 and 3.2.3.

As previously stated, AspectJ is one of the first AOP language as well as the most

extended. Although AspectJ does not explicitly provide any support for distribution

and mobility constructs, it has been combined with existing middleware frameworks

to implement distributed and mobile applications. These applications have been

developed by implementing the functional requirements in Java and by

implementing the code related to distribution middleware such as CORBA and RMI

in aspects.

One of the first versions of AspectJ was used, specifically AspectJ0.3beta1, to

implement a simple remote client/server application using CORBA [Pul99]. The

objective was to work out if aspects could be used to improve the understanding,

coding and reuse of applications using CORBA.

Two aspects were defined for the client: an aspect to be woven with the client

when it was in a local version and another aspect to be woven when the client

required to be executed on the CORBA environment for distributed communication.

Also, two aspects were defined for the server: an aspect in order to allow the server to

provide a name server and another aspect in order to allow the server to provide a

file based functionality.

Mostly, the resulting benefit of this experience was that the structure of the

application was improved. This improves the transparency of distributed

applications as the programmer can implement the objects without getting confused

with distribution issues.

However, some conflicts may occur with this implementation, as both aspects for

client and server maybe woven at the same time. This problem can be solved by

defining another aspect that takes the responsibility of controlling the priority.

Another problem with this implementation is that there is no way to ensure that

when a client is woven with the aspect for distribution issues, the server is also

woven with the aspect for a name server. This can cause an inconsistent state where

the application is not really prepared for distribution. Also, since AspectJ provides

static weaving, the final code is intermixed.

However, more recent versions of AspectJ have been used to implement

distributed software systems. As a consequence, two patterns have been defined: a

Pattern for Distribution Aspects (PaDA) [Soa02a], and a Mobility Aspect Pattern

[Gar04]. In the following these patterns are explained:

3.1.1.1.1 A Pattern for Distribution Aspects (PaDA)

Soares [Soa04] proposes to use AspectJ as a general aspect-oriented language to

implement distributed applications. He believes that using a general language is

easier for users because they do not have to learn different languages.

In [Soa02b], Soares reports his experience in restructuring a web-based health

complaint system which was initially implemented in plain Java and RMI into

AspectJ. Soares removed the RMI specific code from the initial version in pure Java

into a set of aspects. He noticed that all the distribution code was tangled both in the

server-side and in the client-side. As a consequence of this experience, Soares

proposes a pattern called PaDA [Soa02a] that provides a structure for implementing

distribution using AOP (see Figure 10). The pattern consists of implementing three

distribution aspects: a client-side aspect to call remotely to the server-side, a server-

63

side aspect to enable the reception of remote calls and an exception handling aspect.

The client-side aspect is weaved with the client, the server-side aspect is weaved with

the server and the exception handling aspect is weaved with both client and server.

Figure 10. PaDA’s Structure taken from [Soa02a]

The results that Soares encountered after his experience were that the AspectJ

versions of the system using PaDA are superior to the plain Java versions. This is

because the distribution code can be added in a progressive and incremental way

without affecting on the original application. Also, the testing of the application can

be facilitated using AOP because the functionality can be tested without distribution.

Another advantage is that separating the distribution concerns in aspects can easily

facilitate the change of the distribution middleware without affecting on the

implementation of the other aspects of the application. In addition, distribution

aspects can be easily reused and extended for other application domains.

Other techniques can be used in order to separate the distribution code by using

factories or adapters’ patterns [Gam95], however, the code of the version of the

application where these patterns are used is more than the code in the AspectJ

version. Also, the code of the server and the client has to be changed in order to

incorporate these patterns to the application. In this way, the AspectJ version is

more maintainable and adaptable.

On the other hand, Soares detects drawbacks in implementing distribution

aspects with AspectJ. The most essential drawback is that the definition of a

pointcut is defined inside an aspect. This makes the defined aspects specific for a

system, or for systems adopting the same naming conventions, decreasing the

possibilities of reusability. Soares suggests that either aspect parameterization or

code generation tools need to be used when applications with aspects in AspectJ are

developed.

3.1.1.1.2 The Mobility Aspect Pattern

AOP has been used in Multi-Agent Systems (MASs) in order to separate the code

that deals with agents’ mobility from the core classes, since mobility is a crosscutting

concern of a mobile software system. In [Gar04], Garcia et al. present a pattern that

proposes to use mobility aspects to separate the code that specifies how and when

an agent should move. The pattern proposes to define abstract aspects in AspectJ

for mobility. An abstract aspect [Lad03] can define abstract pointcuts and methods

in order to increase the reusability of aspects. In this way, concrete mobility aspects

extend the abstract ones implementing the exact details and the weaving rules. Also,

mobility aspects are associated with the mobility framework. In this way, if the

mobility framework should be changed, the mobility aspect is the only code affected.

This pattern has been implemented using a framework called AspectM [Lob04]

that provides mobility. AspectM provides a set of abstract mobility aspects where the

user extends them for its application. In this way, the mobile agents’ development is

performed in a flexible way since the mobility strategies are independent of the other

concerns and can be easily changed. However, since aspects define pointcuts, as

with all AspectJ applications, the reusability of mobility aspects are decreased. Also,

the same authors of the mobility pattern suggest in [Gar06] that research has to be

65

done in order to improve the traceability of aspects and provide tools or wizards that

automate code generation of aspects.

3.3.1.2 General Object to EJB Conversion Helper
(GOTECH) Framework

GOTECH is a framework [Til03] that automates the distribution of an existing Java

application following the PaDA pattern (see section 3.1.1.1.1). The framework

provides the programmer with a tagged language that the user introduces in the

source code in order to convert the classes into Enterprise Java Beans (EJBs) and

indicates where they need to be deployed. The framework generates the aspect code

in AspectJ, converts Java classes into EJBs and deploys them, and compiles the

AspectJ code with the EJBs.

In GOTECH, the user has to learn to use the tagged language provided by the

framework. Also, this language is neither an aspect-oriented language nor a formal

one. GOTECH does not weave the aspect code to the source code. It generates new

EJB code and then weaves the AspectJ aspects. This is an inconvenient since the

source code is not reusable and maintained. Also, the framework has to change the

client code in order to allow it to interact with EJBs instead of plain Java. An

inconvenient of GOTECH is that the approach assumes that the server site never

calls back to the client site.

3.3.1.3 DJCutter

In a distributed software system, software entities are located in different hosts.

These software entities communicate and collaborate. A software entity that is at a

host shares characteristics with entities that are located at other hosts. The same

may be applied to crosscutting concerns. The crosscutting concerns or an aspect

may be reused by several entities that are distributed in different hosts. The

crosscutting concerns maybe spread over entities that are distributed.

DJCutter [Nis04] extends AspectJ in order to address crosscutting concerns that

are scattered in several objects on several hosts. Mainly, DJCutter extends AspectJ

remote pointcuts. Remote pointcuts identify join points on remote hosts i.e. the

advice of an aspect is executed in a host different from the join points of the object.

In this way, developers do not have to include code for remote method calls in Java

RMI. As a result, the development is simpler and more transparent. For example, a

remote pointcut that identifies join points that are calls to the setX() method in the

Point class on the hosts with the names hostId1 or hostId2, is defined as follows:

pointcut sample(): call(void Point.setX(int)) &&
 hosts(hostId1, hostId2)

DJCutter provides an aspect server where aspects with remote pointcuts execute

the advice body as well as a class loader from where the classes on each host have to

be loaded. This class loader automatically weaves the aspects with the class at

loading-time. Whereas in AspectJ, the user has to manually deploy the woven aspect

and classes to every host. Although DJCutter has an advantage over AspectJ,

having an aspect server centralizes all aspects that have remote pointcuts. This is

not efficient as it may cause a bottleneck.

A shortcoming of DJCutter is that remote pointcuts are dependent on the hosts

of the join points defined at compilation time. As a result, DJCutter cannot be used

for defining mobile objects where their hosts change at runtime. Another,

shortcoming is that DJCutter, as AspectJ, provides weaving at load time, i.e. static

weaving. Also, pointcuts or remote poincuts are defined in aspects reducing aspect

reusability.

3.3.1.4 PROgrammable extenSions of sErvices (PROSE)

PROSE is a platform that provides dynamic weaving of aspects [Pop02]. PROSE

consists of the Java Virtual Machine (JVM) and a set of libraries. PROSE does not

define a new AOP language. It provides aspect constructs that are implemented in

pure Java. In order to use PROSE, one has to extend the constructs it provides, e.g.

in order to define a specific aspect the base class aspect has to be extended. To

67

provide dynamic weaving of aspects, PROSE uses the Java Virtual Machine

Debugger Interface (JVMDI) to stop the execution of the JVM at join points and then

calls the advice behaviour.

To support distributed systems, PROSE allows objects and aspects to be

instantiated at different nodes of the network and weave aspects on different nodes

with an object [Pop01]. PROSE has been used with Jini to support services that join

the community dynamically. When a service joins the community it registers a proxy

at a lookup service. A service then can be dynamically weaved with aspects that are

stored in a central repository of aspects.

Currently, PROSE does not provide any explicit language support for mobile

objects, although it can be extended. Also, PROSE aspects define pointcuts and

advices. This reduces the reusability of aspects in PROSE.

3.3.1.5 AspectIX

AspectIX [Hau98] is a middleware that supports AOP for CORBA distributed

objects. The middleware offers the ability to add new aspects dynamically, i.e. it

provides dynamic weaving. In AspectIX, an object consists of a set of fragments (see

Figure 11). Each fragment has a specific behaviour of an object. For example, a

fragment may hold the constraints on the communication channel to another

fragment. Aspects are specified in order to determine which fragment represents a

distributed object.

Figure 11. Fragments of a distributed object in AspectIX taken from [Hau98]

AspectIX provides mobility and replication of its objects [Gei98]. New fragments

are added in order to support them. In the case of replication, a fragment is created

locally, in the case of mobility the fragment is created in the destination site and the

state of the previous one is transferred to it. The decision whether an object has to be

replicated or migrated is specified in an aspect.

3.3.2 Design

The above approaches have proposed languages and platforms for the

implementation of distributed applications. Although the applications have

increased their quality considerably, the implementation does not follow the software

design. In this way, software traceability is lost. As a result, there is more effort spent

in the implementation, and the maintenance and evolution of the system becomes

difficult [Cle04]. In order to solve this problem and in order to make AOP more

reusable, appropriate design techniques should support aspect-orientation. In the

following, different approaches that have considered distributed systems using

aspect-oriented design techniques are presented. Some of these approaches also

support the implementation stage from their design.

69

3.3.2.1 The D-Framework

Lopes is the first to explicitly study how distributed applications needed aspect-

oriented support and the fact that distribution is a concern that crosscuts an

application. Lopes designed a language framework called D for distributed

programming [Lop97]. D is based on separating the tangled code of a distributed

object-oriented application in aspects. The framework considers thread

synchronization and remote access as clear aspects that should be treated

separately throughout the development phases of a distributed application.

Therefore, in order to support each of these aspects, the D framework consists of two

declarative languages: the Coordination Aspect Language (COOL), for supporting

thread synchronization and the Remote Interface Aspect Language (RIDL) for

supporting interactions between remote components.

Aspects written in COOL are called coordinators. Coordinators allow objects to

have concurrent threads by controlling mutual exclusion of threads, synchronization

state, guarded suspension and notification. Aspects written in RIDL are called

portals. Portals allow objects to be distributed by describing which methods of a

class can be accessed remotely and what data can be passed: both by copy or by

reference.

Aspects in D (coordinators and portals) are not types and cannot be instantiated.

Aspects specify the classes that they are weaved to and the methods they can access

to. An aspect is automatically associated with an object when a class is instantiated

i.e. the associations between objects and aspects is one-to-one. Aspects do not have

any relationships among them as well as they do not have inheritance.

DJ is the implementation of D in Java and RMI. A tool called the Aspect Weaver

automates the transformations of D constructs (coordinators and portals) into Java

classes as well as weaves the aspects to the base code in Java. The Aspect Weaver

extends the base code with hooks (meta-data and new code) that transfer the control

to the aspects at the beginning and end of methods. Also, a layer called RIDL has

been implemented above RMI in order to support D portals. Figure 12 shows the

run-time architecture for a client object (aObj in Space1) calling a remote object (aObj

in Space 2) that is associated with a D portal. The client object refers to a proxy of

the portal (aObjPP) that checks if there are illegal remote calls. If there aren’t any

illegal calls, the portal proxy redirects the call to the portal object (aObjP) by using the

RMI layer, and as a consequence the portal object redirects the call to the real object.

Figure 12. Run-time Architecture for D’s remote objects taken from [Lop97]

Lopes has validated the D framework by applying it to a set of case studies

[Lop97]. The lines of code obtained when implementing the case studies with DJ

aspects were compared with the ones obtained when implementing them with plain

Java. Also, the tangled code reduced by DJ was measured. Despite the fact that the

validation has been performed on small and academic case studies, it gives us an

idea of the advantages of the aspect-oriented approach. The validation was

performed on 10 case studies. In all the case studies, the tangled code was reduced

and localized in the aspect modules. The results obtained with respect to the

comparison with the lines of code obtained were the following:

� Four of the case studies had the number of lines achieved in plain Java was

the same as the ones achieved in DJ.

71

� Five of the case studies the number of lines achieved in DJ was reduced in

compared with plain Java.

� One case study the result was not available.

The validation of the D framework demonstrates that distributed applications

benefit from AOSD, as the lines of code are reduced and also the distribution

concerns are well localized and can be properly maintained.

Although the languages of D are designed to be independent of the object-

oriented programming language that the classes are implemented in (the

implementation of the base code), D has been designed so that aspects are weaved

to objects that have Java-like characteristics. This limits D from being applied to

other object-oriented programming languages. Another important drawback of D is

that aspect definitions are dependent on classes i.e. once aspects are defined, the

classes that these aspects are weaved to, have to be indicated. This prevents the

reusability of aspects behaviour by many classes. Also, D should be extended to

support mobility and replication.

As a conclusion, the D approach is the first to provide declarative languages that

support aspects. The D languages are domain-specific languages as each of them

deals with a specific problem (concern). The study of the crosscutting concerns

performed in order to define D and the implementation of DJ were the base for the

birth of the actual versions of AspectJ. However, currently, aspect-oriented

languages are general purpose languages instead of domain specific. As Cristina

Lopes describes in [Lop02]:

<<The first version of AspectJ, made public in March of 1998, was a

reimplementation of DJava. It supported only COOL. Another release followed soon; I

believe it was AspectJ 0.1. It included RIDL>>

<<Past the transition from concern-specific to general-purpose aspect language,

which happened in 1998, AspectJ evolved considerable.>>

Cristina Videira Lopes in [Lop02]

3.3.2.2 Composition Filters

Composition Filters [Aks94] is a platform independent model that extends the

object-oriented model by introducing modules that can manipulate the messages

that an object receives or sends. These modules are called filter modules. In

composition filters objects are the concerns that can be implemented in any

technology and the filter modules represent the crosscutting concerns.

Figure 13. Filters in the composition filter model taken from [Ber04]

Filter modules are composed of a set of filter elements that determine whether a

message is either accepted or rejected and what action to be performed in either case

(see Figure 13). Filter modules are separated into Input Filters that filter object

received messages and Output Filters that filter object sent messages. A filter

element consists of:

� A condition: which specifies a necessary condition to be fulfilled in order to

continue evaluating a filter

� A matching part which matches the message against a defined pattern

� substituting part which replaces parts of the message.

73

The Composition Filters model is implemented for several languages such as

Smalltalk, C++, and Java. These implementations extend the languages syntax to

include keywords to support filters attached to classes.

In the area of distributed systems, the authors of Composition Filters have

applied composition filters model to abstract communications among objects

[Aks94]. Abstract Communication Types (ACTs) are used to hide the interaction

details among objects and thereby improve the reusability of objects. ACT classes

can represent distributed algorithms, coordinated behaviour or inter-object

constraints. In the distributed system design, ACTs can model layered architectures,

distributed concurrency control mechanisms and security protocols.

ACTs in composition filters are classes that can manipulate messages. This is

possible thanks to special types of Filters called Meta filters. These filters reify

messages and pass them to ACTs as arguments of class Message. In this way, an

ACT can make use of the methods of class Message such as changing the receiver,

sender, server and changing the arguments of the message.

However, composition filters does not support any explicit notion for distribution

in its model neither it supports a model for supporting mobility.

3.3.2.3 UML All pUrpose Transformer (UMLAUT)

UMLAUT is a framework that allows the user to weave aspects at the level of the

UML meta-model [Ho02]. The weaving of aspect-oriented designs is handled at the

meta-model level of UML. Thus, a weaving operation is described as a

transformation from an initial UML model to a final UML model. The final UML

model is called an implementation model as it contains enough information for

implementing the model. The UMLAUT framework provides a library that has a set

of transformation operators. The designer defines the weaving composing a set of

operators.

To support distribution aspects, a stereotype called remote is used in order to

indicate that two classes are related by a physical distribution medium. However,

from this stereotype there is not sufficient information to generate an

implementation model. Also, using the stereotype called remote on classes is quite

restrictive, since normally instances are deployed in different machines and not

classes.

3.3.2.4 The Disguises Model Approach

The disguises model [Her03] is a model that separates synchronization,

concurrency control, distribution [San00], and replication from the functional

behaviour of a system in aspects. An aspect in this model is a non-functional

property and a non-functional property is represented by an aspect. Also, the model

provides dynamic weaving of aspects.

In the disguise model, a standard language such as Java is used to implement

the functional behaviour, a specification language is defined for each aspect

(disguise) that the model supports, and a specification language is defined for

specifying the composition rules of the disguises with the functional behaviour. Also,

a UML profile is defined with stereotypes for each of the concepts of the model.

Therefore, the developer can design graphically its specification and then the

specification languages that the model supports are automatically generated. Also,

code generation is supported from the specification languages to Java.

The disguises model establishes a distinction between objects and aspects by

computation reflection techniques [Mae87]. It defines auxiliary objects that establish

a connection between the functional object and its aspects. The auxiliary objects are

separated into Input and Output objects (see Figure 14). Input Objects intercept

intercept input messages to objects and send them to aspects. Output Objects

intercept output messages from objects and send them to aspects. Aspects are

separated into input and output aspects. Input aspects are activated when a method

in the functional object is invoked such as the synchronization and replication

75

aspects. Output aspects are activated when a functional object invokes a method,

such as the distribution aspect.

objectInput Output

Functional Level

Distribution

ReplicationSynchronization

Aspect Level

Figure 14. Structure of the Disguises Model taken from [Her03]

The distribution disguise performs the tasks depicted in Figure 15. The aspect

publishes the functional object, looks in a reference table, and is in charge of

sending remote messages using the platforms. The distribution aspect receives an

output message of an object, and then it looks in the reference table in order to

search for the receptor object of the message. When it has the remote reference of

the receptor, it transforms the message in order to send it through a communication

platform to the receptor.

CORBA JavaRMI

Distribution

Output

message

Real

Output message

Figure 15. Structure of the distribution aspect taken from [Her03]

The replication disguise specifies either two techniques for replicating objects:

the Active Replication and the Passive Replication. In the active replication all the

replicas are equal and act in the same form. In the passive replication a main replica

exists that is in charge to manage all the others.

The aspects of the disguises model are platform independent; however, the

object code is in Java. Also, the languages of the disguises model are domain specific

since each is for a concrete purpose. This makes it difficult to be used. However, the

UML profile may facilitate its usability. On the other hand, the disguises model does

include any notion for software mobility.

3.3.2.5 AWED

AWED [Ben06] is an aspect-oriented language that includes constructs for

supporting the distribution of the aspect-oriented application. The language provides

constructs for specifying remote pointcuts that match join points at remote hosts

(similarly to DJCutter in section 3.3.1.3) and can determine where remote advices

can be executed. Hosts in AWED can be grouped and a pointcut can match on a

group of hosts. An aspect in AWED contains a set of fields as well as pointcuts and

advices. An aspect construct determines whether it is dynamically deployed on all

hosts or only on the local one. Also, AWED provides constructs for specifying how a

distributed aspect shares its state with other aspects basing on the type of the

aspect, its group or the host. AWED has been implemented by extending JAsCo

[Suv03] and by using RMI.

Currently the AWED language does not provide any explicit notion for object or

aspect mobility. Also, the AWED language specifies weaving rules inside aspects

reducing aspect reusability.

3.4 Conclusions

In this chapter, AOSD concepts have been introduced. Also, this chapter shows that

the development of distributed and mobile software systems can greatly benefit from

the reusability, maintainability and comprehension that AOSD provides to their

characteristics.

It can be concluded that at the implementation level of software development,

the AOP languages and platforms have improved the maintenance and complexity of

77

the code of distributed systems. Also, AOP has been applied for remote

communication more than on mobility. This fact is observable because mobility

needs a platform that provides dynamicity, including dynamic weaving.

It is important to take into account the design of distribution and mobile aspects

in order to preserve the traceability of the software development process. Also, the

code of distribution and mobility in most cases is repetitive. As a result, using

automatic code generation tools would decrease the effort in developing distributed

and mobile applications.

Table 3 Comparison of Aspect-Oriented Models that support Distribution

Distribution Mobility Weaving Implementation Graphical
Support

D Explicitly in
the language

No
support

Static
Weaving

Automatic code
generation
framework

No support

Composition
Filters

No explicit
support, but
ACTs can be
used

No
support

Static
Weaving

Implementations
exists but are not
automatic

No support

UMLAUT Explicitly with
a UML
stereotype

No
support

Static
Weaving

Partial
Implementation
models

Supports
with a UML
stereotype

Disguises
Model

Explicitly in
language

No
support

Dynamic
Weaving

Automatic code
generation
framework

Support
with a UML
profile

AWED Explicitly in
language

No
support

Dynamic
Weaving

Implementation
exits but not
automatic

No support

Table 1 shows a comparison for the approaches that take into account

distribution aspects at the design level. As it can be noticed, most of the approaches

take into account distribution (remote access), however, none take into account

mobility. As previously stated, dynamic weaving is important for distributed and

mobile systems, however, only two of the approaches support it. It can also be

noticed, that all of the approaches support implementations for their models

however, only two of them really support automatic code generation. Also, in order to

make a design approach more reusable, the graphical support is important.

However, only two of them support a graphical notation. It can be noticed that the

Disguises model mainly supports all the comparative features excluding mobility.

79

CHAPTER 4
PRISMA

4.1 Introduction

PRISMA is an approach that integrates AOSD and software architecture approaches

in order to specify software architectures of complex systems. PRISMA is based on

its models, metamodel [Per05b], Aspect-Oriented Architecture Description Language

(AOADL) [Per06a], a methodology, and a CASE tool called PRISMA CASE. The

metamodel defines the concepts and constraints needed for defining PRISMA

architectural models. The AOADL provides the primitives needed to specify PRISMA

software architectures. The PRISMA CASE tool allows the development of aspect-

oriented software architectures following the PRISMA approach using graphical

modeling tools, verification mechanisms, model compilers to automatically generate

code and tools for executing the generated code.

Since this thesis presents an extension to PRISMA, the objective of this chapter

is to provide the reader with a presentation to the PRISMA approach in order to

permit the comprehension of the coming chapters of this thesis. The reader is

referred to [Per06b] for a more detail description of PRISMA. In addition, this chapter

illustrates the primitives that the AOADL provides by specifying the aspect-oriented

software architecture of the Auction system case study previously presented without

distribution and mobility characteristics.

81

This chapter is organized as follows: Section 4.2 presents an overview of the

PRISMA model. The primitives that PRISMA provides are illustrated by the

metamodel and the Aspect-Oriented Architecture Description Language (AOADL).

Section 4.3 explains the methodology that PRISMA proposes for modelling aspect-

oriented software architectures. Section 4.4 presents how the PRISMA CASE tool

has been developed and how it supports the development of PRISMA software

architectures. Finally, section 4.5 concludes the chapter.

4.2 PRISMA Model Overview

PRISMA [4] is a model that integrates Aspect-Oriented Software Development

(AOSD) and Component Based Software Development (CBSD) in order to describe

software architectures of complex software systems. In PRISMA, architectural

elements (components and connectors) are specified by a set of aspects, which are

first-class entities of software architectures. Aspects represent specific concerns

(safety, coordination, etc) that crosscut the software architecture.

PRISMA uses a symmetrical aspect-oriented model [Har02] because it does not

consider functionality as a kernel entity that is different from aspects, and it does not

constrain aspects to specify non-functional requirements. A concern can be specified

by several aspects of a software architecture, whereas a PRISMA aspect represents a

concern that crosscuts the software architecture. This crosscutting is due to the fact

that the same aspect can be imported by more than one architectural element of a

software architecture. In this sense, aspects crosscut those elements of the

architecture that import their behaviour (see Figure 16).

Figure 16. Crosscutting Concerns in PRISMA software architectures taken from

[Per06b]

An aspect defines the state and behaviour of a specific concern of the software

system. Examples of concerns are functionality, coordination, safety, and

distribution among others. The state of an aspect at any given moment is

determined by the value of its attributes. An aspect declares a number of interfaces

and defines a behaviour for the services that these interfaces publish. This behaviour

specifies whether or not services can be executed, when they are executed, how the

execution of services changes the state of the aspect, and the order in which they

can be executed. The behaviour of an aspect is defined by means of a protocol. The

protocol describes how the different services are coordinated.

A PRISMA architectural element can be seen from two different views: the

internal and the external. In the external view (Black box view), architectural

elements encapsulate their functionality as black boxes and publish a set of services

that they offer to other architectural elements (see Figure 17 A). These services are

grouped into interfaces that are published through ports of architectural elements.

As a result, ports are the interaction points of architectural elements.

83

Figure 17.Views of a PRISMA architectural element taken from [Per06b]

The internal view (white box view) shows an architectural element as a prism.

Each side of the prism is an aspect that the architectural element imports. In this

way, architectural elements are represented as a set of aspects (see Figure 17 B) and

the weaving relationships among them. Weavings allow the execution of an aspect

service to trigger the execution of services in other aspects. A weaving is defined by

means of operators that describe the order in which services are executed. From the

AOSD point of view PRISMA weavings can be defined as follows: every service of an

aspect is a join point, the services that trigger a weaving are the pointcuts, and the

services that are executed as a consequence of weavings are the advices. In PRISMA,

weavings are specified outside of aspects and inside of architectural elements in

order to preserve the independence of the aspect specification from other aspects

and weavings. As a result, aspects can be reused.

The white box and the black box views are connected by means of interfaces

which are associated to ports and are used by aspects. Consequently, a request for a

service that arrives to a port of an architectural element is processed by an aspect

that uses the same interface that is used by this port.

Figure 18. Communication between the white box and the black box views taken from

[Per06b]

PRISMA has three kinds of architectural elements: components, connectors, and

systems. Components and connectors are simple, but systems are complex

components. A component is an architectural element that captures the

functionality of software systems and does not act as a coordinator among other

architectural elements; whereas, a connector is an architectural element that acts as

a coordinator among other architectural elements.

In software architectures, components are connected with connectors. As a

result, attachments are the channels that enable the communication between

components and connectors. Each attachment is defined by attaching a component

port with a connector port. In Figure 16, the lines between component ports and

connector ports are attachments.

PRISMA components can be simple or complex. The complex ones are called

systems. A PRISMA system is a component that includes a set of architectural

elements (connectors, components and other systems) that are correctly attached. In

addition, a system can have its own aspects and weavings as components and

connectors. Since a system is composed by other architectural elements, the

composition relationships among them must be defined. These composition

relationships are called bindings. Bindings establish the connection among the ports

of the complex component (the system) and the ports of the architectural elements

that a system contains (see Figure 19).

85

Figure 19. Systems taken from [Per06b]

PRISMA provides a metamodel in order to define properties of PRISMA models in

a precise way [Per05b]. The PRISMA metamodel is defined using the UML version

1.5 class diagram and the constraints are specified using OCL [UML07]. PRISMA

also provides an AOADL [Per06a] that allows the description of architectural models

based on its metamodel.

 The PRISMA AOADL is an extension of the OASIS language [Let98]. OASIS is a

formal language that defines conceptual models. PRISMA AOADL uses some of

OASIS syntactical constructions which are based on Modal Logic of Actions [Har84]

in order to specify state and a dialect of the Polyadic Pi-Calculus [Mil93] to define its

behaviour. The grammar of the AOADL is presented in APPENDIX A.

In the following, the concepts of PRISMA are explained using the metamodel and

the AOADL.

4.2.1 Architectural Model

An architectural model defines a software architecture from the first-class

entities of the type definition level. The first-class entities are components,

connectors, aspects, interfaces, and attachments. An architectural model in the

metamodel is represented by the PRISMAArchitecture metaclass (see Figure 20). The

PRISMAArchitecture metaclass has five aggregation relationships with each one of the

classes that represent the first-class entities of the PRISMA model. Since

components, connectors, interfaces, and aspects are reusable, they can be used by

more than one architectural model.

The PRISMAArchitecture metaclass has an attribute called name and six

methods: one for creating a new software architecture and the other five for creating

the first-class entities of a software architecture.

87

Figure 20. The package ArchitectureSpecification of the PRISMA metamodel

taken from [Per06b]

Figure 21 shows the syntax of the architectural model in the AOADL. The

specification of an architectural model starts with the reserved word

Architectural_Model and ends with the reserved word End_Architectural_Model. Then,

a name is given to the architectural model. In the case of the architectural model of

the case study it is called AuctionAgents. Afterwards, each first-class entity is

specified. Systems (complex components) can be also specified in the architectural

model.

Figure 21. Syntax of the architectural model in the AOADL

In the next sections each one of the blocks of the specification are explained.

4.2.2 Interfaces

An interface publishes a set of services. It describes the signature of the services

that can be invoked or requested through that interface (see Figure 22). The

signature of a service specifies its name and parameters (see Figure 23). Parameters

are declared by specifying their kind (input/output), name and data type.

Figure 22. The package Interfaces of the PRISMA metamodel taken from

[Per06b]

Architectural_Model AuctionAgents

<interface_block>

<aspect_block>

<component_block>

<connector_block>

<attachments_block>

[<system_block>]

End_Architectural_Model AuctionAgents;

89

Figure 23. The package SignatureOfService of the PRISMA metamodel

[Per06b]

An example of an interface in the Auction case study is the interface ICustProc,

which publishes the service notifyProdInterest (see Figure 24). The notifyProdInterest

service has four input parameters and an output parameter. Input parameters are

those that are required for executing the service; whereas output parameters are

those that are generated by the execution of the service. For example, the

notifyProdInterest service is used by the Procurement component and the Customer

component. The Procurement component sends to the Customer component the

information of a product: a saleroom (Saleroom), a sale number (SaleNum), a date of

an auction (DateOfAuction) and a lot description (Lotdescrip) and the Customer

returns if it is interested or not (Interested).

Figure 24. Specification of the interface IProcurAuction

Interface ICustProc
 notifyProdInterest(input Saleroom:string, input SaleNum,
 input DateOfAuction:string,
 input Lotdescrip: string,
 output Interested:bool);

End_Interface ICustProc

4.2.3 Aspects

An aspect defines the behaviour of a specific concern of the software system

which can be functional, coordination, safety, etc. An aspect specification consists of

several sections each represented in the metamodel as a metaclass (see Figure 25).

Figure 25. The metaclass Aspect of the package Aspects of the PRISMA

metamodel taken from [Per06b]

Each aspect specifies the kind of concern that it defines, its name, and the

interfaces it uses to specify its behaviour. Figure 26 shows the header of the aspect

called ProcurFunct in the AOADL. ProcurFunct aspect specifies a concern of kind

functional, and it uses the interfaces IProcurAuction and ICustProc.

Figure 26. Specification of the header of an aspect with interfaces

(ProcurFunct)

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

 … …

End_Aspect ProcurFunct;

91

4.2.3.1 Attributes

Attributes store information about the characteristics of an aspect. Each

attribute has a name and a data type. The data type defines the kind of values that

the attribute can store. There are three kinds of attributes:

� Constant: The stored values cannot change

� Variable: The stored values can be changed

� Derived: The value is calculated on demand applying its derivation rule.

Constant and variable attributes can specify that they must always store a value

by specifying the reserved word NOT NULL after their data type specification. In

addition, they can store a value by default, which can be only modified when the

attribute is variable.

PRISMA proposes that the first letter of an attribute is written in small letter in

order to clearly distinguish attributes from parameters, which start in capital letter.

Figure 27 shows the specification of the ProcurFunct aspect attributes. In the

AOADL, the attributes section is preceded by the reserved word Attributes. The

ProcurFunct aspect specifies the variable attributes keywords, saleroom, and

saleNum whose data type is string, the variable attributes limitDate and

dateOfAuction whose data type is Date and the variable attributes keepSearching

and finishedSearching whose data type is boolean. The attributes keywords and

limitDate cannot have an empty value because they are NOT NULL.

Figure 27. Specification of variable attributes of the aspect ProcurFunct aspect

4.2.3.2 Services

Services specify the behaviour of an aspect. An aspect defines public and private

services. Public services define behaviour of services published in interfaces which

an aspect uses. Private services define internal behaviour that an aspect needs.

Each service has a name and can have a set of parameters (as described in

section 4.2.2) whose type can be input or output. A service can be in, out and in/out.

An in service has a server behaviour and receives results. An out service has a client

behaviour and sends results. An in/out service has both a client and a server

behaviour.

Every aspect must specify the begin service, the end service and the interface

services that the aspect defines. The begin service executes when an aspect starts its

execution and the end service is executed when an aspect stops. The services begin

and end can only be requested from the creation and destruction services of the

architectural elements that import the aspect because aspects can only be

instantiated in a context of an architectural element.

For example, Figure 28 shows a segment of the services section of the

ProcurFunct aspect. It can be observed that the begin service is specified with

parameters. It can be observed that these parameters are specified for initializing the

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

 Attributes
 Variables
 keywords: string NOT NULL;
 limitDate: Date NOT NULL;
 saleroom: string;
 saleNum: string;
 dateOfAuction: Date;
 keepSearching: boolean;
 finishedSearching: boolean;
 ……

End_Aspect ProcurFunct;

93

attributes that need a value at instantiation time, i.e. the attributes that are NOT

NULL (see Figure 27). The end service is also specified. Since the aspect uses the

IProcurAuction interface and the ICustProc interface (see Figure 24), their services

searchforlot and notifyProdInterest have to be specified. For example, searchforlot

service is indicated with an in/out meaning that the aspect requests the service (out)

and the aspect receives the results of the service execution (in).

Figure 28. Specification of some services of ProcurFunct aspect

4.2.3.3 Valuations

Valuations define the change of state of an aspect when one of its services is

executed. A service can have one or more valuations associated to it. The

specification of a valuation consists of three sections: condition, service and

postcondition. A condition is validated in the aspect state before its execution, and

its specification is optional (meaning “true” when missing).

The meaning of a valuation depends on whether a service is in or out and its

kind of parameters. In the following, the meaning of the postcondition of a valuation

is explained:

� A service without output parameters

• in: The service is provided and executed by the aspect.

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

 Services
 begin(input Keywords: string, LimitDate: Date);
 ……
 finishedSearchingWithoutResults();
 in/out searchforlot(input keywords:string, output Saleroom:string,
 output SaleNum, output DateOfAuction:string,
 output Lotdescrip:string);
 in/out notifyProdInterest(input Saleroom:string,input SaleNum:string,
 input DateOfAuction:Date,
 input Lotdescrip:string,
 output Interested: boolean);
 … …
 end();

End_Aspect ProcurFunct;

o Valuation in: The postcondition must be satisfied after the

service execution

An example of this case is the changeMaximumBid service of the

BidderFunct aspect (see Figure 29). changeMaximumBid service is

executed by BidderFunct aspect when the Customer requests to

change the maximum bid of a product. changeMaximumBid is of

kind in and the valuation assigns the NewMaximumBid input

parameter to lotMaximumBid attribute.

.

Figure 29. Specification of a valuation of in changeMaximumBid of the

BidderFunct aspect

• out: The service is requested by the aspect.

o Valuation out: The postcondition must be satisfied after the service

request.

• in/out: The service is provided and executed by the aspect, and the

service is also requested by the aspect. In this case, two kinds of

valuations can be defined:

o Valuation in: The postcondition must be satisfied after the service

execution.

o Valuation out: The postcondition must be satisfied after the service

invocation.

� A service with output parameters: A service with output parameters always

has an in/out behaviour. The meaning of the valuation varies depending if

the service is provided or requested as presented below.

Functional Aspect BidderFunct using ICustBidder, IBidderAuct

 Services
……
 in changeMaximumBid(input NewMaximumBid:double)
 Valuations
 [in changeMaximumBid(input NewMaximumBid)]
 lotMaximumBid:= NewMaximumBid;
…….

End_Aspect BidderFunct;

95

• The service is provided and executed by the aspect, and the aspect

sends the results of the service execution

o Valuation in: The postcondition must be satisfied after the service

execution. The output parameters of the service cannot be used as

a right term of the valuation in any case, neither in the condition

nor in the postcondition, due to the fact that the service has not

been executed and its output parameters do not have value. In fact,

output parameters are usually used as a left term of the

postcondition in order to satisfy the condition that requires output

parameters to have a value after the service execution. must be

satisfied after the service execution.

Figure 30 shows the specification of the searchforlot service of the

AuctFunct aspect. The searchforlot service is provided and executed

by the AuctFunct aspect, and the aspect sends the results of the

service execution. In this case, a condition checks whether the

Keywords input parameter matches with the value stored in the

lotDescrip attribute of the AuctFunct aspect. If the condition is

satisfied, the postcondition of the valuation assigns the values of the

output parameters with values stored in attributes of the AuctFunct

aspect.

Figure 30. Specification of a valuation of in/out searchforlot of the AuctFunct

aspect

o Valuation out: The postcondition must be satisfied after sending

the result. The semantics of the out valuation is conditioned by the

semantics of the in valuation. If the in obtains a result, the out is

related to sending the result. Since the service has already been

executed and the output parameters have value, they can be used

in the condition and in the right terms of the postcondition.

• The service is requested by the aspect and the aspect receives the

result of the service.

o Valuation in: The postcondition must be satisfied after the

reception of the service result. Since the service has already been

executed and the output parameters have value, they can be used

in the condition and in the right terms of postcondition.

Figure 31 shows the specification of searchforlot service which is

first requested by the ProcurFunct aspect (out) and then the aspect

receives the result of the service (in). The valuation specifies how the

state of ProcurFunct aspect changes when the aspect receives the

result (the output parameters). Since the service has already been

executed and the output parameters have value, they can be used in

the condition and in the right terms of the postcondition. In this

Functional Aspect AuctFunct using IProcurAuction, IBidderAuct, ICustAuct
 Services
 … ….
 in/out searchforlot(input Keywords:string, output Saleroom:string,
 output SaleNum:string, output DateOfAuction:string,
 output Lotdescrip:string)
 Valuations
 {Keywords==lotDescrip}[in searchforlot(input keywords,
 output SaleRoom,
 output SaleNum,
 output DateOfAuction,
 output Lotdescrip)]
 Saleroom := saleroom1, SaleNum:= saleNum1,
 DateOfAuction:= dateOfAuction1, Lotdescrip:=lotdescrip;
 … …
 end();
End_Functional Aspect AuctFunct;

97

case, a condition checks whether the result received in

DateOfAuction is before the date stored in the limitDate attribute (see

Figure 27) of the ProcurFunct aspect. If the DateOfAuction is before

the date stored in the limitDate attribute, the postcondition of the

valuation assigns the results returned in the output parameters to

the values of the attributes of the ProcurFunct aspect.

Figure 31. Specification of a valuation of in/out searchforlot of the

ProcurFunct aspect

o Valuation out: The postcondition defines the state of the aspect after

the service request. The output parameters of the service cannot be

used as a right term of the valuation in any case, neither in the

condition nor in the postcondition due to the fact that the service

has not been executed and its output parameters do not have

value.

4.2.3.4 Preconditions

Preconditions establish the conditions that have to be satisfied in order to

execute an aspect service. In the AOADL, a precondition is specified by indicating

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

 Services
 … ….
 in/out searchforlot(input Keywords:string, output Saleroom:string,
 output SaleNum:string, output DateOfAuction:string,
 output Lotdescrip:string)
 Valuations
 {DateOfAuction<= limitDate}[in searchforlot(input keywords,
 output SaleRoom,
 output SaleNum,
 output DateOfAuction,
 output Lotdescrip)]
 saleroom := Saleroom, saleNum:= SaleNum,
 dateOfAuction:= DateOfauction, lotdescrip:=Lotdescrip;

 … …
 end();

End_Aspect ProcurFunct;

the service and the condition for its execution separated by the reserved word if. An

example of a precondition is in the BidderFunct aspect (see Figure 32). The

precondition indicates that the bid service cannot be executed unless the stop

attribute is not false. This indicates that the bidder cannot bid if the customer does

not want it to bid.

Figure 32. Specification of a precondition in the BidderFunct aspect

4.2.3.5 Constraints

Constraints condition the value of attributes of an aspect. Constraints have to be

satisfied each throughout the entire execution process of an aspect. As a result,

each time that a service execution is finished, the value of each attribute must

satisfy the aspect constraints.

A constraint specification consists of defining a static or a dynamic condition.

Static constraints make reference to one state of the aspect whereas dynamic

constraints make reference to several states of the aspect. If the condition is

dynamic, it uses one of the temporal operators: always, never, since, until, and their

possible combinations.

An example of a possible constraint can be in the ProcurFunct aspect. A

constraint for the dateOfAuction attribute can be specified (see Figure 33). The

constraint specifies that the value stored in the dateOfAuction attribute is always less

than the value stored in the limitDate attribute.

Functional Aspect BidderFunct using ICustBidder, IBidderAuct
… …

 Preconditions

 bid(input currentBiddingAmount, output Situation) if (stop = false);

… …

End_Aspect BidderFunct;

99

Figure 33. Specification of a constraint in the ProcurFunct aspect

4.2.3.6 Transactions

Transactions are complex services that are composed of other services. The

services that compose a transaction are atomically executed (all or none). As a result,

if the execution of a transaction service fails, the services that have been already

executed are roll backed.

An example of a transaction is the transaction NOTIFYPRODINTEREST of the

CustFunct aspect (see Figure 34). This transaction receives the information of a

product that is going to be auctioned in the input parameters. The transaction is

composed of the setInterested service and the saveItem service. First the transaction

invokes the setInterested service (indicated with “?”). This service is needed to allow

the customer to introduce if he is interested or not in the product. Then, the

transaction invokes the saveItem service. The saveItem service has two valuations.

In one valuation, the postcondition is satisfied if the customer is interested in a

product and as a result, the product information is saved. In the other valuation, the

postcondition does not save any values for the product information when the

customer is not interested in the product. The NOTIFYPRODINTEREST transaction

also has a valuation associated to it. The valuation assigns a value to the Interested

output parameter.

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

 Attributes
 Variables
 ……
 dateOfAuction: Date;
 ……
 Constraints
 ……
 always {dateOfAuction<= limitDate}
 ……

End_Aspect ProcurFunct;

Figure 34. Specification of a transaction in the CustFunct aspect

4.2.3.7 Played_Roles

Played_Roles define the roles that an aspect can play. A played role establishes

how and when the services of an interface can be required or provided. As a result,

played_roles are used for specifying how public services execute and private services

are not specified in played_roles.

In Figure 35, the played_roles of the ProcurFunct aspect are specified.

ProcurFunct aspect has two played_roles: CUSTPROC and PROCURAUCT.

CUSTPROC is a played_role that defines how the service of the interface ICustProc

Functional Aspect CustFunct using ICustProc, ICustBidder

 Services … …

 setInterested(input CustomerInterest:boolean)
 Valuations
 [setInterested(input CustomerInterest)]
 interested:=CustomerInterested;

 saveItem(SaleRoom, SaleNum,DateOfAuction,Lotdescrip)
 Valuations
 {interested==true}[saveItem(SaleRoom, SaleNum, DateOfAuction,
 LotNumber)]
 iSaleRoom:=saleroom, iSaleNum:=SaleNum,
 iDateOfAuction:=DateAuction,
 iLotdescrip:=Lotdescrip;
 {interested==false}[saveItem(SaleRoom, SaleNum, DateOfAuction,
 LotNumber)]
 iSaleRoom:=NULL, iSaleNum:=NULL,
 iDateOfAuction:=NULL,
 iLotdescrip:=NULL;

 Transactions
 in/out NOTIFYPRODINTEREST(input Saleroom:string, input SaleNum:string,
 input DateOfAuction:string,
 input Lotdescrip: string,
 output Interested:boolean);

 notifyProdInterest = setInterested?(CustomerInterested)� SAVEITEM;
 SAVEITEM = saveItem?(SaleRoom, SaleNum, DateOfAuction,LotNumber);
 Valuations
 [NOTIFYPRODINTEREST(SaleRoom, SaleNum,DateOfAuction,Lotdescrip,
Interested)]
 Interested:=interested;

End_Aspect CustFunct;

101

executes. The name of the interface that the played_role defines is preceded after the

reserved word for. A process is then specified using a dialect of π-calculus. The

process of CUSTPROC specifies that the service notifyProdInterest has a client

behaviour (indicated with “!”) and after the service must have a server behaviour

(indicated with “?”). PROCURAUCT is a played_role that defines how the searchforlot

service of the interface IProcurAuction executes.

 Figure 35. Specification of played_roles of ProcurFunct aspect

4.2.3.8 Protocols

Protocols glue the set of services of an aspect. The services of an aspect can be

private services and services of the different played_roles. As a result, a protocol

defines a process that coordinates the private and public services of an aspect. The

protocols section has to be included in an aspect definition.

 Figure 36 shows the specification of the protocols of the ProcurFunct aspect. The

protocols glue the begin service, the end service, the private services of the

ProcurFunct aspect: setKeepSearchingToTrue, and finishedSearchingWithoutResult,

and the services of the played_roles: PROCURACUCT and CUSTPROC. The protocol

specifies that when the begin service is executed, the setKeepSearchingToTrue

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

 CUSTPROC for ICustProc ::= notifyProdInterest!(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested)
 �
 notifyProdInterest?(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested);
 PROCURAUCT for IProcurAuction ::= searchforlot!(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip)
 �
 searchforlot?(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip);

End_Aspect ProcurFunct;

service, the end service, or the PROCURFUNCT2 process is executed (indicated with

+). The PROCURFUNCT2 process specifies that the searchforlot service of the

played_role PROCURACUCT has to be requested and then received, then the aspect

can keep requesting and receiving the searchforlot service, execute the

PROCURFUNCT3 process, or execute the finishedSearchingWithoutResult. This is

needed in order to specify that once the ProcurFunct aspect searches for a product: it

can keep searching for another product, it can notify the customer about the found

product or it can finish searching.

 Figure 36. Specification of protocols of ProcurFunct aspect

4.2.4 Simple Architectural Elements: Components
and Connectors

An architectural element is specified by its set of ports, the aspects that form it,

and the aspect weavings. An architectural element is represented in the PRISMA

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

Protocol

 PROCURFUNCT:= begin(Keywords, LimitDate)� PROCURFUNCT1;
 PROCURFUNCT1:= setKeepSearchingToTrue() + end()+ PROCURFUNCT2;
 PROCURFUNCT2:= PROCURACUCT_searchforlot!(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip)
 �
 PROCURACUCT_searchforlot?(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip)
 �
 (PROCURFUNCT2 + PROCURFUNCT3
 + finishedSearchingWithoutResult?()) ;
 PROCURFUNCT3:= CUSTPROC_notifyProdInterest!(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested)
 �
 CUSTPROC_notifyProdInterest?(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested)
 �
 (PROCURFUNCT1 + PROCURFUNCT2);

End_Functional Aspect ProcurFunct

103

metamodel by the ArchitecturalElement metaclass (see Figure 37).

ArchitecturalElement metaclass is related with Port, Aspect and Weaving

metaclasses. The Port and Weaving metaclasses have a composition relationship

with the ArchitecturalElement metaclass. This is due to the fact that ports and

weavings are not reused by many architectural elements, i.e., each architectural

element has its own ports and weavings. The Aspect metaclass has an association

relationship with the ArchitecturalElement metaclass because an aspect can be

reused by many architectural elements.

 Figure 37. The package ArchitecturalElements of the PRISMA metamodel

taken from [Per06b]

Ports of an architectural element represent interaction points that an

architectural element has with other architectural elements. Each port publishes

public services of an aspect played_role. An architectural element has at least one

port. Each port is specified by defining its name, the interface that it publishes, and

the played_role that it associates to the interface.

A weaving specification defines how the execution of a service of an aspect can

trigger the execution of a service of another aspect. An aspect weaving is specified by

determining the aspects that participate in the weaving, the services of the aspects

where they are weaved, and the weaving operators.

The AOADL allows specifying a weaving between service s1 of aspect A1 and

service s2 of aspect A2 using one of the following weaving operators:

� A2.s2 after A1.s1: A2.s2 is executed after A1.s1

� A2.s2 before A1.s1: A2.s2 is executed before A1.s1

� A2.s2 instead A1.s1: A2.s2 is executed in place of A1.s1

� A2.s2 afterif (Boolean condition) A1.s1: A2.s2 is executed after A1.s1 if the

condition is satisfied.

� A2.s2 beforeif (Boolean condition) A1.s1: if the condition is satisfied, A2.s2

is executed followed by A1.s1; otherwise, only A2.s2 is executed.

� A2.s2 insteadif (Boolean condition) A1.s1: A2.s2 is executed in place of

A1.s1 if the condition is satisfied.

As it can be noticed from section 4.2.3 an aspect definition does not include any

references to other aspects. This independence of the aspect specification from other

aspects and weavings allows aspects to be reusable. In addition, the fact that the

specification of weavings is inside architectural elements provides the flexibility of

specifying different behaviours of an architectural element by importing the same

aspects and defining different weavings. Therefore, architectural elements definitions

import aspects and define the needed weavings.

A simple architectural element in PRISMA can be a component and a connector.

A component is an architectural element that captures a given functionality of a

software system. A connector is an architectural element that acts as a coordinator

between other architectural elements. The difference between a component and a

connector is that a connector must import a coordination aspect and a component

cannot. As a result, a Component metaclass and a Connector metaclass inherit the

properties of the ArchitecturalElement metaclass in the metamodel (see Figure 38).

For this reason, both components and connectors are specified by aspects, ports

and weavings in the AOADL.

105

A rc h i t e c t u ra lE le m e n t

(f ro m A rc h i t e c t u ra l E l e m e n t s)

C om p o n e n t

n e w C om p o n e n t (C o m p N am e : s t r in g)

(f ro m C o m p o n e n t s)
C o n n e c t o r

n e w C o n n e c t o r (C n c tN a m e : s t r in g)

(f ro m C o n n e c to r s)

C om p o n e n t s C o n n e c t o rs

Figure 38. The package KindsOfArchitecturalElements of the PRISMA

metamodel taken from [Per06b]

The Connectors package of Figure 38 is shown in detail in Figure 39. The

Connector metaclass has an associated constraint that specifies that a connector

must import an aspect whose concern is coordination. Moreover, the Connector

metaclass has another constraint associated to it that specifies that a connector

must have at least two attachments (see section 4.2.5) associated to it, and each

attachment must connect the connector to two different components.

inv:

self.Types::Aspects::aspect --> exists (A | A.concern == "coordination")

Connector

newConnector(CnctName : string)

inv:

Types::Attachments::attachment --> select(attch | attch.Types::ArchitecturalElements::Ports::port -->

 exists(p1, p2 | (p1.Types::ArchitecturalElements::architecturalelement=self)

or

(p2.Types: :ArchitecturalE lements::architecturalelement=self)) -->ex ists(attch1, at tch2 | at tch1.ports -->

exists (pc1 | pc1.Types::Archi tecturalElements: :archi tecturalelement.oclIsTypeOf(Component))

and

attch2.ports --> exists(pc2 | pc2.Types: :ArchitecturalElements::architecturalelement.oclIsTypeOf(Component))

and

(pc1.Types: :ArchitecturalElements::KindsOfArchitecturalElements::Components: :component

<>

pc2.Types::ArchitecturalElements::KindsOfArchitecturalElements::Components::component))

Figure 39. The package Connectors of the PRISMA

metamodel taken from [Per06b]

An example of an architectural element specification is the Customer component

specification (see Figure 40). A component specification starts with the reserved word

Component and ends with the reserved word End_Component. The specification

consists of a name (Customer), the importation of needed aspects (CustDist,

CustFunct), the weavings among the aspects (a weaving between the move service of

the CustDist aspect and the biddingInf service of the CustFunct aspect), a set of ports:

MOVEProcPort, MOVEBidderPort, CUSTPROCPort, CUSTBIDDERPORT, and

CUSTAUCTPort and the two sections that allow the creation and destruction of the

architectural element.

Figure 40. Specification of the Customer component type

Each port is specified by defining its name, the interface that it publishes and

the played_role that it associates to the interface. For example in Figure 40, the

Component Customer

 Import Distribution Aspect CustDist;
 Import Functional Aspect CustFunct;
 Weavings
 CustDist.move(NewAmbient) after CustFunct.biddingInf(iSaleRoom,
 iSaleNum,
 iDateofAuction,
 iLotNumber,
 maximumBid);
 End_Weavings

 Ports
 MOVEProcPort: IMobility Played_Role CustDist.MOVEProc;
 MOVEBidderPort: IMobility Played_Role CustDist.MOVEBidder;

 CUSTPROCPort: ICustProc Played_Role CustFunct.CUSTPROC;
 CUSTBIDDERPORT: ICustBidder Played_Role CustFunct.CUSTBIDDER
 CUSTAUCTPort: ICustAuct Played_Role CustFunct.CUSTAUCT;
 End_Ports
 new(input ParentAmbient: string)

 {

 CustDist. begin(ParentAmbient);

 CustFunct.begin();

 }

 {

 CustDist.end();

 CustFunct.end();

 }

End Component Customer;

107

MOVEProcPort port publishes the interface called IMobility and the played_role

MOVEProc of the CustDist aspect.

The constructor section is preceded by the reserved word new and the needed

list of parameters. Next, the invocations of the begin services of the imported aspects

are specified in curly brackets. On the other hand, the destruction section is

preceded by the reserved word destroy(). Next, the invocations of the end services of

the imported aspects are specified in curly brackets.

A connector architectural element is specified in the same way as a component.

The only difference between a component and a connector specification is that the

connector type is specified starting with the reserved word Connector and ending

with the reserved word End_Connector instead of starting with Component and

ending with End_Component.

4.2.5 Attachments

An attachment establishes a connection between a port of a component and a

port of a connector. In the PRISMA metamodel, the Attachment metaclass is

associated with the Port metaclass (see Figure 41). A constraint is specified in order

to restrict that an attachment can only connect a component port and a connector

port. Also, the Attachment metaclass has four properties in order to define the

maximum and minimum cardinalities of an attachment. These properties constrain

the instances of an attachment connected to a port of a component instance or a

connector instance.

Attachment

card_min__port_component : char;

card_max_port_component : char;

card_min_port_connector : char;

card_max_port_connector : char;

name : string;

newAttachment(AttchName : string, PortC : Port, PortCnct : Port, CMinPC : char, CMaxPC : char, CMinPCnct : char, CMaxPCnct : char)

Port
(from Ports)

0..*

2

0..*

2

linkPort

inv:

self.Types::ArchitecturalElements::Ports::port -->exist(p1,p2 |

(p1.Types::ArchitecturalElements::architecturalelement.oclIsTypeOf(Component)

and

p2.Types::ArchitecturalElements::architecturalelement.oclIsTypeOf(Connector))

or

(p1.Types::ArchitecturalElements::architecturalelement.oclIsTypeOf(Connector)

and

p2.Types::ArchitecturalElements::architecturalelement.oclIsTypeOf(Component)))

Figure 41. The package Attachments of the PRISMA metamodel taken from

[Per06b]

Figure 42 specifies attachments of the AuctionAgents architectural model. A type

of attachment called AttchAuctCnct is specified to connect the CnctAuctPortBidder

port of AuctionCnct connector and the BidderAuctPort port of the AuctionHouse

component. In addition, the minimum and maximum cardinalities of the

attachment are specified. The AuctionCnct.CnctAuctPortBidder(1,1) means that only

one instance of the AttchAuctCnct can be connected to the CnctAuctPortBidder port of

a AuctionCnct instance. The Auction.BidderAuctPort(1,1) means that only one

instance of the AttchAuctCnct can be connected to the BidderAuctPort port of an

AuctionHouse instance. AttchAuctCnct is graphically shown in Figure 43.

Figure 42. Specification of attachments in the auction software architecture

Attachments

 AttchAuctCnct:

 AuctionCnct.CnctAuctPortBidder(1,1)� AuctionHouse.BidderAuctPort(1,1);

 AttchCustAuc:

 Customer.CUSTAUCTPort(1,n)� AuctionCnct.CustPortAuct(1,n);

 ……

End_Attachements

109

Auction

House

«connector»<<connector>>

AuctionCnct

CnctAuctPortBidder

(1,1)

BidderAuctPort

(1,1)

AttchAuctCnct

Figure 43. AttchAuctCnct attachment that connects AuctionCnct and Auction

Another attachment specified in Figure 42 is the AttchCustAuc attachment type

that connects the CUSTAUCTPort port of the Customer to the CustPortAuct port of the

AuctionCnct. It is also specified that at least one to many (1,n) AttchCustAuc

attachment instances can be connected to the CUSTAUCTPort port and that at least

one to many (1,n) AttchCustAuc attachment instances can be connected to the

CustPortAuct port. Figure 44 shows a possible configuration of AuctionCnct

instances called eBayCnct and ChristiesCnct instances connected to Customer

instances called Client1 and Client2. The figure shows that

Client1
«connector»<<connector>>

eBayCnct

Client2
«connector»<<connector>>

ChristiesCnct

CustPortAuct
CUSTAUCTPort

CUSTAUCTPort

CustPortAuct

Figure 44. A possible configuration of AttchCustAuc attachment that connects

AuctionCnct and Customer instances

4.2.6 Systems

Systems are complex components. A PRISMA system is a component that is

composed of a set of components (simple components or other systems) and

connectors that are connected through attachments. A system specifies an

architectural pattern that can constrain how architectural elements are connected

and the number of its architectural element instances.

The composition between a system and one of its architectural elements is made

between a port of a system and a port of its architectural elements. This composition

relationship is called a binding. A binding is required to resend the provided and

requested services of the architectural element through a system port. As a result,

in the metamodel the Binding metaclass is associated with the Port metaclass. In

addition, an OCL constraint is specified in order to indicate that a binding can

connect a port of a system and a port of either a component (or system) or a

connector that belong to a system.

Binding

card_min_port_AR : char;

card_max_port_AR : char;

card_min_port_Sys : char;

card_max_port_Sys : char;

name : string:

newBinding(BdName : string, PSys : Port, PAR : Port, CMinPSys : char, CMaxPSys : char, CMinPAR : char, CMaxPAR : char)

Port
(from Ports)

0..*

1

0..*

+ARPort
1

isComponent 0..*

1

0..*

+SystemPort

1

isComposed

inv:

self.SystemPort.Types::ArchitecturalElements::KindsOfArchitecturalElements::Components::Systems::system.Types::

ArchitecturalElements::KindsOfArchitecturalElements::Components::component -->

exists (c | c = self.ARPort.Types::ArchitecturalElements::KindsOfArchitecturalElements::Components::component)

or

self.SystemPort.Types::ArchitecturalElements::KindsOfArchitecturalElements::Components::Systems::system.Types::

ArchitecturalElements::KindsOfArchitecturalElements::Connectors::connector -->

exists (cnct | cnc...

Figure 45. The package Bindings of the PRISMA metamodel taken from [Per06b]

A system captures functionality of a software architecture and does not act as a

coordinator. A system as all architectural elements of PRISMA can have aspects and

weavings relationships. As a result, in the metamodel the System metaclass inherits

from the Component metaclass (see Figure 46). In this way, a system is also a

component and cannot have a coordination aspect in its set of aspects (indicated by

the OCL constraint).

111

Figure 46. The package Systems of the PRISMA metamodel taken from [Per06b]

The System metaclass has a composition relationship with the Attachment and

the Binding metaclasses and an aggregation relationship with the Component and

the Connector metaclasses (see Figure 47).

Figure 47. The Systems package of the PRISMA metamodel taken from [Per06b]

A system specification is preceded and ended by the reserved words System and

End_System, respectively (see Figure 48). The specification of a system consists of a

name, the importation of needed aspects, the weavings among aspects, a set of

ports, the importation of architectural elements, the attachments among

architectural elements, the bindings between the system and the architectural

elements, and the two sections that allow the creation and destruction of systems. It

is important to keep in mind that a system can be defined without aspects and

weavings, attachments or bindings. As a result, these sections of the system

specification are optional.

Figure 48. Specification of systems

Table 4 shows the difference between an attachment and a binding in terms of

their functionality in sending and receiving services among the architectural element

ports they connect. When an attachment connects a component C that requests a

service s of kind out using its port, a connector CnctC receives an in invocation of the

service s through its port (see Table 4(a)). When a binding connects a system C that

receives a service s invocation of kind in using its port, the connector CnctC receives

also an in invocation of the service through its port.

<system> ::= System <system_name>

 [<aspects_importation_seq>]

 [<weavings>]

 <ports>

 <architectural_element_importations>

 [<attachments>]

 [<bindings>]

 <system_creation>

 <system_destruction>

 End_System <system_name>‘;’

<architectural_element_importations> ::= Import Architectural Elements

 <architectural_element_import_list>‘;’

<architectural_element_import> ::= <architectural_element> ‘(‘<min_number_value>

 ‘,’ <max_number_value>‘)’

<architectural_element > ::= <component_name> | <connector_name> |

 <system_name>

113

Table 4. Comparison between Attachments and Bindings

C
«connector»<<connector>>

CnctC

in s() out s()

C
«connector»<<connector>>

CnctC

in s()
in s()

(a) Attachment (b) Binding

4.2.7 Configuration of an Architectural Model

A configuration defines a specific architectural model for a software system. At

the configuration level, the needed architectural element types are instantiated and

the instances are connected by attachments or binding instances. The instances are

created by executing the new services of their types and the constraints are validated

to ensure that the instantiations are performed following the defined architectural

pattern.

An example of an architectural model at configuration is the ConfigAuctionAgents

(see Figure 49). The architectural model specification is preceded by the reserved

word Architectural_ModelConfiguration and the name of the architectural model

configuration. This configuration consists of instantiating the architectural elements

by providing the needed values of the constructors. In addition, the attachments

relationships are also instantiated by connecting the instances.

Figure 49. Specification of the Auction Configuration

4.3 PRISMA Methodology

PRISMA proposes a methodology for modeling software architectures using the

primitives it provides. The methodology is divided into five steps: Interfaces, Aspects,

Architectural Elements, Systems and Configurations (see Figure 50). The

methodology is supported by modeling a software architecture using the PRISMA

AOADL which defines the architectural elements at two levels of abstraction: at the

type definition level and at the configuration level. The type definition level defines

architectural types which are stored in a repository in order to be reused by other

types or specific architectures. The configuration level designs the topology of a

specific architectural model by creating and interconnecting instances of the defined

architectural elements in the type definition level.

Architectural_Model_Configuration

 ConfigAuctionAgents = new AuctionAgents {

 Auction1 = new AuctionHouse (“London, King street”, 1876”,

 “1 Jun”, “Spanish painting”, “800”);

 Customer1 = new Customer();

 Procurement1 = new Procurement ();

 Bidder1 = new Bidder(“painting”, “3 Jul”);

 AgentCustCnct1 = new AgentCustCnct();

 AuctionCnct1 = new AuctionCnct();

 AttchAuct1Cnct = new AttchAuctCnct (AuctionCnct1,

 CnctAuctPortBidder,

 AuctionHouse1,

 BidderAuctPort);

 AttchCust1Auc1 = new AttchCustAuc (Customer1, CUSTAUCTPort,

 AuctionCnct1, CustPortAuct);

 … …

 };

115

Type
Definition
Level

Configuration
Level

Figure 50. The methodology of the PRISMA approach

Steps 1-4 are modelled by using the AOADL at the type definition level and Step

5 is modelled by using the AOADL at the configuration level. These steps are

explained below:

� STEP 1: Interfaces are the first to be specified due to the fact that it is not

necessary to previously define other elements of the model. Interfaces are

stored in a PRISMA repository for reuse.

� STEP 2: Aspects can use interfaces to define their behaviour. The same

aspect can be used by many aspects. As a result, aspects are defined in the

second step. Aspects are reusable entities that define a specific behaviour of

a crosscutting concern. The number of aspects for the same concern is

decided by the analyst, taking into account the software system and criteria

such as reusability and/or understanding. An aspect for a concern or

several aspects for the same concern can be defined. Aspects are reusable

entities and are stored in the repository. As a result, aspects can be reused

in different software architectures.

� STEP 3: The aspects that are defined in step 2 are imported by architectural

elements. An architectural element imports the aspects that define the

concerns that it requires. An aspect can be imported by many architectural

elements (see steps 2 and 3 of Figure 50). Architectural elements types

which need to be stored in a repository implies that the storage of their

aspects.

� STEP 4: To completely specify a system, the architectural elements that the

system is composed of should be previously defined. In addition, the

communication channels that permit the communication among them are

defined. Systems are defined as patterns or architectural styles that can be

reused in any software architecture whenever they are needed. For this

reason, they are stored in a repository.

� STEP 5: Architectural elements types that have been stored in a repository

are instantiated. As a consequence, architectural element instances have the

properties and behaviours of the aspects that their architectural elements

types import. The attachments and bindings relationships are instantiated

in order to connect the architectural element instances. In this way, a

specific software architecture is designed in PRISMA.

It is important to keep in mind that the enumeration of these steps is not a

restrictive order. The enumeration simply indicates the dependencies between the

different concepts that arise when the architectural model is being modelled. These

dependencies are the following:

� To configure an architectural model, the concepts that are instantiated

during the configuration process must have been previously defined

� To completely define a complex architectural element, the architectural

elements that it consists of must have been previously defined

� To completely define an architectural element, the aspects that it imports

and the interfaces that their ports use must have been previously defined

117

� To completely define an aspect that uses interfaces, the interfaces must have

been previously defined

4.4 PRISMA Case Tool

The objective of the PRISMA Case tool is to allow a user of the PRISMA approach to

model architectural models using an intuitive and friendly graphical AOADL, verify

that the models are correctly built, and automatically generate executable code.

Model-Driven Engineering is a software development paradigm that is based on

models that are transformed and generated in order to obtain software products

[Sch06]. PRISMA follows MDE in order to develop applications from its technology-

independent aspect-oriented software architectural models. Currently, there are two

main approaches that apply MDE: the Model Driven Architecture (MDA) [MDA07],

proposed by the Object Management Group (OMG), and the Software Factories

approach, proposed by Microsoft [Gre04].

PRISMA uses Domain-Specific Languages Tools (DSL Tools) [DSL07] as an

integrated framework for developing the PRISMA CASE tool. Figure 51 shows the

architecture of the PRISMA CASE and how the parts that compose it allow us to

automatically generate executable C# code from architectural models that have been

modelled using the modelling tool. This generation is possible thanks to the code

generation templates (model compiler), which isolate the specification from the

source code preserving their independence. Until now, the tool generates PRISMA

aspect-oriented C# code that is executable in .NET framework thanks to

PRISMANET middleware, which gives support to aspect execution over .NET

technology.

Figure 51. PRISMA CASE PARTS

 The PRISMA Type Modelling Tool defines all the reusable types (interfaces,

aspects, simple architectural elements and systems) and the architectural model of

the software system are modelled in a graphical way by dragging and dropping the

PRISMA modelling primitives. The PRISMA Configuration Modelling Tool models the

configuration of the initial architecture of a specific system by instantiating the types

and the architectural model that has been defined in the PRISMA Type Modelling

Tool . Finally, the PRISMA Model Compile generates the code of the types and its

instances. The code of the types is generated by executing the PRISMA Model

Compiler from the PRISMA Type Modelling Tool, and the code of the instances is

generated by executing the PRISMA Model Compiler from the PRISMA Configuration

Modelling Tool. Next, the execution of the generated code joint the PRISMANET

middleware can be launched from the PRISMA Configuration Modelling Tool .Once

the aspect-oriented software architecture is executed the user can interact with it

using the PRISMA Generic GUI, which allows the user to execute services, query the

119

value of attributes and validate the correct behaviour of each of the architectural

elements that compose the architecture.

In the following, the parts of the PRISMA CASE are briefly explained.

4.4.1 PRISMA Metamodel in DSL

DSL Tools provides the Domain Model Tool. The Domain Model tool provides a

class diagram toolbox for allowing the user to define a domain model. The user

represents concepts of its metamodel by using classes and relationships. In this

way, each metaclass and relationship of the PRISMA metamodel has been

introduced in the Domain Model (see Figure 52). Also, the OCL constraints of the

metamodel (some have been presented in section 4.2) are implemented. These

constraints have been implemented in order to check whether or not certain rules

are satisfied during the modelling process.

Figure 52. DSL Tools Framework: Domain Model of PRISMA taken from [Per06b]

DSL Tools also provides the Model Designer Tool. This tool allows associating a

graphical metaphor to each concept defined using the Domain Model. As a result,

The Designer project of PRISMA associates a graphical metaphor to each PRISMA

metaclass of the domain model that it requires.

4.4.2 PRISMA Modelling Tool

The PRISMA Modelling tool is supported by the PRISMA Type Modelling Tool and

the PRISMA Configuration Modelling Tool. The PRISMA Type Modelling Tool is

generated from the projects defined in section 4.4.1. The modelling tool is composed

of a toolbox, a drawing sheet, a model explorer, a window of properties and a PRISMA

menu (see Figure 53).

The user of the PRISMA Modelling tool graphically models PRISMA types by

dragging icons from the toolbox and dropping them on the drawing sheet. During

the modelling process constraints are checked. Some constraints which are called

hardconstraints do not allow the user to model something that is not allowed. Other

constraints are only checked when the model is saved or when requested by the

user.

Figure 53. PRISMA Type Modelling Tool taken from [Per06b]

121

The PRISMA Configuration Modelling Tool is generated for each software

architecture specified in the PRISMA Type Modelling Tool. The configuration

modelling tool is used to develop specific software architectures using the PRISMA

types defined in the PRISMA type modelling tools as modelling primitives. As a

result, the toolbox of the Configuration Modelling Tool includes icons of the software

architecture specified in the Type Modelling Tool instead of the PRISMA metamodel

concepts. As a result, the PRISMA graphical modelling is compliant with the PRISMA

AOADL, which is also divided into types and configuration.

4.4.3 PRISMANET Middleware

The .NET platform does not directly support all the PRISMA primitives. As a

result, a middleware called PRISMANET [Per05a] has been implemented in C# in

order to provide PRISMA constructs in the .NET platform. PRISMANET is the

platform-dependent model of PRISMA in .NET, which permits PRISMA software

architectures to be developed and executed on the .NET platform.

PRISMANET allows the execution of aspects, the concurrent execution of aspects

and architectural elements, the loading of architectural elements, the creation of

execution threads, and the management of the local components. The

implementation of PRISMANET has been performed using the standard constructs

of .NET and without extending the development platform. In this way, PRISMANET

is an abstract middleware that sits above the .NET platform (see Figure 51). This is

an advantage because PRISMANET does not have to be modified in order to be

compatible with future versions of the .NET platform.

Figure 54. PRISMANET middleware architecure taken from [Per06b]

The PRISMANET architecture is constituted by four main modules (see Figure

54):

� PRISMA Execution Model: This module implements the basic functionality

of the PRISMA types. This implementation is divided into two modules that

contain the classes that implement this functionality: the Types and

Communications modules. The Types module implements aspects and

architectural elements, and the Communications module implements

attachments and bindings. As a result, the implementation of the PRISMA

application is achieved by extending these classes. The Types and

Communication modules have been grouped in namespaces as shown in

Figure 55.

� Memory Persistence: This module provides services to manage and

maintain the instances of architectural elements that are stored in the main

memory during their execution. The middleware manages the instances that

are locally executed. Some of these services are the loading of architectural

123

elements instances, the creation of execution threads, and the management

of architectural element lists.

� Transaction Manager: This module provides services to suitably execute

transactions.

� Log: This module logs every operation that it is performed by the middleware

in order to register the execution history of software architectures.

Figure 55. Namespaces of the module PRISMA Execution Model taken from [Per06b]

4.4.4 PRISMA Model Compiler

DSL Tools provides the capacity to implement templates that transform models

specified by a graphical notation to any language. The PRISMA CASE implements a

set of templates to transform each graphically specified concept in the PRISMA

Modelling Tool into the textual language of PRISMA.

The PRISMA CASE also contains implemented templates to transform graphical

specifications specified in the PRISMA Modelling Tool into C# code. The templates for

generating C# code extend classes of the PRISMANET middleware. In order to

develop these code generation templates, a set of patterns have been identified and

defined to generate the C# code for each one of the PRISMA concepts to be executed

over PRISMANET.

4.5 Conclusions

This chapter presents PRISMA. PRISMA is an approach that integrates AOSD and

CBSD in order to describe software architectures of software systems. The PRISMA

approach integrates an aspect-oriented symmetric model with an architectural

model that has the notion of connector. In this way, PRISMA architectural models

gain the advantage of separation of concerns techniques such as reusability and

maintainability.

PRISMA follows MDE in order to provide the development of applications from

models. As a result, PRISMA provides a metamodel that defines the properties of its

first-class entities: interfaces, aspects, components, connectors, systems and

attachments that allow the specification of architectural models. This metamodel

has facilitated the automation and maintenance tasks of PRISMA software

architectures since modelling tools are based on metamodels to support these tasks.

In this case, the metamodel has been introduced in DSL Tools in order to develop

the PRISMA framework.

An AOADL, which is based on Modal Logic of Actions and π-calculus, supports

the specification of PRISMA aspect-oriented architectural models in a technology

independent way. The language defines architectural models at two levels of

abstraction: the type definition level and the configuration level. This permits types

defined at the type definition level to be reused by the configuration level in order to

define a specific software architecture.

PRISMA is supported by the PRISMA CASE. PRISMA CASE is a tool that

supports the PRISMA approach by integrating the PRISMA metamodel, AOADL

125

(graphical and textual), model compiler, and middleware. Therefore, PRISMA is a

well supported approach for developing software systems.

PRISMA allows the modelling of aspect-oriented software architectures and their

code generation. However, it does not support the modelling of a software

architecture with properties of distributed and mobile software systems. Neither, it

provides the generation of the code needed for executing systems of this kind.

The work related to PRISMA has produced a set of results that are published in

the following publications:

� Cristobal Costa, Nour Ali, Jennifer Perez, Jose Angel Carsi, Isidro Ramos,

“Towards Dynamic Reconfiguration of Aspect-Oriented Software

Architectures”, First International Conference on Software Architecture

(ECSA 2007), LNCS Springer Verlang, Madrid, September, 2007 (poster).

� Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, “Designing Software

Architectures with an Aspect-Oriented Software Architectures”, The 9th

International Symposium on Component-Based Software Engineering

(CBSE), Lecture Notes Computer Science, Springer Verlang, LNCS 4063, pp.

123-138, ISBN: 0302-9743, Västeras, Sweden, June-July, 2006.

� Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, “Dynamic Evolution in

Aspect- Oriented Architectural Models”, Second European Workshop on

Software Architecture, Springer LNCS 3527, pp.59-16, ISSN: 0302-9743,

ISBN: 3-540-26275-X , Pisa, Italy, June 2005.

� Mª Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí,

“DIAGMED: An Architectural model for a Medical Diagnosis”, IV workshop

DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated

Component-based Architectures, pp. 1-7, Archena, Murcia, November,

2005. (In Spanish)

� Rafael Cabedo, Jennifer Pérez, Nour Ali, Isidro Ramos, Jose A. Carsí,

Aspect-Oriented C# Implementation of a Tele-Operated Robotic System, III

Workshop on Aspect-Oriented Software Development (DSOA), X Conference

on Software Engineering and Databases (JISBD), pp. 53-59, ISBN: 84-

7723-670-4, Granada, September, 2005. (In Spanish)

� Cristóbal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsí, Isidro Ramos,

“PRISMANET middleware: Support to the Dynamic Evolution of Aspect-

Oriented Software Architectures”, X Conference on Software Engineering

and Databases (JISBD), pp. 27-34, ISBN: 84-9732-434-X, Granada,

September, 2005. (In Spanish)

� Jennifer Pérez, Nour Ali , Jose A. Carsí, Isidro Ramos, “PRISMA Architecture

of the Robot 4U4 Case Study”, Technical Report DSIC-II/13/04, pp. 72,

Polytechnic University of Valencia, 2004. (In Spanish)

� Nour Ali, Jennifer Pérez, Cristobal Costa, Jose A. Carsí, Isidro Ramos,

“Implementation of the PRISMA Model in the .Net Platform”, II workshop

DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated

Component-based Architectures, Conference on Software Engineering and

Databases (JISBD), pp. 119-127, Málaga, November, 2004.

� Nour H. Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsi, “Aspect Reusability

in Software Architectures”, The 8th International conference of Software

Reuse (ICSR), July, 2004.(poster)

� Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor, Pedro Sánchez,

Bárbara Álvarez, “Development of a Tele-Operation System using the

PRISMA Approach”, VIII Conference on Software Engineering and Databases

(JISBD), pp. 411-420, ISBN: 84-688-3836-5, Alicante, November, 2003. (In

Spanish)

� Jennifer Pérez, Nour H. Ali, Isidro Ramos, Jose A. Carsí, “PRISMA: Aspect-

Oriented and Component-Based Software Architectures”, Workshop on

Aspect-Oriented Software Development (DSOA), Conference on Software

Engineering and Databases (JISBD), Technical Report TR-20/2003 of the

Polytechnic School of the University of Extremadura, pp. 27-36, Alicante,

November, 2003. (In Spanish)

127

CHAPTER 5
Ambient-PRISMA

Ambient-PRISMA enriches PRISMA with Ambient Calculus (AC) concepts in order to

define aspect-oriented software architectures of distributed and mobile systems. This

combination enables PRISMA to address in an abstract way, a notion of location and

mobility of its architectural elements.

This chapter motivates and discusses details of this combination. This chapter

is structured as follows: Section 5.1 presents how the ambient concept has been

introduced in PRISMA to define Ambient-PRISMA. Section 5.2, the characteristics

that distinguish an ambient architectural element from other architectural elements.

Section 5.3enriches the PRISMA metamodel with the needed concepts. Section 5.4

presents the extension of the AOADL that includes the constructs needed to specify

ambients.

5.1 Introduction

Ambient-PRISMA is the result of integrating AC concepts in PRISMA for describing

distributed and mobile systems. This integration is achieved by enriching PRISMA

with an ambient construct. The characteristics of an ambient as originally proposed

by AC (see section 1.3.3) and the first-order concepts of PRISMA (see CHAPTER 4)

have to be reviewed in order to support the extension.

In AC [Car98a], an ambient is defined as a bounded place where computation

happens. The boundary separates what is in the ambient from what is not. In

129

PRISMA, software architectures are described by means of architectural elements.

An architectural element is either a component or a connector. Components are the

entities that are responsible for capturing computations. Connectors are the entities

that coordinate computations. Neither of them captures the notion of boundary or

location that we could possibly use to capture what ambients are meant to provide.

For example, in the Mobile Agent Auction case study, the Customer and the

Procurement are components and the AgentCustCnctr connector coordinates them

(see Figure 56). There is no primitive that represents where these components and

connectors are located nor a primitive responsible for the way these move. The

objective is to allow PRISMA components to be distributed across several locations

and that PRISMA connectors coordinate components regardless of where they reside

and they are not responsible for moving them around.

Customer «connector»

AgentCustCnct
Procurement1Procurement1

Figure 56. A Customer and Procurement connected through a

AgentCustConct

A PRISMA component has the following characteristics: It defines the

computation of a software system. It cannot have a coordination aspect. A

component can be composed by other components (Systems) to define its

functionality. An ambient in PRISMA, cannot be a component because it does not

represent the computation of the software system. Also, an ambient cannot be

composed of other ambients in order to form more complex ones. As a result, an

ambient is not a component. An ambient coordinates what is in its boundary from

what is out and needs a coordination aspect to perform this coordination.

A PRISMA system has the following characteristics: It defines complex

computations of a software system that needs other components to perform them.

Components can be directly connected to other connectors or components that do

not form part of the system they are part of. An ambient is an element that locates

elements, however the functionality of an ambient does not depend on the

functionality of the elements it contains. Also, elements that are in an ambient

cannot be connected directly to elements of other ambients. Elements that need to

be connected to elements of other ambients have to be managed by an ambient in

order to control security.

A PRISMA connector has the following characteristics: It defines coordination

mechanisms among components (or systems). It needs a coordination aspect.

Ambients also coordinate elements that are contained in it with elements that are

outside it. As a result, ambients need coordination mechanisms in order to control

what can enter or exit its boundary. However, in PRISMA connectors cannot locate

and manage other architectural elements and their attachments.

Therefore, ambients are introduced in PRISMA as a specialized kind of connector

that extends connectors in order to be able to coordinate a boundary that models the

notion of location and provides mobility support to other architectural elements. An

ambient architectural element represents the boundary of a place where PRISMA

components and their connectors are located. For example, if the Customer1 and

the Procurement1 are in the same site, they are located in the same ambient.

However, if they are in different sites, then they are in different ambients. This

boundary needs coordination mechanisms in order to determine what can pass in or

out of it. If the Procurement1 component and the AgentCustCnctr connector are in

different ambients and they need to communicate, the ambient of each architectural

element needs to synchronize their services so that their services pass out and in the

boundaries of the other ambient. Also, if the Procurement1 component needs to

move from a site to another, it has to cross the boundary of the Site ambient where it

resides and enter the boundary of another ambient. Procurement1 crosses the

boundary of its Site ambient (movement) when its Site ambient coordinates it with

its new destination ambient.

131

Ambients have a CBSD view, an AOSD view and a boundary. Figure 57 shows

the graphical representation of a PRISMA ambient. The Ambient CBSD view

describes it as a black box where it communicates with other architectural elements

by using ports through which invocations of services are sent and received. The

AOSD view describes an ambient as an architectural element that is composed of

different aspects weaved together. A boundary defines a notion of space. The dotted

line of an ambient, represents its boundary. The graphical representation preserves

the folder calculus representation typical of AC (see Ambient Calculus), however, the

boundary is represented with a dotted line instead of a straight line. This is to clarify

that a PRISMA ambient is not composed of the architectural elements in its

boundary. It can be noticed that the ambient has ports that are outside the

boundary and ports that are inside the boundary. This is to indicate that elements of

its boundary are connected to the ports that are in the boundary and the ports

outside its boundary are for connecting the ambient with elements that are not in its

boundary.

Ambient

Mobility

Aspect

Distribution

Aspect
Coordination

Aspect

Weaving

Mobility

Aspect

Distribution

Aspect
Coordination

Aspect

Weaving

IC

ES
IS

EC

Figure 57. A PRISMA Ambient with CBSD and AOSD views

Ports of architectural elements of a boundary are connected to their ambient

ports by attachments. For example, Procurement1 is connected to its parent

ambient called AuctionSite by means of attachments. Poner figura

In AC, an ambient can be nested within other ambients [Car98a]. Ambients in

PRISMA can be located inside the boundary of other ambients. This allows Ambient-

PRISMA software architectures to describe topologies of locations where hierarchies

of distributed and mobile systems can be modelled. For example, Figure 58 shows

that the Customer1 component and the AgentCustCnctr connector are located in

the ClientSite ambient, whereas the Procurement1 component, the Auction1

component and the AuctionCnctr1 connector are located in the AuctionSite

ambient. Furthermore, the ClientSite and the AuctionSite ambients are located in

the Root ambient.

AuctionSite

IC

ES IS

EC

Auction1
« connector »<<connector>>

AuctionCnctr1

Mobility

Aspect

Distribution
Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Distribution
Aspect

Weaving

Coordination

Aspect

Procurement1Procurement1

ClientSite

Customer «connector»

AgentCustCnct

ECECICIC

ISIS

ESES

Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect

Mobility

Aspect

Distr ibution

Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Distr ibution

Aspect

Weaving

Coordination

Aspect ICIC

ISIS

Root

Figure 58. A possible Configuration of the Auction Mobile Agent Case Study where the

Procurement instance is in AuctionSite

As a result, Ambient-PRISMA extends PRISMA with a new type of connector

called ambient. Ambient-PRISMA preserves the PRISMA connector which

coordinates computation and as a result coordinates at least two components. An

ambient coordinates components with connectors that are in different ambients for

communication purposes. Also, an ambient coordinates components and

connectors with other ambients for mobility purposes. For example, when the

Procurment1 component moves from AuctionSite to ClientSite it needs to be

133

coordinated: First, the AuctionSite ambient coordinates the Procurement with the

Root ambient and then the Root ambient coordinates the Procurement1 with the

ClientSite.

Elements of different ambients do not have attachments between each other.

Attachments only connect elements of the same ambient which can be ambients,

components or connectors. For example, Clientsite and AuctionSite are connected

because they are siblings (share the same parent). Also, Customer1 has an

attachment with AgentCustCnctr. However, Procurement1 does not have an

attachment with AgentCustCnctr. The connection between Procurement1 and

AgentCustCnctr is performed by three attachments: an attachment between

Procuremet1 and AuctionSite, an attachment between AuctionSite and ClientSite,

and an attachment between ClientSite and AgentCustCnctr.

When an architectural element moves from an ambient to another, the

attachments associated to an ambient are reconfigured in order to provide the

mobile architectural element to be connected to the architectural elements it

communicates with. For example,

5.2 Ambient Characteristics in Ambient-PRISMA

An ambient is introduced in PRISMA as a new kind of connector. However, it has

its proper characteristics that distinguish it from connectors and other PRISMA

architectural elements (components and systems). In the following, the

characteristics of an ambient are explained:

5.2.1 Interfaces

The interfaces of an ambient publish a set of services. An interface describes the

signature of the services that can be invoked or requested through that interface.

The signature of a service specifies its name and parameters. The data type and the

kind (input/output) of parameters are also declared.

An ambient has at least two predefined interfaces. They are the ICall interface

and ICapabilities interface. In the following, these interfaces are explained:

5.2.1.1 ICall Interface

An ambient needs to control the invocations of requested and provided services

of architectural elements located in an ambient. This implies that every ambient

must specify all the interfaces of its internal elements. However, this is not efficient

because the set of interfaces of an ambient would change each time its internal

elements change. For example, when an architectural element moves from an

ambient to a new ambient, the first ambient has to remove the interfaces of the

architectural element and the new ambient has to add these to its set of interfaces.

Therefore, a generic interface has been defined that abstracts to an ambient the

interfaces of its internal elements. This interface is called ICall which permits the

redirection of service requests independently of their interfaces.

The ICall interface describes a service called call (see Figure 59). The call service

encapsulates the signature of a requested or a provided service of one of the

architectural elements located in an ambient as its parameters. The call service has

three parameters: Name parameter which stores the name of the original service,

ParamsList parameter which is a list that stores the parameters of the original

service and the ParamType parameter which is a list that stores whether the

parameters of the original service are input or output by storing true or false,

respectively.

Figure 59. Specification of the ICall Interface

Interface ICall

 call(input Name: string, input ParamsList[]: Parameters,
 input ParamType[]: boolean);

End_Interface ICall

135

The call service is the transformation of a requested or a required service of an

architectural element in an ambient. For example, the Procurment1 component of

Figure 58 requires the notifyProdInterest(input Saleroom:string, input

SaleNum:string, input DateOfAuction:Date, input Lotdescrip:string, output

Interested: boolean) service from the Customer1 component through the

AgentCustCnctr connector. As a result, the notifyProdInterest service is transformed

into a call invocation which the AuctionSite ambient receives with the value of the

Name parameter is equal to notifyProdInterest, the ParamsList stores [Saleroom,

SaleNum, DateOfAuction, Lotdescrip, Interested], and the ParamType stores [true,

true, true, true, false].

5.2.1.2 ICapability Interface

An ambient offers a set of services for allowing architectural elements in it to be

able to move. The interface that publishes the set of services for allowing

architectural elements in it to move is called ICapability (see Figure 60). Some of

these services are exit, enter, and finishMovement. The exit service has two

parameters: Name and Parent. The Name parameter indicates the name of the

architectural element that needs to exit. The Parent parameter indicates the name of

the ambient that an architectural element needs to exit from.

Figure 60. Partial specification of the ICapability Interface

For example, when Procurement1 component of Figure 58 needs to exit from the

AuctionSite ambient, it invokes the exit (Procurement1, AuctionSite) service which is

published through the AuctionSite ambient ICapability interface.

Interface ICapability

 ….
 exit (input Name: string, input Parent:string);
 enter (input Name: string, input NewAmbient: string);
 finishMovement(input Name, input CommunicationList[]: Attachment);
 …

End_Interface ICapability

5.2.1.3 IGetLocation Interface

An ambient publishes in an interface called IGetLocation a service called

getLocation in order to inform the name of its parent ambient (see Figure 61). The

getLocation service has one parameter called Location. The Location parameter is an

output parameter that returns the name of the parent ambient.

Figure 61. Specification of the IGetLocation Interface

For example, if the Procurement1 component of Figure 58 invokes the

getLocation of the the AuctionSite ambient, the AuctionSite would return the value

“Root” in order to indicate that AuctionSite is located in the Root ambient.

5.2.2 Aspects

Aspects of an ambient define its state and behaviour from a specific concern of

the software system. The different aspects of an ambient specify the services it offers

and requests. Since ambients provide coordination for providing distribution and

mobility support to the architectural elements inside their boundary, an ambient at

least has the following aspects:

� Coordination Aspect: This aspect coordinates services required and

provided by architectural elements of an ambient with the exterior. This

aspect is unique in Ambient-PRISMA and it is called ACoordination.

� Mobility Aspect: This aspect specifies the ambient calculus primitives as

services that are offered to the architectural elements of an ambient to allow

them to move. The services of this aspect differentiate an ambient from other

PRISMA connectors. This aspect is unique in Ambient-PRISMA and it is

called MobilityAspect.

Interface IGetLocation
 getLocation(output Location: string);
End_Interface IGetLocation

137

� Distribution Aspect: This aspect allows an ambient to be aware of its

parent, except for the Root ambient that does not have one. It also specifies

whether the ambient is mobile or not, and what its mobility strategies are i.e.

how and when it needs to move.

The Mobility Aspect and the Coordination Aspect are predefined, i..e. the

behaviour that these aspects provide are always the same. Therefore, these two

aspects are generic and are reused by all ambients. On the other hand, the

distribution aspect may specify different distribution behaviours depending on the

requirements that the ambient needs to achieve. Therefore, the distribution aspect is

not predefined. An ambient can also have other kinds of aspects such as a security

aspect depending on the requirements of the architectural model.

The aspects of an ambient distinguish it from components (or systems) and

connectors. Components cannot import a coordination aspect. Both an ambient and

a typical PRISMA connector have a coordination aspect. However, a PRISMA

connector cannot import a Mobility Aspect.

In the following, the three different kinds of aspects of an ambient are explained

in detail:

5.2.2.1 ACoordination Coordination Aspect

An ambient is responsible for controlling the exchange of services across its

boundary i.e. the communication that architectural elements inside its boundary

have with architectural elements outside it. This is achieved by the coordination

aspect of the ambient called ACoordination. The ACoordination aspect coordinates

the sending of messages from elements that are located inside an ambients

boundary to elements that are outside its boundary and vice versa. In this way,

communication also respects the ambient hierarchy, since services have to pass

through all the coordination aspects of all the ambients until they reach their

destination.

For example, in Figure 58 the Procurement1 component needs to communicate

with the Customer1 component through the AgentCustCnctr connector in order to

send to the Customer1 component the product description of a possible candidate

product that the Customer maybe interested in. Also, the Customer1 component has

to reply to the Procurement1 component by telling it if he/she is interested or not.

Since the Customer1 component is in an ambient different from that of the

Procurement1 component, the services that they interchange must pass through

their ambients until reaching them. In this case, this is achieved through the

ACoordination aspect of both the ClientSite ambient and the AuctionSite ambient.

Since all services of the internal and external elements of an ambient must pass

through its ACoordination aspect, an ambient must control all the interfaces of its

internal elements. Therefore, the ACoordination aspect uses the ICall interface which

is specified in Figure 59 in order not to change its interface each time an

architectural element exits or enters an ambient. The ACoordination aspect specifies

the behaviour of the call service (see Figure 62). It specifies that the call service is an

in/out i.e. it is required and provided. The ACoordination coordination aspect is a

generic aspect that is reused by all ambients.

Figure 62. Partial specification of the ACoordination Aspect

5.2.2.2 Mobility Aspect

Since an ambient controls what moves in and out of its boundary, one of its

responsibilities is to offer services that allow architectural elements inside its

boundary to move. These mobility services are specified in the mobility aspect. As

Coordination Aspect ACoordination using ICall

Services
 …
 in/out call(input Name:string, input ParamsList[]: Parameters,
 input ParamType[]: bool);
 …

End_Coordination Aspect ACoordination

139

the Mobility Aspect gives a behaviour that is common to all ambients, this behaviour

is defined in an aspect that is imported and reused by all ambients. The unique

Mobility Aspect is called MobilityAspect.

The mobility services that we consider in Ambient-PRISMA are primitives of AC:

the capabilities (except for the open capability), the ambient creation and replication.

Other services needed for preserving a consistent state of the architecture for

mobility are also offered. The mobility aspect of an ambient provides the following

services:

� It allows an ambient to offer the exit service to the elements that need to exit

from it. (The specification of the AC exit capability).

� It allows an ambient to offer the enter service to the elements that need to

enter other subambients. (The specification of the AC enter capability).

� It allows an ambient to create subambients. (The specification of the AC

restriction).

� It allows an ambient to accept a new element from external ambients.

� It allows an ambient to create copies of architectural elements. (The

specification of the replication).

� It allows an ambient to offer the startMovement service to the elements that

are going to make a sequence of exits and enter requests. This service allows

an ambient to prepare an element to move.

� It allows an ambient to offer the finishMovement service to the elements that

have finished making requests to a sequence of enters and exits. This

service provides an ambient to reconfigure attachments once a mobile

architectural element reaches destination.

For example, the Procurement1 component in Figure 58 is a mobile component.

In order to be able to move, it requests the mobility services that the MobilityAspect

aspect of its parent ambient, in this case the AuctionSite ambient. The MobilityAspect

of the AuctionSite requests from the MobilityAspect aspect of the destination ambient

of the Procurement1 component to accept it. In this way, the AuctionSite acts as a

coordinator between the Procurment1 component and its destination ambient.

The MobilityAspect aspect uses the ICapability interface which is specified in

Figure 60 in order to specify the behaviour of the services which it publishes (see

Figure 63). For example, the MobiltyAspect aspect specifies that the exit service is a

transactional service. It specifies that the exit transaction is in i.e., it is provided. The

transaction checks whether the architectural element that needs to exit is a child of

the aspects ambient or not. This check is performed through the isChild service. The

ischild service returns true through the isChildOK output parameter if the requested

architectural element is a child of the ambient. If ischild returns true, and the

architectural elements needs to exit the ambient which is currently its parent then

the transaction proceeds to execute getParent service. The getParent service returns

in the Parent parameter the name of the parent ambient of the MobilityAspect

ambient. This is needed in order to indicate the destination of the exiting

architectural element. Then, the moving process is performed through the moving

service1. The moving service has two parameters: Requested and Parent. The

Requested parameter indicates the name of the exiting (or moving) architectural

element and the Parent parameter indicates the destination of the moving

architectural element.

1 The moving service is a transactional service. This is explained in detail in section 5.4.6

Mobility Aspect MobilityAspect using ICapability

 …
 TRANSACTIONS in EXIT(input Requested: string, input Ambient: string):
 exit = isChild! (input Requested, output isChildOK)�
 EXIT1;
 EXIT1 = {isChildOK==true & self.Name==Ambient}
 getParent(output Parent)�EXIT2;
 EXIT2 = moving! (Requested,Parent);

End_Mobility Aspect MobilityAspect

141

Figure 63. Partial specification of the MobilityAspect aspect

Most of the services that the MobilityAspect aspect provides are transactional

services of reconfiguration services, i.e., services that change the configuration of the

software architecture. For example, the exit service is a transactional service that

consists of removing an element from the boundaries of an ambient, removing

attachments between the element and the ambient, removing attachments between

the element and the elements of the same ambient and creating attachments

between elements that were connected to the element and the ambient.

Ambient-PRISMA does not provide the open capability of Ambient Calculus as a

primitive. This is due to the fact that Ambient-PRISMA follows previous works such

as Boxed Ambients [Bug01] in considering the open capability as a threat to

security. The open capability allows opening ambients that can have malicious

contents which cannot be known in advance. Therefore, it is preferable not to open

ambients. As a result, Ambient-PRISMA does not provide opening of ambients.

5.2.2.3 Distribution Aspect

A distribution aspect is responsible for specifying the location of an ambient. An

ambient is located in a hierarchy of other ambients, therefore the distribution aspect

has to specify its parent ambient. The distribution aspect gives location-awareness to

an ambient and it allows it to take different decisions or strategies depending on its

current location. It also specifies the mobility strategies of an ambient, thus an

ambient can be a mobile architectural element. The distribution aspect specifies if

the ambient is mobile or not and if it is, it specifies when and how the ambient

should move. Therefore, using the distribution aspect an ambient can request

mobility services from its current parent ambient, and therefore the ambient can

change its position in the hierarchy changing its parent ambient.

Each distribution aspect must save the parent ambient of the ambient that

imports it and provides a service in order to allow other aspects of the ambient to

consult its current location. Therefore, a distribution aspect uses the IGetLocation

interface specified in Figure 61. Figure 64 shows the specification of a possible a

distribution aspect called ADist. ADist aspect is an aspect of an ambient. It stores the

name of the parent ambient of the ambient that imports it through the location

attribute. The ADist aspect specifies that the getLocation service is an in/out i.e., the

service first receives the request (in), then the value of the location attribute is

assigned to the Location parameter through the Valuation. Finally, the service sends

the Location parameter (out).

Distribution Aspect ADist using IGetLocation
 Attributes
 …
 location : string NOT NULL;
 …
 Services
 …
 in/out getLocation(output Location:string)
 Valuations
 [in getLocation(output Location)] Location := location;
 ….
End_Distribution Aspect ADist

Figure 64. Partial specification of an aspect of kind Distribution

Although an ambient must have a distribution aspect, a distribution aspect is

not a generic aspect that is predefined. In this way, a distribution aspect is defined

differently depending on the systems requirements. For example, the distribution

aspect of the ClientSite and the AuctionSite specifies that their parent ambient is the

Root. Also, these two ambients are not mobile ambients. Therefore, both can reuse

the same Distribution Aspect. However, in Figure 65 MobileAmb is an ambient that

can move. As a result, its distribution aspect specifies that it is mobile and when it

can move.

143

ClientSite

Customer «connector»

AgentCustCnct

ECIC

ES

Mobility
Aspect

Distribution
Aspect

Weaving

Coordination

Aspect
Mobility
Aspect

Distribution
Aspect

Weaving

Coordination

Aspect

IS

MobileAmb

EC

IS

ES

Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect

Bidder2

Procurement3

IC

MobileAmb

ECEC

ISIS

ESES

Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect

Bidder2Bidder2

Procurement3

IC

Figure 65. MobileAmb is a mobile ambient

5.2.3 Weavings

Aspects of an ambient can be weaved together. The services of two aspects can

be synchronized by the weavings in order to define the overall behaviour of an

ambient.

A weaving is needed because when an ambient serves the exit transaction, the

ambient needs to know its parent ambient. This is due to the fact that an

architectural element that needs to exit, it does not specify its destination ambient.

Since an architectural element that exits an ambient moves to the parent of its

ambient, a weaving needs to trigger the getLocation service of the distribution aspect

of the same ambient. As a result, all ambients have a predefined weaving between

the MobilityAspect aspect and the distribution aspect of an ambient.

The predefined weaving of each ambient specifies that the getParent service of

the MobilityAspect aspect triggers the getLocation service of a distribution aspect (see

Figure 66). The getLocation service is executed instead of the getParent service.

Weavings
 ADist.getLocation(Location)instead
 MobilityAspect.getParent(Parent);

Figure 66. Predefined weaving between the MobilityAspect aspect and a distribution

aspect called ADist

In addition, an ambient can have other weavings depending on the aspects that

it imports. Although an ambient has three obligatory aspects, an ambient can also

have more aspects. For example, an ambient can have a security aspect that

constrains the messages that can be received and sent by the architectural elements

inside its boundary. The security aspect can also define constraints on what type of

architectural elements can be accepted to enter its boundary. The proper behaviour

of such a security aspect is captured in the way it is weaved with the coordination

aspect or with the mobility aspect.

Additional constraints can be added to the communication provided by the

coordination aspect by adding aspects to the ambient. For example, in order to

define certain security politics to constrain the type of services that the elements of

an ambient can interchange with elements from the exterior, a security aspect can

be imported and weaved with the coordination aspect.

Ambients are defined by importing the generic mobility aspect and adapting it to

the software system needs through weavings. For example, a LAN ambient may

need some security policies that are different from a PC ambient inside of the LAN.

Therefore, both the LAN and PC ambient import the same MobilityAspect aspect, but

the MobilityAspect aspect is weaved with different security aspects.

5.2.4 Ports

The services that the MobilityAspect aspect and the ACoordination aspect specify,

are offered to other architectural elements through the ports. Therefore, an ambient

also has some predefined ports.

As a consequence, each ambient must have at least four ports: two for the

MobilityAspect aspect and two for the ACoordination aspect. The two ports for

145

providing/requesting services of the MobilityAspect are InCapabilitiesPort port and

ECapabilitiesPort port. The InCapabilitiesPort port offers the mobility services of the

parent ambient to its architectural elements (Marked with IC in Figure 58 and

Figure 65). The ECapabilitiesPort port allows an ambient to request or receive

to/from its parent ambient to accept an architectural element (Marked with EC in

Figure 58 and Figure 65).

The two ports for providing/requesting services of the ACoordination aspect are

InServicesPort port and EServicesPort port. These ports allow architectural elements

of an ambient to be in contact with the exterior boundary of an ambient. The port of

an ambient that is marked with IS in Figure 58 and Figure 65, is the InServicesPort

port and it is connected to internal architectural elements. The port of an ambient

that is marked with ES in Figure 58 and Figure 65, is the EServicesPort port and it

is connected to exterior architectural elements.

Figure 67 shows the specification of the ports section in an ambient

specification. It can be observed that the InCapabilitiesPort port and the

ECapabilitiesPort are of type ICapability interface i.e., they publish the services of the

ICapability interface. It can also be observed that the EServicesPort port and the

InServicesPort port is of type ICall inetraface.

Ports
 InCapabilitiesPort: ICapability …
 ECapabilitiesPort: ICapability …
 EServicesPort: ICall ….
 InServicesPort: ICall ….
….
 End_Ports

Figure 67. Partial specification of ambients ports

5.2.5 Attachments

The Component-Based view of an ambient describes it as a black box that can

only communicate with the other architectural elements through ports that send

and receive services. The parent ambient communicates with the architectural

elements that are inside its boundary through attachments that connect its ports

with the ports of the architectural elements inside its boundary (see Figure 58 and

Figure 65). An ambient communicates with architectural elements that are its

siblings through its attachments. For example, the ClientSite ambient and the

AuctionSite ambient of Figure 58 are siblings and are connected through

attachments.

AuctionSite

IC

ES IS

EC

Auction1
« connector »<<connector>>

AuctionCnctr1

Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Distribution

Aspect

Weaving

Coordination

Aspect

ClientSite

Customer1 «connector»

AgentCustCnct

ECECICIC

ISIS

ESES

Mobility

Aspect

Distribution
Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Distribution
Aspect

Weaving

Coordination

Aspect

Mobility

Aspect

Dis tribution

Aspect

Weaving

Coordination

Aspect
Mobility

Aspect

Dis tribution

Aspect

Weaving

Coordination

Aspect ICIC

ISIS

Root

Procurement1

Figure 68. Configuration of the software architecture when Procurement1 is located in

ClientSite ambient

An architectural element in an ambient cannot be directly connected through an

attachment to another architectural element in another ambient. An attachment

that connects two architectural elements in different ambient is broken down into

many attachments. For example in Figure 58, the Procurement1 component and the

AgentCustCnctr connector have an attachment that connects them in order to

communicate. This attachment is broken down into an attachment that connects

the InServicesPort port of the AuctionSite ambient and a port of the Procurement1, the

an attachment that connects the EServicesPort port of the AuctionSite ambient and

the EServicesPort port of the ClientSite ambient, and an attachment that connects

the AgentCustCnctr connector to the InServicesPort port of the ClientSite ambient.

When the Procurement1 component moves from the AuctionSite ambient to the

ClientSite ambient (see Figure 68), the attachment between the Procurment1

component and the AgentCustCnctr connector is directly connects them.

147

An ambient is responsible of managing the attachments that are located in its

boundary i.e., the attachments between its architectural elements and its ports and

the attachments between its architectural elements. As a result, when an

architectural element moves from an ambient, the ambient is responsible of

reconfiguring the attachments.

The attachment that connects a mobile architectural element to the

InCapabilities port of its parent ambient always has to be created in the new

ambient where the architectural moves. For example, the attachment that connects

the Procurement1 component to the AuctionSite ambient, when the Procurement1

component is located in AuctionSite ambient (see Figure 58) is substituted to an

attachment between the Procurement1 component and the InCapabilitiesPort port of

the ClientSite ambient (, when the Procurement1 component moves to the ClientSite

ambient (see Figure 68). As a result, the Procurement1 component can always

request mobility services because it is connected by an attachment to its

InCapabilitiesPort port parent ambient.

5.2.6 Kinds of Ambients

Although the previous characteristics are in common to all ambients, however, it

is necessary to separate different types of ambients as each can have its own

constraints and semantics. In Ambient-PRISMA, we have identified two kinds of

ambients:

� Site Ambients: Sites are ambients that represent physical locations; that is,

they have a physical address. They can be devices or physical regions. A PC

or a PDA are examples of ambients that can be modelled as Sites. Site

ambients can only contain Components, Connectors or Group ambients.

For example, the ClientSite and the AuctionSite of Figure 58 are of type Site.

� Non-Site Ambients: Non-Site Ambients do not model a physical location.

They are separated into two kinds :

� Group Ambients: Group ambients represent a collection of architectural

elements. There utility can be different depending on the domain. They can

be used in order to group a set of architectural elements that share specific

security politics or in order to move architectural elements at the same

time. The Group ambient can lodge other Group ambients, Components

and Connectors. For example, MobileAmb in Figure 65 is a Group Ambient

that moves architectural elements together.

� Virtual Ambients: They are virtual ambients that can lodge other

Virtual Ambients or Sites, but not both. Virtaul Ambients allow to model

networks or vitual spaces where Sites are located. A Virtual Ambient that

consists of a collection of Sites represents the boundary of a network (e.g. a

Local Area Network). The modelling of a Virtual Ambient hierarchy can

represent the hierarchy of LANs to form a Wide Area Network (WAN).

Different Virtual Ambient hierarchy levels can be represented in the

software architecture depending on the software architect and on the

distributed requirements. In Ambient-PRISMA there is always a default

Virtual Ambient that represents the root of an ambient hierarchy called

Root(see Figure 58).

In summary, the Root ambient (Virtual Ambient) can either contain another set

of Virtual Ambients or a set of Sites. Sites can contain a combination of

Components, Connectors or Group ambients. Finally, Group ambients can contain

also Components, Connectors and other Group ambients. The difference between a

Site and a Group ambient is that a Site ambient must have a Virtual ambient as its

parent and a Group ambient cannot have a Virtual Ambient as a parent ambient.

Figure 69 shows an example of how two WANs formed by two LANs have been

modelled using the different kinds of ambients. Also, the LANs are formed from

hosts that represent devices. Also, each host can contain other ambients. In the

Figure, the kind of each ambient is indicated.

149

Site Ambients Group Ambientes

Virtual Ambients

 Host4

Figure 69. Kinds of ambients in a possible network

5.3 Ambient-PRISMA Metamodel

PRISMA provides a metamodel that includes a set of metaclasses and their

relationships. Each concept considered in PRISMA is represented by a metaclass

that defines a set of properties and services. The metamodel has been defined using

the class diagram of the Unified Modelling Language (UML) 1.5. and the Object

Constraint Language (OCL) 2.0 [UML07]. Section 4.2 presented part of the PRISMA

metamodel. Since Ambient-PRISMA extends PRISMA with new concepts related to

ambients, the metamodel of PRISMA has to be enriched.

In this section, the PRISMA metamodel is extended with concepts and properties

that Ambient-PRISMA. These concepts have been included by adding new

metaclasses and relating them with the ones which PRISMA provides. The

metaclasses and relationships define the structure and the information that is

needed to describe Ambient-PRISMA architectural models. In addition, Ambient-

PRISMA metamodel includes OCL expressions [War03] in order to define

constraints that must be satisfied by an Ambient-PRISMA architectural model.

These constraints guide the methodology for modelling Ambient-PRISMA

architectural models. At the end of the modelling process, all of them have to be

satisfied in order to ensure that an architectural model is correct.

In the following, the different packages that are altered for Ambient-PRISMA are

presented:

5.3.1 Connector Package

The Connector package is extended in order to define an ambient architectural

element as a specialized type of connector (see Figure 70). As a result, the Ambient

metaclass is introduced by inheriting from the Connector metaclass. The connector

inherits all the properties of a connector. As a result, it inherits the invariant called

coordinationAspect that specifies that a connector must import an aspect whose

concern is coordination.

Moreover, all ambients have a unique Coordination Aspect. The Coordination

Aspect of ambients is called ACoordination. As a result, the Ambient metaclass has

an invariant (constraint) called ambientCoordination that specifies that an ambient

only has a Coordination Aspect and its name is ACoordination.

inv coordina tionAspect:

self.Types::A spect s::aspect --> exists (A | A.concern = "coordination")

Connector

newConnector(CnctName : s tring)

Am bients
Am bient

(from Ambients)

inv am bientCoordination :

self.Types: :A spects: :as pect-->one (A| A.concen="coordination" and A .name="ACoord inat ion")

Figure 70. Connector Package of the Ambient-PRISMA metamodel

151

In the PRISMA metamodel, connectors were constrained to only be attached to

two different components (see section 4.2.4). However, this constraint cannot be

applied in Ambient-PRISMA due to the fact that ambients can be attached to a

connector, a component, or another ambient. Since ambients are connectors that

can be attached to other connectors this constrain is not valid in Ambient-PRISMA.

As a result, this constraint has been eliminated.

The package that defines the proper properties of an ambient is a subpackage of

the Connector package. This subpackage is called Ambients and its details are

explained in the following.

5.3.2 Ambient Package

Ambients are connectors that separate what is in a boundary from what is out.

The Ambient package defines the commonalities and unique properties of the three

kinds of ambients. It also defines how an ambient is related to the other concepts of

the metamodel.

An ambient locates architectural elements (which can be components,

connectors or other ambients), attachments that connect an ambient with

architectural elements located in it, and attachments that connect architectural

elements of an ambient. As a result, the Ambient metaclass has two aggregation

relationships: one with the ArchitecturalElement metaclass and the other with the

Attachments metaclass (see Figure 71). The aggregation between the Ambient

metaclass and the ArchitecturalElement metaclass has the child role and the

deployed role. The child role indicates that an ambient can have from 0 to many

architectural elements located in it. The deployed role indicates that an architectural

element can be located in 0 or in only one ambient. The aggregation between the

Ambient metaclass and the Attachments metaclass has the located role and the

locatesAttach role. The locatesAttach role indicates that an ambient can have 0 or

many attachments located in it. The located role indicates that an attachment can

only be located in one ambient.

inv mobilityAspect:

self.Types::Aspects::aspect --> one(A | A.concern = "mobility" and

A.name=MobilityAspect)

KindsOfAmbients

ArchitecturalElement
(from ArchitecturalElements)

Attachment
(from Attachments)

Ambient

name

newAmbient(AmbName : string)

addChild(AE : ArchitecturalElement)

removeChild(AE : ArchitecturalElement)

addAttachment(Attch : Attachment)

removeAttachment(Attch : Attachment)

addServices()

removeServices()

0..n

0..1

+child

0..n+deployed

0..1

0..n

1
+locatesAttach

0..n

+located

1

inv rootAmb:

self.deployed-->size()=0

implies

(self.name="Root" and self.Types::Aspects::aspect-->one (A| A.concern="distribution)

inv distAspAmb:

self.deployed-->size()=1

self.Types::Aspects::aspect --> one(A | A.concern = "distribution" and A.Attribute-->one

(a| a.name="location"))

inv ICport:

self.Types::ArchitecturalElements::Ports::port-->one

(n|n.name=="InCapabilitiesPort")

inv ECport:

self.Types::ArchitecturalElements::Ports::port-->one

(n|n.name=="ECapabilitiesPort")

inv ISport:

self.Types::ArchitecturalElements::Ports::port-->one

(n|n.name=="InServicesPort")

inv ESport:

self.Types::ArchitecturalElements::Ports::port-->one

(n|n.name=="EServicesPort")

inv attachAmbient:

self.locatesAttach-->forall(attch| attch.Types::ArchitecturalElements::Ports::port-->

exists(p1,p2| (p1.Types::ArchitecturalElements:: ArchitecturalElement=self and

 p2.Types::ArchitecturalElements::ArchitecturalElement.deployed=self)

 or (p2.Types::ArchitecturalElements::ArchitecturalElement=self and

 p1.Types::ArchitecturalElements::ArchitecturalElement.deployed=self)

 or (p1.Types::ArchitecturalElements::ArchitecturalElement.deployed=self and

 p2.Types::ArchitecturalElement.deployed=self)

 or (p2.Types::ArchitecturalElements::ArchitecturalElement.deployed=self and

 p1.Types::ArchitecturalElement.deployed=self))

inv numPort:

self.Types::ArchitecturalElements::Ports::port-->size()>=4

Figure 71. Ambient Package of the Ambient-PRISMA metamodel

The Ambient metaclass has associated a set of OCL invariants (constraints) to

completely model the properties of ambients. In the following they are explained:

� The mobilityAspect invariant specifies that an ambient must import an

aspect whose concern is mobility and the name of this aspect is

MobilityAspect.

� The numPort invariant specifies that an ambient must have at least four

ports.

� The ICport invariant specifies that an ambient must have a port called

InCapabilitiesPort.

153

� The ECport invariant specifies that an ambient must have a port called

ECapabilitiesPort.

� The ISport invariant specifies that an ambient must have a port called

InServicesPort.

� The ESport invariant specifies that an ambient must have a port called

EServicesPort

� The attachAmbient invariant specifies that attachments that are located in

an ambient are those that connect the ambient with the architectural

elements located in its boundary or those that connect two architectural

elements that are located in its boundary. Elements of different ambients

cannot have attachments.

In addition, the Ambient package includes some OCL invariants associated to

the ArchitecturalElement metaclass. These invariants specify the following:

� The rootAmb invariant specifies that the only architectural element that is

not deployed (or located) in any ambient (the deployed role is equal to 0) is

called the Root and that Root must import an aspect whose concern is

distribution

� The distAspAmb invariant specifies that all architectural elements that are

deployed in an ambient must import an aspect whose concern is

distribution and that this aspect must have an attribute called location.

The Ambient metaclass has an attribute called name which specifies the name of

an ambient and seven services. The newAmbient service creates a new ambient by

providing the name of the ambient as a parameter. The addChild service adds a new

architectural element in the boundary of an ambient. The removeChild service

removes an architectural element that is located in the boundary of an ambient. The

addAttachment service adds an attachment that connects an ambient to one of its

children or an attachment between two children of the same ambient. The

removeAttachments removes an attachment of located in the boundary of an

ambient. The addServices updates the set of services of an ambient InServicesPort

and EServicesPort ports when a new child is added to an ambient. The

removeServices removes the services of an ambient InServicesPort and EServicesPort

port when a child is removed.

In addition, the Ambient package includes the KindsOfAmbients subpackage

that defines the concepts required for the three kinds of ambients.

5.3.3 KindsOfAmbient Package

In Ambient-PRISMA, there are three kinds of ambients: sites, virtuals, and

groups. The KindsOfAmbient package defines that the three kinds of ambients

inherit the properties of the Ambient metaclass (see Figure 72). Each kind of ambient

is represented by a metaclass and each one has a new service to create new kinds of

ambients. Also, each metaclass has OCL invariants associated to it in order to

differentiate each kind of ambient from the other.

The Site metaclass has the following OCL invariants:

� The distSite invariant specifies that the distribution aspect of a site ambient

must have an attribute called physicalLocation and that its data type is loc.

� The childSite invariant specifies that a site ambient must not have a virtual

ambient as one of its children.

Ambient
(from Ambients)

Group

newGroup(GrpName : string)

Site

newSite(SiteName : string)

Virtual

newVirtual(VirtName : string)

inv distSite:

self.Aspect-->select(A| A.concern="distribution")-->one(At|

At.name="physicalLocation" and A.DataType.kind="loc")

inv inmobileVirtual:

self.Aspect-->select(A|A.concern="distribution")--> exists

(A.Attribute-->one(a| a.name="location" and a.oclIsTypeOf

(ConstantAttribute))

inv childVirtual:

self.child-->forall(c|c.oclIsTypeOf(Virtual) or c.oclOsTypeOfSite))

inv childSite:

self.child-->not exist(c| c.oclIsTypeOf(Virtual))

inv childGroup:

self.child-->not exist(c|c.oclIsTypeOf(Virtual) or

c.oclIsTypeOf(Site))

Figure 72. The KindsOfAmbients package of the Ambient-PRISMA metamodel

155

The Virtual metaclass has the following OCL invariants:

� The inmobileVirtual invariant specifies that the distribution aspect of a

virtual ambient must have a constant attribute called Location. This

invariant indicates that virtual ambients are not mobile architectural

elements (their location does not change).

� The childVirtual invariant specifies that a virtual ambient must only have site

ambients or virtual ambients as children.

The Group metaclass has the following OCL invariants:

� The childGroup invariant specifies that a group ambient must not have a

virtual ambient or a site ambient as one of its children.

5.3.4 Systems Package

All ports of a system have to be in the same ambient. Ports of a system are those

that have a binding associated to them. As a result, there is a constraint that all

ports of architectural elements associated to the same system must have in common

the same ambient.

5.3.5 Attachments Package

The Attachments package of the PRISMA metamodel defines an attachment as a

communication channel between a port of a component and a port of a connector

(see section 4.2.5). The Attachments package in Ambient-PRISMA is extended in

order to include attachments that can also connect ambients with other

architectural elements. This extension has been performed extending an OCL

constraint and including three new ones. In addition, the names of the attributes of

the Attachment metaclass have been changed. As a result, the Attachment package

becomes as shown in Figure 73.

The association between the Attachment metaclass and the Port metaclass

establishes that an attachment must connect two ports. However, the Attachment

metaclass has two OCL constraints that determine which architectural elements

ports can be attached. The OCL constraints specify the following:

<< One of the ports of an attachment must belong to a component and that the

other must belong to a connector OR one of the ports must belong to an ambient

and that the other port must belong to any architectural element>>

<<An attachment cannot connect two ports of a component >>

<<The InServicesPort port of an ambient can only be attached to a port of a

Virtual ambient or a Site ambient >>

157

inv:

self .Types::ArchitecturalElements::Ports::port-->not exists(p1,p2|

(p1.Types::ArchitectecturalElements::architecturalelement.oclIsTypeOf (Component)

 and

 p2.Types::ArchitectecturalElements::architecturalelement.oclIsTypeOf (Component))

Attachment

card_min__port_A1 : char;

card_max_port_A1 : char;

card_min_port_A2 : char;

card_max_port_A2 : char;

name : string;

newAttachment(AttchName : string, Port1 : Port, Port2 : Port, CMinPA1 : char, CMaxPA1 : char, CMinPA2 : char, CMaxPA2 : char)

Port

(from Ports) 0..*2

+connectedby

0..*

+linksPorts

2

inv:

self .linksPorts-->exists(p1,p2|

(p1.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(Component)

 and

 p2.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(Connector))

or

(p1.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(Connector)

 and

 p2.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(Component))

or

(p1.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(ArchitecturalElement)

 and

 p2.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(Ambient))

or

(p1.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(Ambient)

 and

 p2.Types::ArchitectecturalElements::ArchitecturalElement.oclIsTypeOf(ArchitecturalElement))

inv:

self .linksPorts'exists(p1, p2| (p1.ArchitecturalElement.oclIsTypeOf(Virtual)

and p1.name= "InServicesPort")

implies

p2.ArchitecturalElement.self .oclIsTypeOf (Site) or

p2.ArchitecturalElement.self .oclIsTypeOf (Virtual)

Figure 73. The Attachments package of the Ambient-PRISMA metamodel

The Attachment metaclass has an attribute called name for storing the name of

an attachment. The Attachment metaclass also has four more attributes to specify

the attachment communication pattern i.e., the instantiation pattern of the

attachment. It is necessary to constrain how many instances of the attachment can

be attached to the port of each architectural element instance that an attachment

connects. The card_min_port_A1 and card_min_port_A2 attributes specify the

minimum number of attachment instances that must be connected to one instance

of A1 and A2 architectural elements through their ports, respectively. The

card_max_port_A1 and card_max_port_A2 attributes specify the maximum number

of attachment instances that must be connected to one instance of A1 and A2

architectural elements through their ports, respectively.

inv eCapPortAmbients:

self.linksPorts'exists(p1|

p1.ArchitecturalElement.oclIsTypeOf(Ambient) and p1.name=

"ECapabilitiesPort")

implies

self.cardmin_port_A1= "0" and self.cardmax_port_A1= "1" and

self.cardmin_port_A2= "0" and self.cardmax_port_A2= "n"

inv intPortsAmbients:

self.linksPorts'exists(p1| p1.ArchitecturalElement.oclIsTypeOf

(Ambient) and (p1.name= "InServicesPort" or p1.name=

"InCapabilitiesPort"))

 implies

self.cardmin_port_A1= "0" and self.cardmax_port_A1= "n" and

self.cardmin_port_A2= "0" and self.cardmax_port_A2= "1"

inv eSerPortAmbients:

self.linksPorts'exists(p1| p1.ArchitecturalElement.oclIsTypeOf

(Ambient) and p1.name= "EServicesPort")

implies

self.cardmin_port_A1= "0" and self.cardmax_port_A1= "n" and

self.cardmin_port_A2= "0" and self.cardmax_port_A2= "n"

Attachment

card_min__port_A1 : char;

card_max_port_A1 : char;

card_min_port_A2 : char;

card_max_port_A2 : char;

name : string;

newAttachment(AttchName : string, Port1 : Port, Port2 : Port, CMinPA1 : char, CMaxPA1 : char, CMinPA2 : char, CMaxPA2 : char)

Figure 74. OCL constraints for the Attachment metaclass

In Ambient-PRISMA, an architectural element is deployed in only an ambient.

An ambient also has four predefined ports. Therefore, the attachment

communication pattern of an ambient are predefined. As a result, the Attachment

metaclass has three OCL invariants to predefine the values of the cardinality

attributes. In the following, these are explained (see Figure 74):

� The intPortsAmbients invariant specifies that the attachment that connects

the InServicesPort port or InCapabilitiesPort port of an ambient to a port of a

child architectural element, the values of the cardinalities to

cardmin_port_A1=0, cardmax_port_A1=n, cardmin_port_A2=0, and

cardmax_port_A2=1.

� The eSerPortAmbients invariant specifies that the attachment that connects

the EServicesPort port of an ambient to a port of a child architectural

element, the values of the cardinalities to cardmin_port_A1=0,

cardmax_port_A1=n, cardmin_port_A2=0, and cardmax_port_A2=n.

� The eCapPortAmbients invariant specifies that the attachment that connects

the ECapabilitiesPort port of an ambient to a port of a child architectural

element, the values of the cardinalities to cardmin_port_A1=0,

cardmax_port_A1=1, cardmin_port_A2=0, and cardmax_port_A2=n.

159

5.3.6 AmbientPRISMAArchitecture Package

The Ambient PRISMA Architecture package defines how a software architecture

with ambients is defined. The PRISMAArchitecture metaclass that represents a

software architecture (see section 4.2.7) has an aggregation relationship with the

Ambient metaclass (see Figure 75). An architecture in Ambient-PRISMA is defined by

at least an ambient. Since an ambient is reusable, it can be used by more than one

software architecture. In this way, an ambient is a first-class entity of an Ambient-

PRISMA software architecture

ArchitectureSpecification

PRISMAArchitecture
Ambient

(from Ambients)

1..n1..n 1..n1..n

Context PRISMAArchitecture inv:

self.Ambient->count(x| x.oclIsKindOf(Site))=>2

implies

self.Ambient->exists(x| x.oclIsKindOf(Virtual) and x.name=`Root)̀

Context PRISMAArchitecture inv:

self.Ambient->size()=1

implies

self.Ambient->exists(x| x.oclIsKindOf(Site))

Figure 75. The AmbientPRISMAArchitecture package of the Ambient-PRISMA

metamodel

The PRISMAArchitecture metaclass has two constraints associated to it in order

to ensure that a model is correctly defined. Their meaning is the following:

<< If an architectural model only defines one ambient, then this ambient must

be a Site ambient. >>

<<An architectural model that has two or more Site ambients, must have a

Virtual ambient called Root. >>

5.3.7 Data Types Package

The different data types that PRISMA supports are included in the DataTypes

package (see Figure 76). The DataType metaclass has an attribute called kind. The

kind attribute can have different values, e.g., natural, integer, double, etc. A new

kind of data type called loc is included in the Ambient-PRISMA DataType metaclass.

loc data type is needed in order to model the different physical locations that form a

specific distributed system.

DataType

kind : {natural, integer, double, char, string, boolean, date, currency, enumerated, loc};

Figure 76. The package DataTypes of Ambient-PRISMA

5.4 Ambient-PRISMA Language

In this section, the new constructs of an ambient included to the AOADL are

explained. These constructs include specifications of predefined, interfaces, aspects,

ports, and weavings of ambients that the user of Ambient-PRISMA does not have to

specify. New extensions are also included to the AOADL are presented.

5.4.1 Architectural Model

Figure 77 shows the templates of the Ambient-PRISMA architectural model in

the AOADL. The specification of an architectural model starts with the reserved word

Architectural_Model and ends with the reserved word End_Architectural_Model. Then,

a name is given to the architectural model. In the case of the architectural model

Afterwards, each first-class entity is specified. First the virtual ambients block can be

specified. A site ambient block must be specified. A group ambient block can be

optionally specified. Components and connectors are specified. Systems (complex

components) can be optionally specified in the architectural model. The

attachments that connect components and connectors are specified.

<architectural_model> ::= Architectural_Model <model_name>

161

 [<virtual_ambient_block>]

 <site_ambient_block>

 [<group_ambient_block>]

 <component_block>

 <connector_block>

 [<system_block>]

 <attachment_block>

 End_Architectural_Model <model_name>‘;’

Figure 77. Architectural Model template in Ambient-PRISMA

5.4.2 ICall Interface

The ICall interface is an interface for generic services. The interface consists of

the call service. The call service has three parameters: Name, ParamsList and

ParamType. The Name parameter stores the name of a service that needs to be

invoked or provided by an architectural element located in an ambient. The

ParamsList parameter is a list that stores the parameters of the service. The

ParamType parameter is a list that stores the kind of each parameter (if it is input or

output). ParamType stores the kind of parameters in the same order as the

parameters appear in the original service. It stores true if it is an input parameter

and false if it is an output parameter.

Figure 78. Specification of the ICall Interface

The Coordination aspect uses the ICall interface. The call service signature allows

the original service to be reconstructed after it is processed in the Coordination

Interface ICall

 call(input Name: string, input ParamsList[]: Parameters,
 input ParamType[]: boolean);

End_Interface ICall

Aspect. In this way, the Coordination Aspect can be specified in a generic way

specifying the ICall interface.

5.4.3 ICapability Interface

This interface specifies the services that the Mobility Aspect offers (see Figure 79).

These services have been incorporated in order to provide AC capabilities (exit, the in

capability of AC and enter, the out capability of AC), services that are needed in order

to manage a consistent state of the distributed software architecture (startMovement,

finishMovement, changeLocation and accept), newAmbientInst service which creates

new subambients of an ambient and copy service that replicates architectural

elements of an ambient.

Figure 79 .Specification of the ICapability Interface

5.4.4 IGetLocation Interface

An ambient publishes in an interface called IGetLocation a service called

getLocation in order to inform the name of its parent ambient (see Figure 61). The

getLocation service has one parameter called Location. The Location parameter is an

output parameter that returns the name of the parent ambient.

Interface IGetLocation
 getLocation(output Location: string);
End_Interface IGetLocation

Interface ICapability

 startMovement(input Name:string,
 output CommunicationList[]:Attachment);
 exit (input Name: string, input Parent:string);
 enter (input Name: string, input NewAmbient: string);
 finishMovement(input Name, input CommunicationList[]: Attachment);
 changeLocation(input Name: string, output NewLocation: string);
 accept(input NewAmbient: string, input Caller:string,
 input Child:string, input Type: string,
 input AttachmentsList[]:Attachments,
 output AcceptanceOK: boolean);
 newAmbientInst(input Name: string, input AmbientType: string);
 copy(input Name: string, output Ok:boolean);

End_Interface ICapability

163

Figure 80. Specification of the IGetLocation Interface

5.4.5 ACoordination Aspect

The Coordination Aspect of an ambient allows architectural elements located in

an ambient boundary to request or provide services from or to architectural

elements located in other ambients. The specification of this aspect cannot be

modified by the user. Also, this aspect is reused by all ambients.

The Coordination aspect is specified in Figure 81. The specification follows the

PRISMA bnf of an aspect that is shown in the APPENDIX A. The Coordination

Aspect is called ACoordination and uses the ICall interface (see Figure 78). As a

result, in its Services section it specifies the begin and the end services as well as the

call service. The call service is specified as an in and out service. This is due to the

fact that the ACoordination aspect can receive services that are required (out) or

provided (in). The aspect has two played_roles: INTERIOR and EXTERIOR. Both of

them specify when and how the service of the ICall interface can be required or

provided. The INTERIOR played_role is for receiving (?) and sending (!) services of

architectural elements located in the boundary of an ambient. The INTERIOR

played_role specifies that it can receive or send (indicated with + symbol) call

services. The EXTERIOR played_role is for receiving and sending services of

architectural elements located outside the boundary of an ambient. Also, the

EXTERIOR played_role specifies that it can receive or send call services.

Figure 81. Specification of the ACoordination Aspect

The ACoor protocol of the ACoordination aspect glues the INTERIOR and the

EXTERIOR played roles. Basically, the protocol specifies that once the begin service is

executed, i.e. the aspect is instantiated, the aspect executes the ACOOR1 process.

Coordination Aspect ACoordination using ICall

Services
 begin();
 in/out call(input Name:string, input ParamsList[]: Parameters,
 input ParamType[]: bool);
 end;

Played_Role
 INTERIOR for ICall::= call?(input Name, input ParamsList[],
 input ParamType[])
 +
 call!(input Name, input ParamsList[],
 input ParamType[]);
 EXTERIOR for ICall::= call?(input Name, input ParamsList[],
 input ParamType[])
 +
 call!(input Name, input ParamsList[],
 input ParamType[]);

Protocol
 ACOOR ::= begin� ACOOR1;
 ACOOR1 ::= INTrecEXTsnd+INTsndEXTrec+EXTrecINTsnd+EXTsndINTrec+ end;
 INTrecEXTsnd ::= (INTERIOR.call?(input Name, input ParamsList[],
 input ParamType[])
 �
 EXTERIOR.call!(input Name, input ParamsList[],
 input ParamType[]))�ACOOR1;
 INTsndEXTrec ::= (INTERIOR.call!(input Name, input ParamsList[],
 input ParamType[])
 �
 EXTERIOR.call?(input Name, input ParamsList[],
 input ParamType[]))�ACOOR1;
 EXTrecEXTsnd ::= (EXTERIOR.call?(input Name, input ParamsList[],
 input ParamType[])
 �
 INTERIOR.call!(input Name, input ParamsList[],
 input ParamType[]))�ACOOR1;

 EXTsndINTrec ::= (EXTERIOR.call!(input Name, input ParamsList[],
 input ParamType[])
 �
 INTERIOR.call?(input Name, input ParamsList[],
 input ParamType[]))�ACOOR1;

End_Coordination Aspect ACoordination

165

The ACOOR1 process specifies a nondeterministic choice among the execution of

four subprocesses: INTrecEXTsnd, INTsndEXTrec, EXTrecINTsnd, and EXTsndINTrec

and the end service. Each subprocess specifies the possible combination of the

reception or sending of a call service from a played role and the reception and

sending of a call service from another played role. For example, the INTrecEXTsnd

subprocess specifies that when a call service of the INTERIOR played role is received,

the aspect sends a call service by the EXTERIOR played role.

5.4.6 MobilityAspect aspect

The MobilityAspect aspect of an ambient provides architectural elements located

in its boundary the needed services so that they are capable of moving. The

specification of this aspect cannot be modified by the user. Also, this aspect is

reused by all ambients. The MobilityAspect aspect uses the ICapability interface

which is specified in Figure 79 in order to specify the behaviour of the services which

it publishes (see Figure 82).

1

Mobility Aspect MobilityAspect using ICapability
 …. …
Services
 begin();
 in startMovement(input Name:string,
 output CommunicationList[]: Attachment);
 in finishMovement(input Name:string,
 input CommunicationList[]: Attachment);
 end;

2 TRANSACTIONS in exit(Requested: string, Ambient: string):

 EXIT := out isChild(input Requested, output isChildOK)
 �EXIT1;
 EXIT1::= {isChildOK==true & self.Name==Ambient}
 getParent(output Parent)�EXIT2;
 EXIT2::= moving (input Requested, input Parent);

3 TRANSACTIONS in enter(Requested: string, NewAmbient: string):
 ENTER := out areChildren(input Requested, input Ambient,
 output areChildrenOK)�ENTER1;
 ENTER1::= {areChildrenOK==true} in moving(Requested,
 NewAmbient);

4 TRANSACTIONS in moving(Requested: string, NewAmbient: string):
 MOVING := out movingInf(input Requested, input self.Name,

 input Reguested, output Type,
 output AttachmentList[])� MOVING1;
 MOVING1::= out accept(input NewAmbient, input Type,
 input Requested, input AttachmentsList[],
 output AcceptanceOK)� MOVING2;
 MOVING2::= {Acceptance0K==true}
 out modifyAttachment(Requested)�MOVING3;

 MOVING3::= out removeAttachments(Requested)�MOVING4;
 MOVING4::= out removeChild(Requested);

5 TRANSACTIONS in accept(input NewAmbient:string, input Caller:
string,
 input Child:string, input Type:string,
 input AttachmentsList[]:Attachments,
 output AcceptanceOK: boolean):
 ACCEPT::= out addChild(input Type, input Child,
 input AttachmentsList[], output AddedOK)
 {AcceptanceOK==AddedOK}� ACCEPT1;
 ACCEPT1::=out changeLocation(Child, self.Name);

6 Preconditions
 in accept(input NewAmbient, input Caller,
 input Child, input Type,
 input AttachmentsList[],
 output AcceptanceOK)
 if
 {self.Name==NewAmbient};

7 Played_Role
 INTERIOR for ICapability::= accept?(input NewAmbient,
 input Caller,
 input Child,
 input Type,
 input AttachmentsList[],
 output AcceptanceOK)
 +
 accept!(input NewAmbient,
 input Caller,
 input Child,
 input Type,
 input AttachmentsList[],
 output AcceptanceOK)
 +
 enter?(input Requested,
 input NewAmbient)
 +
 exit?(input Requested,
 input Ambient)
 +
 startMovement?(input Name,
 output
CommunicationList[])
 +

167

 finishMovement?(input Name,
 input
CommunicationList[])
 +
 changeLocation!(input Child,
 input self.Name);

8 EXTERIOR for ICapability::= accept?(input NewAmbient, input
Caller,
 input Child, input Type,
 input AttachmentsList[],
 output AcceptanceOK)
 +
 accept!(input NewAmbient, input
Caller,
 input Child, input Type,
 input AttachmentsList[],
 output AcceptanceOK) ;

 … …
End_Mobility Aspect MobilityAspect

Figure 82. Specification of the MobilityAspect aspect

The services startMovement and finishMovement (see Figure 82, section 1) are

auxiliary services that the aspect uses in order to make special operations at the

beginning and at the end of a mobility process. The startMovement service is invoked

by an architectural element in order to indicate to an ambient that is going to invoke

a chain of capabilities (such as enter, exit). The finishMovement service is invoked by

an architectural element in order to indicate to an ambient that it has finished

invoking the chain of capabilities, i.e., it has finalized the mobility process. In this

way, an ambient has services in order to manage the beginning and the end of a

mobility process.

The exit (Requested: string, Ambient: string) transaction (see Figure 82, section 2)

is in charge of serving an exit requested by architectural elements of an ambient.

This transaction checks whether the architectural element that needs to exit is a

child of the aspects ambient or not. This check is performed through the isChild

service. The ischild service returns true through the isChildOK output parameter if

the requested architectural element is a child of the ambient. If ischild returns true,

and the architectural elements needs to exit the ambient which is currently its

parent then the transaction proceeds to execute getParent service. The getParent

service returns in the Parent parameter the name of the parent ambient of the

MobilityAspect ambient. This is needed in order to indicate the destination of the

exiting architectural element. Then the moving transaction is executed in order to

move the architectural element.

The enter (Requested: string, NewAmbient: string) transaction (see Figure 82,

section 3) is in charge of serving an enter requested by an architectural element of

an ambient that needs to enter a sibling ambient. This transaction checks whether

both the mobile architectural element and the destination ambient are siblings, i.e.,

both are children of the requested ambient. If this is fulfilled, the moving transaction

is executed in order to move the architectural element.

The moving (Requested: string, NewAmbient: string) transaction (see Figure 82,

section 4) is in charge of performing all steps needed in order to reconfigure the

architecture in the origin ambient. Initially, the information about the attachments

connected to the mobile architectural element is obtained. This information is

encapsulated in a list in order to enable their recreation in the destination ambient.

The accept service of the destination ambient is invoked and the information of the

attachments is sent. In any case, the origin ambient is attached to the destination

ambient. If the destination ambient accepts to receive the mobile architectural

element, the origin ambient concludes the mobility process by means of modifying

the attachments. Then, the origin ambient removes all the attachments that

connect the mobile architectural element to the parent ambient or to other

architectural elements in the ambient, creates attachments between its

InServicesPort port and the elements that were connected to the mobile architectural

element and, finally, deletes the architectural element instance.

The accept transaction (see Figure 82, section 5) is invoked by an origin ambient

to a destination ambient in order to request to the destination ambient to accept a

new architectural element. This transaction adds a new element to its list of

169

elements, correctly creates the needed attachments thanks to the list of information

saved about the attachments that it receives, and finally requests the changeLocation

service of the new element, so that it updates its location stored in the distribution

aspect. The accept transaction is in charge of performing all steps needed in order to

reconfigure the architecture in the destination ambient. This transaction has a

precondition associated to it (see Figure 82, section 6). The precondition indicates

that the accept transaction is only executed if the service is directed to the ambient

of the MobilityAspect aspect.

Finally, the INTERIOR (see Figure 82,, section 7) and the EXTERIOR (see Figure

82, section 8) played_roles are described. The INTERIOR played role allows an

ambient to offer the services of the ICapabily interface to the elements located in its

boundary. The EXTERIOR played role allows the ambient to offer and request the

accept service of the ICapability interface to the elements located outside the

boundary of the ambient. The architectural elements located outside the boundary

of an ambient cannot request other services such as the exit or the enter.

5.4.7 Distribution Aspect

Each distribution aspect must save the parent ambient of the ambient that

imports it and provides a service in order to allow other aspects of the ambient to

consult its current location. Therefore, a distribution aspect uses the IGetLocation

interface specified in Figure 80. Figure 83, Figure 84, and Figure 85 show the

specifications of possible distribution aspects. These aspects store the name of the

parent ambient of the ambient that imports it through the location attribute. The

aspects aspect specifies that the getLocation service is an in/out i.e., the service first

receives the request (in), then the value of the location attribute is assigned to the

Location parameter through the Valuation. Finally, the service sends the Location

parameter (out).

Figure 83 shows the minimum specification that a distribution aspect of a Site

ambient can contain. A distribution aspect of a Site must include an attribute called

physicalLocation of type loc. The physicalLocation attribute stores the physical

location that the site represents. This attribute is a NOT NULL attribute that always

has to have a value. As a result, the begin service must have a parameter that gives

a value to phyicalLocation when the aspect starts executing.

Distribution Aspect SiteAmbient using IGetLocation
 Attributes
 …
 location : string NOT NULL;
 physicalLocation: loc;

 …
 Services
 …

 begin(input ParentAmbient: string, input PhysicalLocation: loc)
 Valuations
 [begin (ParentAmbient, PhysicalLocation)]
 location := ParentAmbient,
 physicalLocation:=PhysicalLocation;

 in/out getLocation(output Location:string)
 Valuations
 [in getLocation(output Location)] Location := location;

 Protocol
 DIST:= begin� DIST1;

 DIST1:= (getLocation?(Location)� getLocation!(Location))+ end;

End_Distribution Aspect SiteDist

Figure 83. A distribution aspect of a Site ambient

 Figure 84 shows the minimum specification of a distribution aspect that is

importd by a Group Site. It can be observed, that the aspect has the location

attribute as NOT NULL.

Distribution Aspect GroupAmbient using IGetLocation
 Attributes
 …
 location : string NOT NULL;

 …
 Services
 …

 begin(input ParentAmbient: string)
 Valuations

171

 [begin (ParentAmbient)]
 location := ParentAmbient,

 in/out getLocation(output Location:string)
 Valuations
 [in getLocation(output Location)] Location := location;

 Protocol
 DIST:= begin� DIST1;

 DIST1:= (getLocation?(Location)� getLocation!(Location))+ end;

End_Distribution Aspect GroupDist

Figure 84. A distribution aspect of a Group ambient

Figure 85 shows the minimum specification of a distribution aspect imported by

the Root ambient. It can be observed that the location attribute always has NULL

value. This is due to the fact that a Root ambient does not have a parent ambient. As

a result, the begin service of the aspect can have no parameters and no valuation.

Distribution Aspect RootAmbient using IGetLocation
 Attributes
 Constant
 location : string (NULL);

 …
 Services
 …

 begin()

 in/out getLocation(output Location:string)
 Valuations
 [in getLocation(output Location)] Location := location;

 Protocol
 DIST:= begin� DIST1;

 DIST1:= (getLocation?(Location)� getLocation!(Location))+ end;

End_Distribution Aspect RootDist

Figure 85. A distribution aspect of the Root ambient

5.4.8 Ambients

An ambient is specified with the set of aspects it is formed of, aspect weavings

and the ports. Figure 86, shows the template of ambients. All the kinds of ambients

are specified in the same way. The only difference is the reserved words that precede

and end their specifications. These reserved words are Virtual…End_Virtual,

Site…End_Site, and Group…End_Group for the specification of virtual, site and group

ambients, respectively.

<Virtual> ::= Virtual <virtaul_name>

 <aspects_importation_seq>

 [<weavings>]

 <ports>

 <creation>

 <destruction>

 End_Virtual <virtual_name>‘;’

<Site> ::= Site <site_name>

 <aspects_importation_seq>

 [<weavings>]

 <ports>

 <creation>

 <destruction>

 End_Site <site_name>‘;’

<Group> ::= Group <group_name>

 <aspects_importation_seq>

 [<weavings>]

 <ports>

 <creation>

 <destruction>

 End_Group <group_name>‘;’

173

<aspects_importation> ::= <concern> Aspect Import <aspect_name>

<creation> ::= new‘(‘ [<param_service_list>]‘)’ ‘{‘ <start_aspects_seq> ‘}’

<destruction> ::= destroy‘(‘ ‘)’ ‘{‘ <stop_aspects_seq> ‘}’

<start_aspects> ::= <aspect_name>‘.’begin‘(‘ [<parameter_name_list>]‘)’

<stop_aspects> ::= <aspect_name>‘.’end‘(‘ ‘)’

Figure 86. Specification Template of Ambients

Figure 87 shows the specification of a site ambient called HostSite. The ambient

imports the MobilityAspect aspect, the ACoordination aspect, and the ADist aspect.

The predefined ports of the ambient are specified with their played roles. The

predefined weaving is also specified.

Ambient_Site type HostSite
Import Mobility Aspect MobilityAspect;
 Import Coordination Aspect ACoordination;
 Import Distribution Aspect ADist;
 Ports
 InCapabilitiesPort: ICapability Played_Role Mobile.Parent;
 ECapabilitiesPort: ICapability Played_Role Mobile.Child;
 EServicesPort: ICall Played_Role ACoordination.Client;
 InServicesPort: ICall Played_Role ACoordination.Server ;

 End_Ports
 Weavings
 ADist.getLocation(Location)instead
 MobilityAspect.getParent(Parent);

End Ambient_Site type HostSite;

Figure 87. Specification of HostSite ambient

It can be noticed, that the template of the ambient does not include the

architectural elements that it locates or the attachments. It is assumed that

ambients of an architectural model can locate all architectural elements.

5.4.9 Configuration

The template for specifying configuration is shown in Figure 88. The possible

physicalLocations are instantiated by instantiating the loc data type. Then the

ambients are instantiated. The root ambient has to be initially instantiated, then the

site ambients and finally the group ambients. Each ambient is instantiated

indicating their parent ambient with the exception of the Root ambient. Then,

components and connectors are instantiated indicating where they are located.

Finally, the attachments are instantiated. Figure 89, shows the specification of the

configuration of the AuctionConfig architectural model.

<architectural_model_configuration> ::=

 Architectural_Model_Configuration <configuration_name> ‘=’

 new <model_name> ‘{‘<loc_instantiation_seq>

 [<virtualAmbient_instantiation_seq>]

 <siteAmbient_instantiation_seq>

 [<groupAmbient_instantiation_seq>]

 <components_instantiation_seq>

 [<systems_instantiation_seq>]

 <connectors_instantiation_seq>

 <attachments_intantiation_seq> ‘}’

<LOC_instantiation> ::= <loc_name> ‘=’ new

 loc‘(‘ [<param_value _list>] ‘)

<virtualAmbient_instantiation> ::= <virtualAmbient_instance_name> ‘=’ new

 <virtualAmbient_name>‘(‘ [<param_value _list>] ‘)

<siteAmbient_instantiation> ::= <siteAmbient_instance_name> ‘=’ new

 <siteAmbient_name>‘(‘ [<param_value _list>] ‘)

<groupAmbient_instantiation> ::= <groupAmbient_instance_name> ‘=’ new

 <groupAmbient_name>‘(‘ [<param_value _list>] ‘)

<components_instantiation> ::= <component_instance_name> ‘=’ new

 <component_name>‘(‘ [<param_value _list>] ‘)

175

<connectors_instantiation> ::= <connector_instance_name> ‘=’ new

 <connector_name> ‘(‘ [<param_value_list>] ‘)

<attachments_instantiation> ::= <attachment_instance_name>1 ‘=’ new

 <attachment_name> ‘(‘<param_attachment_value>‘)’

<systems_instantiation> ::= <system_instance_name>1 ‘=’ new <system_name>

 ‘(‘[<param_service_value_list>‘,’] <architectural_element_number_value_list>,

 [<attachment_number_value_list>’,’ <binding_number_value_list>] ‘)’

 ‘{‘ [<start_aspects_seq>] <architectural_elements_instantiation_seq>

 <attachments_instantiation_seq> <bindings_instantiation_seq> ‘}’

<architectural_element_instantiation > ::= <components_instantiation> |

 <connectors_instantiation> |

 <systems_instantiation>

< bindings_instantiation> ::= <binding_instance_name>1 ‘=’ new

 <binding_name> ‘(‘ <param_binding_value> ‘)’

Figure 88. Specification Template of configurations of ambient-PRISMA architectural

models

Architectural_Model_Configuration AuctionConf =

New MobileAuction
{
 IP1 = new loc(ip.of.host.1);
 IP2 = new loc(ip.of.host.2)

 ROOT = new Root() ;

 ClientSite = new HostSite(ROOT, IP1);
 AuctionSite = new HostSite(ROOT, IP2)

 Auction1 = new AuctionHouse (“London, King street”, 1876”,

 “1 Jun”, “Spanish painting”, “800”,

 “AuctionSite”);

 Customer1 = new Customer(“ClientSite”);

 Procurement1 = new Procurement (“ClientSite”);

 Bidder1 = new Bidder(“painting”, “3 Jul”, “ClientSite”);

 AgentCustCnct1 = new AgentCustCnct(“ClientSite”);

 AuctionCnct1 = new AuctionCnct(“AuctionSite”);

 AttchAuct1Cnct = new AttchAuctCnct (AuctionCnct1,

 CnctAuctPortBidder,

 AuctionHouse1,

 BidderAuctPort);

 AttchCust1Auc1 = new AttchCustAuc (Customer1, CUSTAUCTPort,

 AuctionCnct1, CustPortAuct);

Figure 89. Specification of the AuctionConfig configuration

5.5 Conclusions

This chapter introduces Ambient-PRISMA. It presents how the ambient concept has

been introduced in PRISMA in order to define architectural models of distributed

and mobile software systems. An extension of the PRISMA metamodel and the

AOADL have been needed in order to define how an ambient is related with the other

architectural elements of PRISMA.

The Ambient-PRISMA is an approach that provides distribution and mobility

with the following characteristics:

� Explicit notation for location using an ambient architectural element

� The unit of Mobility in Ambient-PRISMA are Components, Connectors and

ambients.

� Mobility is supported by the reconfiguration of the software architecture.

� The location attribute is only changed by an ambient.

� Migration Decision can be passive and autonomous.

� Support distributed coordination

� A mobile element has to define its mobility strategies in its Distribution

Aspect.

The work related to PRISMA has produced a set of results that are published in

the following publications:

� Nour Ali, Carlos Millán, Isidro Ramos, Developing Mobile Ambients using

an Aspect-Oriented Software Architectural Model, 8th International

Symposium on Distributed Objects and Applications (DOA 2006), LNCS

Springer Verlang, Montpellier, France, October, 2006.

� Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose Ángel Carsí,

Mobile Ambients in Aspect-Oriented Software Architectures, IFIP Working

177

Conference on Software Engineering Techniques (SET 2006), Springer

Series in Computer Science, Warsaw, Polond, October 17-20, 2006.

� Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí Introducing Ambient

Calculus in Mobile Aspect-Oriented Software Architectures , Fifth Working

IEEE/IFIP Conference on Software Architecture (WICSA 2005), IEEE

Computer Society, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005

(position paper).

� Nour Ali, Isidro Ramos, Jose A. Carsí, A Conceptual Model for Distributed

Aspect-Oriented Software Architectures , International Conference on

Information Technology Coding and Computing (ITCC 2005), IEEE

Computer Society, Las Vegas, NV, USA, 2005.

� Nour Ali, Jennifer Perez, Isidro Ramos, High Level Specification of

Distributed and Mobile Information Systems, Second International

Symposium on Innovation in Information & Communication Technology

(ISSICT 2004), April, Amman, Jordan,2004.

� Nour Ali, Josep Silva, Javier Jaén, Isidro Ramos, José Ángel Carsí, Jennifer

Pérez, Mobility and Replication Patterns in Aspect-oriented component

Based Software Architectures, 15th IASTED International Conference,

PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS~PDCS

2003~, November 3-5, Marina del Rey, CA, USA, 2003.

� Nour Ali, Jennifer Pérez,Cristóbal Costa, Isidro Ramos,Jose Ángel Carsí,

Replicación Distribuida en Arquitecturas Software Orientadas a Aspectos

utilizando Ambientes, XI Jornadas de Ingeniería del Software y Bases de

Datos (JISBD), Sitges, Barcelona, Octubre 3-6, 2006.

� Nour Ali, Jose Angel Carsi, Isidro Ramos,“Analysis of a Distribution

Dimension for PRISMA”, Actas de las IX Jornadas de Ingeniería del Software

y Bases de Datos (JISBD 2004), Málaga, 10-12 Noviembre 2004

� Nour Ali, Isidro Ramos, “Ambient-PRISMA: Ambients in Distributed and

Mobile Aspect-Oriented Software Architectures”, V Jornadas de Trabajo

DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated

Component-based Architectures, 2006.

� Nour Ali, Jennifer Perez, Jose Angel Carsi, Isidro Ramos, “Mobility of

Objects in PRISMA” , III Jornadas de DYNMAICA, Al Magro, Ciudad Real,

2005.

� Nour Ali, Jose Cercos, Isidro Ramos, Patricio Letelier, Jose Angel Carsi,

“Distribution in PRISMA”, workshop DYNAMICA – DYNamic and Aspect-

Oriented Modeling for Integrated Component-based Architectures,

Conference on Software Engineering and Databases (JISBD), pp. 119-127,

Málaga, November, 2004.

� Nour H. Ali, Josep F. Silva, Javier Jaen, Isidro Ramos, Jose Á. Carsí,

Jennifer Pérez, “Distribution Patterns in Aspect-Oriented Component-Based

Software Architectures”, IV Workshop Distributed Objects, Languages,

Methods and Environments (DOLMEN), pp.74-80, Alicante, November,

2003.

179

CHAPTER 6
Ambient-PRISMANET

The PRISMANET middleware provides an execution platform for PRISMA aspect-

oriented software architecture configurations. For example, it contains classes that

map the concepts of aspects, weavings, components, ports, and attachments

between local instances.

Since Ambient-PRISMA extends PRISMA, PRISMANET has to be extended in

order to support the distribution and mobility characteristics of Ambient-PRISMA.

Specifically, Ambient-PRISMANET implements the constructs needed to support the

ambient primitive of Ambient-PRISMA. Also, it provides the execution of distributed

communication and mobility of architectural elements at runtime. Ambient-

PRISMANET provides a distributed runtime environment for applications. Each

Ambient-PRISMANET middleware of a host can collaborate with other Ambient-

PRISMANET middlewares on other hosts (see Figure 90). The runtime environment

has a distributed Domain Name Server (DNS) which all middlewares on hosts can

access.

181

Runtime environment

Configuration

.NET

Ambient-PRISMANET

host01

DNS

Configuration

.NET

Ambient-PRISMANET

host02

DNS

Configuration

.NET

Ambient-PRISMANET

hostN

DNS

(...)

Figure 90 Distributed Run-time Environment of Ambient-PRISMANET

In the following, we present how the ambient concept has been implemented in

Ambient-PRISMANET. Then we briefly explain how distributed communication and

mobility are supported using the Auction Systems case study.

6.1 Ambient Construct

The PRISMANET middleware includes the ComponentBase class. This class is

responsible for implementing architectural elements by defining aspects, weavings

and ports. Since ambients are also defined in this way, the Ambient class has been

implemented by extending the ComponentBase class (see Figure 91). The Ambient class

inherits ComponentBase properties and methods and also defines its own. A

characteristic of all ambients is that they have the predefined Mobility and

Coordination aspects as well as their four predefined ports. Figure 11 shows that the

predefined aspects have been included by using the AddAspect() method in the

Ambient constructor as well as the predefined ports by the Add()method.

 [Serializable]
 public class Ambient: ComponentBase
 {
 (...)
 public Ambient(string AmbientName): base(AmbientName)
{
(...)
 /**DEFINITION OF ASPECTS OF AN AMBIENT **/
 AddAspect(new AmbientCoordinationAspect());
 AddAspect(new MobilityAspect());
(...)
 /** DEFINITION OF PORTS OF AN AMBIENT **/
 // Ports for generic communication
 InPorts.Add("ICallPort-InOut", "ICall", "INTERN");
 InPorts.Add("ICallPort-OutIn", "ICall", "EXTERN");
 // Ports for mobility
 InPorts.Add("ICapabilityPort-OutIn", "ICapability", "EXTERN");
 InPorts.Add("ICapabilityPort-InOut", "ICapability", "INTERN");
(...)
 }

Figure 91. A segment of the Ambient class constructor

In the following, the implementations of the Mobility Aspect and the

Coordination Aspect are explained.

6.1.1 The Mobility Aspect

The Mobility Aspect allows an ambient to provide AC capabilities to mobile

architectural elements as well as other services in order to provide a consistent state

of the software architecture during and after a mobility process. Figure 92 shows

that the MobilityAspect class extends the AspectBase class (the class that represents

aspects in PRISMANET) and implements the ICapability interface. The

MobilityAspect is a C# sealed class, i.e., the class cannot be extended. This is to

emphasize that this aspect is predefined and the user does not have to include extra

functionality.

183

Figure 92. The MobilityAspect class and the ICapability interface

In the following, the MobilityAspect services are explained. These services have

been implemented following their specification in the AOADL:

� StartMovement(name)service is in charge of managing the tasks needed for

preparing an architectural element to move given its name. Basically, the

service prepares the attachments connected to the mobile element to be

reconfigured (i.e., added or removed).

� Enter(requested, newAmbient) service checks whether the mobile

architectural element (requested) and the destination ambient (newAmbient)

are located in the same parent ambient, i.e., are children. This is done by

asking the parent ambient if it contains both the mobile element and the

destination ambient. If this is satisfied, the Moving() service is executed in

order to begin the mobility process. Since Enter()is implemented as a

transactional service, any satisfaction of an exception would cause the abort

of the Enter().

� Exit(requested, Ambient) service checks whether the mobile architectural

element (requested) is requesting to exit its parent ambient (Ambient). This is

done by asking the ambient serving Exit() to check whether requested is

actually its child and that Ambient has the same value as its name. If this is

satisfied, the service GetParent() is invoked in order to obtain the

destination ambient (the parent of the server ambient). This service has a

weaving with the Distribution Aspect where the name of the parent ambient

is stored. Then, the Moving() service is executed in order to begin the

mobility process. Like the Enter() service, Exit() is implemented as a

transactional service.

� Moving(requested, newAmbient) service performs the mobility process.

Therefore, its two parameters are the mobile element (requested) and the

destination ambient (newAmbient). Moving()is a transactional service that

requests the MovingInf service to obtain information about the mobile

element. Then, the transaction invokes the Accept() service of the destination

ambient. When the destination ambient returns a flag to notify that it has

accepted the mobile element, Moving()performs a post process to reconfigure

the attachments which were connected to the moved architectural element.

� Accept(newAmbient, Type, requested, subscriberList, capability) service is a

transactional service that is in charge of receiving the mobile architectural

element in the destination ambient. Accept() checks whether the accepting

petition is directed to the receiver by verifying that the newAmbient

parameter has the value of the destination ambient name. If the petition is

directed to the ambient, Accept() adds the new architectural element using

the attachments information that has been passed as arguments. Then, the

Mobility Aspect invokes the ChangeLocation() service of the moved

architectural element in order to update its location value to the new parent

ambient.

185

� FinishMovement(name) service is in charge of creating and executing

attachments that a moved element needs at the destination ambient.

Note that the services of the Mobility Aspect are strictly related to an ambient. As

a result, only ambients can import this aspect.

6.1.2 The Coordination Aspect

The Coordination Aspect provides the services of architectural elements that are

located in an ambient to architectural elements that are located outside it. The

Coordination Aspect also resends requests of architectural elements in an ambient

to the parent ambient. The Coordination Aspect has been implemented in the

AmbientCoordinationAspect class (Figure 93). This class extends the AspectBase

class and implements the ICall interface. Like the MobilityAspect class, the

AmbientCoordinationAspect class is a sealed class.

AspectBase

IAspectType

AmbientCoordinationAspect

{leaf}

+ AmbientCoordinationAspect()

+ ToString() : string

+ «property» AspectType() : Type

+ IsSameTypeAs(Type) : bool

+ CheckPreconditions(IComponent) : bool

+ GetValidMethod(PlayedRoleClass) : ArrayList

+ Call(string, object[]) : AsyncResult

«interface»

Aspects::ICall

+ Call(string, object[]) : AsyncResult

Figure 93. The AmbientCoordinationAspect class and the ICall interface

Since the set of architectural elements located in an ambient can dynamically

change, the interface that this aspect implements should dynamically change

depending on the services of the architectural elements of an ambient. However,

implementing a dynamic interface is not efficient because, once an interface is

changed, all the constructs related to the interface must also be changed. Therefore,

a generic interface that is in charge of sending messages through the ambient has

been defined. This interface encapsulates requests in a generic invocation method

called Call(). The Call() service has two parameters: the name of the service as a

string and the set of parameters of the service in an array of objects. In this way, all

the petitions that the Coordination Aspect processes must be extracted in a Call()

service. These must then be transformed into the original services when the petitions

are sent to the architectural element ports.

In PRISMANET, the InPort class, which implements the part of a port that

receives service invocations and resends them to aspects, only accepts invocation of

services that are part of the ValidMethods list. This list is obtained through the

GetValidMethod method of the AspectBase class that implements the services of the

specific interfaces. Since the InPort instance that receives service invocations to the

the AmbientCoordinationAspect class has to accept services that are dynamically changing, the class

has to override GetValidMethod method. The GetValidMethod method must return the list

to the InPort of the InServicesPort of the ambient, depending on the architectural

elements that are in an ambient. In this way, the services that are in charge of

moving an architectural element are also in charge of updating the list of ValidMethods

in the InPort.

6.2 The three kinds of Ambients

The three kinds of ambients: Group, Site, and Virtual all share the characteristics

described in section 0. However, each ambient kind has its own characteristics. In

Figure 94, shows how the three ambients extend the Ambient class.

187

AmbientSite

- physicalLocation: LOC

AmbientGroup

componentsList: ArrayList

connectorsList: ArrayList

groupAmbientsList: ArrayList

AmbientVirtual

- spreadList: ArrayList

- siteAmbientsList: ArrayList

- tempFolder: string = string

attachmentsList: ArrayList

Ambient

attachmentsList: ArrayList

- interfacesList: ArrayList

traceOperations: TraceOperationsCollection

Figure 94. The three kinds of ambients in Ambient-PRISMANET

In the following, the implementation of the three kinds of ambients is explained.

6.2.1 Group Ambients

Group Ambients are implemented in the AmbientGroup class. For example, the

AgentsGroup ambient that is specified in Figure 95 must inherit from the

AmbientGroup class in order to be executed.

Ambient_Group type AgentsGroup
 Import Mobility Aspect Mobile;
 Import Coordination Aspect ACoordination;
 Import Distribution Aspect AGADist;
 Ports
 InCapabilitiesPort: ICapability;
 ECapabilitiesPort: ICapability;
 EServicesPort: ICall;
 InServicesPort: ICall;
 EDistPort : ICapability;
 InMobilityPort : IMobility;
 EMobilityPort : IMobility;
 End_Ports
 Weavings
 AGADist.getLocation(Location) instead
 Mobile.getParent(Parent);

 End Ambient_Group type AgentsGroup;
Figure 95. Specification of the AgentsGroup ambient

AmbientGroup class has a list for each kind of architectural element that it can

contain: components (componentsList), connectors (connectorsList), and group

ambients (groupAmbientsList). The methods of this class, mainly override the ones of

the Ambient class. The methods of the AmbientGroup are explained below:

� AddChild(): This method adds new architectural elements to the lists of the

ambient. The method checks which kind of architectural element is to be

added and then adds it to the corresponding lists.

� RemoveChild(): This method removes an element from its corresponding list.

First, it looks for the element in the three lists and then it removes it.

� IsChild(): Given the name of the architectural element, this method returns

a boolean value to indicate whether the architectural element is located

inside the ambient.

� AddLocalAttachment(): This method creates new communication channels in

the ambient.

� SearchAttachment(): This method returns the attachment that forms part of a

complex attachment.

� GetAmbientType(): This method returns a string to indicate the kind of

ambient. In this case, it returns a string with “AmbientGroup”.

� RecomposeCommChannels():This method reconfigures the attachments needed

for an architectural element in an ambient.

Elements that move in a Group ambient originate from either a Site ambient or

another Group ambient. Also, the destination of elements that exit a Group ambient

is either a Site ambient or a Group ambient. In this way, ambients of the Group

ambient kind do not deal with serialization or deserialization since the mobility that

is performed is always local to the current host.

6.2.2 Site Ambients

Site Ambients are implemented in the AmbientSite class. For example, the

HostSite ambient that is specified in Figure 96 must inherit from the AmbientSite

class in order to be executed. This kind of an ambient can contain the same

189

architectural elements as a Group ambient. As a result, the AmbientSite class extends

the AmbientGroup class in order to inherit its lists and the methods that manage them.

The only difference is the GetAmbientType()method which must be overridden in order to return

the string “AmbientSite”.

Ambient_Site type HostSite
 Import Mobility Aspect Mobile;
 Import Coordination Aspect ACoordination;
 Import Distribution Aspect HostDist;
 Ports
 ECapabilitiesPort: ICapability;
 EServicesPort: ICall;
 InServicesPort: ICall;
 InCapabilitiesPort: ICapability;
 End_Ports
 Weavings
 HostDist.getLocation(Location) instead

 Mobile.getParent(Parent);
… …
End Ambient_Site type HostSite;

Figure 96. . Specification of the HostSite ambient

An important fact that distinguishes a Site ambient from other ambients is that

it represents a device. As a result, the physical location (the URL) that the ambient

represents is passed in the constructor of the Site ambient. When a Site ambient is

instantiated, it notifies the Ambient-PRISMANET middleware that it is going to

represent it. In this way, there is only one instance of a Site ambient executing on a

host, and this instance is the only element that has the reference to the Ambient-

PRISMANET middleware of the host. For this reason, a Site ambient cannot change

its physical location during runtime.

In other words, a Site ambient can be considered to be a bridge between an

ambient hierarchy and the middleware where other architectural elements execute.

Each time an element exits a Site, the element moves into a new host and starts

executing on another Ambient-PRISMANET middleware. However, this is

transparent to the element that is moving, since it is the Site ambient that is in

charge of performing these changes.

6.2.3 Virtual Ambients

Virtual Ambients are implemented in the AmbientVirtual class. For example, the

Root ambient in Figure 97 is instantiated from the AmbientVirtual class in order to be

executed. These kinds of ambients are the parents of Site ambients and represent

the Ambient-PRISMANET execution environment that is made up of the different

middlewares executing on the distributed hosts.

Ambient_Virtual type Root

 Import Mobility Aspect MobilityAspect;
 Import Coordination Aspect ACoordination;
 Import Distribution Aspect RootDist;

 Ports
 InCapabilitiesPort: ICapability Played_Role Mobile.Parent;
 ECapabilitiesPort: ICapability Played_Role Mobile.Child;
 EServicesPort: ICall Played_Role ACoordination.Client;
 InServicesPort: ICall Played_Role ACoordination.Server ;
 End_Ports

 Weavings
 Dist.getLocation(Location) instead
 MobilityAspect.getParent(Parent);

End Ambient_Virtual type Root;

Figure 97. Specification of the Root ambient

A Virtual Ambient is the representative of a specific execution environment

which can be connected to other execution environments. As a result, at

implementation, an instance of an AmbientVirtual class executing on an Ambient-

PRISMANET middleware host represents a gateway for other AmbientVirtual

instances that contain other Sites. In this way, an execution environment needs a

Root that is represented in the host where an AmbientVirtual instance executes.

When architectural elements move from Site to Site, Site ambients provide this

mobility through the AmbientVirtual instance of their execution environment. Thus,

architectural elements must enter the AmbientVirtual instance so that they can be

serialized. However, elements that move among Sites cannot stay in an

AmbientVirtual instance. If an architectural element enters a Virtual ambient and

191

does not exit it, the mobility transaction fails and the element is sent back to its

original ambient.

The AmbientVirtual class stores the name of Site ambients that it locates in a list

called siteAmbientsList. Also, an element that is temporally passing through a Virtual

ambient is stored in tempFolder. The methods of AmbientVirtual also override the

methods of Ambient in a similar way to AmbientGroup. Most of the methods manage the

list siteAmbientsList. The AddLocalAttachment() method of the AmbientVirtual class creates:

attachments between the ports of architectural elements (that are temporally located

in the Virtual ambient) and the Virtual ambient ports or attachments between the

ports of Site ambients and the ones of the Virtual ambient. The attachments that

connect two Site ambients are distributed. In this case, the location of the

distributed ambients must be identified using the Ambient-PRISMA DNS and be

connected by .NET Remoting.

6.3 Distributed Communication

In Ambient-PRISMA, communication among architectural elements is performed by

the attachments. As explained, the user is not aware of the creation of a complex

attachment that is formed by other attachments. Ambient-PRISMANET is

responsible for creating the attachments that communicate two distributed

architectural element instances.

In PRISMA, a communication channel is formed by an attachment that connects

a port of a component instance to a port of a connector instance. In Ambient-

PRISMA, the distributed communication channel is not only formed by an

attachment but by many attachments. An attachment can also be used by many

communication channels. From now on, the term attachment is used to refer to a

simple attachment and the term communication channel (a complex attachment) is

used to refer to an attachment in PRISMA. For example, the attachments shown in

Figure 6 are referred to as attachments and the attachments specified in Figure 9 are

communication channels. Thus, attachments can be added or removed when one of

the instances they connect moves.

IDisposable

ISubscriber

Attachment

- communicationChannelsList: CommChannelsCollection

- role: CommunicationRoles

- attachmentName: string

- portName: string

- component: IComponent

- isPort: bool

- server: AttachmentServer

- cl ient: AttachmentClient

- myPath: string

- executing: bool

- myCoupleName: string

- myCouplePath: string

- myCoupleComponentName: string

- myCoupleInterface: string

- myCouplePortName: string

Figure 98. The Attachment class in Ambient-PRISMANET

To implement an attachment in Ambient-PRISMA, the Attachment class (see

Figure 98) has a collection that stores the names of the communication channels

that use an attachment instance (communicationChannelsList). For example, in Figure

99 the attachment between the AuctionSite and the ClientSite can be used by any

communication channel that connects an instance located in AuctionSite and an

instance located in ClientSite. As a result, the Attachment class has methods for

consulting and modifying the communication channel collection. Also, the Attachment

has a property called role to indicate whether an attachment instance connects two

siblings or it connects a parent ambient and an instance located in it. This

information is needed to configure attachments.

193

Root

AuctionSite

ClientSite

Customer

AuctionAuction

«connector»

AuctionCnct

«connector»

AuctionCnct

«connector»
AgentCustCnct
«connector»
AgentCustCnct

Mobility

Aspect
Distribution

Aspect
Coordination

Aspect

Weaving

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect
Coordinatio

n

Aspect

WeavingAgentsGA

«connector»

AgentCnctr

Collector

Purchaser

Mobility

Aspect

Distribution

Aspect

Coordination

Aspect

Weaving

AgentsGA

«connector»

AgentCnctr
«connector»

AgentCnctr

Collector

Purchaser

Mobility

Aspect

Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect

Distribution

Aspect

Coordination

Aspect

Weaving

Figure 99. The Initial Configuration of the Software architecture of the Mobile Agent

Case Study

The initial configuration of the attachments is obtained as follows: Once the

developer specifies the communication channels in the configuration as shown in

Figure 9, the Ambient-PRISMANET middleware uses the DNS to know on which

host the instances that need to be connected are located. Then a bottom-up search

algorithm is applied to obtain the route of each instance in a tree hierarchy of

ambients (i.e., from the instance passing through the intermediate ambients until

the Site ambient is reached). A bottom-up search is more efficient because an

instance knows its direct parent ambient, whereas an ambient has many children.

Once the route of both instances is obtained in an ordered list, the ambients

common to both routes are identified. An attachment with sibling role is created

between the next elements on both lists, and the remaining attachments are created

with role parent. For example, to create the communication channel between the

Customer and the AuctionCnct in Figure 99: the route obtained for the Customer is

Root\ClientSite\Customer, and the route obtained for the AuctionCnct is

Root\AuctionSite\AuctionCnct. Ambient-PRISMANET creates an attachment

between AuctionSite and ClientSite with a sibling role, an attachment between

Customer and ClientSite with a parent role, and an attachment between AuctionCnct

and AuctionSite with a parent role.

6.4 Mobility

When an instance moves, the communication channels are reconfigured at runtime

by adding and deleting attachments, i.e., when an instance invokes the services

provided by the Mobility Aspect of its parent ambient. In the following, we show the

steps performed by the Ambient-PRISMANET middleware when AgentsGA executes

the move(NewAmbient:string) specified in Figure 100.

Distribution Aspect AGADist using IMobility, ICapability
Attributes
 location : string NOT NULL;
Services
 in changeLocation(Name: String, NewLocation:loc)
 Valuations
 [changeLocation()] location:=NewLocation;
…………
 Transactions in move(NewAmbient:string)
 move::= out startMovement(input Name,
 output CommunicationList[])

 � MOVE1;
 MOVE1::= out exit(Name,Parent)� MOVE2;

 MOVE2::= out enter(Name, NewAmbient)�MOVE3;
 MOVE3::= out finishMovement(input Name,
 input CommunicationList[]);

 ………
End_Distribution Aspect AGADist

Figure 100 . Specification of the AGADist distribution aspect

The AgentsGA invokes the StartMovement(AgentsGA) service of the Mobility Aspect

of the ClientSite through its IC port . This is to indicate to the ClientSite that it is

going to begin a moving process. As a result, the ClientSite obtains all the

information about the attachments that are connected to the AgentsGA. The

ClientSite removes all the attachments connected to the AgentsGA and creates

attachments between its IS port and the elements that were connected to the

AgentsGA. The only attachment that is not deleted is the one connected to the IC

port of the ClientSite.

195

The AgentGA invokes the Exit(AgentsGA, ClientSite)service through the IC port,

and the MobilityAspect of the ClientSite is executed. As a result of the execution, the

ClientSite sends the Accept() service to Root with the information of the attachments

and the AgentsGA. The Ambient-PRISMANET deletes the AgentsGA from the

ClientSite and deletes the attachment between the AgentsGA and the IC port of the

ClientSite. As a result, the Root creates an attachment between the AgentsGA and

its IC port. The resulting configuration is the one shown in Figure 101.

Root

AuctionSite

ClientSite

Customer

AuctionAuction

«connector»

AuctionCnct

«connector»

AuctionCnct

«connector»
AgentCustCnct
«connector»
AgentCustCnct

Mobility

Aspect

Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect

Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

AgentsGA

«connector»

AgentCnctr

Collector

Purchaser

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

AgentsGA

«connector»

AgentCnctr

«connector»

AgentCnctr

Collector

Purchaser

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

Figure 101. The Software Architecture when the AgentsGA executes the exit

Then, the AgentsGA requests the Enter(AgentsGA, AuctionSite) service from the Root

through the attachment that connects the AgentsGA and the IC port of the Root. The

Root executes its Mobility Aspect. As a result, the Root executes the Accept() method

of the AuctionSite and sends the information of the AgentsGA attachments that was

passed by the ClientSite to the AuctionSite. The Root serializes the AgentsGA so that

it can be sent to the AuctionSite. When the AuctionSite notifies acceptance, the

AgentsGA is deleted from the Root and its attachment. As a result, the AuctionSite

adds it and connects the AgentsGA to its IC port. The AgentsGA then requests the

FinishMovement(AgentsGA) service and the AuctionSite uses the information about

the attachments to create the attachments that the AgentsGA needs. The result of

the configuration is shown in Figure 102.

Root

AuctionSite

Auction

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

«connector»

AuctionCnct

«connector»

AuctionCnct

ClientSite

Customer

«connector»
AgentCustCnct
«connector»
AgentCustCnct

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

Mobility

Aspect

Distribution

Aspect

Coordina

tion

Aspect

AgentsGA

«connector»

AgentCnctr

Collector

Purchaser

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

AgentsGA

«connector»

AgentCnctr
«connector»

AgentCnctr

Collector

Purchaser

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

Mobility

Aspect
Distribution

Aspect

Coordination

Aspect

Weaving

Figure 102. The AgentsGA becomes a child of AuctionSite

6.5 Conclusions

This chapter has presented Ambient-PRISMANET. Ambient-PRISMANET is a

middleware that implements the constructs needed to execute Ambient-PRISMA

models. In this way, these models can execute in the .NET platform.

As a result, the code generation patterns have been identified to automatically

generate distributed applications from Ambient-PRISMA. The code generation

patterns describe how classes of the Ambient-PRISMANET have to be extended to

generate distributed and mobile applications.

The work related to Ambient-PRISMANET has produced a set of results that are

published in the following publications:

� Cristobal Costa, Nour Ali, Carlos Millan, Jose A. Carsi, “Transparent

Mobility of Distributed Objects using .NET, 4th International Conference on

.NET Technologies, Pilsen, Czech Republic, May-June 2006.

197

� Jennifer Pérez, Nour Ali, Cristobal Costa, José Á. Carsí, Isidro Ramos,

“Executing Aspect-Oriented Component-Based Software Architectures on

.NET Technology”, 3rd International Conference on .NET Technologies, pp.

97-108, Pilsen, Czech Republic, May-June 2005.

� Nour Ali, Jennifer Pérez, Cristobal Costa, Jose A. Carsí, Isidro Ramos,

“Implementation of the PRISMA Model in the .Net Platform”, II workshop

DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated

Component-based Architectures, Conference on Software Engineering and

Databases (JISBD), pp. 119-127, Málaga, November, 2004.

� Carlos Millán, Nour Ali, Isidro Ramos, “DESARROLLO DE APLICACIONES

DISTRIBUIDAS Y MÓVILES DESDE UN MODELO ARQUITECTÓNICO

ORIENTADO A ASPECTOS”, Informe Tecnico DSIC, Universidad Politécnica

de Valencia, Octubre, 2006.

CHAPTER 7
Conclusions and Further Works

This chapter presents the main contributions of the work presented in this thesis. It

also presents some future work that can be done based on the work of this thesis.

7.1 Conclusions

Currently. most software systems have a distributed nature. As a result, the

development of software systems has to be taken into account at early stages of the

software life cycle. A charcterstic of systems of this kind is that they are dynamic and

need mobility support. Software architectures and AOSD are two techniques that

promise the improvement of the quality and mantainability of software of complex

systems increasing their reusability.

In order to take advantage of both Software architecture and AOSD, the PRISMA

approach which integrates them, is enriched with the ambient architectural

element.In this way, Ambient-PRISMA is created in order to specify PRISMA

architectural models that take into account distribution and mobility properties. The

ambient architectural element provides the notion of location in a software

architecture. The advantage of including the notion of location as an architectural

element of the software architecture provides the modelling of mobility as through

the reconfiguration of the software architecture.

Ambient-PRISMA provides architectural elements to be aware of their location.

As aresult, architectural elements can be autonomous in taking decisions about

199

their location. Also, the migration decision in Ambient-PRISMA can be modelled as

both passive and autonomous. The unit of mobility in Ambient-PRISMA is

Components, Connectors and ambients.

Ambient-PRISMA approach enriches the PRISMA metamodel and the AOADL in

order to allow the modelling of the network of a distributed software system, the

definition of ambients that can be reusable in different distributed architectural

models and the specification of different distribution and mobility startegies.

Ambient-PRISMA also provides the execution of its specifications by enriching

PRISMANET middleware for distribution and mobility. As a result, the code

generation patterns have been identified for automatically generating distributed and

mobile code.

All these contributions have been published in one national journal, eleven

international conferences, one international workshop, five national conferences,

eight national workshops, and four technical reports. These contributions are the

following:

� National Journals:

• Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos,
Jose A. Carsí, Replicación Distribuida en Arquitecturas
Software Orientadas a Aspectos utilizando Ambientes,
Revista IEEE America Latina, 2007. (Invited: JISBD)

� Internacional Conferences:

• Cristobal Costa, Nour Ali, Jennifer Perez, Jose Angel Carsi,
Isidro Ramos, “Towards Dynamic Reconfiguration of Aspect-
Oriented Software Architectures”, First International
Conference on Software Architecture (ECSA 2007), LNCS
Springer Verlang, Madrid, September, 2007 (poster).

• Nour Ali, Carlos Millán, Isidro Ramos, Developing Mobile
Ambients using an Aspect-Oriented Software Architectural
Model, 8th International Symposium on Distributed Objects

and Applications (DOA 2006), LNCS Springer Verlang,
Montpellier, France, October, 2006.

• Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, Jose
Ángel Carsí, Mobile Ambients in Aspect-Oriented Software
Architectures, IFIP Working Conference on Software
Engineering Techniques (SET 2006), Springer Series in
Computer Science, Warsaw, Polond, October 17-20, 2006.

• Cristobal Costa, Nour Ali, Carlos Millan, Jose A. Carsi,
“Transparent Mobility of Distributed Objects using .NET, 4th
International Conference on .NET Technologies, Pilsen,
Czech Republic, May-June 2006.

• Jennifer Pérez, Nour Ali, Jose Ángel Carsí, Isidro Ramos,
Designing Software Architectures with an Aspect-Oriented
Architecture Description Language, 9th Symposium on the
Component Based Software Engineering (CBSE), Springer
Verlang LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN:
3-540-35628-2, Vasteras, Suecia, June 29th-July 1st, 2006.

• Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí
Introducing Ambient Calculus in Mobile Aspect-Oriented

Software Architectures , Fifth Working IEEE/IFIP Conference
on Software Architecture (WICSA 2005), IEEE Computer

Society, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005
(position paper).

• Nour Ali, Isidro Ramos, Jose A. Carsí, A Conceptual Model

for Distributed Aspect-Oriented Software Architectures ,
International Conference on Information Technology Coding
and Computing (ITCC 2005), IEEE Computer Society, Las
Vegas, NV, USA, 2005.

• Jennifer Pérez, Nour Ali, Cristobal Costa ,Isidro Ramos, Jose
A. Carsí, Executing Aspect-Oriented Software Architectures
in .NET, 3rd International Conference on .NET Technologies,
Pilsen, Czech Republic, May-June 2005.

• Nour Ali, Jennifer Pérez Isidro Ramos, Jose A. Carsí , Aspect
Reusability in Software Architectures, 8th International
conference of Software Reuse (ICSR), July, 2004 (poster)

• Nour Ali, Jennifer Perez, Isidro Ramos, High Level
Specification of Distributed and Mobile Information Systems,
Second International Symposium on Innovation in

201

Information & Communication Technology (ISSICT 2004),
April, Amman, Jordan,2004.

• Nour Ali, Josep Silva, Javier Jaén, Isidro Ramos, José Ángel
Carsí, Jennifer Pérez, Mobility and Replication Patterns in
Aspect-oriented component Based Software Architectures,
15th IASTED International Conference, PARALLEL AND
DISTRIBUTED COMPUTING AND SYSTEMS~PDCS
2003~, November 3-5, Marina del Rey, CA, USA, 2003.

• International Workshops:

• Jennifer Pérez, Nour Ali, Jose Ángel Carsí, Isidro Ramos,
Dynamic Evolution in Aspect-Oriented Architectural Models,
European Workshop on Software
Architecture, (EWSA), LNCS Springer Verlang , Pisa, Italy,
June 2005.

• Nacional Conferences:

• Nour Ali, Jennifer Pérez,Cristóbal Costa, Isidro Ramos,Jose
Ángel Carsí, Replicación Distribuida en Arquitecturas
Software Orientadas a Aspectos utilizando Ambientes, XI
Jornadas de Ingeniería del Software y Bases de Datos
(JISBD), Sitges, Barcelona, Octubre 3-6, 2006.

• Cristóbal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsí,
Isidro Ramos, “PRISMANET middleware: Support to the
Dynamic Evolution of Aspect-Oriented Software
Architectures”, X Conference on Software Engineering and
Databases (JISBD), pp. 27-34, ISBN: 84-9732-434-X,
Granada, September, 2005. (In Spanish)

• Nour Ali, Jose Angel Carsi, Isidro Ramos,“Analysis of a
Distribution Dimension for PRISMA”, Actas de las IX
Jornadas de Ingeniería del Software y Bases de Datos (JISBD
2004), Málaga, 10-12 Noviembre 2004

• Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor,
Pedro Sánchez, Bárbara Álvarez, “Development of a Tele-
Operation System using the PRISMA Approach”, VIII
Conference on Software Engineering and Databases (JISBD),
pp. 411-420, ISBN: 84-688-3836-5, Alicante, November,
2003. (In Spanish)

• Josep Silva, Nour Ali, Jose Angel Carsi, Isidro Ramos, “El
aspecto de distribución de PRISMA”, VIII Conference on
Software Engineering and Databases (JISBD), ISBN: 84-688-
3836-5, Alicante, November, 2003.

• Nacional Workshops:

• Nour Ali, Isidro Ramos, “Ambient-PRISMA: Ambients in
Distributed and Mobile Aspect-Oriented Software
Architectures”, V Jornadas de Trabajo DYNAMICA –
DYNamic and Aspect-Oriented Modeling for Integrated
Component-based Architectures, 2006.

• Nour Ali, Jennifer Perez, Jose Angel Carsi, Isidro Ramos,
“Mobility of Objects in PRISMA” , III Jornadas de
DYNMAICA, Al Magro, Ciudad Real, 2005.

• Mª Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A.
Carsí, “DIAGMED: An Architectural model for a Medical
Diagnosis”, IV workshop DYNAMICA – DYNamic and
Aspect-Oriented Modeling for Integrated Component-based
Architectures, pp. 1-7, Archena, Murcia, November, 2005. (In
Spanish)

• Rafael Cabedo, Jennifer Pérez, Nour Ali, Isidro Ramos, Jose
A. Carsí, Aspect-Oriented C# Implementation of a Tele-
Operated Robotic System, III Workshop on Aspect-Oriented
Software Development (DSOA), X Conference on Software
Engineering and Databases (JISBD), pp. 53-59, ISBN: 84-
7723-670-4, Granada, September, 2005. (In Spanish)

• Nour Ali, Jennifer Pérez, Cristobal Costa, Jose A. Carsí,
Isidro Ramos, “Implementation of the PRISMA Model in the
.Net Platform”, II workshop DYNAMICA – DYNamic and
Aspect-Oriented Modeling for Integrated Component-based
Architectures, Conference on Software Engineering and
Databases (JISBD), pp. 119-127, Málaga, November, 2004.

• Nour Ali, Jose Cercos, Isidro Ramos, Patricio Letelier, Jose
Angel Carsi, “Distribution in PRISMA”, workshop
DYNAMICA – DYNamic and Aspect-Oriented Modeling for
Integrated Component-based Architectures, Conference on
Software Engineering and Databases (JISBD), pp. 119-127,
Málaga, November, 2004.

203

• Nour H. Ali, Josep F. Silva, Javier Jaen, Isidro Ramos, Jose
Á. Carsí, Jennifer Pérez, “Distribution Patterns in Aspect-
Oriented Component-Based Software Architectures”, IV
Workshop Distributed Objects, Languages, Methods and
Environments (DOLMEN), pp.74-80, Alicante, November,
2003.

• Jennifer Pérez, Nour H. Ali, Isidro Ramos, Jose A. Carsí,
“PRISMA: Aspect-Oriented and Component-Based Software
Architectures”, Workshop on Aspect-Oriented Software
Development (DSOA), Conference on Software Engineering
and Databases (JISBD), Technical Report TR-20/2003 of the
Polytechnic School of the University of Extremadura, pp. 27-
36, Alicante, November, 2003. (In Spanish)

• Technical Report:

• Carlos Millán, Nour Ali, Isidro Ramos, “DESARROLLO DE
APLICACIONES DISTRIBUIDAS Y MÓVILES DESDE
UN MODELO ARQUITECTÓNICO ORIENTADO A
ASPECTOS”, Technical Report DSIC, Polytechnic University
of Valencia, October, 2006.

• Jennifer Pérez, Nour Ali , Jose A. Carsí, Isidro Ramos,
“PRISMA Architecture of the Robot 4U4 Case Study”,
Technical Report DSIC-II/13/04, pp. 72, Polytechnic
University of Valencia, 2004. (In Spanish)

• Nour Ali, Isidro Ramos, Jose Angel Carsi, “A Compiler for
the Automatic Generation of the Distribution Aspect to
Distributed Applications”, Technical Report DSIC-II/15/04,
Polytechnic University of Valencia, October 2004. - 2004

• Nour Ali, Isidro Ramos, Jose Angel Carsi, “DISTRIBUTION
IN AN ASPECT-ORIENTED COMPONENT BASED
SOFTWARE ARCHITECTURE THROUGH PRISMA”,
Technical Report DSIC-II/14/04, Polytechnic University of
Valencia, October 2004. - 2004

7.2 Further Work

In the near future, much further work can be performed. In the following, some are

listed below:

� The bahaviour of Ambient-PRISMA has to be formalized with Channel

Ambient Calculus in order to facilitate the code generation and develop tools

for validating the behaviour of models.

� The graphical notation of Ambient-PRISMA has to be included in the

PRISMA CASE in order to provide the graphical modelling of Ambient-

PRISMA architectural models.

� The code generation patterns have to be implemented in order to

automatically generate the code from the Ambient-PRISMA specifications.

In a long term, some possible work is listed below:

� Extend Ambient-PRISMA for physical mobility where sites are mobile. The

modelling of physical mobility is possible in the current version of Ambient-

PRISMA. This can be done by specifying mobility in the distribution aspect

of a site ambient. However, the Ambient-PRISMANET Wireless middleware

has to be extended for physical mobility.

� Consider additional non-functional requirements such as resources,

security, and fault tolerance. These can be included as primitives in the

AOADL, allowing the user to model properties related to them.

205

BIBLIOGRAPHY

[Aks94]Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, Y., “Abstracting

Object Interactions Using Composition Filters”, Proceedings of the ECOOP'93

Workshop on Object-Based Distributed Programming, pp. 152-184, 1994.

[Ald03]Aldawud O., Elrad T., Bader A., “UML profile for Aspect Oriented Software

Development”, The Aspect-Oriented UML Workshop, International

Conference on Aspect-Oriented Software Development, Boston, USA March

18, 2003.

[All97] Allen, R., Garlan, D., “A formal basis for architectural connection”, ACM

Transactions on Software Engineering and Methodology, July, 1997.

[ASP07]The AspectJ Project Website, http://eclipse.org/aspectj/

[Bas03] Bass, L., Clements, P., Kazman, R., “Software Architecture in Practice”,

Second Edition, Addison Wesley, 2003.

[Ben06]Navarro, L.D.B., Südholt, M., Vanderperren, W., De Fraine, B., Suvée, D.,

“Explicitly distributed AOP using AWED”, In Proceedings of the 5th

International Conference on Aspect-Oriented Software Development, ACM

Press, p. 51-62, 2006.

[Ber01]Bergmans, L. and Aksit, M., “Composing multiple concerns using

composition filters”, Communications of the ACM, Octorber 2001.

[Ber04] Bergmans, L. and Aksit, M., “Principles and Design Rationale of

Composition Filters”, In Aspect-Oriented Software Development, Addison

Wesley, October, 2004.

[Boo04]Booch, G., Maksimchuk, R.A., Engel, M.W., Young, B.J., Conallen, J.,

Houston, K. A., Martin, R., Newkirk, J.W., “Object-Oriented Analysis and

Design with Applications (3rd Edition)”, Addison-Wesley Professional, 2004

207

[Bra04] Bradbury, J. S., Cordy, J. R., Dingel, J., Wermelinger, M., “A survey of self-

management in dynamic software architecture specifications”, Workshop on

Self-managed systems, Proceedings of the 1st ACM SIGSOFT, Newport

Beach, California, pp. 28-33, 2004.

[Bri02] Brito, I., Moreira, A., “Towards a Composition Process for Aspect-Oriented

Requirements”, Workshop on Early-Aspects, The 1st International Conference

on Aspect-Oriented Software Development (AOSD), Twente, The Netherlands,

April 2002.

[Bug01] Buglesi, M., Castagna, G., Crafa, S., “ Reasoning about security in mobile

ambients”, In CONCUR´01, number 2154 in LNCS, pp. 102-120, 2001.

[Can01] Canal, C., Pimentel, E., Troya, J.M., “Compatibility and Inheritance in

Software Architectures”, Science of Computer Programming, Vol. 41, Nº 2.

2001.

[Car98a] Cardelli, L., Gordon, A. D. “Mobile Ambients”, Foundations of Software

Science and Computational Structures: First International Conference,

FOSSACS '98, LNCS 1378, Springer, 1998, pp. 140-155.

[Car98b] Cardelli, L. “Abstractions for Mobile Computation.” In Vitek, J. and (Eds.),

C. J., editors, Secure Internet Programming: Security Issues for Distributed

and Mobile Objects, volume 1603 of LNCS, Springer Verlag, pp. 51-94.

[Cia98] Ciancarini, P., Mascolo, C. “Software architecture and mobility”, In D. Perry

and J. Magee, editors, Proc. 3rd International Software Architecture

Workshop (ISAW-3), ACM SIGSOFT Software Engineering Notes, pp. 21-24,

Orlando, FL, November 1998.

[Cia99] Ciancarini, P., Mascolo, C., “Specification and Analysis of Component Based

Software Architectures”, Proc. First IFIP International Working Conf. on

Software Architecture, 1999.

[Cla05]Clarke, S., and Baniassad. E., “Aspect-Oriented Analysis and Design: The

Theme Approach”, Addison Wesley Professional, March 23, 2005.

 [Cle04]Clemente, P., Hernandez, Herrero, J.L., Murillo, J.M., Sanchez, F., “Aspect-

Orientation in the Software Lifecycle: Fact and Fiction”, In Aspect-Oriented

Software Development, Addison Wesley, pp. 407-423, October, 2004.

[Cle05] Clements, P., Bachman, F., Bass, L., Garlan, D., et al., “Documenting

Software Architectures : Views and Beyond”, SEI Series in Software

Engineering, Addison Wesley, 2005.

[COR07]CORBA Official Web Site of the OMG Group: http://www.corba.org/

[Cue02] Cuesta, C., “Dynamic Software Architecture based on Reflection”, PhD.

Thesis, University of Valladolid, Spain, July, 2002. (In Spanish)

[Dij74]Dijkstra, E W., “A Discipline of Programming”, EWD. 477, Neuen, The

Netherlands, 30 August 1974.

[Dos99] Dashofy, E. M., Medvidovic, N., Taylor, R. N., “Using Off-the Shelf

Middleware to Implement Connectors in Distributed Software Architectures,

ICSE’99, Los Angeles, CA, May 1999.

[DSL07] Domain-Specific Language (DSL) Tools, http://msdn2.microsoft.com/en-

us/vstudio/aa718368.aspx

[Fia03] Fiadeiro, J.L., Lopes, A., Wermelinger, M., “A Mathematical Semantics for

Architectural Connectors”, LNCS 2793, pp. 190-234, 2003.

[Fia04] Fiadeiro, J.L., “Categories for Software Engineering”, Springer, 2004.

[Fil00]Filman R., Friedman D., “Aspect-Oriented Programming is Quantification and

Obliviousness”, Workshop on Advanced Separation of Concerns, OOPSLA,

October, 2000.

[Fil04] Filman, R. E., Elrad, T., Clarke, S., Aksit, M., “Aspect-Oriented Software

Development”, Addison Wesley Professional, October 06, 2004.

[Fug98] Fuggetta, A., Picco, G.P., and Vigna, G. Understanding Code Mobility. In

IEEE Transactions on Software Engineering, 24(5): 342-361, 1998.

209

[Gam95]Gamma, E., Helm, R., Johnson, R. and Vlissides, J., “Design Patterns:

Elements of Reusable Object-Oriented Software”, Addison Wesley, 1995.

[Gar03] Garlan, D., “Formal Modelling and Analysis of Software Architecture:

Components, Connectors, and Events. Formal Methods for Software

Architectures, Lecture Notes in Computer Science, Springer Verlang, Eds.

Marco Bernardo and Paola Inverardi, LNCS 2804, September, 2003

[Gar04]Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C., “The Mobility Aspect

Pattern”, The 4th Latin-American Conference on Pattern Languages of

Programming (SugarLoafPLoP'04), Fortaleza, Brazil, August 2004.

[Gar06]Garcia, A., Kulesza, U., Sant'Anna, C., Chavez, C., Lucena, C., “Aspects in

Agent-Oriented Software Engineering: Lessons Learned”, In: "Agent-Oriented

Software Engineering VI", Joerg Mueller and Franco Zambonelli, LNCS,

Springer, May 2006.

[Gei98]Geier, M., Steckermeier, M., Becker, U., Hauck, F, Meier, E., Rastofer, U.,

“Support for mobility and replication in the AspectIX architecture”, Object-

Oriented Technology, ECOOP'98 Workshop Reader, pp. 325-326, LNCS

1543, Springer, 1998.

[Gen87] Genrich, H.J., “Predicate/Transition Nets”, Petri Nets: Central Models and

Their Properties, W. Brauer, W. Resig, and G. Rozenberg, eds., pp. 207-247,

1987.

[Gre04] Greenfield J., Short K, Cook S., and Kent S. Software Factories. Wiley

Publising Inc., 2004.

[Gru04] Gruhn,V., Schafer,C., “An Architecture Description Language for Mobile

Distributed Systems”, In Proceedings of the First European Workshop on

Software Architecture (EWSA2004), Springer-Verlag, pp. 212-218, 2004.

[Gru05] Gruhn,V., Schafer,C., “Architecture Description for Mobile Distributed

Systems”, In Proceedings of the Second European Workshop on Software

Architecture (EWSA2005), Springer-Verlag, 2005.

[Har02] Harrison, W.H., Ossher, H.L., Tarr, P.L., “Asymmetrically Vs. Symmetrically

Organized Paradigms for Software Composition”, IBM Research Report,

RC22685 (W0212-147) Thomas J. Watson Research Center, IBM, December

2002.

[Har84] Harel D., “Dynamic Logic. Handbook of Philosphical Logic II”, editors D.M.

Gabbay, F. Guenthner, pp. 497-694, Reidel, 1984.

[Hau98]Hauck, F, Becker, U., Geier, M., Meier, E., Rastofer, U., Steckermeier, M.,

“AspectIX Middleware for Aspect-Oriented Programming”, Tevhnical Report

TR-I4-98-06, Univ. of Erlangen-Nuernberg, IMMD IV, 1998.

[Her03]Herrero, J.L., “A proposal of a platform, language and design, for developing

Aspect-Oriented Applications” (In Spanish), PhD thesis, Computer Science

Department, University of Extremadura, Extremadura, Spain, May, 2003.

[Ho02] Ho, W., Jézéquel, J., Pennaneac'h, F., and Plouzeau, N., “A toolkit for weaving

aspect oriented UML designs”, Proceedings of the 1st international conference

on Aspect oriented software development, pp. 99 – 105, April 2002.

[Hof00] Hoffman, D., Weiss, D., (eds), “Software Fundamentals: Collected Papers by

David L. Parnas”, Addison-Wesley, 2001.

[IEE00] IEEE Recommended Practices for Architectural Description of Software-

Intensive Systems. IEEE Std 1471-2000, Software Engineering Standards

Committee of the IEEE Computer Society, 21 September 2000.

[Kic01]Kiczales G., Hilsdale E., Huguin J., Kersten M., Palm J., Griswold W.G., “An

Overview of AspectJ”. The 15th European Conference on Object-Oriented

Programming, Lecture Notes in Computer Science (LNCS), Springer-Verlag,

Vol.2072, Budapest, Hungary, June 18-22, 2001.

[Kic97]Kizcales G., Lamping J., Mendhekar A., Maeda C., Lopes, C., Loingtier, J.,

Irwin, J., “Aspect-Oriented Programming”, The 11th European Conference on

Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science

(LNCS), Springer-Verlag, Vol. 1241, Jyväskylä, Finland, June 9-13, 1997.

211

[Kog95] Kogut, P., Clements, P. C., “Feature Analysis of Architecture Description

Languages”, Proceedings of the Software Technology Conference (STC´95),

Salt Lake City, April, 1995.

[Kru95] Kruchten, P., “The 4+1 View Model of Architecture”, IEEE Software Vol. 12,

Nº 6, pp. 42-50, November 1995.

[Lad03]Laddad, R., “AspectJ in Action: Practical Aspect-Oriented Programming”,

Manning Publications Co., 2003.

[Let98] Letelier, P., Sánchez, P., Ramos, I. and Pastor, O. “OASIS 3.0, A formal

language for the object oriented conceptual modeling”, Polytechnic University

of Valencia, SPUPV-98.4011, ISBN 84-7721-663-0, 1998.(In Spanish).

[Lob04]Lobato, C., Garcia, A., Romanovksy, A., Sant’Anna, C., Kulesza, U., Lucena,

C. , “Mobility as an Aspect: The AspectM Framework.”, The 1st Brazilian

Workshop on Aspect-Oriented Software Development – WASP’04, SBES’04,

Brasília, Brazil, October 2004.

[Lop02] Lopes, A., Fiadeiro, J.L., Wermelinger, M., “Architectural Primitives for

Distribution and Mobility”, Proceedings of 10th Symposium on Foundations

of Software Engineering, ACM Press, pp. 41-50, 2002.

[Lop02]Lopes, C. V., “Aspect-Oriented Programming: An historical perspective

(what's in a name?) “, Technical Report, Institute for Software Research,

University of California, Irvine, December 2002.

[Lop04] Lopes, A., Fiadeiro, J.L., “Adding Mobility to Software Architectures”, ENTCS

97, pp. 241-258, 2004.

[Lop97]Lopes, C. V., “D: A Language Framework for Distributed Programming”,

Ph.D. Thesis, College of Computer Science, Northeastern University, Boston,

USA, 1997.

[Luc95] Luckham, D.C., Kenney, J.J., Augustin, L. M., Vera, J., Bryan, D., Mann,

“Specification and Analysis of System Architecture Using Rapide”, IEEE

Transactions on Software Engineering, Vol. 21, Nº 4, pp. 336-355, April,

1995.

[Mae87]Maes, P., “Concepts and experiments in computational reflection”,

Proceedings of OOPSLA’98, Vol.22 of ACM SIGPLAN Notices, pp. 147-155,

1987.

[Mag94] Magee, J., Dulay, N., Krammer, J., “Regis: A constructive Development

Environment for Distributed Programs”, In IOP/IEE/BCS Distributed

Systems Engineering, 1:5, pp. 304-312, 1994.

[Mag95] Magee, J., Dulay, N., Eisenbach S. and Krammer, J., “Specifying

Distributed Software Architectures”, Proceedings of the 5th European

Software Engineering Conference (ESEC 95), pp. 137-153, Sitges, Spain,

1995.

[Mag97a]Magee, J., Kramer, J., Giannakopoulou, D., “Analysing the behaviour of

distributed software architectures: a Case Study”, Proceedings of the 6th

IEEE Workshop on Future Trends of Distributed Computing Systems

(FTDCS '97), pp. 240-245, 1997.

[Mag97b]Magee, J., Tseng, A., Kramer, J., “Composing Distributed Objects in

CORBA”, Proceedings of the Third International Symposium on Autonomous

Decentralized Systems, pp. 257-263, Berlin, Germany, 1997.

[Mas99] Mascolo, C., “MobiS: A Specification Language for Mobile Systems”, Proc.

3rd Int. Conf. on Coordination Models and Languages, 1999.

[MDA07] Object Management Group. Model Driven Architecture Guide, 2003,

http://www.omg.org/docs/omg/03-06-01.pdf

[Med00] Medvidovic N., Taylor R.N., “A Classification and Comparison Framework

for Software Architecture Description Languages”, IEEE Transactions of

Software Engineering, Vol. 26, Nº 1, January 2000.

213

[Med01] Medvidovic, N., Rakic, M., “Exploiting Software Architecture Implementation

Infrastructure in Facilitating Component Mobility”, Proceedings of the

Software Engineering and Mobility Workshop, Toronto, Canada, May 2001.

[Med99] Medvidovic, N., Rosenblum, D.S., Taylor, R.N., “A language and

environment for architecture-based software development and evolution”,

Proceedings of 21st International Conference on Software Engineering, pp.

44-53, Los Angeles, CA, USA, 1999.

[Mez01]Mezini, M., and Ostermann, K., “Object Creation Aspects with Flexible

Aspect Deployment”, Technical Report, 2001.

[Mil04] Miles, R., “AspectJ Cookbook”, O'Reilly, December 2004.

[Mil92] Milner, R., Parrow, J., Walker, D. “A calculus of mobile processes”, Parts 1-2.

Information and Computation, 100(1), 1992, pp. 1-77.

[Mil93] Milner R., “The Polyadic -Calculus: A Tutorial”, Laboratory for Foundations of

Computer Science Department, University of Edinburgh, October 1993.

[Mor95] Moricon, M., Qian, X., Riemenschneider, R., “ Correct architecture

refinement”, IEEE Transactions on Software Engineering, Special Issue on

Software Architecture, Vol. 21, Nº 4, pp. 356-372, April, 1995.

[Nis04] Nishizawa, M., Shiba, S. and Tatsubori, M., “Remote pointcut - a language

construct for distributed AOP”, Proceedings of the 3rd international

conference on Aspect-oriented software development, ACM Press, pp. 7-15,

2004.

 [Oli05] Oliveira, C., Wermelinger, M., Fiadeiro, J. L., Lopes, A., “Modelling the GSM

handover protocol in CommUnity", Electronic Notes in Theoretical Computer

Science, ISSN 1571-066, Vol. 141 Nº3, pp. 3-25, 2005.

[Oqu04] Oquendo, F., “π-ADL: an Architecture Description Language based on the

higher-order typed π-calculus for specifying dynamic and mobile software

architectures”, ACM SIGSOFT Software Engineering Notes, Vol. 29 Nº3, May

2004.

[Oqu06] Oquendo, F., “Formally modelling software architectures with the UML 2.0

profile for π-ADL”, ACM SIGSOFT Software Engineering Notes, Vol. 31 Nº 1,

January 2006.

[Par72]Parnas, D.L., “On the Criteria To Be Used in Decomposing Systems Into

Modules”, Communications of the ACM, Vol. 15, No. 12, pp. 1053-1058,

December, 1972.

[Per05a] Perez, N., Ali, N., Costa, C., Carsí, J.A., Ramos, I., “Executing Aspect-

Oriented Component-Based Software Architectures on .NET Technology”, 3rd

International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech

Republic, May-June 2005.

[Per05b]Pérez, J., Ali, N., Carsí, J. A., Ramos, I., “Dynamic Evolution in Aspect-

Oriented Architectural Models”, Second European Workshop on Software

Architecture, Springer LNCS 3527, pp.59-16, Pisa, Italy, June 2005.

[Per06a] Pérez, J., Ali, N., Carsí, J.A., Ramos, I., “Designing Software Architectures

with an Aspect-Oriented Software Architectures”, The 9th International

Symposium on Component-Based Software Engineering (CBSE), Lecture

Notes Computer Science, Springer Verlang, LNCS 4063, pp. 123-138,

Västeras, Sweden, June-July, 2006.

[Per06b] Perez, J., “PRISMA: Aspect-Oriented Software Architectures”, PhD. Thesis,

Polytechnic University of Valencia, December, 2006.

[Per92] Perry, D., Wolf, A., “Foundations for the Study of Software Architecture”,

ACM Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, October 1992.

[Per97] Perry, D., “State-of-the-Art: Software Architecture”, .Proceedings of the 19

International Conference on Software Engineering, ACM Press pp. 590-591,

1997.

 [Pin02] Pinto, M., Fuentes, L., Fayad, M.E., Troya, “Separation of coordination in a

dynamic aspect oriented framework”, Proceedings of the 1st International

215

Conference on Aspect-oriented Software Development, pp. 134-140,

Enschede, The Netherlands, 2002.

[Pop01]Popovici, A., Alonso, G., Gross, T., “AOP Support for Mobile Systems”,

Presented in Advanced Separation of Concerns in Object-Oriented Systems,

(OOPSLA 2001 Workshop), Tampa, USA, October 15, 2001.

[Pop02]Popovici, A., Gross, T. and Alonso, G., “Dynamic Weaving for Aspect-Oriented

Programming”, Proceedings of the 1st International Conference on Aspect-

Oriented Software Development, Enschede The Netherlands, April 2002.

[Pul99]Pulvermueller, E., Klaeren, H., Speck, A., “Aspects in Distributed

Environments”, Proceedings of the First International Symposium on

Generative and Component-Based Software Engineering, (GCSE'99), Lecture

Notes In Computer Science; Vol. 1799, p. 37 - 48 , Erfurt, Germany,

September, 1999.

[Ram02] Rammer, I., “Advanced .NET Remoting”, Apress, 2002.

[Ras02] Rashid, A.., Sawyer, P., Moreira, A., Araujo, J., “Early Aspects: a Model for

Aspect-Oriented Requirements Engineering”, IEEE Joint Conference on

Requirements Engineering, Essen, IEEE Computer Society, p. 199-202,

Germany, September 2002.

[RMI07] Remote Method Invocation (RMI) Website of Sun Developer Network:

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[Rom00] Roman, G., Picco, G., Murphy, A., “Software Engineering for Mobility: A

Roadmap”, International Conference on Software Engineering - Future of SE

Track, pp. 241-258, Limerick, Ireland, 2000.

[San00] Sanchez, F., Heranandez, J., Murillo, J.M., Rodríguez, R., “Adaptability of

object distribution protocols using the disguises model approach”, In

Proceedings of International Symposium on Distributed Objects and

Applications (DOA 00), IEEE Computer Society, pp. 315-322, Antwerp,

Belgium, 2000.

[San98]Sanchez, F., Heranandez, J., Murillo, J.M., Pedraza, E., “Runtime

adaptability of synchronization constraints in COOLs”, II ECOOP Workshop

of Aspect Oriented Programming, 1998.

[Sar97] Sartipi, K., “A Survey on Software Architecture Domain”, PhD. Thesis,

University of Waterloo, Ontario, Canada, February, 1997.

[Sch06] Schafer, C., “Modeling and Analyzing Mobile Software Architectures”, In

Proceedings of the Third European Workshop on Software Architecture,

(EWSA2006), Springer-Verlag, 2006.

[Sch06] Schmidt, D. C., “Model-Driven Engineering”, Computer, Vol. 39, Nº 2, IEEE

Computer Society, February, 2006.

[Sha94a] Shaw, M., “Procedure Calls Are the Assembly Language of Software

Interconnection: Connectors Deserve First-Class Status”, Proceedings of

Workshop on Studies of Software Design, January, 1994.

[Sha94b] Shaw, M., Garlan, D., “Characteristics of Higher-Level Languages for

Software Architecture”, Technical Report CMU-CS-94-210, SEI-94-TR-23,

ESC-TR-94-023, Software Engineering Institute, Carnegie Mellon University,

December, 1994.

[Sha96] Shaw, M. and Garlan, R., “Software Architecture: Perspectives on an

Emerging Discipline”, Prentice Hall, April, 1996.

[Soa02a] Soares, S. and Borba, P., “PaDA: A pattern for distribution aspects”, In

Second Latin American Conference on Pattern Languages Programming -

SugarLoafPLoP 2002, Itaipava, RJ, Brazil. ICMC - University of São Paulo

Magazine, p. 87-99, August, 2002.

[Soa02b] Soares, S., Laureano, E. and Borba, P. , “Implementing Distribution and

Persistence Aspects with AspectJ”, In Proceedings of the 17th ACM

Conference on Object-Oriented programming systems, languages, and

applications, OOPSLA'02, ACM Press, Seattle, WA, USA, p. 174-190,

November, 2002.

217

[Soa04] Soares, S., “An Aspect-Oriented Implementation Method”, PhD thesis,

Informatics Centre, Federal Universisty of Pernambuco, Recife, Brazil,

October 2004.

[Sub05] Subotic, S. and Bishop, J., “Emergent Behaviour of Aspects in High

Performance and Distributed Computing”, Proceedings of the 2005 annual

research conference of the South African institute of computer scientists and

information technologists on IT research in developing countries, ACM

International Conference Proceeding Series; Vol. 150, White River, South

Africa, p. 111-119, 2005.

[Suv03] Suvée, D., Vanderperren, W, Jonckers, V., “JAsCo.: An aspect-oriented

approach tailored for component based software development”, In

Proceedings of the 2nd International Conference on Aspect-Oriented Software

Development, ACM Press, p. 21-29, 2003.

[Suz99] Suzuki, J. and Yamamoto, Y., “Extending UML with aspects: Aspect support

in the design phase”, In Int'l Workshop on Aspect-Oriented Programming

(ECOOP), Lisbon, 1999.

[Szy00] Szyperski C., Booch G., Meyer B., “Beyond Objects”, Software Development

Magazine, March, 2000 (originally BrucePowel Douglass).

[Szy02] Szyperski, C., “Component Software: Beyond Object Oriented Programming”,

ACM Press and Addison Wesley, New York, USA, 2002.

[Tar01] Tari, Z., Bukhres, O., “Fundamentals of Distributed Object Systems”, Series:

Wiley Series on Parallel and Distributed Computing, 9 Oct 2001.

[Tay95] Taylor, R., N., Medvidovic, N., Anderson, K. M., Whitehead, Jr., E., J.,

Robbins, J. E., “A Component-and Message-Based Architectural Style for GUI

Software”, Proceedings of the 17th international conference on Software

Engineering, pp. 295-304, Seattle, Washington, United States, 1995.

[Til03] Tilevich, E., Urbanski, S., Smaragdakis, Y., Fleury, M., “Aspectizing Server-

Side Distribution”, In Proceedings of the 18th IEEE International Conference

on Automated Software Engineering (ASE'03), IEEE Computer Society, p.

130-141, 2003.

[UML07] The Unified Modeling Language Website, Object Management Group

(OMG), http://www.uml.org/

 [War03] Warmer, J., Kleppe, A., “Object Constraint Language, The: Getting Your

Models Ready for MDA, Second Edition”, Addison Wesley Professional Pub,

August 27, 2003

[Xu03] Xu, D., Yin, J., Deng, Y., Ding, J., “A Formal Architectural Model for Logical

Agent Mobility”, IEEE Transactions on Software Engineering, Vol. 29, Nº 1,

January 2003.

219

221

APPENDIX A

AMBIENT-PRISMA AOADL

A.1 ARCHITECTURAL MODEL
<architectural_model> ::= Architectural_Model <model_name>

 [<virtual_ambient_block>]

 <site_ambient_block>

 [<group_ambient_block>]

 <component_block>

 <connector_block>

 [<system_block>]

 <attachment_block>

 End_Architectural_Model <model_name>‘;’

A.2 INTERFACES

<iservice> ::= <service_name> ‘(‘ [<param_service_list>] ’)’ ‘;’

<interface> ::= Interface <interface_name>

 <iservice_list>

 End_ Interface <interface_name> ;

A.3 ASPECTS

<aspect> ::= <aspect_type> Aspect <aspect_name>

 [using <interface_name_list>]

 [<constant_attributes>]

 [<variable_attributes>]

 <services>

 [<preconditions>]

 [<transactions>]

 [<constraints>]

 [<played_roles>]

 <protocol>

 End_Aspect <aspect_name>‘;’

<aspect_type> ::= functional | coordination | distribution | replication | mobility

A.4 Attributes

<constant_attributes> ::= Constant <var_cons_attribute_seq>

<variable_attributes> ::= Variable <var_cons_attribute_seq>

<var_cons_attribute> ::= <attribute_name>‘:’ <data_type>[‘,’ NOT NULL]

223

A.5 Services

<services> ::= Services

 begin‘(‘ [<param_service_list>]‘)’‘;’ [<valuations>]

 < service_section_seq> [<valuations>]

 end‘(‘ ‘)’‘;’

<service_section> ::= <service> [as <service_name>]

<service> ::= <service_type> <service_name>‘(‘ [<param_service_list>]‘)’

<service_type> ::= in | out | in/out

<valuations> ::= Valuations <valuation_seq>

<valuation> ::= [‘{‘ <condition> ‘}’] ‘[‘ <action> ‘]’ <assignation_list>

<action> ::= <service_type> <service_name>‘(‘ [<parameter_name_list>]‘)’

<assignation> ::= <property> ‘:=’ <formulae>

<property> ::= <attribute_name> | <parameter_name>

A.6 Preconditions

<preconditions> ::= Preconditions <precondition_seq>

<precondition> ::= <invocation> if ‘{‘ <condition> ‘}’

<invocation> ::= <service_name>‘(‘ [<parameter_name_list>]‘)’

A.7 Transactions

<transactions> ::= Transactions <transaction_seq>

<transaction> ::= <transaction_name>‘(‘ [<param_service_list>] ‘)’‘:’

 <initial_transaction_process> <transaction_process_seq>

<initial_transaction_process> ::= <transaction_name>‘::=’ <process> ‘����’

 <process_name>‘;’

<transaction_service> ::= [‘{’ <condition> ‘}’] <transaction_service_type>

 <channel_kind> ‘(‘ [<parameter_name_list>]’)’

<transaction_service_type> ::= <trans_public_service> | <private_service>

<trans_public_service> ::= <interface_name>’.’<service_name>

<channel_kind> ::= <input_channel> | <output_channel>

<input_channel> ::= ‘?’

<output_channel> ::= ‘!’

<private_service> ::= <service_name>

A.8 Constraints

<constraints> ::= Constraints <constraint_seq>

<constraint> ::= always ‘{‘ <condition> ‘}’ | sometimes ‘{‘ <condition> ‘}’ |

 [‘{‘ <condition> ‘}’] next ‘{‘ <condition> ‘}’ |

 <condition_before> since <condition_after> |

 <condition_before> until <condition_after> |

 always <condition_before> since <condition_after> |

225

 sometimes <condition_before> since <condition_after>

<condition_before> ::= <condition>

<condition_after> ::= <condition>

A.9 Played_Roles

<played_roles> ::= Played_Roles <played_roles_seq>

<played_role> ::= <played_role_name> for <interface_name> ‘::=’

 <process>‘;’

<played_role_service> ::= <service_name> <channel_kind>

 ‘(‘ [<parameter_name_list>]’)’

A.10 Protocol

<protocol> ::= Protocol <initial_process> <protocol_process_seq>

<initial_process> ::= <aspect_name> ‘::=’ <process> ‘����’ < process_name>‘;’

<protocol_process> ::= <process_name> ‘::=’ <process>

 [‘����’ <process_name>]

<protocol_service> ::= [‘{’ <condition> ‘}’] <protocol_service_type>

 <channel_kind> ‘(‘ [<parameter_name_list>]’)’’:’

 <priority>

<process_service_type> ::= <public_service> | <private_service>

<public_service> ::= <played_role_name>’.’<service_name>

<priority> ::= <priority_value>

A.11 PORTS

<ports> ::= Ports <port_seq> End_Ports‘;’

<port> ::= <port_name>’:’ <interface_name>‘,’ Played_Role

 <aspect_name>’.’<played_role_name>

A.12 WEAVINGS

<weavings> ::= Weavings <weaving_seq> End_Weavings’;’

<weaving>::= <aspect_name>’.’<service_name>‘(‘ [<parameter_name_list>]‘)’

 <weaving_operator> <aspect_name>’.’<service_name>

 ‘(‘ [<parameter_name_list>]‘)’

<weaving_operator> ::= after | before | instead | afterif‘(‘ <condition> ‘)’

 | beforeif‘(‘ <condition> ‘)’ | insteadif‘(‘ <condition> ‘)’

A.13 Virtual Ambients

<Virtual> ::= Virtual <virtaul_name>

227

 <aspects_importation_seq>

 [<weavings>]

 <ports>

 <creation>

 <destruction>

 End_Virtual <virtual_name>‘;’

A.14 Site Ambients

<Site> ::= Site <site_name>

 <aspects_importation_seq>

 [<weavings>]

 <ports>

 <creation>

 <destruction>

 End_Site <site_name>‘;’

A.15 Group Ambients

<Group> ::= Group <group_name>

 <aspects_importation_seq>

 [<weavings>]

 <ports>

 <creation>

 <destruction>

 End_Group <group_name>‘;’

<aspects_importation> ::= <concern> Aspect Import <aspect_name>

<creation> ::= new‘(‘ [<param_service_list>]‘)’ ‘{‘ <start_aspects_seq> ‘}’

<destruction> ::= destroy‘(‘ ‘)’ ‘{‘ <stop_aspects_seq> ‘}’

<start_aspects> ::= <aspect_name>‘.’begin‘(‘ [<parameter_name_list>]‘)’

<stop_aspects> ::= <aspect_name>‘.’end‘(‘ ‘)’

A.16 COMPONENT
<Component> ::= Component_type <component_name>

 <aspects_importation_seq>

 <weavings>

 <ports>

 <creation>

 <destruction>

 End_Component _type<component_name>‘;’

<aspects_importation> ::= <aspect_type> Aspect Import <aspect_name>

<creation> ::= new‘(‘ [<param_service_list>]‘)’ ‘{‘ <start_aspects_seq> ‘}’

<destruction> ::= destroy‘(‘ ‘)’ ‘{‘ <stop_aspects_seq> ‘}’

<start_aspects> ::= <aspect_name>‘.’begin‘(‘ [<param_service_list>]‘)’

<stop_aspects> ::= <aspect_name>‘.’end‘(‘ ‘)’

A.17 CONNECTORS

<connector> ::= Connector_type <connector_name>

 <aspects_importation_seq>

 <weavings>

 <ports>

 <creation>

229

 <destruction>

 End_Connector _type <connector_name>‘;’

A.18 ATTACHMENTS

<attachments> ::= Attachments <attachment_seq> End_Attachments’;’

<attachment> ::= <attachment_name> <component_name>’.’<port_name>

 ‘(‘ <card_min_name> ‘..’ <card_max_name >‘)’ ‘����’

 ‘(‘ <card_min_name> ‘..’ <card_max_name>‘)’

 <connector_name>’.’<port_name>

<card_min> := string 2

<card_max> ::= string 2

A.19 CONFIGURATION

<architectural_model_configuration> ::=

 Architectural_Model_Configuration <configuration_name> ‘=’

 new <model_name> ‘{‘<loc_instantiation_seq>

 [<virtualAmbient_instantiation_seq>]

 <siteAmbient_instantiation_seq>

 [<groupAmbient_instantiation_seq>]

2 They are usually natural numbers, but the letter ‘n’ is also used to specify “many instances”
without specifying a specific number of instances

 <components_instantiation_seq>

 [<systems_instantiation_seq>]

 <connectors_instantiation_seq>

 <attachments_intantiation_seq> ‘}’

<LOC_instantiation> ::= <loc_name> ‘=’ new

 loc‘(‘ [<param_value _list>] ‘)

<virtualAmbient_instantiation> ::= <virtualAmbient_instance_name> ‘=’ new

 <virtualAmbient_name>‘(‘ [<param_value _list>] ‘)

<siteAmbient_instantiation> ::= <siteAmbient_instance_name> ‘=’ new

 <siteAmbient_name>‘(‘ [<param_value _list>] ‘)

<groupAmbient_instantiation> ::= <groupAmbient_instance_name> ‘=’ new

 <groupAmbient_name>‘(‘ [<param_value _list>] ‘)

<components_instantiation> ::= <component_instance_name> ‘=’ new

 <component_name>‘(‘ [<param_value _list>] ‘)

<connectors_instantiation> ::= <connector_instance_name> ‘=’ new

 <connector_name> ‘(‘ [<param_value_list>] ‘)

<attachments_instantiation> ::= <attachment_instance_name>1 ‘=’ new

 <attachment_name> ‘(‘<param_attachment_value>‘)’

<systems_instantiation> ::= <system_instance_name>1 ‘=’ new <system_name>

 ‘(‘[<param_service_value_list>‘,’] <architectural_element_number_value_list>,

 [<attachment_number_value_list>’,’ <binding_number_value_list>] ‘)’

 ‘{‘ [<start_aspects_seq>] <architectural_elements_instantiation_seq>

 <attachments_instantiation_seq> <bindings_instantiation_seq> ‘}’

<architectural_element_instantiation > ::= <components_instantiation> |

 <connectors_instantiation> |

 <systems_instantiation>

< bindings_instantiation> ::= <binding_instance_name>1 ‘=’ new

 <binding_name> ‘(‘ <param_binding_value> ‘)’

231

APPENDIX B

AMBIENT-PRISMA SOFTWARE ARCHITECTURE
OF THE MOBILE AUCTION CASE STUDY

This appendix presents the complete specification of the MOBILE AUCTION

using the Ambient-PRISMA AOADL.

B.1 Interfaces

Interface IMobility
 move(input NewAmbient: string);
End_Interface IMobility

Interface IGetLocation
 getLocation(output Location: string);
End_Interface IGetLocation

Interface ICustProc
 notifyProdInterest(input Saleroom:string, input SaleNum:string,
 input DateOfAuction:string, input Lotdescrip: string,
 output Interested:Boolean);

End_Interface ICustProc

Interface ICustBidder

 biddingInf(input ISaleRoom: string, input ISaleNum:string,

 input IDateofAuction:Date, input ILotNumber:string,

 input MaximumBid: double);

 changeMaximumBid(input NewMaximumBid: double);

 biddingStatus(input Quantity: double, input Situation: string);

End_Interface ICustBidder;

Interface IProcurAuction
searchforlot(input Keywords:string, output Saleroom:string,
 output SaleNum: string, output DateOfAuction:string,
 output Lotdescrip:string);
End_Interface IProcurAuction

Interface IBidderAuct

 startAuction(input biddingAmount1:double);
 changeStatus(input NewBid: double);
 finishedAuction(input WonBid: double, input Situation: string);
End_Interface IBidderAuct

Interface ICustAuct
 register(input UserName: string, input Password: string,
 input SaleRoom: string);
End_Interface ICustAuct

B.2 Aspects

 Distribution Aspect CustDist using IMobility

 Attributes
 Constant
 location : string NOT NULL;
 Services
 begin(input ParentAmbient: string)
 Valuations
 [begin (ParentAmbient)] location := ParentAmbient;

 out move (input NewAmbient:string);
 end;

 Played_Roles
 //There are two played roles with the same interface. This is because one
role is for
 the movement of the procurement agent and the other for the Bidder.
 MOVEProc for IMobility ::= move!(input NewAmbient);
 MOVEBidder for IMobility::=move!(input NewAmbient);
 Protocol
 // The protocol specifies that the customer moves the procurement agent and
then it
 either moves the Bidder or ends.
 CUSTDIST:= begin(ParentAmbient)� CUSTDIST1;

233

 CUSTDIST1:= MOVEProc.move!(NewAmbient)�CUSTDIST2;
 CUSTDIST2:= MOVEBidder.move!(NewAmbient)+end;

End_Distribution Aspect CustDist
Distribution Aspect ProcurDist using IMobility, ICapability

 Attributes
 Variable
 location: string NOT NULL;
 nextAuctionSiteLoc: string NOT NULL;
 counter: integer(0);
 Constant
 custLocation: string NOT NULL;
 Services
 begin(input ParentAmbient: string, input CustLocation:string,
 input NextAuctionSiteLoc: string);
 Valuations
 [begin (ParentAmbient, CustLocation, NextAuctionSiteLoc)]
 location := ParentAmbient, CustLocation :=custLocation,
 nextAuctionSiteLoc := NextAuctionSiteLoc;
 initializeCounter()
 Valuations
 [initializeCounter ()]
 counter := 0;
 setCounter2()
 Valuations
 [setCounter2 ()]
 counter := 2;
 addCounter()
 Valuations
 [initializeCounter ()]
 counter := counter +1;

 //These services are concerned with mobility in order to interact with the
parent
 ambient.
 in changeLocation(Name: string, NewLocation:string)
 Valuations
 [changeLocation()] location:=NewLocation;
 out startMovement(input Name:string, output CommunicationList[]:
Attachment)
 Valuations
 [startMovement(Name, CommunicationList[])] Name:= self.Name;
 out exit (Name: string, Parent:string)
 Valuations
 [exit(Name, Parent)] Name:= self.Name & Parent:=location;

 out finishMovement(input Name, input CommunicationList[]);
 Valuations
 [finishMovement(Name, CommunicationList[])] Name:= self.Name;

 out enter (Name: string, NewAmbient: string);
 Valuations
 [exit(Name, NewAmbient)] Name:= self.Name
 end;
//
 TRANSACTIONS in move(NewAmbient:string)
 move::= out startMovement(input Name, output CommunicationList[])�
MOVE1;

 MOVE1::= out exit(Name,Parent)� MOVE2;

 MOVE2::= out enter(Name, NewAmbient)�MOVE3;
 MOVE3::= out finishMovement(input Name, input CommunicationList[]);
 MOVE4:: in changeLocation(Name, NewLocation);
 Preconditions
 //This precondition is concerned with the interaction with the ambient
 in changeLocation(Name, NewLocation)
 if {self.Name==Name};

 triggers
 initializeCounter() when custLocation==location;
 move(nextAuctionSiteLoc) when counter==1;
 move(custLocation) when counter==2;

 Played_Roles
 CapParent for ICapability ::=startMovement!(Name, CommunicationList)�

 exit!(Name,Parent)� enter!(Name,

NewAmbient)�

 finishMovement!(Name,CommunicationList) �
 changeLocation?(Name, NewLocation);
 CUSTMOVESPROC for IMobility::= move?(NewAmbient);

 Protocol
 // The mobility should be first executed by the customer and then it can
decide.
 PROCURDIST:= begin� PROCURDIST1;

 PROCURDIST1:= MOVEProc.move!(NewAmbient)� PROCURDIST2;
 PRDIST2:= move(NewAmbient)+end;

End_Distribution Aspect ProcurDist

Distribution Aspect BidderDist using IMobility, ICapability

 Attributes
 Variable
 location: string NOT NULL;

 Constant
 custLocation: string NOT NULL;
 Services
 begin(input ParentAmbient: string, input CustLocation: string)
 Valuations
 [begin (ParentAmbient, CustLocation)]
 location := ParentAmbient, CustLocation :=custLocation;

 //These services are concerned with mobility in order to interact with the
parent ambient.
 in changeLocation(Name: String, NewLocation: string)
 Valuations
 [changeLocation()] location:=NewLocation;

235

 out startMovement(input Name:string, output CommunicationList[]:
Attachment)
 Valuations
 [startMovement(Name, CommunicationList[])] Name:= self.Name;
 out exit (Name: string, Parent:string)
 Valuations
 [exit(Name, Parent)] Name:= self.Name & Parent:=location;

 out finishMovement(input Name, input CommunicationList[]);
 Valuations
 [finishMovement(Name, CommunicationList[])] Name:= self.Name;

 out enter (Name: string, NewAmbient: string);
 Valuations
 [exit(Name, NewAmbient)] Name:= self.Name
 end;
//
 TRANSACTIONS in move(NewAmbient:string)
 move::= out startMovement(input Name, output CommunicationList[])�
MOVE1;
 MOVE1::= out exit(Name,Parent)� MOVE2;

 MOVE2::= out enter(Name, NewAmbient)�MOVE3;
 MOVE3::= out finishMovement(input Name, input CommunicationList[]);
 MOVE4:: in changeLocation(Name, NewLocation);
 Preconditions
 //This precondition is concerned with the interaction with the ambient
 in changeLocation(Name, NewLocation)
 if {self.Name==Name};

 Played_Roles
 CapParent for ICapability ::=startMovement!(Name, CommunicationList)�

 exit!(Name,Parent)� enter!(Name,

NewAmbient)�

 finishMovement!(Name,CommunicationList) �
 changeLocation?(Name, NewLocation);
 CUSTMOVESBIDDER for IMobility::= move?(NewAmbient);

 Protocol
 // The mobility should be first executed by the customer and then it can
moveback to the customer location by its own.
 BIDDERDIST:= begin� BIDDERDIST1;

 BIDDERDIST1:= CUSTMOVESBIDDER.move?(NewAmbient)� BIDDERDIST2;
 BIDDERDIST2:= move(custLocation)+end;

End_Distribution Aspect BidderDist

Distribution Aspect ADist using IGetLocation
 Attributes
 Constant
 location : string NOT NULL;
 physicalLocation: loc NOT NULL;
 Services
 begin(input ParentAmbient: string, input PhysicalLocation: lo)

 Valuations
 [begin (ParentAmbient, PhysicalLocation)]
 location := ParentAmbient,
 physicalLocation:=PhysicalLocation;
 in/out getLocation(output Location:string)
 Valuations
 [in getLocation(output Location)] Location := location;

 end;
Protocol
 DIST:= begin� DIST1;

 DIST1:= (getLocation?(Location)� getLocation!(Location))+ end;
End_Distribution Aspect ADist

Distribution Aspect Dist
 Attributes
 Constant
 location : string NOT NULL;
 Services
 begin(input ParentAmbient: string)
 Valuations
 [begin (ParentAmbient)] location := ParentAmbient;
 end;

 Protocol

 DIST:= begin� end;

End_Distribution Aspect Dist

Distribution Aspect RootDist using IGetLocation

Attributes
 Constant
 location : string(NULL);

Services
 begin()
 Valuations
 [begin ()]
 location := null,
 in/out getLocation(output Location:string)
 Valuations
 [getLocation(output Location)] Location := location;
 end;

Protocol
 DIST:= begin� DIST1;

 DIST1:=(getLocation?(Location)� getLocation!(Location))+ end;

End_Distribution Aspect RootDist

237

Functional Aspect CustFunct using ICustProc, ICustBidder

 Attributes
 Variables
 iSaleroom:string,
 iSaleNum:string;
 iDateAuction:Date;
 iLotNumber:string;
 interested: boolean;
 maximumBid: double;
 currentQuantity: double;
 currentsituation: string;

 Services
 begin;
 setInterested(input CustomerInterest:boolean)
 Valuations
 [setInterested(input CustomerInterest)]
 interested:=CustomerInterested;

 saveItem(SaleRoom, SaleNum,DateOfAuction,Lotdescrip)
 Valuations
 {interested==true}[saveItem(SaleRoom, SaleNum, DateOfAuction,
 LotNumber)]
 iSaleRoom:=saleroom, iSaleNum:=SaleNum,
 iDateOfAuction:=DateAuction,
 iLotdescrip:=Lotdescrip;
 {interested==false}[saveItem(SaleRoom, SaleNum, DateOfAuction,
 LotNumber)]
 iSaleRoom:=NULL, iSaleNum:=NULL,
 iDateOfAuction:=NULL,
 iLotdescrip:=NULL;

 setMaximumBid(input MaximumBid:double)
 Valuations
 [setMaximimBid(input MaximumBid)] maximumBid:=MaximumBid;
 pay(input Quantity);

 //this service is used to create the attachments of the Bidder and the
Procurement at runtime. So the customer connects the agents at runtime with
the auctions before he sends them. He creates the attachments between the
Procurement and the two auctions and then he creates the attachments between
the bidder and the auction it has been decided to bid in.
 out createAttachment(InstanceName:string, Ports: Port: string,
 InstanceName:string, Port: string);

 //Customer and bidder
 out biddingInf(input iSaleRoom, input iSaleNum, input iDateofAuction,
 input iLotNumber, input maximumBid);
 out changeMaximumBid(input maximumBid);
 in/out biddingStatus(input Quantity: double, input Situation: string)
 Valuations
 [in biddingStatus(input Quantity: double, input Situation: string)]

 currentQuantity:=Quantity, currentSituation: Situation;

//Customer receives from proc the lots available and it answers if it is
//interested
 Transactions
 in/out NOTIFYPRODINTEREST(input Saleroom:string, input SaleNum:string,
 input DateOfAuction:string,
 input Lotdescrip: string,
 output Interested:boolean);

 notifyProdInterest = setInterested?(CustomerInterested)� SAVEITEM;
 SAVEITEM = saveItem?(SaleRoom, SaleNum, DateOfAuction,LotNumber);
 Valuations
 [NOTIFYPRODINTEREST(SaleRoom, SaleNum,DateOfAuction,Lotdescrip,
Interested)]
 Interested =interested;

 in NewMaximumBid()
 NewMaximumBid::= setMaximumBid(input Maximumbid)�NewMaximumBid1;
 NewMaximumBid1::= out changeMaximumBid(input maximumBid);

 triggers
 setMaximumBid(input MaximumBid) when interested==true;
 pay(currentQuantity) when currentSituation==”LOT SOLD TO YOU”;

 Played_Roles
 CUSTPROC for ICustProc ::= sendProductCust?(output Interested: boolean,
 input Saleroom,
 input SaleNum,
 input DateOfAuction,
 input Lotdescrip,
 input lotNumber)�
 sendProductCust!(output Interested: boolean,
input Saleroom,
 input SaleNum,input
DateOfAuction,
 input Lotdescrip, input
lotNumber);
 CUSTBIDDER for ICustBidder ::= biddingInf!(input iSaleRoom, input
iSaleNum, input
 iDateofAuction, input
iLotNumber, input
 maximumBid)�
 (changeMaximumBid!(input MaximumBid)+
 biddingStatus!(input Quantity,input
Situation)+
 biddingStatus?(input Quantity,input
Situation));

Protocol

……

End_Functional Aspect CustFunct

Functional Aspect ProcurFunct using IProcurAuction, ICustProc

239

 Attributes
 Variables
 keywords: string NOT NULL;
 limitDate: Date NOT NULL;
 saleroom: string;
 saleNum:string;
 dateOfAuction: Date;
 lotdescrip: string;
 keepSearching: boolean;
 finishedSearching:boolean;

 Services
 begin(input Keywords: string, LimitDate: Date)
 Valuations
 [begin(input Keywords, input LimitDate)]
 keywords:= Keywords, limitDate:= LimitDate;
 setKeepSearchingToTrue()
 Valuations
 [setKeepSearchingToTrue()] keepSearching:=true;
 finishedSearchingWithoutResults()
 Valuations
 [finishedSearchingWithoutResults()] finishedSearching:=true;

//Procurement and the Auction
 in/out searchforlot(input Keywords:string, output Saleroom:string,
 output SaleNum:string, output DateOfAuction:string,
 output Lotdescrip:string)
 Valuations
 {DateOfAuction<= limitDate}[in searchforlot(input Keywords,
 output SaleRoom,
 output SaleNum,
 output DateOfAuction,
 output Lotdescrip)]
 saleroom := Saleroom, saleNum:= SaleNum,
 dateOfAuction:= DateOfauction, lotdescrip:=Lotdescrip;

//Procurement and the Customer
 in/out notifyProdInterest(input Saleroom:string,input SaleNum:string,
 input DateOfAuction:Date,
 input Lotdescrip:string,
 output Interested: boolean);
 Valuations
 {Interested== false}[in notifyProdInterest(input Saleroom, input
SaleNum,
 input DateOfAuction, input
Lotdescrip,
 output Interested)]
 keepSearching:=true;
 {Interested== true}[in notifyProdInterest(input Saleroom, input
SaleNum,
 input DateOfAuction, input
Lotdescrip,
 output Interested)]
 keepSearching:=false;

 end;
 triggers
 notifyProdInterest (Saleroom,SaleNum, DateOfAuction, Lotdescrip,
 Interested)
 when {DateOfAuction<=limitDate};

 searchforlot(input Keywords, output Saleroom, output SaleNum,
 output DateOfAuction, output Lotdescrip)
 when keepSearching==true;
 searchforlot(input Keywords, output Saleroom, output SaleNum,
 output DateOfAuction, output Lotdescrip)
 when {dateOfAuction<=saleDate & saleroom==NULL};

Played_Roles
CUSTPROC for ICustProc ::= notifyProdInterest!(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested)
 �
 notifyProdInterest?(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested);
 PROCURAUCT for IProcurAuction ::= searchforlot!(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip)
 �
 searchforlot?(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip);

Protocol

 PROCURFUNCT:= begin(Keywords, LimitDate)� PROCURFUNCT1;
 PROCURFUNCT1:= setKeepSearchingToTrue() + end()+ PROCURFUNCT2;
 PROCURFUNCT2:= PROCURACUCT_searchforlot!(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip)
 �
 PROCURACUCT_searchforlot?(Keywords, SaleRoom,
 SaleNum, DateOfAuction,
 Lotdescrip)
 �
 (PROCURFUNCT2 + PROCURFUNCT3
 + finishedSearchingWithoutResult?()) ;
 PROCURFUNCT3:= CUSTPROC_notifyProdInterest!(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested)
 �
 CUSTPROC_notifyProdInterest?(Saleroom, SaleNum,
 DateOfAuction, Lotdescrip,
 Interested)
 �
 (PROCURFUNCT1 + PROCURFUNCT2);

End_Functional Aspect ProcurFunct

Functional Aspect BidderFunct using ICustBidder, IBidderAuct

Attributes
 Variable
 lotSaleRoom: string;
 lotSaleNum: string;

241

 lotDateofAuction: string;
 lotNumber: string;
 lotMaximumBid: real;
 currentBiddingAmount: real;
 biddingSituation: string ;

Services

 //Customer and bidder
 in biddingInf(input iSaleRoom: string, input iSaleNum:string, input
 iDateofAuction:Date, input iLotNumber:string, input
MaximumBid: real)
 Valuations
 [in bidding Inf(input iSaleRoom, input iSaleNum, input
iDateofAuction, input
 iLotNumber, input maximumBid)]
 lotSaleRoom:=iSaleRoom, lotSaleNum:=iSaleNum,
lotDateofAuction:=iDateofAuction,
 lotNumber:= iLotNumber, lotMaximumBid:= maximumBid;

 in changeMaximumBid(input NewMaximumBid:double)
 Valuations
 [in changeMaximumBid(input NewMaximumBid)]
 lotMaximumBid:= NewMaximumBid;
 //the bidder tells the customer the current bid and if it with it, against
it, lot sold
 to it, finished.
 out biddingStatus(input currentBiddingAmount, input biddingSituation);

// bidder and auction

 in startAuction(input biddingAmount1:real)
 Valuations
 [startAuction(input biddingAmount1)]
 currentBiddingAmount:=biddingAmount1, biddingSituation:=”lot
against you”;
 in changeStatus(input NewBid: real)
 Valuations
 [changeStatus(input NewBid)]
 currentBiddingAmount:=NewBid, biddingSituation:=”lot against
you”;

 in/out bid(input currentBiddingAmount: real, output Situation:string)
 Valuations
 [out bid(input currentBiddingAmount, output Situation)]
 Situation:= biddingSituation;
 in finishedAuction(input WonBid: real, input Situation: string)
 Valuations
 [finishedAuction(input WonBid, input Situation)
 currentBiddingAmount:=CurrentBid, biddingSituation:=Situation;

 out register(input UserName, input Password, input iSaleRoom);

triggers
 out bid(input currentBiddingAmount, output Situation) when
 biddingSituation==”bid against you” &

 currentBiddingAmount<=lotMaximumBid;

 out biddingStatus(currentBiddingAmount, biddingSituation) when

 biddingSituation==”lost” or
biddingSituation==”LOT SOLD TO YOU”;

Played_Roles

CUSTBIDDER for ICustBidder ::= biddingInf?(input iSaleRoom, input iSaleNum,
input
 iDateofAuction, input
iLotNumber, input
 maximumBid)�
 (changeMaximumBid?(input MaximumBid)+
 biddingStatus!(input Quantity,input
Situation));
BIDDERAUCT for IBidderAuct ::= register!(input UserName, input Password,
iSaleRoom)�
 startAuction?(input biddingAmount1)�
 bid!(input currentBiddingAmount, output
Situation)�
 (changeStatus?(input NewBid)
 + finishedAuction(input WonBid, input
Situation));

End_Functional Aspect BidderFunct

Functional Aspect AuctFunct using IProcurAuction, IBidderAuct, ICustAuct

 Attributes
 Variables

 saleroom: string NOT NULL;
 saleNum: string NOT NULL;
 dateOfAuction: Date NOT NULL;
 lotdescrip: string NOT NULL;
 biddingAmount: double NOT NULL;
 nextBid: real;

 Services
 begin(input Saleroom: string, input SaleNum: string,
 input DateOfAuction: Date, input Lotdescrip: string,
 input StbiddingAmount: double)
 Valuations
 [begin(input Saleroom, input SaleNum, input DateOfAuction,
 input Lotdescrip, input StbiddingAmount)]
 saleroom:= Saleroom, saleNum:=SaleNum, dateOfAuction:=DateOfAuction,
 lotdescrip:=Lotdescrip, StbiddingAmount:= biddingAmount,

 register(input UserName: string, input Password:string,
 input SaleRoom: string);

243

//Procurement and the Auction. The auction returns a lot with which are
compatible with the keywords in the lot description. It checks the keywords
and returns a product or another
in/out searchforlot(input Keywords:string, output Saleroom:string,
 output SaleNum:string, output DateOfAuction:string,
 output Lotdescrip:string)
 Valuations
 {Keywords==lotDescrip}[in searchforlot(input keywords,
 output SaleRoom,
 output SaleNum,
 output DateOfAuction,
 output Lotdescrip)]
 Saleroom := saleroom1, SaleNum:= saleNum1,
 DateOfAuction:= dateOfAuction1, Lotdescrip:=lotdescrip;

 incrementNextBid()
 Valuations
 {biddingAmount>=100 & biddingAmount<200}
 [incrementNextBid()]nextBid:= biddingAmount+10;
 {biddingAmount>=200 & biddingAmount<300}
 [incrementNextBid()]nextBid:= biddingAmount+20;

//Bidder and the Auction.
 in register (input UserName, input Password, iSaleRoom)
 out startAuction(input biddingAmount1, input “bid against you”);
 out finishedAuction(WonBid, situation);
 out changeStatus(input nextBid);

 in bid(input bidAmount: real, output Situation: string)
 Valuations
 {bidAmount==nextBid} biddingAmount:= bidAmount, Situation:= “bid with
you”;

trigger
 incrementNextBid() when biddingAmount==nextBid;

 Played_Roles

 PROCURAUCT for IProcurAuction ::= searchforlot?(input Keywords,
 output SaleRoom,
 output SaleNum,
 output DateOfAuction,
 output Lotdescrip)
 �
 searchforlot!(input Keywords,
 output SaleRoom,
 output SaleNum,
 output DateOfAuction,
 output Lotdescrip);
 BIDDERAUCT for IBidderAuct ::= register?(input UserName,
 input Password, iSaleRoom)�

 startAuction!(input biddingAmount1)�
 (bid?(input currentBiddingAmount,
 output Situation)+
 changeStatus?(input NewBid)+
 finishedAuction(input WonBid,
 input Situation));

 Protocol
 //

End_Functional Aspect AuctFunct

Coordination Aspect AuctionCnctrCoor using IAuct

 Services
 begin;

in/out bid(input ProductID: string, input Quantity: real);
 in/out lookforProduct(input Description: string,
 output ProductID: string ,
 output CurrentBid: real);
 in/out notifyBuy(Buy : bool);
 in/out registerForPayment(input UserName: string,
 input Password: string,
 input ProductID: string,
 output Register: bool);
 end;

 Played_Role
 AUCTCUST for IAuct =
 (
 (bid?(ProductID,Quantity)
 �
 (bid!(ProductID,Quantity))
 +
 (lookforProduct?(Description, ProductID, CurrentBid)
 �
 (lookforProduct!(Description, ProductID, CurrentBid))
 +
 (notifyBuy?(Buy)
 �
 (notifyBuy!(Buy))
 +
 (registerForPayment?(UserName, Password, ProductID, Register)
 �
 (registerForPayment!(UserName, Password, ProductID, Register))
);

 CUSTAUCT for IAuct =
 (
 (bid?(ProductID,Quantity)
 �
 (bid!(ProductID,Quantity))
 +
 (notifyBuy?(Buy)
 �
 (notifyBuy!(Buy))
);

 Protocol
 AUCTIONCNCTRCOOR = begin.COORD;
 COORD =
 (
 (AUCTCUST.bid?(ProductID,Quantity) �

245

 CUSTAUCT.bid!(ProductID,Quantity)).COOR
 +
 (AUCTCUST.lookforProduct?(Description, ProductID, CurrentBid) �
 CUSTAUCT.lookforProduct!(Description, ProductID, CurrentBid)).COOR
 +
 (AUCTCUST.notifyBuy?(Buy))�
 CUSTAUCT.notifyBuy!(Buy)).COOR
 +
 (AUCTCUST.registerForPayment?(UserName, Password, ProductID, Register)
�
 CUSTAUCT.registerForPayment!(UserName, Password, ProductID, Register)
).COOR
 +
 (CUSTAUCT.bid?(ProductID,Quantity))�
 AUCTCUST.bid!(ProductID,Quantity)).COOR
 +
 (CUSTAUCT.notifyBuy?(Buy))�
 AUCTCUST.notifyBuy!(Buy)).COOR
 +
 end
);

End_Coordination Aspect AuctionCnctrCoor;

Coordination Aspect AgentCustCnctrCoor using ICustAgent, IMobility

 Services
 begin;
 in/out purchase(changeProductDescription(input ProductDescr: string);
 in/out changeMaxBidQuantity(input NewMaxBidQuantity: real);
 in/out move(NewAmbient: string);
 end;

 Played_Role
 CUSTAGENT for ICustAgent =
 (
 (changeProductDescription?(ProductDescr)
 �
 changeProductDescription!(ProductDescr))
 +
 (changeMaxBidQuantity?(NewMaxBidQuantity)
 �
 changeMaxBidQuantity!(NewMaxBidQuantity))
);
 AGENTCUST for ICustAgent =
 (
 (changeProductDescription?(ProductDescr)
 �
 changeProductDescription!(ProductDescr))
 +
 (changeMaxBidQuantity?(NewMaxBidQuantity)
 �
 changeMaxBidQuantity!(NewMaxBidQuantity))
);
 AGENTCUSTMOB for IMobility =
 (
 move?(NewAmbient)
 �

 move!(NewAmbient)
);
 CUSTAGENTMOB for IMobility =
 (
 move?(NewAmbient)
 �
 move!(NewAmbient)
);

 Protocol
 AGENTCUSTCNCTRCOOR = begin.COORD;
 COORD =
 (
 (CUSTAGENT.changeProductDescription?(ProductDescr) �
 AGENTCUST.changeProductDescription!(ProductDescr)).COOR
 +
 (AGENTCUST.changeProductDescription?(ProductDescr) �
 CUSTAGENT.changeProductDescription!(ProductDescr)).COOR
 +
 (AGENTCUSTMOB.move?(NewAmbient) �
 CUSTAGENTMOB.move!(NewAmbient)).COOR
 +
 (CUSTAGENTMOB.move?(NewAmbient) �
 AGENTCUSTMOB.move!(NewAmbient)).COOR
 +
 end
);

End_Coordination Aspect AgentCustCnctrCoor;

B.3 Ambients

Ambient_Site type HostSite
Import Mobility Aspect MobilityAspect;
 Import Coordination Aspect ACoordination;
 Import Distribution Aspect ADist;
 Ports
 InCapabilitiesPort: ICapability Played_Role Mobile.Parent;
 ECapabilitiesPort: ICapability Played_Role Mobile.Child;
 EServicesPort: ICall Played_Role ACoordination.Client;
 InServicesPort: ICall Played_Role ACoordination.Server ;

 End_Ports
 Weavings
 ADist.getLocation(Location)instead
 MobilityAspect.getParent(Parent);

End Ambient_Site type HostSite;

247

Ambient_Virtual type Root

 Import Mobility Aspect MobilityAspect;
 Import Coordination Aspect ACoordination;
 Import Distribution Aspect RootDist;

 Ports
 InCapabilitiesPort: ICapability Played_Role Mobile.Parent;
 ECapabilitiesPort: ICapability Played_Role Mobile.Child;
 EServicesPort: ICall Played_Role ACoordination.Client;
 InServicesPort: ICall Played_Role ACoordination.Server ;
 End_Ports

 Weavings
 Dist.getLocation(Location) instead
 MobilityAspect.getParent(Parent);

End Ambient_Virtual type Root;

B.4 Components

Component_type Customer

 Import Distribution Aspect CustDist;
 Import Functional Aspect CustFunct;
 Weavings
 CustDist.move(NewAmbient) after CustFunct.biddingInf(iSaleRoom,
 iSaleNum,
 iDateofAuction,
 iLotNumber,
 maximumBid);
 End_Weavings

 Ports
 MOVEProcPort: IMobility Played_Role CustDist.MOVEProc;
 MOVEBidderPort: IMobility Played_Role CustDist.MOVEBidder;

 CUSTPROCPort: ICustProc Played_Role CustFunct.CUSTPROC;
 CUSTBIDDERPORT: ICustBidder Played_Role CustFunct.CUSTBIDDER
 CUSTAUCTPort: ICustAuct Played_Role CustFunct.CUSTAUCT;
 End_Ports
 new(input ParentAmbient: string)

 {

 CustDist. begin(ParentAmbient);

 CustFunct.begin();

 }

 {

 CustDist.end();

 CustFunct.end();

 }

End Component Customer;

Component_type Procurement
 Import Distribution Aspect ProcurDist;
 Import Functional Aspect ProcurFunct;
 Ports
 DCapPort: ICapability Played_Role ProcurDist. CapParent;
 DMovingPort: IMobility Played_Role ProcDist.CUSTMOVESPROC;
 CUSTPROCPort: ICustProc Played_Role ProcurFunct. CUSTPROC;
 PROCURAUCTPort: IProcurAuction Played_Role ProcurFunct. PROCURAUCT;
 End_Ports

 Weavings
 //This weaving is for moving to the customer location
 ProcurDist.setCounter2()
 afterif(Interested==true)
 ProcurFunct.in notifyProdInterest(input Saleroom,
 input SaleNum,
 input DateOfAuction,
 input Lotdescrip,
 output Interested);

 ProcurDist.addcounter() after
 ProcurFunct.finishedSearchingWithoutResults();

 ProcurFunct. setKeepSearchingToTrue() after
 ProcurDist.move(nextAuctionSiteLoc);
 End_Weavings

End Component_type Procurement;

 Component_type Bidder
 Import Distribution Aspect BidderDist;
 Import Functional Aspect BidderFunct;
 Ports
 DCapPort: ICapability Played_Role BidderDist. CapParent;
 DMovingPort: IMobility Played_Role BidderDist.CUSTMOVESBIDDER;
 CustBidderPort: ICustBidder Played_Role BidderFunct.CUSTBIDDER;
 BidderAuctPort: IBidderAuct Played_Role BidderFunct. BIDDERAUCT;
 End_Ports

 Weavings
 //This weaving is for moving to the customer location after the auction
has finished.

 BidderDist.move(custLocation) after BidderFunct.finishedAuction(input
WonBid, input
 Situation);

249

 End_Weavings

End Component_type Bidder;

Component_type Auction
 Import Distribution Aspect Dist;
 Import Functional Aspect AuctFunct;
 Ports
 ProcurAuctPort: IProcurAuction Played_Role AuctFunct.PROCURAUCT;
 CustAuctPort: ICustAuct Played_Role AuctFunct.CUSTAUCT;
 BidderAuctPort: IBidderAuct Played_Role AuctFunct.BIDDERAUCT;
 End_Ports

End Component_type Auction;

B.5 Connectors

Connector_type CustomerCnctr
 Import Distribution Aspect Dist;
 Import Coordination Aspect CustCnctrCoor;
 Ports
 CustPortProcur: ICustProc;
 CustPortProcurMo: IMobility;
 CustPortBidder: ICustBidder
 CustPortBidderMo: IMobility;´
 ProcurPortCust: ICustProc;
 ProcurPortCustMo: IMobility;
 BidderPortCust: ICustBidder
 BidderPortCustMo: IMobility;
 End_Ports

End Connector_type CustomerCnctr;

Connector_type AuctionCnctr
 Import Distribution Aspect Dist;
 Import Coordination Aspect CustCnctrCoor;
 Ports
 AuctPortCust: ICustAuct;
 CustPortAuct: ICustAuct;
 CnctAuctPortBidder: IBidderAuct;
 BidderPortAuct: IBidderAuct;
 ProcurPortAuct: IProcurAuction;
 AuctPortProcur: IProcurAuction;
 End_Ports

End Connector_type AuctionCnctr;

B.6 Configuration

Architectural_Model_Configuration AuctionConf =

New MobileAuction
{
 IP1 = new loc(ip.of.host.1);
 IP2 = new loc(ip.of.host.2)

 ROOT = new Root() ;

 ClientSite = new HostSite(ROOT, IP1);
 AuctionSite = new HostSite(ROOT, IP2)

 Auction1 = new AuctionHouse (“London, King street”, 1876”,

 “1 Jun”, “Spanish painting”, “800”,

 “AuctionSite”);

 Customer1 = new Customer(“ClientSite”);

 Procurement1 = new Procurement (“ClientSite”);

 Bidder1 = new Bidder(“painting”, “3 Jul”, “ClientSite”);

 AgentCustCnct1 = new AgentCustCnct(“ClientSite”);

 AuctionCnct1 = new AuctionCnct(“AuctionSite”);

 AttchAuct1Cnct = new AttchAuctCnct (AuctionCnct1,

 CnctAuctPortBidder,

 AuctionHouse1,

 BidderAuctPort);

 AttchCust1Auc1 = new AttchCustAuc (Customer1, CUSTAUCTPort,

 AuctionCnct1, CustPortAuct);

 ATT1 = new CustCnctrAtt(CUST, AgentsPort,
 CustAgentPort, ACNCTR);
 ATT2 = new CustCnctrAtt(CUST, MovePort,
 AccountOp_port, ACNCTR);
 ATT3 = new CustAuctCnctrAtt(CUST, AuctionPort,
 CustAgentMobPort, ACNCTR);
 ATT4 = new CnctrAgntsAtt(ACCNCTR, AgentCustPort,
 EDistServicesPort, AAP);
 ATT5 = new CnctrAgntsAtt(ACCNCTR, AgentCustMobPort,
 EMobilityPort, AAP);
 ATT6 = new AgntsHostAtt(AAP, DCapabilitiesPort,
 ICapabilitiesPort, CLIENTSITE);
 ATT7 = new PurAAPAtt(PUR, MoveAgentPort,
 InMovilityPort, AAP);
 ATT8 = new PurAucAtt(PUR, PURAUCPort,
 AuctionPortCUST, AUCNCTR);
 ATT9 = new PurCnctrAtt(PUR, COLLPURPort,
 PurchaserPort, ACNCTR);
 ATT10 = new ColCnctrAtt(COL, CollPurPort,

251

 CollectorPort, ACNCTR);
 ATT11 = new ColAuctAtt(COL, COLLAUCTPort,
 AuctionPortCUST, AUCNCTR);
 ATT12 = new ColCustAtt(COL, CustAgentPort,
 CustAgentPort, ACCNCTR);
 ATT13 = new AuctCnctrAtt(AUCT, AuctionPort,
 AuctionPortAUCT, ACNCTR);

};

253

INDEX

π-ADL, 42
π-calculus, 36, 42

A
ADL, 28
After, 100, 219
Afterif, 100, 219
Ambient, 148, 150, 151

Group, 152
Site, 151
Virtual, 152

Architectural Model, 214
architectural style, 32
architectural views, 33
Aspect, 215
AspectJ, 53, 56, 59, 60

advice, 56
aspects, 55
Join points, 55
pointcut, 55

Aspect-Oriented Programming, 53
Aspect-Oriented Software Development, 53
Attachment, 222
attachments, 32, 148
Attribute, 215

Constant, 215
Variable, 215

AWED, 74

B
Before, 100, 219
Beforeif, 100, 219
black box, 30
BNF PRISMA AOADL

Instance, 170, 223

C
C2Sadel, 36

C2, 36
connectors, 37
context reflective interfaces, 37

component, 30, 31, 126

Component, 221
Composition Filters, 56, 70
Con Moto, 42

components, 43
configuration, 110
Configuration, 222
Configurations, 29, 32
connections, 32
connector, 127
Connector, 147, 221
Constraint, 217
Crosscutting Concern, 54

D
D Language, 67

Aspect Weaver, 67
D aspects, 67
DJ, 67

Darwin, 34, 35, 36
disguises model, 72

distribution aspect, 73
replication aspect, 73

DJCutter, 64
Domain-Specific Languages Tool

Domain Model tool, 115
Model Designer Tool, 115

Domain-Specific Languages Tools, 113

G
GOTECH, 63

I
Instead, 100, 219
Insteadif, 100, 219
Interface, 214

J
JAsCo, 56, 74

M
metamodel, 146
Middleware, 46

mobility, 38, 39, 41, 44, 45, 62, 63, 66, 69
Modal Logic of Actions, 82
Model Driven Architecture, 113
Model-Driven Engineering, 113

O
OASIS, 82
Object-Oriented Software Development, 52

P
PaDA, 61, 63
Played_Role, 218
polyadic π-calculus, 42
Polyadic Pi-Calculus, 82
Port, 219
ports, 30
Precondition, 216
PRISMA, 77

AOADL, 77, 82
configuration, 110
metamodel, 77, 81

PRISMA AOADL, 110
PROSE, 56
Protocol, 218

R
replication, 66, 73
reuse, 29, 31
reused, 80

S
Scattering of Concerns, 54
Separation of Concerns, 31, 52
Service, 216

Begin, 216
End, 216

Software Crises, 52

T
tangled code, 57
Tangling of Concerns, 54
topologies, 32
Transaction, 216, 226, 228

V
Valuation, 216

W
Weaving

Dynamic Weaving, 56
Static Weaving, 56

Weaving
Operators

After, 100
Weaving

Operators
Before, 100

Weaving
Operators

Instead, 100
Weaving

Operators
Afterif, 100

Weaving
Operators

Beforeif, 100
Weaving

Operators
Insteadif, 100

Weaving, 219
Weaving

Operator, 219
Weaving

Operator
After, 219

Weaving
Operator

Before, 219
Weaving

Operator
Instead, 219

Weaving
Operator

Afterif, 219
Weaving

Operator
Beforeif, 219

Weaving
Operator

Insteadif, 219

