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Dealing with epistemic uncertainty in risk-informed 
decision making for dam safety management 

 
ABSTRACT 

 

In recent years, the application of risk analysis to inform dam safety governance has increased 

significantly. In this framework, considering explicitly and independently both natural and 

epistemic uncertainty in quantitative risk models allows to understand the sources of uncertainty 

in risk results and to estimate the effect of actions, tests, and surveys to reduce epistemic 

uncertainty.  

In this paper, Indexes of Coincidence are proposed to analyze the effect of epistemic uncertainty 

in the prioritization of investments based on risk results, which is the key issue in this paper. 

These indexes allow consideration of the convenience of conducting additional uncertainty 

reduction actions.  

These metrics have been applied to the prioritization of risk reduction measures for four 

concrete gravity dams in Spain. Results allow for a better understanding of how epistemic 

uncertainty of geotechnical resistance parameters influence risk-informed decision making.  

The proposed indexes are also useful for probabilistic risk analyses of other civil engineering 

structures with high epistemic uncertainty environments, since they analyze whether existing 

uncertainty could have an impact on decision making, outlining the need for extra studies, 

surveys and tests. 
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1. INTRODUCTION 

There is nowadays a trend towards viewing dam safety as an active and ongoing 

management process rather than a static and deterministic statement. Tools such as risk 

analysis can be useful to help owners take risk-informed decisions. Risk assessment 

helps engineers to understand uncertainties in critical infrastructures, and provides a 

logical process to identify hazards, evaluate system response and vulnerabilities 

associated to each hazard, and assess the effectiveness of risk reduction measures.  

In recent years, risk assessment techniques have been developed and applied in the dam 

industry worldwide to inform safety governance [1]–[4]. Guidelines and 

recommendations have been developed within the tolerability of risk (TOR) framework, 

which was set out by UK’s HSE [5] for risk evaluation and management. The current 

paper is contextualized within this framework.  

However, the contextual information provided above is considerably more complex 

than it may sound, resulting in many theoretical and practical difficulties. Many of these 

difficulties are related to how uncertainties are explicitly considered today (in the 

context of risk analysis), as opposed to the more traditional implicit treatment (in the 

context of state-of-the-art dam safety practice). 

Evaluation of uncertainty plays an important role in the evaluation and management of 

complex structural systems [6], [7]. In general, two sources of uncertainty are 

considered [8]–[11]: 

 Natural uncertainty or randomness: Produced by the inherent variability in 

natural processes. An example is the variability of the loads that the structure 

has to withstand, for instance, the variability in the potential flood magnitudes 

which can occur. This type cannot be reduced, though it can be estimated.  

 Epistemic uncertainty: Resulting from not having enough knowledge or 

information about the analyzed system. This lack of information can be 

produced by deficiency of data or because the structure’s behavior is not 

correctly represented.  The more knowledge that is available about a structure or 

system, the more this type of uncertainty can be reduced.  

Dealing with natural and epistemic uncertainty has been one of the main discussion 

points in quantitative risk analysis for critical infrastructures safety management. The 

most common approach is addressing separating both types of uncertainty through a 

probabilistic analysis [12], obtaining a probabilistic distribution of risk results based on 

epistemic uncertainty variations. This method was mainly developed within the nuclear 

industry, thanks to the work made by [13]. It was later generalized by [14] and it is still 

commonly used in this industry [15]. Other industries which have followed this 

probabilistic approach to inform safety management are the water supply industry [16], 

[17] and the aerospace industry [18]. 

In the dam safety field, epistemic uncertainty has an important role in decision making. 

Dam managers usually need to decide whether available information (hydrological 

studies, geotechnical tests, monitoring data…) is sufficient before making an important 

structural improvement in the dam (new spillway construction, improvement of the 

foundation resistance, improvement of dam body imperviousness …). In this sense, 

analyzing the degree of confidence in risk results and its influence in the decision 

making process is a key issue for dam safety management.  
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In this field, both types of uncertainty are generally introduced in the inputs for dams 

risk models, without specifically distinguishing the effect of epistemic uncertainty. 

These results are very useful to prioritize risk reduction investments, but still two key 

questions for dam safety governance remain unanswered and they are the key for this 

paper: 

 How is epistemic uncertainty influencing the decisions made based on risk 

results? 

 How can potential uncertainty reduction measures (geotechnical tests, dam 

computational models, improvements in dam surveillance and monitoring…) 

improve dam safety governance? 

In order to answer these questions, this paper provides insights on how addressing 

separately epistemic uncertainty in risk models (following the approaches already 

developed in other industries) and presents two indicators named Indexes of 

Coincidence that measure the effect of epistemic uncertainties in risk-informed decision 

making. These indexes are computed by analyzing the effect of epistemic uncertainty in 

prioritization sequences of potential risk reduction measures. These sequences of 

measures are obtained with the procedure developed in [19].  

These Indexes of Coincidence have been obtained to inform safety management in four 

existing concrete gravity dams in Spain. These real examples illustrate how the 

proposed Indexes of Coincidence can provide useful information to answer the two 

previous questions.  

  



4 

 

2. UNCERTAINTY IN RISK MODELS FOR DAMS 

Risk is the combination of three concepts: what can happen, how likely is it to happen, 

and what are its consequences [20]. Following this definition, in the dam safety field, 

risk is usually quantified with the following equation [21]: 

 

 𝑅𝑖𝑠𝑘 =  ∫ 𝑃(𝑙𝑜𝑎𝑑𝑠) · 𝑃(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒|𝑙𝑜𝑎𝑑𝑠) · 𝐶(𝑙𝑜𝑎𝑑𝑠, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)  Eq. 1 

 

where the integral is defined over all the events under study, P(loads) is the probability 

of the different load events, P(response|loads) is the conditional probability of the 

structural response for each load event and C(loads,response) are the consequences of 

the system response for each load event. In the dam safety field, the system response 

analyzed is the dam failure. Consequences can be introduced in economic terms to 

obtain economic risk or in terms of potential loss of life, to obtain societal risk [19]. 

These terms of the equation are usually analyzed independently and they can be 

combined within a quantitative risk model to compute dam failure risk. Risk models are 

commonly created through event trees [3], [22], which analyze the different ways in 

which a dam can fail (failure modes) calculating their associated probabilities and 

consequences. An event tree is a representation of a logical model that includes all the 

possible chains of events resulting from an initiating event that can produce the 

structural failure.  

In these risk models for dams, natural and epistemic uncertainties are not usually 

introduced separately. They are usually mixed in the probability input data introduced 

for the structural response with a mean conditional failure probability for each loading 

state [23]. Hence, risk curves represent ‘‘mean future frequencies’’ of critical events in 

the face of epistemic uncertainties. This approach is called first-order probabilistic risk 

analysis [24] and it is the most common approach in risk-informed dam safety 

management [2], [3], [22].  

As a result of applying Equation 1 in the event tree, a single value of failure probability 

and risk is obtained. If consequences are expressed in terms of loss of life, FN curves 

can be derived to represent the relation between loss of life and exceedance probability 

thanks to the different branches of the event tree. The area under these curves is 

equivalent to the societal risk [25]. 

First-order probabilistic risk analysis represents Level 4 of complexity in the 

classification developed by [26]. There is a higher level of complexity to fully represent 

both types of uncertainty (Level 5), called second-order probabilistic risk analysis. In 

this level, epistemic and aleatory uncertainties are introduced separately in the risk 

model input data, defining probability distributions for input data in the risk equation.   

In order to carry out calculations in Level 5 models, the two types of uncertainty can be 

addressed using a two-loop Monte-Carlo analysis [27]. In the upper loop, random 

variables with epistemic uncertainty are sampled. These sampled values are used to 

compute risk in the lower loop. Another option can be to combine epistemic uncertainty 

variables sampling in the upper loop of Monte-Carlo analysis with event trees. Hence, a 

risk result is obtained for each group of sampled values with the event tree [28]. In both 

approaches, when risk results are ordered, a risk probability distribution is obtained.  
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Hence, in a second-order probabilistic risk analysis, a risk probability distribution and a 

family of FN curves are obtained instead of a single value and curve, as explained in 

[24], [28]. The spread of risk probability distribution and the family of FN curves thus 

represents the degree of epistemic uncertainty in the risk assessment. In Figure 1, the 

type of risk results and risk representation are compared for first-order and second-order 

probabilistic risk analyses. In conclusion, second-order probabilistic risk analysis allows 

to assess the effect of epistemic uncertainty in risk results and it is more common in 

other industries like the nuclear industry [14].  

 

 

Figure 1: Comparison of risk results and risk representation between first-order and 

second-order probabilistic risk analysis. 

Recent research on dealing with epistemic uncertainty in quantitative risk models for 

infrastructure management is mainly focused on how epistemic uncertainty is 

propagated through input data and mathematical models and trees. Methods used to 

propagate this uncertainty are analytical methods (method of moments and Fenton-

Wilkinson method), Monte Carlo simulation, Wilks method and fuzzy set theory [8], 

[9], [29]–[31]. These methodologies allow to quantify the effect of epistemic 

uncertainty in risk results to obtain risk distributions, combining different sources of 

uncertainty in input data.  

Other existing approaches that deal with epistemic uncertainty in infrastructure 

management are based on developing different future scenarios [32]. These approaches 

are generally used to analyze risks for different investments rather than infrastructures 

safety management (when potential failure could lead to loss of life, like large dams or 

nuclear plants).  
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In recent years, different research studies have been developed to characterize epistemic 

uncertainty in input data of quantitative risk analysis of dams. As explained above, the 

separation of epistemic and aleatory uncertainties in input data is the first step for a 

second-order risk analysis. Following the three terms of the risk equation (Equation 1), 

the existing approaches that have been found in the dam safety field to address 

epistemic uncertainty separately are: 

 Probability of loading: This part of the equation typically makes reference to 

the probability of severe flood events and their subsequent reservoir elevations 

(hydrological scenario) or severe seismic events (seismic scenario).  

In hydrological scenarios, in general a probability distribution for reservoir 

elevations is introduced in the risk model obtained from the probability of flood 

events, probability of previous pool levels in the reservoir and probability of 

availability of outlet works [33], [34].  

In order to separate both types of uncertainty, main epistemic uncertainties in the 

rainfall-runoff and flood routing process should be characterized. Different 

families of inflow hydrographs in the reservoir can be obtained based on a 

parametric rainfall-runoff analysis  [35] and they can be combine with previous 

pool levels and gates availability to obtain a family of probability distributions 

for reservoir elevations (or volumes) in the reservoir [36]. The spread of this 

family of curves represents the degree of epistemic uncertainty in the 

hydrological loading.  

In seismic scenarios, epistemic and aleatory uncertainties of seismic loading 

could be separated as it is made in the nuclear industry [14]. Hence, different 

families of seismic events could be generated to compute failure probability 

instead of a single Annual Exceedance Probability-Ground acceleration curve 

[37]. 

 Probability of system response: This part of the equation is addressed through 

fragility curves, which represent a relationship between conditional failure 

probability and the magnitude of loads that produce failure. In [23], a procedure 

is introduced to perform fragility analysis for dams in order to identify and track 

natural and epistemic uncertainty separately. This procedure is particularized for 

the sliding failure mode of concrete gravity dams and it is based on the concepts 

by [13] to develop seismic fragility curves for the nuclear industry. As a result of 

this procedure, a family of fragility curves is obtained to characterize the sliding 

failure, as shown in Figure 2. The spread of this family is an indicator of the 

influence of the epistemic uncertainty in the results. 



7 

 

 

Figure 2: Example of family of fragility curves for sliding failure mode. Adapted from 

[23]. 

The same concepts can be followed to obtain a family of fragility curves for 

other failure modes in dams, like embankment instability [38] and overtopping 

[37].  

Dam failure consequences: In first-order probabilistic risk analysis, a single 

value of economic consequences or loss of life is used in each branch of the 

event tree to compute risk. In order to include epistemic uncertainty, a 

probability distribution of consequences could be introduced. These probability 

distributions can be obtained based on epistemic uncertainties in hydraulic 

models [39] and warning and evacuation procedures [37], [40]. 
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3. RISK-INFORMED DECISION MAKING FOR DAM SAFETY 

MANAGEMENT  

Once risk results are computed, they are used to inform dam safety management. In 

general, risk analysis to inform dam safety governance is contextualized within the 

Tolerability of Risk (TOR) framework developed by [5] for risk evaluation and 

management. This framework has been used worldwide to define risk-informed dam 

safety programs [2]–[4], [41]. According to this framework, two basic principles are 

generally used to guide decision making [1], [5]: Equity (based on the premise that all 

individuals have unconditional rights to certain levels of protection) and Efficiency 

(which prioritizes options that produce a higher risk reduction at a lower cost).    

When quantitative risk analysis is applied to inform safety management of portfolios of 

dams, a high number of results are obtained. In this context, risk reduction indicators 

have proved to be a useful tool to prioritize risk reduction measures. These indicators 

are numeric values obtained for each potential risk reduction measure considered based 

on its costs and the quantitative risk reduction it provides (using a first-order 

probabilistic risk analysis).  

 

In [19], a procedure to obtain prioritization sequences based on risk reduction indicators 

is introduced. In each step of the sequence, the measure with the lowest value of the 

indicator is chosen. The obtained prioritization sequence depends on the risk reduction 

indicator used to define it. Prioritization sequences can be represented in variation 

curves (Figure 3), which represent the variation of the aggregated risk in the portfolio as 

measures are implemented. In the X axis, annualized costs or implementation steps can 

be displayed while in the Y axis aggregated individual risk, societal risk or economic 

risk can be shown. Depending on what is represented in each axis, the risk reduction 

indicator that will lead to the optimum sequence is different.  

Existing risk reduction indicators to compare different investment alternatives are 

reviewed in [19], analyzing the relation between risk reduction measures and equity and 

efficiency principles. In dam safety management, two indicators are predominant in the 

evaluation of risk reduction measures:  

 CSLS (Cost per Statistical Life Saved): [2], [5] This indicator shows how 

much it costs to avoid each potential loss of life as a result of a dam failure. Its 

value is obtained through the following formula: 

 

𝐶𝑆𝐿𝑆 =  
𝐶𝑎

𝑟𝑠(𝑏𝑎𝑠𝑒) − 𝑟𝑠(𝑚𝑒𝑎)
       Eq. 2 

 

Where rs(base) is the risk expressed in loss of lives for the base case, rs(mea) is 

the risk in lives after the implementation of the measure and Ca is the annualized 

cost of the measure including its annualized implementation costs, annual 

maintenance costs and potential changes in operation costs produced by the 

adoption of the measure. CSLS compares costs with societal risk reduction, so it 

is directly related with the principle of efficiency.  

 ACSLS (Adjusted Cost per Statistical Life Saved): [2] This indicator has the 

same structure as CSLS but introduces an adjustment of the annualized cost to 

consider the economic risk reduction generated by the implementation of the 

measure. It is obtained with the following equation: 
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 𝐴𝐶𝑆𝐿𝑆 =  
𝐶𝑎−(𝑟𝑒(𝑏𝑎𝑠𝑒) − 𝑟𝑒(𝑚𝑒𝑎))

𝑟𝑠(𝑏𝑎𝑠𝑒) − 𝑟𝑠(𝑚𝑒𝑎)
      Eq.3 

 

Where re(base) is the economic risk of the infrastructure for the base case and re 

(mea) is the economic risk after the implementation of the measure. It is also 

based on the efficiency principle.  

 

Figure 3: Generic representation of variation curves to define prioritization sequences. 

Source: [42]. 

 

Finally, in [42] a new risk reduction indicator is introduced to combine equity and 

efficiency principles: Equity Weighted Adjusted Cost per Statistical Life Saved 

(EWACSLS). This indicator is computed with the following formula: 

 

 𝐸𝑊𝐴𝐶𝑆𝐿𝑆 =  
𝐴𝐶𝑆𝐿𝑆

(
max (𝑟𝑖(𝑏𝑎𝑠𝑒),𝐼𝑅𝐿)

max (𝑟𝑖(𝑚𝑒𝑎),𝐼𝑅𝐿)
)𝑛

      Eq. 4 

 

Where ri(base) is the individual risk for the base case expressed in years-1, ri(mea) is the 

individual risk in years-1 after the implementation of the measure, IRL stands for 

Individual Risk Tolerability Limit and n is a parameter that allows assigning a higher 

weight to either efficiency or equity in the prioritization process. As can be observed in 

Equation 4, if the individual risk is lower than IRL, the only prevailing principle is 

efficiency (through ACSLS), since the denominator of the formula is then 1. Thus, the 

equity principle only modifies the value of the indicator in the cases where individual 

risk is above tolerability thresholds. 

In conclusion, risk reduction indicators are a useful tool to prioritize a high number of 

investments in a portfolio of dams based on quantitative risk results. However, this 

approach does not consider the effect of epistemic uncertainty in risk results separately. 
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For this reason, these prioritization sequences are focused on risk reduction measures 

but they do not address the potential epistemic uncertainty reduction measures (better 

hydrological studies, more geotechnical tests, improved analysis of dam behavior…), 

which are also a key part of dam safety management.  
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4. INDEXES OF COINCIDENCE TO ANALIZE EPISTEMIC UNCERTAINTY 

IN DAM SAFETY DECISION MAKING  

In dam safety management, two types of investments can be analyzed: risk reduction 

measures (higher outlets capacity, freeboard requirements…) and uncertainty reduction 

measures (geotechnical tests, dam computational models…). These two types of 

measures have a different impact on a risk probability distribution obtained by a second-

order probability risk assessment. Risk reduction measures move the probability 

distribution downwards, while measures to reduce epistemic uncertainty produce a less 

steep risk distribution, as shown in Figure 4.   

 

 

Figure 4: Example of the effect in a risk distribution of a risk reduction measure and an 

epistemic uncertainty reduction measure. 

As explained in Section 3, current approaches to inform dam safety are focused on 

average risk results from first-order probabilistic risk analysis. For this reason, they are 

used to prioritize risk reduction measures but they do not analyze the effect of epistemic 

uncertainty. However, this type of uncertainty can influence decision making and 

prioritization sequences. In high epistemic uncertainty situations, the decisions made 

can change depending on the values considered within the epistemic uncertainty 

distributions, since existing epistemic uncertainty produces a range of variation in risk 

results, thus when different dams are compared, this variation could lead to different 

results on which remedial measures are more efficient. 

As explained in Section 2, in a second-order probabilistic risk analysis a high number of 

risk results are obtained instead of a single risk value. This difference between the 

results of a first-order and second-order probabilistic risk analysis can be observed in 

Figure 1. The spread of these results obtained in a second-order probabilistic risk 

analysis indicates the existing epistemic uncertainty. Hence, in this type of analysis a 

high number of risk results are obtained for the base case and for each risk reduction 

measure analyzed.  

When these results are combined with the calculation of prioritization sequences 

explained in Section 3, a high number of sequences are obtained for each risk reduction 

indicator, instead of a single sequence for the average values. The differences between 

these high number of sequences indicate how epistemic uncertainty influences decision 

making. In a case where epistemic uncertainty is not influential, the order of the 

analyzed measures in all the sequences will be the same, while in a case with a high 
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influence of epistemic uncertainty, there will be higher differences in the order of 

measures within the sequences. According to the authors, this is the key of dealing with 

epistemic uncertainty within dam safety management: analyzing how it can change the 

decisions made and when it is recommended to invest in reducing this type of 

uncertainty.    

Based on this reasoning, two different indexes have been developed and proposed in 

this paper to measure the effect of epistemic uncertainty in the calculation of 

prioritization sequences. These metrics are based on the difference in the order of 

measures between each sequence obtained with the results of a second-order 

probabilistic risk analysis and the reference sequence obtained with the average values 

from first-order risk analysis. The two indexes developed are:  

 Index of Coincidence (IC): It quantifies the difference in the order of measures 

between two sequences. It is computed with the following equation: 

 

𝐼𝐶 =   (∑ 1 −
|𝑝𝑟𝑖−𝑝𝑖|

max(𝑝𝑟𝑖−1,𝑁−𝑝𝑟𝑖)
𝑁
𝑖=1 ) 𝑁⁄      Eq. 5 

Where N is the number of measures in the sequences compared, pri is the 

position of the measure i in the reference sequence and pi is the position of the 

measure i in the sequence compared with the reference sequence.   

Figure 5 graphically shows how this indicator is computed in an example. For 

each step of the measure, it is computed with the division of the difference in the 

position of a sequence in the two itineraries (A in this figure) and the maximum 

difference in the position that there could be (B in this figure).   

 Adjusted Index of Coincidence (AIC): It is computed multiplying the Index of 

Coincidence in each step by a factor to preponderate the first measures of the 

sequence, since they are more important in the decision making process.  This 

adjustment factor varies from 2 for the first step of the measure to 0 for the last 

step. It can be computed with the following equation: 

 

 𝐴𝐼𝐶 =   
(∑ 𝐼𝐶𝑖 ·

2·(𝑁𝑖 − 𝑝𝑖)

𝑁−1
)𝑁

𝑖=1

𝑁
⁄       Eq. 6 

Where ICi is the partial Index of Coincidence for measure i in the sequence, 

obtained with equation 5.  

Table 1 illustrates how these two indexes are calculated for the example shown in 

Figure 5. In this table, AICi are the partial Adjusted Index of Coincidence for each step 

of the sequence, obtained with equation 6. The name of Index of Coincidence has been 

chosen based on the Index of Coincidence used in cryptography to analyze the 

similarity between two texts [43].  

Thus, these indexes of coincidence can be used to compare each implementation 

sequence obtained through a second-order probabilistic risk analysis with the reference 

implementation sequence obtained with a first-order probabilistic risk analysis. Hence, a 

high number of Indexes of Coincidence are obtained, one for each sequence. The 

average Index of Coincidence of all these sequences is an indicator on how epistemic 

uncertainty is influencing decision making, since it indicates the differences in the order 

of measures that epistemic uncertainty could produce.  
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With this approach, results of first-order probabilistic risk analysis can be used to define 

the reference prioritization sequence for risk reduction measures, while average Index of 

Coincidence indicate the influence of epistemic uncertainty and the need for uncertainty 

reduction measures. In this sense, the proposed metrics are not used to obtain new 

sequences of prioritization sequences as explained in Section 3, but rather to analyze 

how epistemic uncertainty could change the order of measures in the obtained 

sequences.  

 

 

Figure 5: Graphical representation of Index of Coincidence to compare two 

prioritization sequences. 

 

Measure pi pri 

Difference 

between 

itineraries 

(A) 

Maximum 

possible 

difference 

(B) 

ICi 
Adjustment 

factor 
AICi 

M1 2 1 1 4 75% 2 150% 

M2 1 2 1 3 67% 1.5 100% 

M3 3 3 2 2 0% 1 0% 

M4 4 4 0 3 100% 0.5 50% 

M5 5 5 2 4 50% 0 0% 

Index of Coincidence  58% 
  

Adjusted Index of Coincidence  
  

60% 

Table 1: Example of calculation of Indexes of Coincidence to compare two 

prioritization sequences with five measures. 

Although the average Index of Coincidence can be computed when epistemic 

uncertainty is introduced in the three parts of the risk equation, as explained in Section 

3, they may be more useful when they are computed after introducing epistemic 

uncertainty in just one part of the input data.  

With this purpose, the main sources of epistemic uncertainty in the risk model can be 

identified and their average Indexes of Coincidence can be independently computed to 

identify the sources of epistemic uncertainty that have a higher influence in the decision 
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making. According to the authors’ experience, Table 2 shows reference values of 

average Indexes of Coincidence and what they could indicate when they are computed 

for a single source of uncertainty in the risk model. These values are based on the 

authors experience and they are a first guidance to interpret these indexes, although the 

interpretation of the Index of Coincidences and the sources of uncertainty should be 

analyzed in each case.  

Average Index of 

Coincidence value 

Degree of influence of this source of epistemic 

uncertainty in measures prioritization 

> 99% Low 

95% - 99% Low-Medium 

95% - 85% Medium 

85% - 75% Medium-High 

75% - 60% High 

< 60% 
Efforts should be focused on reducing epistemic 

uncertainty before significant investments in risk reduction 

Table 2: Indicative meaning of average Index of Coincidence when computed for a 

single source of epistemic uncertainty. 

Therefore, Indexes of Coincidence indicate the need for epistemic uncertainty reduction 

measures, so they are very useful for risk-informed dam safety management. In this 

sense, the effect of epistemic uncertainty reduction measures in the probability 

distributions introduced in the risk model can be estimated and Indexes of Coincidence 

can be recomputed. Expected increments in average Indexes of Coincidence of more 

than 5% indicate effective uncertainty reduction measures, especially when Indexes of 

Coincidence are lower than 85%.  

In summary, the general procedure to obtain these sequences in the prioritization of risk 

reduction actions for a portfolio of dams is: 

1. Analysis of main epistemic uncertainty sources in each dam to introduce them 

separately in a probabilistic risk model. 

2. Computation of risk distributions for each dam through a second-order 

probabilistic risk analysis. 

3. Quantification on how proposed risk reduction actions in each dam change the 

risk results obtained.  

4. Computation of a high number of prioritization sequences of risk reduction 

actions in the portfolio based on risk results.  

5. Estimation of indexes of coincidence and analysis on how epistemic uncertainty 

is changing decision making.  

For this reason, these metrics go a step further than existing approaches to deal with 

epistemic uncertainty. As explained in Section 2, these approaches are mainly focused 

on analyzing how uncertainty is propagated through risk models and results (Steps 1-3), 

while indexes of coincidence analyze how these variations in risk results may influence 

prioritization sequences of risk reduction actions. Therefore, they are more focused on 

the effects of epistemic uncertainty in practical decision making.    

5. CASE STUDY 
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In this section, the approach introduced in this paper is applied to inform safety 

management in four existing concrete gravity dams in Spain. Main characteristics of 

these dams are summarized in Table 3. As can be observed, it is a heterogeneous group 

of concrete gravity dams in size and age.  

Dam Height (m) 
Reservoir 

volume (hm³) 

Upstream 

slope 

Downstream 

slope 

Construction 

year 

A 91.2 308 0.05 0.76 1956 

B 31.5 0.3 0.15 0.7 1991 

C 58 496 0 0.767 1960 

D 59.5 24.4 0.05 0.76 1954 

Table 3: Main characteristics of case study dams. 

The starting point for this case study is the risk models elaborated within a first-order 

probabilistic risk analysis performed on each dam. The analysis made is focused on the 

potential sliding of these dams and the epistemic uncertainty about the foundation 

resistant capacity. This failure mode is analyzed since sliding produced by insufficient 

shear strength in the foundation is the most common cause of failure of concrete gravity 

dams according to the International Commission on Large Dams [44]. Hence, the 

analysis introduced in this case study is focused on this source of epistemic uncertainty 

within the risk model and how it can influence decision making.  

Sliding safety management in these dams deals with the prioritization of potential risk 

reduction measures and/or investing in reducing uncertainty about the foundation. A 

total number of 20 potential risk reduction measures (summarized in Table 4) have been 

analyzed in the four analyzed dams. These structural and non-structural measures came 

from a list of actions already planned by the operators to improve dam safety along with 

the needs revealed by the results of the risk analysis process. 

Dam Risk reduction measures Dam Risk reduction measures 

A 

1. Improve spillway gates reliability 

C 

1. Improve foundation conditions 

2. Emergency Action Plan 2. Emergency Action Plan 

3. Improve reliability of intermediate 

outlet gates 
3. Improve reliability of spillway gates 

4. Injections to improve foundation 

conditions 
4. Improve monitoring system 

5. New piezometers to measure uplift 

pressures 
5. New freeboard requirements 

B 

1. Improve drainage system 

D 

1. Improve dam access 

2. Emergency Action Plan 2. Emergency Action Plan 

3. Improve reliability of bottom outlet 

gates 
3. Improve drainage system 

4. Increase spillway capacity 4. Improve monitoring system 

5. Improve monitoring system 5. Remote control for spillway gates  

Table 4: Analyzed risk reduction measures analyzed for case study dams. 

Firstly, in order to introduce epistemic uncertainty within the risk models for this failure 

mode, the procedure described in [23] is followed to obtain a family of fragility curves. 

The purpose of this case study is not to illustrate this method, but to use its results to 

compute the metrics proposed in this paper. In this case, since the uncertainty on the 

foundation resistance capacity is the main concern for the sliding failure modes in these 
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dams, two independent random variables are considered within a Limit Equilibrium 

Model: friction angle and cohesion. For each dam, two probabilistic distributions have 

been estimated for both random variables as shown in Table 5. The estimation of these 

probabilistic distributions by expert judgement is a complex process which is out of the 

scope of this paper and it should be based on appropriate empirical data and analyses, 

such us geotechnical in-situ and laboratory tests, and their temporal and spatial 

variations. Changes in these distributions would also produce changes in the risk results 

and could potentially modify Indexes of Coincidence. Differences in standard deviation 

of epistemic uncertainty distributions between the dams indicate different levels of 

knowledge about the foundation.  

Random variable Mean St. Deviation Maximum Minimum Type 

DAM A – Highest dam in general good conditions 

Natural uncertainty 

Friction angle (º) 50 5 65 35 Normal 

Cohesion (MPa) 0.5 0.2 1.5 0.1 Log-Normal 

Epistemic uncertainty 

Mean friction angle (º) 50 2.5 60 40 Normal 

Mean cohesion (MPa) 0.5 0.125 1 0.2 Log-Normal 

DAM B – Dam with higher epistemic uncertainty in geotechnical parameters 

Natural uncertainty 

Friction angle (º) 42.3 4.1 53.5 31.3 Normal 

Cohesion (MPa) 0.41 0.083 0.89 0.11 Log-Normal 

Epistemic uncertainty 

Mean friction angle (º) 42.3 10.8 53.5 31.3 Normal 

Mean cohesion (MPa) 0.41 0.187 0.89 0.11 Log-Normal 

DAM C – Dam with the largest reservoir 

Natural uncertainty 

Friction angle (º) 42 4.2 54 30 Normal 

Cohesion (MPa) 0.3 0.12 1 0.05 Log-Normal 

Epistemic uncertainty 

Mean friction angle (º) 42 2.1 49 35 Normal 

Mean cohesion (MPa) 0.3 0.105 0.8 0.1 Log-Normal 

DAM D – Dam with lower epistemic uncertainty about foundation behavior 

Natural uncertainty 

Friction angle (º) 40 4 50 30 Normal 

Cohesion (MPa) 0.2 0.08 0.8 0.03 Log-Normal 

Epistemic uncertainty 

Mean friction angle (º) 40 2 45 35 Normal 

Mean cohesion (MPa) 0.2 0.07 0.5 0.05 Log-Normal 

Table 5: Probability distribution considered for the random variables to obtain the 

family of fragility curves. 

Following the procedure detailed in [23], a family of 1000 fragility curves has been 

obtained for each dam. For instance, Figure 6 shows the family of fragility curves 

obtained for dam A. As explained in Section 2, the spread of this family is an indicator 

of the influence of the epistemic uncertainty in system-response results. 
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Figure 6: Family of fragility curves obtained for Dam A. 

Secondly, the family of fragility curves has been introduced in the quantitative risk 

model elaborated for each dam in order to obtain a risk probability distribution for 

sliding failure. These risk models have been elaborated using iPresas Calc software 

[45], which is based on event trees to compute failure probability and risk. For instance, 

Figure 7 shows the risk model structure for Dam A. The risk model architecture of the 

four risk models is very similar. These risk models have been used to compute risk for 

the current situation and for the 20 risk reduction measures analyzed.  

 

Figure 7: Risk model structure for Dam A. 

In the first four nodes (nodes 1-4), this model creates an event tree with 144 branches to 

compute the probability of different flood routing scenarios in the reservoir (for 

different flood events, different previous pool levels in the reservoir and different cases 

of spillway gates availability) in order to obtain an annual exceedance probability curve 

of the water pool level in the reservoir. Detailed procedures followed to compute this 

input data are explained in [34]. 

Nodes 5 and 6 are different for each dam and they estimate the probability of being in 

different uplift pressures hypothesis, following the sliding numerical model. 
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Probabilities introduced in these nodes are based on foundation characteristics, available 

information about uplift pressures and existing capacity to detect and to avoid high 

uplift pressures.  

Node 7 is used to incorporate the sliding fragility curves in order to relate the maximum 

water level reached in the reservoir in each flood event with the conditional failure 

probability. The failure probability of each branch of the event tree is computed 

multiplying the probabilities of all the nodes. Consequently, when the probabilities of 

all the branches of this event tree are added, the dam failure probability due to sliding is 

obtained.  

Nodes 8-10 are used to compute consequences in order to estimate risk, following 

equation 1. Node 8 is used to introduce a relation between the water pool level and the 

peak failure discharge. This relation has been previously computed using hydraulic 

models of the dam breach. Finally, Nodes 9 and 10 introduce the relation between 

failure discharge and loss of life and economic consequences due to failure. These 

consequences for different discharges have also been computed using a hydraulic model 

of the dam break flood. Detailed procedures followed to derive consequences input data 

are explained in [46]. 

For each curve of the family of fragility curves of each dam, these risk models are used 

to compute failure probability, economic risk and societal risk. Hence, each risk point 

that defines these distributions is computed using one of the fragility curves shown in 

Figure 6 within the event tree of Figure 7. For each dam, when these risk results are 

sorted, the risk distribution shown in Figure 8 is obtained. As can be observed in these 

graphs, societal risks are higher for Dam B and Dam C (average values around 10-1 

lives/year), while risk variations due to epistemic uncertainty are higher for Dam A and 

Dam D (more than 4 orders of magnitude between upper and lower values).  

Thirdly, once these risk distributions are obtained, Indexes of Coincidence proposed and 

described in this paper are computed to solve the key question of this paper: Is 

epistemic uncertainty influencing decision making?  

With this purpose, the 20 risk reduction measures analyzed are prioritized following the 

procedure explained in [19], using the EWACSLS indicator [42], combining equity and 

efficiency principles.  
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Figure 8: Societal risk probability distributions obtained for the four dams.  

A reference implementation sequence of measures is obtained from the risk results, 

which in turn were obtained from the reference fragility curve in each dam. This 

reference sequences is obtained with average values without taking into account 

epistemic uncertainty. Next, 1000 implementation sequences were obtained combining 

the 1000 fragility curves with the risk results obtained for each dam. These 1000 

sequences are compared with the reference sequence to obtain the average Indexes of 

Coincidence shown in Table 6. These indexes have been computed following the 

equations explained in Section 4. As can be observed in this table, these indexes have 

been computed after prioritizing measures for each dam independently and prioritizing 

the 20 measures together. Figure 9 shows the variation graphs of all sequences obtained 

for the prioritization of the 20 measures together.  

 

Dam 
Index of 

Coincidence 

Adjusted Index of 

Coincidence 

A 99.35% 99.29% 

B 79.86% 69.55% 

C 87.42% 86.97% 

D 94.11% 90.77% 

All the dams 86.95% 86.60% 

Table 6: Indexes of Coincidence obtained for the case study. 

As can be observed, Indexes of Coincidence are lower for Dam B, which indicates that 

epistemic uncertainty has a higher influence on decision making, so uncertainty 

reduction actions are more recommended. In contrast, Indexes of Coincidence for Dam 

A are close to 100%, which indicated that epistemic uncertainty has low influence on 
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decision making. Indexes of Coincidence of Dams C and D indicate a medium influence 

of epistemic uncertainty on results.  

These results are aligned with existing concerns of the dam manager about Dam B, due 

to the lack of knowledge about the resistance capacity of its foundation. In contrast, the 

foundation of Dam A is better characterized and the expected sliding failure risk is 

lower. In Dams C and D, epistemic uncertainty about the dam foundation is 

substantially lower than in Dam B. 

 

Figure 9: Variation graphs of the 1000 sequences obtained for the prioritization of the 

20 measures together. Y axis represents aggregated societal risk of the four dams. 

In order to check if 1000 prioritization sequences are appropriate of more computations 

are needed, Figure 10 illustrates results based on the number of conducted 

computations. Indexes of Coincidence results are stable when the number of fragility 

curves is higher than 500. Hence, 1000 implementation sequences seems a valid 

decision. 

 

Figure 10: Influence of number of prioritization sequences in the Adjusted Indexes of 

Coincidence. 
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Next, with the aim of analyzing the effect of the number of measures on the Indexes of 

Coincidence results, the analysis are repeated varying the number of measures from 5 to 

20. In each case, the measures prioritized have been selected randomly from the 20 

measures of the 4 dams. Results are shown in Figure 11. As expected, a clear 

correlation between the number of measures and the Indexes of Coincidence cannot be 

observed because of their formulation, since the number of measures is in the 

denominator. 

 

Figure 11: Variation of Indexes of Coincidence depending on the number of measures 

in the sequence.  

Finally, the potential effect of epistemic uncertainty reduction measures for the 

foundation resistance capacity, like geotechnical tests and detailed surveys, are 

analyzed. With this purpose, the previous computations are repeated but reducing by 

half the standard deviation of the epistemic uncertainty probabilistic distributions shown 

in Table 5. In this case, the risk probability distributions shown in Figure 12 are 

obtained. It is obtained that reducing epistemic uncertainty has a direct effect in the 

steepness of probability distributions.  
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Figure 12: Societal risk probability distributions for all dams: base case (grey line) and 

after reducing epistemic uncertainty (black line). 

Next, the same procedure is followed to obtain 1000 sequences of risk reduction 

measures for each dam individually and combining them. The itineraries for the 

combined case are shown in Figure 13. As expected, the spread of the itineraries is 

lower, although it does not mean that the measures are implemented in a different order 

that in Figure 9.  

Thus, Indexes of Coincidence are recomputed for these cases as shown in Table 7. As 

can be observed the effect of reducing epistemic uncertainty in each dam is 

independently analyzed in the individual sequences of each dam and in the sequences 

obtained combining the four dams.   

Results show that reducing epistemic uncertainty in Dam C and Dam D would have a 

higher influence in the decision making process for the whole system of dams. In 

contrast, the effect of reducing epistemic uncertainty in Dam A is lower. Epistemic 

uncertainty reduction in Dam B has a high effect in the sequences obtained for this dam 

individually but its effect in the management of the four dams together is more limited. 

Hence, epistemic reduction actions are recommended when this dam is individually 

managed, but from the combined management point of view, these actions would be 

more recommended in Dams C and D.  

If the results of reducing globally epistemic uncertainty for the four dams are analyzed, 

it can be concluded that these actions could be useful to support a better risk-informed 

decision making, since they provide an increment of Indexes of Coincidence by 4%. 
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Figure 13: Variation graphs of the 1000 sequences obtained for the prioritization of the 

20 measures after reducing epistemic uncertainty.  

 

 Base case 
Epistemic uncertainty 

reduction 
Difference 

Epistemic 

uncertainty 

reduction 

Index of 

Coincidence 

Adjusted 

Index of 

Coincidence 

Index of 

Coincidence 

Adjusted 

Index of 

Coincidence 

Index of 

Coincidence 

Adjusted 

Index of 

Coincidence 

Individual analysis 

Only in Dam A 99.35% 99.29% 99.94% 99.94% 0.60% 0.66% 

Only in Dam B 79.86% 69.55% 83.19% 74.55% 3.34% 5.00% 

Only in Dam C 87.42% 86.97% 89.38% 89.57% 1.96% 2.60% 

Only in Dam D 94.11% 90.77% 96.74% 94.55% 2.63% 3.78% 

Combined analysis 

Only in Dam A 86.95% 86.60% 87.76% 87.16% 0.80% 0.56% 

Only in Dam B 86.95% 86.60% 87.23% 87.02% 0.27% 0.42% 

Only in Dam C 86.95% 86.60% 88.35% 87.74% 1.40% 1.14% 

Only in Dam D 86.95% 86.60% 88.22% 88.11% 1.26% 1.51% 

All dams 86.95% 86.60% 91.28% 90.68% 4.33% 4.08% 

Table 7: Indexes of Coincidence: base case and after reducing epistemic uncertainty. 

Finally, as can be observed in Table 6 and Table 7, both indexes provide very similar 

results, since changes in the first steps of the sequences usually result in changes also in 

the following steps, especially in sequences without a large number of measures. In any 

case, the adjusted index is considered to be more complete for the purpose of informing 

dam safety management since it gives more importance to the coincidence in the 

measures selected in the first steps of the sequence.  
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6. DISCUSSION  

After applying the proposed indexes of coincidence in the case study, the main 

identified discussion points regarding this procedure are: 

 The case study introduced is focused on one source of uncertainty within the risk 

model: foundation resistant capacity. This approach of analyzing each source of 

epistemic uncertainty separately is more recommended since it provides a better 

understanding of what type of epistemic reduction actions are more effective.  

 In any case, if epistemic uncertainty is included in more nodes of the model as 

explained in Section 2 and using existing propagation techniques of uncertainty, 

Indexes of Coincidence can also be obtained although they will be lower, since 

the effect of different sources of epistemic uncertainty is combined.  

 Hence, the introduced case study is focused on epistemic uncertainties in the 

second term of the risk equation: the system response, but Indexes of 

Coincidence can also be used to analyze the effect of epistemic uncertainty in 

the other terms: loads probability and consequences.  

 Based on the case study results, Indexes of Coincidence should also be 

computed for each dam individually, not only for the whole portfolio of dams. 

These Indexes of Coincidence are useful to identify how epistemic uncertainty is 

influencing decision making in each dam.  

 In the case study, only one failure mode has been addressed (sliding) although in 

more complex cases, different failure modes could be combined. In these cases, 

epistemic uncertainties on the predominant failure modes will have a higher 

influence on decision making.  

 Even though the introduced metrics in this paper are based on risk prioritization 

sequences obtained with risk reduction indicators, they could also be used to 

compare the influence of epistemic uncertainty in other types of measures 

prioritization sequences based on risk results.  

 The effect on Indexes of Coincidence on risk reduction measures which also 

help to reduce epistemic uncertainty could be analyzed in future research. For 

example, improvements in the surveillance and monitoring system, since they 

help to detect the occurrence of failure modes and to increase the knowledge of 

the dam behavior.  

 Separating epistemic uncertainty in risk models and analyzing its effect in 

decision making is very useful to properly inform decision making in fields with 

important uncertainties, like environment management and civil engineering. 

The proposed indexes analyze when investments should be made in reducing 

uncertainty prior to large structural works. For instance, the proposed 

frameworks and metrics could be used to indicate when more hydrological data 

is needed before deciding on new flood protection structural actions or when 

more geotechnical data is needed before spending money in rehabilitating an old 

bridge.  

 In future research, epistemic uncertainty could be analyzed in different future 

scenarios (climate change, variation in the downstream population…) to inform 

dam safety management in the long term and to analyze how risk results evolve 

with time.    
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7. CONCLUSIONS 

Dams are located in a natural and heterogeneous environment that cannot be 

characterized exactly. For this reason, which is not shared by most other industries, dam 

safety governance deals with higher natural and epistemic uncertainties. Consequently, 

epistemic uncertainty may have a higher effect on decision making which highlights the 

importance of addressing it. 

This paper introduces new metrics to analyze the influence of epistemic uncertainty in 

decision making for dam safety. This process is based on the results of a second-order 

probabilistic risk analysis, which requires separating natural and epistemic uncertainty 

within the risk model input data. Although this is not the most common approach in the 

dam safety field, the distinction between both types of uncertainty takes added 

importance for a proper dam safety management.  

These metrics are computed by combining results of a second-order probabilistic risk 

analysis and prioritization of investments based on risk reduction indicators. Current 

approaches to deal with epistemic uncertainty are mainly focused on analyzing how 

uncertainty is propagated through risk models and results. However, indexes of 

coincidence go a step further by analyzing the influence of variations in risk results on 

decision making.   

They have significant advantages to inform dam safety governance, since they allow to 

measure the effect of epistemic uncertainty in decision making. Hence, they help to 

identify needs for reducing gaps in dam knowledge, giving value to measures that do 

not have a direct effect on average risk results. 

Although Indexes of Coincidence have been developed within the dam safety 

management field, they could be also applied for decision making in other fields with 

high epistemic uncertainty like environmental and civil engineering. The concepts 

behind these indexes are equally appropriate for other critical infrastructures, especially 

when epistemic uncertainty is very high. 

Finally, it should be highlighted that the intent of the authors is to deal with uncertainty, 

rather than to fight against it, which is identified as one of the main elements of ‘‘smart 

governance” [47].  

As in words of [47], “All knowledge is constructed and contingent. It is, figuratively 

speaking, a thin layer of ice over a deep ocean filled with non-knowledge and 

contingent knowledge connected to contingent forms of no-knowledge. People walk on 

this ice, and some even dance, celebrating their splendid assets of knowledge. (. . . )” 

and “uncertainty is neither a menace nor a weakness but should be treated instead as a 

normal condition of complex decision making and governance. The task then is to find 

efficient ways to cope with uncertainty without destroying uncertainty’s invigorating 

dynamic”. 
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