
Department of Computer Systems and Computation
Universitat Politècnica de València

Detection of Mathematical Expressions in Scientific
Papers

MASTER’S THESIS

Master’s Degree in Artificial Intelligence, Pattern Recognition and Digital
Imaging

Author: Salvador Carrión Ponz

Tutor: Roberto Paredes Palacios

Course 2018-2019

Abstract

The field of object detection drew the attention of the scientific community in 2013 when
R-CNN[1] outperformed by a 30% margin the previous best results on the PASCAL VOC
2012 challenge[2]. Since then, researchers all over the world have designed new models
that significantly outperform R-CNN[1], both in terms of accuracy and speed. Among
these new models, YOLO[3] stood out for its extremely fast detection rate and accuracy;
and SSD[4] for the novel discretization of the output space and multi-scale prediction.

In this work, we address the problem of detecting mathematical expressions in scientific
papers. First, a brief introduction to the problem of general-object detection is given,
along with state-of-the-art techniques and evaluation methods. Then, the two aforemen-
tioned state-of-the-art models (YOLO[3] and SSD[4]) are presented, and a comparative
study is carried out where we analyze the problems and weaknesses found when they
are applied to this specific task. Finally, the work ends with a discussion on how to tackle
these problems in future models and the possibility of deriving this work towards the
mathematical expression recognition problem.

iii

Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 1
1.3 Overview of the proposal approach . 2
1.4 Context of applications and assumptions 3
1.5 Expected outcomes/results . 3

2 Object detection with deep learning 5
2.1 SSD: Single Shot Detector . 5

2.1.1 Feature extractor . 5
2.1.2 Auxiliary layers . 6
2.1.3 Prediction layers . 7
2.1.4 Loss . 9
2.1.5 Priors . 11
2.1.6 Hard Negative Mining . 11

2.2 YOLO: You Only Look Once . 11
2.2.1 Feature extractor . 13
2.2.2 Prediction layers . 14
2.2.3 Loss . 16
2.2.4 Anchor boxes . 17

3 Methodology 19
3.1 Definitions . 19

3.1.1 Bounding box . 19
3.1.2 Jaccard Index . 19
3.1.3 Multibox . 19
3.1.4 Confusion matrix . 20
3.1.5 Precision . 20
3.1.6 Recall . 20
3.1.7 F1-Score . 20

3.2 Singularities of mathematical expression detection 21
3.3 Topology adjustments . 22
3.4 Data processing . 23

3.4.1 Pre-processing . 23
3.4.2 Post-processing . 24

3.5 Evaluation . 25
3.5.1 Prediction correctness . 25
3.5.2 Metrics . 26
3.5.3 ROC curve . 28
3.5.4 Discussion . 29

v

vi CONTENTS

4 Experiments and results 31
4.1 Dataset description . 31
4.2 Experiments . 32

4.2.1 SSD . 32
4.2.2 YOLO . 41
4.2.3 Model debugging . 48

4.3 Model calibration . 52
4.4 Implementation notes . 54

5 Conclusions and future work 55
5.1 Conclusions . 55
5.2 Future work . 55

Bibliography 57

List of Figures

2.1 Feature extractor of SSD . 6
2.2 Auxiliary layers of SSD . 7
2.3 Prediction layers of SSD . 8
2.4 Decoding predictions of SSD . 8
2.5 Prediction concept in YOLO . 13
2.6 Network architecture of YOLOv3 . 15
2.7 Clustering box dimensions . 18

3.1 General-object detection problem . 21
3.2 Mathematical-expression detection problem 22
3.3 Data augmentation . 23
3.4 Non-Maximum Suppression . 24
3.5 Prediction matching . 25
3.6 Precision-Recall curve . 27
3.7 Interpolating all points . 28
3.8 ROC curve . 29
3.9 Two identical detectors according to mAP 30

4.1 Math Formula Recognition dataset . 31
4.2 Dilated convolutions . 33
4.3 Multi-part loss of SSD from the Pascal VOC dataset 34
4.4 SSD pre-trained on the VOC Pascal dataset 34
4.5 Multi-part loss of SSD from the Marmot dataset 35
4.6 Results of SSD . 38
4.7 Error analysis of SSD . 39
4.8 Recall-Precision curve of SSD . 40
4.9 ROC curve of SSD . 40
4.10 Clustering box dimensions for Marmot . 42
4.11 Total loss and mAP of YOLOv3 . 43
4.12 Results of YOLOv3 . 45
4.13 Error analysis of YOLOv3 . 46
4.14 Recall-Precision curve of YOLOv3 . 47
4.15 ROC curve of YOLOv3 . 47
4.16 Multi-part loss . 48
4.17 Recall with an IoU of 0.5 . 49
4.18 Recall with an IoU of 0.75 . 49
4.19 Precision with an IoU of 0.5 . 49
4.20 Classifier loss . 50
4.21 Classifier accuracy . 50
4.22 Confidence loss . 50
4.23 No-object confidence . 51
4.24 Object confidence . 51
4.25 Weight and Bias distributions . 51
4.26 Weight and Bias histograms . 52

vii

viii LIST OF FIGURES

4.27 IoU effects on the metrics . 52
4.28 Confidence effects on the metrics (Anomaly) 53
4.29 NMS effects on the metrics . 53

List of Tables

2.1 Darknet-53 architecture . 14

3.1 Confusion matrix for binary classification 20

4.1 Results of SSD . 36
4.2 Experiments of SSD . 36
4.3 Results of YOLOv3 . 43
4.4 Expermients of YOLOv3 . 44

ix

Chapter 1

Introduction

Humans are incredibly good at performing object detection tasks. For instance, we can
take a look at an image and instantly know what objects are in there, where to find them,
and even, we can predict the location of objects that cannot be seen but there is a hint that
they are hidden somewhere.

In 2013, a team of neuroscientists from MIT found that the human brain can pro-
cess images in 13 milliseconds[5]. This means that to see, our brain has to processes a
huge amount of information using extremely efficient biological mechanisms developed
throughout evolution. The problem is, we don’t know how we do it. We just do it. To
overcome this problem, researchers have struggled for many years to mathematically de-
fine what does it mean to see, or at least, for the eyes of a computer. Thankfully for us,
nowadays we have some tricks to make computers able to see (metaphorically speaking).

In this work we wanted to use some of these tricks (from now and on, we will call them
models), to detect mathematical expressions in scientific papers. Inspired by the efficiency
of the human brain and the constraints of a real-world scenario, we have focused our
research on single-shot models.

1.1 Motivation

Object detection has woken up a great interest in recent years among researchers and
companies due to its relevance for many industries and interesting applications: self-
driving cars, drones, surveillance systems, medical imaging, media analysis, sports, man-
ufacturing, automatic counting, etc.

Among the many problems that we could tackle in this field, we noticed that math-
ematical expression detection is not a popular one and it could very interesting for the
Optical Character Recognition (OCR) industry.

1.2 Related work

Before the popularity of convolutional neural networks (CNN) the two most popular
approaches for object detection were Deformable Part Models (DPM)[6] and Selective
Search[7]. These methods usually worked with either sliding windows or region propos-
als. But when R-CNN[1] came to scene combining Selective Search[7] with CNNs, region
proposal methods took the lead and became the usual approach.

1

2 Introduction

From R-CNN[1], many new models have emerged that improve their original results,
both in terms of accuracy and speed.

• Multibox[8]: Saliency-inspired neural network model for detection. It predicts a set
of class-agnostic bounding boxes along with their likelihood of containing an object
of interest. Unlike the rest of the models here presented, Multibox only locates
saliency objects in an image (it doesn’t perform classification).

• R-CNN[1]: Uses Selective Search[7] for the region proposals and a CNN to per-
form classification over the proposed regions. Although this model significantly
improved the accuracy of previous detectors, it was too slow since each region pro-
posal has to go through the CNN.

• Overfeat[9]: Uses a CNN to classify multiple locations in the image, in a sliding
window fashion, and over multiple scales.

• SPP-Net[10]: Introduces spatial pyramid pooling to remove the fixed input size
requirement in most of the previous CNN-based detectors. Faster than R-CNN[1]
with better or comparable accuracy. Uses a multi-stage pipeline as R-CNN[1] does.

• Fast R-CNN[11]: Inspired by SPP-Net[10], Fast R-CNN[11] improved R-CNN[1] by
sharing the computation of convolutional layers between regions proposals using
what they called, a RoI Pooling layer, which essentially is a special case of Spatial
Pyramid Pooling (SPP) layer with just one pyramid level.

• Faster R-CNN[12]: Extends Fast R-CNN[11] to share the full-image convolutional
features with the detection network. This releases it from using (the expensive)
Selective Search[7] to generate the region proposals. Instead, it introduces an extra
fully convolutional network, called Region Proposal Network (RPN).

• YOLOv1[3]: Introduces an end-to-end extremely fast neural network to predict
bounding boxes and class probabilities directly from full images in one evaluation.

• SSD[4]: A single network that eliminates the proposal generation and subsequent
pixel or feature resampling stages. Additionally, it performs multi-scale predictions
by combining feature maps at different resolutions.

• YOLOv2[13]: Improves YOLOv1[3] using a better but lighter network, batch nor-
malization (instead of dropout[14]), high-resolution classifier, anchor boxes, di-
mensional clusters, direct location prediction, fine-grained features, and multi-scale
training.

• YOLOv3[15]: Incremental improvement over YOLOv2[13]: i) Objectness score for
each bounding box using logistic regression; ii) Independent logistic classifiers for
the class predictions; iii) Predictions across three scales; iv) Bigger feature extractor
with similar speed but better accuracy.

1.3 Overview of the proposal approach

First, we start with a comparative study of two well-known object detection models:
YOLOv3[15] and SSD[4]. For the study, we will try to run the experiments under the same
conditions as long as these don’t harm the results of a model in favor of the other. That
is to say, we will force both models to use the same data augmentation, similar training
time/iterations, same hardware, similar hyper-parameters, same evaluation metrics, etc.

1.4 Context of applications and assumptions 3

After this experiment, we will analyze the weaknesses of each model when dealing
with the specific tasks of mathematical expression detection. The analysis of these weak-
nesses will be split into two parts: i) first, a subjective assessment on how well the models
are at detection equations; ii) and two, an error analysis following objective metrics such
as recall, precision, mAP,... For the latter part, we could use a similar methodology as
proposed by Hoiem et al.[16].

Then, we will discuss implementation details and problems that we had to deal with
during the study.

As these proposed models are designed for a similar object detection task but with
different requirements, we likely need to perform a bit of model surgery to make them
work properly. Depending on the degree of these modifications, the final models might
diverge a bit from the ones published in their original papers. For instance, we could
perform modifications in the models such as changing the base feature extractor, archi-
tecture modifications to reduce the number of region proposals (we’re dealing with big
images), additions of extra multi-scale layers, simplifications to increase the speed, etc.

During the whole study, we will use 90% of the data for training and the remaining
10% for testing.

1.4 Context of applications and assumptions

The direct application of this work is to improve Optical Character Recognition (OCR)
systems. Usually, these systems are made up of many subsystems to detect specific things
that depend on the application such as title/subtitles/body in a book, plate licenses in a
parking lot, figures or tables in a paper, etc. One of these specialized systems could be a
module to retrieve all the mathematical expressions in a book as a text format.

This is not an easy problem, but in order to feed the highly complex and specialized
mathematical expression recognition module, we first need a detection module that al-
lows us to locate the bounding boxes of the mathematical expressions found in a given
image.

Another application derived from this ORC system could be an app that solves math
equations without the need for the user to write them, or we could even derive a metric
for an online bookstore to know the mathematical level required to read a book or paper.
Possibilities are countless!

1.5 Expected outcomes/results

YOLO[15] has come a long way since the publication of its first version in 2015[3]. Until
now, three versions of YOLO exists.

On the other hand, SSD[4] was published a few months later than YOLOv1[3]. And
up to my knowledge, there are no more published versions of it.

Science is built upon previous works so it is expected that the follow-up versions
of YOLO include ideas from better models. For YOLOv2[13], one of these inspirational
models was SSD[4]. And two years later, YOLOv3[15] superseded YOLOv2[13] with an
incremental improvement.

4 Introduction

For this reason, it is expected that YOLOv3[15] presents the best results among these
two models. Nevertheless, I do expect significant improvements in both models if state-
of-the-art feature extractors (aka classifiers) are used.

Chapter 2

Object detection with deep learning

2.1 SSD: Single Shot Detector

SSD[4] is a single-shot object detector that appeared after YOLOv1[3]. It is a purely con-
volutional neural network and can be conceptually organized into three parts:

• Feature extractor: Base model derived from a classification architecture to provide
low-level feature maps.

• Auxiliary layers: Convolutions appended to the end of the feature extractor to
provide high-level feature maps.

• Prediction layers: Convolutions used to locate and classify objects in the feature
maps.

2.1.1 Feature extractor

For the base feature extractor, it is common to use a truncated version of a good classi-
fication network such as VGG[17] or ResNet[18]. Why? Because models that had been
proven to work well in image classification tasks are good at capturing the semantics of
an image.

In object detection, we are not that interested in the image as a whole but in the spe-
cific regions where the objects are located. Luckily for us, the same convolutional features
that are useful for object classification are useful for object detection.

Furthermore, there are more advantages form using reliable classification models.
One of them is the possibility of using a pre-trained model to perform Transfer Learning.
This means that we can use the knowledge from a different but closely related task and
transfer it to our model; usually shorting the training times and improving the initial
accuracy, although there might be great benefits from training from scratch. As usual, it
depends on the specific task.

Equally important, to adapt the model to our domain some changes in the original
architecture had to be made (see Figure 2.1). The changes we did, were:

• Use a bigger input image

• Introduce a ceiling operation to avoid inconvenient feature sizes (related to round-
ing).

5

6 Object detection with deep learning

• Rework fully connected layers into fully convolutional.

• Modify convolutional layers to get the desired feature maps. To do this, we could
play with the stride, the padding, the pooling, the subsampling, etc.

To perform the reduction needed to decrease the size of the features maps, we used
a technique known as decimation, where each n-th element is we subsampled along a
particular dimension. In convolutional layers, this can be easily achieved through the
use of a kernel with a dilation greater than one.

Figure 2.1: Feature extractor: SSD uses a modified VGG16 network to understand the
semantics of the image [19]

2.1.2 Auxiliary layers

Auxiliary layers are simply a series of convolutional layers on top of the base feature
extractor to provide additional feature maps.

To allow multi-scale detection, these convolutional layers are progressively decreased
in size (see Figure 2.2). Bigger feature maps can easily capture small objects, while
smaller feature maps capture big objects.

2.1 SSD: Single Shot Detector 7

Figure 2.2: SSD auxiliary layers [19]

2.1.3 Prediction layers

A problem of having predictions encoded in the feature maps is that it is not intuitive
how to transform them into something that we can easily understand.

We want to predict:

• Offset coordinates, for each bounding box.

• N scores corresponding to all the class probabilities and the background, for each
bounding box.

To do achieve this, we add two additional convolutional layers for each prediction
feature maps: (see Figure 2.3)

• A location convolutional-layer evaluating at each location of the feature map, with a
kernel of 3x3 and 4 filters per prior.

• A classification convolutional-layer evaluating at each location of the feature map,
with a kernel of 3x3 and n_class filters per prior.

8 Object detection with deep learning

Figure 2.3: Prediction layers of SSD: Localization and classification [19]

It is important to remark that the actual predictions happen along the depth (see Figure
2.4). For instance, if a feature map has a size of (5, 5), there are 6 priors and we want to
predict the location coordinates, the location feature map will have a final dimension of
(5, 5, 24). The last channel means that for each location (i, j, 24) there are 6 predictions
with 4 offsets each. These offsets correspond to the coordinates of the predicted bounding
boxes.

Figure 2.4: Decoding predictions: SSD encodes its predictions along the depth of its
feature maps [19]

Finally, all the predictions coming from feature maps at different scales are stacked
into a single tensor. This final tensor is the model’s output.

2.1 SSD: Single Shot Detector 9

2.1.4 Loss

Due to the intricacies of this model, SSD[4] introduces a unique loss function. This loss
is an aggregation of a regression loss for the bounding boxes and a classification loss for
the object type.

To compute this loss, we need to match the predicted bounding boxes to their corre-
sponding ground truth. This is tricky since object detection is an open-ended task and
predictions doesn’t correspond to any specific ground truth. To match them we will
compute their overlapping ratio (using the Jaccard Index) against all the ground truths
objects.

The whole process is done as follows:

1. Find the Jaccard Index between all the priors and ground truth objects.

2. Match each Prior to the ground truth that has the greatest overlap.

3. Each prior is linked to a prediction, which is transitively matched with the ground
truth assigned to its prior.

If the best overlap between a prior and all the ground-truths is greater than a thresh-
old (usually 0.5), then that prior will be considered as matched to that ground truth object.
Otherwise, it will be matched to the background class.

As it has been said before, the overall loss is a Multibox loss[8], an aggregation of the
confidence loss and the localization loss:

L = Lcon f + αLloc (2.1)

Specifically, the exact loss is:

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (2.2)

where:

• N: Number of positively matched prior boxes (i f N == 0 : L = 0)

• Lcon f : Confidence loss

• Lloc: Localization loss

• α: Parameter to control the relevance of the localization loss (usually, α = 1.0)

The confidence loss is a measure of how well the model distinguishes the background
from the relevant objects. As every prediction must have a ground truth class attached to
it, we use a sort of classification loss where the confidence loss is simply the sum of the
cross-entropy losses of the positive and the negative matches.

Lcon f =
1

Npos

(
∑

i∈Pos
CE + ∑

i∈Neg
CE

)
(2.3)

10 Object detection with deep learning

To be rigorous with the loss presented in the original paper, here is the full version:

Lcon f (x, c) = −
N

∑
i∈Pos

xp
i,j log ĉp

i − ∑
i∈Neg

log ĉ0
i (2.4)

where xp
i,j = {0, 1} indicates the match for the i-th default box with the j-th ground-

truth box of category p, and the ĉp
i is the softmax loss of the classes confidences ci:

ĉp
i =

exp(cp
i)

∑p exp(cp
i)

(2.5)

The localization loss is computed regressing only the positively matched predicted
boxes. Why? Because the negative matches correspond to the background class, and
there no need to regress bounding boxes for the background.

Consequently, the localization loss is the average Smooth L1 loss of the positive matches:

Lloc =
1

Npos

(
∑

i∈Pos
SmoothL1

)
(2.6)

Or to be more technically consistent:

Lloc(x, l, g)) =
N

∑
i∈Pos

∑
m∈{cx ,cy,w,h}

xk
i,j · smoothL1(lm

i − ĝm
j) (2.7)

where:

• l: Predicted box

• g: ground truth box

• cx, cy: Center offsets for the bounding box

• w, h: Width and Height of the bounding box

• α: Weight term (set to 1 by cross-validation)

The Smooth L1 loss is used because it is less sensitive to outliers than the Mean
Squared Error (MSR) and in some cases, it might prevent the exploding gradients phenomenon[11].
To achieve this, it uses a squared term when the absolute element-wise error falls below
1 and an L1 term otherwise:

SmoothL1(x, y) = ∑
i

zi (2.8)

where zi is given by:

zi =

{
0.5(xi − yi)

2, i f |xi − yi| < 1
|xi − yi| − 0.5, otherwise

(2.9)

2.2 YOLO: You Only Look Once 11

2.1.5 Priors

Generally speaking, object detections can occur in any place, position, size, aspect ratio,...
There so many possibilities for each object that they can’t be enumerated. But clearly,
there are some possibilities more likely than others. For instance, bounding boxes on
people tend to be taller than wider, for cars the opposite, and birds are found in the
sky more often than dogs. Hence, we could try to collectively represent the universe of
probable bounding boxes by using priors, that is, boxes that approximate this object-space
universe.

The authors chose the priors manually, following a careful method based on a grid of
feature maps, scales and aspect ratios.

For example, a feature map of size (10, 10) with a prior scale of 0.5 and these aspect
ratios [1:1, 2:1, 1:2, 3:1, 1:3] (5 positions), will result in a total of 600 priors1.

In the paper, the prior scales are equally spaced between feature maps:

sk = smin +
smax − smin

m − 1
(k − 1), k ∈ [1, m] (2.10)

where:

• smin: Minimum scale (here, smin = 0.2)

• smax: Maximum scale (here, smin = 0.9)

• m: Number of feature maps

2.1.6 Hard Negative Mining

A typical problem in object detection is that the vast majority of the predictions made by
the model do not contain any object.

If the number of negative matches strongly overwhelm the positive ones, the model
will take a shortcut and predict most objects as negative. To fix this, or better, to mitigate
this effect, we have to apply some correction such as weighting the negative matches or
limiting the number that will be evaluated in the loss function so that the imbalance can
be corrected.

SSD[4] approaches this problem by applying Hard Negative Mining. That is to say, we
take the negative predictions that the model was most wrong about and then, we feed the
model again but using those wrong predictions in a fixed proportion with respect to the
positive matches. The authors of SSD[4] decided to use three times more hard negatives
than positives and considered the cross-entropy loss as the indicator of how hard is a
specific match for the model.

2.2 YOLO: You Only Look Once

YOLO[3] is an extremely fast single-shot neural network to perform object detection. It
sees object detection as a regression problem, predicting bounding boxes and class prob-
abilities directly from images in one evaluation, outperforming many detectors both in
terms of speed and accuracy.

1Total priors = 10 · 10 · 5 = 500

12 Object detection with deep learning

One of the key aspects in YOLO is that instead of using a sliding window or a region
proposal method, YOLO reasons globally about the image, encoding contextual informa-
tion in its feature maps.

Since its original publication in 2015, two new versions of YOLO have been published.
For this work, we have chosen YOLOv3[15], currently, the latest and most accurate ver-
sion of the YOLO series.

Conceptually, YOLO divides the input image into an SxS grid, and if the center of
an object falls into a grid cell, that grid cell is responsible for detecting that object. Then,
each grid cell predicts B bounding boxes.

Each bounding box has associated 5 predictions plus C conditional class probabilities:

• x, y: Centered relative to the grid cell (x ∈ [0..1])

• w, h: Width and height

• objcon f : Confidence score (Objectness)

• C1, C2, ...Cn: Conditional class probabilities

The confidence score for each box can be defined as:

Objcon f = Pr(Object) ∗ IOUtruth,prediction (2.11)

And the conditional class probability as:

Ci = Pr(Classi|Object) (2.12)

To know the class-specific confidence scores, we have to multiply the conditional class
probability and the individual box confidence prediction (for each class):

Pr(Classi) = Pr(Object) ∗ Pr(Classi|Object) (2.13)

2.2 YOLO: You Only Look Once 13

Figure 2.5: Prediction concept in YOLO: For each image, the model will output a tensor
of fixed size equal to SxSx(Bx5xC) [3]

From a network design perspective, YOLOv3[15] it can be organized into two parts:

• Feature extractor: Base model derived from a classification architecture for feature
extraction.

• Prediction layers: Convolutions to perform predictions across different scales.

2.2.1 Feature extractor

Different versions of YOLO use different feature extractors.

• YOLOv1[3] introduces a GoogLeNet-inspired architecture, with 1x1 reduction lay-
ers followed by 3x3 convolutional layers[20], instead of the inception module[21].

• YOLOv2[13] uses Darknet-19, built off prior work on network design. It’s made up
of 19 convolutional layers and 5 max-pooling layers.

• YOLOv3[15] redesigns Darknet-19 into Darknet-53, a more accurate but slightly
slower version of its predecessor.

Although Darknet-53 is an incremental improvement over Darknet-19, it’s much more
powerful than its predecessor and also more efficient than many of the current state-of-
the-art classifiers. Furthermore, it uses less floating-point operations, which results in a
substantial improvement of the network speed[15].

The architecture uses successive 3x3 and 1x1 convolutional layers but with some
shortcut connections and few more layers (see Table 2.1).

14 Object detection with deep learning

Type
Convolutional
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Avgpool
Connected
Softmax

Filters
32
64
32
64

128
64
128

256
128
256

512
256
512

1024
512

1024

Size
3 × 3
3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

Global
1000

Output
256 × 256
128 × 128

128 × 128
64 × 64

64 × 64
32 × 32

32 × 32
16 × 16

16 × 16
8 × 8

8 × 8

1×

2×

8×

8×

4×

Table 2.1: Darknet-53 architecture

2.2.2 Prediction layers

YOLOv3[15] predicts bounding boxes across three different scales using a sort of feature
pyramid networks[22].

At different points of the base feature extractor, several prediction layers are con-
nected. The multi-scale predictions works as follows: i) The last prediction layer takes its
input directly from end of the base feature extractor; ii) then, the second prediction layer
takes two inputs, one from the end of the base network and another from the middle;
iii) finally, the third prediction layer takes one input from the middle of the network and
another from the second prediction layer. See Figure 2.6.

This pyramid of feature extraction approach allows YOLOv3[15] to detect objects
across scales by extracting more meaningful semantic information from the upsampled
features and finer-grained information from the earlier feature maps[15]. This is because
feature maps from different levels within a network are known to have different recep-
tive field sizes[23]. Namely, small feature maps are good at detecting big objects whereas
big feature maps are good at detecting small objects.

2.2 YOLO: You Only Look Once 15

Figure 2.6: Network architecture of YOLOv3 [24]

Each prediction layer outputs a set of bounding boxes as a feature map. To transform
this feature map into something we can easily understand we have to reshape it into an
equivalent tensor of dimensions: (num_samples, num_anchors, num_classes + 5, grid_size,
grid_size). Technically, the meaning of each dimension is given in this very first moment.
When values are thrown into the loss function and the model is optimized using that
order, the minimization of the loss will force those values to acquire the meaning we
want.

Once we have made sense of the feature map and we have the predictions in the
form we want, we need to make some additional transformations on the bounding boxes,
confidence and class probabilities to obtain either the loss value or the final predictions.

To decode the bounding boxes, YOLO[15] uses the following transformation:

bx = σ(tx) + cx
by = σ(ty) + cy
bw = pwetw

bh = pheth

(2.14)

where:

• tx, ty, tw, th: Predicted bounding box coordinates

• cx, cy: Offset from the top left corner of the image (fractional form)

• pw, ph: Bounding box priors

16 Object detection with deep learning

• σ: Sigmoid function

Then, for the confidence and class probabilities we simply apply the sigmoid function:

ObjCon f = σ(to)
Pr(Class) = σ(tc)

(2.15)

Finally, at the inferring time, the bounding boxes are multiplied by the network stride
and the predictions are stacked into a single tensor (the model’s output).

2.2.3 Loss

YOLO uses a multi-part loss function. It might look a bit daunting at first but in reality,
it is just an aggregation of multiple losses.

L = Lx + Ly + Lw + Lh + Lcon f + Lcls (2.16)

where:

• Lx, Ly: Loss for the x and y bounding box offsets

• Lw, Lh: Loss for the width and height bounding box offsets

• Lcon f : Loss for the confidence of each bounding box

• Lcls: Loss for the classifier

The bounding box is regression problem so we use a regression loss. Specifically, the
authors used the Mean Squared Error (MSE) for all the box components (x, y, w, h):

Lx = MSE
Ly = MSE
Lw = MSE
Lh = MSE

(2.17)

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (2.18)

Then, we need to compute the loss for the object confidence and class probabilities.
Both are classification problems, so a simple cross-entropy loss will do the work. Since
we are dealing just with two classes we can use a modified version of the Cross-Entropy
(CE) loss, the Binary Cross-Entropy (BCE).

BCE = −(y log(p) + (1 − y) log(1 − p)) (2.19)

Back to the confidence loss, it is made up of two components: i) the object confidence
and ii) the no-object confidence

Lcon f = α · Lcon f _obj + β · Lcon f _no_obj (2.20)

where:

2.2 YOLO: You Only Look Once 17

α and β are two parameters to control the importance of each of the sub-losses (a sort
of hard negative mining).

Now, these sub-losses are computed using the Binary Cross-Entropy of the confidence
for both, objects and no-objects.

Lcon f _obj = BCE
Lcon f _no_obj = BCE (2.21)

Similarly, we compute the classification loss taking the class predictions of the objects
(there is no need for no-objects as we don’t care for the background).

Lcls = BCE (2.22)

Finally, by doing some arrangements and minor modifications for numerical stability,
we can combine all the above losses into a final objective function:

L = Lloc + Lcon f + Lcls

= λcoord

S2

∑
i=0

B

∑
j=0

1
obj
ij [(xi − x̂i)

2 + (yi − ŷi)
2]

+ λcoord

S2

∑
i=0

B

∑
j=0

1
obj
ij [(

√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2]

+
S2

∑
i=0

B

∑
j=0

1
obj
ij (Ci − Ĉi)

2 + λnoobj

S2

∑
i=0

B

∑
j=0

1
noobj
ij (Ci − Ĉi)

2

+
S2

∑
i=0

1
obj
i ∑

c∈classes
(pi(c)− p̂i(c))2

(2.23)

where:

• 1obj: denotes if object appears in cell i

• 1
obj
ij : denotes that the j-th bounding box predictor in cell i is “responsible” for that

prediction

2.2.4 Anchor boxes

Anchor boxes improved the recall in YOLO by a 7% margin[13], but instead of hand-pick
the priors as other researchers did[11][4], they clustered the ground-truths by running
K-means over the dataset. As a result, they could find good priors automatically (see
Figure 2.7).

It is important to point out that the anchors are not arbitrary, but the number of clus-
ters up to some extent is because this number is a trade-off for the recall and the com-
plexity of the model.

18 Object detection with deep learning

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

COCO

Clusters

Av
g
IO
U

0.75

VOC 2007

Figure 2.7: Clustering box dimensions: We use K-means to clusters the bounding boxes
to get good priors automatically [13]

One problem that arises here is that K-means is typically used with the Euclidean
distance as it works perfectly fine for many cases. But for this particular task, using the
Euclidean distance meant that larger boxes would generate more error than the smaller
ones. To fix this, the authors derived a metric distance based on the IoU to get priors with
good IOU scores:

d(box, centroid) = 1 − IoU(box, centroid) (2.24)

Finally, the authors use k = 5 as it seemed a good trade-off for the recall and the
complexity of the model.

Chapter 3

Methodology

3.1 Definitions

3.1.1 Bounding box

A bounding box is a box that wraps an object around. There are many representations
but the two most popular are:

• Boundary coordinates: (xmin, ymin, xmax, ymax)

• Center-size coordinates: (cx, cy, w, h)

For the sake of simplicity, it is recommended to use a fractional form so that the re-
gions are independent of the image size.

3.1.2 Jaccard Index

The Jaccard Index, also known as Intersection Over Union (IOU) or Jaccard Overlap,
measures the degree or extent to which two boxes overlap.

It can be computed as follows:

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (3.1)

An IoU of 1 means that the two boxes are indeed the same box, while an index of
0 indicates they’re two completely different boxes with no overlapping at all (mutually
exclusive spaces).

3.1.3 Multibox

Multibox is a technique derived from[8] for detecting objects where the prediction con-
sists of two parts:

• Regression: Box coordinates that may or may not contain an object.

• Classification: Class scores for the object types (including the background).

19

20 Methodology

3.1.4 Confusion matrix

The confusion matrix, also known as an error matrix, is a table to visualize the perfor-
mance of a classifier. It has two rows and two columns that contain the number of false
positives, false negatives, true positives, and true negatives.

Predicted
Positive Negative

Actual
Positive TP FP
Negative FN TN

Table 3.1: Confusion matrix for binary classification

For the specific case of object detection, getting those values might be a bit tricky
since depends on the framework we use to define which prediction is correct, and which
doesn’t. Nevertheless, we can agree with their theoretical meaning.

• True Positive (TP): A correct detection.

• False Positive (FP): A wrong detection

• False Negative (FN): A ground truth not detected

• True Negative (TN): When the background is detected as a background1

In practice, we mostly care for the correct detections (TP) and the incorrect ones (FN)
since most object detectors don’t detect the background (at least explicitly).

3.1.5 Precision

The precision is the fraction of relevant detections that were detected over all the detec-
tions.

Precision =
TP

TP + FP
=

TP
All detections

(3.2)

3.1.6 Recall

The recall is the fraction of relevant detections that were detected over all the ground
truth detections.

Recall =
TP

TP + FN
=

TP
All ground − truths

(3.3)

3.1.7 F1-Score

The F1-score is the harmonic mean of Precision and Recall. A metric that relates both
ratios into a single score.

F1 = 2 · precision · recall
precision + recall

(3.4)

1It does not usually apply

3.2 Singularities of mathematical expression detection 21

3.2 Singularities of mathematical expression detection

From a technical perspective, both, general-object detection (trees, cars, humans,...) and
mathematical-expression detection are the same thing. However, the latter presents some
singularities that make its detection harder.

For instance, in general-object detection, the objects to detect are usually quite large
when compared to the size of the input image (see Figure 3.1), even small objects are
relatively big. This results in coarse-grained detectors that work really well for this type
of objects but failed when detailed is needed or the objects look quite similar (e.g. car
models, dog breeds,...).

Another point that eases the work of a general-object detector is the color. Some
objects are quite similar in shape but completely different in terms of colors (i.e. limes
and lemons). Therefore, if we allow the model to take into account the color, many of
these objects will be more easily discriminated.

Figure 3.1: General-object detection problem

On the other hand, for the task of mathematical-expression detection, we need to de-
tect big and really small objects such as isolated equations or character-level expressions
(see Figure 3.2). Besides the size, these objects might look quite similar even for humans.
For instance, embedded expressions can be easily mistaken as text, especially when they
are one-character long (e.g x, x and x).

This nuance has a strong impact on the performance of a detector because, to begin
with, we need a high-resolution classifier (remember that when detecting big objects we
don’t need as much resolution as when detecting small objects). Then, we need way more
hypothesis as objects can be one-character long. And finally, we need better and more
accurate feature extractors to detect the nuances previously commented. Furthermore,
most of the state-of-the-art detectors are better at detecting big objects than small ones

22 Methodology

due to this efficiency constraint so we need to modify the state-of-the-art architecture in
order to make them suitable for our needs.

Figure 3.2: Mathematical-expression detection problem

It is worth to mention that this is a complex problem and the model trained in using
documents will have lots of problems if we try to detect handwritten equations.

3.3 Topology adjustments

SSD[4] and YOLO[15] are state-of-the-art object detectors for general-object detection, or
more precisely, state-of-the-art detectors for COCO[25], Pascal VOC[2] and ImageNet-
like[26] datasets.

Following the principles of transfer learning, a model that worked well for a generic
task should also work relatively well for a different but closely related task. However,
this does not mean that those models should work in a plug-and-play manner for a new
domain. What usually happens (and what we had to do) is that we need to modify their
architecture so that they can be trained on the new problem in an efficient and performant
way.

The specific modifications of both models will be discussed in a later section but as a
brief introduction, we will say that SSD[4] suffers from memory-related problems when

3.4 Data processing 23

the confidence in a detection is low (the IoU of many hypotheses may lead to a memory
overflow), numerical instabilities during training, intrinsic difficulties when detecting
small objects and very sensitive parameterization. On the other hand, YOLOv3[15] be-
haves pretty without performing any modification since it has fewer problems with small
objects than big ones. Most modifications in YOLO are focused on improving its baseline
accuracy for a given task (i.e. feature extractor for fine-grained detail, specific anchors
boxes for your problem, finding a good parametrization,...).

3.4 Data processing

3.4.1 Pre-processing

As the saying goes: “Data is the new oil”. Data allows us to better understand the world in
which we live, providing us with knowledge, making predictions and automating tasks.
Until recently, many tasks were reserved only for humans, but with the help of machine
learning models, we can now solve complex problems that a few days ago seemed com-
pletely impossible to automate.

The main problem of these models is that they usually need lots of data, and data is
not only a scarce resource but an expensive one.

To mitigate this problem, we use data augmentation. A technique that allows us
to increase the size of our limited dataset to infinity, through the use of small transfor-
mations. Thus, machine learning models extract every ounce of knowledge from our
original dataset.

Figure 3.3: Data augmentation

In practice, this data augmentation cannot be performed indefinitely since models
need new samples from which to learn new and relevant features. For the specific case
of mathematical expression detection, we have performed a standard data augmentation
(rotation, scaling, shifts, padding,...) as can be seen in Figure 3.3.

24 Methodology

As we need high-resolution images, in order to normalize the size of the images we
decided to use the minimum height that allowed us to clearly see the individual charac-
ters in a document. As images can have different aspect ratios, we set the width as the
maximum width found in our dataset, once all images were resized to the height estab-
lished. Then, for those images that did not reach the normalized width, we applied a
padding and centered the image horizontally. To bring some numbers up, the reference
height and width were 1024px and 800px, respectively. Although we tried with higher
resolutions, we always preserved that aspect ratio and data augmentation.

3.4.2 Post-processing

Non-Maximum Suppression

Object detectors rarely predict one single bounding box per object. To filter the extra
overlapping boxes we need to apply a post-processing step called Non-Maximum Sup-
pression (see Figure 3.4).

Non-Maximum Suppression (NMS) is a post-processing technique to transform a
smooth response map that triggers many imprecise object window hypotheses into, a
single bounding-box for each detected object[27].

(a) Before NSM (b) After NSM

Figure 3.4: Non-Maximum Suppression

There are many NMS methods that work for special cases like rotated boxes o poly-
gons, but as our case was a simple one, we decided to implement our own version.

Basically, it works as follows:

1. Remove all boxes with a low confidence score

3.5 Evaluation 25

2. Combine all the overlapping boxes into a new one, weighting their coordinates by
their confidence.

Additionally, we have enabled a flag to only keep the box with the highest confidence
score.2

3.5 Evaluation

3.5.1 Prediction correctness

To evaluate an object detector we need to know if the predicted detection was correct or
not. The problem is that this is a tricky task because object detection is more open-ended
than other fields.

For instance, if a predicted box doesn’t intersect at all with any ground-truth we can
confidently say that the detection is wrong. But what happens if it intersects just a 10%,
or a 30%? Could we confidently says that the detection is correct? Or even worse, what
happens if a blind detector adds a box wrapping the whole input image? All the ground-
box intersections will have a 100% but the detection couldn’t be more wrong.

To address these issues, we have introduced at the beginning of the chapter some
definitions that might help such as the Jaccard index, the precision, recall, f1-score, etc.
However, there are still some loose ends to know if a prediction is correct or not.

Unlike the typical regression or classification task where each input-output is matched
with a target in a relationship 1-to-1, in object detection, there is no clear matching be-
tween the input-output and the targets. It is clear that for each image there are n ground-
truths, but the output of a model is a list of predictions with no target assigned (see Figure
3.5).

Figure 3.5: Prediction matching: In blue the predictions, and in green the ground-truths

2Since this is a simple algorithm, we have considered that the exact description of the method is not
needed.

26 Methodology

To match each prediction with a ground-truth, we compute the overlapping coeffi-
cient of each prediction with all the ground-truths using the Jaccard Index. Then, each
prediction is assigned to the ground-truth that has the best overlap (a ground-truth can
have many predictions assigned). If they both belong to the same class and the best
overlapping in greater than a certain threshold (usually 50%), we label that prediction as
correct.

correctness(bp
i) =

{
1, i f cp

i = cg
j and IoU(bp

i , bg
j) > 0.5

0, otherwise
(3.5)

where:

• bp
i : Predicted box i

• bg
j : Ground-truth box j

• ci: class assigned to box i

However, to label each non-correct prediction as incorrect is a bit harsh since there are
many subtleties. That is why Hoiem et al.[16] designed a better methodology to diagnose
the error in object detectors. Here, we used the following simplified version:

• Correct: Correct class and IoU > 0.5

• Localization: Correct class and 1.0 <= IoU > 0.5

• Other: Incorrect class and IoU > 0.1

• Background: IoU <= 0.1

3.5.2 Metrics

As most of the object detection competitions use the Mean Average Precision (mAP) or
a derived one for their main metric, this will be the reference metric in our study. In
addition to this, it’s a very popular one amongst researchers but it has some problems
that we will discuss later.

Precision-Recall Curve

The recall and precision ratios are closely related to the confidence threshold. For in-
stance, when the confidence in a prediction decreases, the recall tends to monotonically
increase while the precision goes down. This is what usually happens, but there might
many reasons why this does not occur.

What is important here, it’s the relationship between the confidence threshold and
the recall-precision pairs. By setting the confidence threshold at different levels, we get
different pairs of values and if we plot these values, we obtain the Precision x Recall curve.

Thanks to this curve we can now evaluate the performance of an object detector.

3.5 Evaluation 27

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
P
re
ci
si
on

f1=0.2

f1=0.4

f1=0.6

f1=0.8

Precision-Recall curve

Figure 3.6: Precision-Recall curve: In blue the precision-recall curve, and in gray the
ISO-f1 lines.

Average Precision

The Precision-Recall curve gives us a lot of information about the performance of an
object detector, but there are a few problems with it. First, this curve zig-zags a lot and
that makes it hard to compare the performance of different detectors. Secondly, it’s a
curve, not a score. We want a single score to know how good is our detector.

To transform this zig-zag plot into a single value we need to compute the Area Under
the Curve (AUC). Since the pair of values we have are discrete, we don’t have a “curve”
in the strict sense so we need to interpolate its values.

The two most popular interpolations are:

• 11-point interpolation: Summarizes the shape of the curve by averaging the preci-
sion at a set of 11 equally spaced recall levels.3

• Interpolating all points: Instead of interpolating over 11 equally spaced points, it
interpolates through all points.4

To compute the AUC we approximate the previous curve using steps. This means that
for each recall value, we interpolate precision by taking the maximum precision whose
recall value is greater than its current recall value. Then, to compute the area we only
have to sum the areas of the multiple boxes we have obtained from the stepped-curve.
This can be easily understood looking at Figure 3.7.

3This one was used by PASCAL VOC until 2010.
4Full interpolation is the metric currently used in the PASCAL VOC Challenge

28 Methodology

Figure 3.7: Interpolating all points: All points are interpolated to compute the
precision-recall area under curve (PR AUC)

Finally, it is worth to point out that in this specific context, the Average Precision is the
AUC itself.

Mean Average Precision

The Average Precision works directly as an object detector metric if there is just one class
(and the background). But what happens when we have multiple classes? Easy! We
compute the mean of the Average Precision for each class.

mAP =
1
N

N

∑
i

APclassi (3.6)

3.5.3 ROC curve

The Receiver Operating Characteristic curve, or ROC curve, shows the ability of a binary
classifier to discriminate among classes when its discrimination threshold is varied.

It is created by plotting the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings (see Figure 3.8).

This curve needs the true binary labels and the probability (or confidence) scores for
each prediction. To get these scores is rarely a problem, but getting the true binary la-
bels is a bit tricky as we have discussed earlier. Anyway, by setting a good correctness
framework, this could shouldn’t be hard to get.

3.5 Evaluation 29

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

ROC curve

ROC curve (area = 0.79)

Figure 3.8: ROC curve: In blue the curve of a binary classifier, and in black baseline
“curve” of a random classifier.

3.5.4 Discussion

An important problem in the field of object detection is the lack of consensus to choose
an evaluation metric that measures the performance of the detectors.

As it is been said before, many researchers use the Mean Average Precision as well as
the most popular object detection competitions5.

Generally speaking, one of the most important things in research is to be able to com-
pare your results with other people. To do a fair comparison we all need to play under
the same set of rules. One way to do this is to use the same metrics as other authors did.
The problem of this approach is that it is not always clear how a metric was exactly im-
plemented or which evaluation methodology was used. Maybe there was a minor error
in the implementation that biased the results, or if the results come from a competition
and this is not open anymore, or the metrics used are unknown, etc. In other words,
there are many problems when comparing algorithms but from my point of view, pop-
ular competitions are great because the evaluation depends on reliable third-parties and
besides you can compare your models with others that are playing under the exact same
rules.

On the other hand, there is an additional problem with most metrics because they
might not be optimal in many cases. That is because they usually emphasize some aspects
in exchange for de-emphasizing others. For instance, the COCO metric favors better
bounding boxes at the expense of classification accuracy. And as Joseph Redmon et al.
stated in YOLOv3[15]: “Is there a good reason to think that more precise bounding boxes are
more important than better classification? A miss-classified example is much more obvious than a
bounding box that is slightly shifted.”

5COCO[25] and PASCAL VOC[2]

30 Methodology

For instance, the problem of the Mean Average Precision is that the only thing that
matters is the per-class rank-ordering so two hypothetical detectors might get similar
results whereas one of them is clearly giving bad results. See in Figure 3.9 the predictions
from two hypothetical detectors where one bounding box is completely miss-classified.

Person: 99%

Dog: 99%

Camel: 99%

Bird: 99%

Person: 99%

Horse: 99%

Detector #1

Horse: 52%
Person: 42%

Dog: 48%

Camel: 10%

Bird: 90%

Person: 11%

Horse: 70%

Detector #2

Bird: 89%

Horse: 60%

Bird: 75%

Dog: 45%

Figure 3.9: Two identical detectors according to mAP [15]

Similarly, there are also problems with the IoU metric. Russakovsky et al.[28] reported
that that humans have a hard time distinguishing an IOU of 0.3 from 0.5. Thus, which
evaluation metric should we use is still an open question that might depend on specific
the case.

Nowadays, the trend is to use masks instead of bounding boxes whenever is possible
due to the high level of detail that you get. Nevertheless, for the specific problem of
mathematical expression detection, it seems like bounding boxes are perfectly suited for
it as is the most natural form to establish bounding regions.

Chapter 4

Experiments and results

4.1 Dataset description

For this study, we have used the Marmot dataset for math formula recognition[29], a ground-
truth dataset for mathematical formula identification.

This dataset is a collection of PDF documents downloaded from CiteSeerX. It contains
all the original PDF files, their corresponding document images, the metadata associated
with these documents and the ground-truths for the mathematical formulas along with
the ground-truths for the objects embedded in them.

Figure 4.1: Math Formula Recognition dataset: Six random samples from the Marmot
dataset[29]

31

32 Experiments and results

Some interesting numbers on the dataset are:

• Dataset version: 1.0

• Specifics

Content: 400 scanned pages in JPEG format (from 194 PDF documents)

Dimensions: ~4250x5500

Color space: RGB and Gray

Isolated formulas: 1575

Embedded formulas: 7907

Ground-truth format: XML

• Size: 736MB compressed; 1.17GB uncompressed

• Compression format: ZIP

• Link: http://www.icst.pku.edu.cn/cpdp/docs/20190424192347869700.zip

4.2 Experiments

4.2.1 SSD

Network design

The network presented in the paper[4] was designed for the PASCAL VOC, COCO, and
ILSVRC datasets; fixing the input size to 300x300 and 512x512. For these datasets, those
resolutions worked well, but as we are dealing with characters in scanned pages, we have
to increase the input size. This increase in the image resolution has a strong impact on
the network performance as well as on the memory consumed.

To overcome these issues we introduced several modifications to the original network
architecture but keeping VGG16[17] as the base feature extractor. First, we used high-
resolution images to capture the character-level detail needed for the task. This meant to
increase the input size from 300x300 to 1024x1024 (pixels) but at the expense of generating
a huge amount of priors (around 100,000). As we cannot reduce the input resolution we
decided to reduce and crop part of the white margins that contain no information. Finally,
the input size used was 1024x800.

Although the number of priors is now smaller, it is still too high to be considered
efficient. To further decrease the number of predictions, we subsample every feature
map along a particular dimension using the kernel dilation trick in a process known as
decimation.

http://www.icst.pku.edu.cn/cpdp/docs/20190424192347869700.zip

4.2 Experiments 33

(a) Kernel 3x3; Dilation 0 (b) Kernel 3x3; Dilation 1 (c) Kernel 3x3; Dilation 2

Figure 4.2: Dilated convolutions: Blue points represent active locations of a 3x3 convo-
lutional kernel

In addition to this, we have also brought down the number of priors per feature map
location from 4-6 to 1-6 in a pyramidal style. Smaller feature maps have fewer priors per
location than the big ones (this will be explained in detail in the next section).

Then, once we have the final output containing all the predicted regions, we filter
out those that fall under a certain threshold as other methods do. But now, we have
introduced a hard limit in which we sort all predictions by their confidence, keeping just
the top N with the highest scores.1 This is previous to the post-processing steps so that
the next steps receive an input tensor of manageable size.

Building priors

The authors of SSD[4] used a grid of carefully studied parameters to construct their set
of priors. Given the high-resolution needed for this task, the default number of priors
was too high and we couldn’t train the model following that approach due to memory
limitations.

In the Marmot dataset[29], many of the embedded equations are just one or two-
character long and many of the isolated equations take all width of the document. Taking
this observation into account we designed similar a method to the one presented in the
paper[4] but based on clustering the aspect ratios w.t.r the average IoU using K-Means as
YOLOv2[13] does.

After this clustering, we approximate the aspect ratios to integer numbers. Now we
had less but better priors. Nevertheless, there were still too many to train the model. To
overcome this issue, we assigned the clustered aspect ratios taking into account the scale
in which they tend to occur. For instance, the 1:1 embedded equations are pretty common
on the small scales, but quite unusual in the big ones. This allowed us to optimize the
aspect ratio for each scale and greatly reduce the number of priors used since most priors
come from feature maps that account for small objects.

This is because big feature maps have more unit cells but with a smaller receptive
field. A feature map of 128x128 has 16,384 sensing units, but one with half the size (64x64)
has four times fewer units (4,096).

Training

Training SSD[4] for mathematical expressions using this very customized high-resolution
detector has been difficult. Partly because SSD[4] is very sensitive to the bounding box

1This is different from the usual top_k parameter which returns the top k predictions of the final result in
order to not overpopulate the final view.

34 Experiments and results

size, showing a much worse performance on smaller objects than bigger ones[4]. The
other reason is because of the compromises that we had to do to bring down the number
of predictions into a manageable size which introduced additional problems.

As it has been said in previous sections, we had to use high-resolution images for our
detector but leaving the default architecture meant too many priors. So to further bring
down the number of priors we had to half some feature maps and reduce the number of
anchors.

These compromises are not a model’s problem but a memory-related one. When we
check the overlapping between detections and priors boxes, we build a matrix N ∗ M of
IoUs. If these numbers are too big, the resulting matrix will occupy a big chunk of our
memory, which added to the memory required by the model itself and other GPU tensor
operations, will result in a not enough memory error.

Initially, we train the model from scratch but as the results we relatively poor in terms
of recall, we decided to try with transfer learning to keep tuning its hyper-parameters.

First, we initialized our feature extractor using the pre-trained weights from VGG16[17]
available in PyTorch[30] and Xavier Initialization[31] for the remaining layers. When our
network was initialized, then we train it using the dataset from the Pascal VOC 2007[2]
competition plus standard data augmentation techniques such as flips, rotations, scal-
ing,...

(a) Confidence loss (b) Localization loss (c) Total loss

Figure 4.3: Multi-part loss of SSD from the Pascal VOC dataset

Looking at Figure 4.3 we see that all losses decrease (it’s multi-part loss) although
they are not as smooth as they should. Since we are not training for VOC but looking for
a good initialization for our model, we decided not to train for many iterations. Once the
model was trained, we double-checked the results by visualizing the predicted objects
(see Figure 4.4).

Figure 4.4: SSD pre-trained on the VOC Pascal dataset

Then, we re-train the model for the Marmot dataset[29] but using these weights from
VOC[2]. As we have seen from Figure 4.5 the model converges pretty smoothly but the
results are still bad in terms of recall.

4.2 Experiments 35

(a) Confidence loss (b) Localization loss (c) Total loss

Figure 4.5: Multi-part loss of SSD from the Marmot dataset

The particularities of each training depend on the specific experiment but in general,
we have followed the same approach all models. Full images as the input preserving the
aspect ratio (adding padding if necessary), Adam[32] as the stochastic function optimizer
with a learning rate of 1e-4, a maximum of 300 epochs or 20h of training, 90% of the
training data for training and 10% for validation, small batch sizes ranging from 1 to 2
due to memory limitations in our GPU, 1 to 2 gradient accumulations per optimization
step, hard negative mining and a relatively standard data augmentation.

For the data augmentation, we used the following transforms:2

• Shift: [−0.0625,+0.0625]

• Scale: [−0.0,+0.0625]

• Rotate: [−2,+2]

• Interpolation: Bilinear interpolation with coefficients (1, 0)3

• Border mode: Replicate

• Color: RGB (3-channel) or Gray (1-channel)

• Resize mode: Keep aspect ratio

• Longest max. size: 1024

Results

The results showed in Table 4.3 are computed using an IoU of 0.5, a confidence thresh-
old of 0.5, a non-maximum suppression of 0.3 and the mean average precision has been
computed over 11 points.

These results will be discussed in the next section.

2Some of them might vary depending on the experiment.
3INTER_AREA from OpenCV

36 Experiments and results

Trial Precision Recall F1 mAP APEmbedded APIsolated

#1 0.98248 0.14826 0.25764 0.90167 0.90436 0.89899
#2 0.96232 0.15936 0.27345 0.88445 0.89755 0.87135
#3 0.97619 0.13007 0.22956 0.89725 0.89141 0.90309
#4 0.97380 0.13758 0.24110 0.89732 0.90034 0.89430
#5 0.96866 0.03595 0.06933 0.89934 0.89945 0.89922
#6 0.60120 0.55002 0.57447 0.61916 0.36002 0.87830
#7 0.98795 0.01734 0.03408 0.45424 0.00000 0.90849
#8 0.97142 0.03595 0.06934 0.89981 0.89945 0.90016
#9 1.00000 0.00835 0.01657 0.50000 0.00000 1.00000
#10 0.913242 0.02115 0.04134 0.94903 1.00000 0.89806

Table 4.1: Results of SSD

Trial Backbone Max. Resolution Pre-trained Num. priors Parameters Time to train

#1 VGG16 1024x1024 No 7020 stride=2; loc_weight=1.0; nhm=3:1 8h 21min
#2 VGG16 1024x1024 No 7020 stride=2; loc_weight=2.0; nhm=3:1 8h 17min
#3 VGG16 1024x1024 No 7020 stride=2; loc_weight=1.0; nhm=2:1 8h 22min
#4 VGG16 1024x1024 No 12512 stride=2; loc_weight=1.0; nhm=2:1 8h 22min
#5 VGG16 1024x1024 No 34272 loc_weight=1.0; nhm=1:1 9h 10min4

#6 VGG16 1024x1024 No 34272 loc_weight=2.0; nhm=2:1 11h 40min
#7 VGG16 1024x1024 No 34272 loc_weight=1.0; nhm=3:1 11h 39min
#8 VGG16 1024x1024 No 34272 loc_weight=2.0; nhm=3:1 9h 8min5

#9 VGG16 800x1024 No 26788 loc_weight=1.0; nhm=3:1 9h 45min
#10 VGG16 800x1024 No 57012 loc_weight=1.0; nhm=3:1; 600epochs 19h 39min

Table 4.2: Experiments of SSD

Model analysis

From Table 4.1 we see that despite having a high mean average precision in all trials,
the recall is usually quite low except for trial #6 (where it is still low, but on the edge of
usefulness). This recall issue is probably due to the constraints we had to enforce on our
model (discussed in the previous section) and some bad parametrization.

First, we studied the effects of the localization weight in the results. Initially, we
thought, there would be localization problems and this parameter should be increased.
But later, the opposite happened. The initial localization was pretty good as long as the
equation was found (recall problems). When the localization weight is increased, the
recall tends to increase in exchange for a decrease in precision.

Then, we test the hard negative mining ratio from 3:1 to 2:1 with different localization
weights. As the model is quite sensible in terms of parametrization, it is no clear how the
hard negative mining really affects their results, but it seems that an increase in the hard
negative mining leads to a decrease in the precision but an increase in the recall. Anyway,
these results are not conclusive due to the poor recall values.

Then we train the models for more epochs to see in minor improvements in the loss
had a big impact on the results but the impact turned out to be minimal. More epochs
did increase the f1-score but marginally.

In addition to this, we tested different image resolutions for efficiency reasons (it de-
creases the number of priors). Using fewer priors for the exact same network and same
parameters led to a minor improvement in the results. This is probably because the model
now only trains using the priors that are really susceptible to be used. Previously, the

4.2 Experiments 37

useless ones were ignored by the model through training, but now they are not included
from the beginning.

At the same time we were performing these experiments, we tested different methods
for generating priors as well as the behavior of the model when the number of prior was
changed. From the results, increasing the number of priors seem that only harms the
model but this is simply the effects of collateral problems derived from the methods used
when choosing these priors. Although not documented here, we did other small tests
where we found out that increasing the number of priors lead to improvements in the
results but in exchange for increasing the training times.

The results in this section are bad. They are not really useful from an application
standpoint. By showing these results we wanted to record some of the experiments we
have performed. However, due to the time limitation for this work, we couldn’t achieve
what we wanted, an SSD-like model that uses a low number of high-quality priors to
detect mathematical expressions. A natural chapter in the course of research is to fail.
Not failing means that we are not trying new things, and incremental improvements or
minor tunings in the original model were not our focus. From other experiments, using a
standard parametrization and lots of priors such as the ones from the original paper will
lead to good results.

Finally, we have commented earlier in this section that we pre-trained SSD[4] on the
Pascal VOC[2] dataset6. The main benefit we had from performing transfer learning is
that the initial confidence was greater. This led to fewer final hypothesis, which meant a
smaller IoU matrix and resulted in no more memory-related problems for us. Later, we
did more modifications in the architecture and we could mitigate these problems without
performing transfer learning.

In the Figure 4.6, we have four samples (pages) with the model predictions and their
corresponding ground-truths. (To get these predictions, the non-maximum-suppression
ratio was set to 0.3; depending on its value results may vary).

6This experiment is not in the results table since the final results on the marmot dataset were not good,
and the experimentation was not robust and did not contribute to getting any numerical insight

38 Experiments and results

Figure 4.6: Results of SSD: In green the ground-truths and in blue the predicted bound-
ing boxes

As we guessed from the numerical results, the recall is notably low although the mod-
els seem to be quite precise. As discussed earlier, this issue should be relatively easy to fix
by applying some minor modifications. Again, due to the time limitations and the time
spent on improving the original architecture for this task, we couldn’t get good results
on time.

To further examine the performance of SSD[4] we have breakdown the results using
the methodology proposed by Hoiem et al.[16] as discussed earlier. It is important to

4.2 Experiments 39

point out that due to the poor recall values, theses results present are strongly biased.
Nevertheless, the serve as a baseline for future models or improvements.

To analyze the errors of our model, for each class at test time we have taken the top-N
predictions. Then, each prediction is either correct or incorrect but with a specific type of
error (localization, other and background).

92.3%

5.6%

1.7%
0.4%

SSD

Correct
Background
Localization
Other

Figure 4.7: Error analysis of SSD: This chart shows the percentage of type errors in the
top N detections for different classes

From Figure 4.7 we see that SSD[4] has an impressive rate of correct detections
(92.3%) but it struggles the most with the background errors were the model mistakes
it as an expression 5.6% of the times. The localization errors only account for the 1.7% of
the detections while the wrong detections are minimal, just the 0.4% of the total.

Nevertheless, as we have said before, the main problem of our model is its low recall
value. It is so low that the usefulness of the model is anecdotal despite having a high
precision. Anyway, using more memory, a better set of anchor boxes, some minor ar-
chitecture changes and a more careful tuning to deal with the loss weights and the hard
negative mining ratio will probably lead to a substantial improvement of this model.

Then, we have plotted the Recall-Precision curve. This curve tells us how good is the
classifier when classes are very imbalanced (as it’s our case). From Figure 4.8 we can see
than our model behaves quite well with an impressive average precision for both classes.

40 Experiments and results

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io
n

SSD Recall-Precision curve

Embedded
Isolated

Figure 4.8: Recall-Precision curve of SSD

Finally, we have computed the ROC curve to understand the performance of the clas-
sification part of our detector, at different thresholds for each class. From Figure 4.9 we
see that the model has less problems classifying isolated expressions than the embedded
ones. This is expected as embedded expressions can be easily mistaken as normal text.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

ROC curve

ROC curve for 'Embedded' (area = 0.74)
ROC curve for 'Isolated' (area = 0.95)

Figure 4.9: ROC curve of SSD

4.2 Experiments 41

Again, the results from Figures 4.8 and 4.9 should be taken with a grain of salt due
to the low recall value. In a future work, we will address the issues that due to the time
limitations we couldn’t solve on time.

4.2.2 YOLO

Network design

YOLOv3[15] introduces a state-of-the-art architecture which trades-off accuracy and speed
depending on the input resolution. In the paper, the authors present three input resolu-
tions: 320x320, 416x416, and 608x608. We decided to test the detector with the highest
accuracy (YOLOv3-608) and a less accurate but highly efficient version of the 416x416
network, called YOLOv3-tiny.

The first model, YOLOv3-608, uses Darknet-53 as the backbone for feature extraction.
It has been trained and tested on the COCO dataset, has 140.69 billion parameters and
runs at 20FPS with mAP of 57.9.

The second model, YOLOv3-tiny, uses Darknet-Tiny, a small but highly efficient fea-
ture extractor for constrained environments. Similarly, it has been trained and tested on
the COCO dataset, but has 33.1 billion parameters and runs at a 220FPS with mAP of
33.1.

To meet the requirements of our task (mathematical expression detection), we in-
creased the input resolution of the model to a minimum of 1024 pixels so that there was
enough room to detect character-level details.

In addition to this, there have been minor modifications in the architecture to adapt it
to the number of clusters used in each experiment as well as the number of classes used.

Finding clusters

Before training the model, we have to choose the anchors that will be used as priors.
These anchors are domain-dependent so instead of choosing them by hand or running
some kind of heuristic or grid, we simply run K-means. This allows us to get good priors
for the specific dataset we’re gonna use. The exact process has been described in previous
sections.

We did not want to choose an arbitrary number of clusters so we run K-mean from 1
to 9 clusters to know how the average IoU varies along with the number of clusters.

From the Figure 4.10 we see that the more clusters we use, the higher the average IoU
is. Although this might lead us to think that using more clusters will lead to better accu-
racy, in practice that is not what happens as there are more factors to take into account
such as the ability of the model to deal with a large number of clusters. Furthermore,
the biggest increase in the average IoU is produced when stepping from cluster 1 to 2. A
plausible explanation for this leap could be that we only have two classes of objects, with
both having different dimensions (embedded-small vs. isolated-big).

42 Experiments and results

1 2 3 4 5 6 7 8 9
Clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A
vg

. I
O
U

Clustering box dimensions

Avg. IOU
Gain

Figure 4.10: Clustering box dimensions for Marmot

In the results section, we will see the relationship between the number of clusters and
accuracy, and how the rule of the more, the better does not necessarily apply.

Training

Each YOLO model that we have trained have their own set of particularities and settings
tailored for the experiment we were running. But generally speaking, we have followed
a similar approach for all of them. Full images as the input preserving the aspect ra-
tio (adding padding if necessary), Adam[32] as the stochastic function optimizer with a
learning rate of 1e-3, a maximum of 300 epochs or 20h of training, 90% of the training
data for training and 10% for validation, small batch sizes ranging from 1 to 8 due to
memory limitations in our GPU, 1 to 2 gradient accumulations per optimization step, no
hard negative mining and a relatively standard data augmentation.

For the data augmentation, we used the following transforms:7

• Shift: [−0.0625,+0.0625]

• Scale: [−0.0,+0.0625]

• Rotate: [−2,+2]

• Interpolation: Bilinear interpolation with coefficients (1, 0)8

• Border mode: Replicate

• Color: RGB (3-channel) or Gray (1-channel)

• Resize mode: Keep aspect ratio

7Some of them might vary depending on the experiment.
8INTER_AREA from OpenCV

4.2 Experiments 43

• Longest max. size: 1024, 1280, 1440

As the YOLO’s loss function is made up of multiple components, we had to monitor
each one individually to be sure that the model is correctly implemented. This aspect will
be briefly discussed in a later section since it’s more implementation-related than relevant
for the research itself. For now, the most relevant thing is to know the smoothness of the
overall loss function, the recall, precision, and f1-score. See Figure 4.11.

(a) Total loss (b) mAP

Figure 4.11: Total loss and mAP of YOLOv3

Results

The results showed in Table 4.3 are computed using an IoU of 0.5, a confidence thresh-
old of 0.5, a non-maximum suppression of 0.3 and the mean average precision has been
computed over all the points and 11 points to compare.9

These results will be discussed in the next section.10

Trial Precision Recall F1 mAP APEmbedded APIsolated

#1 0.72297 0.88379 0.79530 0.78485 0.74852 0.82118
#2 0.86098 0.92744 0.89202 0.85413 0.82208 0.88618
#3 0.82002 0.88961 0.85287 0.81357 0.79125 0.83589
#4 0.87030 0.86343 0.86681 0.80369 0.73157 0.87580
#5 0.88594 0.91716 0.90092 0.87434 0.87770 0.87099
#6 0.78895 0.64256 0.70581 0.55846 0.56713 0.54978
#7 0.89594 0.86077 0.87768 0.81209 0.72352 0.90065
#8 0.44704 0.95334 0.60014 0.74550 0.74397 0.74703
#9 0.90124 0.59835 0.71920 0.56173 0.54023 0.58324
#10 0.78506 0.79954 0.79207 0.67387 0.61303 0.73472
#2 (11-point) 0.81264 0.91782 0.86203 0.75836 0.65852 0.85821
#8 (11-point) 0.36028 0.94849 0.52221 0.36851 0.29190 0.44511

Table 4.3: Results of YOLOv3

9We suspect that there could be some small error in the implementation that due to lack of time it has
been not possible to review it previous to this submission. In any case, since all models have been evaluated
in the same way, using the same function evaluation functions, the results should be valid for comparison
between them as they all would have the same bias.

10C = Num. of clusters; loc = localization weight; obj/noobj = confidence weights

44 Experiments and results

Trial Backbone Max. Resolution Pre-trained Parameters Multi-scale Time to train

#1 Darknet-53 1024x1024 No 3C; loc=1.0; obj=1.0; noobj=100.0 No 11h 56min
#2 Darknet-53 1024x1024 No 6C; loc=1.0; obj=1.0; noobj=100.0 No 11h 55min
#3 Darknet-53 1024x1024 No 9C; loc=1.0; obj=1.0; noobj=100.0 No 11h 54min
#4 Darknet-53 1024x1024 Yes 6C; loc=1.0; obj=1.0; noobj=100.0 No 11h 59min
#5 Darknet-53 1280x1280 No 6C; loc=1.0; obj=1.0; noobj=100.0 No 17h 36min
#6 Darknet-Tiny 1024x1024 No 6C; loc=1.0; obj=1.0; noobj=100.0 No 2h 28min
#7 Darknet-53 1024x1024 No 6C; loc=1.0; obj=1.0; noobj=100.0 Yes 12h 31min
#8 Darknet-53 1024x1024 No 6C; loc=5.0; obj=1.0; noobj=0.5 No 9h 13min11

#9 - FT#2 50epochs Darknet-53 1024x1024 No 6C; loc=10.0; obj=1.0; noobj=100 No 1h 30min12

#10 - FT#2 50epochs Darknet-53 1024x1024 No 6C; loc=1.0; obj=1.0; noobj=50 No 1h 35min13

Table 4.4: Expermients of YOLOv3

Model analysis

From Table 4.3 we can extract that we need a strong backbone capable of extracting the
detail needed for this task. Here, Darknet-53 showed the best performance but it would
be interesting to try something different such as VGG[17] or ResNet[18]. This would
substantially decrease the detector speed but depending on the case, a real-time detector
might be not needed, but an accurate one.

Then, we tried different image resolutions: 512, 1024 and 1280. We didn’t show the re-
sults on the 512-detector because it wasn’t enough to capture many of the character-level
embedded expressions. Between the 1024- and 1280-detector, the latter was the winner.
Training with high-resolution images improved most of the detection metrics. This was
expected since detectors, in general, need high-resolution images to get good detection
results. However, the main problem when using high-resolution images is that although
they improve the accuracy of the model, they tend to notably increase the training times.

Since we wanted to test the original Darknet[33] YOLOv3-608 weights in order to start
the training from a pre-trained network, we had to write a special function to read the
weights of each layer of the original file, and then copy them to the layers of our model in
a specific order. Easier said than done. Anyway, once we did it and check that the model
worked correctly, we trained our model using those weights. Interestingly, and against
all odds, using pre-trained weights did not improve the accuracy of our model (actually
there was a slight increase in the precision but in exchange of losing 5 percentage points
in the mean average precision).

After that, we study the impact of the number of clusters in the accuracy of the model.
We found out that between 3, 6 and 9 clusters, 6 was the right amount. When 6 clusters
were used, we got the highest mAP with an impressive ~7% increase with respect to the
model that used 3 clusters and a~4% for the one with 9 clusters.

In the original paper, multi-scale training improved the accuracy of the model, but
here, instead of improving it, multi-scale training made the model less accurate. This
might be because most of the mathematical expressions found in our dataset have prac-
tically the same scale and most differences are due to the minor data augmentation that
it is applied.

Finally, we cannot forget to perform a visual inspection comparing the predictions
with the ground truth. In the Figure 4.12, we have four samples (pages) with the model
predictions and their corresponding ground-truths. (To get these predictions, the non-
maximum-suppression ratio was set to 0.5; depending on its value results may vary).

4.2 Experiments 45

Figure 4.12: Results of YOLOv3: In green the ground-truths and in blue the predicted
bounding boxes

The first thing we noticed is that the model is pretty robust in terms of classification
but there are problems fitting the bounding boxes to the ground-truths. Besides, the
model seems to fail when equations come with unusual dimensions. An example of this
would be a mathematical expression that is taller than wider such as a matrix, or multi-
line expressions. To fix this we have to give a higher weight to the coordinate constant in
the loss function, and then we could work on getting better priors and do a more careful
tuning. Following these steps will likely improve in a meaningful way the results of this
model.

46 Experiments and results

As we have done with SSD[4], to examine from a different perspective the perfor-
mance of the model, we have breakdown the results using the methodology proposed
by Hoiem et al.[16] (see Figure 4.13). Again, for each class at test time, we take the top
N predictions, and then, each prediction is either correct or incorrect but with a specific
type of error (discussed earlier).

81.9%

11.4%

6.2%

0.5%

YOLOv3

Correct
Background
Localization
Other

Figure 4.13: Error analysis of YOLOv3: This chart shows the percentage of type errors in
the top N detections for different classes

In this model, YOLO struggles more with background errors and localization errors
than miss-classifications. However, it is pretty balanced in terms of accuracy and recall.
From Figure 4.13 we see that YOLO has an acceptable rate of correct detections (81.9%)
but it struggles with the background errors were the model mistakes it as an expression
11.4% of the times. The localization errors only account for the 6.2% of the detections
while the wrong detections are minimal, just the 0.5% of the total.

Once again, we have plotted the Recall-Precision curve. From Figure 4.14 we can see
than our model behaves quite well until we increase the recall of the embedded expres-
sions up to 0.7 and up to 0.9 for the isolated ones.

4.2 Experiments 47

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io
n

YOLO Recall-Precision curve

Embedded
Isolated

Figure 4.14: Recall-Precision curve of YOLOv3

Finally, we have computed the ROC curve to understand the performance of the clas-
sification part of our detector, at different thresholds for each class. From Figure 4.15 we
see that the model has less problems classifying isolated expressions than the embedded
ones. Again, this is expected as embedded expressions can be easily mistaken as normal
text.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

ROC curve

ROC curve for 'Embedded' (area = 0.74)
ROC curve for 'Isolated' (area = 0.95)

Figure 4.15: ROC curve of YOLOv3

48 Experiments and results

4.2.3 Model debugging

The models presented in this work (SSD[4] and YOLOv3[15]) might be easy to under-
stand from a conceptual level, but when one needs to implement them many problems
may arise that are difficult to debug due to the black-box nature of neural networks.

When a model is not working as expected we need to understand what it is exactly
learning. To do this, we can check the loss function during training looking if it is stable,
converging, diverging, or a combination of them in multi-loss functions. If this is the
case, we have to plot all the individual components of the objective functions so that we
can easily see which parameters are being optimized correctly and which don’t.

Furthermore, it is interesting to plot not only the objective function or its parts, but
also the metrics that are relevant in order to avoid overfitting or to be able to make a
better diagnosis of the weaknesses of our model.

As we are dealing with an object detection task, our main metric will be the mean
average precision. A good sign that our model is not being overfitted is that the training
loss, the validation loss, and here, the mean average precision as well as other metrics,
are strongly correlated.

In this section we will only analyze the training process of YOLOv3[15], since it is
practically the same for SSD[4] and would not contribute at all to repeat the same thing
twice.

Let’s start with the total loss function of each prediction layer. In the Figure 4.16 all
three layers seem to converge to a minimum value and then, they remain stable. This
means that our model is not learning anymore which might be a symptom that we need
to decrease the learning rate, or if the validation loss and the training loss diverge might
indicate a possible overfit, or simply that the model has reached its learning capacity.

(a) Loss 1 (Small objects) (b) Loss 2 (Medium objects) (c) Loss 3 (Big objects)

Figure 4.16: Multi-part loss

Along with the total loss, it is strongly advisable to plot the rest of the metrics such as
the recall, precision, f1-score or mean average precision (in this particular case).

In a previous section has been commented that one of the problems of these metrics
is that they vary depending on the IoU threshold. To account for this issue, we have
plotted different versions of them, one for an IoU of 0.5 and another for an IoU of 0.75.
See Figures 4.17 and 4.18 for the recall and Figure 4.19 for the precision.

4.2 Experiments 49

(a) Recall50 (Small objects) (b) Recall50 (Medium objects) (c) Recall50 (Big objects)

Figure 4.17: Recall with an IoU of 0.5

(a) Recall75 (Small objects) (b) Recall75 (Medium objects) (c) Recall75 (Big objects)

Figure 4.18: Recall with an IoU of 0.75

In the precision figures 4.19 we can see something interesting. In the past, YOLOv1[3]
and YOLOv2[13] used to struggle with small objects but when YOLOv3[15] came to the
scene, the trend somehow turned around. Now YOLO shows a remarkably good perfor-
mance on small objects and comparatively worse on medium and large objects.

This effect can clearly be seen in the third Figure 4.19c, where the precision not only
takes more iterations to converge but also, the final ratio is notably lower than in the
charts from the small and medium objects. Hence, we should work on that aspect to
push the accuracy of our model further.

(a) Precision50 (Small objects)
(b) Precision50 (Medium ob-
jects) (c) Precision50 (Big objects)

Figure 4.19: Precision with an IoU of 0.5

Now we look at the classification loss and classification accuracy (see Figure 4.20 and
4.21). Each prediction layer is specialized in one size of objects (big, medium and big). As
it has been commented early, the classification loss almost zero and the accuracy around
100% in all three classifiers which means that it’s pretty easy for our model to distinguish
between embedded and isolated math expressions. This is not surprising since isolated
expressions are bigger and they are also separated from the text by a substantial white
margin which is easy to detect by the model, while the embedded expressions are smaller
and can easily go unnoticed since they are embedded in the document body.

50 Experiments and results

(a) Cls 1 (Small objects) (b) Cls 2 (Medium objects) (c) Cls 3 (Big objects)

Figure 4.20: Classifier loss

(a) Cls acc. (Small objects) (b) Cls acc. (Medium objects) (c) Cls acc. (Big objects)

Figure 4.21: Classifier accuracy

In the next figures (4.22, 4.23, 4.24) we will study the confidence of our model in
distinguishing the background from relevant objects. Similar to the previous figures, the
confidence loss decreases as it should in all three models. This loss is made up of the
no-object confidence loss and the object confidence loss. Hence, if both decrease, the overall
confidence loss should decrease too.

(a) Conf. (Small objects) (b) Conf. (Medium objects) (c) Conf. (Big objects)

Figure 4.22: Confidence loss

It is important to remark that in Figures 4.23 and 4.24 we see the confidence as a
probability, not the loss. In the Figure 4.23 we see something interesting. The values
on that chart should be close to 1 meaning that the model is confident when it predicts
the background. Nevertheless, the opposite happens. That is, the model has almost no
confidence when it predicts something as background. This is because many grids cells
(YOLO) do not contain any object and the optimizer reacts by pushing the confidence of
those cells towards zero overpowering the gradient of cells that do contain the object. To
remedy this, we should decrease the loss confidence for predictions that don’t contain
any object.

4.2 Experiments 51

(a) No-obj conf. (Small objs) (b) No-obj conf. (Medium objs) (c) No-obj conf. (Big objs)

Figure 4.23: No-object confidence

(a) Obj. conf. (Small objects) (b) Obj. conf. (Medium objects) (c) Obj. conf. 3 (Big objects)

Figure 4.24: Object confidence

Finally, it is recommended to plot the distributions and histograms of weights and
biases to double-check that everything it’s being optimized correctly or to diagnose re-
dundant layers.

For instance in Figure 4.25 we can see the weights and bias distributions from three
different layers. At first sight, they look completely fine but usually, we should look for
abnormal values or values that do not evolve with the training. A value that does not
change might indicate that there could be something wrong with the model.

(a) Bias distr. BatchNorm0 (b) Weight distr. Conv10 (c) Weight distr. Conv105

Figure 4.25: Weight and Bias distributions

It is important to remark that if a distribution is completely flat or abnormal to us,
doesn’t necessarily mean that there is something wrong with our model. Although we
should take a closer look and understand why this is happening. It could be due to a bug,
a numeric instability problem or it’s simply a normal behavior in that specific context.

Similarly, we can take a look at the histograms of each layer to see the evolution of
weights as biases from a different perspective. See Figure 4.26.

52 Experiments and results

(a) Bias hist. BatchNorm0 (b) Weight hist. Conv10 (c) Weight hist. Conv105

Figure 4.26: Weight and Bias histograms

4.3 Model calibration

The results of a trained model might vary depending on the evaluation parameters.

To understand how our model behaves under different parameters, we have re-evaluated
every model using a grid of values ranging from 0.1 to 0.9 with a step of 0.3 for the IOU,
confidence, non-maximum suppression thresholds.

First, let’s start with the IoU threshold. This threshold says how much a correct pre-
diction needs to overlap with the ground-truth to be considered as positive. The higher
we set the threshold, the fewer predictions will pass as positives. This means that in-
creasing the IoU threshold will decrease the values of the metrics as we are setting a high
standard for what we consider a positive prediction. Indeed, this effect can clearly be
seen in Figure 4.27.

0.0 0.2 0.4 0.6 0.8 1.0
IoU

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

IoU effects

f1-score
mAP
precision
recall

Figure 4.27: IoU effects on the metrics

Now, moving towards the confidence threshold in YOLO’s model, we start to see
interesting things. The confidence value allows us to keep only the predictions the model
is sure of. In theory, a higher confidence threshold should increase the precision of a
model and decrease its recall. However, we do not see that from the curves in Figure
4.28. This is the result of the abnormality that has been discussed in the previous section.
A poorly balanced loss function or more specifically, a poorly balanced confidence loss
leads to overpower the gradients of cells than do contain an object. This forces those that

4.3 Model calibration 53

do not contain one to converge towards zero. Consequently, we can say that the chart
from Figure 4.28 gives us no meaningful information (beyond of knowing that there is a
problem with our model and needs to be corrected) so all confidence values are either 0
or 1, with almost no steps in between.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

Confidence effects

f1-score
mAP
precision
recall

Figure 4.28: Confidence effects on the metrics (Anomaly)

Finally, the non-maximum suppression step. If we set a high threshold, the model
will be very permissive with the amount of overlapping between predictions. This will
improve the recall of our model as now there are more boxes, but it will harm other
metrics such as the precision because there is more room for miss-classifications. Besides,
many object detector competitions give a penalty for each extra or duplicate bounding
box so this is something to take into account.

0.0 0.2 0.4 0.6 0.8 1.0
Non-maximum suppression

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

Non-maximum suppression effects

f1-score
mAP
precision
recall

Figure 4.29: NMS effects on the metrics

54 Experiments and results

4.4 Implementation notes

We used PyTorch[30] as the deep-learning library to build, train and evaluate our models.
Everything is written in Python and the code can be found in Github[34].

All the models were trained and tested on a NVIDIA GTX 1080 8GB and a NVIDIA
GTX 1070 8GB.

To further improve the speed of “slow” functions such as losses or metrics, all critical
tensor operations were written in Pytorch[30] to make use of their efficient GPU support.

Chapter 5

Conclusions and future work

5.1 Conclusions

In this work, we addressed the problem of mathematical expression detection in images
using single-shot object detectors. One of the main contributions of our work is to study
the performance of two state-of-the-art models, SSD[4] and YOLOv3[15], for a not so
common task.

A discussion on these models has been provided along with the singularities of the
object detection evaluation. In particular, we have modified the architecture of SSD[4],
YOLOv3[15], and the prior generation method to bring down the number of predictions
into a manageable size. Some of the constraints imposed on the models were made to
overcome the memory limitations we had, a thing that could have decreased the perfor-
mance of these models. Our contribution here is two-fold. First an experimental com-
parison of their behavior has been performed, and second, we have provided a detailed
analysis of their results along with some ideas on how to calibrate them.

The main focus of this work was to understand the idea behind state-of-the-art single-
shot object detectors. SSD[4] has resulted quite difficult to optimize since minor changes
on the prior generation or its parametrization lead to the stagnation of the model pretty
easily. Nevertheless, it has shown an impressive high precision although with low re-
call values. On the other hand, YOLOv3[15] has shown remarkably good results with a
balance recall-precision curve and a simple model parametrization.

Finally, we have studied the results of these models. As expected, both models have
shown more problems to distinguish the embedded expressions from the isolated ones
than the opposite. SSD[4] shows a correct prediction ratio of 92.3%, but it struggles the
most with the background and the localization errors since they are predicted as expres-
sions a 5.6% and 1.7% of the time, respectively. Meanwhile, YOLOv3[15] correctness ratio
goes down to 81.9%, and the background and localization error rates go up to 11.4% and
6.2%.

5.2 Future work

Many experiments have been left for the future due to lack of time. Future work will seek
for a deeper analysis of the two presented models, research of new architectures, better
calibration, and more experimentation.

55

56 Conclusions and future work

There are some ideas that I would have liked to try during the development of this
work. This research has been mainly focused on two models and most of their experi-
mentation has not been enough to push their limits. Hence, in the future the following
ideas could be tested:

1. Random search[35] for a better parametrization.

2. State-of-the-art feature extractors such as ResNeXt[36], EfficientNet[37], SENet[38]

3. RAdam optimizer[39]

4. Different number of multi-scale auxiliary layers

5. Post-processing to optimize the fitness of each bounding box

Furthermore, other state-of-the-art object detectors could be tested (i.e. RetinaNet[40]
or Faster R-CNN[12]). From the ideas of these works, we could design a new architecture
to take advantage of the innovations that worked for mathematical expression detection
and ignore those that did not contribute.

The initial work was focused on mathematical expression detection. However, we
could take a different road and research the mathematical expression recognition prob-
lem.

Bibliography

[1] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524,
2013.

[2] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International Journal of Computer Vision,
vol. 88, pp. 303–338, June 2010.

[3] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, “SSD:
single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[5] M. C. Potter, B. Wyble, C. E. Hagmann, and E. S. McCourt, “Detecting meaning in
rsvp at 13 ms per picture,” Attention, Perception, & Psychophysics, vol. 76, pp. 270–279,
Feb 2014.

[6] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, mul-
tiscale, deformable part model,” in 2008 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 1–8, June 2008.

[7] J. R. Uijlings, K. E. Sande, T. Gevers, and A. W. Smeulders, “Selective search for
object recognition,” Int. J. Comput. Vision, vol. 104, pp. 154–171, Sept. 2013.

[8] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using
deep neural networks,” CoRR, vol. abs/1312.2249, 2013.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,”
International Conference on Learning Representations (ICLR) (Banff), 12 2013.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” CoRR, vol. abs/1406.4729, 2014.

[11] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.

[12] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object
detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015.

[13] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[14] X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony between dropout
and batch normalization by variance shift,” CoRR, vol. abs/1801.05134, 2018.

57

58 BIBLIOGRAPHY

[15] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR,
vol. abs/1804.02767, 2018.

[16] D. Hoiem, Y. Chodpathumwan, and Q. Dai, “Diagnosing error in object detectors,”
in Computer Vision – ECCV 2012 (A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and
C. Schmid, eds.), (Berlin, Heidelberg), pp. 340–353, Springer Berlin Heidelberg, 2012.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

[19] S. Vinodababu, “Ssd: Single shot multibox detector | a pytorch tutorial to object
detection.”

[20] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol. abs/1312.4400, 2013.

[21] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the im-
pact of residual connections on learning,” CoRR, vol. abs/1602.07261, 2016.

[22] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature
pyramid networks for object detection,” CoRR, vol. abs/1612.03144, 2016.

[23] W. Liu, A. Rabinovich, and A. C. Berg, “ParseNet: Looking Wider to See Better,”
arXiv e-prints, p. arXiv:1506.04579, Jun 2015.

[24] CyberAILab, “A closer look at yolov3.”

[25] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in con-
text,” CoRR, vol. abs/1405.0312, 2014.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[27] R. Rothe, M. Guillaumin, and L. Van Gool, “Non-maximum suppression for object
detection by passing messages between windows,” vol. 9003, 04 2015.

[28] “Best of both worlds: Human-machine collaboration for object annotation,” in IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
(United States), pp. 2121–2131, IEEE Computer Society, 10 2015.

[29] I. of Computer Science, T. of Peking University, and I. of Digital Publishing of
Founder RD Center (China), “Marmot dataset.” http://www.icst.pku.edu.cn/
cpdp/sjzy/index.htm.

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[31] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in AIS-
TATS, 2011.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

[33] J. Redmon, “Darknet: Open source neural networks in c.” http://pjreddie.com/
darknet/, 2013–2016.

http://www.icst.pku.edu.cn/cpdp/sjzy/index.htm
http://www.icst.pku.edu.cn/cpdp/sjzy/index.htm
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

BIBLIOGRAPHY 59

[34] S. Carrión, “Detection of mathematical expressions in scientific papers.” https:
//github.com/salvacarrion/yolo4math.

[35] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J.
Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[36] D. Mahajan, R. B. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and
L. van der Maaten, “Exploring the limits of weakly supervised pretraining,” CoRR,
vol. abs/1805.00932, 2018.

[37] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neu-
ral networks,” CoRR, vol. abs/1905.11946, 2019.

[38] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” CoRR,
vol. abs/1709.01507, 2017.

[39] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the
adaptive learning rate and beyond,” 2019.

[40] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” CoRR, vol. abs/1708.02002, 2017.

https://github.com/salvacarrion/yolo4math
https://github.com/salvacarrion/yolo4math

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Related work
	Overview of the proposal approach
	Context of applications and assumptions
	Expected outcomes/results

	Object detection with deep learning
	SSD: Single Shot Detector
	Feature extractor
	Auxiliary layers
	Prediction layers
	Loss
	Priors
	Hard Negative Mining

	YOLO: You Only Look Once
	Feature extractor
	Prediction layers
	Loss
	Anchor boxes

	Methodology
	Definitions
	Bounding box
	Jaccard Index
	Multibox
	Confusion matrix
	Precision
	Recall
	F1-Score

	Singularities of mathematical expression detection
	Topology adjustments
	Data processing
	Pre-processing
	Post-processing

	Evaluation
	Prediction correctness
	Metrics
	ROC curve
	Discussion

	Experiments and results
	Dataset description
	Experiments
	SSD
	YOLO
	Model debugging

	Model calibration
	Implementation notes

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

