
Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Integrating reinforcement learning and automated
planning for playing video-games

TRABAJO FIN DE MASTER

Master Universitario en Inteligencia Artificial, Reconocimiento de Formas e
Imagen Digital

Author: Daniel Diosdado López

Tutor: Eva Onaindia de la Rivaherrera

Tutor: Sergio Jiménez Celorrio

Course 2018-2019

Resum
Aquest treball descriu un nou enfocament de crear agents capaços de jugar a múlti-

ples videojocs que es basa en un mecanisme que intercala planificació i aprenentatge. La
planificació s’utilitza per a l’exploració de l’espai de cerca i l’aprenentatge per reforç s’u-
tilitza per a obtindre informació de recompenses anteriors. Més concretament, les accions
de estats visitades pel planificador durant la cerca es basen en un algoritme d’aprenen-
tatge que calcula les estimacions de polítiques en forma de xarxa neuronal que s’utilitzen
al seu torn per guiar el pas de la planificació. Així, la planificació s’utilitza per realitzar la
cerca del millor moviment en l’espai d’acció i l’aprenentatge s’utilitza per extreure funci-
ons de la pantalla i aprendre una política per millorar la cerca del pas de planificació.

La nostra proposta es basa en un algoritme de planificació basat en Iterated Width
juntament amb una xarxa neuronal convolucional per implementar el mòdul de aprenen-
tatge per reforç. Es presenten dues millores sobre el mètode de planificació i aprenentatge
base (P&A). La primera millora utilitza la puntuació del joc per a disminuir la poda en el
pas de la planificació, i la segona afegeix a la primera un ajustament dels hiperparame-
tres i la modificació de l’arquitectura de la xarxa neuronal per millorar les característiques
extretes i augmentar el seu nombre.

Les nostres millores es proven en els jocs de la Atari 2600 del Arcade Learning Envi-
ronment mitjançant el kit d’eines OpenAI Gym. S’analitzen els resultats i es discuteixen
els punts forts i els punts febles d’aquest enfocament.

Paraules clau: Agents, Videojocs, Arcade learning environment, Intel·ligència artificial,
Iterated Width

iii

iv

Resumen
Este trabajo describe un novedoso enfoque de crear agentes capaces de jugar a múl-

tiples videojuegos que se basa en un mecanismo que intercala planificación y aprendiza-
je. La planificación se utiliza para explorar el espacio de búsqueda y el aprendizaje por
refuerzo se utiliza para aprovechar la información de recompensas anteriores. Más es-
pecíficamente, las acciones de estados visitadas por el planificador durante la búsqueda
alimentan al algoritmo de aprendizaje que calcula las estimaciones de las políticas en for-
ma de una red neuronal, que a su vez se utilizan para guiar el paso de planificación. Por
lo tanto, la planificación se utiliza para llevar a cabo una búsqueda del mejor movimien-
to en el espacio de acciones y el aprendizaje se utiliza para extraer características de la
pantalla y aprender una política para mejorar la búsqueda del paso de planificación.

Nuestra propuesta se basa en un algoritmo de planificación basado en Iterated Width
junto con una red neuronal convolucional para implementar el módulo de aprendizaje
por refuerzo. Creamos dos mejoras sobre el método básico de planificación y aprendizaje
(P&A). La primera mejora usa la puntuación del juego para disminuir la poda en el pa-
so de planificación, y la segunda agrega a la primera un ajuste de los hiperparámetros
y la modificación de la arquitectura de la red neuronal para mejorar las características
extraídas y aumentar su número.

Nuestras mejoras se prueban en juegos de la Atari 2600 del Arcade Learning Envi-
ronment, utilizando el kit de herramientas OpenAI Gym. Se analizan los resultados y se
discuten las fortalezas y debilidades de este enfoque.

Palabras clave: Agentes, Video Juego, Arcade learning environment, Inteligencia artifi-
cial, Iterated Width

v

Abstract
This paper describes a novel approach of creating multi-game agents for playing

videogames that draws upon a mechanism that interleaves planning and learning. Plan-
ning is used for exploration of the search space and reinforcement learning is used to
leverage past reward information. More specifically, the state-actions visited by the plan-
ner during search are fed to a learning algorithm that calculates policy estimates in the
form of a Neural Network which are in turn used to guide the planning step. Thus, plan-
ning is used to carry out a search for the best move in the action space and learning is
used to extract features from the screen and learn a policy in order to improve the search
of the planning step.

Our proposal relies on an Iterated Width-based planning algorithm along with a Con-
volutional Neural Network for implementing the Reinforcement Learning module. We
come up with two enhancements over a base planning and learning (P&L) method. The
first improvement uses the score of the game to lessen the pruning in the planning step,
and the second one adds to the first one a fine-tuning of the hyperparameters and the
modification of the neural network architecture to enhance the features extracted and
increase the their number.

Our enhancements are tested on Atari 2600 games from the Arcade Learning Envi-
ronment using the OpenAI Gym toolkit. The results are analyzed and the strengths and
weaknesses of this approach are discussed.

Key words: Agents, Video Game, Arcade learning environment, Artificial intelligence,
Iterated Width

Contents

Contents vii
List of Figures ix
List of Tables ix

1 Objectives 1
2 Related Work 3

2.1 Game definition . 3
2.2 Overview of control strategies for game agents 5
2.3 Planning and learning for game playing . 7

2.3.1 AlphaGo . 8
2.3.2 AlphaZero . 8
2.3.3 AlphaStar . 9

3 Background 11
3.1 Arcade Learning Environment . 11

3.1.1 OpenAI Gym . 12
3.2 Planning with IW algorithms . 14

3.2.1 Planning task . 14
3.2.2 Width . 16
3.2.3 Iterated Width Search . 17
3.2.4 IW-based planning . 19

3.3 Reinforcement Learning . 20
3.3.1 Q-learning . 20

3.4 Deep Learning . 21
3.4.1 Convolutional Neural Networks . 22

4 Integrating Planning and Learning for the Atari Video-games 23
4.1 A Deep Reinforcement Learning framework for the ALE 23

4.1.1 Softmax action selection policy . 24
4.1.2 Guiding IW-based planning algorithms with softmax policy 24
4.1.3 Learning the policy estimation from past planning episodes 25
4.1.4 Abstracting states with Deep Neural Networks 25

4.2 Improving the RL framework for the ALE 26
4.2.1 Improving the planning algorithm 26
4.2.2 Improving the learning algorithm 27

5 Empirical evaluation 29
5.1 Game selection . 29

5.1.1 Maze games . 29
5.1.2 Shooter games . 33
5.1.3 Reactive games . 37

5.2 Experimental results . 40
5.2.1 Performance in Maze games . 41
5.2.2 Performance in Shooters games . 42
5.2.3 Performance in Reactive games . 43

vii

viii CONTENTS

5.2.4 Conclusions of the results . 44
6 Conclusions and future work 45
Bibliography 47

List of Figures

2.1 Game theory representation of simultaneous and sequential games. 4
2.2 Genetic-based controller in Mario AI competition 8
2.3 Results of AlphaZero in Chess, Go and Shogi 9
2.4 AlphaStar vs Grzegorz "MaNa" Komincz from Team Liquid 10

3.1 Photo of the Atari 2600 . 12
3.2 Action ’move’ in the game Sokoban . 15
3.3 Trace of IW(1) to the counters problem. 18

4.1 Architecture of the Neural Network . 27

5.1 Capture of the Atari 2600 game Alien . 30
5.2 Capture of the Atari 2600 game Ms. Pac-man 31
5.3 Capture of the Atari 2600 game Q*bert . 32
5.4 Capture of the Atari 2600 game Tutankham 32
5.5 Capture of the Atari 2600 game Venture . 33
5.6 Capture of the Atari 2600 game Assault . 34
5.7 Capture of the Atari 2600 game Battle Zone 34
5.8 Capture of the Atari 2600 game Centipede 35
5.9 Capture of the Atari 2600 game Demon Attack 36
5.10 Capture of the Atari 2600 game James Bond 007 36
5.11 Capture of the Atari 2600 game Space Invaders 37
5.12 Capture of the Atari 2600 game Asterix . 38
5.13 Capture of the Atari 2600 game Kung-Fu Master 38
5.14 Capture of the Atari 2600 game Pong . 39
5.15 Capture of the Atari 2600 game Road Runner 39
5.16 Capture of the Atari 2600 game Skiing . 40
5.17 Capture of the Atari 2600 game Tennis . 40

List of Tables

5.1 Results of the experiments . 42

ix

CHAPTER 1

Objectives

One of the most interesting challenges is to make an Artificial Intelligence (AI) agent
capable of doing tasks which require an intelligent behaviour. One of this tasks is playing
games. Games can be seen as a simplified situation from the real world, so creating agents
capable of playing with a certain level can lead to real world applications.

Games, and specifically videogames, make good environments for AI developments
since they feature some or even all of the following characteristics:

• Complex strategies: With the exception of the most basic games, in videogames it
is necessary to employ advanced strategies to play and beat the games.

• Specific goals: Games usually have a distinct definition of success and defeat.

• Measurable results: Games usually provide a measure of success, which can be
used to see how well an agent performs and to compare the performance of differ-
ent agents.

Among the manifold works in videogame playing, we can differentiate two large
groups: researchers who aim to make progress in a single game, such as AlplhaGo or
AlphaStar, and those who put the focus on the development of a game agent capable of
playing several games such as AlphaZero.

For single games, specific knowledge about the environment can be used. For ex-
ample, AlphaGo exploits the fact that Go is symmetric under certain reflections and rota-
tions, or Stockfish uses a database of pre-calculated exhaustive analysis of endgame states.

In the case of multi-game agents, the focus is on the development of techniques and
agents capable of adapting to new environments on the fly and learning the underlying
rules of different games in order to play them on human or even super-human level.

There are different frameworks already developed to test agents in different environ-
ments, such as the Arcade Learning Environment (ALE), the General Video Game AI
competition (GVGAI) or OpenAI Gym.

Our goal in this project is to develop an agent capable of playing several games of the
Arcade Learning Environment such as Alien, Battle Zone, Pong or Space Invaders among
others. This agent must be able to play different games without previous domain knowl-
edge and learn the games’ mechanics by applying state-of-the-art search algorithms, with
the objective of achieving the goals of each game. To do so, we will employ a combined
technique of planning and learning: planning to carry out a search for the best move in
the action space and learning to extract features from the screen and learn a policy to
improve the search of the planning step.

1

CHAPTER 2

Related Work

The videogame industry is one of the fastest growing entertainment sectors in recent
years, and it’s estimated to generate 152.1 billion of dollars in revenue this year. [51]

Games offer their players a challenge that must be overcome in order to win the game,
be it solving a puzzle (Sokoban), defeating Non-Player Characters (Space Invaders), win-
ning a race (Mario Kart) or defeating another player (Chess, Unreal Tournament, Starcraft).
Creating an Artificial Intelligence (AI onwards) capable of playing these games becomes
a challenge, as they must find solutions to problems quickly. Due to this, games have
become a popular benchmark for AI.

Many researchers have studied algorithms and techniques that try to approximate
optimal play in computer games. Research on these games has enabled some interesting
advances in algorithmic AI such as the use of parallelized Alpha-Beta pruning (in Chess),
or the progress seen in one of the most popular algorithms in Game AI, Monte Carlo Tree
Search (MCTS), in the game of Go [39] [43].

Early research put the focus on board games like Chess, Scrabble or Checkers. Thanks to
the advances in the development of tree-search methods, games like Scrabble or Checkers
are now resolved [40].

Nowadays researchers are more interested in video games where the complexity is
harder and there is room for improvements. The main games addressed by researchers
are those in which an agent can easily learn how to play but are difficult to master. In or-
der to create and evaluate agents developed by researchers, platforms such as The Arcade
Learning Environment [8] and the General Video Game - Artificial Intelligence (GVG-AI)
[3] have emerged.

2.1 Game definition

Following we will define some relevant concepts of game theory that will allow us to
describe and to contextualize the kind of games addressed in this research.

• According to the number of players, games can be divided into:

– One-player games. There is only one character in the game, who must solve
the problem to win or obtain the best score possible. This kind of games are
sometimes named puzzle games [23].

– Two-player games. These games are characterized by having two players with
opposing interests trying to achieve the game objectives. Board games like

3

4 Related Work

Chess or Go are examples of two-player games with a large tradition in AI for
games researches [12].

– Multi-player games. Games that feature more than two players belong to this
group. The complexity of these games increases because players can form
alliances or compete among themselves. In these games, there are common
and opposed interests with the rest of players, and in some cases it is necessary
to carry out some type of negotiation in the best interest of a subset of players.

Games are characterized by different features that determine the type of game. Fol-
lowing we enumerate a list of features that are used to describe games. The con-
cepts shown below are not incompatible, so a game may present several of the
following features.

• Simultaneous games vs sequential games. In game theory, a simultaneous game
is a game where each player chooses his action without knowledge of the actions
chosen by other players. In other words, more than one player can issue actions
at the same time. Games like Rock-paper-scissors or Starcraft are some examples of
simultaneous games [37]. In contrast, sequential games are those in which one
player chooses his action before the others choose theirs. In this case, the latter
players have information available of the first players’ choice, which allows them
to create more informed strategies. Chess, Shogi, Go or Tic-Tac-Toe are some examples
of sequential games.

In game theory, the representation of the games varies according to the type of
game. Simultaneous games are often represented by a matrix that encompasses all
possible combinations of players’ moves. Each cell specifies the reward and penalty
for each player if that combination of moves is feasible. The game Rock Paper Scissor
Lizard Spock is represented in Figure 2.1a. Sequential games are commonly repre-
sented by decision trees in which the time axis is represented by the depth of a node
in the tree. In Figure 2.1b we see an example of the game Tic-Tac-Toe.

(a) Rock Paper Scissor Lizard Spock matrix.

(b) Decision tree in Tic-Tac-Toe

Figure 2.1: Game theory representation of simultaneous and sequential games.

• Zero-sum vs non-zero-sum games. Zero-sum games are games in which each par-
ticipant’s gain or loss of utility is exactly balanced by the losses or gains of the utility
of the other participants. If the total gains of the participants are added up and the
total losses are subtracted, they will sum to zero. In this type of games, there does
not exist a win-win solution. Poker [9] and Gambling are popular examples of zero-
sum games. Games like Chess and Tennis, where there is one winner and one loser,
are also zero-sum games. In non-zero-sum games, a gain by one player does not

2.2 Overview of control strategies for game agents 5

necessarily correspond with a loss by another, because the outcome has net results
greater or less than zero. One example of non-zero-sum game is the prisoner’s
dilemma.

• Stochastic vs deterministic games. Stochastic games are dynamic games with
probabilistic transitions. In each step, a new random state is created whose dis-
tribution depends on the previous state and the actions chosen by the players. In
contrast, a game is deterministic if the result of the actions taken by the players
leads to completely predictable outcomes [48].

• Perfect, imperfect and incomplete information games. Perfect information refers
to the fact that each player has the same information that would be available at the
end of the game. This is, each player knows or can see other player’s moves. A
good example would be Chess, where each player sees the other player’s pieces on
the board.

Imperfect information games are those where players know perfectly the types of
other players and their possible strategies, but are unaware of the actions taken by
them.

In incomplete information games, other details of the game are unknown to one or
more players. This may be the player’s type, their strategies, their payoffs, their
preferences or a combination of these. Imperfect information games are therefore
incomplete information games but not vice versa.

Games with simultaneous moves are generally not considered games of perfect
information. This is because players hold information that is hidden to the others
and so every player must make a move without knowing the opponent’s hidden
information [25].

• Combinatorial games. In this type of games, the difficulty of finding an optimal
strategy stems from the combinatorial explosion of possible moves. Combinatorial
game theory typically studies sequential games with perfect information. Thanks
to the advances in mathematical techniques over the last years, the complexity of
combinatorial games has been largely reduced. This improvement has led to the
creation of different variants of games with a high combinatorial component. One
example is the Infinite Chess, where the game is played on an unbounded chess-
board [28].

2.2 Overview of control strategies for game agents

In this section we present some of the most relevant control strategies for developing
game agents.

• Hand-coded strategies

This type of strategy consists of the design of manually coded heuristic to guide the
search process.

Rule-based controllers use hand-coded strategies that return the action that com-
plies with a set of relatively simple conditions. An example of rule-based controllers
can be found in the Super Mario Bros game, which defines a particular behaviour
where the character Mario constantly runs right and jumps whenever possible. In
this case, the game agent would contain a single rule that determines when to jump.

6 Related Work

Creating a rule-based agent entails having a detailed knowledge on the dynamics
of the game to be able to extract all possible situations and actions. In addition, an
unforeseen situation could lead to unexpected behaviours by the agent.

Another limitation of rule-based agents is that rules are derived from the mechanics
of the game. As a result, we will get an agent specialized in that game, but unable
to adapt its actions to new environments. For example a world-champion StarCraft
agent will not be able to play Chess [11].

• Combinatorial Search

This strategy consists in turning the goal of finding the best move into a search
problem. The game is simulated at each player’s turn producing all possible move
combinations. The result of the simulations is then used to build a search tree that
helps find the best possible move [42].

In most cases the search space is too large and we cannot guarantee the optimal
solution, making necessary the implementation of heuristics to guide the search. In
dynamic environments, it is also recommended to start the search at every step of
the game, because the new information enables to narrow down the search space
and discard the exploration of useless parts of the search tree.

Sequential two-player games typically use this type of control strategy. The com-
plete information of sequential games makes the simulation unique without possi-
ble variations as it happens in stochastic games. In addition, the fact that players
move by turns provides players with a natural computational time to think about
the next move.

Algorithms like minimax or alpha-beta [27] are designed to explore sequential games
where a player tries to find the movement that maximizes an evaluation function
while minimum values of this function favor the opponent. Alpha-beta incorpo-
rates a pruning condition that improves the search speed with the same result of
minimax.

Unlike sequential games, in stochastic games there is no guarantee that the game
evolution will follow the search exploration carried out by the player. One possible
solution is to apply statistical approximations along several iterations of the game.
One example of combinatorial search algorithms is Monte Carlo Tree Search (MTCS)
[13], which analyzes the most promising moves, expanding the search tree based
on random sampling of the search space from a selected leaf node of the tree. In the
selection process, better nodes are more likely to be chosen.

• Learning-based controllers

This type of control strategy consists in improving the behaviour of a game agent
by using previously recorded examples of the game, or interacting directly with the
game. The agent is trained by playing multiple games and/or observing profes-
sional matches, and iteratively penalizing or rewarding the agent actions in order
to obtain better outcomes [44].

The state of the art in learning-based controllers is full of variations of neural net-
works (NN onwards), specially deep convolutional neural networks. In games like
Chess or Go, NN are used to evaluate a concrete intermediate state of the game and
predict the final outcome. In addition, NN are used to predict the best action to
apply in the current state of the game. The combination of search strategies like
MTCS with NN is very helpful to conduct search simulation.

One more advantage of learning-based controllers over combinatorial search con-
trollers is that its not necessary to run a simulation process to find the best action.

2.3 Planning and learning for game playing 7

Instead, as a result of the training process, we get a model embedded in the con-
troller that acts as a function, returning the action to execute in every state.

A different approach that generally obtains good results are Genetic algorithms.
They are stochastic, parallel search algorithms based on the mechanics of natural se-
lection and evolution. Genetic algorithms were designed to efficiently search large,
non-linear, poorly-understood search spaces where expert knowledge is scarce or
difficult to encode and where traditional optimization techniques fail [14]. The de-
velopment of a game agent based on genetic algorithms requires first to decide the
game parameters to be optimized and then encode these parameters into a chromo-
some layout. Subsequently, an initial population with sufficiently different chromo-
somes to guarantee genetic diversity is created. Iteratively, the behaviour of each
individual of the population in the game is simulated and a new generation is cre-
ated, crossing some individuals which are chosen following a selection strategy.
The idea is to select the fittest individuals and let them pass their genes to the next
generation. In order to avoid the tendency towards local optimization, a mutation
component is introduced, where there is a probability of mutation, and some genes
are modified according to the mutation strategy.

• Hybrid Approaches:

Hybrid approaches emerge as a combination of some of the aforementioned de-
scribed techniques. The Dynamic scripting [38] game is an example of the utilization
of an hybrid approach, where hand-coded strategies are combined with learning-
based algorithms. Under this hybrid approach, the agent is guided by a set of rules
but the decision of which rule to choose is made by means of a reinforcement learn-
ing process. Dynamic scripting executes the agent multiple times, adding a reward
or penalty proportional to how well the agent performed in a particular level of the
game.

2.3 Planning and learning for game playing

Research in videogames aims at developing two types of game agents:

• Agents oriented to play a single game; e.g., AlphaGo [4] which was the first AI
program that won versus a professional championship of Go; or Stockfish [2], which
won the 14th Top Chess Engine Championship of Chess; or competitions like the
Mario AI championship [1] shown in Figure 2.2.

• Agents able to play several games and to adapt themselves to new environments.
The implementation of agents for playing different games is encouraged by plat-
forms such as the Arcade Learning Environment or the General Video Game AI
competition (GVG-AI).

The goal of agents that play a single game is to find a behaviour that allows them to
master such game, trying to maximize the score or minimize the time it takes to solve the
game. To this end, researchers implement techniques like the ones explained in section
2.2 and build specialized agents for a specific games. The result is an agent that excels
in the game in question, but is unable to adapt to the conditions of a different game and
would most likely get poor results [50].

However, some researchers are interested in developing general game agents capable
of playing different games, even games for which the agent has never been trained for.

8 Related Work

Figure 2.2: Genetic-based controller in Mario AI competition

In this case, the final objective is to test agents in general game competitions and to de-
velop AI techniques that can possibly be later applied to some real-life tasks. Ultimately,
researchers aim to develop general AI techniques applicable to different games instead
of a specialized tool for only one game.

Following, we are going to discuss briefly three of the most important agents in AI
for games: AlphaGo, AlphaZero and AlphaStar.

2.3.1. AlphaGo

AlphaGo is a computer program developed by Google DeepMind that plays the board
game Go based on a combination of deep neural networks and Monte Carlo tree search
and is capable of playing at the level of the strongest human players. AlphaGo uses
Monte Carlo Tree Search algorithm to find its moves based on knowledge previously
learned by a combination of supervised and reinforcement learning by an artificial neural
network. A neural network is trained to predict AlphaGo’s own move selections and also
the winner’s games. This neural network improves the strength of tree search, resulting
in higher quality of move selection and stronger self-play in the next iteration. [43]

In October 2015, AlphaGo became the first computer Go program to beat a human
professional Go player without handicaps on a full-sized 19x19 board. In March 2016, it
beat Lee Sedol in a five-game match, the first time a computer Go program has beaten
a 9-dan professional without handicaps. The next version, AlphaGo Zero, was trained
only by self-play, and surpassed all the previous versions.

2.3.2. AlphaZero

AlphaZero is a generalized variant capable of accommodating a broader class of game
rules than the previous AlphaGo Zero, a version of AlphaGo created without using data
from human games, and stronger than any previous version of AlphaGo. The parameters
of the deep neural network in AlphaZero are trained by reinforcement learning entirely
from self-play games, unlike it predecessor AlphaGo . Each game is played by running an
MCTS search from the current position, and then selecting a move, either proportionally
(for exploration) or greedily (for exploitation) with respect to the visit counts at the root
state. At the end of the game, the terminal position is scored according to the rules of

2.3 Planning and learning for game playing 9

the game to compute the game outcome z: -1 for a loss, 0 for a draw, and +1 for a win.
The neural network parameters are updated to minimize the error between the predicted
outcome and the game outcome, and to maximize the similarity of the policy vector to
the search probabilities.[45]

The main differences between AlphaZero and AlphaGo Zero are:

• The neural network of AlphaZero is updated continually, instead of waiting for an
iteration to be completed like AlphaGo Zero.

• Go (unlike Chess) is symmetric under certain reflections and rotations; AlphaGo
Zero was programmed to take advantage of these symmetries, while AlphaZero is
not, so it can accommodate a broader class of games.

• AlphaGo Zero estimated and optimized the probability of winning, exploiting the
fact that Go games have a binary win or loss outcome. However, both Chess and
Shogi may end in drawn outcomes. AlphaZero instead estimates and optimizes the
expected outcome.

Within 24 hours of training, AlphaZero achieved superhuman level of play in the
games of Chess, Shogi and Go by defeating world-champion programs, Stockfish, Elmo,
and the 3-day version of AlphaGo Zero, as shown in Figure 2.3.

Figure 2.3: Results of AlphaZero in Chess, Go and Shogi

2.3.3. AlphaStar

AlphaStar is the first artificial intelligence system to beat a professional player at the
game of Starcraft II. Starcraft and its sequel Starcraft II belong to the RTS genre (real-time
strategy), a genre of games that is particularly challenging due to its characteristics: real-
time play, partial observability, no single dominant strategy, complex rules and a large
and varied action space. A capture of this game is shown below, in Figure 2.4.

AlphaStar is trained initially using imitation learning to mimic human play, and then
improved through the use of population-based training to keep a population of agents
that trains against each other. Its a memetic algorithm that uses Lamarckian evolution:

10 Related Work

the neural networks of the agents are optimised through backpropagation in an inner
loop, while in the outer loop networks are picked using one of several selection methods
(such as binary tournament selection), with the winner’s hyperparameters overwriting
the loser’s, and applying a mutation on those. [5]

Figure 2.4: AlphaStar vs Grzegorz "MaNa" Komincz from Team Liquid

CHAPTER 3

Background

In this chapter we will detail the necessary concepts to follow the contributions of this
project. First, we introduce the Arcade Learning Environment, followed by the OpenAI
Gym, which is the environment we use in this project.

In section 3.2 we introduce some basic concepts on classical planning as well as a
novel search algorithm that is used for exploration in our proposal.

Next, we will explain the most relevant concepts about Reinforcement Learning as
well as the selected algorithm to implement our AI agent.

3.1 Arcade Learning Environment

The Arcade Learning Environment (ALE) is a simple object-oriented framework that en-
ables the development of AI agents for Atari 2600 games. ALE is built on top of Stella, an
open-source Atari 2600 emulator which allows the user to interface with the Atari 2600 by
receiving joystick motions, sending screen and/or RAM information, and emulating the
platform. The Atari 2600 was originally released in 1977 and there were published more
than 500 games, spanning a diverse range of genres such as shooters, beat’em ups, puz-
zle, etc... Some of these games are timeless classics such as Breakout, Pong, Space Invaders
or Kung-Fu Master.

ALE provides a game-handling layer which transforms each game into a standard
reinforcement learning problem by identifying the accumulated score and whether the
game has ended. An episode begins on the first frame after a reset command is issued,
and terminates when the game ends. The game-handling layer also offers the ability
to end the episode after a predefined number of frames. By default, each observation
consists of a single game screen (frame): a 2D array of 7-bit pixels (128 colours), 160
pixels wide by 210 pixels high.

The action space consists of up to the 18 discrete actions defined by the joystick con-
troller: three positions of the joystick for each axis and a single button. Some of the games
on the Atari have a smaller action space, for example, Space Invaders has an action space
of 6: Noop (do nothing), Fire (shoot without moving), Right (move right), Left (move left),
RightFire (shoot and move right) and LeftFire (shoot and move left).

When ALE is running in real-time, the simulator generates 60 frames per second, and
is capable of emulating up to 6000 frames per second. The reward at each time-step is
defined on a game by game basis, typically by taking the difference in score or points
between frames.

11

12 Background

Figure 3.1: Photo of the Atari 2600

ALE allows us to access several dozen games through a single common interface,
and adding support for new games is relatively straightforward. It also provides the
functionality to save and restore the state of the emulator. When issued a save-state
command, ALE saves all the relevant data about the current game, including the contents
of the RAM, registers, and address counters. The restore-state command similarly resets
the game to a previously saved state. This enables the use of ALE as a generative model
to study topics such as planning and model-based reinforcement learning [7]. Due to this
characteristics, ALE is an ideal testbed for evaluating and comparing agents.

3.1.1. OpenAI Gym

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algo-
rithms written in Python. It aims to combine the best elements of previous benchmark
collections to become a software package that is convenient and accessible.

OpenAI was created with the intention of removing the problem of lack of standard-
ization in papers along with the aim to create better benchmarks by giving versatile num-
bers of environment with great ease of setting up. The aim of this tool is to increase re-
producibility in the field of AI research and provide tools with which everyone can learn
about basics of AI [10].

OpenAI Gym focuses on the episodic setting of reinforcement learning, where the
agent’s experience is broken down into a series of episodes. In each episode, the agent’s
initial state is randomly sampled from a distribution, and the interaction proceeds until
the environment reaches a terminal state. The goal in episodic reinforcement learning is
to maximize the expectation of total reward per episode, and to achieve a high level of
performance in as few episodes as possible.

The main functions that a Gym Environment provides are:

• Step(): The Step function receives an action, then the environment runs one timestep
and returns a tuple composed of:

– Observation: an environment-specific object representing your observation of
the environment. For example, pixel data from a camera, joint angles and joint
velocities of a robot, or the board state in a board game.

3.1 Arcade Learning Environment 13

– Reward: the amount of reward returned after the previous action was executed

– Done: a boolean which indicates whether the episode has ended or not. If an
episode has ended, further calls of step() will return undefined results.

– Info: a dictionary with useful information for diagnostic and debugging. The
information contained in info is specific of the environment, and sometimes,
there is useful information that can be used to play the environment.

• Reset(): This function resets the environment to its initial state and returns the ini-
tial observation of the environment. To initiate and episode of training, we must
call this function.

• Render(): Renders the environment and returns the observation. There are differ-
ent modes of rendering, and the modes supported vary depending of the environ-
ment, existing environments which don’t support any kind of rendering. The most
common are:

– Human: With this mode, the environment is rendered to the current display
or terminal and nothing is returned to the agent. Its done to view the agent
interacting with the environment.

– Rgb_array: Returns an array with shape (x, y, 3), which represents the RGB
values for an x-by-y pixel image.

– Ansi: Returns a string containing a terminal-style text representation. The text
can include newlines and ANSI escape sequences (e.g. for colours).

• Close(): Method used to stop and close the environment, freeing up all the physics’
state. Environments will automatically close() themselves when garbage collected
or when the program exits.

• Seed(): Sets the seed for this environment’s random number generator. If the envi-
ronment uses more than one random number generator, then this method accepts
a list of numbers. It returns the list of seeds used by the environment’s random
number generator.

The environment also provides useful information in these attributes:

• Action_space: Contains actions that are valid in the environment.

• Observation_space: The shape of the observations in number of pixels.

• Reward_range: A tuple corresponding to the min and max possible rewards.

Some environments provide more attributes and or functions. For example, the Atari
games in Gym, which work using the ALE to run, provide a function called get_action_meanings()
to known the meanings of each action in the environment. They also provide function
to clone and restore the game state, allowing the use of search algorithm in these games.
The observations in these environments can be images or the contents of the Ram, but
the environment only supports the rendering of the game observations in human mode
and in rgb_array.

Gym also serves as an interface with a wide variety of environments such as 2D and
3D robots simulations, using the physics engine MuJoCo[49] or Roboschool, another 3D
robot simulation which uses the Bullet engine instead of MuJoCo. The classic shooter
game Doom can also be used as an environment with Gym using ViZDoom, a "Doom based
AI Research Platform for Reinforcement Learning from Raw Visual Information" [26].

14 Background

3.2 Planning with IW algorithms

Automated planning in Artificial Intelligence (AI) is defined as the art of building control
algorithms for dynamic systems. More precisely, a planning task is a search problem
whose purpose is finding a set of actions that leads the system to an objective state from
a given initial situation. The vast majority of approaches model planning as a single-
agent procedure, in which a single entity or agent carries out the entire search process,
developing the complete course of action to solve the task at hand.

In this section, we first introduce the principal elements of a planning task. Subse-
quently, we present a novel pruning criteria for tree search and its usage in a popular
search algorithm for solving planning problems. Finally, we summarize some results
obtained with such algorithm in classical planning.

3.2.1. Planning task

Single-agent planning is a search process in which starting from an initial situation, the
agent has to find a plan or course of actions that allows it to reach a final state that in-
cludes the goals to achieve. Classical planning adopts a series of assumptions to reduce
the complexity of the problem and define its components more easily.

• The world is represented through a finite set of situations or states.

• The world is fully observable. In other words, the single agent has complete knowl-
edge of the environment.

• The world is deterministic; that is, the application of an action can only generate a
single other state.

• The world is static, the state of the world does not evolve until an action is applied.

• The planner handles explicit and immutable goal states.

• The planning process is carried out offline, so a planner does not consider external
changes that occur in the world.

A state is represented by a set of instantiated state variables named literals. The lit-
erals reflect those characteristics of the world that are interesting for the task at hand.
The states of the world change through the application of the planning actions. Actions
define the conditions that must hold in the world for an action to be applicable and the
effects that result from the application of the action. Conditions are statements quering
the value of a variables and effects are statements assigning a value to a variable.

We will denote the set of fluents (propositional state variables) describing a state as F.
A literal or instantiated state variable l is a valuation of a fluent f ∈ F, i.e. either l = f
or l = ¬ f . A set of literals L represents a partial assignment of values to fluents. We
use L(F) to denote the set of all literal sets on F; i.e. all partial assignments of values to
fluents.

A state s is a full assignment of values to fluents; i.e. |s| = |F|, so the size of the state
space is 2|F|.

A classical planning frame is a tuple Φ = 〈F, A〉, where F is a set of fluents and A is
a set of actions. An action a ∈ A is defined with preconditions, pre(a) ⊆ L(F), positive
effects, eff+(a) ⊆ L(F), and negative effects eff−(a) ⊆ L(F). We say that an action a ∈ A
is applicable in a state s iff pre(a) ⊆ s. The result of applying action a in state s is the

3.2 Planning with IW algorithms 15

successor state θ(s, a) = {s \ eff−c (s, a)) ∪ eff+
c (s, a)} where eff−c (s, a) ⊆ triggered(s, a) and

eff+
c (s, a) ⊆ triggered(s, a) are, respectively, the triggered negative and positive effects.

A classical planning problem is a tuple P = 〈F, A, I, G〉, where I is an initial state and
G ⊆ L(F) is a goal condition. A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces the state trajectory 〈s0, s1, . . . , sn〉 such that s0 = I and ai (1 ≤ i ≤ n) is applicable
in si−1 and generates the successor state si = θ(si−1, ai). The plan length is denoted with
|π| = n . A plan π solves P iff G ⊆ sn; i.e. if the goal condition is satisfied in the last state
resulting from the application of the plan π in the initial state I.

An important aspect is how to represent the components of a planning task with a
compact and expressive language. One of the first planning languages is STRIPS (STan-
ford Research Institute Problem Solver) [15], which has influenced most of the existing
planners. STRIPS is a compact and simple language that allows the specification of plan-
ning domains and problems. Despite its advantages, STRIPS has some limitations that
make it difficult to describe some real problems. As a result, many extensions have been
developed over the past years, enriching its expressiveness and simplifying the defini-
tion of planning domains. One of these extensions is Planning Domain Definition Lan-
guage (PDDL) [16], the standard language used in the International Planning Competi-
tions (IPC) within the planning community.

When designing a PDDL problem, we need to define two separate blocks. On the
one hand we must define the domain that includes the rules that govern the world of
the problem. On the other hand we must define the problem, that entails to expose a
particular situation within the domain previously described. Into the problem we must
specify the initial state, as well as the objectives to be solved. The domain describes the
general features of a particular domain, such as the types of objects, the predicates that
describe situations of the world and the operators that can be applied by the planning
entity to solve the task. The problem block models the specific details of the task, such as
the actual objects in the world, the initial situation of the task and the goals that must be
achieved in order to solve the planning task.

An example of PDDL code can be seen in the figure 3.2 where an action of the game
Sokoban is defined within the domain block.

Figure 3.2: Action ’move’ in the game Sokoban

State space planning

The simplest classical planning algorithms are state-space search algorithms. These are
search algorithms in which the search space is a subset of the state space: each node
corresponds to a state of the world, each arc corresponds to an action or state transition,
and the current plan corresponds to the current path in the search space. Particularly, a

16 Background

solution plan is the sequence of actions of a path that leads from the initial situation I
represented in the root node of the search space to a node (state) that contains the goal
condition G.

Most state-space planners use forward-search algorithms, starting the construction of
the plan in the initial state I and moving forward using the available actions until a fi-
nal state that contains G is reached. Forward-search is complete but the search space is
usually much larger than it needs to be. There are various ways to reduce the size of the
search space, by modifying the algorithm to prune branches of the search space (i.e., cut
off search below these branches).

Forward-state planners usually apply heuristics to guide the search. A heuristic func-
tion classifies states according to their desirability and the next state is selected according
to this ranking. Some of the most relevant state-space planners are:

• The Heuristic Search Planner (HSP) is one of the first state-based systems which
uses domain-independent heuristic search. The additive heuristic of HSP is defined
as the sum of costs of the individual goals in G, where the cost of a single atom is
estimated by considering a relaxed planning task in which all delete lists of the
actions are ignored.

• The Fast Forward (FF)planning system is one of the most influential approaches to
state-based planning. It uses the relaxed plan heuristic hFF , which is defined as the
number of actions of a plan that solves the relaxed planning task. FF works with
a Enforced Hill Climbing search, that is searching exhaustively nodes with a better
heuristic value.

• Fast Downward (FD) is a heuristic-based planner that uses a multi-valued repre-
sentation for the planning tasks. FD use SAS+ [22] to model the facts that conform
states. Each variable has associated a Domain Transition Graph (DTG). This struc-
ture reflects the evolution of that variable according to the actions of the task. DTGs
are used to compile the Causal Graph in which are reflected the dependencies be-
tween different state variables. FD sue a best-first multi-heuristic search alternating
hFF and hCG a heuristic inferred of the Causal Graph

• LAMA satisficing planner apply landmarks to improve the accuracy of the heuristic
search. A landmark is a fact that holds at some point in every solution of a planning
task. LAMA is based in FD planning but reuses the multi-heuristic search strategy
of FD to alternate a landmark-based estimator and a variant of the hFF heuristic.

3.2.2. Width

Some recent investigations have looked into the so called width-based search. Width is
a parameter that bounds the complexity of classical planning problems and domains.
When width is used along with a simple but effective blind-search procedure, planning
runs in time that is exponential in the problem width. Unlike the classical notion of
reachability of states, the width parameter comes up instead as a different reachability
relation over tuples (conjunctions) of literals of bounded size [31].

Roughly speaking, the width of a goal formula G composed of a single literal is the
minimum number of literals w required to be present simultaneously in a state s so that
every optimal plan that reaches w in s can be extended by appending an optimal action
sequence that reaches G. If G is true in s then the width of G is 0; i.e., w(G) = 0. Intu-
itively, the width indicates the indispensable number of literals that are needed to gen-
erate another literal. For instance, let be the following example from the Blocksworld do-

3.2 Planning with IW algorithms 17

main. Given s = {on(A, B), on(B, C), clear(A), ontable(C)}, and G = ontable(B), we can
affirm w(G) = 1 as stated in the path clear(A), hold(A), ontable(A), hold(B), ontable(B).
That is, the optimal plans for hold(A) can always be extended with the action putdown(A)
into optimal plans for ontable(A), while the optimal plans for ontable(A) from the above
situation can all be extended with the action unstack(B, C) into optimal plans for hold(B).
Likewise, the optimal plans for hold(B) extended with the action putdown(B) lead to
an optimal plan for ontable(B). This is all saying that in order to reach ontable(B) we
just require clear(A) to optimally generate hold(A), and hold(A) to optimally generate
ontable(A), and subsequently hold(B) is achievable because hold(A) implies clear(B).
Therefore, only one atom (literal) is required to successively extend the optimal plans for
hold(A) and obtain ontable(B).

The above example is an illustration to show that w(G) = 1 for any goal G =
ontable(b) in the Blocksworld domain. It turns out indeed that for single atom goals, the
width of domains like Blocksworld, Logistics and n-puzzle is at most 2 [31].

3.2.3. Iterated Width Search

The idea of search for novelty is first introduced in the work [29] as a search technique
that ignores the objective of the search and searches for behavioral novelty. Specifically,
a novelty search algorithm searches with no objective other than continually finding novel
behaviors in the search space. Yet because many points in the search space collapse to the
same point in behavior space, it turns out that the search for novelty is computationally
feasible.

Using the concept of width explained above as a pruning criterion in a search for nov-
elty has given rise to the Iterated-Width (IW) algorithm, a novelty-based pruned breadth-
first search (BFS) that uses a set of atoms (i.e., pairs of state variables with their corre-
sponding associated value) to represent a state and prunes states that do not satisfy a
given novelty condition. IW(i) is an i-width search that is complete for problems whose
width is bounded by i and has complexity is O(ni), where n is the number of problem
variables. Globally speaking, IW(i), where i is the value of width, is a plain forward-state
BFS with just one change: right after a state s is generated, the state is pruned if it does
not pass a simple novelty test that depends on i [31, 32].

In a IW algorithm, a state is composed of a set of state variables.

V = {v1, v2, . . . , vN}

Each state variable vj ∈ V has a finite and discrete domain Dvj that defines the possi-
ble values of that variable. A state is a total assignment of values to the state variables

The IW(i) algorithm is an implementation of a standard BFS, starting from a given
initial state s0, that prunes any state that is considered not novel, where the novelty con-
dition is defined as follows:

Definition 3.2.1. State novelty. When a new state s is generated, IW(i) contemplates all
n-tuples of atoms of s with size n ≤ i. The state is considered novel if at least one tuple
has not previously appeared in the search, otherwise the state is pruned.

Assuming that the N state variables have the same domain D, IW(i) visits at most
O((N × |D|)i) states. A key property of the algorithm is that while the number of states
is exponential in the number of atoms, IW(i) runs in time that is exponential in only in
i. In particular, IW(1) is linear in the number of atoms, while IW(2) is quadratic. IW(i)

18 Background

is then a blind search algorithm that eventually traverses the entire state-space provided
that i is large enough.

To understand the algorithm, let us present as example a simple search task. The
objective of the counters problem is defined as finding a given number with a predefined
number of counters. It is a simple search task that allows us to explain the different
concepts of the IW algorithms and illustrate the potential of these algorithms.

In the counters problem the state variables are integers numbers whose domain is
[0 . . . 9] each representing the value of a counter. For example, if we have 3 counters,
we will need 3 variables x1, x2 and x3. The initial state is by convention the situation
where all counters are fixed to 0, in our example, x1 = 0 , x2 = 0 , x3 = 0. The goal
or final state will be to reach a predetermined number. In our example, the goal will be
x1 = 3 , x2 = 3 , x3 = 3. To transit between different states we define a function per
counter that increments the counter value in one.

f1 → x1 += 1 , f2 → x2 += 1 , f3 → x3 += 1

In IW(i) atoms are a subset of variables of size i with an specific value; for example in
the initial state of our example task, there are three true atoms of size 1 {(x1 = 0), (x2 =
0), (x3 = 0)}. For IW(2) there are three atoms of size 2, {(x1 = 0, x2 = 0), (x1 = 0, x3 =
0)(x2 = 0, x3 = 0)} and so on. The number of possible atoms increases exponentially in
function of i, for IW(1) there are 30 possible atoms whereas for IW(2) the number raises
to 300 and for IW(3) reaches 1000 atoms.

Figure 3.3 shows the trace of the IW(1) in our counters problem example. Nodes in red are
pruned because they do not satisfy the novelty condition. That is, other nodes of the tree
previously discovered the atoms that appear in the pruned node. For example, the first
red node has three atoms x0 = 1, x1 = 1 and x2 = 0; the first atom of this node appears in
the parent node, the second atom appears in the second node of previous level, and the
last atom comes from the root node. Hence, the node {x0 = 1, x1 = 1, x2 = 0} does not
provide any new atom and does not satisfy the novelty condition for IW(1). Green nodes
represent atoms that satisfy an individual goal (we remind that the goal of the problem
in our example is to reach {x0 = 3, x1 = 3, x2 = 3}). We can observe that IW(1) always
finds individuals goals in an optimal path.

Figure 3.3: Trace of IW(1) to the counters problem.

3.2 Planning with IW algorithms 19

Since we are not able to solve a problem with IW(1), we would increment the width
(number of parameters) and come up with more complex goals. IW(2) will account for
two simultaneous goals at the cost of augmenting the number of produced nodes. And
IW(3) would solve the complete problem achieving the goal of the problem; i.e., the num-
ber 333.

The same problem can be solved by running IW(1) until one objective is achieved, and
then starting the algorithm again in that state to find the subsequent objectives (because
in this particular problem goals are serializable). The first execution allows the IW(1) al-
gorithm to reach the goal x0 = 3 as in the Figure 3.3. Starting from the first green node,
the second goal will be reached in the second iteration. And the last iteration will eventu-
ally achieve the global goal. With this serial implementation of the IW(1) algorithm, we
can achieve the given three objectives in one same execution. This is possible provided
that the objectives of the problem are independent. That is, when the achievement of one
objective does not interfere in the accomplishment of another objective. In the case that
the objectives are dependent to each other, it will be needed to increase the width level of
the algorithm to achieve them. For instance, in the game Adventure game, it is necessary
to first grasp a key in order to open a door or grasp a sword to beat an enemy (the avatar
can only hold an object at a time). With IW(1) we will be able to reach the key or the door,
but we may not achieve the two objectives. However, if we try first to reach the key, we
will succeed in the second objective, opening the door.

To summarize, by using IW(i), we can obtain as many objectives as the value of the
width equal to the i parameter. On the other hand, with a serialized implementation of
IW we can reduce the i parameter to achieve independent objectives.

3.2.4. IW-based planning

Width-based search algorithms were developed in the setting of classical planning to
show that instances of many existing domains can be solved in low polynomial time
when they feature atomic goals.

The ideas developed in width-based search have also been used to yield state-of-art
results in classical planning over the standard benchmarks of the IPC [31, 32], and more
recently in the Atari games [35, 42], and those of the General Video-Game AI competition
[17].

Width-based methods have also been used to avoid plateaus in heuristic search. In
contrast to goal-oriented search (exploitation), width-based search (seeking novel states)
is a form of structural exploration of the search space. The combination of both tech-
niques have proven to yield a search scheme, best-first width search, that is better than
both and which results in classical planning algorithms that outperform the state-of-the-
art planners [34].

More recently, the usage of best-first width search in the context of (decentralised)
multi-agent privacy-preserving planning has been addressed in the work [19]. In partic-
ular, authors show that best-first width search is a very effective approach over several
benchmark domains, even when the search is driven by heuristics that roughly estimate
the distance from goal states, computed without using the private information of other
agents.

20 Background

3.3 Reinforcement Learning

Reinforcement learning (RL) studies action selection, in an unknown environment, with the
aim of maximizing some notion of cumulative reward. In RL the environment is consid-
ered unknown because typically the action model and the reward function of the environ-
ment are both unknown.

Reinforcement learning is one of the three basic Machine Learning paradigms, along-
side supervised learning and unsupervised learning. RL differs from supervised learning in
that RL agents collect the learning examples by themselves, through interaction with the
environment. On the other hand RL differs from unsupervised learning in that learning
examples are labeled with a reward value.

With this regard, RL agents try to find a balance between exploration and exploitation
(useful to maximize the cumulative reward): Where exploration refers to the discovery of
new knowledge about the environment, and exploitation refers to leveraging the collected
knowledge of the environment.

RL problems are typically formulated as optimization problems within a Markov De-
cision Process (MDP). A MDP can be formalized with the following four elements:

• S, a set of states (that are typically factored using a set of state variables).

• A, a set of actions. Every action a ∈ A is applicable at every state s ∈ S.

• Pa(s, s′) = Prob(st+1 = s′|st = s, at = a), the probability of transition from state s to
state s′ under the execution of action a at the time step t.

• Ra(s, s′) is the immediate reward obtained after transition from s to s′ with the exe-
cution of action a.

In RL problems both Pa(s, s′) and Ra(s, s′) are initially unknown, despite they can be
sampled and estimated by interacting with the environment (i.e. by executing actions
and observing the obtained outcomes). In more detail, at a time step t, the RL agent
observes the current state st, executes action at that transits to the next state st+1, and
obtains a new reward value rt+1 = Rat(s, st+1).

The goal of a RL agent is to maximize its total (future) reward. This potential reward is
a weighted sum of the expected values of the rewards of all future steps starting from the
current state. Usually the goal metric to maximize is formulated as a discounted function
of the accumulated reward: ∑ γtrt, where γ is the discount factor (a constant between 0
and 1) that determines the relative value of delayed versus immediate rewards and rt is
the obtained reward value at time step t.

Solutions to a RL problem are typically specified as an action selection policy that
specifies the most promising action to apply at each reachable state. Thus, the decision
strategy is represented by a policy π : S→ ∆(A); i.e. a mapping from states to probability
distributions over actions.

Following we review one of the most popular approaches for solving RL problems.

3.3.1. Q-learning

Q-learning is a RL algorithm that computes a Q : S× A → R function to represent and
update the quality of the state-action combinations. Q(s, a) stands then for the quality of
an action a taken in a given state s.

3.4 Deep Learning 21

Before learning begins, the Q(s, a) function is initialized to a possibly arbitrary fixed
value (e.g., chosen by the programmer). Then, at each time step t the RL agent selects
an action at, enters a new state st+1, observes a reward rt, and updates accordingly the
Q(s, a) function. The core of the Q-learning algorithm is the update of the Q(s, a) function,
a simple value iteration update, using the weighted average of the old value and the new
information (α is the learning rate and it is a constant between 0 and 1 that balances the
weight of the old and new values):

Q(st, at) := (1− α)Q(st, at) + α(rt + γmaxaQ(st+1, a))

An episode of the Q-learning algorithm ends when state st+1 is a terminal state. For
all terminal states s f its Q(s f , a) value is never updated, but instead is set to the reward
value r f observed for that state. In most cases, Q(s f , a) can be taken to equal zero.

If the discount factor is lower than 1, Q-learning algorithm guarantees that the action
values are finite, even if the problem can contain infinite loops. For any finite Markov
Decision Process, Q-learning guarantees also to find a policy that is optimal in the sense
that it maximizes the expected value of the total reward over any and all successive steps,
starting from the current state.

Q-learning can also be extend by using a Deep neural network to represent and update
the Q(s, a) value function of a RL agent. This approach is known as Deep Q-learning
and makes it possible to apply the RL framework to problems with huge state-spaces
(and even continuous state-spaces). In addition the use of neural network to represent
and update the Q(s, a) value function speed up learning, due to the fact that they can
generalize earlier experiences to previously unseen states.

3.4 Deep Learning

Deep learning is a family of Machine Learning algorithms that are based on neural networks,
and that leverage multiple layers of artificial neurons to progressively extract higher level
features from the raw input data.

The word "deep" refers then to the number of layers through which the data is trans-
formed. Each layer learns to transform its input data into a slightly more abstract and
composite representation. For example imagine a video-game playing application, where
the raw input is a matrix with the values of the screen pixels. In this case lower layers
may abstract the pixels and identify edges, while higher layers may identify more rele-
vant concepts for the video-game playing, such as the kind and position of objects in the
screen.

Despite the impressive performance of deep learning techniques at a wide range of di-
verse real-world application, a main criticism concerning deep learning algorithms is the
high number of parameters that affects the final performance of this kind of algorithms.
For example, varying the numbers of layers, layer sizes and structure provide different
degrees of abstraction and hence, dramatically different performances. In addition deep
learning methods are considered black box methods since the validation of their perfor-
mance is too often empirical rather than theoretical.

Most modern deep learning models are based on artificial neural networks, specif-
ically, Convolutional Neural Networks. Next we review this particular kind of artificial
neural networks.

22 Background

3.4.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are regularized versions of multilayer perceptrons
that are commonly applied to analyzing visual imagery.

Multilayer perceptrons usually mean fully connected networks, that is, each artificial
neuron in one layer is connected to all neurons in the next layer. The strong connectivity
of these networks makes them prone to overfitting data. Typical ways of regularization
include adding some form of magnitude measurement of weights to the loss function.
However, CNNs take a different approach towards regularization: they take advantage
of the hierarchical pattern in data and assemble more complex patterns using smaller
and simpler patterns. Therefore, on the scale of connectivity and complexity, CNNs are
on the lower extreme.

CNNs leverage convolution, in place of general matrix multiplication, in at least one
of their layer. Further their activation function is commonly a RELU layer, and is sub-
sequently followed by additional convolutions such as pooling layers, fully connected
layers and normalization layers, referred to as hidden layers because their inputs and out-
puts are masked by the activation function and final convolution. The final convolution,
in turn, often involves backpropagation in order to more accurately weight the end prod-
uct.

CNNs use relatively little pre-processing compared to other image classification algo-
rithms. This means that the network learns the filters that in traditional algorithms were
hand-engineered. This independence from prior knowledge and human effort in feature
design is a major advantage.

Convolutional networks were inspired by biological processes in that the connectiv-
ity pattern between neurons resembles the organization of the animal visual cortex. In-
dividual cortical neurons respond to stimuli only in a restricted region of the visual field
known as the receptive field. The receptive fields of different neurons partially overlap
such that they cover the entire visual field.

CHAPTER 4

Integrating Planning and Learning
for the Atari Video-games

AI planning algorithms, such as the ones in the IW family [33], do not leverage any kind
of past information. This means that the performance of planners in a given problem (or
domain) does not improve over time, despite the planner addresses similar or even the
same planning problems.

In this chapter we show how to integrate Machine Learning techniques with the IW
planning algorithms to exploit past data of previous planning episodes and improve the
performance of the planning process as more experience is available. The integration we
follow is based on the recent Deep Reinforcement Learning (DRL) framework proposed by
Junyent et al. 2019 [24].

The chapter finalizes with the presentation of two enhacements to achieve more con-
sistent planning and learning processes in the framework of the presented baseline inte-
gration.

4.1 A Deep Reinforcement Learning framework for the ALE

Reinforcement Learning (RL) frameworks traditionally capture the knowledge learned
from past experience as an action selection policy [47]. An action selection policy is a func-
tion that maps (state, action) pairs into a numeric value. In stochastic environments this
value represents the expected reward that can be achieved by taking the given action at the
given state. The higher this value, the more promising the application of the action in its
associated state.

In interesting real-world problems the state space is usually too large to explicitly
represent the policy and store the value for each possible (state,action) pair. Instead, a
policy function can be learned, which does not store but estimates the value of actions with
regard to the given input state. Even more, a set of state features can be used to abstract
further the actual value of the state variables and achieve more compact representations
of the policy function. Related to this, the recent approach of Deep Reinforcement Learning
(DRL) builds on top of Deep Neural Networks (DNNs) to effectively reduce the dimension-
ality of input images. Thanks to DNNs the Deep Reinforcement Learning systems can
compactly represent action selection policy functions despite inputs states are screenshot
images [36].

In the Atari video-games the state variables represent the values of the screen pixels.
The input images are defined by a pixel array 160 wide and 210 high, with pixels that may
have up to 128 colors. In this project we follow the DRL approach and use a Deep Neural

23

24 Integrating Planning and Learning for the Atari Video-games

Network to compactly represent the policy estimate that maps pairs of (screen,action)
into their corresponding value estimate.

In a RL framework the policy is used in turn:

1. to guide the planning algorithm, preferring promising paths according to the policy,
and

2. to represent the knowledge learned from past experience (the policy generalizes
past planning episodes)

Next we will detail how the planning and learning processes are implemented in the
integration followed by this project.

4.1.1. Softmax action selection policy

The softmax policy consists of a softmax function that converts output to a distribution
of probabilities and it is commonly used in RL to obtain a probability for each possible
action. Although greedy action selection is an effective and popular means of balancing
exploration and exploitation in reinforcement learning, one drawback is that when it
explores it chooses equally among all actions. This means that it is as likely to choose the
worst-appearing action as it is to choose the next-to-best action. In tasks where the worst
actions are very bad, this may be unsatisfactory. The obvious solution is to vary the action
probabilities as a graded function of estimated value. The greedy action is still given the
highest selection probability, but all the others are ranked and weighted according to
their value estimates. These are called softmax action selection rules. The most common
softmax method uses a Gibbs, or Boltzmann, distribution. It chooses action a on the tth

play with probability:

Q(st, at) = π(at|st) =
eQ(st,at)/τ

∑k∈A eQ(st,ak)/τ

where τ is a positive parameter called the temperature. High temperatures (τ → ∞)
cause the actions to be all (nearly) equiprobable. Low temperatures cause a greater differ-
ence in selection probability for actions that differ in their value estimates (the probability
of the action with the highest expected reward tends to 1). In the limit as τ → 0, softmax
action selection becomes the same as greedy action selection. In short, high values of τ
favor exploration whilst low values of τ favor exploitation.

4.1.2. Guiding IW-based planning algorithms with softmax policy

The planning algorithm used in this project is the Rollout version of IW(1) [6]. The reason
to use this version is that it is closer to the Reinforcement Learning setting since Rollout-
IW(1) can deal with trajectories, as most RL methods do, with the restriction that a simu-
lator needs to be resetable to a previous state.

In more detail, the Rollout-IW(1) planning algorithm explores at its termination the
same set of states than the original IW(1) but replaces the breadth-first construction of
IW(1) by a sequence of depth-progressing rollouts. This mechanism provides better any-
time behavior than the original IW(1) algorithm and requires less from the simulator:
While tree search algorithms like IW(1) need the ability of expanding nodes, i.e., the ap-
plication of all actions to a node, the rollouts of a Rollout-IW(1) algorithm apply just

4.1 A Deep Reinforcement Learning framework for the ALE 25

one action per node, like the family of the Monte-Carlo tree search algorithms that are
traditionally used in RL.

The implementation of the Rollout-IW(1) version requires:

• A novelty table that keeps track of the minimum depth at which a feature is found
for the first time.

• An extension of the notion of novelty. A state is now considered novel in any of
these two situations: (a) a feature is found for the first time or (b) a feature appeared
before but at a deeper level in the search tree.

To guide the Rollout-IW(1) planning with an action selection policy such as the soft-
max policy, the Rollout-IW(1) algorithm is modified as follows. Rollout-IW(1) needs to
sample actions to build the trajectories that replace the breadth-first construction of IW(1).
Instead of sampling actions with uniform probability, Rollout-IW(1) enables to leverage
the action selection policy to bias this sampling towards the actions with a higher value
(according to the learned softmax policy) and hence it prefers rollouts with associated
higher policy values.

The temperature parameter of the softmax policy (see equation in section 4.1.1) is also
added to the sampling mechanism to control the exploration/exploitation trade-off of
the planning episodes. When the value of the temperature tends to infinite, we have a
pure exploration setting that corresponds to the original Rollout-IW(1) algorithm (which
ignores the learned policy performing a blind exploration). When temperature equals to
0 sampling is fully biased by the learned softmax policy.

4.1.3. Learning the policy estimation from past planning episodes

A planning episode of the Rollout-IW(1) algorithm terminates in a number of rollouts
that is bounded by |F|2× b, where F is the number of state features, and b is the branching
factor (maximum number of actions that can be applied at a give node).

Once the planning algorithm terminates, the score values obtained in the terminal
states (including the states that are pruned by absence of novelty) are back-propagated
to their parent states according to the following expression:

Ri = ri + γmaxj∈children(i)Rj

With this regard, we have a single learning example for each pair (state, action) that
corresponds to an explored transition and such that the label of each example is the cor-
responding back-propagated score.

The deep neural network that represents the policy estimation is then a non-linear
regression of the collected labeled examples and it is trained supervised by sampling a
batch of transitions (a maximum of T transitions are kept discarding outdated transitions
in a FIFO manner).

4.1.4. Abstracting states with Deep Neural Networks

Rollout IW(1) is guaranteed to reach every 1-width goal in time that is polynomial in the
number of state features. In addition to this, symbolic state features can make planning
more effective when the width of a problem is effectively reduced by the information
encoded in these features. The selection of the right set of state-features is then key for

26 Integrating Planning and Learning for the Atari Video-games

the performance of width-based algorithms however the learning of informative state
features for general/arbitrary planning problems is still an open challenge.

Here we show that learned action selection policies in the form of a Deep Neural
Network can also be seen as a state autoencoder for the input screen-shots [24]. This au-
toencoder reduces the dimensionality of the state space while it extracts relevant state
features that are useful for the planning algorithm. In this project, as in the (DRL) frame-
work proposed by Junyent et al. 2019, we take the last hidden layer of the Deep Neural
Network that encodes the policy as the set of state features to reduce the dimensional-
ity of the screen pixels. In particular we use the output of the rectified linear units, that
we subsequently discretize in the simplest way, resulting in binary features (0 for zero
outputs and 1 for positive outputs).

Besides this mechanism for dynamically extracting informative state features from
the input images, planning algorithms can also leverage static mappings that effectively
reduces the dimensionality of the state space. An example is the basic PROST features
defined by Liang et al. for ALE [30] that are also used in the experimental section of this
project. These features map screen pixels into a set of visual features by splitting the Atari
screen into 16× 14 disjoint tiles, each comprised of 10× 15 pixel patch and track whether
the input image contains a pixel of a given colour in the tile(i,j).

4.2 Improving the RL framework for the ALE

In this section, we first we present a refinement over the Rollout version of IW(1) that
produces a larger exploration of the state space. The aim of this refinement of the plan-
ning procedure is reaching states with higher associated rewards that allow us to lead to
better action selection policies.

Then we also show that Deep Neural Networks can be tuned to produce richer sets of
state-features for the presented integration scheme of planning and learning.

4.2.1. Improving the planning algorithm

The number of states that are not pruned in IW(1) is O(n). In some situations (especially
in problems with a high width value) this number may be too small to produce states with
a sufficiently high reward value.

One approach to alleviate the exploration limitation of the IW(1) algorithm is to run
instead IW(k), with increasing values of the k parameter. However, the implementation
of the novelty check of the IW(k) algorithm for values of k that are greater than one results
in a too expensive search for huge state-spaces (like it happens in the Atari video-games).
In particular the novelty table becomes easily too large to be stored in memory.

Our proposal is to implement a new version of the IW algorithm called IW(3/2), a
version halfway between IW(1) and IW(2) where some informative atoms are handpicked
to build 2-atom tuples. This intermediate approach IW(3/2) has already shown effective
in video-game playing [18].

For implementing IW(3/2) we decided to include the atoms chosen for the basic ver-
sion IW(1) plus some variable (feature) with which to form two-atom tuples. This extra
information of the environment can be the score, the position of the avatar, its health, its
type, if it is holding an object, etc. While most of these variables are specific to each game
and so they are environment-dependent features, we can though use as extra feature the
score of a game, which is present in all games and it is available in every OpenAI Gym
environment tested in this project.

4.2 Improving the RL framework for the ALE 27

Thus, IW(3/2) will prune a node when the pair (feature,score) is not novel. In other
words, the IW(3/2) version considers a novelty state if it provides a new value of the
’feature’ or the state has a score equal or higher than the one in the novelty table. With this
modification, we reduce the number of potentially pruned states, which in turn widens
the search space and allows IW(3/2) to achieve more complex goals than IW(1). All these
benefits come along without the asymptotic complexity of a full IW(2) that considers
two-atom tuples for every state-feature.

The number of times that the score changes during the game will have an impact
on the development of the search algorithm. That is to say, a game in which the score
is not updated until the victory, will not be affected by the modification of the IW(3/2)
algorithm, whereas a game that updates the score continuously will delay the pruning to
a greater extent, contemplating many nodes that until now were not considered.

In environments where the increases in the reward reflect that the agent is approach-
ing the goal, IW(3/2) should perform better because more nodes will be considered in
the search. Alternatively, in environments with sparse rewards IW(3/2) should perform
like IW(1) because both will prune roughly the same nodes.

With this regard, we implemented a Rollout version of the IW(3/2) algorithm that, at
its termination, explores the same set of states than the original IW(3/2) but replaces its
breadth-first construction by a sequence of depth-progressing rollouts.

4.2.2. Improving the learning algorithm

In this section we present the modifications undertaken in the Neural Network (NN) so
as to come up with a more informative feature space and a better guiding policy.

The performance of the planning step, like the performance of learning algorithms,
is sensible to the choice of features. Features that capture meaningful structure normally
yield better results than raw features that do not.

To obtain a better performance, we have modified the architecture of the NN and we
have fine-tuned some of the hyperparameters based on empirical tests. To do so, we
increased the number of neurons in the last hidden layer from 256 to 1024 to increase the
number of features that will be used by the IW algorithm. Increasing the number of units
to more than 1024 decreased the performance of the game agent in our tests.

Subsequently, we added another fully-connected layer of 1024 units and activation
function ReLU after the convolutions and added another convolution layer with 64 filters,
a kernel size of 3x3, stride 1 and activation function ReLU. We also doubled the number of
filters of the other two convolutions. The final architecture is shown in Figure 4.1.

Figure 4.1: Architecture of the Neural Network

Regarding the changes in the hyperparameters, we increased the batch size from 32 to
128 and we increased accordingly the learning rate from 0.0005 to 0.001 due to the relation

28 Integrating Planning and Learning for the Atari Video-games

between the learning rate to batch size ratio and the performance of the agent. Using a
larger batch size leads to a speedup in training [20] at the cost of performance, but this
can be mitigated by increasing the learning rate accordingly [46]. The change in the batch
size also reduced the standard deviation of the scores obtained by the agent. We also
increased the decay of RMSProp from 0.99 to 0.975 because we obtained better results
empirically. We also tried to fine-tune other hyperparameters, but none of the changes
lead to a better performance.

The enhancements in the NN will also help obtain a better guiding policy. The new
hyperparameters of the NN (θ) are combined with the state features to produce a distri-
bution over actions following the softmax policy explained in section 4.1.1. It is common
to use an NN to represent the policy estimate (π̂θ) and define:

π̂θ(a|s) = eha(s,θ)/τ

∑k∈A ehk(s,θ)/τ

as the softmax combination of the NN outputs ha(s, θ), a ∈ A (reward obtained when
applying action a in state s under the parameters θ), where τ is the temperature that
controls exploration.

CHAPTER 5

Empirical evaluation

In this chapter we will present the games from the ALE that we have chosen for the
empirical evaluation. Next, we will present the results obtained in our experiments with
the two planning & learning versions proposed in this chapter, the IW(3/2) algorithm
and the IW(3/2) with an enhanced NN, as well as a through analysis of the strengths and
weaknesses of our version versus IW(1).

5.1 Game selection

We have chosen 17 games from the ALE to compare the performance of our game agents
against the IW(1) algorithm. The games can be roughly classified by the genre they be-
long to and by their mechanics in the following way:

• Maze games: Games which it’s gameplay revolves around their "world" design,
where the players has to navigate the environment and plan their movements to
reach the goal. There is usually obstacles, enemies and or trap which makes beating
the game difficult. The games we include in this category are: Alien, Ms. Pac-man,
Q*bert, Tutankham and Venture.

• Shooter games: In games that belong to this genre players use ranged weapons
to participate in the action, which takes place at a distance, and must defeat the
enemies and evade the shots of the enemies. In this category we include: Assault,
BattleZone, Centipede, Demon Attack, James Bond 007 and Space Invaders.

• Reactive games: We include in this category games which emphasize physical chal-
lenges that require hand-eye coordination and motor skill to overcome. They are
centered around the player, who is in control of most of the action. The games that
belong to this category are: Asterix, Kung-Fu Master, Pong, Road Runner, Skiing and
Tennis.

We include a resume, an explanation of the gameplay and a capture of each game.

5.1.1. Maze games

• Alien is a maze game for the Atari 2600 published by 20th Century Fox in 1982,
based on the 1979 film with the same name.

The player controls a member of the human crew pursued by three aliens in the
hallways of a ship. The goal is to destroy the alien eggs laid in the hallways (like

29

30 Empirical evaluation

the dots in Pac-Man). The player is armed with a flamethrower which can tem-
porarily stun the aliens. Additionally, "pulsars" (like the power pills in Pac-Man)
occasionally appear, and serve to turn the tables on the aliens, allowing the player
to overpower them.

Figure 5.1: Capture of the Atari 2600 game Alien

• Ms. Pac-man is a maze arcade game developed by General Computer Corporation
and published by Midway Games. It is the sequel to Pac-Man (1980), and the first
entry in the series to not be made by Namco.

The gameplay of Ms. Pac-Man is very similar to that of the original Pac-Man. The
player earns points by eating pellets and avoiding monsters. The contact with one
causes Ms. Pac-Man to lose a life. Eating an energizer (or "power pellet") causes
the monsters to turn blue, allowing them to be eaten for extra points. Bonus fruits
can be eaten for increasing point values, twice per round. As the rounds increase,
the speed increases, and energizers generally lessen the duration of the monsters’
vulnerability, eventually stopping altogether.

There are also some differences from the original Pac-Man:

The game has four different mazes that appear in different colour schemes, and
alternate after each of the game’s intermissions are seen. The pink maze appears
in levels 1 and 2, the light blue maze appears in levels 3, 4, and 5, the brown maze
appears in levels 6 through 9, and the dark blue maze appears in levels 10 through
14. After level 14, the maze configurations alternate every 4th level. Three of the
four mazes (the first, second, and fourth ones) have two sets of warp tunnels, as
opposed to only one in the original maze. The walls have a solid color rather than
an outline, which makes it easier for a novice player to see where the paths around
the mazes are. The monsters’ behavioral patterns are different, and include semi-
random movement, which prevents the use of patterns to clear each round. Blinky
(red) and Pinky (pink) move randomly in the first several seconds of each level,
until the first reversal. Inky (cyan) and Sue (orange) still use the same movement
patterns from the previous game to their respective corners, again until the first
reversal. Instead of appearing in the center of the maze, the fruits bounce randomly
around the maze, entering and (if not eaten) leaving through the warp tunnels.
Once all fruits have been encountered, they appear in random sequence for the rest
of the game, starting on the eighth round.

The Atari 2600 rendition of Pac-Man was infamous for its flashing ghosts. This is
because there are only two sprite reset registers, and used one for the player’s sprite
and one for the ghosts, but they couldn’t render everything on the same frame, so
the ghost flicker because in each frame only one is being drawn. This flicker can
also be seen in Ms. Pac-man, although much less, due to the reuse of the register to

5.1 Game selection 31

draw the same sprite with a different position and colour, as long as its not on the
same horizontal line. When this happens, we can see the flickering on Ms. Pac-man
because its switches to the other technique to render the screen.

Figure 5.2: Capture of the Atari 2600 game Ms. Pac-man

• Q*bert is an arcade game developed and published for the North American market
by Gottlieb in 1982.

It’s an action game with puzzle elements played from an axonometric third-person
perspective to convey a three-dimensional look. The game is played using a single,
diagonally mounted four-way joystick. The player controls Q*bert, who starts each
game at the top of a pyramid made of 28 cubes, and moves by hopping diagonally
from cube to cube. Landing on a cube causes it to change colour, and changing
every cube to the target colour allows the player to progress to the next stage.

At the beginning, jumping on every cube once is enough to advance. In later stages,
each cube must be hit twice to reach the target colour. Other times, cubes change
colour every time Q*bert lands on them, instead of remaining on the target colour
once they reach it. Both elements are combined in subsequent stages. Jumping off
the pyramid results in the character’s death.

The player is impeded by several enemies, introduced gradually to the game:

– Coily: It first appears as a purple egg that bounces to the bottom of the pyramid
and then transforms into a snake that chases after Q*bert.

– Ugg and Wrongway: Two purple creatures that hop along the sides of the cubes.
Starting at either the bottom left or bottom right corner, they keep moving
toward the top right or top left side of the pyramid respectively, and fall off
the pyramid when they reach the end.

– Slick and Sam: Two green creatures that descend down the pyramid and revert
cubes whose colour has already been changed.

A collision with purple enemies is fatal to the character, whereas the green enemies
are removed from the board upon contact. Coloured balls occasionally appear at
the second row of cubes and bounce downward; contact with a red ball is lethal
to Q*bert, while contact with a green one immobilizes the on-screen enemies for a
limited time. Multicoloured floating discs on either side of the pyramid serve as an
escape from danger, particularly Coily. When Q*bert jumps on a disc, it transports
him to the top of the pyramid. If Coily is in close pursuit of the character, he will
jump after Q*bert and fall to his death, awarding bonus points. This causes all
enemies and balls on the screen to disappear, though they start to return after a few
seconds.

32 Empirical evaluation

25 points are awarded for each colour change, defeating Coily with a flying disc
awards 500 points, the remaining multicoloured discs at the end of a stage also
award points on higher stages (50 and later 100) and catching green balls (100) or
Slick and Sam (300 each). Bonus points are also awarded for completing a screen,
starting at 1,000 for the first screen of Level 1 and increasing by 250 for each sub-
sequent completion, up to 5,000 after Level 4. One extra live is granted after com-
pleting the first five stages, and then one extra for every four stages completed
thereafter.

Figure 5.3: Capture of the Atari 2600 game Q*bert

• Tutankham is a 1982 maze Shooter developed by Konami.

Taking on the role of an explorer grave robbing the maze-like tomb of Tutankhamun,
the player is chased by asps, vultures, parrots, bats, dragons, and curses, all of
which kill the explorer on contact. The explorer wields a laser weapon that only
fires left and right, as well as a single screen-clearing "flash bomb" per level or life.
Warp zones teleport the player to another location in the level, which enemies can-
not use.

To progress, the player collects keys to open locked doors throughout each level
and well as optional treasures for bonus points. When a timer reaches zero the
explorer can no longer shoot. Passing through the large exit door ends the level,
and any remaining time is converted to bonus points.

Figure 5.4: Capture of the Atari 2600 game Tutankham

• Venture is a 1981 fantasy-themed arcade game by Exidy. The goal of Venture is to
collect treasure from a dungeon as a round smiley-face named Winky.

Winky is equipped with a bow and arrow and explores a dungeon with rooms and
hallways. The hallways are patrolled by large, tentacled monsters named Hall-
monsters, which cannot be killed, injured, or stopped in any way. Once in a room,

5.1 Game selection 33

Winky may kill monsters, avoid traps and gather treasures. If he stays in any room
too long, a Hallmonster will enter the room, chase and kill him. The more quickly
the player finishes each level, the higher their score.

The goal of each room is only to steal the room’s treasure. In most rooms, it is
possible to steal the treasure without defeating the monsters within. Some rooms
have traps that are only sprung when the player picks up the treasure.

Winky dies if he touches a monster or Hallmonster. Dead monsters decay over time
and their corpses may block room exits, delaying Winky and possibly allowing the
Hallmonster to enter. Shooting a corpse causes it to regress back to its initial death
phase. The monsters themselves move in specific patterns but may deviate to chase
the player, and the game’s AI allows them to dodge the player’s shots with varying
degrees of "intelligence".

The game consists of three different dungeon levels with different rooms. After
clearing all the rooms in a level the player advances to the next. After three levels
the room pattern and monsters repeat, but at a higher speed and with a different
set of treasures.

The different dungeons in each level are as follows:

– Level 1: The Wall Room, The Serpent Room, The Skeleton Room, The Goblin
Room

– Level 2: The Two-Headed Room, The Dragon Room, The Spider Room, The
Troll Room

– Level 3: The Genie Room, The Demon Room, The Cyclops Room, The Bat
Room

Figure 5.5: Capture of the Atari 2600 game Venture

5.1.2. Shooter games

• Assault is a 1983 fixed Shooter video game developed and published by Bomb.

The player must fight an alien mother ship, which continually deploys three smaller
ships during play. The mother ship and the smaller vessels shoot at a weapon the
player is in command of, and the player’s aim is to eliminate the opposition while
preventing the weapon from receiving enough damage to destroy it.

• Battle Zone is a first-person Shooter tank combat arcade game from Atari, Inc. re-
leased in November 1980. The player controls a tank which is attacked by other
tanks and missiles.

34 Empirical evaluation

Figure 5.6: Capture of the Atari 2600 game Assault

The gameplay occurs on a flat plane with a mountainous horizon featuring an
erupting volcano, a distant crescent moon, and various geometric solids like pyra-
mids and blocks. The player can hide behind the solids or, once fired upon, ma-
neuver in rapid turns to buy time with which to fire again. The geometric solid
obstacles are indestructible, and can block the movement of the player’s tank. They
can also be use as shields as they block enemy fire as well.

The player views the screen, which includes an overhead radar view, to find and
destroy the slow tanks, or the faster-moving supertanks. Saucer-shaped UFOs and
guided missiles occasionally appear for a bonus score. The saucers differ from the
tanks in that they do not fire upon the player and do not appear on the radar.

Figure 5.7: Capture of the Atari 2600 game Battle Zone

• Centipede is a vertically oriented fixed Shooter arcade game produced by Atari,
Inc. in June 1981. The player fights off centipedes, spiders, scorpions and fleas,
completing a round after eliminating the centipede that winds down the playing
field.

The player’s fighter is represented by a small insect-like head at the bottom of the
screen. The player moves it around the bottom area of the screen and fires small
darts at a segmented centipede advancing from the top of the screen down through
a field of mushrooms. Each segment of the centipede becomes a mushroom when
shot; shooting one of the middle segments splits the centipede into two pieces at
that point. Each piece then continues independently on its way down the screen,
with the rear piece sprouting its own head. If the head is destroyed, the segment
behind it becomes the next head. Shooting the head is worth 100 points while the
other segments are 10. The centipede starts at the top of the screen, travelling either
left or right. When it touches a mushroom or reached the edge of the screen, it

5.1 Game selection 35

descends one level and reverses direction. The player can destroy mushrooms by
shooting them, but each takes four shots to destroy. At higher levels, the screen
can become increasingly crowded with mushrooms due to player/enemy actions,
causing the centipede to descend more rapidly.

Once the centipede reaches the bottom of the screen, it moves back and forth within
the player area and one-segment centipedes will periodically appear from the side.
This continues until the player has eliminated both the original centipede and all
heads. When all the centipede’s segments are destroyed, another one enters from
the top of the screen. The initial centipede is 10 or 12 segments long, including
the head; each successive centipede is one segment shorter and accompanied by
one detached, faster-moving head. This pattern continues until all segments are
separate heads, after which it repeats with a single full-length centipede.

The player also encounters other creatures besides the centipedes. Fleas drop ver-
tically and disappear upon touching the bottom of the screen, occasionally leaving
a trail of mushrooms in their path when only a few mushrooms are in the player
movement area; they are worth 200 points and takes two shots to destroy. Spiders
move across the player area in a zig-zag pattern and eat some of the mushrooms;
they are worth 300, 600, or 900 points depending on how close the player shoots
it. Scorpions move horizontally across the screen, turning every mushroom they
touch into poisonous mushrooms. Scorpions are also worth the most points of all
enemies with 1,000 points each. A centipede touching a poisonous mushroom will
change colour and hurtle straight down toward the bottom, then return to normal
behaviour upon reaching it. This "poisoned" centipede can be very challenging to
avoid if it appears as multiple separated segments.

The fighter will be destroyed when hit by any enemy, after which any poisonous
or partially damaged mushrooms revert to normal. 5 points are awarded for each
regenerated mushroom. The player gains extra lives every 12,000 points.

Figure 5.8: Capture of the Atari 2600 game Centipede

• Demon Attack is a fixed Shooter published by Imagic in 1982. Marooned on the
ice planet Krybor, the player uses a laser cannon to destroy legions of demons that
attack from above. Visually, the demons appear in waves similar to other space-
themed Shooters, but individually combine from the sides of the screen to the area
above the player’s cannon.

Each wave introduces new weapons with which the demons attack, such as long
streaming lasers and laser clusters. Starting in Wave 5, demons also divide into
two smaller, bird-like creatures that eventually attempt descent onto the player’s
cannon. Starting in Wave 9, the demons’ shots follow directly beneath the monsters,
making it difficult for the player to slip underneath to get in a direct shot.

36 Empirical evaluation

Figure 5.9: Capture of the Atari 2600 game Demon Attack

• James Bond 007 is a 1983 side-scrolling video game developed and published by
Parker Brothers.

The player controls the titular character of James Bond across four levels. The
player is given a multi-purpose vehicle that acts as an automobile, a plane, and
a submarine. The vehicle can fire shots and flare bombs, and travels from left to
right as the player progresses through each level. The player can shoot or avoid
enemies and obstacles that appear throughout the game, including boats, frogmen,
helicopters, missiles, and mini-submarines.

The game’s four levels are loosely based on missions from various James Bond
films:

– Diamonds are Forever (1971): The player rescues Tiffany Case from an oil rig.

– The Spy Who Loved Me (1977): The player destroys an underwater laboratory.

– Moonraker (1979): The player destroys satellites.

– For Your Eyes Only (1981): The player retrieves radio equipment from a sunken
boat.

Figure 5.10: Capture of the Atari 2600 game James Bond 007

• Space Invaders is a 1978 arcade game created by Tomohiro Nishikado. Within the
Shooter genre, Space Invaders was the first fixed Shooter and set the template for the
shoot ’em up genre.

The player controls a laser cannon by moving it horizontally across the bottom of
the screen and firing at descending aliens. The aim is to defeat five rows of eleven
aliens (six rows of six aliens in the Atari 2600 version) that move horizontally back
and forth across the screen as they advance toward the bottom of the screen. The

5.1 Game selection 37

player’s laser cannon is partially protected by several stationary defense bunkers
(three in the Atari 2600 version) that are gradually destroyed from the top and bot-
tom by blasts from either the aliens or the player.

The player defeats an alien and earns points by shooting it with the laser cannon.
As more aliens are defeated, the aliens’ movement and the game’s music both speed
up. Defeating all the aliens on-screen brings another wave that is more difficult, a
loop which can continue endlessly. A special "mystery ship" will occasionally move
across the top of the screen and award bonus points if destroyed.

The aliens attempt to destroy the player’s cannon by firing at it while they approach
the bottom of the screen. If they reach the bottom, the alien invasion is declared
successful and the game ends tragically; otherwise, it ends generally if the player’s
last cannon is destroyed by the enemy’s projectiles.

Figure 5.11: Capture of the Atari 2600 game Space Invaders

5.1.3. Reactive games

• Asterix (Published in North America under the name of Taz), is a video game de-
veloped and released by Atari, Inc. in 1983. Within the game, Asterix only appears
as a crude sprite slightly resembling his head.

The player must move between 8 lanes to pick up various treasures like magic
cauldrons and avoid the deadly lyres of Assurancetourix. The game loops infinitely
making the goal of the game simply to acquire the highest score without dying.
The lyres speed up as the player gains more points, making it a challenging battle
of reflexes and luck to get the highest score. As the game progresses, the magic
cauldrons gets replaced by other sprites, like helmets of Roman soldiers, and the
reward for picking up the items is increased every time the sprite is changed. A
capture of the can be seen in Figure 5.12.

• Kung-Fu Master is a side-scrolling beat ’em up game produced by Irem as arcade
game in 1984 and distributed by Data East in North America. The players control
Thomas, the titular Kung-Fu Master, as he fights his way through the five levels of
the Devil’s Temple in order to rescue his girlfriend Sylvia from the mysterious crime
boss Mr. X. Kung-Fu Master is regarded as the first beat ’em up video game.

The player controls Thomas with a four-way joystick and two attack buttons to
punch and kick. Unlike more conventional side-scrolling games, the joystick is
used not only to crouch, but also to jump. Punches and kicks can be performed
from a standing, crouching or jumping position. Punches award more points than
kicks and do more damage, but their range is shorter.

38 Empirical evaluation

Figure 5.12: Capture of the Atari 2600 game Asterix

Underlings encountered by the player include Grippers, who can grab Thomas and
drain his energy until shaken off; Knife Throwers, who can throw at two different
heights and must be hit twice; and Tom Toms, short fighters who can either grab
Thomas or somersault to strike his head when he is crouching. On even-numbered
floors, the player must also deal with falling balls and pots, snakes, poisonous
moths, fire-breathing dragons, and exploding confetti balls.

The Devil’s Temple has five floors, each ending with a different boss. In order to
complete a floor, Thomas must connect with enough strikes to completely drain the
boss’s energy meter. Then the player can climb the stairs to the next floor. Thomas
has a fixed time limit to complete each floor; if time runs out or his meter is com-
pletely drained, the player loses one life and must replay the entire floor. Upon
completing a floor, the player receives bonus points for remaining time and energy.
The boss of the fifth floor is Mr. X, the leader of the gang that kidnapped Sylvia.
Once he is defeated, Thomas rescues Sylvia and the game restarts at a higher diffi-
culty level.

Figure 5.13: Capture of the Atari 2600 game Kung-Fu Master

• Pong is one of the earliest arcade video games. It is a table tennis sports game fea-
turing simple two-dimensional graphics. The game was originally manufactured
by Atari, which released it in 1972. Pong was the first commercially successful video
game, which helped to establish the video game industry along with the first home
console, the Magnavox Odyssey.

Pong is a two-dimensional sports game that simulates table tennis. The player con-
trols an in-game paddle by moving it vertically across the left or right side of the
screen. They can compete against another player controlling a second paddle on
the opposing side. Players use the paddles to hit a ball back and forth. The goal is

5.1 Game selection 39

for each player to reach twenty one points before the opponent; points are earned
when one fails to return the ball to the other.

Figure 5.14: Capture of the Atari 2600 game Pong

• Road Runner is a racing game based on the Wile E. Coyote and Road Runner shorts.
It was released by Atari Games in 1985.

The player controls Road Runner, who is chased by Wile E. Coyote. In order to escape,
Road Runner runs endlessly to the left. While avoiding Wile E. Coyote, the player
must pick up bird seeds on the street (100 points, every next we pick up increases
its value by 100, up to 1000 if none are missed, else the value of the next one will
be 100) and steel shots (100 points), avoid obstacles like trucks, mines, cannonballs
or rocks. Sometimes Wile E. Coyote will just run after the Road Runner, but he
occasionally uses tools like rockets, roller skates, and pogo-sticks. Getting Wile E.
Coyote hit by a mine, cannonball, rock, etc... will increase the score by 100 points,
and 1000 if a truck hits him. Picking up steel shots makes Wile E. Coyote to use a
magnet to catch us, increasing its speed and forcing us to evade him until we can
force him to stop using a mine, a truck, etc...

The Atari 2600 port was one of Atari Corporation’s last games for the system, being
released in 1989.

Figure 5.15: Capture of the Atari 2600 game Road Runner

• Skiing is a video game for the Atari 2600 authored by Bob Whitehead and released
by Activision in 1980.

Skiing is a single player only game, in which the player uses the joystick to control
the direction and speed of a stationary skier at the top of the screen, while the
background graphics scroll upwards, thus giving the illusion the skier is moving.
The player must avoid obstacles, such as trees and moguls. The game cartridge
contains five variations each of two principal modes:

40 Empirical evaluation

– Downhill: the goal of the player is to reach the bottom of the ski course as
rapidly as possible, while a timer records his relative success.

– Slalom: the player must similarly reach the end of the course as rapidly as he
can, but must at the same time pass through a series of gates (indicated by a
pair of closely spaced flagpoles). Each gate missed counts as a penalty against
the player’s time.

Figure 5.16: Capture of the Atari 2600 game Skiing

• Tennis is a video game for the Atari 2600 which was published by Activision in 1981.

The game offers singles matches for one or two players; one player is colored pink,
the other blue. The game has two user-selectable speed levels. When serving and
returning shots, the tennis players automatically swing forehand or backhand as
the situation demands, and all shots automatically clear the net and land in bounds.

The first player to win one six-game set is declared the winner of the match (if the
set ends in a 6-6 tie, the set restarts from 0-0). This differs from professional tennis,
in which player must win at least two out of three six-game sets.

Figure 5.17: Capture of the Atari 2600 game Tennis

5.2 Experimental results

In this section we present the results in terms of game score obtained by different imple-
mentations of IW-based game agents.

Table 5.1 shows the scores obtained by the following approximations:

5.2 Experimental results 41

1. The first column corresponds to the scores obtained by IW(1) using a predefined
pixel-based representation of states named B-PROST [6]. B-PROST is made of the
sum of three types of features:

• Basic consists of splitting the screen pixels into disjoint tiles, and for each tile
and each colour, there is a boolean value which is true if the colour c appears
in the tile (i,j).

• B-PROS (Basic Pairwise Relative Offsets in Space features) tracks the relative
distances among pairs of basic features in the same screen. There is a feature
for each colour c in tile t and colour c’ in tile t’, for all possible combinations of
colours and different tiles.

• B-PROT (Basic Pairwise Relative Offsets in Time features) represents pairwise
relative offsets between basic features obtained from the screen at two different
time points. There is a feature for each colour c in tile t in the previous screen
and colour c’ in tile t’ in the current screen, for all combinations of tiles and
colours.

2. The second column of Table 5.1 corresponds to the rollout version of IW(1), where
the search is depth-first instead of breadth-first. It also uses B-PROST for the state
representation.

3. The third column, π-IW, is a rollout IW(1) which uses a CNN as an auto-encoder
for the feature extraction, as commented in Section 4. The NN is also used to learn
a game policy and to guide the state/action selection in the planning phase.

4. The fourth column, π-IW(3/2), corresponds to our first enhancement over the ver-
sion of the third column. That is, using the score of the game to lessen the pruning
of states during the search process of the IW(3/2) algorithm.

5. The last column, π-IW(3/2)-NN, corresponds to both of our enhancements, the new
IW(3/2) version of the width-based algorithm plus the changes made to the NN.

IW (first column) and Rollout IW (second column) have a budget of 0.5s for planning.
The values shown in the last two columns correspond to the average score of the last
ten episodes played by the game agent. Due to time constraints, we decided to omit the
version that includes only the NN enhancement in the π-IW algorithm. Likewise, due to
the excessive training time of the algorithm, some of the scores of π-IW(3/2)-NN are not
included either.

Following, we proceed to delve into the results obtained with each of the approxi-
mation presented in Table 5.1. The explanation is organized following the game clas-
sification presented in section 5.1. Table 5.1 is split in three parts, each group of rows
representing one game category. The first group composed of the first five rows are the
maze games; the second group corresponds to the Shooter games and the final group is
the reactive games.

5.2.1. Performance in Maze games

As we can observe in Table 5.1, the scores obtained by π-IW(3/2) for most of the Maze
games are very similar to the scores obtained by π-IW, with a slight increase in the game
Ms. Pac-man and a significant raise in score in the Q*bert game.

However, the scores obtained by the π-IW(3/2)-NN version, which implements both
enhancements discussed in Section 4.2, obtain significantly better scores than π-IW. Fur-

42 Empirical evaluation

Game IW Rollout IW π-IW π-IW(3/2) π-IW(3/2)-NN
Alien 1.316,0 4.238,0 5.081,4 4.948,0 6.287,0

Ms. Pac-man 2.578,0 9.178,4 9.006,5 10.371,4 15.084,8
Q*bert 515,0 3.375.0 248.572,5 416.722,5 –

Tutankham 71,2 128,4 197,7 206,7 –
Venture 0,0 0,0 0,0 0,0 530,0
Assault 268,8 285,6 3.879,3 3.325,2 2.729,7

Battle Zone 6.800,0 39.600,0 137.500,0 242.400,0 –
Centipede 88.890,0 36.980,2 32.531,7 77.595,3 39.176,0

Demon Attack 106,0 2.780,0 8.690,1 66.416,0 26.439,5
James Bond 007 40,0 450,0 551,0 570,0 5.415,0
Space Invaders 280,0 2.628,0 2.385,9 2.999,5 2.969,0

Asterix 1.350,0 45.780,0 6.852,0 28.780,0 –
Kung-Fu Master 440,0 2.080,0 17.406,0 28.760,0 30.240,0

Pong -20,8 -7,4 -19,6 -18,5 -18,9
Road Runner 200,0 2.360,0 100.882,0 26.340,0 365.410,0

Skiing -16.511,0 -15.738,8 -26.081,0 -19.907,4 -24.362,0
Tennis -23,4 -18,6 -12,2 -23,5 -23,8

#Top scores 1 3 2 5 6

Table 5.1: Results of the experiments

thermore, the results of π-IW(3/2)-NN outperform the scores of π-IW(3/2). This is an
indication that these games largely benefit from the NN enhancements.

As the games in this category have a rather "uniform" game environment, in the sense
that the design of the world is not frequently altered, we believe that the Maze games
benefit more from a better policy estimate than from the feature enhancement of the NN.
Thus, a better guiding policy helps the planning stage choose better actions. In other
words, the policy estimate help improve the game strategy.

Specifically, we can observe an increase of 1.205,6 points in the score of the game
Alien and 6.078,3 in Ms. Pac-man, compared to the scores obtained by π-IW. Furthermore,
π-IW(3/2)-NN is the only approach able to obtain a score greater than 0 in the Venture
game, which no other version was capable of.

In the case of the Q*bert game, the π-IW(3/2) version greatly outperforms π-IW. This
may be due to the fact that the increases in score are associated to how close to the goal
the player is. Although we do not have the scores of the π-IW(3/2)-NN version for the
Q*bert and Tutankham games, we foresee that the same trend observed in the other games
would also happen here, thus suggesting that the scores would have been higher than
π-IW(3/2)’s scores.

In summary, the Maze games appear to benefit from the enhancements to the Neural
Network, as it allows the agent to exploit better the learned policy, and for that policy
to be more complex. This makes sense if we regard a Maze game as a problem that
features rather few large environment variations and where achieving success in this
type of games heavily relies on a good game strategy.

5.2.2. Performance in Shooters games

In contrast with the Maze games, the games who belong to the Shooter category seem
to benefit more from the more sophisticated planning stage (π-IW(3/2)) than from the

5.2 Experimental results 43

enhancements applied to the Network Architecture. This conclusion follows from the
worse scores obtained with π-IW(3/2)-NN compared to those obtained with π-IW(3/2).

On the contrary, we see in Table 5.1 a noticeable increase in the scores obtained by
π-IW(3/2) against π-IW’s scores. This behaviour indicates that Shooter games benefits
from the enhancement of the planning part, as it allows the agent to explore a greater
search space, as reflected by the scores increases. And yet, the highest score in Centipede
is obtained by IW, which uses B-PROST as a feature representation of the game, and
seems particularly suited for this specific game.

There are two exceptions to the general behaviour of the games in this category. In
Assault, we obtain a somewhat lower score with π-IW(3/2), and an even worse one with
π-IW(3/2)-NN.

The other exception is the game James Bond 007, where the π-IW(3/2)-NN version
obtains a significant increase in score. This is probably due to the following reason: the
difficulty of the other games in this category augments as the game progresses by in-
creasing the number of enemies, speeding them up, changing their type, etc.; however, in
James Bond 007, the game flow and the scenario change significantly, and actions that do
not cause an effect at the beginning of the game have a noticeable effect later. For exam-
ple, moving down in the surface of the desert does not achieve anything, but later in the
game, moving down when sailing causes the avatar to submerge in the water. And con-
tinuing with the example, when we are in the desert, the player can only shoot towards
the air, but when the player is in the water, it can also shoot depth charges to attack en-
emies underwater. This behaviour also happens with the game Road Runner, which is
discussed below. Both games seem to benefit from the changes to the Neural Network,
as the agent is capable of learning more complex behaviour.

As a whole, we can say that Shooter games feature a more dynamic behaviour than
Maze games, with frequent environment switches that force the agent to adapt the strat-
egy to the new context. This is the reason why an approach that weighs more the explo-
ration than exploitation of the reinforcement learning approach results in a better perfor-
mance. Generally speaking, the larger search space explored by the π-IW(3/2) reveals to
be very helpful to detect potential environment changes.

5.2.3. Performance in Reactive games

In the reactive games, we can see in Table 5.1 that the scores of π-IW(3/2) are far way
better than the scores obtained by π-IW in the games Asterix and Kung-Fu Master , better
in the Skiing, and more or less equal to much worse in the games Pong, Road Runner,
and Tennis. The reason for the low performance in Pong and Tennis can be explained due
by two different factors. First, in these two games, the rewards are not monotonically
increasing. In both, the reward is calculated by subtracting the rival score from our score.
Secondly, both games have very sparse rewards, where a long chain of actions is required
to obtain a positive score increase. Due to this two factors, π-IW(3/2) does not provide
an enhancement to the performance of the agent.

The low score of π-IW(3/2) in Road Runner is due to the absence of correlation be-
tween the increases in the score and the goal. Particularly, a score increase in this game
makes it difficult to win.

Furthermore, some changes in the game flow are a consequence of advancing to the
next level, picking up a steel shot, etc., what increases the difficulty of learning to play the
game. More particularly, picking up the steel shots, for example, increases the score but
allows Wile E. Coyote to reduce the distance with the player significantly. This forces the
player to evade using all the directions, instead of the two (up and down) that are used

44 Empirical evaluation

in the "normal" gameplay, what makes the game be more difficult. Also, in the first level,
jumping does not achieve anything, but in the second level we have to jump constantly
to get to the next level.

These changes in the gameplay are probably the cause of the increase in performance
obtained by π-IW(3/2)-NN, much the same as in the James Bond 007 game, as the agent
seems to benefit from learning a more complex strategy.

We can also see that in Kung-Fu Master, the enhancement in planning brings an in-
crease in the score of 11.354 points. Although the π-IW(3/2)-NN obtains an even bet-
ter score, we can say confidently that Kung-Fu Master benefits more from the planning
component than the learning one. This may be due to the action-like component of the
gameplay.

In general, we cannot identify a clear advantage of the planning or the learning com-
ponent for reactive games. The nature of this type of games and the sparse rewards make
the NN enhancements not being particularly helpful. In the next chapter, we present
some methods to overcome the intrinsic difficulties of games such as Pong or Tennis.

5.2.4. Conclusions of the results

As we can see in Table 5.1, π-IW(3/2) obtains a higher score than π-IW in 12 out of 17
games, and it outperforms π-IW in 11 out of those 12 by a large margin. If we compare
the results of π-IW(3/2)-NN against π-IW, we see that π-IW(3/2)-NN outperforms π-IW
in 10 out of 13 games. Comparing π-IW(3/2) and π-IW(3/2)-NN, we see that π-IW(3/2)
obtains better results in 7 out of 13 games.

We would also like to highlight the score obtained by IW in the game Centipede, as it
outperforms every other version, and is the only game in which IW obtains the top score.
Rollout IW also outperforms every other version in three games: Asterix, Pong and Skiing.
Three particular games in which π-IW(3/2) and π-IW(3/2)-NN perform significantly
worse than Rollout IW.

Taking into account the top scores obtained by both of our versions, we obtain the top
scores of 11 out of 17 games, indicating that this is a promising direction for videogame
playing.

CHAPTER 6

Conclusions and future work

As we stated in Chapter 1, our goal in this project was to develop an agent for general
game playing, and more specifically, for the Arcade Learning Environment games. To do
so, we employed a novel algorithm which combines planning and learning. Specifically,
we use a Iterated Width-based algorithm for the planning component, and a Convolu-
tional Neural Network for the learning one. This mixture of planning and learning al-
lows us to get the best of both approaches, as the IW-based algorithms do not make use
of past experiences and the NN gets to benefit from the informed exploration that the
algorithm provides. The NN is used as an auto-encoder to extract the features from the
game screen in a compact way. Furthermore, the NN also learns the policy estimation of
the game, which is used in the planning step to guide the search of the best move. More
details of the algorithm are discussed in detail in Chapter 4.

We also propose two enhancements over the base method. The first enhancement
uses the value of the scores to lessen the pruning of IW, so the search space is increased.
The second enhancement consists of a fine-tunning of the hyperparameters and a modi-
fication of the NN to improve the features extracted and their number.

We tested our agent in a set of games from the ALE and the results were shown in
Section 5.2. Our analysis of the behaviour of the enhancements shows that, depending
of the category which the game belongs to, we can expect a increase or decrease of the
average score for that game. Specifically, the games which belong to the Maze genre
obtain an increase in performance with the version that employ both enhancements (π-
IW(3/2)-NN), as this kind of game seem to benefit from a better policy estimation. The
Shooter games benefit clearly from the version which employ the first enhancement (π-
IW(3/2)), signifying that the agents in this genre, which has more actions, will perform
better thanks to the planning step. The results of the Reactive games vary depending on
the characteristics of each game, as we have games which perform worse, a game that
benefits clearly from the planning improvement and a game that benefits from the NN
enhancement. We discuss the possible reason for this behaviour in the analysis in Section
5.2.3.

We will now discuss several research directions that can be followed to improve the
performance of our agent.

• Create a multi-agent extension to be able to play team games such as football, bas-
ketball, Dota 2 or League of Legends, which are games where each agent may have a
specialized policy for the particular role it plays in the team.

• Change the current experience replay and implement Prioritized Experience Replay
from [41] to learn from the most informative experiences stored.

45

46 Conclusions and future work

• After the previous one, implementing Ape-X DQN, which utilizes Distributed Pri-
oritized Experience Replay [21], a distributed version that uses multiple actors
which explore their instance of the environment, generate experience, add it to a
shared experience replay memory, and compute initial priorities for the data. The
single learner samples from this memory and updates the network and the prior-
ities of the experience in the memory. The actors’ networks are periodically up-
dated with the latest network parameters from the learner. The actors are given dif-
ferent exploration policies, broadening the diversity of the experience they jointly
encounter.

• Experiment with more games, from the Atari Learning Environment and other set-
tings, like the General Video Game Competition, with the aim to see the behaviour
of the algorithm in a larger and more diverse sets of games.

Bibliography

[1] Mario A. http://www.marioai.org/. Accessed: 2019-07-29.

[2] Stockfish. https://stockfishchess.org/. Accessed: 2019-06-29.

[3] The GVG-AI Competition. http://www.gvgai.net/. Accessed: 2019-06-03.

[4] AlphaGo. https://deepmind.com/research/alphago/. Accessed: 2019-07-03.

[5] Kai Arulkumaran, Antoine Cully, and Julian Togelius. AlphaStar: An Evolutionary
Computation Perspective. CoRR, abs/1902.01724, 2019.

[6] Wilmer Bandres, Blai Bonet, and Hector Geffner. Planning With Pixels in (Almost)
Real Time. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), pages 6102–6109, 2018.

[7] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Ar-
cade Learning Environment: An Evaluation Platform for General Agents. CoRR,
abs/1207.4708, 2012.

[8] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

[9] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The chal-
lenge of poker. Artificial Intelligence, 134(1-2):201–240, 2002.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

[11] Mat Buckland. Programming game AI by example. Jones & Bartlett Learning, 2005.

[12] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1-2):57–83, 2002.

[13] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo planning in rts
games. In CIG. Citeseer, 2005.

[14] N. Cole, S. J. Louis, and C. Miles. Using a genetic algorithm to tune first-person
shooter bots. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE
Cat. No.04TH8753), volume 1, pages 139–145 Vol.1, June 2004.

[15] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

[16] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing tempo-
ral planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

47

http://www.marioai.org/
https://stockfishchess.org/
http://www.gvgai.net/
https://deepmind.com/research/alphago/

48 BIBLIOGRAPHY

[17] Tomas Geffner and Hector Geffner. Width-Based Planning for General Video-Game
Playing. In Proceedings of the Eleventh AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE, pages 23–29, 2015.

[18] Tomas Geffner and Hector Geffner. Width-based planning for general video-game
playing. In Eleventh Artificial Intelligence and Interactive Digital Entertainment Confer-
ence, 2015.

[19] Alfonso Emilio Gerevini, Nir Lipovetzky, Francesco Percassi, Alessandro Saetti, and
Ivan Serina. Best-First Width Search for Multi Agent Privacy-Preserving Planning.
In Proceedings of the Twenty-Ninth International Conference on Automated Planning and
Scheduling, ICAPS, pages 163–171, 2019.

[20] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large mini-
batch SGD: training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.

[21] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
van Hasselt, and David Silver. Distributed prioritized experience replay. CoRR,
abs/1803.00933, 2018.

[22] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. Sas+ planning as satisfiability.
Journal of Artificial Intelligence Research, 43:293–328, 2012.

[23] Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-
agent search methods using domain knowledge. Artificial Intelligence, 129(1-2):219–
251, 2001.

[24] Miquel Junyent, Anders Jonsson, and Vicenç Gómez. Deep policies for width-based
planning in pixel domains. arXiv preprint arXiv:1904.07091, 2019.

[25] Richard Kaye. Minesweeper is np-complete. The Mathematical Intelligencer, 22(2):9–
15, 2000.

[26] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaskowski. Vizdoom: A doom-based AI research platform for visual reinforcement
learning. CoRR, abs/1605.02097, 2016.

[27] Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial
intelligence, 6(4):293–326, 1975.

[28] Richard E Korf. Finding optimal solutions to rubik’s cube using pattern databases.
In AAAI/IAAI, pages 700–705, 1997.

[29] Joel Lehman and Kenneth Stanley. Exploiting open-endedness to solve problems
through the search for novelty. Artificial Life - ALIFE, pages 329–336, 01 2008.

[30] Yitao Liang, Marlos C Machado, Erik Talvitie, and Michael Bowling. State of the
Art Control of Atari Games Using Shallow Reinforcement Learning. In Proceed-
ings of the 2016 International Conference on Autonomous Agents & Multiagent Systems,
pages 485–493. International Foundation for Autonomous Agents and Multiagent
Systems, 2016.

[31] Nir Lipovetzky and Hector Geffner. Width and Serialization of Classical Planning
Problems. In ECAI 2012 - 20th European Conference on Artificial Intelligence, pages
540–545, 2012.

BIBLIOGRAPHY 49

[32] Nir Lipovetzky and Hector Geffner. Width-based Algorithms for Classical Planning:
New Results. In ECAI 2014 - 21st European Conference on Artificial Intelligence, pages
1059–1060, 2014.

[33] Nir Lipovetzky and Hector Geffner. A Polynomial Planning Algorithm that Beats
LAMA and FF. In Proceedings of the Twenty-Seventh International Conference on Auto-
mated Planning and Scheduling, ICAPS, pages 195–199, 2017.

[34] Nir Lipovetzky and Hector Geffner. Best-First Width Search: Exploration and Ex-
ploitation in Classical Planning. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pages 3590–3596, 2017.

[35] Nir Lipovetzky, Miquel Ramírez, and Hector Geffner. Classical Planning Algorithms
on the Atari Video Games. In Learning for General Competency in Video Games, Papers
from the 2015 AAAI Workshop, 2015.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[37] Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David
Churchill, and Mike Preuss. A survey of real-time strategy game ai research and
competition in starcraft. IEEE Transactions on Computational Intelligence and AI in
games, 5(4):293–311, 2013.

[38] Juan Ortega, Noor Shaker, Julian Togelius, and Georgios N Yannakakis. Imitating
human playing styles in super mario bros. Entertainment Computing, 4(2):93–104,
2013.

[39] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and Si-
mon M Lucas. General video game ai: Competition, challenges and opportunities.
In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[40] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. science,
317(5844):1518–1522, 2007.

[41] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. In 4th International Conference on Learning Representations, ICLR, 2016.

[42] Alexander Shleyfman, Alexander Tuisov, and Carmel Domshlak. Blind Search for
Atari-Like Online Planning Revisited. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI, pages 3251–3257, 2016.

[43] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbren-
ner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529(7587):484–489, 2016.

[44] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

50 BIBLIOGRAPHY

[45] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering Chess
and Shogi by Self-Play with a General Reinforcement Learning Algorithm. CoRR,
abs/1712.01815, 2017.

[46] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning
rate, increase the batch size. CoRR, abs/1711.00489, 2017.

[47] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, vol-
ume 2. MIT press Cambridge, 1998.

[48] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves
master-level play. Neural computation, 6(2):215–219, 1994.

[49] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033, 2012.

[50] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N Yannakakis. The
mario ai championship 2009-2012. AI Magazine, 34(3):89–92, 2013.

[51] Tom Wijman. The Global Games Market Will Gener-
ate 152.1 Billion in 2019 as the U.S. Overtakes China as
the Biggest Market. https://newzoo.com/insights/articles/
the-global-games-market-will-generate-152-1-billion-in-2019-as-the-u-s-\
overtakes-china-as-the-biggest-market/, 06 2019. Accessed: 2019-09-02.

https://newzoo.com/insights/articles/the-global-games-market-will-generate-152-1-billion-in-2019-as-the-u-s- \ overtakes-china-as-the-biggest-market/
https://newzoo.com/insights/articles/the-global-games-market-will-generate-152-1-billion-in-2019-as-the-u-s- \ overtakes-china-as-the-biggest-market/
https://newzoo.com/insights/articles/the-global-games-market-will-generate-152-1-billion-in-2019-as-the-u-s- \ overtakes-china-as-the-biggest-market/

	Contents
	List of Figures
	List of Tables
	Objectives
	Related Work
	Game definition
	Overview of control strategies for game agents
	Planning and learning for game playing
	AlphaGo
	AlphaZero
	AlphaStar

	Background
	Arcade Learning Environment
	OpenAI Gym

	Planning with IW algorithms
	Planning task
	Width
	Iterated Width Search
	IW-based planning

	Reinforcement Learning
	Q-learning

	Deep Learning
	Convolutional Neural Networks

	Integrating Planning and Learning for the Atari Video-games
	A Deep Reinforcement Learning framework for the ALE
	Softmax action selection policy
	Guiding IW-based planning algorithms with softmax policy
	Learning the policy estimation from past planning episodes
	Abstracting states with Deep Neural Networks

	Improving the RL framework for the ALE
	Improving the planning algorithm
	Improving the learning algorithm

	Empirical evaluation
	Game selection
	Maze games
	Shooter games
	Reactive games

	Experimental results
	Performance in Maze games
	Performance in Shooters games
	Performance in Reactive games
	Conclusions of the results

	Conclusions and future work
	Bibliography

