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Summary 

Background: Human milk is nature’s ideal food for the nurture and protection of the 

new-born and growing infant. Recent evidence reported the presence of bacteria in 

human milk under normal, healthy conditions, which are thought to confer beneficial 

properties to the infant. However, little is known about the relationship between bacteria 

and milk macronutrients and human cells, and there is no optimal protocol to estimate 

bacterial numbers in the samples. Also, the potential presence of fungi in human milk 

has not been explored to date, despite the fact that fungi has been previously detected in 

dairy animal’s milk and in the neonatal gut.  In addition, the aetiology of sub-acute 

mastitis is not well understood, and information about the composition of the milk 

microbiota during this process by means of next-generation sequencing and its potential 

implications in the disease is scarce. This thesis is aimed to improve our understanding 

of human milk microbiota, its composition and diversity as well as the interactions with 

other milk components and microorganisms, in health and during sub-acute mastitis. 

We also explore the potential effect of environmental factors, such as mode of delivery 

and geographic location, and the lactation stage on human milk microbiota composition.  

Methods: Next-generation sequencing technologies targeting the bacterial 16S rRNA 

gene, and the fungal 28S rRNA gene and ITS1 genetic region, in combination with classic 

microbiological analyses, were used in order to assess the bacterial and fungal 

composition in milk of healthy mothers, and in mothers suffering sub-acute mastitis. 

Bacterial and fungal loads in human milk were obtained by qPCR methodology 

calibrated with flow cytometry. 

Results: Bacterial composition in human milk has a high inter-individual variability, and 

also over time, and is predominantly comprised of bacteria from the Staphylococacceae 

family. A bacterial and fungal “core” were found in the human milk of Spanish donors. 

Some correlations were observed between bacteria with milk macronutrients and 

human somatic cells, indicating an active relationship between milk microbiota and the 

environment. Bacterial density appeared to be higher than previously estimated based 

on culture methods, at a mean of 106 cells/ml, and bacteria were found both in a free-

living state and associated to human cells. No correlations were observed between 

bacterial load with number of somatic cells nor bacterial richness and diversity, 

indicating that higher bacterial densities under healthy conditions do not trigger an 

immune response in the mammary gland, nor alter the microbial community. In 

addition, our results revealed the existence of certain diversity of fungi in human milk 

that was further confirmed by culture-dependent methods and microscopy. 89% of the 

Spanish samples analysed had detectable levels of fungal DNA, at a median load of 

approximately 105 cells/ml. Malassezia, Candida and Saccharomyces prevailed in the 

samples, and fungi interacted with milk components in different ways. The presence of 

fungi in milk was further confirmed in samples from distant geographic origins, and it 

was observed that maternal and delivery factors can impact milk microbial 

communities. After describing milk microbiota in healthy conditions, we performed an 
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observational, prospective case-control study, where DNA and RNA from human milk 

microbiota from healthy and sub-acute mastitis-suffering mothers were studied before 

and after the treatment. Bacterial loads increased during the disease, diversity decreased 

and alterations in bacterial composition likely reflected a dysbiotic process in the 

mammary gland. This supports that sub-acute mastitis is a microbial-driven disease. 

Future investigations should go beyond characterization of human milk microbiota 

composition and investigate functional mechanisms between human milk 

microorganisms and infant health, including immune and microbiota development. In 

addition, further research is needed in order to understand how to maintain a healthy 

status in the mammary gland. To this end, human milk biomolecules and cells should 

be investigated for their potential use as biomarkers of mammary dysbiosis, such as that 

occurring during sub-acute mastitis. 

 

Resumen- Castellano 

Antecedentes: La leche humana es el alimento natural ideal para el desarrollo y la 

protección del recién nacido y el niño en crecimiento. Estudios recientes han demostrado 

la presencia de bacterias en la leche humana en condiciones de salud, y se cree que 

podrían conferir propiedades beneficiosas para el bebé. Sin embargo, poco se sabe sobre 

la relación entre las bacterias y los macronutrientes de la leche y las células humanas, y 

no existe un protocolo óptimo para estimar el número de bacterias en las muestras. 

Además, hasta la fecha no se ha explorado la posible presencia de hongos en la leche 

humana, a pesar de que previamente éstos se han encontrado en la leche de otros 

animales y en el intestino neonatal. Por otro lado, la etiología de la mastitis sub-aguda 

no está bien descrita, y esfuerzos para describir la composición de la microbiota de la 

leche durante este proceso por medio de tecnologías de secuenciación próxima, y su 

potencial implicación en la enfermedad son escasos. Esta tesis está dirigida a mejorar 

nuestra comprensión de la microbiota de la leche humana, su composición y diversidad, 

así como las interacciones con otros componentes de la leche y microorganismos en 

condiciones de salud y durante la mastitis sub-aguda. También exploramos el efecto 

potencial de factores ambientales, como el tipo de parto y el origen geográfico, y el 

periodo de la lactancia en la composición de la microbiota de la leche humana. 

Métodos: Se utilizaron tecnologías de secuenciación de próxima generación dirigidas al 

gen bacteriano 16S rRNA y a los genes fúngicos 28S rRNA y la región ITS1, en 

combinación con análisis microbiológicos clásicos, para evaluar la composición 

bacteriana y fúngica en la leche de madres sanas, y de madres con mastitis sub-aguda. 

Las cargas bacterianas y fúngicas en la leche humana se obtuvieron mediante la 

metodología qPCR calibrada con citometría de flujo. 

Resultados: La composición bacteriana en la leche humana tiene una alta variabilidad 

interindividual, y también a lo largo del tiempo, y está compuesta predominantemente 

por bacterias de la familia Staphylococacceae. Se encontró un "núcleo" de bacterias y 
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hongos en la leche humana de donantes españolas. Se observaron algunas correlaciones 

entre bacterias con los macronutrientes de la leche y células somáticas humanas, lo que 

indica una relación activa entre la microbiota de la leche y el medio ambiente. La 

densidad bacteriana resultó ser más alta que lo estimado previamente según los métodos 

de cultivo, a una media de 106 células/ml, presentes tanto en estado libre como asociadas 

a células humanas. No se observaron correlaciones entre carga bacteriana, el número de 

células somáticas, y la riqueza y diversidad bacteriana, lo que podría indicar que un 

aumento en la densidad bacteriana en condiciones de salud no activa una respuesta 

inmune en la glándula mamaria, ni altera la comunidad microbiana. Además, nuestros 

resultados de secuenciación revelaron la existencia de hongos en la leche humana que se 

confirmó mediante métodos de cultivo y microscopía. El 89% de las muestras españolas 

analizadas tenían niveles detectables de ADN fúngico, con una carga aproximada de 105 

células/ml. Malassezia, Candida y Saccharomyces eran prevalentes en las muestras, y se 

observaron diferentes interacciones fúngicas con los componentes de la leche. La 

presencia de hongos en la leche se confirmó posteriormente en muestras de orígenes 

geográficos distantes, y se observó que factores maternos y tipo de parto pueden afectar 

a las comunidades microbianas de la leche. Después de describir la microbiota de la leche 

en condiciones de salud, realizamos un estudio observacional prospectivo de 

casos/controles, donde se estudió el ADN y el ARN de la microbiota de la leche de 

madres sanas y madres con mastitis sub-aguda, antes y después del tratamiento. La 

carga bacteriana aumentó durante la enfermedad, la diversidad disminuyó y las 

alteraciones en la composición bacteriana probablemente reflejen un proceso disbiótico 

en la glándula mamaria. Esto apoya que la mastitis sub-aguda es una enfermedad de 

origen microbiano. Investigaciones futuras deberían ir más allá de la caracterización de 

la composición de la microbiota de la leche humana e investigar mecanismos funcionales 

entre los microorganismos y la salud infantil, incluyendo el desarrollo inmunitario y la 

microbiota. Además, se necesitan más estudios para comprender cómo mantener el 

estado de salud en la glándula mamaria. Con este fin, las biomoléculas y células de la 

leche humana deberían investigarse por su posible uso como biomarcadores de la 

disbiosis mamaria, como el que ocurre durante la mastitis sub-aguda. 
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Resum- Valencià 

Antecedents: La llet humana és l'aliment natural ideal per al desenvolupament i la 

protecció del nadó i el nen en creixement. Estudis recents han demostrat la presència de 

bacteris a la llet humana en condicions normals de salut, i es creu que podrien conferir 

propietats beneficioses per al nadó. No obstant això, poc se sap sobre la relació entre els 

bacteris i els macronutrients de la llet i les cèl·lules humanes, i no hi ha un protocol òptim 

per estimar el nombre de bacteris en les aquestes mostres. A més, fins a la data no s'ha 

explorat la possible presència de fongs en la llet humana, tot i que prèviament s'havien 

trobat en la llet d'animals i en l'intestí neonatal. D'altra banda, l'etiologia de la mastitis 

sub-aguda no està ben descrita, i esforços per descriure la composició de la microbiota 

de la llet durant aquest procés per mitjà de tecnologies de seqüenciació propera, i la seua 

potencial implicació en la malaltia són escassos. Aquesta tesi està dirigida a millorar la 

nostra comprensió de la microbiota de la llet humana, la seva composició i diversitat, 

així com les interaccions amb altres components de la llet i microorganismes, en 

condicions de salut i durant la mastitis sub-aguda. També explorem l'efecte potencial de 

factors ambientals, com el tipus de part i l'origen geogràfic, i el període de la lactància 

en la composició de la microbiota de la llet humana. 

Mètodes: Es van utilitzar tecnologies de seqüenciació de pròxima generació dirigides al 

gen bacterià 16S rRNA i als gens fúngics 28S rRNA i la regió ITS1, en combinació amb 

anàlisis microbiològiques clàssics, per avaluar la composició bacteriana i fúngica en la 

llet de mares sanes i de mares amb mastitis sub-aguda. Les quantitats bacterianes i 

fúngiques en la llet humana es van obtenir mitjançant la metodologia qPCR calibrada 

amb citometria de flux. 

Resultats: La composició bacteriana en la llet humana té una alta variabilitat 

interindividual, i també al llarg del temps, i està composta predominantment per bacteris 

de la família Staphylococacceae. Es va trobar un "nucli" de bacteris i fongs a la llet 

humana de donants espanyoles. Es van observar algunes correlacions entre bacteris amb 

els macronutrients de la llet i cèl·lules somàtiques humanes, el que indica una relació 

activa entre la microbiota de la llet i el medi ambient. La densitat bacteriana va resultar 

ser més alta que l'estimat prèviament segons els mètodes de cultiu clàssics, a una mitjana 

de 106 cèl·lules/ml, presents tant en estat lliure com associades a cèl·lules humanes. No 

es van observar correlacions entre càrrega bacteriana, el nombre de cèl·lules somàtiques, 

i la riquesa i diversitat bacteriana, la qual cosa podria indicar que un augment en la 

densitat bacteriana en condicions de salut no activa una resposta immune en la glàndula 

mamària, ni alteren la comunitat microbiana. A més, els nostres resultats de seqüenciació 

van revelar l'existència de certa diversitat de fongs a la llet humana que es va confirmar 

mitjançant mètodes de cultiu i microscòpia. El 89% de les mostres espanyoles analitzades 

tenien nivells detectables d'ADN fúngic, amb una càrrega mitjana d'aproximadament 

105 cèl·lules/ml. Malassezia, Candida i Saccharomyces eren prevalents en les mostres, i es 

van observar interaccions fúngiques amb els components de la llet de diferents maneres. 

La presència de fongs a la llet es va confirmar posteriorment en mostres d'orígens 
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geogràfics distants, i es va observar que els factors materns i de part poden afectar les 

comunitats microbianes de la llet. Després de descriure la microbiota de la llet en 

condicions de salut, vam realitzar un estudi observacional prospectiu de casos/controls, 

on es va estudiar l'ADN i l'ARN de la microbiota de la llet humana de mares sanes i 

mares amb mastitis sub-aguda, abans i després del tractament. La càrrega bacteriana va 

augmentar durant la malaltia, la diversitat va disminuir i les alteracions en la composició 

bacteriana probablement reflecteixin un procés disbiotic en la glàndula mamària. Això 

recolza que la mastitis sub-aguda és una malaltia d’origen microbià. Investigacions 

futures haurien d'anar més enllà de la caracterització de la composició de la microbiota 

de la llet humana i investigar mecanismes funcionals entre els microorganismes i la salut 

infantil, inclòs el desenvolupament immunitari i la microbiota. A més, es necessita més 

investigació per comprendre com mantenir un estat saludable en la glàndula mamària. 

Amb aquesta finalitat, les biomolècules i cèl·lules de la llet humana s'haurien d'investigar 

pel seu possible ús com a biomarcadors de la disbiosi mamària, com el que passa durant 

la mastitis sub-aguda. 
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Milk is a complex and functional fluid, result of millions of years of evolution, which 

represents a unique mammalian adaptation for providing nutrients and protection to 

the offspring. In humans, milk (in the present thesis, referred to as breast milk or human 

milk, indistinctly) is the first source of nutrition to the new-born and supports infant 

nourishment during the initial months of life (Ballard & Morrow 2013; Garwolińska et 

al. 2018). In fact, human milk is universally recognized as the “gold-standard” for infant 

nutrition. International organisms such as the World Health Organization and the 

American Academy of Paediatrics recommend exclusive breastfeeding for at least six 

months, followed by continued breastfeeding as complementary foods are introduced, 

for 1 year or longer (American Academy of Pediatrics 2012; World Health Organization 

& UNICEF 2003). Besides nutrition, feeding the new-born and growing infant with 

human milk provides them with an extraordinary mixture of immunological and 

bioactive elements (Dzidic et al. 2018a; Goldman 1993; Labbok et al. 2004). These 

components support infant growth and offer protection against infections, are crucial for 

immune system development, metabolic and neuronal programming, and promote 

microbial colonization in the infant. In addition, breastfeeding further exerts unique 

benefits for both mother and infant, which go from biological to affective and psycho-

social aspects.  

In the past 15 years the health benefits of breastfeeding have been reinforced, and its 

practice has been extensively promoted. Despite it is widespread accepted that 

breastfeeding provides important health benefits to the infant, that continue into early 

childhood and potentially beyond, most countries fall short of the WHO 

recommendations (International Food Policy Research Institute 2015; Lutter & Morrow 

2013). Globally, only 40% of babies are exclusively breastfed for the first 6 months of age, 

and most preoccupying, breastfeeding practices are especially poor in countries with the 

highest child mortality rates. Among the developed countries, in 2005, around 40% of 

Spanish infants were exclusively breastfed at 3 months of age, and less than 20% at 6 

months of age.  UK and Mexico presented the lowest breastfeeding rates, while 

Hungary, Iceland or Sweden presented the highest rates (Greenslade 2018). Depriving 

infants from human milk (or in other words, feeding them with formula) is associated 

with higher incidence of infectious diseases, diabetes and obesity, sudden infant death 

syndrome, and in premature infants, higher risk of necrotizing enterocolitis (NEC) 

(Stuebe 2009). In the mother, failure to breastfeed is associated with an increased risk of 

suffering breast and ovarian cancer, obesity and cardiovascular diseases, among others.  

 

Human Milk and Infant Health: Reduced Mortality and Morbidity 

Human milk, through its dual function, nutritive and protective, supports an optimal 

growth and development of the new-born. While lipids, carbohydrates and proteins 

(mostly caseins) cover the nutritional needs of the growing infant, the countless variety 

of bioactive and immune compounds orchestrate to provide a unique defense against 
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infections and other diseases, killing pathogens while also promoting intestinal barrier 

function development and balancing immune responses. The benefits associated to 

breastfeeding have been noted for centuries, and accumulating evidence supports both 

short-term and long-term effects on the new-born and child (American Academy of 

Pediatrics 2012; Boix-Amorós et al. 2019a; Newburg & Walker 2007). 

Primarily, breastfeeding is known to reduce infant death. In 1934, Grulee and colleagues 

showed that formula-fed infants presented higher morbidity and mortality rates when 

compared with breastfeeding, in a study comprising more than twenty thousand infants 

(Grulee et al. 1934). They also observed that exclusive breastfeeding offered the highest 

protection against death risk, and even partial breastfeeding provided considerable 

immunity. In developing countries where the majority of the world’s childhood deaths 

occur, exclusive breastfeeding for 6 months and continued after 1 year is the most 

effective intervention to reduce mortality risk, having the potential of preventing more 

than 1 million infant deaths annually (Jones et al. 2003). Although breastfeeding benefits 

are more evident in low-income countries, epidemiological and biological findings over 

the last decade expand the benefits of breastfeeding for mothers and infants, whether 

they come from low- or medium-income countries (American Academy of Pediatrics 

2012).  

As a result of human milk’s anti-pathogenic activity, the incidence of any infections is 

lower in breastfed infants than in formula fed infants. Exclusive breastfeeding reduces 

the risk and severity of lower respiratory tract infections, ear infections and urinary tract 

infections. If exclusive breastfeeding is prolonged for more than 6 months, the risk of 

pneumonia, serious colds, and ear and throat infections are considerably reduced 

(American Academy of Pediatrics 2012; Beaudry et al. 1995; Grulee et al. 1934). At the 

intestinal level, human milk promotes maturation of the gastrointestinal tract and 

reduces the risk of diarrhea and gastrointestinal diseases. It also influences the metabolic 

and neuroendocrine development, and appears to offer certain protection against 

obesity in childhood (American Academy of Pediatrics 2012; Coppa et al. 2006; Morrow 

et al. 2004; Scariati et al. 1997). Furthermore, human milk favors brain development, 

which has been linked to an increased intelligence quotient in infants that breastfeed 

(Isaacs et al. 2010; Kramer et al. 2008; Lucas et al. 1992).  Other functions associated to 

breastfeeding include decreased risk of cardiovascular disease,  diabetes type I and II, 

common autoimmune diseases such as celiac disease, and enhanced psychological well-

being of the mother and infant (Akobeng et al. 2005; Das 2007; Rosenbauer et al. 2008; 

Singhal et al. 2001; Victora et al. 2016a). Breastfeeding has also been suggested to prevent 

asthma development, and to a lesser extent eczema and allergic rhinitis, while results on 

the protective effect against other allergies seem to be contradictory, and further studies 

are needed in order to establish a direct cause-effect link (Lodge et al. 2015; Munblit et al. 

2017).  
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Infant prematurity is associated with higher mortality and higher risk of developing 

gastrointestinal disorders. In an evolved adaptation to provide the premature infant an 

optimal protection, preterm milk alters its composition, showing increased levels of 

secretory immunoglobulin A (sIgA), that offers immunity against exogenous pathogens, 

increased growth factors that favor infants’ development, higher polyamines that are 

associated with gut maturation, etc. (Dvorak et al. 2003; Gross et al. 1981; Plaza-Zamora 

et al. 2013).  Breastfeeding has been suggested to be a critical factor in reducing the risk 

of NEC, which is most prevalent among preterm infants, especially those fed with 

artificial formula. In particular, epidermal growth factor (EGF), which is an important 

mediator of gut homeostasis, has been extensively investigated for its ability to reduce 

the severity in infants developing NEC. EGF has shown promoted repair of the intestinal 

epithelium after intravenous administration in infants presenting NEC-like symptoms, 

supporting its key role in the prevention and treatment of the disease (Shin et al. 2000; 

Sullivan et al. 2007). Animal model studies reinforce this protective effect, as 

administration of human milk, and administration of only EFG or transforming growth 

factor beta (TGF-β), can reduce both NEC incidence and severity (Dvorak et al. 2002; 

Halpern et al. 2003; Lucas & Cole 1990; Shin et al. 2000). It appears to be consistent that 

the health benefits associated to breastfeeding are dependent of milk in a “dose” manner 

(exclusive breastfeeding versus partial breastfeeding or formula feeding), with 

exclusively breastfeeding showing the best health outcomes as compared to formula 

feeding. However, most studies concur that partial breastfeeding still provides 

considerable protection when compared to artificial formula (American Academy of 

Pediatrics 2012). 

 

Human Milk Composition 

Human milk contains all the required components to support infant growth, together 

with a myriad of bioactive and protective compounds that facilitate their adaptation to 

the extra-uterine environment.  According to the lactation period, human milk can be 

classified in colostrum, which is produced in the mammary gland usually between 0-5 

days post-partum, transitional milk, between 6-15 days post-partum, and mature milk, 

after 15 days post-partum. A dynamic and live fluid, breast milk adapts its composition 

to satisfy the rapidly growing infant’s needs along lactation. Colostrum is produced in 

low volumes, and is rich in immunologic and developmental factors, with low content 

of fat as compared to mature milk, reflecting colostrum’s protective role rather than 

nutritional. As milk matures, lactose, fat and soluble vitamins levels increase, in parallel 

with an increased milk volume production in order to support the development of the 

growing infant, while concentrations of most immune compounds decline (Coppa et al. 

1993; Garwolińska et al. 2018; Goldman et al. 1982; Mitoulas et al. 2002). Not only breast 

milk changes its composition along lactation, but also varies daily, between feedings (the 
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longer time elapsed between feedings, the lower the fat content), depending on maternal 

diet, maternal age, ethnicity, etc. (Garwolińska et al. 2018).  

 

Nutritional content of human milk  

During the initial period of an infant’s life, the first and only food source able to satisfy 

all the nutritional requirements is human milk. Besides a high water content, human 

milk contains macronutrients, including fat, lactose, and proteins; and micronutrients, 

mostly vitamins and minerals, with energy estimates ranging from 65 to 70 kcal/dL. 

Human milk components are summarized in Figure 1. 

 

Water 

Human milk is more than 80% water, with low concentration of solutes and neutral pH. 

For this reason, water in milk is enough to cover the baby’s needs during the first 6 

months of life. In fact, giving water to an exclusive breastfed full-term baby within that 

period of life is contraindicated (World Health Organization 2017), as potential adverse 

effects in the infant have been suggested, such as reduced breastfeeding time.   

Lactose 

Lactose is synthesized in the mammary gland and represents the main carbohydrate of 

human milk, with concentrations ranging from 6.7 to 7.8 g/dL in mature milk. Besides 

its nutritional role, lactose favours calcium absorbance and promotes the growth of lactic 

acid bacteria (Coppa et al. 1993; Venema 2012). 

Lipids 

Fat in human milk represents the most important energy source for the infant, 

contributing to 40-55% of the infant daily energy requirements, ranging from 

approximately 3.2 to 3.6 g/dL in mature milk (Garwolińska et al. 2018). Fat is the most 

variable macronutrient of human milk, changing in concentration throughout the day, 

and even during the same feeding, with lowest concentrations in foremilk (the first milk 

of a feed) and highest in hind milk (the last milk of a feed). Lipids are secreted in milk in 

the form of milk fat globules. In its majority, milk lipids are composed of 

triacylglycerides, made up of a broad spectrum of fatty acids, with palmitic acid 

representing the most abundant saturated fatty acid, whereas oleic and linoleic acids are 

the most abundant unsaturated fatty acids.  

Proteins 

Human milk protein fraction is mainly constituted of casein (approximately 13% of total 

proteins) present in the form of casein micelles, and whey proteins, being the most 

abundant α-lactalbumin, lactoferrin, sIgA, serum albumin and lysozyme. Casein and α-

lactalbumin have important nutritional value, while other whey proteins exert 

important immune functions in the infant.  Protein content is highest in colostrum as 
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compared to transitional and mature milk, with total milk protein estimated to range 

between 0.8 to 1.6 g/dL (Lönnerdal 2003). 

Micronutrients 

Micronutrients are only needed in minuscule amounts, but are essential for the body to 

produce enzymes, hormones and other key elements necessary for proper growth and 

development, and deficiencies can lead to severe health outcomes (Bates & Prentice 1994; 

Valentine & Wagner 2013).  Human milk contains vitamins, including A, B1, B2, B6, B12, 

C, D, E, K and iodine. Vitamins are essential for calcium absorption in the intestine, 

which is necessary for the infant’s growth and bone mineralization. Minerals in milk, 

including calcium, sodium, potassium, magnesium, iron, copper, zinc, manganese, 

selenium and chromium, perform numerous functions in the body. Concentrations of 

some vitamins and minerals in milk depend on maternal diet, which is not always 

optimal, and therefore multi-vitamin intake during lactation is usually recommended 

(Greer 2001). 

 

 

Figure 1. Principal nutrients and bioactive components of human milk. 

 

Bioactive molecules  

Beyond nutrition, human milk provides protection to the infant through transference of 

countless bioactive compounds (Figure 2). Dietary bioactive compounds are defined as 

“food components that can affect biological processes or substrates and hence have an impact on 

body function or condition and ultimately health”(Schrezenmeir et al. 2000). The bioactivity 

of human milk encompasses a wide variety of antimicrobial, anti-inflammatory, and 

immunomodulatory compounds (Boix-Amorós et al. 2019a; Dzidic et al. 2018a; Goldman 



16 
 

1993; Labbok et al. 2004). After delivery, when the infant host defences are vulnerable, 

human milk protective factors passively confront infections, while also promote 

immunocompetence in the infant. In addition, breast milk contains prebiotic 

compounds, as well as its own microbiota, both supplying microorganisms and 

supporting microbial colonization in the infant gut. 

Antibodies 

Immunoglobulins are present in significant abundances in human milk. sIgA is the most 

predominant form, representing over 90% of total immunoglobulins, and to a lesser 

extent, sIgG and sIgM. sIgA levels are highest in colostrum (12 g/l), and gradually 

decrease to its lowest levels in mature milk (0.5  g/l) (Hanson 1961; Telemo & Hanson 

1996). During the first weeks of life, when the infant’s immune system is still immature, 

protection against infections heavily relies on human milk antibodies. sIgA is the key 

anti-infective component in human milk, protecting mucosal sites by blocking pathogen 

adherence to epithelial cells and neutralizing toxins. sIgA transference to the infant’s gut 

compensates the delayed innate sIgA production in the new-born, and its concentration 

declines in transition and mature milk as the immune system matures, when it is able to 

produce sIgA endogenous levels.  When the maternal intestinal or respiratory mucosa 

are exposed to a pathogen, antigen-specific B lymphocytes migrate to the mammary 

gland, where they differentiate into plasma cells and produce large amounts of IgA 

(Fishaut et al. 1981; Kleinman & Walker 1979). IgA attaches to the polymeric Ig receptor, 

after which the complex is cleaved and sIgA is secreted in milk and transferred to the 

baby through breastfeeding, resisting the acidity of gastric acids and reaching the 

infant’s gut. Once there, sIgA provides a unique immunological protection towards 

pathogens, including bacteria, fungi, viruses, and parasites the maternal immune system 

has encountered during the perinatal period, and therefore, which are likely to be 

encountered by the infant (Van de Perre 2003). 

HMOs 

Human milk oligosaccharides (HMOs) are a family of diverse unconjugated glycans, 

which represent the third most abundant component in human milk, and approximately 

20% of total carbohydrates.  HMOs cannot be digested in the infant gut, which lacks 

specific glycosidases, sugar transporters and other proteins dedicated to HMO 

utilization. Nevertheless, HMOs play unique and essential functions for the correct 

development of the infant. HMOs are widely known for their prebiotic effect, 

encouraging the growth of beneficial bacteria in the lower part of the intestinal tract, 

such as Bifidobacterium and Bacteroides spp. (Bode 2012; Marcobal et al. 2010; Smilowitz et 

al. 2014). Thus, HMOs have been suggested to play a role in shaping the infant 

microbiome, and may be responsible for the differences observed in gut bacteria 

between breast-fed and formula-fed infants (Sela & Mills 2010). Importantly, specific 

HMO can serve as homologous to gut cell receptors, blocking binding of pathogens to 

the intestinal epithelium, or directly inhibiting their growth (Coppa et al. 2006; Lin et al. 
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2017). HMOs have also been suggested to participate in the modulation of immune cell 

responses, improve brain development and cognition associated to sialic acid, reduced 

risk for NEC and diarrhea, etc. (Doherty et al. 2018; Morrow et al. 2004). The structural 

complexity of HMOs makes it difficult to chemically synthesize them, although some 

efforts have been made to produce artificial alternatives with the purpose of adding 

them to formula milk (Akkerman et al. 2018). 

Antimicrobial proteins 

Lactoferrin, lysozyme, and α-lactalbumin are, together with immunoglobulins, major 

whey proteins with immunity-enhancing properties. Lactoferrin exerts antimicrobial 

and immunomodulatory properties. It chelates free iron, a necessary nutritional 

requirement for most bacterial pathogens, inhibiting their growth; stimulates pathogen 

phagocytosis by macrophages; downregulates inflammatory cytokines production, 

stimulates leukocytes maturation and correlates with beneficial bacteria colonization in 

infants feces (Håversen et al. 2002; Lima & Kierszenbaum 1985; Mastromarino et al. 2014; 

Weinberg 1994). In addition, pepsine digestion of lactoferrin in the stomach leads to 

lactoferricin, a peptide with potent broad activity against bacteria, fungi, and viruses 

(Fernandes & Carter 2017; van der Strate et al. 2001). Lysozyme, although present in 

lower concentrations, can break peptidoglycan bonds of pathogenic Gram-positive 

bacteria cell walls, and can act synergistically with lactoferrin to kill Gram-negative 

bacteria (Ellison et al. 1991). α-Lactalbumin is the major whey protein in human milk, 

and some of its proteolytic fragments have shown prebiotic properties in vitro by 

stimulating the growth of beneficial bifidobacteria (Lönnerdal 2010). Interestingly, α-

lactalbumin can conjugate with oleic acid present in milk and form “HAMLET”, a 

cancer-killing molecule that has shown to be effective against different types of cancer 

without harming healthy cells (Ho et al. 2017). Other glycosylated proteins, such as 

Mucin-1 (MUC1) and κ-Casein, are present in the surface of fat globules and can also 

interfere with bacterial and viral adherence to the gut epithelium (Yolken et al. 1992).  

Bioactive lipids 

Besides the energetic properties of milk fat, some specific lipids play key functions for 

the growing infant. Polyunsaturated fatty acids (PUFA), such as omega-3 

docosahexaenoic acid (DHA) and omega-6 arachidonic acid (AA), are essential for 

normal growth and development, being part of cell membranes, such as the brain and 

retina. Digestion of milk lipids by lipases in milk and infant lingual and gastric 

secretions, leads to free fatty acids and monoglycerides, which are known to be highly 

toxic to many human pathogens, especially enveloped viruses and some parasites 

(Hernell et al. 1986; Thormar et al. 1987). 

Human cells 

In addition to biochemical compounds, human milk contains live maternal cells, 

including epithelial and immune cells. Their concentrations highly vary along lactation 
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stages, within mothers or in response to feeding, with estimated concentrations between 

104 and 106 cells/ml. Epithelial cells predominate in human milk, and include lactocytes 

(responsible for milk secretion) and myoepithelial cells from the alveoli and ducts of the 

mammary gland. On the other hand, colostrum is rich in blood-derived leukocytes, 

which greatly vary between approximately 2-70% of total milk cells, and include 

macrophages, polymorphonuclear neutrophils and lymphocytes (mostly T cells, and in 

a lower extent, B cells) (Hassiotou et al. 2013a). However, leukocytes in healthy mature 

milk only account for <2.5% of total cells (Hassiotou et al. 2013b). Milk leukocytes 

provide active immunity, protecting the infant against pathogenic infections directly via 

phagocytosis, while also stimulating the infant immune system’s development through 

production of bioactive components, such as antimicrobial proteins and peptides, 

cytokines and immunoglobulins, and antigen presentation.  Leukocyte levels in human 

milk increase in response to maternal and infant infections, reflecting a dynamic 

interaction and regulated response that confers an optimal protection (Bryan et al. 2007; 

Hassiotou et al. 2013b; Riskin et al. 2012). In cows, the somatic cells measurement in milk 

is routinely used as an indicator of udder infections (Olechnowicz & Jaśkowski 2012). 

However, its potential utility for the detection of infections in the human mammary 

gland is not well described. Recent studies have reported that, in addition to epithelial 

and immune cells, human milk also contains stem and progenitor cells (Cregan et al. 

2007; Hassiotou et al. 2012), which may be responsible for remodeling the breast to a 

milk-secretory organ during pregnancy and after delivery. However, little is known 

about stem cells functions, and although a potential role in the infant’s tissue 

development has been suggested, whether they can exert these or other roles remains to 

be investigated. 

 

 

Figure 2. Bioactive components and cells in human milk 

 

BIOACTIVE 
MOLECULES

HMOs
Immunoglobulins: sIgA, sIgG, sIgM
Lactoferrin
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Cytokines: 1β, IL-6, IL-8, IL-10
Growth factors: TGF- β, EGF, IGF, VEGF
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(40%-50%)
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• T cells (80% of total lymphocytes). 

Stem and progenitor cells
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Cytokines and growth factors 

The new-born’s gut lacks the capacity to respond appropriately to foreign pathogens 

and the ability to produce a contained inflammatory response, tending to produce 

excessive inflammatory signalling. Growth factors and cytokines in breast milk exert 

wide-ranging effects on the infant’s intestinal tract, and on the nervous, endocrine and 

vascular systems, and help control the inflammatory response (Ballard & Morrow 2013; 

Garofalo 2010). For example, IL-10, a key immune-regulatory and anti-inflammatory 

cytokine, has been shown to inhibit blood lymphocyte proliferation, and is associated to 

a reduced risk and severity of Intestinal Bowel Disease and NEC. TGF-β is the most 

abundant growth factor in human milk, and can reduce inflammation by decreasing pro-

inflammatory cytokines while favours IgA production, thus enhancing mucosal 

immunity (Munblit et al. 2017). In addition, TGF-β is necessary for induction of oral 

tolerance towards environmental antigens, and possibly prevents allergy development 

(Faria & Weiner 2006). Other growth factors encountered in milk are: epidermal growth 

factor (EGF), key in the maturation and repair of the intestinal mucosa, while 

downregulates the production of pro-inflammatory cytokines; insulin-like growth factor 

(IGF) I and II, involved in tissue growth and erythropoiesis; vascular endothelial growth 

factor (VEGF), which regulates angiogenesis and the vascular system, etc. (Ballard & 

Morrow 2013). 

Hormones  

Different hormones have been identified in human milk, which are receiving increased 

attention in the last years due to their potential influence on energy balance regulation 

and metabolic development in the infant. In particular, leptin, ghrelin, adiponectin and 

insulin, and their influence on food intake control and body weight regulation are being 

investigated (Chan et al. 2018; Savino & Liguori 2008). Ghrelin and leptin regulate 

appetite, influencing growth and body weight. While ghrelin acts to increase appetite, 

ensures stomach acid preparedness for food intake and play a role as a reward molecule 

by interacting with dopaminergic neurons in the brain,  leptin suppresses appetite and 

increases energy expenditure, and its production may be affected by maternal BMI 

(Dundar et al. 2005). Insulin regulates glucose metabolism (Savino & Liguori 2008), and 

adiponectin improves insulin sensitivity and fatty acid metabolism, reduces 

inflammation and correlates negatively with liver fat content, glucose and body mass 

index (Newburg et al. 2010). Human milk has been linked to a reduced risk of obesity in 

childhood, but the underlying biological mechanisms remain unclear. Recent 

investigations point to human milk hormones as potential key elements in obesity 

prevention (Savino et al. 2013).  

Other milk components 

Among the vast diversity of human milk components, metabolites such as non-protein 

molecules containing nitrogen (free aminoacids, choline, creatine, nucleic acids, 
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polyamines, urea, etc.) have important metabolic and physiological roles, participating 

in neurodevelopment, tissue development, sleep functions, immunity, etc.  Extracellular 

vesicles (EVs) from human cells have been identified in human milk and may participate 

in cell communication and regulate immune responses (van Herwijnen et al. 2016; 

Zonneveld et al. 2014).  Bacteria also secrete EVs, which can be involved in pathogenesis 

and regulation of immune responses, among others, and are likely to be present in milk 

(Schorey et al. 2015; Wang et al. 2018). Human milk is also rich in micro-RNAs (miRNAs), 

small noncoding RNAs that regulate gene expression at post-transcriptional levels and 

play an important role in regulating various biological processes through their 

interaction with cellular messenger RNAs (Weber et al. 2010). Human milk contains an 

appreciable amount of hydrogen peroxide (H2O2) which has antimicrobial properties 

(Cieslak et al. 2018). In addition, soluble CD14 (sCD14), is a bacterial pattern recognition 

receptor actively secreted into human milk, involved in protection against pathogens 

and commensal tolerance (Vidal et al. 2001). Recently, a certain diversity of live bacteria 

and their genetic products have been detected in human milk from healthy mothers, 

which likely contribute to milk bioactive functions. Human milk microbiota will be 

extensively described in further sections.  

 

Breastfeeding, Infant Microbiota and Immune System Development 

Besides providing passive protection, breastfeeding stimulates the maturation of the 

infants’ own mucosal immune system. Specific human milk components, such as 

cytokines, HMOs, anti-microbial enzymes and immunoglobulins are crucial for a correct 

immune maturation and balanced inflammation (Dzidic et al. 2018a; Newburg & Walker 

2007). Importantly, human milk plays a key role in shaping the infant’s microbiota, the 

microbial communities inhabiting the human body. Human milk nurtures gut bacteria 

with HMOs, favoring their colonization. In 1983, a study showed that Bifidobacterium and 

Lactobacillus strains appeared highly increased in breastfed infants’ feces over the first 

weeks of life, as compared to formula fed infants’ (Yoshioka et al. 1983). Later studies 

identified HMOs as the principal milk factor responsible of this “bifidogenic effect” 

(Bode 2012; Marcobal et al. 2010). As a result of microbial fermentation in the distant gut, 

metabolites such as lactate and SCFA are produced. SCFA represent the main energy 

source for colonocytes and provide important immune protective functions. For 

example, acetate and butyrate regulate intestinal cell homeostasis and have potent 

effects on gene expression (Smith et al. 2013). Microbial colonization and establishment 

are key events for a correct gut maturation, and immune and metabolic systems 

development, including tolerance to commensal microorganisms (Dzidic et al. 2018a). 

The settlement of bacteria on the mucosal surfaces inhibits pathogen penetration in a 

process known as “colonization resistance”, by which commensal bacteria compete with 

pathogens for nutrients and adhesion sites, and create a hostile environment for 

pathogen survival by producing specific metabolites and antimicrobial peptides, 
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modifying the pH, etc. (Lawley & Walker 2013). Together with Bifidobacterium and 

Lactobacillus, other gut bacteria stimulated by breast milk, including Bacteroides and 

Clostridia, have been shown to improve intestinal barrier functions by enhancing mucine 

production and reducing intestinal permeability (Dzidic et al. 2018a). In addition, those 

bacteria stimulate T helper cells balance, prompting Th1 responses and compensating 

the inclination towards Th2 responses characteristic of the neonatal immature immune 

system, ultimately leading to mucosal barrier homeostasis and healthy immune system 

in early and adult life (Tourneur & Chassin 2013). Milk secretory immunoglobulins, 

together with HMOs and other bioactive compounds, are also important factors that 

drive microbial colonization. In addition, recent studies revealed the presence of bacteria 

in human milk, which likely participates in the initial seeding of colonizers to the infant.  

Neonatal microbial colonization is a fragile and step-wise process, and a disrupted 

microbiota development (for example, due to prematurity or the use of antibiotics) can 

lead to altered immunoglobulins production and tolerance, resulting in higher risk of 

developing autoimmune diseases, allergies or obesity (Dzidic et al. 2018a; Houghteling 

& Walker 2015; Kamada et al. 2013). Mode of delivery is an important factor that can 

affect microbiota development, as that of vaginally-born infants resembles mother’s 

vaginal and fecal microbiota, acquired through passing the birth canal. Infants born by 

C-section, on the other side, are first colonized with maternal skin and environmental 

bacteria, usually presenting lower bacterial diversity and altered microbial composition 

(Francino 2018). This dysbiosis is accompanied by lower levels of Th1-associated 

cytokines and immunoglobulins,  which directly influence the immune system and may 

be, in part, responsible for the increased risk of immune-related diseases in children born 

by C-section, including asthma and atopic and allergic disorders (Dzidic et al. 2018a). 

Thus, the immature infant gut may be hyper-responsive to specific stimuli that could 

result in mucosal damage, but human milk has a cornucopia of factors that can modulate 

inflammatory responses and, together with an appropriate microbial colonization, favor 

the shift from hyper-stimulation towards tolerance, which reduces the risk of developing 

diseases later in life. 

 

Microorganisms in Human Milk 

Historically, human milk was considered a sterile fluid. Although, for over five decades, 

there have existed reports about the presence of live bacteria in human milk, it was 

attributed to milk contamination during and/or after expression,  mammary gland 

infections or even to poor hygiene (Carroll et al. 1979; Eidelman & Szilagyi 1979; 

Thomsen et al. 1983; West et al. 1979; Wyatt & Mata 1969). Later, the isolation of bacteria 

from healthy mothers’ milk by classic culture methods, including several lactic acid 

bacteria such as Lactobacillus, Lactococcus, Leuconostoc, Bifidobacterium, and many others, 

changed the perspective of human milk’s sterility (Heikkila & Saris 2003; Martín et al. 

2003, 2009). The presence of lactic acid bacteria with potential beneficial or “probiotic” 
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properties raised the interest on human milk. Motivated by that interest, over the last 

decade there has been a rapid bloom of studies based on culture-independent, DNA-

based techniques that have investigated milk-residing bacteria, their potential origins, 

and implications in maternal and infant health. These studies encompassed different 

methodologies, including qPCR that identified specific or total bacteria (Collado et al. 

2009; Khodayar-Pardo et al. 2014), analysis of bacterial genetic patterns (DGGE and 

TGGE) (Delgado et al. 2008; Martín et al. 2007; Perez et al. 2007), and most importantly, 

the rise of the most powerful tool for the study of complex microbial communities: Next-

generation sequencing (NGS) of the microbial DNA. Hunt and colleagues (Hunt et al. 

2011) were the first to apply 454-pyrosequencing (Roche) to sequence the universal 

bacterial 16S ribosomal RNA gene, which exhibited the complete bacterial diversity of 

human milk. Several other studies followed Hunt’s work, and as sequencing techniques 

evolved (with a progressive switch from 454-pyrosequencing to other platforms, such as 

Illumina MiSeq), more light was shed to human milk microbiota knowledge, including 

the study of the human milk metagenome, which put forth milk’s total microbial 

composition (bacteria, fungi, virus and archaea) and showed microbial genetic functions 

(Ward et al. 2013). NGS and culture-independent methodologies revealed a higher 

diversity of microorganisms, previously overlooked by culture techniques. These 

included from typical oral inhabitants, such as Veillonella and Prevotella; to skin bacteria 

such as Staphylococcus and Propionibacterium; other lactic acid bacteria, 

including Enterococcus, Streptococcus, Leuconostoc, and Weissella; and Gram other 

negative bacteria, such as Pseudomonas (Cabrera-Rubio et al. 2012a; Fernández et al. 2013; 

Hunt et al. 2011; Jost et al. 2013). Altogether, these findings led to a shift in the milk 

“sterility” paradigm, showing that bacteria were normally present in the fluid under 

healthy conditions, and questions about the origin of milk bacteria started to arise.  

 

Potential sources of bacteria in human milk 

The detection of live bacteria and bacterial DNA from aseptically collected milk samples, 

including anaerobic endogenous gut bacterium that cannot survive aerobic conditions, 

triggered a debate about the origin of human milk bacteria. The principal potential 

routes and bacteria present in human milk are summarized in Figure 3. 

Maternal skin and infant oral cavity 

Initially, maternal skin was considered the main source of microorganisms to human 

milk, as some common skin-inhabitants, such as Staphylococcus, Corynebacterium and 

Propionibacterium, could be frequently isolated from the fluid (Eidelman & Szilagyi 1979; 

Grice et al. 2009; West et al. 1979).  Microbes residing on the breast skin, especially the 

nipple, areola and Montgomery glands, would likely seed some microorganisms to the 

milk during breastfeeding. In fact, Ramsay et al (Ramsay et al. 2004) demonstrated by 

ultrasound imaging that a substantial retrograde flow occurs during milk suckling, 

being this back-flow a plausible route for infant oral bacteria and maternal skin to enter 
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the mammary ducts, and backwards. In addition, Streptococcus and other typical oral 

bacteria such as Prevotella and Veillonela can be commonly detected in colostrum and 

human milk. These bacteria are present in the infant oral cavity since very early life, 

suggesting that human milk could participate in shaping the infant’s oral microbiome, 

and/or vice versa (Cephas et al. 2011; Dzidic et al. 2018b). Despite the fact that some 

bacteria are shared between human milk and the infant oral cavity and maternal skin, 

major differences in composition and relative abundances exist (Cabrera-Rubio et al. 

2012a; Gueimonde et al. 2007; Hunt et al. 2011).  Moreover, milk hosts some strict 

anaerobes, such as Bifidobacterium, Bacteroides, Faecalibacterium and Roseburia, whose 

presence in the fluid cannot be solely explained by a “contamination” from the infant 

mouth or breast skin (Gueimonde et al. 2007; Jost et al. 2013).   

Mammary epithelium 

The presence of bacterial DNA and live bacteria in milk before delivery (precolostrum) 

also supports the idea that human milk microbiota is not a mere contamination from the 

skin and oral cavity (Martín et al. 2004; Ruiz et al. 2019). In fact, bacterial DNA has been 

detected in the breast tissue of non-lactating mothers (Urbaniak et al. 2014, 2016b; Xuan 

et al. 2014), supporting microbial presence in the mammary gland even in the absence of 

pregnancy and lactation, which could be transferred to milk during lactation. 

Maternal gastrointestinal tract 

A theory that could explain the presence of strict anaerobes in breast milk was proposed, 

the so-called “entero-mammary pathway”, which suggests that selective translocation 

of maternal gut bacteria to the mammary gland within immune cells would occur 

(Fernández et al. 2013). In particular, dendritic cells can project dendrites across the gut 

epithelium and sample specific gut lumen bacteria, and even retain them alive in the 

mesenteric lymph nodes for several days (Macpherson & Uhr 2004). In addition, 

phagocytes have shown ability to disseminate intestinal bacteria to other organs 

(Vazquez-Torres et al. 1999). The hormonal changes produced in late pregnancy, labor 

and lactation could facilitate bacterial translocation. Lactogenic hormones regulate 

immune responses and trigger migration of immune cells from the gut- and respiratory-

associated lymphoid tissue to the mammary gland via the lymphatic system and blood 

circulation (Jeurink et al. 2013; Rodriguez 2014). Therefore, translocation of bacteria 

associated to these cells is likely to occur. In a study by Perez et al, bacterial translocation 

from the maternal gut to mesenteric lymph nodes and mammary gland was confirmed 

in a mice model during pregnancy and lactation (Perez et al. 2007). In the same study, it 

was shown that human milk and peripheral blood mononuclear cells contained a 

number of viable bacteria and bacterial DNA. Experiments in woman fed with probiotic 

Lactobacilli strains, also support this route, as the same ingested strains could be later 

detected in mother’s milk (Arroyo et al. 2010; Jiménez et al. 2008). Furthermore, in a 

recent study, two labelled lactic acid bacteria fed to pregnant mice could be detected in 

the mammary tissue and milk (de Andrés et al. 2017). The entero-mammary route of 
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transmission has recently been expanded to consider transfer of bacteria from other 

human mucosal sites like the oral cavity, facilitated by different physiological changes 

in the pregnant mother that would allow this microbial translocation (Mira & Rodriguez 

2016). 

Other potential sources of bacteria 

The intra-utero sterility dogma has been challenged. The isolation of some bacteria 

and/or the detection of their DNA have been reported in samples from meconium and 

umbilical cord (Gosalbes et al. 2013; Jiménez et al. 2005; Moles et al. 2013). Bacterial DNA 

has also been detected in placenta and amniotic fluid, and intrauterine infections and the 

presence of certain oral bacteria intra-utero have been associated to preterm deliveries 

(Aagaard et al. 2014; Bearfield et al. 2002). However, results are contradictory, and 

although some evidence suggest that bacteria or their genetic products could enter the 

intra-uterine environment, further research is needed to confirm microbial exposure to 

the fetus and its potential later effect on the infant (Lauder et al. 2016; Lim et al. 2018). 

 

 

 

Figure 3. Potential routes for bacterial translocation to human milk, and bacteria isolated and 

detected in the fluid. Most likely routes of bacterial transmission to the mammary gland and 

milk include: breast skin microbiota, infant’s oral microbiota, maternal gut microbiota and 

mammary gland epithelium microorganisms. The figure also shows the most commonly detected 

bacteria in human milk, as inferred by means of classic culture-dependent and culture-

independent techniques. Image adapted from Jeurink et al. 2013. 
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Plausible implications of human milk microbiota for infant health   

Independent from the source, bacteria encountered in human milk are transferred to the 

infant during breastfeeding, and its relevance may lay in the potential implications on 

maternal and infant health. Information about the potential human roles of milk bacteria 

is scarce, but it has been speculated that they may play several important functions in 

the infant (Figure 4). 

Vertical transmission and seeding of microbial colonizers  

As mentioned in previous sections, the initial colonization process has an important 

stimulating effect on the maturing intestine and immune system. A limited number of 

studies have shown specific shared bacteria or bacterial DNA between human milk with 

infant feces and oral samples (Martín et al. 2003, 2012); maternal feces, human milk and 

infant feces (Jost et al. 2014; Milani et al. 2015; Perez et al. 2007), and even with mother’s 

PBMCs (Perez et al. 2007). In the study by Milani et al, two Bifidobacterium strains shared 

by mother and infant persisted in the infant’s gut at 6 months of age. These results 

support a vertical transmission of human milk bacteria to the infant gut, which likely 

enhance development and maintenance of tolerance to commensal microbiota and 

intestinal host defense to pathogens. The seeding of bacteria to the baby has been shown 

to occur beyond the gut, as a recent study demonstrated that exactly the same bacterial 

strains could be isolated from precolostrum (before delivery) and from the infant oral 

cavity several weeks after birth (Ruiz et al. 2019).  

Metabolic activity 

Human milk bacteria facilitate digestive processes, for example, by fermenting HMOs, 

indigestible by the infant intestine (Fernández et al. 2013). Molecular analysis reported 

that these bacteria are metabolically active in increasing the production of functional 

metabolites such as butyrate. Butyrate can play several functions in the intestine, and its 

high presence in fecal samples may explain the increased fecal moisture, volume and 

stool frequency in breastfed infants (Lara-Villoslada et al. 2007). 

Anti-pathogenic activity  

Breast milk lactic acid bacteria protect the gut environment through different 

mechanisms, such as the production of anti-microbial peptides, organic acids and 

lowering of pH to inhibit the growth of opportunistic and pathogenic bacteria (Dzidic et 

al. 2018a). In vitro studies showed that several bacteria isolated from human milk, 

including lactic acid bacteria and commensal staphylococci and oral streptococci, 

inhibited Staphylococcus aureus growth (Heikkila & Saris 2003). S. aureus is responsible of 

several human infections, including lactational mastitis (Delgado et al. 2011) and, several 

clinical trials have shown that the use of milk-isolated bacteria as probiotics can be 

effective against acute mastitis (Jiménez et al. 2008; Vázquez-Fresno et al. 2014). 
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Lactococcus lactis strains isolated from human milk were shown to produce nisins, potent 

bacteriocins (Beasley & Saris 2004). In addition, Olivares et al. showed that different 

strains of Lactobacillus isolated from human milk exerted in vitro bacteriostatic and/or 

bactericidal effects on an enteropathogenic Salmonella enterica strain, and also in a mice 

model infected with the pathogen. In particular, L. salivarius CECT5713 inhibited S. 

enterica binding to mucins (a pre-requisite of many pathogenic bacteria to infect gut 

epithelial cells) (Olivares et al. 2006). In another study, probiotic L. fermentum CECT5716 

significantly reduced the incidence of gastrointestinal and respiratory infections in 

infants (Maldonado et al. 2012).  Interestingly, several human milk lactic acid strains have 

shown potential to inhibit the infectivity of HIV by interacting with different co-

receptors (Martín et al. 2010). 

Immuno-modulatory effect 

L. fermentum CECT5716 and L. salivarius CECT5713 milk isolates were able to modulate 

immune responses in vitro by activating NK cells, total T cells, CD4+ T cells, CD8+ T cells 

and regulatory T cells, and inducing the production of a broad array of cytokines and 

IgA. This effect was not seen in Lactobacillus strains of non-milk origin (Díaz-Ropero et 

al. 2007; Pérez-Cano et al. 2010). In addition, a metagenomic analysis of human milk 

revealed immunomodulatory DNA motifs which may help decrease exaggerated 

inflammatory responses to colonizing bacteria (Ward et al. 2013). It has been speculated 

that infant exposure to milk bacteria could be protective against allergic and immune-

associated diseases. Children exposed to unpasteurized cow’s milk, source of live 

microorganisms, have lower incidence of allergic diseases, and thus, bacterial 

communities of human milk could be acting as a natural probiotic, which requires 

further elucidation (Braun-Fahrländer & Von Mutius 2011). Animal studies have 

reported that animals devoid of normal host-microbe interactions early in life are more 

prone to developing allergic immune responses. This is in accordance with the “hygiene 

hypothesis”, which states that a lack of early infancy exposure to pathogens and 

symbiotic microorganisms leads to a defective tolerance development, and ultimately to 

a higher risk of developing allergic and immune diseases (Okada et al. 2010). Differences 

exist between atopic and healthy infant’s fecal bacteria, with the first showing lower 

levels of gram positive bacteria, including viridans Streptococcus and Staphylococcus, both 

dominant bacterial groups in human milk that can stimulate Th1 responses (Kirjavainen 

et al. 2001; Munblit et al. 2017).  

Altogether, evidence suggests that the ingestion of such a wealth of bacteria and their 

genetic materials through breastfeeding likely play relevant roles in the infants’ 

development. Human milk bacteria can colonize the infant and likely instruct the 

immune system to recognize specific bacterial molecular patterns and properly respond 

to pathogens and commensal organisms. Probably for this reason, breastfeeding 

duration was found to be the factor which had the largest impact on oral microbiota 
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development, influencing bacterial composition years after breastfeeding had ended in 

a cohort of 90 Swedish children followed from birth to 7 years of age (Dzidic et al. 2018b). 

 

 

Figure 4. Schematic overview of the suggested mechanisms of action of human milk bacteria 

in the infant gut. Milk bacteria may colonize the gut epithelium, serve as probiotics (labelled in 

green) by fermenting prebiotic HMOs and leading to SCFA production; stimulate mucin 

production by intestinal cells and enhance the barrier function; kill specific pathogens (labelled 

in red) by release of anti-bacterial molecules and changing the pH; act as decoy, by inhibiting 

pathogens binding to the gut epithelium, and binding to co-receptors and stimulate immune 

modulation (tolerance to symbionts and immune response towards pathogens). 

 

Efforts on studying human microbiota have mainly targeted its bacterial fraction. In 

contrast, fungi, viruses and archaea have been generally overlooked. In particular, the 

fungal fraction of the microbiome, or the mycobiome, is starting to gain recognition as a 

fundamental part of our microbiome (Laforest-Lapointe & Arrieta 2018). Despite fungi 

are present in the human gut in much lower abundances than bacteria, they are part of 

the microbial homeostasis and can have direct effects on host’s health (Underhill & Iliev 

2014). Given that bacteria are present in milk under normal conditions, and that infants 

host fungi in their guts since early in life (Bliss et al. 2008; Heisel et al. 2015; Ward et al. 

2017), it could be hypothesized that human milk may also contain yeasts and other fungi, 

whose presence should be evaluated. 
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Breastfeeding exerts several benefits for the nursing mother, including psychological 

and affective benefits, such as enhanced maternal bonding and decreased stress. In 

addition, it favors amenorrhea, thus contributing to spacing of pregnancies, and it has 

been inversely associated with type 2 diabetes and breast and ovarian cancer (Victora et 

al. 2016b). With the relatively recent discovery of naturally present bacteria in breast 

milk, and their potential effects on infant health, it could be speculated that a correct 

bacterial balance in milk could be important for the mammary gland health. In fact, 

alterations in milk’s microbial communities (dysbiosis) could lead to an overgrowth of 

opportunistic pathogens and cause disorders in the mammary gland. For example, 

alterations in breast tissue’s microbiota have been observed in women with breast 

cancer. A few studies that analyzed the bacterial composition in breast tumors and in 

the adjacent healthy tissue did not find significant differences in overall composition, 

although specific differences in bacterial abundances were identified (Costantini et al. 

2018; Urbaniak et al. 2014; Xuan et al. 2014). For example, higher abundances of 

Escherichia coli, with cancer-promoting activity, was observed in women with cancer, as 

compared to healthy controls (Urbaniak et al. 2016b). In other studies, differences in 

bacterial composition were observed between breast tumor adjacent tissue and control 

tissue (Urbaniak et al. 2016a); and between cancer tissue and tissue from woman with 

benign disease (Hieken et al. 2016). On the other hand,  lactational mastitis is a common 

and fastidious event, caused by an inflammation of the mammary ducts, which is 

thought to have an infectious origin, that if misdiagnosed or not correctly treated, can 

result in undesired weaning (Contreras & Rodríguez 2011; Jiménez et al. 2015). Through 

classic culture-dependent approaches, Staphylococcus aureus was pointed out as the main 

responsible agent of acute mastitis, a disease that has a rapid onset and courses with 

intense pain and general symptoms. Acute mastitis can be identified relatively easily 

and is commonly treated with antibiotic therapies. Conversely, sub-acute mastitis, 

another type of mastitis, emerges gradually and courses with milder symptoms, as 

compared to the acute version. Its etiology appears to be complex, and several bacteria, 

including Staphylococcus epidermidis, other coagulase negative staphylococci (CNS), and 

viridans streptococci such as Streptococcus mitis and S. salivarius are thought to 

participate in its onset (Contreras & Rodríguez 2011; Delgado et al. 2008; Osterman & 

Rahm 2000). However, most studies targeting sub-acute mastitis are based on culture-

dependent and other classic methods. These bacteria can be commonly isolated from 

healthy mothers’ milk, which, together with the difficulty of distinguishing sub-acute 

mastitis symptoms with other mammary inflammatory processes, makes its diagnose a 

challenge. Non-cultivable bacteria, undetected by classic approaches, and therefore, 

overlooked, could be key for understanding mastitis etiology. With the blossoming of 

culture-independent microbial analyses, and high throughput sequencing 

methodologies, new opportunities arise for the research of human mastitis. In a 

randomized clinical trial from Jimenez et al,  breast milk-derived L. salivarius CECT5713 

and L. gasseri CECT5714 strains were shown to be and effective substitute for antibiotics 
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on the treatment of human  acute mastitis (Jiménez et al. 2008). However, difficulty to 

define, diagnose, prevent and treat sub-acute mastitis poses a large problem to deal with 

this condition, which although is extremely prevalent, has been questioned by different 

authors to be the outcome of a microbe-derived infection (Amir et al. 2016; Baeza 2016). 

Within this framework, specific milk and maternal urine compounds, including milk 

bacteria, may have the potential to serve as biomarkers of sub-acute mastitis. As 

previously mentioned, leukocytes are present in human milk and may have a potential 

protective role in the mammary gland. In particular, polymorphonuclear cells have been 

shown to increase during mastitis infections (Espinosa-Martos et al. 2016; Hassiotou et 

al. 2013b), and more studies are needed in order to identify specific differences with 

healthy controls that could be used for an accurate diagnose and/or treatment of the 

disease. In addition, DNA- or RNA-based methodologies are needed in order to clarify 

the potential bacterial etiology of sub-acute mastitis. Recently, a first attempt to use 

culture-independent approaches to study sub-acute mastitis has been performed (Patel 

et al. 2017), and a NGS-based network analysis has suggested that potential bacterial 

network alliances may be responsible of mastitis dysbiosis (Ma et al. 2015) 

In 2007, the Human Microbiome Project was launched, aiming to unravel the 

composition and health implications of the human microbiota and its genetic traits (the 

microbiome) (Human Microbiome Project Consortium 2012). However, human milk 

was not included as part of the project, and therefore, despite big efforts have been made 

to investigate its microbial composition, information is still very scarce compared with 

other human niches, such as the human gut or the oral cavity. An extended knowledge 

of the microbial composition of human milk under healthy conditions and disease on 

the mammary gland is needed.  In order to understand potential bacterial functions and 

interactions within the human milk environment and implications in infant and 

maternal health, the study of microbial relationships with other milk components is 

crucial. In addition, some studies have suggested a potential influence of specific 

environmental factors, including mode of delivery, or maternal BMI (Cabrera-Rubio et 

al. 2016; Khodayar-Pardo et al. 2014) on the composition of the human milk microbiota. 

Further studies are necessary in order to confirm this and other potential influencing 

factors. Classically, human milk microbiota was assessed through culture-dependent 

techniques, which are known to have some limitations. In order to better define 

microbial populations, it is essential to combine classic culture approaches with classic 

and novel culture-independent techniques, including qPCR, NGS, or flow cytometry. 
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Hypothesis and Aims of this Thesis 

 
The general aim of this thesis was to assess the composition of human milk microbiota, 

as well as its interactions with other milk components, in order to expand our knowledge 

about its nature and potential role in maternal and infant health. For this purpose, we 

applied several novel molecular culture-independent techniques, together with 

microscopic and classic culture-dependent microbiological analyses.  

 

Our hypotheses were: 

1) Human milk contains bacteria under normal conditions, their loads in the 

samples are measurable, and microbial composition and quantities vary 

throughout lactation and during health alterations. 

 

2) Human milk contains fungi under normal conditions, and its composition varies 

depending on maternal geographic location and other perinatal factors, such as 

mode of delivery. 

 

3) The presence and composition of human milk microorganisms are affected by 

milk elements, such as macronutrients and human cells.  

 

4) Sub-acute mastitis has a microbial origin, and active bacterial DNA composition 

differs from the total DNA composition in the samples. 
 
 

The specific aims of each individual chapters were: 

1) To determine the bacterial composition of human milk throughout lactation in 

samples from healthy mothers, their distribution in the fluid and interactions 

with other milk macronutrients and cells, by applying several culture-

independent  methodologies. 
 

2) To explore the potential presence of yeasts and fungi in human milk from healthy 

donors throughout lactation, their numbers and potential interactions with milk 

macronutrients and cells, by applying culture-independent next-generation 

sequencing methodologies, together with classic culture-dependent approaches. 
 

3) To confirm the presence of fungi and yeasts in human milk samples from 

different and distant geographic locations, with a look at the potential influence 

of mode of delivery and location on its composition, together with the study of 

fungal interactions with bacterial communities in human milk. 

 

4) To quantify and characterize the total and active milk microbiota from healthy 

mothers and mothers suffering sub-acute mastitis. 
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Abstract 

Human breast milk is considered the optimal nutrition for infants, providing essential 

nutrients and a broad range of bioactive compounds, as well as its own microbiota. 

However, the interaction among those components and the biological role of milk 

microorganisms is still uncovered. Thus, our aim was to identify potential relationships 

between milk microbiota composition, bacterial load, macronutrients, and human cells 

during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy 

mothers through lactation by bacteria-specific qPCR targeted to the single-copy gene 

fusA. Milk microbiome composition and diversity was estimated by 16S-

pyrosequencing, and the distribution of bacteria in the fluid was analyzed by flow 

cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk, as well 

as the number of somatic cells were also analyzed. We observed that milk bacterial 

communities were generally complex, and showed individual-specific profiles. Milk 

microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and 

Acinetobacter. Staphylococcus aureus was not detected in any of these samples from 

healthy mothers. There was high variability in composition and number of bacteria per 

millilitre among mothers and, in some cases, even within the same mothers at different 

time points. The median bacterial load was estimated at 106 bacterial cells/ml, higher 

than previously reported by 16S gene PCR and culture methods. Furthermore, milk 

bacteria were present in a free-living, “planktonic” state, but also in equal proportion 

associated to human immune cells. There was no correlation between bacterial load and 

the amount of cells in milk, strengthening the idea that milk bacteria are not sensed as 

an infection by the immune system. 
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Introduction 

Human milk is a complex fluid adapted to satisfy the nutritional requirements of the 

infant, and also provides protective compounds which help to create the right 

microenvironment for gut development and maturation of the immune system 

(Petherick 2010; Walker 2010). Recently, milk has been recognized to host commensal 

and potential probiotic bacteria, which together with milk’s growth factors and other 

components may have health implications. For example, they could be involved in the 

utilization of nutrients, facilitating the digestion process, although the most likely role 

of these microorganisms is immune modulation (Fernández et al. 2013). Culture-

dependent methods have long confirmed the presence of viable bacteria in aseptically 

collected samples (Heikkila & Saris 2003). However, an important part of milk bacteria 

have not been cultured under laboratory conditions, and subsequently the diversity of 

human milk could be underestimated by classical approaches. Although partial 

contamination from skin microbes likely occur, the presence of strictly anaerobic species 

such as Bifidobacterium, Clostridium, and some Bacteroides spp., which are absent in the 

skin microbiota, supports that breast milk hosts a unique microbiome (Cabrera-Rubio et 

al. 2012a; Hunt et al. 2011; Jost et al. 2013). In addition, accumulating evidence suggests 

that milk microbiota is influenced by perinatal factors such as mode of delivery, lactation 

stage, gestational age, maternal health, or geographical locations (Cabrera-Rubio et al. 

2016; Khodayar-Pardo et al. 2014).  

It has been estimated that an infant consumes ∼800 mL/day, ingesting between 104 and 

106 bacteria daily (Heikkila & Saris 2003), but those data were based on culture 

techniques and may have underestimated the total load of microorganisms. Other 

culture independent methods, such as molecular techniques or cytometry should be 

implemented in order to make more accurate estimates of milk’s bacterial densities 

(Collado et al. 2009). Knowing total bacterial numbers in milk will be useful to 

understand bacterial behaviour and also, to estimate bacterial loads under infectious 

situations. This would open new possibilities for developing potential tools to detect 

problems in the nursing mother. Furthermore, it’s known that milk contains a wide 

range of nutrients, such as lactose, fat or proteins, which can serve as bacterial food 

source (Petherick 2010). Milk also contains a variable number of human cells, including 

epithelial and immune cells, and the number of the latter has been related to lactational 

mastitis problems (Hassiotou et al. 2013b). The relationship between bacterial load and 

other factors such as milk developmental stage, nutrient composition, number of 

somatic cells, or bacterial diversity have not been studied in depth. Therefore, the 

purpose of the present study was to develop and establish a protocol, using molecular 

techniques and flow cytometry, to calculate the exact number of bacteria present in 

milk at three lactation stages from different mothers, and correlate this bacterial load 

to the abovementioned factors that could influence it. 
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Materials and Methods 

Subjects and sampling 

A total of 21 healthy Spanish mothers with exclusive breastfeeding practices participated 

in the study and provided samples of breast milk within 1 month after delivery. Breast 

milk samples were collected within 5 days after birth (colostrum), between 6 and 15 days 

(transitional milk) and after 15 days (mature milk). However, only 57 samples were 

analyzed, as not every mother provided a sample at the three time points. Details of 

delivery and gestational age were collected after birth. Written informed consent was 

obtained from the participants and the study protocol was approved by the Ethics 

Committee of the CSIC (Spanish National Research Council). Before sample collection, 

mothers were given oral and written instructions for standardized collection of the 

samples. Previously, nipples and mammary areola were cleaned with soap and sterile 

water and soaked in chlorhexidine to reduce bacteria residing on the skin. The milk 

samples were collected in a sterile tube manually, discarding the first drops. All samples 

were kept frozen at −20 ℃ until delivery to the laboratory. 

DNA isolation 

Milk samples (5–10 mL) were thawed and centrifuged at 4000×g for 20 min to separate 

fat and cells from whey. Thereafter, total DNA was isolated from the pellets by using the 

MasterPure Complete DNA and RNA Purification Kit (Epicenter) according to the 

manufacturer’s instructions with some modifications (Simón-Soro et al. 2015). Two 

hundred and fifty microliters of saline solution and 250 µl of lysis buffer were added to 

the pellets, together with Pathogen Lysis Tubes (QIAGEN) glass beads. Both chemical 

and physical cells disruption were performed after vigorous mixing of the samples in a 

TissueLyser II (QIAGEN), during 5 min at 30 Hz, incubating in dry ice 3 and 5 min at 

65◦C in a thermoblock, repeating the process 2 times. Fifty microliters of lysozyme (20 

mg/ml) and 5 µl of lysostaphin (20 µg/ ml) were added to the tubes, and samples were 

incubated for 1 h at 37℃. Two microliters of proteinase K were added and samples were 

incubated for 15 m at 65℃. The reaction was ended putting tubes on ice, and proteins 

were precipitated using 350 µl of the protein precipitation agent, discarding the pellets. 

DNA was then precipitated using isopropanol, washed with 70% ethanol and 

resuspended with 30 µl TE buffer. The total DNA isolated was quantified with a 

NanoDrop ND-1000 (ThermoScientific) spectrophotometer. 

Quantitative real-time polymerase chain reaction analysis and bacterial load 

qPCR amplification and detection were performed with primers targeting the fusA gene, 

a bacterial gene which is present in a single and unique copy per bacterial cell (Santos & 

Ochman 2004), making it a more accurate target for bacterial load estimations, as 

compared to the 16S rRNA gene, which is present in variable copy numbers among 

different bacterial species. The use of a single-copy gene in qPCR analyses implies that 

the number of gene copies equals the number of bacterial cells, improving measurements 
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of bacterial densities. In this work, we used modified fusA gene primers from Santos 

and Ochman (2004), based on multiple alignments with all  sequences of this gene from 

the Ribosomal Database Project Functional Gene Repository (Fish et al. 2013) as available 

on January 2015, using an annealing temperature of 62℃ in a Light Cycler 480 Real-Time 

PCR System (Roche Technologies). The primer sequences were as follows: 138F- 

GCTGCAACCATGGACTGGAT, and 293R- TCRATGGTGAAGTCAACGTG. Each 

reaction mixture of 20 µl was composed of KAPA Sybr Fast qPCR Kit (KAPA 

Biosistems), 0.4 µl of each primer (10 µM concentration) and 1 µl of template DNA, using 

an annealing temperature of 62℃ in a Light Cycler 480 Real-Time PCR System (Roche 

Technologies). All amplifications were performed in duplicates. The bacterial 

concentration in each sample was calculated by comparison with the Ct values obtained 

from standard curves. These were generated using serial 10-fold dilutions of DNA 

extracted from 10 million bacteria, quantified and sorted from a pool of four milk 

samples from different mothers using a MoFlo XDP cytometer, after mild sonication to 

separate aggregated cells (Simón-Soro et al. 2015). 

PCR amplification and pyrosequencing 

Partial 16S rRNA genes were amplified by PCR with the universal bacterial primers 8F 

and 785R (Simón-Soro et al. 2014) by the use of high-fidelity AB-Gene DNA polymerase 

(ThermoScientific) with an annealing temperature of 52℃ and 20 cycles. A secondary 

amplification was performed by using the purified PCR products as a template, in which 

the universal primers were modified to contain the pyrosequencing adaptors A and B 

and an 8-bp “barcode” specific to each sample, following the method used in (Benítez-

Páez et al. 2013). The DNA was purified by using an Ultrapure PCR purification kit 

(Roche), and its concentration was measured by PicoGreen fluorescence in a Modulus 

9200 fluorimeter from Turner Biosystems. PCR products were pyrosequenced from the 

forward primer end using a 454 Life Sciences system, in a GS-FLX sequencer with 

Titanium chemistry (Roche) at the Foundation for the Promotion of Health and 

Biomedical Research (FISABIO, Valencia, Spain). Sequences were deposited in the MG-

RAST public repository under the project name “Relationship between milk microbiota, 

bacterial load, macronutrients, and human cells during lactation” with Accession 

Numbers 4689674.3-4689703.3. 

Sequence analysis 

Sequences with an average quality value <20 and/or with >4 ambiguities in 

homopolymeric regions in the first 360 flows were excluded from the analysis. Obtained 

16S rRNA reads were end-trimmed in 10 pb sliding windows with average quality value 

>20, then length (200 bp) and quality filtered (average Q>20). Only sequences longer than 

400 bp were considered and chimeric reads were eliminated using UCHIME (Edgar et 

al. 2011). Sequences were assigned to each sample by the 8-bp barcode and phylum-, 

family-, and genus-level taxonomic assignment of sequences that passed quality controls 

were made using the Ribosomal Database Project classifier software (Wang et al. 2007) 
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within an 80% confidence threshold. Sequences >97% identical were considered to 

correspond to the same operational taxonomical unit (OTU), representing a group of 

sequences that presumably correspond to the same species (Yarza et al. 2008). Sequences 

were clustered at 97% nucleotide identity over 90% sequence alignment length using the 

CD-hit software (Li & Godzik 2006). Rarefaction curves were calculated with the RDP 

pyrosequencing pipeline (Cole et al. 2009) using the same number of randomly selected 

sequences per group and Chao1 and Shannon estimations (representing species richness 

and diversity, respectively) were obtained. For those genera found at higher than 1% 

frequency, a BLASTn (Altschul et al. 1990) was performed against the RDP database, 

selecting  those hits with nucleotide identity values >97% and alignment lengths >400 

bp, following (Cabrera-Rubio et al. 2012b). 

Milk composition analysis 

We analyzed 38 milk samples from 17 mothers with known bacterial load to elucidate 

their fat, protein, and lactose composition (%w/w) by spectrophotometry using a 

MilkoScan FT 6000 (FOSS), and the number of somatic cells (cells/ml) using an Integrated 

Milk Testing Fossomatic FC (FOSS) cytometer, in LICOVAL (Valencia, Spain).  

Bacterial fractions in milk 

Bacterial distribution in human milk was determined after analyzing 10 ml of colostrum 

(n=9) and mature milk (n=9) samples, using a MoFloXDP cytometer with sorter. 

Transition samples were not analyzed due to lack of volume availability. Light was 

produced by an argon laser of 400 nm (blue light) and 200 Mw. First, the machine was 

calibrated using electromagnetic beads (Fluorospheres, Beckman Coulter Inc.) with 

known size (1, 3, and 10 µm). Then, events under 3 µm (containing planktonic bacteria) 

and those over 3 µm (containing human cells) were counted and sorted in two different 

tubes. DNA was extracted from both fractions for each sample, and qPCR was 

performed to determine the number of bacteria present in each of them, corresponding 

to free-living and human cells-associated bacteria. Fluorescence microscopy was 

performed on a selected number of samples after marking with DAPI dye, and 

visualized on a Nikon Eclipse E800 microscope. For Scanning Electron Microscopy, 

samples were kept on Karnovsky solution and further fixed with 1% OsO4 in PBS buffer. 

Samples were then dehydrated with ethanol and critical-point drying, attached to a stub 

and coated with gold. Images were obtained in a Hitachi S-4800 Scanning electron 

Microscope with default settings at University of Valencia. 
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Results and Discussion 

Bacterial load in milk 

Bacterial load values at each milk lactation stage are shown in Figure 1. After analysing 

56 milk samples by qPCR, results showed large individual differences in bacterial load 

over time between samples from the different mothers and in some cases even within 

individuals at different time points, indicating that human milk samples are highly 

variable in microbial content. Median values for colostrum, transition and mature milk 

were around 106 bacterial cells per ml, with no significant differences between the three 

time points. Data from other researchers had indicated bacterial densities of 103–104 per 

ml of breast milk, but they were based on laboratory culture (Heikkila & Saris 2003) or 

on qPCR methods calibrated by culture (Khodayar-Pardo et al. 2014), which account for 

a limited fraction of the total bacteria in human samples. In addition, a significant 

fraction of microorganisms were found to be adhered to the extracellular matrix of 

human cells (see section Bacterial Distribution in Milk below), which could further 

prevent the growth on culture media. The molecular approach used in the current 

manuscript expands these pioneering estimates, allowing now the study of potential 

relationships between bacterial load and other parameters. Although our molecular-

based methods suggest bacterial loads between two and three orders of magnitude 

higher than those estimated by culture, it has to be taken into account that DNA from 

non-viable bacteria and extracellular DNA would also be amplified by qPCR, and 

therefore the real number of viable bacteria would probably be lower. 

 

 

Figure 1. Bacterial load over lactational stages. (A) Data show the median with ranges 

(maximum and minimum values for each group) of bacterial load at the three time points. C, 

colostrum samples (n = 19); T, transition milk samples (n = 20); M, mature milk samples (n = 17). (B) 

Lines show individual bacterial load for each mother at the three time points (n = 17). 
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Milk bacterial composition throughout lactation  

After quality filtering and length trimming, 174,886 16S rRNA sequences were analyzed, 

with an average number of taxonomically assigned, high-quality sequences of 4,353 

reads per   sample.   The   taxonomic   assignment   of   the sequences showed that  human  

breast  milk  composition  is  dominated  by  Staphylococcaceae,  which  account  for  

>62%  of  the total number of sequences obtained (Figure 2). At the three lactation times, 

the most common genera was Staphylococcus, followed by Acinetobacter in colostrum, 

Pseudomonas and Streptococcus in transition milk and also Acinetobacter in mature milk 

samples (Figure 3A). Milk from the three lactation points showed different patterns of 

bacterial diversity, but no statistically significant differences were found between time 

points for any bacterial genus. Rarefaction curves after analyzing 35,000 reads per 

lactation time point indicated 223 OTUs in colostrum samples, 251 in transition and 203 

in mature samples when sequences were clustered at 97% sequence identity (the 

consensus value for determining species boundaries; Figure 3B). The number of OTUs 

obtained suggests values of several hundred species in human breast milk, with 

transition samples having higher diversity than colostrum and mature milk, containing 

up to nine genera that were only found at that stage (Figure 3B). Similar estimates of 

several hundred bacterial species were also obtained by other studies  (Cabrera-Rubio et 

al. 2012a; Hunt et al. 2011), confirming that human breast milk is highly diverse. 

However, most diversity in the samples corresponded to a few bacterial genera, which 

appeared to be dominant. Among them, we found a core of seven genera that were 

present at the three time points: Finegoldia, Streptococcus, Corynebacterium, Staphylococcus, 

Acinetobacter, Peptoniphilus, and Pseudomonas. Although determining the bacterial species 

composition with partial 16S rRNA sequences should be taken with care, the relatively 

long sequences obtained by pyrosequencing (average read length 718 bp) allowed us to 

assign reads to the species taxonomic level with some degree of reliability. This analysis 

revealed that the most common species within Staphylococci was S. epidermidis, and S. 

aureus was not detected in these healthy mothers (a full list of species composition can 

be found in Table 1). It must be underlined that although some bacteria typically 

associated to human breast milk like Bifidobacterium spp (Collado et al. 2009) were 

detected at low proportions in our samples, this could be due to low amplification 

efficiency of “universal” primers in these high G+C content taxa (Sim et al. 2012). It is 

interesting to note that the bacterial genera found in our samples, which were obtained 

from Spanish mothers, was different to those found in other high-throughput 

sequencing studies from American or Finnish origin (Cabrera-Rubio et al. 2012a; Hunt et 

al. 2011), suggesting that geographic, genetic, and dietary factors could be influencing 

microbial diversity in breast milk. 
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Figure 2. Bacterial taxonomic composition of human breast milk. The bar plot shows the 

proportion of bacterial genera as inferred by pyrosequencing of the 16S rRNA gene in healthy 

mothers (n = 12). Each number in the X axis represent a donor, with first column representing the 

colostrum sample, second the transition milk and third the mature milk samples. In some cases, 

data from the three breastfeeding stages could not be obtained due to sample unavailability or 

sequencing failure. Bacterial genera that were under 1% were grouped in the “Others” category. 

 

 

 
 

Figure 3. Bacterial diversity of human breast milk. (A) Shows the proportion of each bacterial 

genera in the three lactational-stages, as inferred by PCR amplification and pyrosequencing of 

the 16S rRNA gene. (B) Shows the rarefaction curves of the three groups, relating the sequencing 

effort with an estimate of the number of bacterial species, as inferred by the number of OTUs. An 

OTU is a cluster of 16SrRNA sequences that were >95% identical, a conservative estimate for the 

boundary between species, established at 97% for full-length 16S rRNA sequences. The inlet 

Venn’s diagram shows the number of bacterial genera shared between and unique to the three 

sample types, excluding bacterial genera present at <1% proportion. Seven genera are shared at 

the three breastfeeding stages: Finegoldia, Streptococcus, Corynebacterium, Staphylococcus, 

Acinetobacter, Peptoniphilus, and Pseudomonas. C, colostrum samples (n = 11); T, transition samples 

(n = 11); M, mature samples (n = 8). 
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Relationship between bacterial load and milk’s composition and diversity 

After comparing the number of somatic cells and bacterial load in the same samples, no 

significant correlation was found (Figure 4). Given that the number of somatic cells in 

milk is considered the gold standard for detecting infections (e.g., lactational mastitis) in 

farm animals (Olechnowicz & Jaśkowski 2012), the absence of a somatic cell increase in 

our samples suggests a lack of significant immune response. Thus, the data presented in 

the current work suggest that high counts of bacteria in milk are not associated with 

infection in these healthy mothers without lactation problems. However, a positive 

correlation was found between the proportion of the common mastitis pathogen 

Staphylococcus and the number of somatic cells (Pearson correlation coefficient: 0.48, p= 

0.046). Given that a negative relationship was found between the proportion of 

Staphylococcus and the total bacterial load (correlation coefficient: −0.456, p=0.056), the 

data suggest that it is not the number of bacteria but the specific composition of the milk 

microbiota that could be inducing an immune response in the mammary gland, although 

the major mastitis pathogen S. aureus was not detected in our samples (Table 1). Other 

bacteria appeared to show a positive relationship with the number of somatic cells were 

Peptoniphilus and Finegoldia (Figure 5), although the correlations were not statistically 

significant in these cases. It has to be kept in mind that breast milk contains several anti-

inflammatory components (He et al. 2016) that could partly reduce somatic cells counts. 

 

Figure 4. Relationship between the number of somatic cells and bacterial load in breast milk. 

The graph shows a comparison between the number of bacterial cells per milliliter (estimated by 

qPCR) and the number of somatic cells per milliliter, estimated with an Integrated Milk Testing 

Fossomatic 5000 (FOSS) cytometer. (n = 38, R2 = 0.0066). C, colostrum samples (n = 12); T, 

transition samples (n = 15); M, mature samples (n = 11). 

 

Additionally, we estimated the bacterial diversity and richness in the samples by the 

statistic indexes “Shannon” and “Chao1,” respectively. Neither diversity nor richness 

increased or decreased significantly with bacterial load (Figure 6). This also supports a 

lack of subclinical or sub-acute mastitis, as an increase of a few dominant bacteria would 

be expected in case of infection, and suggests that milk microbiota is not activating an 

immune response in the host, although inflammatory markers have not been measured.  
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Fat, protein, lactose and non-fatty solid fractions of milk were also analyzed, and were 

compared with the bacterial load, in order to find any possible correlations 

(Supplementary Figure 1). No significant correlations were found with the number of 

bacteria per ml. However, some positive and negative relationships were found between 

some nutrients and specific bacterial genera (Figure 5). For instance, the amount of 

proteins were positively correlated with the proportion of Bacillus, Peptoniphilus, and 

Anaerococcus in the samples, whereas lactose levels were negatively correlated with 

Enterobacter and Actinomyces, indicating potential prebiotic and antagonistic effects for  

bacterial  growth,  which  should  be evaluated in bigger sample sizes. In the case of fat, 

whose content in milk is known to increase through breastfeeding, it was negatively 

correlated with the proportion of Staphylococcus (Pearson correlation coefficient: −0.425, 

p=0.044), and therefore  if  this  negative  relationship  is  confirmed  in  larger cohorts, 

high fat content in milk could potentially be protective of mastitis risk.  

 

 

Table 1. Prevalence of bacterial genera and species in breast milk samples 

 

Assignment to the species taxonomic level was performed by BLASTn selecting only alignments >300 bp and sequence 

identity >97%. 

a Data indicate the number of samples containing the indicated genus.  

b Data indicate the number of samples containing the indicated species referred to the number of samples containing 

the corresponding genus. 
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Figure 5. Relationships between bacterial composition and components of breast milk. The 

figure shows a heatmap where samples are clustered according to their compositional profile. 

Relationships between bacterial genera and milk components appear color-coded according to 

their negative-(red) or positive-(blue) correlations. Prot= protein content; Lact= lactose content; 

NFS= non-fatty solids (n = 30). 

 

 

Figure 6. Richness and diversity of milk samples. (A) Shows the richness in the samples as 

inferred by computation of Chao1 index, compared with bacterial load in cells per ml, as estimated 

by qPCR. (B) Shows the diversity in the samples as inferred by Shannon index, compared with 

bacterial load. (n = 30 in both cases). 
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Bacterial distribution in milk 

Bacterial loads in planktonic and human cell-associated fractions of nine samples of 

colostrum and nine samples of mature milk were calculated, showing that the 

microorganisms were present in both fractions, although aggregated bacteria appeared 

to be more abundant in colostrum (65.75%), and planktonic bacteria were found to be 

more abundant in mature samples (63.92%, Figure 7A). Mann-Whitney statistical tests 

showed significant differences (p < 0.05) between the two time points (but not within the 

same time point) for both free and human   cell-associated bacteria. The high proportion 

of bacteria associated with human immune cells was confirmed by fluorescence and 

Scanning Electron microscopy (Figures 7B–D). Bacteria in the aggregated fraction 

seemed to be adhered to the membrane of human cells (identified as immune cells 

according to their shape and size) but not intracellular. We confirmed the presence of 

live bacteria moving inside the extracellular matrix of immune cells (Supplementary 

Video). 

 

 
 

Figure 7. Bacterial fractions in human breast milk. (A) Proportion of bacteria present in a free-

living, “planktonic” state and aggregated to human immune cells in colostrum and mature milk 

samples. Bacteria from 10 ml of milk were counted and sorted by size and complexity using a 

Moflo cytometer. *indicates a p < 0.05, Mann–Whitney test. (B) Planktonic bacteria in milk 

observed by SEM microscopy. (C) Bacteria associated to human immune cells, observed with 

SEM microscopy. (D) Bacteria associated to human immune cells, observed with fluorescence 

microscopy. DNA was stained with DAPI fluorophore. Bacteria are indicated with arrows. IC, 

human immune cell; B, bacteria. 
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Bacterial cells in this extracellular matrix have also been observed in blood samples from 

pregnant mothers by other researchers (Donnet-Hughes et al. 2010). An “entero-

mammary pathway” has been proposed to explain the translocation of bacteria to the 

mammary gland through blood and/or lymph stream through its association to human 

immune cells (Martín et al. 2004). If this translocation process is confirmed, the milk cell-

bacterial association described here could be a consequence of such a relationship. An 

alternative explanation would be that bacteria originated from skin and the oral cavity 

of the lactating child invades the mammary gland and binds to immune cells without 

eliciting a response (Hagi et al. 2013). Future studies should determine the type of 

immune cells involved in the observed bacterial adhesion and the nature of the bacteria-

human recognition (Langa 2006; Perez et al. 2007), including the identification of which 

microorganisms are free and which are human cell-associated. 

 

Conclusions 

Our estimates of bacterial load provided by molecular methods indicate that a lactating 

infant feeding 800 ml of breast milk per day could ingest 107–108 bacterial cells daily, 

about 100 times higher than previous estimates based on laboratory culture 

methodologies. Our data show that samples with higher bacterial load in healthy 

mothers do not suffer from lower diversity, as it would be expected from microbial 

infections. In addition, no correlation between human and bacterial cells was found in 

milk, suggesting that milk microbiota is not seen as an infection by the mother’s immune 

system, and that the immune response is directed toward specific microorganisms such 

as Staphylococcus. Furthermore, specific relationships between macronutrients and 

specific bacteria have been described. However, more studies with higher number of 

samples are needed to confirm and identify key interactions between bacteria and 

nutrients and their potential impact in infant health. Thus, the biological function of 

these potentially symbiotic bacteria for infant health could be relevant, including a role 

in the development of their immune system, and should be elucidated. 
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Supplementary Material 

 

Supplementary Video (available online at: 

www.ncbi.nlm.nih.gov/pmc/articles/PMC4837678/). Time-lapse photography of a 

human milk immune cell containing a live bacterial cells embedded in its surface. Apart 

from free-living, 40-60% of milk bacteria were found attached to human cells, as 

estimated by qPCR of planktonic and aggregated bacteria.  

 

 

Supplementary Figure 1. Relationships between bacterial load and macronutrients in human 

milk. The graphs show the comparison between bacterial load and: (A) protein, (B) lactose, (C) 

fat, and (D) non fatty solids in the samples (n = 38). 
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Abstract 

Human breast milk contains a variety of bacteria that are transmitted to the infant and 

have been suggested to contribute to gut microbiota development and immune 

maturation. However, the characterization of fungal organisms in milk from healthy 

mothers is currently unknown, although their presence has been reported in the infant 

gut and also in milk from other mammals. Breast milk samples from healthy lactating 

mothers (n=65) within 1 month after birth were analyzed. Fungal presence was assessed 

by different techniques, including microscopy, growth and identification of cultured 

isolates, fungal load estimation by qPCR, and fungal composition using 28S rRNA gene 

high-throughput sequencing. In addition, milk macronutrients and human somatic cells 

were quantified by spectrophotometry and cytometry. qPCR data showed that 89% of 

samples had detectable levels of fungal DNA, at an estimated median load of 3,5x105 

cells/ml, potentially including both viable and non-viable fungi. Using different culture 

media, 33 strains were isolated and identified, confirming the presence of viable fungal 

species. Pyrosequencing results showed that the most common genera were Malassezia 

(44%), followed by Candida (19%) and Saccharomyces (12%). Yeast cells were observed by 

fluorescence microscopy. Future work should study the origin of these fungi and their 

potential contribution to infant health.  
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Introduction 

Microbiome development in the new-born is a stepwise and crucial process, contributing 

at the physiological level and influencing the development and maturation of the 

immune system. During delivery, the neonate is exposed to maternal microbes, first 

from the mother’s reproductive system, rapidly after from the maternal skin and the 

environment, and later is influenced by diet, including breastfeeding. Breast milk plays 

an important role in the microbial supply as it contains a  variety of potential beneficial 

bacteria, as well as a wide source of nutrients and essential protective substances that 

makes it the optimal nutrition for the infant (Petherick 2010; Walker 2010). Those bacteria 

residing in breast milk are transmitted to the infant during breastfeeding, getting to the 

intestine and contributing to the settlement of the gut microbiota and acquired immunity 

(Jost et al. 2014). Although bacteria in human milk have been widely assessed, 

information about the natural presence of fungal species is generally lacking, and it is 

limited to a few studies focused on mammary infections describing breast candidiasis 

(Amir et al. 1996, 2013), and a recent metagenomic study on human breast milk from 

mothers suffering from mastitis, which confirmed the presence of fungal sequences, in 

addition to the dominant bacterial fraction (Jiménez et al. 2015). However, fungal 

presence in the milk of other mammals has been widely described in several studies 

(Callon et al. 2006, 2007; Cocolin et al. 2002; Corbo et al. 2001; Delavenne et al. 2011; 

Spanamberg et al. 2014), which supports the idea that human milk could also contain 

fungi under normal, healthy conditions. Furthermore, there is evidence that fungal 

species (yeast-like mainly) can be found in the infant gut early in life (Bliss et al. 2008; 

Heisel et al. 2015; LaTuga et al. 2011; Schulze & Sonnenborn 2009; Seddik et al. 2016). The 

importance of the fungal component -mycobiome- in the human gut has received 

increased attention by researchers, as it is part of  human microbial homeostasis, and 

changes on it can have direct effects on the host health status (Hatoum et al. 2012; Oever 

& Netea 2014; Underhill & Iliev 2014). It is therefore plausible that colonization of fungal 

species in the new-born would be important in the early settlement of human microbiota 

and for immune system development.  Therefore, there exists the possibility that breast 

milk could be playing an important role in the supply of fungal, as well as bacterial, 

species to the new-born. In this pilot study, we aimed to study and identify the presence 

of fungal species in breast milk samples from healthy mothers by using molecular 

approaches and high throughput sequencing, as well as through classical culture 

methods. We also studied the potential relationships between fungal load and diversity 

with milk macronutrients composition and human cells’ counts. 
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Material and Methods 

Subjects and sampling 

Breast milk samples from healthy lactating mothers (n=65) within 1 month after birth 

were analyzed in this study (colostrum: n=16; transitional milk: n=14; mature milk 

samples: n=28). Details of mode of delivery and gestational age were collected after birth. 

All infants were in good health. Previous to sample collection, nipples and mammary 

areola were cleaned with soap and sterile water and soaked in chlorhexidine to reduce 

sampling of microorganisms residing on the skin. Milk samples were collected in a 

sterile tube manually, discarding the first drops.  All samples were frozen at -20°C until 

further processing. Before sample collection, the mothers received oral and written 

information, and gave written informed consent to the protocol, which had been 

approved by the Ethics Committee of the Hospital Clínico Universitario de Valencia 

(Spain), and the Bioethics Subcommittee of Consejo Superior de Investigaciones 

Científicas (CSIC). All the methods were carried out in accordance with the relevant 

guidelines and regulations. 

Culture and identification of fungal colonies 

One ml of each breast milk sample was centrifuged 10 minutes at 9,000 rpm; fat was 

removed and pellets were resuspended in 400 μl of sterile water. 100 μl were plated in 

four solid fungal-selective media: Sabouraud (40 g/l dextrose, 10 g/l peptone and 20 g/l 

agar) supplemented with cloramphenicol 0.05 g/l (Roche); Rose Bengal (Conda-

Pronadisa); CHROMagarTM Malassezia and YPD (40 g/l dextrose, 40 g/l peptone, 20 g/l 

yeast extract and 40 g/l agar) supplemented with 25 μg/ml of streptomycin and 25 U/ml 

of penicillin (Biowest), and incubated aerobically at 37°C. Positive control for Malasezzia 

CHROMagar medium was Malassezia cuniculi (CECT 13051; CBS 11721). Negative 

controls were included for each culture medium. All isolated colonies were analyzed 

under the microscope to confirm fungal morphology and were further isolated to obtain 

single-cell pure colonies. DNA extraction was performed following the method 

described in detail in the Fungal DNA Isolation Section, and 4μl were amplified by PCR 

using primers targeting the 18S rRNA gene (forward: 5’-GTAGTCATATGCTTGTCTC; 

and reverse: 5’-CCATTCCCCGTTACCCGTTG); and the ribosomal Internal Transcribed 

Spacer (ITS) region, using ITS1F: 5’-TCCGTAGGTGAACCTGCGG (White TJ, Bruns T, 

Lee S 1990); and 5.8R: 5’-CGCTGCGTTCTTCATCG (Vilgalys & Hester 1990) primers. 

PCR products were sequenced in an Applied Biosystems® 3730/3730xl DNA Analyzer 

at University of Valencia (Spain) and fungal isolates were identified by using the BLAST 

algorithm in the NCBI database, with minimum 98% sequence identity. To test if all C. 

parapsilosis isolates and all R. mucilaginosa isolates, the two more prevalent isolates 

detected in our samples, were genetically identical, we performed a multiple alignment 

and generated a homology tree using DNAMAN software (version 7.212, Lynnon Corp., 

Canada).  
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Phenotypic characterisation of fungal isolates 

Sugars utilization and growth at different temperatures 

Isolates were plated on Yeast Nitrogen Base agar without amino acids (Difco). Four 

different plate types were prepared: YNB without sugars, and YBN with a sole 

carbohydrate source (lactose, and glucose and sucrose as controls). Media were prepared 

by making a 10x concentrated stock solution with 6.8g yeast nitrogen base powder, 1.5g 

agar and 5 g of the selected sugar (except in the “no-sugar” plates), in 100 mL water, that 

was filtered and further diluted in 900 ml sterile water.  Isolates were resuspended in 

1ml of sterile water and incubated at 30°C degrees for 1 hour to induce starvation. 50 μl 

were plated in the corresponding medium and incubated at 30°C until colonies appeared 

(1-3 days). In order to check for temperature resistance, isolates were plated on GPY agar 

plates (0.5% w/v yeast extract (Pronadisa), 0.5% w/v peptone (Oxoid LTD), 4% w/v 

glucose (Panreac), and 2% w/v agar (Panreac)), and were incubated at three different 

temperatures: 28°C, 37°C and 42°C until colonies appeared (1-3 days). 

Resistance to oxidative stress 

Strains were grown overnight in GPY agar plates at 30°C.  S. cerevisiae wine strain (T73) 

and baker strain (“Cinta Roja”) were included as controls. After adjusting to 0.1 OD in 

PBS, 6 mM hydrogen peroxide (H2O2) (Panreac) were added and samples were 

incubated for one hour at 30°C with shaking. Dilutions 1:10, 1:100 and 1:1000 were done 

and 15 μl from each dilution were deposited in a drop on GPY agar plates. Plates were 

incubated for 48 h at 30°C. 

Genetic characterization of breast milk S. cerevisiae strain: mtDNA restriction 

patterns and δ-PCR amplification patterns analysis  

DNA of the S. cerevisiae FBMI18 isolate, as well as DNA from three S. cerevisiae control 

strains (Wine yeast T73, baker yeast “Cinta roja” and S. boulardii, which is a therapeutic 

S. cerevisiae strain marketed as Ultralevura® for probiotic purposes) were isolated 

according to De Llanos et al. (de Llanos et al. 2006). The 5.8S-ITS region was amplified 

using the primers, PCR reaction conditions and thermal cycling parameters described 

previously by De Llanos et al. (de Llanos et al. 2004) The mtDNA restriction analysis was 

performed according to the method described by Querol et al (Querol et al. 1992). The 

amplified DNA (10 μl) was digested with Hinf I restriction endonuclease (Roche 

Molecular Biochemicals), following the supplier's instructions. Restriction fragments 

were separated in 0.8% (w/v) agarose (Pronadisa) gels in 1× TAE buffer. Electrophoresis 

gels were stained with ethidium bromide (0.5 µg/ml) (Sigma-Aldrich Chemie) and 

visualized with UV light. The DNA of phage λ digested with Pst I (Roche Molecular 

Biochemicals) served as size standard. δ sequences were amplified in a GeneAmp PCR 

System 9700 (Perkin Elmer, California, USA) using the primers, PCR reaction conditions 

and thermal cycling parameters described previously by De Llanos et al. (de Llanos et al. 
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2004). The PCR products were separated on 1.4% (w/v) agarose (Pronadisa) gel in 1× 

TAE buffer. After that, electrophoresis gels were stained and visualised as described 

above. 

FISH detection of fungi in milk 

Fluorescent in situ hybridization (FISH) was performed on 5 milk samples to detect 

fungi, as an alternative method to DNA sequencing and culture-based methods, by 

using the Euk516 probe (5’-ACCAGACTTGCCCTCC) targeting the 18S rRNA  gene 

(Amann et al. 1990), labeled with fluorescein isothiocyanate (FITC) at the 5’ end. 

Suspensions of previously fixed breast milk samples (fixed with paraformaldehyde at 

4% final concentration, overnight incubation) were vortexed thoroughly, and 100 μl 

aliquots were dispensed to new microcentrifuge tubes and pelleted (6000 rpm, 10 min). 

Supernatant was removed and cell pellets were resuspended in 100 μl of hybridization 

buffer preheated to 50°C. Hybridization buffer consisted of 20 mM Tris [pH 8.0], 0.9 

M NaCl, 0.01% SDS and miliQ water. One microliter of the probe was added to the mix 

(concentration 100 mM), and suspensions were hybridized at 53°C overnight on an 

AccuBlockTM heat block. After that, 500 μl wash buffer (hybridization buffer without 

probe, preheated to 50°C) was added, samples were vortexed and centrifuged 5 min at 

9,000 rpm and pellets resuspended in 100 μl of PBS. Calcofluor White Stain (Sigma-

Aldrich) at 0.01% was added to the suspension and used as second marker, as it binds 

to cellulose and chitin of fungal cell walls (Harriott & Noverr 2009). An isolated strain of 

Candida parapsilosis from one of our samples was included as positive control (FBMI4). 

Samples were visualized with fluorescence microscopy using a Nikon Eclipse E90i 

microscope (Nikon Corporation) with a 100× objective. Images were processed using 

NIS-Elements BR v3.22 software (Nikon). 

Fungal DNA isolation 

Milk samples (5ml) were thawed and centrifuged at 4,000 x g for 20 minutes to separate 

fat and cells from whey. Thereafter, total DNA was isolated from the pellets by using the 

MasterPure Complete DNA & RNA Purification Kit (Epicentre) according to the 

manufacturer's instructions with some modifications (Simón-Soro et al. 2015). 250 μl of 

sterile saline solution and 250 μl of lysis buffer were added to the pellets, together with 

a mix of 150-212 μm and 425-600 μm, acid-washed glass beads (Sigma). To enhance the 

disruption of fungal cell walls, samples were put through three cycles of vigorous 

mixing in a TissueLyser II (QIAGEN) 5 min at 30 Hz, incubation in dry ice 3 minutes and 

5 minutes at 65°C in a heat block. Lysozyme (20 mg/ml) and zymolyase (0.25 mg/ml) 

were added to the tubes, and samples were incubated for 1h at 37°C.  2 μl of proteinase 

K were added and samples were incubated for 15 minutes at 65°C. The reaction was 

stopped by putting tubes on ice and proteins were precipitated using 350 μl of MPC 

Protein Precipitation Solution, and discarding the pellets. DNA was precipitated using 
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isopropanol, washed with 70% Ethanol and resuspended with 30 μl TE buffer. The total 

DNA isolated was quantified with a QubitTM 3 Fluorometer (ThermoScientific). 

Quantitative real-time polymerase chain reaction analysis of fungal loads 

qPCR amplification and detection were performed with primers targeted to the 

conserved ITS1-5.8S rRNA fungal region, described in detail in the Culture and 

Identification of Fungal Colonies Section, using an annealing temperature of 61°C in a 

Light Cycler 480 Real-Time PCR System (Roche Technologies). Each reaction mixture of 

20 μl was composed of 10 μl of KAPA Sybr Fast qPCR Kit (KAPA Biosistems), 0.4 μl of 

each primer (10 μM concentration) and 2 μl of template DNA. All amplifications were 

performed in duplicates and a negative control was included in each qPCR reaction run. 

The fungal concentration in each sample was calculated by comparison with the Ct 

values obtained from a standard curve. These were generated using serial ten-fold 

dilutions of DNA extracted from 10 million fungal cells from 5 pure cultures from 

different fungal species (Candida albicans, Malassezia cuniculi, Sacharomyces boulardii, 

Thrichosporon cutaneum and Mucor circinelloides), that were pooled to create a single 

standard curve. Fungal cells were quantified and sorted using a BD FACSAriaTM II 

cytometer after mild sonication to separate aggregated cells. Under the described PCR 

conditions, the fungal primers did not amplify human or bacterial DNA, when using 

DNA from human umbilical vein endothelial cells (Advancell, Spain) (García-Tejedor et 

al. 2015) and a mix of bacterial-species DNA (Staphylococcus epidermidis, Pseudomonas 

aeruginosa, Streptococcus mitis, Bifidobacterium dentium and Rothia mucilaginosa). Averages 

were calculated for duplicates of Ct values in every sample, and inconsistent duplicates 

were re-run. A standard curve was included in each run (three runs were needed in 

total). Milk samples that showed Ct values equal or higher than the negative control 

were considered to be negative for fungal DNA. One-way ANOVA (Kruskal-Wallis test) 

was performed for groups’ comparison, using GraphPad PRISMR 6 (GraphPad 

Software).  Bacterial load data from the same samples were also obtained using primers 

targeting the bacterial universal single-copy gene fusA (Boix-Amorós et al. 2016). 

PCR amplification and sequencing 

Fungal DNA for sequencing was amplified by PCR from the 15 milk samples with the 

highest fungal load previously obtained by qPCR, using universal fungal primers 

against the 28S rRNA  gene: LR0R: 5’-ACCCGCTGAACTTAAGC; and LR3: 5’ 

CCGTGTTTCAAGACGG (Liu et al. 2012), by the use of high-fidelity AB-Gene DNA 

polymerase (ThermoScientific) with an annealing temperature of 52°C and 20 cycles. A 

secondary amplification was performed by using the purified PCR product as a 

template, in which the universal primers were modified to contain the pyrosequencing 

adaptors A and B and an 8-bp “barcode” specific to each sample, following the method 

used in Benitez-Paez et al (Benítez-Páez et al. 2013). Negative controls were included in 

primary and secondary amplifications using water and the purified PCR product from 
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the primary amplification, respectively. The purification of the 610 bp PCR products was 

performed with NucleoFast 96 PCR filter plates (Macherey-Nagel), and the final 

concentration of the DNA per sample was measured with a QubitTM 3 Fluorometer 

(ThermoScientific). PCR products were pyrosequenced from the reverse primer end 

using a 454 Life Sciences system, in a GS-FLX sequencer with Titanium chemistry 

(Roche) at Macrogen Korea (Rep. of Korea). A negative control for the sequencing run 

was also included by Macrogen to discard contamination. The amplification of a long 

28S rRNA region increases accuracy in taxonomic assignment due to the implementation 

of a machine-learning algorithm from the Ribosomal Database Project (RDP) platform 

(Liu et al. 2012) and to the amplification of fragments with the same size, as opposed to 

ITS regions of variable length that would be differentially sequenced in second-

generation sequencing platforms.  

Data analysis 

Sequences with an average quality value <20 and/or with >4 ambiguities in 

homopolymeric regions in the first 360 flows were excluded from the analysis. 28S rRNA 

gene reads were end-trimmed in 20 bp sliding windows with average quality value > 20, 

then length (>400 bp) and quality filtered (average Q>20), through the Galaxy server 

(http;//getgalaxy.org/). Chimeric reads were eliminated using UCHIME (Edgar et al. 

2011), and only  sequences longer than 400 bp were considered, resulting in a total of 

17,000 reads with a mean of 1,700 ± 444.9 (SE)  sequences per sample. Sequences were 

assigned to each sample by the 8-bp barcode and phylum-, family- and genus-level 

taxonomic assignment of sequences that passed quality control were made using the 

Ribosomal Database Project classifier software (Wang et al. 2007) within an 80% 

confidence threshold. Sequences >97% identical were considered to correspond to the 

same operational taxonomical unit (OTU), representing a group of sequences that 

presumably correspond to the same species (Strati et al. 2016). Sequences were clustered 

at 97% nucleotide identity over 90% sequence alignment length using the CD-hit 

software (Li & Godzik 2006). BLASTn was performed against the RDP LSU database for 

taxonomically assigning reads at the species level (Altschul et al. 1990). Only top hits 

with >98% similarity and >400 bp alignment length were considered. 

Milk macronutrient composition analysis 

Fat, protein and lactose composition (% w/w) was analyzed by spectrophotometry using 

a MilkoScan FT 6000 (FOSS). Somatic cells (cells/ml) were determined using an 

Integrated Milk Testing Fossomatic FC (FOSS) cytometer, in LICOVAL-UPV, 

Polytechnic University of Valencia (Spain), when the samples’ volume was sufficient 

(n=34). 
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Statistical analysis 

R software (version 3.2.2) (R Development Core Team. 2011) was used for computing  

Spearman’s correlation coefficients using the stats package, and heatmap plots with 

gplots package (Warnes et al. 2015). Other statistical analysis and graphs were performed 

using GraphPad PRISMR 6 (GraphPad Software).  

Data availability  

The datasets generated during the current study are available in the European 

Nucleotide Archive (ENA, EMBL-EBI) repository at 

http://www.ebi.ac.uk/ena/data/view/PRJEB19310, with accession num. PRJEB19310. 

 

Results 

Viable fungi in breast milk and fluorescence microscopy 

The cultivable fraction of breast milk fungi from 41 healthy mothers was investigated 

through isolation in selective culture media. Fungi were detected in 17 of the samples 

(representing 41% of all analyzed samples) leading to the identification of 33 isolates, 

either with one or two primer pairs used in an identification PCR (Table 1). Twenty-five 

of them were well-assigned to a specific species with one pair of primers or both of them, 

three presented inconsistencies in the results between the two primers used, and the rest 

were assigned to uncultured species. The majority of the well-assigned isolates 

corresponded to the yeasts Candida parapsilosis and Rhodotorula mucilaginosa, and were 

found to belong to different strains as inferred from phylogenetic trees (Supplementary 

Figure 1), discarding contamination from a given strain in the laboratory and supporting 

the unique presence of both of these species in breast milk. The presence of fungal 

species in breast milk was also confirmed by Fluorescent in situ Hybdirization (FISH) 

targeting the 18S rRNA gene (EUK516-FITC probe) and by Calcofluor White staining by 

fluorescence microscopy.  Only yeast cells and no hyphal forms were visualized in the 

analyzed samples (Figure 1).  

 

 

 

 

 

 

http://www.ebi.ac.uk/ena/data/view/PRJEB19310
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Table 1. Fungal species isolated in selective growth media. 

1Isolates identified with ITS1-ITS2 primers. 2Isolates identified with 18S primers. aBLAST alignment score 

from the top hit against the NCBI database. bPercentage of query sequence covered by the alignment. 
cHighest percent identity of all query-subject alignments. SBSabouraud. MMalassezia CHROMagar. RBRose 

Bengal. 
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Figure 1. Fluorescent microscopy images of yeasts detected in breast milk. Left panels are 

showing the yeasts stained in green with the EUK516 FISH probe targeting the 18S rRNA gene. 

Right panels are showing the yeasts stained in blue with calcofluor. (A) Candida parapsilosis isolate 

FBMI4 (positive control). (B) Yeast from fixed transitional breast milk sample BMF9. C) Yeasts 

from fixed colostrum sample BMF5.  

 

Isolates phenotypic characterization 

One sample from each of the two most prevalent isolates, Rhodotorula mucilaginosa 

(isolate FBMI6) and Candida parapsilosis (isolate FBMI7) were further characterized in 

order to determine their potential adaptation to human milk. For reference, we also 

included the Saccharomyces cerevisiae isolate (FBMI18), due to its interest for the 

biotechnological industry.  

Sugars utilization and growth at different temperatures 

Yeasts growth at different temperatures (28°C, 37°C and 42°C), and their ability to 

metabolize sugars naturally present in human milk (lactose) are shown in 

Supplementary Figure 2 (a). The optimal growth temperature for Saccharomyces species 



57 
 

is usually ~24-26°C, for Rhodotorula mucilaginosa ~24°C, and for Candida parapsilosis 

~30°C-35°C (temperature conditions according to the American Type Culture Collection, 

www.atcc.org). The fact that we were able to obtain viable isolates of these strains from 

human milk, which is at a temperature of ~37°C, suggests an adaptation to the human 

body. We tested the strains viability at 37°C and 42 °C. The three isolates were able to 

grow at any temperature, although the growth of isolate FBMI6 (R. mucilaginosa) was 

reduced at 42°C compared to the other species.  The Sacharomyces cerevisiae T73 wine 

strain included as a control was not able to grow at 37°C nor 42°C, as expected. The 

Saccharomyces cerevisiae “Cinta Roja” baker strain, adapted to survive high temperatures 

was also included as a control, and was able to grow at both tested temperatures. All 

strains were able to use glucose and sucrose with no growth differences, but none of 

them were able to grow in the sole presence of lactose, the main sugar present in human 

milk. Negative control medium (without any sugar) did not support growth of any of 

the strains.  

Resistance to oxidative stress 

The three tested isolates were able to grow in the presence of high levels of hydrogen 

peroxide H2O2 (6 mM), and did not differ dramatically from control strains 

(Supplementary Figure 2(b)).  

Genetic characterisation of breast milk S. cerevisiae strain 

The mtDNA restriction patterns of the isolated S. cerevisiae strain (FBMI18) from our milk 

samples was identical to the commercial baker strain “Cinta roja” profile, and the δ-PCR 

amplification patterns were highly similar, suggesting a correspondence between both 

strains (Supplementary Figure 2c). 

Fungal load in breast milk 

After analyzing 65 milk samples by qPCR, results showed that 58 (89%) had detectable 

levels of fungi when using primers targeting the ITS1-5.8S rRNA region, with high inter-

individual variability and a total median of 3,5x105 cells/ml. Samples were classified in 

three groups according to their collection time point: colostrum (1st-5th day 

postpartum), transitional (6th-14th day postpartum) and mature milk (from 15th day 

onwards). Similar fungal load values at the three time points were observed, with higher 

levels in colostrum (4,1x105cells/ml) and transitional milk (4,5x105cells/ml) and slightly 

lower values in mature milk (2,8x105cells/ml) although no statistical differences were 

found between them (Figure 2). The prevalence of samples with detectable fungal 

presence was 16/18 in colostrum, 14/18 in transitional milk and 28/29 in mature milk. 

Total bacterial load for the same samples was 8,9x105 cells/ml when using primers 

against the single copy gene fusA. 

 

http://www.atcc.org/
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Figure 2. Fungal load in breast milk over time. The plot shows the median with interquartile 

ranges of fungal load at three time points in the 89% of samples that showed fungal presence by 

qPCR. C, colostrum samples (n=16); T, transitional milk samples (n=14); M, mature milk samples 

(n=28). Detection limit was established at 103 cells/ml, estimated as the lowest concentration at 

which 95% of the positive samples are detected. 

 

Fungal composition in breast milk 

To better characterize the breast milk fungal community of healthy donors, we further 

analyzed a subset of 15 samples (qPCR-positive for fungi) by means of 28S rRNA gene 

pyrosequencing using the 454 Roche platform. This technology allows the analysis of 

long-sequences for reliable taxonomic assignment and prevents the sequencing bias of 

PCR fragments of variable length such us those of the ITS region. The pyrosequencing 

of negative controls yielded no sequences. Five of the samples were removed from the 

analysis as the number of quality-filtered sequences was under 400. We obtained an 

average number of taxonomically assigned, high-quality sequences of 1,250 per sample 

(SE: ±444.94), with an average of 580 bp length. 61% of the reads corresponded to the 

Basidiomycota phylum, and 39% to the Ascomycota phylum. The analysis led to the 

identification of 10 classified fungal taxa (to the genus level) which were present in >1% 

of the total sequences in more than 20% of the samples (Figure 3). The taxonomic 

assignment of the sequences showed that the fungal composition of human breast milk 

was dominated by Malassezia, which corresponded to 44% of the total number of 

sequences obtained, followed by Candida (19%) and Saccharomyces (12%). Malassezia and 

Saccharomyces could be detected in all 10 samples (Figure 3). Through BLAST alignment 

of the sequences against the RDP LSU database, 30 fungal species could be identified, 

which corresponded to 9,910 sequences taxonomically assigned after strict filtering 

(>98% identity and >400 bp length). These species are presented in Table 2 together with 

their mean percentage and prevalence in the samples. 
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Figure 3. Fungal taxonomic composition of human breast milk. Bars show the proportion of 

fungal genera as inferred by PCR amplification and pyrosequencing of the 28S rRNA gene in 

healthy mothers (n=10). Each code in the X axis corresponded to a donor. Fungal genera that were 

under 1% were grouped in the “Others” category. The majority of the samples presented 

correspond to mature milk samples, except for BMF5 and BMF8 (colostrum) and BMF9 

(transitional milk). 

 

Table 2. Fungal species detected by pyrosequencing, mean proportions per total number of 

sequences and prevalence. All sequences included in the table had >98% sequence identity over 

>400 bp alignment length. 
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Relationship between breast milk microbiota and milk components 

Relative abundances of fungal genera from the 10 sequenced milk samples were 

compared with the amounts of nutritional components (fat, protein, lactose and non-

fatty solids), and the number of human somatic cells, as well as with the microbial 

(bacterial and fungal) load content in paired milk samples, in order to find potential 

correlations among them (Figure 4). Positive significant correlations were found 

between the genus Malassezia and bacterial load (Spearman’s correlation coefficient ρ = 

0.93, p-value = 0.007); Malassezia and lactose (ρ: 0.78, p = 0.048); and Candida with protein 

content (ρ = 0.77, p = 0.044). Lodderomyces and human somatic cells showed a negative 

correlation (ρ = -0.79, p = 0.035), as well as Christiansenia and fungal load (ρ = -0.81, p = 

0.027). We also compared nutritional factor composition and human somatic cell 

numbers with fungal and bacterial load in all of the available samples (n=34, Figure 5), 

and a strong negative correlation was found between bacterial load and human somatic 

cells (ρ = -0.69, p = =6.28x10-6). In addition, a non-significant negative correlation was 

detected between bacterial and fungal load (ρ = -0.055, p = 0.756). 

 
Figure 4. Relationships between fungal relative abundance and nutritional, cellular and 

bacterial content of breast milk. The heatmap shows samples clustered by their compositional 

profile. Relative abundance of fungal genera is colour-coded according to their negative- (red) or 

positive- (blue) correlations with the amounts of milk components: fat, protein, bacterial load, 

lactose, fungal load, somatic cells and non-fatty solids (NFS). Significant correlations are 

represented with an asterisk (*). (n=10). 
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Figure 5. Relationships between fungal and bacterial loads with nutritional and cellular 

content of human breast milk. Correlations of fungal and bacterial load appear colour-coded 

according to their negative- (red) or positive- (blue) correlations with fat content, lactose content, 

protein content, somatic cells density and non-fatty solids content (NFS). Significant correlations 

are represented with an asterisk (n=34). 

 

Discussion 

Previous studies have shown that breast milk harbors an important diversity of bacteria, 

which are transmitted to the new-born together with many other nutrients and 

immunological compounds. Those bacteria may have a protective role, activating the 

immune system and seeding some of the first colonizers in the infant (Jost et al. 2014). 

Prior to this study, the identification of fungi in milk has only been reported for dairy 

animals. In the study carried out by Delavenne et al., fungal composition from cow’s, 

ewe’s and goat’s milk were compared, identifying 27 fungal species belonging to a 

variety of genera, including:  Candida, Cryptococcus, Debaryomyces, Geotrichum, 

Kluyveromyces, Malassezia, Pichia, Rhodotorula, Trichosporon, Aspergillus, Chrysosporium, 

Cladosporium, Engyodontium, Fusarium, Penicillium and Torrubiella (Delavenne et al. 2011). 

Spanamberg  et al. also confirmed the presence of fungi in ewe’s milk (Spanamberg et al. 

2014). The possibility that human milk also harbored fungi had not been previously 

explored. In this work, we have been able to detect a variety of fungal species in breast 

milk samples from healthy lactating mothers through different approaches.  Fungal 
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culture isolation results revealed that 41% of the samples showed presence of viable 

fungi. On the other hand, results yielded by qPCR showed that 89% of the samples had 

detectable levels of fungal DNA, which was present at high proportions with a median 

load of 3.5x105 cells/ml. Bacterial load median for the same samples was 8.9x105 cells/ml. 

This value was close to the results found in a previous study, where the same qPCR 

protocol was followed to estimate bacterial loads in breast milk samples from healthy 

mothers. In this previous study, milk samples were found to have around 106 bacterial 

cells/ml when detecting the single copy bacterial gene fusA (Boix-Amorós et al. 2016), 

that is ten-fold higher than the fungal fraction estimated in the current work. However, 

it should be noted that this fungal estimate is based on the study of the 28S rRNA gene, 

which is present in a variable number of copies per species, and although we used 

standard curves from a mix of different fungal species, these measures could 

overestimate the real fungal levels, and can’t be compared to results obtained with a 

single copy gene. No correlation was found between bacterial and fungal loads, 

indicating that the same nutrients or selective pressures that favour a high bacterial 

density may not be the same that support fungal presence. Nevertheless, a significant 

correlation was found between bacterial load and the relative abundance of Malassezia, 

and future work should determine if this is the outcome of symbiotic or synergistic 

relationships as it has been shown in other human samples (Scheres & Krom 2016; 

Willems et al. 2016). 

In our pilot study, long fragment sequencing of the 28S rRNA gene performed in 15 of 

the samples allowed reliable taxonomic assignment of the sequences from 10 of them, 

and showed that breast milk hosts a variety of fungal genera, with Malassezia, Candida 

and Saccharomyces being the most abundant. Although their origin is unknown, most of 

the species detected in our work can be found in other human niches. Work describing 

the oral fungal microbiome have reported that Candida species (mainly C. albicans, and 

others like C. parapsilosis) are the most frequent in the oral cavity, but also others like 

Cladosporium, Aureobasidium, Saccharomycetales (S. cerevisiae among others), Aspergillus, 

Fusarium, Cryptococcus or Penicillium (Ghannoum & Mukherjee 2013; Jabra-Rizk et al. 

2001; Kraneveld et al. 2012; Salonen et al. 2000). Malassezia has been described as the most 

common genus on human skin, but other genera like Candida, Aspergillus or Penicillium 

are also common inhabitants in this body niche (Findley et al. 2013). Some fungal species 

found in our samples have also been detected in the human gut, namely Candida species, 

Malassezia, Cladosporium, Debaromyces and S. cerevisiae (Li et al. 2013; Strati et al. 2016). As 

some of the species found in our milk samples can also be detected in the oral cavity and 

the human skin,  we cannot discard the possibility of fungal transference from the skin 

surrounding the breast, to the breast milk, as well as from the baby's skin or mouth 

during suckling (Cabrera-Rubio et al. 2012a; Ramsay et al. 2004). Another possible 

explanation would be that these fungal species originate from the mother’s mucosal 

surfaces, through an internal route, like the previously proposed entero-mammary 

pathway to explain the presence of bacteria in the mammary gland (Martín et al. 2004). 
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If this entero-mammary pathway exists, the presence of fungi in breast milk could be 

more than the outcome of environmental contamination, and future work should aim to 

understand how fungal organisms reach human milk and if this pathway exists for fungi 

as well as bacteria. Whatever their origin, fungi are clearly present in breast milk and are 

likely contributing to the establishment of infant microbiomes.  

Culture techniques provide a complementary vision of fungal populations in breast 

milk. Contrary to pyrosequencing results, the most abundant viable fungus detected was 

Rhodotorula mucilaginosa, which is a common airborne and highly ubiquitous fungus. It 

can also be found in the human body, where it can live as an opportunistic pathogen, 

particularly in immunocompromised patients (Wirth & Goldani 2012). The Rhodotorula 

genus is also part of the normal skin microbiota (Findley et al. 2013). In the current study, 

we also found Rhodotorula DNA by pyrosequencing of breast milk, but we could not 

classify any sequences to the species level even after manual filtering of the BLAST 

output. Candida parapsilosis was the second most prevalent strain isolated by culture 

techniques. Previous work has described this species as a normal commensal in the 

infant oral cavity (Kleinegger et al. 1996; Russell & Lay 1973), and its presence has been 

reported in low birthweight infant’s stool (LaTuga et al. 2011). Higher presence of this 

species in the infant gut has been correlated with higher risk of inflammatory bowel’s 

disease (IBD) (Chehoud et al. 2015). C. parapsilosis sequences were also obtained in this 

work by high-throughput sequencing technology, although it was not among the most 

prevalent species. 

The phenotypical and molecular characterization of the most prevalent isolates from our 

milk samples (R.mucilaginosa and C.parapsilosis) as well as the single S. cerevisiae isolate 

provided additional biological information regarding these organisms. The growth of all 

isolates at 37°C and 42°C demonstrated the ability of these strains to survive at human 

body temperature. However, none of them were able to grow in the presence of lactose 

as unique carbon source, which leads us to hypothesize that there are factors in breast 

milk that allow their survival at higher temperatures and, further, that these species are 

utilizing alternative carbon sources in breast milk. The presence of an isolate highly 

similar to a commercial baker Saccharomyces cerevisiae strain (“Cinta roja”) in one of our 

samples is interesting. S. cerevisiae has traditionally been used in fermentative processes 

to produce beer, bread and wine, and is even consumed as a nutritional supplement, and 

humans can get in contact with it through diet and through its manipulation during 

baking. This strain could be a saprophytic colonizer of the human body as S. cerevisiae 

has been isolated from the digestive tract, vagina, skin and oropharynx of healthy hosts 

where their presence is benign and asymptomatic (Kwon-Chung & Bennett 1992). A 

recent study reported a decrease in S. cerevisiae levels in patients suffering from 

inflammatory bowel disease, whereas Candida albicans levels were higher than in healthy 

patients (Sokol et al. 2016). S. cerevisiae var. boulardii is a yeast that has been used as 

dietary supplement due to its apparent probiotic effects (Moré & Swidsinski 2015; 
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Zanello et al. 2009). Administration of S. boulardii has been shown to be associated with 

beneficial health effects in children with gastrointestinal disorders (Demirel et al. 2013; 

Szajewska et al. 2016). It also improves feeding tolerance and its supplementation in 

formula has shown beneficial effects on premature infants.  However, some S. cerevisiae 

isolates have been responsible for human infections that are not life threatening except 

in severely immunocompromised patients where systemic infection may occur (De 

Llanos et al. 2011). Pathogenic Saccharomyces clinical strains have shown resistance to 

high oxidative stress conditions (Diezmann & Dietrich 2011). Upon exposing the 

S.cerevisiae isolate to high hydrogen peroxide (H2O2) concentrations, in order to study its 

oxidative stress resistance, no differences were found when comparing with the other 

strains and the industrial S. cerevisiae T73 and “Cinta Roja” strains.  The presence of H2O2 

in breast milk has an antibacterial role and when combined with lactoperoxidase (a milk 

peroxidase) and iodide, a strong anti-bacterial system is produced: the Lactoperoxidase 

system (Al-Kerwi et al. 2005). However, all of our tested isolates were able to survive 

under these conditions. The discrepancies observed between culture isolation and 

culture-independent high throughput sequencing for the identification of fungi are not 

surprising. As we are currently unable to cultivate many microbial species under 

laboratory conditions, many fungal species may not be detected by standard culturing 

methods. In addition, fungi are present at much lower numbers, as compared to bacteria, 

in most human samples, making their isolation more difficult. Especially intriguing is 

the absence of Malasezzia isolates from our cultures, despite their high prevalence in 

pyrosequencing data. It remains to be determined whether the Malasezzia reads 

correspond to non-viable microorganisms. Future studies are needed to understand how 

breast milk affects the viability of bacteria and fungi as well as the origin of fungi, such 

as Malasezzia, that are found in breast milk. Malasezzia yeasts are considered to be part 

of the normal microbiota of healthy individuals (Findley et al. 2013). However, under 

some circumstances, they may act as opportunistic pathogens. Owing to their lipophilic 

nature, they colonize the seborrheic parts of the skin and they sustain themselves by 

using the fatty acids present in normal sebum, as they have the property of using lipids 

as a source of carbon (Guého et al. 1996). This could favor their survival and growth in 

breast milk, which contains high fat levels, but our results comparing breast milk fungi 

and macronutrients did not show a positive correlation between the Malassezia genus 

and fat, as might be expected. We observed a positive correlation between the Malassezia 

genus and lactose, although this genus has been found to be unable to metabolize lactose 

(Vijayakumar et al. 2006). In this study, Malasezzia was not isolated from any of the tested 

human milk samples and lactose utilization could not be assessed to confirm the 

correlation found. In the future, it will be important to establish the metabolic 

capabilities of Malassezia isolated from breast milk with respect to sugars, in order to 

understand the observed correlation with lactose utilization.  Although we found 

positive relationships between fungal load and milk fat and non-fatty solids, no 

correlation was found with human somatic cells counts. Given that the number of 
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somatic cells in milk is considered the gold standard for detecting bacterial infections 

(e.g. mastitis) in farm animals (Olechnowicz & Jaśkowski 2012), the absence of a somatic 

cell increase in our samples suggests a lack of significant immune response (although it 

cannot be ruled out that breast milk fungi may be interacting with immune cells without 

causing inflammation). Thus, the data presented in the current work suggest that the 

presence of fungi in milk is not associated with infection in these healthy mothers 

without lactation problems. In addition, we found a highly significant negative 

correlation between bacterial load and human somatic cells, confirming that the 

presence of microorganisms did not correlate with an increase in somatic cells. This 

negative correlation, yet not significant, was also found in a previous study with a 

smaller sample size (Boix-Amorós et al. 2016), confirming that this general measure (total 

somatic cell number) may not be a good method for detecting microbial infections in 

human milk and that specific immune cells, such as polymorphonuclear leukocytes, 

could be more informative (Espinosa-Martos et al. 2016). The potential for fungi to enter 

the gastrointestinal tract via breast milk should be considered as a mechanism for their 

initial colonization of the infant gut. In humans, the fungal composition of breast milk 

has not been reported in healthy women and there are relatively few studies of fungal 

colonization patterns in the infant gut 39. However, the impact of the fungal component 

of the gut microbiome could be relevant, and scarce information is available regarding 

gut bacteria-fungi relationships. Available data suggest a potential beneficial role of 

various fungi for human health (Demirel et al. 2013; Moré & Swidsinski 2015; Szajewska 

et al. 2016; Zanello et al. 2009) and further work should be performed in order to better 

understand their mode of action.  

 

Conclusions  

Through multiple methodological approaches, we have detected, isolated and identified 

fungi from human breast milk. Although the natural presence of fungi in the milk of 

other mammals is well-accepted, there are no previous descriptions of specific fungal 

species in human samples from healthy mothers. Although their origin and role still 

remain to be elucidated, we show that fungi are clearly present in human breast milk. 

Further research with larger cohorts should be performed in order to uncover their 

possible contribution to gut microbiota development and their potential role for infant 

health. 
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Supplementary Information  

 

 

Supplementary Figure 1. Homology trees for C.parapsilosis and R.mucilaginosa isolates from 

breast milk. (a) Shows a homology tree for Candida parapsilosis isolates from breast milk samples 

(n=8) PCR-amplified with ITS1-5.8 primers and Sanger-sequenced. Three reference strains were 

included as controls (C.parapsilosis , C.albicans and S.cerevisiae). (b) Shows a homology tree for 

Rhodotorula mucilaginosa isolates from breast milk samples (n=8) PCR-amplified with 18S rRNA 

primers and Sanger-sequenced. Three reference strains were included as controls (R.mucilaginosa, 

R.glutinis and C.albicans). Multiple alignments and homology trees were performed with 

DNAMAN software.  
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Supplementary Figure 2. Phenotipic and genetic characterization of fungal isolates from 

human breast milk. a) Isolates viability at different temperatures and utilization of different 

sugars. (-) indicates no growth, (+) indicates moderate growth, and (++) indicates high growth. b) 

Isolates’ resistance to oxidative stress. The picture shows the differential growth of isolates after 

1-hour exposure to 6mM H202. The first column corresponds to the growth of isolates without 

H202 exposure. The remaining columns of growth correspond to isolates exposed to H202: 1(no 

dilution), and dilutions 1:10, 1:100 and 1:1000. c) Hinf I mtDNA restriction patterns (HinfI) and 

δ-PCR amplification patterns (δ) of the DNA of yeast strains. 1 (FBMI18 strain), 2 (Baker’s yeast 

“Cinta roja”), 3 (Wine strain T73), 4 (S.boulardii, Ultralevura). The DNA of phage λ digested with 

Pst I (Roche Molecular Biochemicals) and a 100-bp DNA ladder marker (Gibco BRL, 

Gaithersburg, MD.) served as the size standard respectively (M). 
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Abstract 

Recent studies report the presence of fungal species in breast milk of healthy mothers, 

suggesting a potential role in infant mycobiome development. In the present work, we 

aimed to determine whether the healthy human breast milk mycobiota is influenced by 

geographical location and mode of delivery, as well as to investigate its interaction with 

bacterial profiles in the same samples. A total of 80 mature breast milk samples from 4 

different countries were analyzed by Illumina sequencing of the internal transcribed 

spacer 1 (ITS1) region, joining the 18S and 5.8S regions of the fungal rRNA region. 

Basidiomycota and Ascomycota were found to be the dominant phyla, with Malassezia 

and Davidiella being the most prevalent genera across countries. A core formed by 

Malassezia, Davidiella, Sistotrema and Penicillium was shared in the milk samples from the 

different origins, although specific shifts in mycobiome composition were associated 

with geographic location, and delivery mode. The presence of fungi in the breast milk 

samples was further confirmed by culture and isolates characterization, and fungal loads 

were estimated by quantitative PCR (qPCR) targeting the fungal ITS1 region. Co-

occurrence network analysis of bacteria and fungi showed complex interactions that 

were influenced by geographical location, mode of delivery, maternal age, and pre-

gestational body mass index. The presence of a breast milk mycobiome was confirmed 

in all the samples analyzed, regardless of the geographic origin.  
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Introduction 

Early human microbial gut colonization is an essential stepwise process with an impact 

on the immunological and metabolic programming of later health  (Chervonsky 2010; 

Houghteling & Walker 2015; Tamburini et al. 2016). Fungi residing in the human gut 

have been recognized as an important part of the gut microbiota, and although research 

on the field is scarce, the mycobiome could have important roles in human health status 

(Cui et al. 2013; Hatoum et al. 2012; Laforest-Lapointe & Arrieta 2018; Sokol et al. 2016; 

Underhill & Iliev 2014). Although information about fungal communities in the infant is 

generally lacking, there is evidence that fungal species (mainly yeast-like species) can be 

found in the gut early in life (Seddik et al. 2016; Ward et al. 2017, 2018). A few reports 

have documented fungal transfer from mothers to infants, but little is known about how 

the mycobiome is shaped during this period (Bliss et al. 2008; Drell et al. 2017; Schei et al. 

2017). Recent prospective studies have revealed that altered gut mycobial patterns 

precede atopic wheeze and asthma development and have suggested fungal-bacterial 

interactions that would influence early-life patterns of microbial alpha diversity (Arrieta 

et al. 2017). Breast milk is an important source of bacteria to the infant,  and together with 

oligosaccharides, contributes to the settlement of the gut microbiota characteristic of the 

healthy breast-fed child,  with a strong impact on immune surveillance within the 

gastrointestinal environment and thereby also other membranes of the body  (Boix-

Amorós et al. 2016; Jost et al. 2014; Walker & Iyengar 2015). A recent study reported the 

presence of a diversity of fungal species in human breast milk of healthy mothers, 

including Malassezia, Candida, and Saccharomyces as the most common genera, by means 

of high-throughput sequencing, microscopy, and other culture-independent techniques 

(Boix-Amorós et al. 2017). Moreover, viable yeasts, predominantly Candida parapsilosis 

and Rhodotorula mucilaginosa species, were isolated and characterized. This finding 

provides a new angle to the infant mycobiome development, and calls for further 

evaluation of the key determinants of their composition. Furthermore, complex 

interactions between bacteria and fungi have been reported in the human gut, oral 

cavity, skin, and vagina (Arrieta et al. 2017; Hoffmann et al. 2013; Mason et al. 2012; 

Parolin et al. 2015; Peleg et al. 2010) and, therefore, such are also likely to occur in breast 

milk. In addition, accumulating evidence suggests that some environmental factors 

might influence breast milk composition (Gay et al. 2018; McGuire et al. 2017; Sundekilde 

et al. 2016). In particular, geographic location, delivery mode, maternal body mass index 

(BMI), and age have been suggested to have an impact on breast milk bacterial 

composition (Cabrera-Rubio et al. 2012a, 2016; Gómez-Gallego et al. 2018; Hoashi et al. 

2016; Khodayar-Pardo et al. 2014; Kumar et al. 2016; Li et al. 2017; Toscano et al. 2017b), 

although their potential  impact on the milk’s fungal fraction is still to be elucidated. In 

the present study, we characterized the breast milk mycobiota of healthy breast-feeding 

mothers from four different countries (Spain, Finland, South Africa, and China), in order 

to investigate the potential influence of geographic location and mode of delivery on its 

composition. Fungal loads in the samples were estimated, and co-occurrence networks 
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between specific fungi and bacteria were analyzed for potential interactions depending 

on mode of delivery across the different countries. 

 

Materials and Methods 

Subjects and Sampling 

Breast milk samples at 1-month postpartum were obtained from 80 healthy, lactating 

women from 4 different geographical locations (20 in each location), including China 

(Beijing area), South Africa (Cape Town), Finland (southwestern area), and Spain 

(Valencia, Mediterranean area). All mothers were practicing exclusive breastfeeding. 

Subjects were grouped according to mode of delivery: vaginal (n = 10 per country) and 

Caesarean-section (C-section) (n = 10 per country). Maternal characteristics such as age, 

weight, and pregestational body mass index (BMI) were collected at the time of 

enrolment. All women who delivered via C-section received prophylactic antibiotics, 

except Finnish women, for whom no prophylaxis is routinely used per the hospital 

policy. All participants were given detailed oral and written information, and written 

informed consent was obtained for participation. The study protocol was approved by 

the ethics committees of the respective participating institutions: Bioethics Committee of 

CSIC and the Regional Ethics Committee for Biomedical Research (Spain), Ethics 

Committee, Hospital District of Southwest Finland (Finland), Medical Research Board 

of Peking University (China) and University of Cape Town, Human Research Ethics 

Committee (South Africa). Before sample collection, nipples and mammary areolas were 

cleaned with soap and sterile water and soaked in chlorhexidine to reduce sampling of 

microorganisms residing on the skin. Milk samples were collected in a sterile tube 

manually, with the first drops discarded.  All samples were frozen at -20°C until further 

processing. To avoid bias, samples were collected using the same standardised protocol 

in the four countries and were processed and analyzed in a single laboratory. 

Microbial DNA Extraction and Sequencing  

Breast milk samples (1.5 ml) were centrifuged at 14,000 rpm for 20 min at 4°C to remove 

fat, and pellets were used for total DNA extraction, which involved mechanical and 

chemical cell lysis. Bead beating was carried out using FastPrep (FP120-230, Bio 101; 

ThermoSavant, Holbrook, NY, USA), and the InviMag stool DNA kit (Stratec Molecular, 

Berlin, Germany) was used with the King Fisher magnetic particle processor (Thermo 

Fisher Scientific Oy, Vantaa, Finland). The DNA extraction protocol was also used with 

water to serve as negative controls. Isolated DNA concentrations were measured using 

a Qubit 2.0 fluorometer (Life Technology, Carlsbad, CA, USA). Primers targeting the 

highly variable fungal internal transcriber spacer ITS1 of the fungal 18S ribosomal rRNA 

gene (forward: TAGAGGAAGTAAAAGTCGTAA, reverse: TTYRCTRCGTTCTTCATC) 

(Toju et al. 2012) with adaptors were used for sequencing on an Illumina MiSeq  platform. 
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Sequencing was carried out at the Foundation for the Promotion of Health and 

Biomedical Research, FISABIO (Valencia, Spain). No-template controls (NTCs) and 

negative controls during DNA extraction were included to rule out potential 

contaminations at the time of DNA extraction or sequencing. 

Fungal load 

qPCR amplification and detection of the ITS1-5.8S rRNA conserved fungal region was 

performed as previously described (Boix-Amorós et al. 2017), using the primers ITS1F 

(5′-TCCGTAGGTGAACCTGCGG) and 5.8 R (5′-CGCTGCGTTCTTCATCG). Each 

reaction mixture of 20 μl was composed of 10 μl of KAPA Sybr Fast qPCR master mix 

(KAPA Biosistems), 0.4 μl of each primer (10 μM concentration) and 2 μl of template 

DNA, with an annealing temperature of 61°C in a LightCycler 480 real-time PCR system 

(Roche Technologies). All amplifications were performed in duplicate, and a negative 

control was included in each reaction plate. Samples with threshold cycle (CT) values 

equal to or higher than the negative control were considered negative for fungal DNA. 

Breast milk culture and identification of fungal colonies 

One-hundred-microliter volumes of selected breast milk samples were plated in four 

solid fungus-selective media: Sabouraud (Conda-Pronadisa) supplemented with 

chloramphenicol, 0.05 g/liter (Roche); Rose Bengal (Conda-Pronadisa) supplemented 

with chloramphenicol, 0.5 g/liter (Roche); YPD (40 g/liter dextrose, 40 g/liter peptone, 20 

g/liter yeast extract, and 40 g/liter agar) supplemented with 25 μg/ml of streptomycin -

25 U/ml of penicillin (Biowest); and YNB (Sigma) with 8% ethanol and 25 μg/ml of 

streptomycin -25 U/ml of penicillin (Biowest). All plates were incubated aerobically at 

37°C, as previously described (Boix-Amorós et al. 2017). DNA from the isolated colonies 

was extracted and amplified by PCR using primers targeting the 18S rRNA gene 

(forward, 5’-GTAGTCATATGCTTGTCTC; reverse, 5’-CCATTCCCCGTTACCCGTTG). 

PCR products were sequenced in an Applied Biosystems 3730/3730xl DNA analyzer at 

the University of Valencia (Spain), and isolates were identified by using the BLAST 

algorithm in the NCBI database, with minimum of 98% sequence identity. 

Microscopic analyses of fungi in milk 

In order to identify fungal cells in breast milk, samples were incubated with calcofluor 

white stain that dyes the cell walls of the fungi and yeasts. Samples were visualized with 

fluorescence microscopy using a Nikon Eclipse E90i microscope (Nikon Corporation) 

with a 100X objective. Image processing was performed using the NIS-Elements BR v3.22 

software (Nikon). 

Data Analysis 

ITS1 reads were pair-end joined using FLASH program (Magoc & Salzberg 2011) with 

default parameters applied. The resulting sequences were end-trimmed in 20 bp sliding 
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windows with an average quality value of > 30 and a length of >50 bp, using the Prinseq-

lite program (Schmieder & Edwards 2011). Chimeric reads were eliminated using the 

UCHIME algorithm (Edgar et al. 2011), resulting in a total of 9,797,578 reads. Taxonomy 

assignment of the remaining sequences was performed using the Ribosomal Database 

Project Classifier stand-alone tool (Wang et al. 2007) with the UNITE fungal ITS v 7.2 

trainset (Kõljalg et al. 2013) and an 80% confidence threshold. Sequences where clustered 

into operational taxonomical units (OTUs) based on  99% identity, and representative 

OTUs sequences were obtained using CD-hit software (Li & Godzik 2006). OTU tables 

were rarefied to 9,200 sequences per sample to avoid variations in sequencing depth, 

and Shannon and Chao1 indexes were calculated using the “plyr” and “vegan” packages 

from R software (version 3.2.2) (R Development Core Team. 2011). 

Statistical Analysis 

Calypso software (version 8.2) (Zakrzewski et al. 2016) was used to obtain Venn diagram 

for shared phylotypes, discriminant analysis of principal components (DAPC) was 

performed at the OTU level, using geographic location as a factor; and PERMANOVA 

and redundancy analysis (RDA)  were applied to study the statistical effect of country 

and delivery mode on breast milk fungal composition. The Kruskal-Wallis test was 

implemented to study genus-level taxonomical differences between countries and 

delivery modes, using GraphPad PRISM 6 (GraphPad Software). Linear discriminant 

analysis effect size (LefSe) (Segata et al. 2011) algorithm was used to detect the most 

differentially abundant fungi between countries, and between vaginal and C-section 

deliveries in each country, at the species level. In order to control the potential effects of 

maternal age, maternal BMI predelivery, and antibiotic use at delivery, MaAsLin 

(multivariate analysis with linear model) (Morgan et al. 2012), which finds associations 

between metadata and microbial abundances, was applied. Other statistical analysis and 

graphing were performed using GraphPad PRISM 6.  

Analysis of bacterial and fungal co-occurence  

Sequences from the 16S rRNA gene of the same samples, from a report by Kumar et al 

(Kumar et al. 2016), were obtained from NCBI (SRA accession: SRP082263 and 

submission ID: SUB1772296).  Quality filtering, chimera checking, and OTU clustering 

were done the same way as for the ITS1 reads. RDP classifier was used to taxonomically 

assign the bacterial (against RDP 16S rRNA training set 16) (Cole et al. 2014) and fungal 

(against the UNITE v 07-04-2014 trainset) (Kõljalg et al. 2013) representative OTU 

sequences. Samples with fewer than 1,500 sequences were excluded from the analysis. 

For the bacterial data sets, OTUs with a higher relative abundance in any of the two 

controls than in the breast milk samples were treated as putative contaminants and 

discarded. This procedure could not be performed on the fungal data sets, since the 

sequencing of the two controls yielded too few reads. Nevertheless, the low fraction of 

reads assigned to putative contaminants in the bacterial datasets (2% on average) leads 
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us to believe that the samples were essentially contamination-free. Both the bacterial and 

fungal OTU tables were rarefied to 1,500 sequences per sample. OTUs from both the 

bacterial and fungal data sets having an overall relative abundance higher than 1% of 

the total reads, or appearing in at least one sample with a relative abundance higher than 

5%, were combined into a single table. Associations between pairs of bacterial and fungal 

OTUs were calculated using the maximal information coefficient, as implemented in 

MICtools (Albanese et al. 2017). Pseudo P values were obtained by generating 200,000 

null matrices and further transformed to Storey’s Q-values to correct for multiple 

hypothesis testing with the Benjamini-Hochberg method. Correlations with a false 

discovery rate lower than 0.01 were deemed significant. Further, we divided the samples 

into eight groups according to the combination of the four countries and two delivery 

modes. We used linear regression to calculate correlations between pairs of OTUs and 

factors (age, BMI) in a given group. For each group, only OTUs appearing in at least four 

samples and with a relative abundance higher than 2% in at least one sample were 

included. Correlations with a P value lower than 0.05 were deemed significant.  Network 

analysis was performed on Cytoscape (Shannon et al. 2003). 

Phylogenetic relationships between Malassezia reads 

ITS sequences of the 20 most abundant OTUs assigned to the Malassezia genus by the 

RDP classifier were combined with those of known Malassezia representatives from the 

UNITE v07-04-2014 database (Kõljalg et al. 2013). A multiple sequence alignment was 

constructed with MAFFT v7.313 (Katoh, K. & Standley 2013). Cryptococcus neoformans 

was selected as an outgroup, and its ITS sequence was added to the alignment using the 

“add” option from MAFFT. The resulting alignment was manually curated and further 

refined with MUSCLE v3.8.31 (Edgar 2004). Phylogenetic trees were inferred with 

RaxML v8 (Stamatakis 2014) and MrBayes v3.2 (Ronquist et al. 2012), using 1,000 

replicates and 1,000,000 generations respectively. TreeGraph2 (Stöver & Müller 2010) 

was used to combine and visualize the maximum likelihood and Bayesian inference 

trees. 

Data availability  

All ITS1 sequences have been deposited in the European National Archive (ENA) server 

under the study ID PRJEB25581. Samples were deposited under accession numbers 

ERS2312706 to ERS2312785.  
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Results 

Subjects Description 

The characteristics of the subjects participating in the study are listed in Table 1. The 

mean age of the mothers (n = 80) was 33.52 years (standard deviation [SD], ±4.87 years), 

with no statistical differences between countries. The mean pregestational BMI was 24.06 

(SD, ± 3.85), normal weight. Chinese mothers had significantly lower BMI, 21.71 (SD, ± 

1.97), considered normal weight. Differences in BMI between mothers delivering 

vaginally or by Cesarean section (C-section) were observed only in South African and 

Finish women, where mothers delivering by C-section had higher BMIs,  26.67 ± 1.41 and 

26.30 ± 2.57, respectively,  although this difference was only significant in the South 

African group (p < 0.05).  

 

Table 1. Clinical characteristics of donors providing human milk samples for the study  

 
ns, not significant. 

 

Fungal Cells Detection in Breast Milk 

Eighty milk samples were analyzed by quantitative PCR (qPCR) targeting the ITS1-5.8S 

rRNA region. Results showed that 16 of 20 Spanish samples (80%; median value, 195,142 

cells/ml), 9 of 20 Chinese samples (45%; median value, 170,732 cells/ml); 7 of 20 Finish 

samples (35%; median value, 199,480 cells/ml), and 14 of 20 South African samples (70%; 

median value, 371,119 cells/ml) had detectable levels of fungi.  No significant differences 

were observed between geographic locations or by mode of delivery (see Fig. S1 in the 

supplemental material). The presence of fungal cells in the milk was further confirmed 

by culture in fungus-specific culture medium and identification of the isolates by 18S 
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rRNA sequencing, as well as by microscopy after incubation of the milk samples with 

calcofluor white fungal stain. A summary of the results is available in Table 1 and Fig. 

S2 in the supplemental material.  

Fungal Composition of Breast Milk: Impact of Geographical Area and Perinatal 

Factors 

After sequencing of the ITS1 fungal region, a mean of 107,765 taxonomically assigned, 

clean, filtered sequences per sample (SD, ± 45,493), with an average length of 301 bp, was 

obtained. All breast milk samples contained fungal DNA, and they were dominated by 

two phyla: Basidiomycota (58.65%) and Ascomycota (41.03%). South African samples 

had significantly higher levels of Ascomycota and lower levels of Basidiomycota than 

the other countries (P < 0.05). Discriminant analysis of principal components (DAPC), 

which transforms data using a principal-component analysis (PCA) and subsequently 

identifies clusters using discriminant analysis (DA), showed that South African samples 

clustered at a distance from the other countries, mainly due to the increased levels of 

Rhodotorula mucilaginosa (Fig. 1). Taxonomic analysis at the genus level showed that 

breast milk samples were dominated by Malassezia (40.6% average abundance), followed 

by Davidiella (9.0%), which was prevalent regardless of the location or the donor’s type 

of delivery (Fig. 2a).  The effects of country of origin and mode of delivery on breast milk 

fungal composition were analyzed and reflected that milk mycobiota differed 

significantly across geographic location (permutational multivariate analysis of variance 

[PERMANOVA], p = 0.005) and mode of delivery (PERMANOVA, p = 0.023). Redundant 

analysis (RDA) confirmed the effect of geographic location on breast milk fungal 

composition (p = 0.001), although that of mode of delivery did not reach statistical 

significance. The Kruskal-Wallis test was implemented to compare phylotypes at the 

genus level across samples. Results showed that Malassezia was statistically less 

abundant in South African samples (p < 0.05), and Penicillum and Rhodotorula abundances 

were lower in Chinese samples (p < 0.01), while Saccharomyces was more abundant in 

Spanish and Finnish samples (p < 0.01) than in samples from the rest of the locations. No 

statistically significant effect of maternal age, gestational BMI, or antibiotic intake during 

delivery was detected for breast milk microbial composition by using MaAsLin 

(multivariate analysis with linear model). Despite the differences, a core of four genera 

shared across the four countries was identified, including Malassezia, Davidiella, 

Sistotrema, and Penicillium. Wallemia and Aspergillus were found only in samples from 

Finland, Botrytis and an unidentified Saccharomycetales were found only in South 

African samples, and an unidentified Malasseziales was found only in Spanish samples. 

Rhodotorula was present in samples from all countries except China (Fig. 2b). 

Comparisons between samples were further analyzed at the species level. Linear 

discriminant analysis effect size (LefSe) results showed differentially abundant fungi 

between countries. Rhodotorula mucilaginosa and Saccharomycetales species were more 

abundant in South African samples, while Malassezia furfur was more prevalent in 
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Chinese samples, and an Ascomycota sp. was more abundant in Spanish samples (Fig. 

2c). 

 

 

Figure 1. Breast milk samples cluster separately according to fungal composition. DAPC 

analysis shows relationships in fungal composition among samples from different locations. A 

canonical loading plot shows differentially abundant bacterial OTUs in the groups. The 

individual peaks show the magnitude of the influence of each variable on the separation of the 

groups (threshold level= 0.05). Total number of samples, 80 (number per country, 20). SA, South 

Africa. 

 

Taking into account mode of delivery, mycobiota compositions were different across the 

milk samples from different geographic origins. The Kruskal- Wallis test reflected that 

the occurrence of Cryptococcus was statistically significantly higher in milk samples of 

women delivering vaginally than in those who delivered by C-section (p = 0.028). At the 

species level, in Chinese breast milk samples, Candida smithsonii was significantly more 

abundant in samples pf women with vaginal deliveries, Sistotrema sp. in samples from 

Spanish women with C-sections, Ascomycota sp. in samples from Finnish women with 

vaginal deliveries, Malasezzia restricta in samples from Finnish women with C-sections, 

and Malassezia restricta and Davidiella tassiana in samples from South African women 

with C-sections (LefSe analysis, p < 0.05) (Fig. 2d). Indices of alpha diversity and richness 

across the samples were similar, and no statistical differences were observed between 

geographic locations or delivery modes (Fig. S3). 
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Figure 2. Effect of geographical location and mode of delivery on fungal composition in breast 

milk samples. (a) Fungal relative abundances at the genus level across countries. Only genera 

present in more than 1% abundance in at least 20% of the samples are represented. (b) Shared 

phylotypes across countries at the genus level. *, core of four fungal genera shared across 

geographic locations. Venn diagram cutoff, 0.5. (c) Differentially abundant species in breast milk 

samples depending on geographic location, as inferred by the LefSe algorithm. The threshold for 

the logarithmic discriminant analysis (LDA) score was 2, with a p value of < 0.05. Number of 

samples per country, 20 (total number, 80). (d) Differentially abundant species in breast milk 

samples depending on delivery mode and geographic location, as inferred by the LefSe 

algorithm. The threshold for the LDA score was 2, with a p value of < 0.05. Total number of 

samples, 80 (samples from vaginal deliveries, 40; samples from C-section deliveries, 40). SA, 

South Africa. 

 

Fungal and bacterial interactions: a network analysis 

Network analyses of the bacteria and fungi present in the breast milk samples showed 

complex intra- and interdomain interactions, with different associations among 

organisms depending on the country of origin and delivery mode, some of which were 

also influenced by maternal features. For example, a Malassezia operational taxonomic 

unit (OTU) (Fungi_1) correlated positively with a Streptococcus (Bact_6) from vaginal 

delivery samples, and with a Streptococcus (Bact_1) from C-section deliveries among 

Finnish samples, and the abundances were dependent on maternal age. The same 

Malassezia OTU correlated positively with several Streptococcus OTUs in samples from 

C-section deliveries from Chinese mothers and also positively with an unclassified 

member of Bacilli (Bact_2) from South African samples and vaginal deliveries. 

Significant influences of maternal age and BMI on specific bacterial and fungal 

organisms were also observed (Fig. 3). However, given that the density of fungal cells is 

at least 1 order of magnitude lower than that of bacteria, the influence of fungi on the 

breast milk ecosystem needs to be elucidated. In order to study the diversity of the most 
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common yeast in our samples, a phylogenetic tree of the most prevalent Malassezia OTUs 

detected in this work across geographic locations was determined, including known 

members of the Malassezia genus as a reference (Fig. S4). The tree shows a large diversity 

of Malassezia isolates with similarity to at least four known species, including OTUs 

which could potentially represent new species. With the exception of one OTU (Fungi 

37, which was found to be uniquely present in China), all other sequences were found 

in all countries and appear to be therefore ubiquitous. In relation to mode of delivery,  

all the OTUs were present in breasmilk from mothers with both delivery types. 

 

 

 

 

 

 

 



80 
 

 

Figure 3. Cooccurrence network of bacteria and fungi in breast milk samples depending on 

maternal features and delivery mode. Green nodes represent bacterial OTUs, blue nodes 

represent fungal OTUs, and yellow nodes represent features. Node size indicates OTU 

abundance. Pie chart colours represent the overall distribution of each OTU across country. Each 

link indicates a significant (P _ 0.05) interaction between OTUs or features in samples from a 

given combination of country and delivery mode (vaginal, C-section). Link colour denotes the 

country, and line type indicates delivery mode. SA, South Africa. 
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Discussion 

Breast milk is a continuous source of microbes that are transmitted, together with many 

nutrients and protective compounds, to the infant gut during a critical period when the 

key regulatory systems of the body are immature (Jost et al. 2014; Walker & Iyengar 

2015). Although bacteria inhabiting human breast milk have been extensively studied,  

the presence of fungi in the fluid had not been assessed until recently, when a diversity 

of fungal phylotypes in breast milk from healthy Spanish mothers was reported by our 

group (Boix-Amorós et al. 2017). The mycobiome, the fungal fraction of the human 

microbiome, is present in lower abundances and has been much less explored than the 

bacterial fraction. However, its potential importance for human health and disease has 

stimulated an increased interest in this field (Hatoum et al. 2012; Sokol et al. 2016; 

Underhill & Iliev 2014; Ward et al. 2017). In the infant, fungal species can be detected 

very early in life (Schei et al. 2017; Seddik et al. 2016; Ward et al. 2017). However, the 

infant mycobiome is almost unexplored, and information about its development is 

scarce. To ascertain the presence of fungi in breast milk is difficult because of the 

possibility of contamination in samples with low microbial density, and therefore 

multiple approaches and strict negative controls are needed (Salter et al. 2014). A recent 

study reported higher gut fungal diversities during the first months of life, which 

decreased over time, while the diversities of the bacterial fraction increased in reciprocal 

correlation, suggesting that potential inter-kingdom associations may drive microbial 

gut dynamics (Fujimura et al. 2016).  

In the present study, we have confirmed the presence of diverse fungal communities in 

breast milk samples from Spain, Finland, China, and South Africa. Fungi were detected 

in all breast milk samples through massive DNA sequencing, with the two phyla 

Basidomycota and Ascomycota being the most prevalent and presenting reciprocal 

patterns of abundance in all countries except for South Africa, where Ascomycota levels 

were significantly higher, and Basidiomycota levels lower, than those of the other 

countries. At the genus level, Malassezia predominated in all countries, followed by 

Davidiella. In our previous work reporting the presence of fungi in breast milk, Malassezia 

also represented the most abundant genus (Boix-Amorós et al. 2017). Other genera found 

in the current study, such as Alternaria, Rhodotorula, Saccharomyces, and Candida, were 

also found in the previous study. Results yielded by qPCR showed that >70% of Spanish 

and South African samples, 45% of Chinese samples, and only 35% of Finish samples 

had detectable levels of fungal DNA.  The median fungal load in all the samples was 2.5 

x 105 cells/ml, in agreement with our previous results for Spanish samples. Our findings 

reinforce the potential influence of environmental factors, in particular geographic 

location and delivery mode, on breast milk fungal composition. Samples from South 

Africa clustered at a distance from those from the other countries according to their 

fungal composition, because of the influence of the higher levels of Rhodotorula 

mucilaginosa in those samples (Fig. 1). Although differences among samples from 
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different geographic locations were observed, a core constituted by four genera, 

Malassezia, Davidiella, Sistotrema, and Penicillium, was shared in all countries (Fig. 2b). 

Breast milk mycobiota also differed depending on the mode of delivery (vaginal or C-

section) across countries. Specific fungi, such as the genus Cryptococcus, appeared to be 

more prevalent among samples from mothers delivering vaginally, and specific shifts at 

the species level were also observed within each country.  No differences in fungal 

diversity or richness were observed in the present study. Previously, we identified 

changes in breast milk microbiota between locations, as well as  in the milk metabolite 

profile (Gómez-Gallego et al. 2018; Kumar et al. 2016), using the same samples analyzed 

in this study. 

Although the origin of breast milk fungi is unknown, most of the organisms detected in 

this study can be found in other human niches. Malassezia species are yeasts whose 

primary niche is the human body (and other animals). In healthy individuals, they are 

part of the normal microbiota, where they predominantly colonize the seborrheic parts 

of the skin (Findley et al. 2013), and are commonly found in infants (Gouba et al. 2013; Jo 

et al. 2016; Suhr et al. 2016; Ward et al. 2018). Malassezia has also been detected in 

significant abundance in adult (Findley et al. 2013; Nash et al. 2017; Seddik et al. 2016) 

and infant fecal samples (Strati et al. 2016), and therefore may play a role at the intestinal 

level; it has also been described as an oral commensal (Dupuy et al. 2014). Although 

Malassezia DNA has been detected in high proportions in breast milk before, no viable 

cells could be recovered by classic culture methods from breast milk, (Boix-Amorós et al. 

2017) and further efforts should be made to culture this organism, which has also been 

shown to be able to penetrate the cell and survive intracellularly. Davidiella, the second 

most prevalent fungus found in the samples of this study, was detected in the only 

published study about the characterization of vaginal microbiota and mycobiota of 

asymptomatic women (Drell et al. 2013). In the same study, Candida was found to be the 

predominant genus. Therefore, these fungi may play an important role in the early 

colonization of vaginally born infants. In our previous study on breast milk fungi, 

Davidiella could not be detected (Boix-Amorós et al. 2017), which could be associated 

with the differences on sequencing platforms and genes targeted in both studies, as has 

been previously shown (Allali et al. 2017; Clooney et al. 2016). In addition, Davidiella 

represents the sexual form of the Cladosporium genus (Schubert et al. 2007).  Fungi can 

have an asexual form (anamorph) and sexual form (teleomorph) that may be classified 

into different genera. This sexual dimorphism can be a significant problem when 

classifying fungal sequences, and the use of different databases and/or sequencing of 

different genes can lead to conflicting classifications. In a study with paediatric 

inflammatory bowel disease (IBD) patients, Cladosporium cladosporiodes abundance 

decreased in IBD, while Pichia jadinii and Candida parapsilosis increased in comparison to 

controls (Chehoud et al. 2015). Candida is probably the most ubiquitous genus of the 

human mycobiome. It is the major fungal genus detected in the adult oral cavity 

(Ghannoum & Mukherjee 2013; Kraneveld et al. 2012) , and has also been detected in the 
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infant mouth, including several species as common inhabitants (C. parapsilosis , C. 

tropicalis, C. orthopsilosis, etc.) (Kleinegger et al. 1996; Stecksén-Blicks et al. 2015; Ward et 

al. 2018). Several Candida species are also commonly present in adult skin and fecal 

samples (Nash et al. 2017; Underhill & Iliev 2014) and in infant anal and fecal samples 

(LaTuga et al. 2011; Ward et al. 2018). Although Candida can be responsible for vaginal 

infections (Trama et al. 2005), it is the most prevalent fungus in the vaginal mycobiome 

of healthy women (Drell et al. 2013). Transmission of Candida from mother to infant likely 

occurs, as the same fingerprinting of the DNA has shown identity between maternal 

Candida from vagina, rectum, oral cavity, and skin, and infant oral Candida from oral 

cavity and rectum (Bliss et al. 2008). Other prevalent fungi detected in our samples are 

commonly found in several body niches. Saccharomyces is among the most abundant 

fungus in the gut (Nash et al. 2017; Underhill & Iliev 2014), and Saccharomyces cerevisiae 

has been reported to be highly prevalent and abundant in the infant oral and anal 

mycobiome during the first month of life (Ward et al. 2018). In a recent study, bacteria 

and fungi from fecal samples in children suffering atopic wheeze were analyzed, and 

Saccharomycetales taxa appeared to be decreased in the atopic wheeze group, while the 

species Pichia kudriavzevii was increased, compared to controls (Arrieta et al. 2017). 

Others, such as Penicillium or Aspergillus, can also be detected in fecal samples, and 

Debaromyces hansenii represents one of the main species present in gut of breastfed 

infants (Schei et al. 2017). In the present study, we detected Debaromyces, although none 

of the sequences have been classified as D. hansenii. However, DNA from this species 

was previously detected in breast milk (Boix-Amorós et al. 2017). 

The study of interspecies interactions within a population is necessary to better 

understand the microbiota’s role. It is known that microorganisms can interact by 

competition and sometimes collaboration, thereby influencing microbiota composition 

and the host’s health. It has been demonstrated that cross talk between bacteria and fungi 

can exist, modulating host defense mechanisms, protecting against infections, or 

collaborating to cause them (Sam et al. 2017; Ten Oever & Netea 2014). For example, 

synergies between oral Streptococcus oralis and C. albicans enhanced C. albicans invasion 

through the activation of host enzymes that cleave epithelial junction proteins (Xu et al. 

2016). On the contrary, Streptococcus mutans showed the ability to modulate biofilm 

formation and to reduce C. albicans virulence in an animal model (Barbosa et al. 2016). 

Some vaginal isolates of Lactobacillus strains have shown anti-fungal activity in vitro 

against Candida spp., and probiotic Lactobacillus rhamnosus and Lactobacillus reuterii 

strains showed in vitro efficacy against C. albicans responsible for vaginal infections 

(Parolin et al. 2015). To understand microbial relationships, microbial network analyses 

are indispensable, allowing the identification and representation of the most influential 

members in a bacterial community and their interactions with other microorganisms 

(Layeghifard et al. 2017). In a recent work, bacterial interactions in the colostrum and 

mature milk of Italian and Burundian mothers were analyzed and showed different 

bacterial networks among the two populations. The identified networks  were complex 
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and dynamic, changing from colostrum to mature milk (Drago et al. 2017). In the present 

study, we have analyzed cooccurrence relationships between fungi and bacteria in breast 

milk, observing a complex network of interactions between fungi and bacteria, and 

within the same domain. Microbial interactions were influenced by delivery 

characteristics (mode of delivery and geographic location), and maternal features 

(maternal BMI and age) influenced the prevalence of particular microorganisms. 

Interesting positive correlations were observed between several Malassezia spp., the most 

prevalent fungus detected in breast milk by sequencing, and different streptococci, the 

latter representing one of the most common bacterial genera in breast milk (Jost et al. 

2013).  Interestingly, in our previous study, we observed a significant positive correlation 

between Malassezia and bacterial load (Boix-Amorós et al. 2017), and further 

experimental research should analyze potential synergistic relationships between these 

genera. 

Our data confirmed the presence of fungal DNA and fungal cells (including viable cells) 

in breast milk samples from healthy mothers from four different geographic locations, 

by using different approaches. This supports the existence of a “breast milk mycobiota” 

under healthy conditions. Differences in composition associated to mode of delivery and 

country of origin were observed. In addition, we observed some interdomain microbial 

interactions in breast milk that could lead to further in vitro studies. The presence of 

viable fungal cells suggests a potential influence of breast milk on the infant’s mycobiota 

development. However, data from the infant gut mycobiota is missing in the present 

study, and further studies should address the potential fungal transference from breast 

milk to the infant gut mycobiome. Although we tried to prevent the contamination of 

maternal skin mycobiota by cleaning the breast prior to sample collection (which has 

been previously shown to reduce bacteria in breast milk samples (Sakwinska et al. 2016)), 

it should be taken into account that certain retrograde flux occurs during breastfeeding, 

and fungal species present in maternal skin and the  infant’s mouth could be translocated 

to breast milk, and vice versa (Ramsay et al. 2004). A greater understanding of the 

environmental influence on the bacterial and fungal communities and their metabolic 

functions is also needed.  
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Supplemental Material 

 

 

Figure S1. Fungal load in breast milk across geographic locations. The plot shows median 

fungal loads with interquartile ranges in those samples that showed fungal presence by qPCR in 

each country. Spain, n=16; China, n=9; Finland, n=7; South Africa, n= 14. Detection limit was 103 

cells/ml, estimated as the lowest concentration at which 95% of the positive samples are detected. 

 

 

Figure S2. Fluorescence microscopy images of yeasts in human breast milk. Panels are showing 

yeasts stained in blue with calcofluor-white from breast milk samples of different geograohic 

origin: a= C1 Spain; b=V6 South Africa; c= V346 Finland; d=V10 Spain. V= vaginal delivery; C= C-

section delivery. 
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Table S1. Fungal isolates from breast milk. For confirmation of fungal viability, 3-4 samples 

were selected from each country to obtain fungal isolates. Data show the tentative taxonomic 

classification as inferred by sequencing of the 18S rRNA gene, as well as the BLAST parameters 

against the closest relative in public databases. SA: South Africa, C: China, SP: Spain 

 
 

 

 

Figure S3. Diversity and richness in breast milk samples. Data show Shannon and Chao1 

indices, respectively, per country (Panel A and B) and taking into account mode of delivery 

(Panel C and D). C=C-section, V=Vaginal. 
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Figure S4. Molecular phylogenetic tree inferred from a maximum likelihood analysis of ITS 

sequences of the Malassezia OTUs obtained in this work and known members of the genus 

Malassezia. ML support values >50% over 10,000 replicates are shown above the branches. For 

branches that were also supported by Bayesian inference, the posterior probability is shown 

below the branches. Brackets surrounding posterior probability values show a conflict between 

the Bayesian inference and maximum likelihood analysis, in which M. nana clustered in the M. 

restricta branch in maximum likelihood analysis, but outside it in bayesian inference. The tree is 

rooted with Cryptococcus neoformans. Pie charts indicate prevalence of each OTU per country and 

delivery mode. The 20 most prevalent Malassezia OTUs from this work are included in the tree. 
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Abstract 

 

Infections by opportunistic pathogens can lead to lactational mastitis, characterized by 

painful inflammation and duct obstruction in the mammary gland. In particular, sub-

acute mastitis (SAM) is a less acute state of the disease, but it is extremely prevalent 

among lactating women, being one of the main reasons for early weaning. Although the 

etiology and diagnose of acute mastitis is well established, very little is known about 

bacteria causing the sub-acute state. Milk samples from healthy and SAM-suffering 

mothers was extracted at two time points (during the mastitis and when the symptoms 

disappeared). Total (DNA-based) and active (RNA-based) bacterial composition were 

analysed by 16S rRNA Illumina sequencing and bacterial load was estimated by qPCR. 

Bacterial load was significantly higher in mastitis samples compared to healthy mothers 

and decreased after the clinical symptoms disappeared. Bacterial diversity significantly 

decreased in milk from SAM samples. Significant differences in bacterial composition 

and activity were found in milk samples from healthy and SAM mothers, and possible 

causing agents included not only Staphylococci but also several Streptococci and oral 

bacteria. Contrary to acute mastitis, the same bacterial species were found in samples 

from healthy and diseased mothers, although at different proportions. Finally, 

mammary epithelial cell lines were exposed to human milk from healthy and SAM 

mothers, showing an over-production of the inflammatory marker IL8 in the presence 

of SAM bacteria. Our work therefore supports that SAM has a bacterial origin, with 

increased bacterial loads, reduced diversity and altered composition, which were partly 

recovered after treatment. Taken together, the data suggest a polymicrobial and varying 

etiology, which appears to be the outcome of a bacterial dysbiosis. 
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Introduction 

Human milk is a complex and live fluid, containing a relatively diverse and potential 

beneficial microbiota under healthy conditions (Fitzstevens et al. 2016). Therefore, 

human milk participates in the microbial supply to the infant, and together with other 

milk compounds, enhance gut microbiota colonization, likely stimulates commensal 

tolerance and supports the maturation of the immune system (Fernández et al. 2013; Jost 

et al. 2014; Marcobal et al. 2010; Toscano et al. 2017a). Occasionally, lactation is afflicted 

with the development of mastitis, which frequently arises during the first 6 weeks post-

partum and is one of the main causes of early weaning (Amir & Academy of 

Breastfeeding Medicine Protocol Committee 2014; Berens 2015; Odom et al. 2013). 

According to the World Health Organization (WHO), mastitis affects up to 33% of 

lactating women (World Health Organization 2011), but this is likely biased by the 

difficulties for defining the disease. Classically, mastitis is defined as an inflammation of 

the breast, accompanied of infection or not (Amir & Academy of Breastfeeding Medicine 

Protocol Committee 2014; Berens et al. 2016; World Health Organization 2011). This 

definition includes a broad range of conditions that go from local inflammation with 

minimal systemic response, to inflammation associated to other diseases (such as breast 

cancer or Raynaud’s disease) and infectious processes.  However, most researchers 

consider that lactational mastitis has an infectious origin. Symptoms appear when a 

blockage of the milk ducts occur, presumably due to the overgrowth of some bacterial 

species which form biofilms and trigger inflammation (Angelopoulou et al. 2018; 

Contreras & Rodríguez 2011; Fernández et al. 2014; Marín et al. 2017). According to its 

course, lactational mastitis can be classified into different types, being acute (AM) and 

sub-acute mastitis (SAM) the most prevalent among breastfeeding women. AM can be 

easily identified, due to the intensity of its symptoms, namely erythema, pain, swelling, 

fever and other general symptoms. Staphylococcus aureus is considered the main 

causative agent in AM, producing toxins responsible of the systemic symptoms 

(Contreras & Rodríguez 2011; Delgado et al. 2011; Osterman & Rahm 2000). SAM, albeit 

courses with milder symptoms, is most prevalent among lactating women, and therefore 

represents one of the principal causes of undesired weaning. Based on bacterial cultures 

from human milk samples, Staphylococcus epidermidis has been proposed as the 

predominant species responsible of sub-acute mastitis (Delgado et al. 2008; Jiménez et al. 

2015; Patel et al. 2017), as well as, in lower abundances, other coagulase negative 

staphylococci (CNS) and viridans streptococci such as Strep. mitis and Strep. salivarius 

(Contreras & Rodríguez 2011; Martín et al. 2016). These are frequently encountered in 

healthy skin microbiota and human milk, and can occasionally overgrow and form thick 

biofilms in the milk ducts, leading to milk stasis and opportunistic infections, which 

result in the symptoms of SAM previously described (Fernández et al. 2014; Otto 2014). 

Identifying SAM can be challenging, and a poor diagnosis and/or treatment can lead to 

recurrent or chronic infections. Microbial culture is applied as standard diagnose 

procedure, but this technique is time-consuming, and implies false negatives (as many 
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microbial species cannot be grown under standard laboratory conditions). In addition, 

most bacteria associated with lactational mastitis can be frequently detected in human 

milk from healthy mothers, which further complicates the diagnosis (Kvist et al. 2008), 

and thus, their sole presence in the sample does not necessarily imply an infectious 

process. Studies addressing the microbiology of SAM are limited, and information about 

bacterial load of human lactational mastitis is scarce. In addition, most human milk 

microbiota studies based on molecular techniques focus on the total bacterial 

composition, not considering that part of its DNA may correspond to dead or inactive 

bacteria, as well as free bacterial DNA. For this reason, RNA-based sequencing of human 

samples is being used to clarify the elusive aetiology of some diseases with complex 

microbial origin (Simón-Soro & Mira 2015; Yost et al. 2015). 

The aim of the current work was to describe the human milk bacterial composition and 

loads in mothers suffering SAM, taking into account total and active bacteria (as inferred 

by DNA and RNA 16S rRNA gene sequencing, respectively), in order to define the 

etiology of the disease and find potential bacterial biomarkers. In addition, bacterial 

pellets from human milk were exposed to a mammary epithelia cell line, in order to 

investigate their potential role in inflammatory processes. Results could provide insights 

on the SAM etiology, and facilitate its diagnosis and the development of efficient 

therapies. 

 

Material and Methods 

Subjects and Sampling 

A total of 51 mothers participated in the study. Among them, 24 presented symptoms of 

sub-acute mastitis, 3 presented symptoms of acute mastitis and were included for 

comparison, and the remaining 24 were completely healthy. Human milk samples were 

collected between 9 and 90 days after delivery, at two time points: during the course of 

the symptoms (time 0) and after the symptoms cessation (time 1) in the mastitis group; 

and during a medical consultation to the doctor (time 0), and a second visit a week after 

(time 1) in the control group.  Details of pregnancy and delivery, mother and infant 

health status, medicines consumption, lactation, and clinical symptoms during mastitis 

were collected at recruitment through a detailed questionnaire. Mothers were recruited 

at the Breastfeeding Unit of Dr. Peset Hospital (Valencia, Spain), and at the Alfafar 

Health Center (Valencia, Spain). Inclusion criteria for all mothers were: to be 18 years 

old or older, to reside in the same geographical area (Valencia, Spain), to breastfeed their 

children and to have signed the informed consent handed by the doctor, nurse or 

midwife. Women were considered to have sub-acute mastitis when presenting breast 

pain (usually described as profound, needle-like and/or burning pain) accompanied or 

not by lumps in the breast tissue; without general symptoms (Jiménez et al. 2015). 

Women were considered to have acute mastitis when presenting profound pain in the 

breast accompanied by at least two of the following symptoms: local inflammation signs 
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(breast redness, local hyperthermia, or sensitive lump), fever and general discomfort 

(Jiménez et al. 2015). Controls were healthy breastfeeding woman who did not present 

any of the previous symptoms. Exclusion criteria were: suffering from an 

immunological, metabolic or other severe diseases; or having received antibiotics or 

probiotics 15 days prior to first sample donation. Breastfeeding counselling was offered 

to all mothers suffering from breast pain. After any other cause of breast pain was 

discarded and the diagnosis of sub-acute mastitis confirmed, mothers were instructed 

on breastfeeding massage techniques and optimal lactation positioning. Mothers were 

advised to breastfeed frequently, apply massages on the breast and pump to empty their 

breasts frequently and drain any possible lump. Treatment with anti-inflammatory 

drugs and/or probiotics were prescribed. In three cases, where symptoms persisted after 

7 days, antibiotics were prescribed. Mothers suffering acute mastitis received antibiotics 

and anti-inflammatory drugs, following the recommended standards. Most mothers 

presenting mastitis symptoms had taken analgesic drugs (NSAIDS or paracetamol) 

before visiting the doctor. Before sample collection, mothers received oral and written 

instructions for the standardized collection of samples. Prior to sampling, nipples and 

mammary areola were cleaned with chlorhexidine soap and sterile water and rinsed 

with sterile saline solution. After manually discarding the first milk drops, samples were 

collected with a Medela Symphony breast pump (Medela, Baar, Switzerland) in sterile 

collection units.  Samples were collected in the morning, and at least 1 hour after the last 

feeding. All samples were encoded, and frozen at -80°C until further processing. All 

volunteers gave written consent for the protocol, approved by the Ethical Committee of 

Clinical Research from the Dr. Peset Hospital (Valencia, Spain), with reference number 

CEIC 19/16. 

Sample processing and DNA/RNA isolation 

Human milk samples (4ml) were centrifuged at 13,000 g for 10 minutes, discarding fat 

and whey. Total DNA and RNA were isolated from pellets by using the MasterPure 

Complete DNA & RNA Purification Kit (Epicentre, Madison WI, USA) as previously 

described, following the manufacturer’s instructions with some modifications (Boix-

Amorós et al. 2019b). An enzymatic lysis step was performed with lysozyme (20 mg/ml; 

Thermomixer comfort, Eppendorf, Hamburg, Germany), mutanolysin (4000 units/mg 

protein; Sigma-Aldrich, Madrid, Spain), and zymolyase (0.25 mg/ml; MP Biomedicals, 

Santa Ana, CA, USA), incubating 1h at 37°C. 2 μl of proteinase K were added and the 

tubes were incubated for 15 minutes at 65°C. To enhance the disruption of microbial cell 

walls, a mix of 150-212 μm and 425-600 μm, acid washed glass beads (Sigma-Aldrich, 

San Luis, MI, USA) were added to the tubes and samples were put through two cycles 

of vigorous mixing in a FastPrep-24™ 5G Instrument (MP Biomedicals, Santa Ana, CA, 

USA)  during 1 minute. Proteins were precipitated using 350 μl of protein precipitation 

agent, centrifuging 10 minutes at 13,000g and 4°C, transferring supernatants to a new 

tube. Nucleic acids were precipitated using isopropanol, washed with 70% and 96% 

ethanol and resuspended in 30 μl TE buffer. 10 μl of each nucleic acids suspension were 
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transferred to a new nuclease-free tube, and treated with the DNA-free DNA Removal 

Kit (Invitrogen, Carlsbad, CA, USA) to remove DNA and keep only RNA.  0.1 volume 

of the 10X DNase I Buffer and 1 µL of rDNase I were added to the tubes, and incubated 

at 37 °C for 30 minutes, three times.  0.1 volume of the DNAse Inactivation Reagent was 

added, incubated for 2 minutes at RT and centrifuged at 10,000 g and 4°C for 2 minutes. 

Supernatants containing clean RNA were transferred to new Eppendorf tubes. To 

confirm the complete removal of the DNA in the RNA samples, an electrophoresis in a 

1.4% agarose gel was carried out. DNA and RNA concentrations were measured in a 

Nanodrop Spectrophotometer (ThermoScientific, Waltham, MA, USA). 

cDNA synthesis 

cDNA was synthesized from RNA by using the Transcriptor First Strand cDNA 

Synthesis Kit (Roche Life Science, Basel, Switzerland). A mix of: 1µg of each RNA 

sample, 1µl of Anchored-oligo (dT) primer, (2.5 μM); 2 μL of Random Hexamer Primer 

(60 μM) in a final volume of 13 μl per sample was prepared. The primer-template mix 

was heated at 65 °C for 10 minutes. Then, the following components were added to each 

reaction tube: 4 µl of Transcriptor Reverse Transcriptase Reaction Buffer (1x 8 mM 

MgCl2); 0.5  µl of Protector RNase Inhibitor (20U), 2 µl of Deoxynucleotide Mix (1 mM 

each) and 0.5 μl (10 U) of the  Transcriptor  Reverse  Transcriptase (final volume: 20 µl). 

Tubes were gently mixed and incubated in a T100™ Thermal Cycler (Bio-Rad, Hercules, 

CA, USA) for 10 minutes at 25 °C, followed by 30 minutes at 55 °C, and 5 minutes at 

85°C.  

Detection of 16S rRNA gene by qPCR  

Both total bacterial load (DNA based) and active bacterial load (cDNA-based) of the 

samples were analysed through quantitative PCR (qPCR) amplification and detection of 

the 16S ribosomal RNA (rRNA) gene.  Each reaction mixture of 10 μl was composed of: 

5 μl of Light Cycler 480 SYBR Green I Master mix (Roche Life Science, Basel, 

Switzerland), 0.25 μl of each specific primer (concentration 10 μM) and 1 μl of template 

DNA or cDNA. Amplifications were performed in a Light Cycler 480 Real-Time PCR 

System (Roche Life Science, Basel, Switzerland), using an annealing temperature of 60 

°C. All amplifications were performed in duplicates and negative controls were included 

in each qPCR plate. In all, 5 qPCR plates were used for the analyses of all the samples. 

Primers sequences were F—5ʹ-CGTGCCAGCAGCCGCGG-3ʹ and R—5ʹ-

TGGACTACCAGGGTATCTAATCCTG-3’. Ct values in each sample were transformed 

in bacterial cell numbers per ml of milk by comparison with a standard curve obtained 

with flow cytometry. This standard was generated by using DNA extracted from 10 

million bacterial cells from 10 pure cultures of different species, commonly found in 

human milk (Streptococcus epidermidis CECT 231, Bifidobacterium dentium DSM 20436, 

Acinetobacter lwoffii CECT 453, Corynebacterium matruchotii DSMZ 20635, Lactobacillus 

casei (lab’s isolate), Lactobacillus acidophilus CECT 4179, Staphylococcus aureus strain 240, 

Pseudomonas aeruginosa ATCC 15442, Rothia mucilaginosa  (lab’s isolate) and Streptococcus 
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mitis DSMZ 12643). DNA from all species were extracted, pooled and diluted in serial 

ten-fold dilutions to create a single standard curve. Bacterial cells were quantified and 

sorted using a BD FACSAria II cytometer (East Rutherford, NJ, USA). Samples that 

showed Ct values higher than the negative control were considered to be negative for 

bacterial detection. Differences in bacterial loads between groups were estimated with 

non-parametric Kruskal Wallis test in GraphPad Prism 5 (GraphPad Software, San 

Diego, CA, USA, Version 5.04) 

Bacterial composition and active bacterial composition of human milk samples  

A total of 75 human milk samples were analysed through next generation sequencing of 

the 16S rRNA gene. Controls, time 0 (n= 24); Mastitis, time 0 (n=25; 22 SAM and 3 AM); 

Mastitis, time 1 (n=23; 20 SAM, 3 AM). Controls at time 1 were not included in further 

steps. Prior to sequencing, DNA and cDNA were pre-amplified by using universal 

bacterial degenerate primers 27F—5ʹ-AGAGTTTGATCMTGGCTCAG-3ʹ and 926R—5ʹ-

CCGTCAATTCMTTTRAGT3ʹ, which comprise the hypervariable regions V1–V5 of the 

gene. This step was performed by using the high-fidelity ABGene DNA polymerase 

(Thermo Scientific, Waltham, Mass., USA) with an annealing temperature of 52 °C and 

10 cycles, in order to minimize amplification biases (Sipos et al. 2007). PCR products were 

purified using Nucleofast 96 PCR filter plates (Macherey-Nagel, Düren, Germany), and 

concentrations were measured with a QubitTM 3 Fluorometer (ThermoScientific, 

Waltham, MA, USA). An Illumina amplicon library was performed following the 16S 

rRNA gene Metagenomic Sequencing Library Preparation Illumina protocol (Part 

#15044223 Rev. A). The primer sequences used in this protocol target the 16S rRNA gene 

V3 and V4 regions, resulting in a single amplicon of approximately 460 bp. Overhang 

adapter sequences were used together with the primer pair sequences for compatibility 

with Illumina index and sequencing adapters. Full length sequences: F-5’: 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG, 

and R-5’:  

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAAT

CC (Klindworth et al. 2013). After amplification of the 16S rRNA gene, DNA and cDNA 

were sequenced in an Illumina Miseq platform according to manufacturer’s instructions 

(Illumina) using the 2 × 300 bp paired-end protocol, at the Foundation for the Promotion 

of Health and Biomedical Research, FISABIO (Valencia, Spain). No-template controls 

(NTCs) and negative controls during DNA extraction were included to rule out potential 

contaminations at the time of DNA extraction or sequencing. 

Data Analysis and Statistics 

A quality assessment of the sequences was carried out using the PRINSEQ program 

(Schmieder & Edwards 2011). Sequences were end-trimmed in 20 bp sliding windows, 

and those with average quality value <30, and length <250 bp were not considered for 

further analyses. Reads were pair-end joined using FLASH program applying default 

parameters (Magoc & Salzberg 2011). Only overlapping paired-end reads were used for 
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further analysis. Operational taxonomic units (OTUs) were generated by clustering 

reads at 97% of similarity by using VSEARCH (Rognes et al. 2016). Centroids 

(representative OTUs) were taxonomically classified at phylum, class, family, genus and 

species level using feature-classifier command of QIIME2 (Rognes et al. 2016)version 

2017.8  with Greengenes database (version gg_13_5). OTUs with <10 total assigned reads 

were not considered for further analysis. Sequences belonging to Streptococcus and 

Staphylococcus genera, which 16S gene is highly similar, were clustered into OTUs at 

100% similarity and >400 bp alignment length by BLAST analysis (Altschul et al. 1990), 

against a manually curated database for these genera, obtained from RDP Hierarchy 

Browser (Cole et al. 2009). Streptococcus mitis and Streptococcus oralis appeared to be 

identical in the sequenced region, and could not be distinguished from each other. α-

diversity analysis (Shannon and Chao1 indices), were calculated to estimate sample’s 

diversity and richness; and β-diversity (Bray Curtis dissimilarity index), to quantify the 

compositional dissimilarity between groups at OTU and genus level, using the R-

package vegan. Canonical correspondence analysis (CCA), which is a statistic tool used 

to emphasize community variation, taking into consideration the main features of the 

distributions of species along environmental variables (here, health status and time), 

were performed by R software vegan package. In order to control the potential effects of 

maternal antibiotics intake, maternal age and days postpartum, MaAsLin multivariate 

analysis with linear model (Morgan et al. 2012) was applied, which finds associations 

between metadata and microbial abundances. Then, Adonis statistic for permutational 

multivariate analysis was used to measure differences in variance between groups, and 

Wilcoxon test implemented in R software was applied to determine significantly 

different bacterial genera between groups (unpaired Wilcoxon test was applied when 

comparing Control and Mastitis groups; and paired when comparing Mastitis groups, 

time 0 and time 1). Bacterial-OTUs biomarker discovery was performed by linear 

discriminant analysis effect size (LEfSe) implemented on Galaxy online platform 

(http://huttenhower.sph.harvard.edu) (Segata et al. 2011), in order to detect the most 

differentially abundant OTUs characterizing the populations of healthy and mastitis-

suffering women. Other statistical analyses and graphs were performed in GraphPad 

Prism 5 (GraphPad Software, San Diego, CA, USA, Version 5.04). 

Exposure of milk bacteria to a mammary gland epithelium cell line. 

The cell line MCF7 (ATCC HTB-22), from mammary epithelium,  was seeded onto 96-

well plates (30000 viable cells per well) in complete growth medium (DMEM high 

glucose (Gibco) supplemented with 10% v/v inactivated fetal bovine serum (Sigma), 1 

mM sodium pyruvate (Gibco), 0.1 mM non-essential aminoacids (Gibco), 10 mM HEPES 

(Gibco), 2 mM L-glutamine (Gibco) and antibiotics (100 U/mL penicillin, 100 g/mL 

streptomycin (Gibco)). The cells were grown at 37ºC and 5% CO2 in an incubator for 2 

days, and the integrity of the cell culture was checked with an inverted microscope and 

the medium was replaced with fresh complete growth medium without antibiotics, 

containing the bacterial pellet coming from 500 uL of centrifuged human milk samples. 

http://huttenhower.sph.harvard.edu/
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A total of 18 healthy controls, 21 sub-acute mastitis and 2 acute mastitis milk samples 

obtained at time 0; and 22 controls, 17 sub-acute mastitis and 3 acute mastitis milk 

samples obtained at time 1, were anaysed in duplicates in the same experiment. Negative 

controls were included, and consisted of MCF7 cells incubated without bacteria. Co-

incubation of mammary gland MCF7 epithelial cells with human milk bacteria was 

maintained for 24 hours at 37ºC and 5% CO2 in an incubator. After the co-incubation 

period, culture supernatants were aspirated from wells and kept at 4ºC for measuring 

human interleukin 8 concentration by ELISA (Invitrogen) using 25 uL of supernatants, 

following the manufacturer’s instructions.   

 

Results 

Study population 

51 women were enrolled in the study, including 24 healthy-controls, 24 sub-acute 

mastitis and 3 acute mastitis. 4 mothers from the SAM group abandoned the study before 

collecting the second sample (time 1). Characteristics of mothers and infants are 

summarized in Table 1. 

 

Table 1. Study population’s information 

 Healthy Sub-acute 

mastitis 

Acute mastitis 

 

Total 

Study population, n 24 24 3 51 

Maternal age, years ± SD  34.83±2.85 35.08±5.32 34.33±2.08 34.92 ± 

4.12 

Weight-gain during 

pregnancy ± SD 

14.83 ± 13.31 13.71±4.22 11±3.46 14.08±9.54 

Vaginal delivery 

 

19/24 17/24 2/3 38/51 

Maternal antibiotics 

during study 

 

0/24 3/24 3/3 6/51 

Infant age           (days) ± 

SD 

45.66±2.89 44.83±25.13 41.66±43.41 45.04 ± 

23.46 

Infant antibiotics during 

study 

0/24 0/24 0/3 0/51 

 

Total and active bacterial load increase in human milk during mastitis 

Quantification of the 16S rRNA gene through qPCR of both DNA (total bacterial load) 

and RNA (active bacterial load) showed significantly increased bacterial loads in 

mastitis samples during the course of the symptoms (Figure 1). Mean total bacterial load 
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in the control samples was 610,127 cells/ml (SEM=110,218) and 828,850 cells/ml 

(SEM=100,692) at first and second time point, respectively. Mean total load in the mastitis 

samples during the course of the symptoms reached 3,137,000 cells/ml (SEM=956,632), 

which was significantly higher as compared to controls at the same time point (non-

parametric Kruskal Wallis test, p<0.01). After the symptoms had disappeared, mean total 

load in the mastitis group decreased to 1,430,000 cells/ml (SEM=259,037), although the 

values were still significantly higher as compared to controls at time 0, and thus, 

bacterial load did not fully returned to healthy levels at this time point (non-parametric 

Kruskal Wallis test, p<0.01). Mean active bacterial load was significantly lower as 

compared to total bacterial load in all groups (non-parametric Kruskal Wallis test, 

p<0.001), except in the mastitis group at time 1. Similar values were observed in the 

control samples at the two studied time points, time 0= 67,064 cells/ml (SEM= 27,505); 

and time 1= 84,808 cells/ml (SEM=21,117). Mean active bacterial load increased in the 

mastitis group during the course of symptoms, up to 598,395 cells/ml (SEM=373,253) 

although this difference was not significant. Mean active load in the mastitis group after 

symptoms disappeared increased up to 1,601,000 cells/ml (SEM=229,296), and this 

difference was significant when compared to all the other groups (non-parametric 

Kruskal Wallis test, p<0.001).  

 

 

Figure 1.  Bacterial load in human milk of healthy mothers and mothers suffering lactational 

mastitis. Plots show means with standard errors. a) Bacterial load, as inferred from qPCR of the 

16S rRNA gene of the bacterial DNA. b) Active bacterial load, as inferred from qPCR of the 16S 

rRNA gene of the bacterial RNA (cDNA). Controls_t0, (n=24); Controls_t1, (n=23); Mastitis_t0, 

(SAM, n=24; AM, n=3); Mastitis_t1, (SAM, n=19; AM, n=3). t0, samples collected during the course 

of mastitis symptoms, or first sample collected in healthy controls; t1, samples collected after the 

clinical symptoms disappeared, or samples collected from healthy controls one week after the 

first sample collection.  Acute Mastitis samples are represented with white triangles in the graph. 

**, p < 0.01 and ***, p < 0.001, non-parametric Kruskal Wallis test. 
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Sequencing summary 

A total of 75 human human milk samples were sequenced in the V1-V2 region of the 16S 

rRNA gene, each of them for the DNA and RNA -cDNA- (total number of sequenced 

samples n=150). One DNA sample and two cDNA samples were not considered for 

further analyses due to the small number of sequences. After quality filtering, 3,270,552 

sequences were obtained from DNA sequencing (average sequences per sample: 45,424 

± 9,145 SEM), and 3,215,590 sequences from RNA sequencing (average sequences per 

sample: 44,047 ± 2,876 SEM). 3,171,244 DNA sequences could be assigned at phylum 

level; from which 2,616,633 were further assigned at genus level, and 2,016,688 at species 

level. Similarly, 3,066,528 RNA sequences were assigned at phylum level; from which 

2,704,990 were assigned at genus level, and 2,197,733 at species level. 

Bacterial richness and diversity decrease during lactational mastitis 

Total bacterial DNA diversity (as measured by the Shannon Index) and richness (as 

measured by the Chao1 Index) decreased during the course of mastitis symptoms 

(Figure 2a; non-parametric Kruskal Wallis test, p<0.05). Diversity levels were not 

recovered to control levels after the symptoms had disappeared, although total number 

of observed OTUs significantly increased (non-parametric Kruskal Wallis test, p<0.001). 

A similar pattern was observed at the RNA level: Active bacterial diversity decreased 

during the mastitis symptoms (Figure 2b; non-parametric Kruskal Wallis test, p<0.05), 

and total number of observed OTUs increased after symptoms had disappeared (non-

parametric Kruskal Wallis test, p<0.05). Although there was a decreasing trend in 

richness in the mastitis group during the symptoms, it did not reach statistical 

significance. 

Total and active bacterial composition  

The most abundant phyla, in both DNA and RNA samples were Firmicutes (80.52% and 

67.19%, respectively) and Proteobacteria (10.50% and 20.61%), followed by 

Actinobacteria (8.01% and 10.83%). At genus level, Streptococcus and Staphylococcus were 

the two most abundant bacterial genera, both in the DNA (67.12% and 8.00%, 

respectively) and RNA sequences (51.23% and 14.57, respectively) (Figure 3). No 

statistically significant effect of maternal antibiotics intake, maternal and infant age, 

delivery mode nor maternal weight gain during pregnancy, was detected on human 

milk microbial composition (p>0.05, MaAsLin test). Although a high inter-individual 

variability was observed in bacterial composition between human milk samples, distinct 

bacterial communities were detected between healthy controls and SAM. 
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Figure 2.  Bacterial diversity and richness in human milk samples from healthy and mastitis-

suffering women. Plots show human milk microbiota genus-level diversity and richness (here 

presented with Shannon and Chao1 indices), with means and standard errors. a) Represents 

microbiota DNA Shannon and Chao1 indices.  Controls, n=24; Mastitis_t0, n=26; Mastitis_t1, n=22. 

b) Shows microbiota RNA Shannon and Chao1 indices. Controls, n=23; Mastitis_t0, n=26; 

Mastitis_t1, n=22. Acute mastitis samples are represented with white circles, n=3. t0= samples 

during the course of the symptoms; t1= samples after symptoms disappeared. *, p < 0.05 and ***, 

p < 0.001, non-parametric Kruskal Wallis test. 
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Figure 3. Bacterial composition in human milk samples of healthy mothers and mothers 

suffering sub-acute mastitis. The barplot shows average percentage of abundance of the genus-

level bacteria (DNA) and active bacteria (RNA) detected in the human milk samples by means of 

Illumina sequencing of the 16S rRNA gene. Controls: DNA, n=24; RNA, n=23; SAM_t0: DNA, 

n=23; RNA, n=23; SAM_t1; DNA, n=19; RNA, n=19. t0= samples during the course of the 

symptoms; t1= samples after symptoms disappeared. Due to the small sample size (n=3), acute 

mastitis samples were not included in the barplots. 

 

When analysing total bacterial composition, no statistically significant differences were 

observed at phylum level. At genus level, SAM samples at time 0 had lower levels of 

Pseudomonas, as compared to healthy controls (unpaired Wilcoxon test, adjusted P-

value=0.003), and lower levels of Acinetobacter as compared to SAM at time 1 (paired 

Wilcoxon test, adjusted P-value= 0.031). When looking at the active (RNA-based) 

bacterial composition, Firmicutes phylum was higher in the SAM group at time 0, as 

compared to controls (Wilcoxon test, P-value=0.01), while Proteobacteria were depleted 

(Wilcoxon test, P-value=0.001) and to SAM at time 1 (Wilcoxon test, P-value=0.05). 

Peptoniphilus, Prevotella, and Finegoldia were at higher levels in the active portion of SAM 

at time 1 as compared to healthy controls (unpaired Wilcoxon test, adjusted P-value= 
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0.0087, 0.019 and 0.042, respectively), while healthy controls were enriched in Neisseria 

(unpaired Wilcoxon test, adjusted P-value= 0.042), suggesting that the bacterial 

composition was not fully recovered after the clinical symptoms disappeared. At OTU 

(species) level, the impact of health status on human milk microbiota was also reflected 

in differences in bacterial composition between healthy controls, mastitis during the 

course of symptoms (time 0) and mastitis after symptoms cessation (time 1), both at DNA 

level (Adonis P-value= 0.015, CCA analysis), and active RNA level (Adonis P-value=0.04, 

CCA analysis) (Figure 4).  As inferred from DNA analysis, controls appeared more 

diverse in the CCA plot, while mastitis groups showed less diversity and clustered closer 

to each other. At RNA level, although there was also some overlap, the three groups 

clustered separately, and the highest divergence was explained by axis 1, which 

separates controls from mastitis groups. Thus, the CCA plots also support a different 

bacterial composition at the species level in mastitis and control groups, with a partial 

recovery after the symptoms disappeared. Streptococcus mitis/oralis, Streptococcus 

salivarius, Acinetobacter johnsonii, Streptococcus lactarius and Rothia mucilaginosa were the 

most abundant species detected in the human milk samples at DNA level. Streptococcus 

mitis/oralis, Streptococcus salivarius, Staphylococcus epidermidis, Rothia mucilaginosa and 

Streptococcus lactarius were the most abundant active bacteria detected. In order to 

determine which species where responsible for the divergences observed between the 

groups, Wilcoxon tests at OTU level were performed. Staphylococcus aureus was more 

abundantly present in SAM, both at time 0 (unpaired Wilcoxon test, adjusted P-

value=0.001), and time 1 (adjusted P-value=0.0003), as compared to healthy controls. 

Porphyromonas endodontalis (adjusted P-value= 0.003) and Streptococcus peroris (adjusted 

P-value=0.003) were more prevalent in SAM group at time 1, as compared to controls. 

Paired Wilcoxon test showed that Acinetobacter johnsonii was more abundantly present 

in SAM group at time 1 as compared to SAM at time 0 (adjusted P-value=0.025). 

Staphylococcus aureus and Streptococcus lactarius were also significantly more active in 

SAM samples both at time 0 (unpaired Wilxocon test, adjusted P-value=0.023; P= 0.013, 

respectively) and time 1 (unpaired Wilxocon test, adjusted P-value=0.005; P= 0.018, 

respectively), as compared to controls. Streptococcus peroris was significantly higher in 

SAM group at time 1, as compared to controls (unpaired Wilxocon test, adjusted P-

value=0.006) and to SAM time 0 samples (paired Wilcoxon test, adjusted P-value=0.012). 

In addition, LEfSe algorithm was applied in order to further examine potential 

biomarkers of SAM disease (Figure 5). Several bacterial OTUs appeared to be associated 

with SAM and to health status. Significantly more abundant bacteria in healthy mother’s 

milk, as compared with mothers suffering SAM were Acinetobacter johnsonii, Pseudomonas 

viridiflava, Corynebacterium simulans, Paracoccus marcusii, Pseudomonas fragi and 

Acinetobacter lwoffii. Conversely, Corynebacterium kroppenstedtii, Staphylococcus aureus, 

and Prevotella nanceiensis were observed in increased abundance in human milk during 

SAM. In addition, within the SAM group of mothers, Coprococcus eutactus was 

significantly more abundant during the symptoms; while Acinetobacter johnsonii, Rothia 
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mucilaginosa, Propionibacterium acnes, Pseudomonas umsongensis, Lactobacillus helveticus 

and Lactobacillus zeae were significantly more abundant after symptoms had 

disappeared. 

 

 

Figure 4.   Human milk microbiota patterns in healthy mothers and mothers suffering 

lactational mastitis. Constrained correspondence analyses (CCA), which here emphasize 

variations in microbiota OTU-level patterns, show compositional characteristics of total human 

milk microbiota in control and mastitis samples at two different time points. The percentage of 

variation explained by constrained correspondence components is indicated on the axes. CCAs 

show microbial composition differences in human milk from healthy mothers and mothers 

suffering lactational mastitis at two time points, at DNA-level (p=0.015), and active microbial 

RNA-level (p=0.04). t0= samples during the course of the symptoms; t1= samples after symptoms 

cessation. P-values for CCA plots were determined by Adonis, and indicate if health status and/or 

time can significantly explain data variability. Controls (C): DNA, n=24; RNA=23; Mastitis t0: 

DNA, n=26; RNA= 26; Mastitis t1: DNA, n=22; RNA, n=22.  

 

Significant differences in bacterial abundance were also observed when analysing the 

active bacterial fraction of the samples. Active Lactobacillus iners, Neisseria subflava, 

Streptococcus lactarius, Streptococcus cristatus and Staphylococcus aureus were associated 

with SAM; while Propionibacterium acnes, Staphylococcus hominis, Acinetobacter lwoffii, 

Lactobacillus helveticus and Roseomonas mucosa were associated with health. Lactobacillus 

zeae was significantly more abundant in SAM samples after symptoms disappearance, 

while Pseudomonas viridiflava, Lactobacillus inners, Eubacterium biforme and Roseomonas 

mucosa were associated with SAM. 
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Figure 5. Human milk bacterial OTUs associated with sub-acute mastitis development. The 

plots show statistically significant bacteria associated with SAM development, as compared to 

healthy controls and human milk samples after SAM symptoms had disappeared, as inferred 

from: a) DNA (controls, n=24; SAM_t0, n=23; SAM_t1, n=19); and b) RNA (controls, n=23; 

SAM_t0=23; SAM_t1=19). The LEfSe algorithm was used for biomarker discovery, the threshold 

for logarithmic discriminant analysis (LDA) score was 2, and p < 0.05.  

 

Human milk bacteria exposure to mammary epithelial cells and release of IL8 

To study the potential pro-inflammatory effect of bacteria associated to SAM, human 

milk pellets were co-incubated with a mammary epithelial cell line for 24 hours. Results 

showed higher levels of IL8 in cells exposed to pellets from SAM during the course of 

the symptoms (t0), which significantly decreased after symptoms disappeared (Figure 

6). As expected, levels of IL8 from cell supernatants exposed to AM pellets were higher 

during and after the symptoms, as compared to the other groups, although the small 

sample size did not allow statistical analyses. 
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Figure 6. Levels if IL8 produced by mammary cells after exposure to bacteria in human milk. 

The bar plots show levels of IL8 released by cells from a mammary epithelial line when exposed 

to bacterial pellet from healthy controls (Controls_t0, n=18; Controls_t1, n=22); sub-acute mastitis 

(SAM_t0, n= 21; SAM_t1, n=17); and acute mastitis (AM_t0, n=2; AM_t1, n=3). Supernatants from 

mammary cells exposed only to culture medium were used as negative controls (n=8). **, p < 0.01, 

non-parametric Kruskal Wallis test. 

 

Discussion 

Sub-acute mastitis is a fastidious and common disease among lactating mothers, 

representing one of the main causes of undesired weaning. Although SAM causes with 

milder symptoms, as compared to its acute version, lactating mothers have to deal with 

intense pain and discomfort and are very often afflicted by distress and emotional 

concern. Despite its high prevalence and impact on maternal-infant health, SAM is 

undervalued and under-diagnosed (Contreras & Rodríguez 2011). Studies performed on 

human milk during lactational mastitis up to date point to an altered bacterial profile, 

increased abundance in opportunistic pathogens and decreased total bacterial diversity 

(Delgado et al. 2011; Jiménez et al. 2015; Marín et al. 2017; Patel et al. 2017). Classically, 

AM has been associated to Staphylococcus aureus infections (Contreras & Rodríguez 2011; 

Delgado et al. 2011; Osterman & Rahm 2000). SAM, on the other hand, has been 

associated with increased Staphylococcus epidermidis presence (Delgado et al. 2008; 

Jiménez et al. 2015; Patel et al. 2017), and in lower abundances with other coagulase 

negative staphylococci (CNS), and viridans streptococci such as Strep. mitis and Strep. 

salivarius (Martín et al. 2016). Most of these results, however, were derived from culture-

dependent analyses, which are known to be biased by false negative rates, as many 

potentially pathogenic bacterial strains are difficult to grow under laboratory conditions. 

Only two studies, up to date, used culture-independent methods to analyse human milk 

microbial profiles during mastitis. One of them is a metagenomics study of 10 healthy 

controls, 5 SAM and 5 AM human milk samples (Jiménez et al. 2015); the other one used 
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16S rRNA gene amplicon sequencing (Patel et al. 2017) in milk samples from 18 healthy 

mothers, 16 SAM and 16 AM patients. In both studies, a decreased bacterial diversity in 

mastitis samples was reported, in addition to an enrichment in opportunistic pathogens.   

In the present study, we focused on SAM human milk bacterial composition and 

abundances. Samples were analysed by means of next generation Illumina sequencing 

and qPCR of the 16S rRNA gene. For the first time, both total (DNA-based) and active 

(RNA-based) bacterial composition and load of the SAM and healthy human milk 

samples have been studied. Results showed that total bacterial load significantly 

increased during the course of mastitis, as compared to healthy controls, and decreased 

after the symptoms cessation, although loads remained significantly higher as compared 

to healthy controls. Interestingly, active load after the symptoms’ cessation was 

significantly higher as compared to healthy controls and mastitis during the symptoms. 

This could indicate increased bacterial activity levels during the process of re-balancing 

in the bacterial community. After sequencing the 16S rRNA gene amplicons, we 

observed a decreased bacterial diversity both at DNA and RNA level during the course 

of mastitis, in agreement with previously reported data (Jiménez et al. 2015; Patel et al. 

2017). Richness also decreased during the disease, although it did not reach statistical 

significance at RNA level. Interestingly, richness significantly increased after symptoms 

had disappeared, both at DNA and RNA level. However, diversity was not recovered to 

control levels after the symptoms had disappeared. It should be taken into account that 

samples were collected right after the symptoms had disappeared, and the data suggest 

that the full recovery of bacterial communities takes longer than the remission of clinical 

symptoms. Decreased microbial diversity and/or richness associated to microbial 

dysbiosis have been previously described in several disease conditions, such as 

inflammatory bowel disease (Chehoud et al. 2015; Sokol et al. 2016), colorectal cancer 

(Ahn et al. 2013), tooth decay (Simón-Soro et al. 2013)  or celiac disease (Schippa et al. 

2010), among others. Our data support a dysbiotic state in human milk during SAM. 

A high inter-individual variability was observed in human milk’s bacterial composition 

among samples. However, significant differences between groups were observed, both 

at DNA and RNA level. During SAM, Pseudomonas and Acinetobacter were diminished, 

as compared to healthy controls and after symptoms disappeared (SAM, time 1), 

respectively. Interestingly, after cessation of the symptoms, SAM (time 1) samples were 

enriched in typical oral inhabitants, such as Streptococcus and Porphyromonas (DNA); and 

Prevotella (RNA). In addition, potential opportunistic pathogenic Finegoldia and 

Peptoniphilus genera were also increased in SAM at time 1, which could reflect an 

imbalance occurred in human milk after the mastitis episode. At OTU level, results 

showed that milk from mothers suffering SAM were enriched in Staphylococcus aureus, 

even after the symptoms had disappeared, and were also significantly more active as 

compared to healthy controls. Given that S. aureus was detected in only 1 out of 24 

healthy mothers, its higher proportion and prevalence could have been due to an 

infection from an outside source. In most other cases, however, the disease-associated 
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bacteria were also found in human milk from healthy mothers. Streptococcus lactarius, for 

instance, was also found to be significantly more active in SAM during and after the 

symptoms cessation, but it was also found at high prevalence in healthy mothers (13 out 

of 23 samples). In those cases, it is therefore possible that a change in the proportion of 

pre-existing microorganisms could trigger the inflammatory process. Alternatively, 

future studies should determine if specific strains could be associated to the disease, and 

whether those virulent strains are acquired from the skin or from other human niches. 

For example, after symptoms disappeared, samples were enriched in typical oral 

inhabitants such as Porphyromonas endodontalis and Streptococcus peroris. Given that oral 

health, especially gingivitis and periodontitis is very frequent in mothers during 

pregnancy and lactation (Tettamanti et al. 2017; Wu et al. 2015), the potential role of oral 

bacteria in triggering inflammation in the mammary tissue should be considered and 

tested in future studies.  

LEfSe biomarker discovery analyses showed several OTUs associated to health, and 

included Acinetobacter johnsonii, Pseudomonas viridiflava, Corynebacterium simulans, 

Paracoccus marcusii, Pseudomonas fragi and Acinetobacter lwoffiii. Corynebacterium 

kroppenstedtii, Staphylococcus aureus and the oral species such as Prevotella nanceiensis 

were among the identified SAM biomarkers. Corynebacterium kroppenstedtii has been 

previously isolated from granulomatous mastitis and breast abscesses samples (Paviour 

et al. 2002; Wong et al. 2017). Acinetobacter johnsonii, Rothia mucilaginosa, Propionibacterium 

acnes, Pseudomonas umsongensis, Lactobacillus helveticus and Lactobacillus zeae were 

significantly more abundant after symptoms had disappeared. Interestingly, P. acnes is 

a predominant bacterium in the skin microbiome, which has shown anti-S.aureus activity 

in vitro (Grice & Segre 2011; Shu et al. 2013). Thus, future studies should focus not only 

on potentially pathogenic organisms, but also on bacteria which could potentially 

contribute to health conditions, as promoting their growth with pre- or probiotics could 

prove to be a strategy to prevent or treat SAM (Espinosa-Martos et al. 2016; Fernández et 

al. 2014).  

RNA analysis showed that active Lactobacillus iners, Neisseria subflava, Streptococcus 

lactarius, Streptococcus cristatus and Staphylococcus aureus were associated with SAM 

during the symtoms; while Propionibacterium acnes, Staphylococcus hominis, Acinetobacter 

lwoffii, Lactobacillus helveticus and Roseomonas mucosa were associated with health.  Some 

of the potential pathogens deserve further study. Lactobacillus inners, for instance, is a 

member of the vaginal normal microbiota (Shi et al. 2009; Zhou 2004), although it has 

been associated to vaginal dysbiosis (Petrova et al. 2017). This species can produce a 

toxin, named as innerlysin, which is dependent upon the availability of cholesterol and 

cause cell damage (Rampersaud et al. 2011). Thus, its potential role in SAM should be 

tested in the future. Analysing human milk active bacteria, our study may offer a more 

precise insight into the bacterial origin of the SAM process. Most microbiota studies only 

consider the total bacterial DNA present in the samples, not considering that part of this 

DNA may belong to dead/inactive bacteria, and to free DNA.  RNA analyses offer a 
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complementary vision to human microbiota studies, allowing us to identify which 

bacteria are actively present in the samples. In this work, differences observed between 

human milk microbial DNA and RNA composition make clear that, by only analyzing 

total DNA, we could miss an important piece of the picture. Detecting bacterial DNA in 

any human sample does not imply that the corresponding bacteria are actually viable 

and exerting an effect on the human body, and therefore, results inferred from those 

observations could be biased. Thus, we propose that those organisms that appear to be 

enriched during SAM in both the DNA and RNA material would be the first candidates 

to clarify the complex aetiology of this disease. In addition, our results show that pellets 

from SAM milk samples, containing bacteria, induce pro-inflammatory IL8 release by 

mammary epithelial cells, supporting an infectious origin of SAM. IL8 was also 

increased in AM, although the small sample size of this group in our project prevents us 

to make any speculations of its immune implications. Thus, this in vitro work, together 

with the increase in bacterial load, the decrease in diversity and the change in 

composition during the symptoms, clearly support that SAM should be considered a 

disease of bacterial origin, with a polymicrobial aetiology. 

Thus, the understanding of SAM’s complex aetiology, and lactational mastitis in general, 

can be an arduous task. In addition, a major complications arises from a lack of 

agreement between the studies performed. While some researchers classify lactational 

mastitis into different groups according to the symptomatology, others make no 

distinction, or misclassify them, or in some cases, do not include a description of the 

symptomatology in their studies. Furthermore, some of the available publications do not 

include healthy controls in their analyses, and therefore, assumptions and statements 

derived from those results could be misleading. A possible drawback of this work relies 

in the fact that we lack a baseline milk sample from women suffering AM and SAM. 

Although we collected samples after the disappearance of the symptoms, and used them 

as an internal control, these samples are probably not representative of the initial healthy 

status of those mothers. Therefore, future prospective studies where samples are 

collected longitudinally are needed, so samples can be compared between the disease 

and the previous healthy status. The current work highlights the clinical relevance of 

understanding microbial populations associated to SAM, and we recommend to study 

the microbiology of SAM and its interaction with the host in a deeper manner and with 

larger cohorts, in order to establish the potential basis and mechanisms for SAM 

aetiology. 
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In the present thesis, we extended the knowledge of breast milk microbiota by 

performing an in-depth analysis of the microbial communities present in human milk, 

by using high throughput sequencing techniques. We also studied factors that shape 

breast milk microbiota composition and diversity, and provided insights on its complex 

interactions with milk macronutrients and other bioactive compounds. These 

techniques, supported by classic microbiological analyses and other culture-

independent methodologies, allowed us to accurately describe milk microbiota 

composition and their interactions with other milk components. We first analyzed the 

bacterial composition of milk samples from healthy Spanish mothers throughout 

lactation, their distribution in the fluid and interactions with other milk macronutrients 

and cells. In addition, we quantified bacterial loads in milk, through qPCR calibrated 

with an optimized flow cytometry protocol (Chapter 1). Using these optimized 

protocols, we subsequently explored the presence of yeasts and fungi in breast milk from 

healthy Spanish donors (Chapter 2). We applied, for the first time, next-generation 

sequencing of the 28S ribosomal RNA gene to study the composition of fungi in human 

milk. Our results revealed the existence of a certain diversity of fungi in human milk, 

previously undescribed. This was further confirmed by culture and microscopy. Results 

from Chapter 2 motivated an expanded research on breast milk “mycobiota” in samples 

from different and distant geographic locations, with a look at the potential influence of 

mode of delivery on its composition (Chapter 3). Co-occurrence of milk fungi and 

bacteria were analyzed, and revealed that maternal factors and mode of delivery had a 

potential influence on milk microbial communities. After describing the human milk 

microbiota under healthy conditions, we set up an observational, prospective case-

control study to analyse milk from healthy mothers and mothers suffering sub-acute 

mastitis, before and after the treatment. Here, we looked at the total and active bacterial 

composition by means of Next Generation Sequencing (NGS) of the 16S rRNA gene 

(Chapter 4). We analyzed, for the first time in breast milk microbial studies, both 

bacterial DNA and RNA of the 16S rRNA gene, in order to further unravel differences 

between total and active bacteria in the samples. Although initially considered sterile, it 

is now known that breast milk contains a complex community of bacteria and other 

microorganisms under normal, healthy conditions. In the last decade, there has been a 

shift from culture-dependent methodologies, to culture-independent, DNA-based 

methodologies that have been applied to study breast milk microbiota and its potential 

influence in maternal and infant health. However, these powerful new technologies have 

important pitfalls that are also worth discussing.  

 

Comparison of Methodologies for Assaying the Human Milk Microbiota  

Classic culture-dependent methods 

Early descriptions of breast milk microbiota were based on microbiological isolation 

after spreading milk on culture media, which allowed for the detection of specific 
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facultative anaerobes, lactic acid bacteria and other gram positives in aseptically-

collected samples (Heikkila & Saris 2003; Martín et al. 2003). The main advantage of 

classic culture methods is that they allow the growth of live bacteria present in a sample 

of interest, at low cost, whereas molecular methods may identify DNA from dead 

organisms which may not be natural inhabitants of the sample. If combined with other 

techniques, including tests based on staining and microscopy, PCR and Restriction 

Fragment Length Polymorphism (RFLPs), Sanger sequencing, etc. the isolated 

organisms can be taxonomically identified. However, this can be very time-consuming, 

and, importantly, excludes a great number of microorganisms not cultivable under 

laboratory conditions. Therefore, results from applying culture methods to estimate 

bacterial composition and loads in human milk are likely biased, as some uncultivable 

taxon and strict anaerobes (fastidious to grow) present in the samples would be 

overlooked and bacterial counts would be underestimated (Jost et al. 2013). However, 

culture methods are important to support other culture-independent techniques that do 

not discriminate DNA from live and dead microorganisms. In the present thesis, we 

were able to isolate several yeasts and other fungi from healthy breast milk samples 

(Chapters 2 and 3), which supported the finding of fungal DNA that we observed by 

means of NGS, proving that their presence in the samples belonged (at least partially) to 

live organisms. Bacterial and fungal culture was also a crucial step before counting and 

sorting individual microorganisms by flow cytometry, that were later used to construct 

standard curves for calibration for real-time polymerase chain reaction (Real-Time PCR, 

or qPCR) analysis. 

Culture-independent methods 

During the last decade there has been a shift in microbial analyses that moved from 

classic culture-dependent, to culture-independent techniques based on molecular 

analyses of the DNA and RNA (Nyvad et al. 2013; Su et al. 2012). 16S ribosomal RNA 

gene is the most studied bacterial gene in complex bacterial consortia, including 

environmental and human samples. It has highly conserved regions across all bacteria, 

and thus it’s susceptible to amplification with “universal” primers, while it also contains 

highly variable regions that allow discrimination of individual bacterial taxa. Similarly, 

other ribosomal genes, including 18S rRNA, 28S rRNA, and the hypervariable Internal 

Transcribed Spacer regions (ITS), are commonly used for fungal community studies. 

Several methodologies, based on the analysis of those genes, can be applied to study 

microbial communities. Polymerase chain reaction (PCR) is used to detect the presence 

of microbial taxa in a sample by using universal or specific primers targeting a particular 

genera or species (Gueimonde et al. 2007). Denaturing gradient gel electrophoresis 

(DGGE) and temperature gradient gel electrophoresis (TGGE), are DNA-based 

techniques for comparison of microbial molecular fingerprints. Human milk bacteria can 

be analyzed by putting microbial DNA fragments through a denaturing or temperature 

gradient gel, respectively, which results in differential patterns depending on their DNA 

sequence (Martín et al. 2007; Perez et al. 2007). However, there are a number of 
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disadvantages to these techniques: chemical gradients such as those used in DGGE are 

difficult to establish and are not so reproducible, and both methods are time-consuming, 

and require gel staining and further elution of DNA fragments for PCR or other 

techniques that allow identification. 

Real-time polymerase chain reaction (qPCR) represents a fast and reliable method to 

monitor the amplification of a targeted microbial DNA fragment during a PCR, in real-

time, and can be used for quantification. Most estimates of bacterial loads in breast milk 

have been made based on culture techniques. However, qPCR has demonstrated to be a 

very suitable tool for microbiota studies, and a promising methodology for the detection 

and quantification of  bacteria in human milk (Collado et al. 2009; Khodayar-Pardo et al. 

2014). For a quantitative application of this method, every analyzed plate requires a 

standard curve with known DNA concentrations. For microbiological studies, 

calibration based on pure cultures is the standard, which is acceptable when targeting a 

specific microorganism. However, for the analysis of total bacteria (i.e different species 

in a sample), calibration with single-bacterial species may not be representative of the 

whole community. For this reason, standard curves in the current thesis were performed 

with multiple bacterial species that are commonly found in the corresponding sample. 

Although “universal” primers, such as those targeting the 16S rRNA gene, are capable 

of detecting most bacteria present in clinical samples, small differences in sequence 

composition leads to amplification biases, i.e. not very bacteria is equally amplified, 

leading to over- or underestimations of the real composition or numbers. Furthermore, 

16S rRNA gene is present in variable number of copies in each bacterial species, which 

further difficult an accurate estimation of a communities’ bacterial load. This problem 

could be solved by targeting other universal, yet single-copy genes that could be used 

for estimations “one gene copy, one cell”. In the present thesis, we have quantified 

bacterial loads (Chapters 1 and 4) and fungal loads (Chapters 2 and 3) by applying qPCR 

with primers designated to be detect “universal” bacterial and fungal genes (16S rRNA, 

fusA, 28S rRNA and ITS1 genes). With an attempt to improve qPCR calibration methods, 

we applied flow cytometry with sorting to quantify and separate bacterial and fungal 

single-cells, previously isolated in the lab. In particular, several bacteria commonly 

present in milk were selected and sorted, and their DNA extracted, pooled and serially-

diluted and used for calibration. Similarly, different fungi were selected and subjected 

to the same protocol. Flow cytometry allows individual cells to be quantified and sorted, 

so that the can be used for further experiments or analysis. We have applied our 

improved flow cytometry protocol to circumvent the bias associated to culture-based 

constructed standard curves. However, flow cytometry may also introduce small errors 

in the microbial counting and sorting, and thus microbial estimates calibrated with this 

method may present small variations respect to the real loads in the samples. 

But if there is a culture-independent method that has revolutionized the study of 

complex microbial communities, that is Next-generation sequencing (NGS). NGS are 

recent technologies that enable the analysis of an entire microbial community within a 
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sample, representing an extremely powerful tool for genomics and molecular biology 

analyses. Unlike the classic Sanger sequencing method, that required previous microbial 

growth and was time-consuming (only one species could be sequenced at a time) and 

expensive, with NGS we can sequence multiple DNA samples in a rapid, cost-effective 

and accurate manner. Sequencing of the bacterial 16S rRNA gene, the fungal 18S and 28S 

rRNA genes and the ITS1 region, prior PCR amplification (amplicons), emerged as an 

optimized and relatively simple method to study the composition of complex microbial 

communities. NGS facilitated the analysis of thousands of sequences per sample, and 

increased the capacity to observe less abundant bacterial phylotypes, all in a massive-

parallel manner, with hundreds of different samples analyzed at the same time. The 

second-generation sequencing approaches include different methodologies like 454, 

Illumina or SOliD, that require an amplification step as part of their procedure, as 

opposed to the recently developed third-generation sequencing methodologies that are 

single-molecule approaches (Malla et al. 2018). 454 pyrosequencing platform (Roche, 

Basel, Switzerland) was the first market-available NGS method applied to study 

complex microbial communities, including those in human milk (Hunt et al. 2011). In 454 

pyrosequencing, generic adaptors with barcodes are added to the ends of each DNA 

amplicon, which are denatured into single strands and annealed to beads, and are later 

amplified by emulsion PCR. DNA fragments are exposed, in four successive cycles, to 

each of the four dNTPs.  Every time a nucleotide is incorporated to the sequence, a light 

signal is released, and detected “on the fly”. This technology is capable of generating 

large read lengths, up to 700 bp, in a short time (less than 10 h). However, it presents 

some disadvantages: coverage is lower as compared to other sequencing platforms (<1 

million reads/run), reagents costs are high, presents relatively high error rate over strings 

of homopolymers (3 or more consecutive identical DNA bases) caused by accumulated 

light intensity variance, and 3′ ends of sequences tend to have higher sequencing error 

rates compared to the 5′ ends. In the current thesis, we used 454 technology to determine 

bacterial and fungal composition in healthy breast milk samples, in Chapters 1 and 2. 

Illumina (San Diego, CA, USA), with different available platforms, adopted the 

technology of sequencing by synthesis (SBS). Amplicons with adaptors are denatured to 

single strands and transferred to a flowcell (with billions of micro-wells) were bridge 

amplification form clusters containing clonal DNA fragments. Then, nucleotides labelled 

with different fluorophores and removable terminator groups are incorporated, and the 

fluorescent signal is captured. SBS overcomes homopolymers issue by incorporating 

terminated nucleotides, adding one single base at a time. It represents the cheapest 

sequencing method, and offers the greatest coverage, which leads to a more accurate and 

reliable sequences. In particular, Illumina MiSeq is a bench top sequencer especially 

convenient for amplicon and bacterial/fungal sample sequencing. It can sequence up to 

25 million sequencing reads per run, and 2 × 300 bp maximum read lengths. However, 

this platform also presents some disadvantages: longer times (up to 55 hours), 

substitution type miscalls, as A and C as well as G and T have a similar emission spectra 
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of the fluorophores, and there are limitations of the filters that are used to separate the 

signals, incomplete removal of the 3′ terminators or the fluorophores, etc. (Schirmer et 

al. 2015).   

In addition, amplicon-based sequencing is a rapid and powerful method to study 

microbial communities in breast milk, but it also bears some limitations. It requires one 

or several PCR steps, which may add products of artificial (in vitro) amplification to the 

sequences of interest. Also, higher abundant sequences tend to be over-amplified, while 

sequences present in low abundances can be disregarded. Similarly, species with higher 

copy numbers of the target genes could be overestimated. Furthermore, amplicon-based 

sequencing provides low confidence for taxonomic assignment at species level, as 

sequence lengths are not always sufficient for confidence identification at that 

taxonomical level. In the current thesis, we used Illumina MiSeq sequencing technology 

to determine bacterial and fungal compositon in human milk samples, in Chapters 3 and 

4.  As previously mentioned, it should be taken into account that culture-independent 

DNA/RNA-based methodologies cannot distinguish between nucleic acids belonging to 

live or dead microorganisms. In addition, amplicon-based sequencing does not provide 

functional annotation. To overcome this problem, other NGS methods can be applied, 

including Shotgun metagenomic sequencing, that enables sequencing of all genes in all 

organisms in a given sample, and thus, reliable taxonomic assignment at species level 

and the detection of other microorganisms such as fungi, archaea, protozoa and viruses; 

and metatranscriptomics, which analyses all RNAs encoded by all the microorganisms 

within a complex sample, and provides functional annotations. Up to date, two works 

analysing the human milk metagenome have been published, which shed more light on 

the global microbial composition of breast milk, and their metabolic functions (Jiménez 

et al. 2015; Ward et al. 2013) However, those methods are expensive and generate big 

amounts of data that require arduous informatics analyses, including human DNA that 

is not considered in microbiota studies. 

In this thesis, we have observed slightly differences in microbial composition when 

using 454-pyrosequencing (Chapter 1 and 2) and Illumina MiSeq (Chapters 3 and 4), 

which reflects one of the drawbacks associated to NGS (Clooney et al. 2016). An 

additional potential bias introduced in the present work relies in the volume of milk 

used for the DNA extractions that varied between Chapters. For example, in Chapters 1 

and 2, we used 5-10 ml and 5 ml, respectively. In Chapter 3, 1.5 ml of milk were used for 

the DNA extraction, while 4 ml were used in Chapter 4 for the DNA and RNA 

extractions. Although microbial DNA was always normalised before NGS, human milk 

microbial concentrations are relatively low, and when possible, using higher sample 

volumes reduce the possible biases introduced during the extraction and pre-

amplification steps. These variations are in part due to the lack of a standardised protocol 

for the DNA and RNA extraction of human milk. In the present thesis, we have 

developed an improved protocol for the extraction of human milk microbial DNA and 

RNA, combining physical and chemical disruption to maximise the nucleic acids yields 

https://www.illumina.com/areas-of-interest/microbiology/microbial-sequencing-methods/shotgun-metagenomic-sequencing.html
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from bacterial and fungal cells. The complete protocol can be found in Annex A, at the 

end of this manuscript.  In the present thesis, NGS provided valuable additional insight 

into the bacteriology of milk. We have combined this methodology with classic culture-

dependent and other culture-independent methods in order to overcome NGS 

drawbacks and get the whole picture of the real composition of human milk. 

 

Human Milk is a Live Fluid 

In the present work, we have confirmed the presence of a diverse microbiota in human 

milk under healthy conditions. In Chapter 1, we analyzed bacterial communities 

throughout lactation stages (colostrum, transitional and mature milk). Results showed 

that human milk from healthy Spanish mothers harbor a complex bacterial population, 

as previously reported in samples from Finnish or American origin (Cabrera-Rubio et al. 

2012a; Hunt et al. 2011). Using molecular methods, we found that milk bacteria were 

present in higher abundances (between one and two orders of magnitude higher load 

per ml) than previously estimated by culture approaches, and that they correlated with 

other milk components, such as macronutrients or human cells. Confirming previously 

published findings in samples with other geographic origin, we identified a diversity of 

bacteria in every sample. The major phylotypes observed in our Spanish samples were 

Staphylococcus, Acinetobacter, Pseudomonas and Streptococcus, among others. Conversely, 

while previous works had reported the common presence, yet in low proportions, of 

Lactobacillus spp. and Bifidobacterium spp. in human milk, by 454-pyrosequencing of the 

16S rRNA gene we could only detect a few sequences corresponding to those taxa. This 

could be explained by the low efficiency of “universal” primers in amplifying high G+C-

content taxa (Sim et al. 2012), and confirm that those genera account for only a small 

proportion of the total bacterial communities in human milk. A higher number of 

Lactobacillus and Bifidobacterium sequences were obtained when sequencing the 16S 

rRNA gene by Illumina MiSeq (Chapter 4), which suggest that this platform and/or the 

primers (gene region) used  do not  fail to amplify those genera, as observed in Chapter 

1. Also, some of the previous works were based on culture methods, or PCR-based 

methods, which may have overestimated the real abundances of these genera in the 

samples (Heikkila & Saris 2003; Martín et al. 2003, 2009; Solís et al. 2010).  

 

Human Milk Microbiome: Beyond Bacteria 

Despite big efforts have been made in order to describe the bacterial composition of the 

human microbiota, and in particular that of human milk, other fractions including the 

mycobiota or the virome have been widely overlooked. In Chapter 2 we reported for 

first time the presence in human milk of yeasts and other fungi in samples from healthy 

Spanish mothers, over lactation stages by use of a multiple-approach including culture 

techniques, microscopy and NGS. Although one metagenomic study had previously 

revealed the presence of fungal DNA in human milk (Jiménez et al. 2015) and others had 
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detected the presence of Candida spp. in the fluid associated to nipple pain (Amir et al. 

1996, 2013), we were the first to report a detailed analysis of fungi in human milk under 

healthy conditions. In Chapter 3 we further identified fungal DNA, as well as live 

organisms, in milk samples from a bigger cohort of healthy mothers living in distant 

geographic locations. In addition, we observed co-occurrence and correlations of several 

fungi and bacteria (and within the same domain) in the samples, with an influence of 

perinatal and maternal factors. In both studies, we confirmed that the genus Malassezia 

predominated in all the samples. Interestingly, in Chapter 2 we observed a positive 

correlation between Malassezia and the bacterial load in human milk; and in Chapter 3, 

we showed positive correlations between several Malassezia and Streptococcus OTUs, the 

latest representing one of the most predominant bacterial genera in human milk. 

Although we were not able to isolate Malassezia from the analyzed samples, we did 

confirm the presence of high abundances of Malassezia RNA in breast milk under healthy 

conditions (data not published), which confirms their active presence in the fluid. Our 

results showed that fungi are ubiquitously present in human milk, and suggest that 

fungal and bacterial populations may interact. Further studies should address those 

interactions, and their potential role on the infant microbiota development and maternal 

health. It should be taken into consideration that differences in sequencing platforms, 

sequencing of different gene regions, informatics pipelines for analysis or use of different 

genetic databases compromises the heterogeneity of microbiome studies. For example, 

in Chapter 1 we sequenced the V1-V4 region of the bacterial 16S rRNA gene by means 

of 454-pyrosequencing, while in Chapter 4 we sequenced the V3-V4 region of the same 

gene by Illumina MiSeq. In Chapter 2 we sequenced the fungal 28S rRNA gene by means 

of 454-pyrosequencing, while in Chapter 3 we sequenced the fungal ITS1 region with 

MiSeq. However, we did not observe great differences in results between our studies. 

 

Microbial Loads in Human Milk and Importance for Human Microbiome 

Studies  

Early reports of human milk bacterial loads came from utilizing culture-dependent 

techniques involving plate counting.  In 2003, Heikkila and colleagues estimated that an 

infant feeding 800 ml of milk would ingest 104-106 bacteria daily (Heikkila & Saris 2003). 

Later, other studies reported total bacterial loads of <103 CFU/ml (Perez et al. 2007) and 

105 CFU/ml in colostrum that decreased down to 104 CFU/ml in mature milk (Solís et al. 

2010). Differences on the results observed by culture methods are likely due to the 

different culture conditions used (media, temperature, aerobic or anaerobic conditions, 

etc.). As previously mentioned, culture methods may underestimate the real bacterial 

diversity of a sample. More recently the application of qPCR, a more accurate and 

sensitive method, displaced culture techniques for the quantification of specific bacterial 

groups, as well as total bacteria in complex samples. With this method, total bacterial 

loads from healthy mother’s milk was estimated at approximately 106 16S gene copies/ml 
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(Collado et al. 2009; Martín et al. 2009); and 104-105 16S gene copies/ml (Khodayar-Pardo 

et al. 2014). Khodayar-Pardo et al, compared bacterial loads throughout lactation, and 

observed significant higher bacterial counts in transitional and mature milk, as 

compared to colostrum. However, these studies used pure bacterial cultures to obtain 

standard curves for calibration, which ultimately drag biases associated to culture 

techniques. In Chapter 1, we estimated bacterial loads at the three lactation stages by 

qPCR targeting the singe-copy bacterial gene fusA. We calibrated the method by using 

an optimised protocol based on sorting bacteria from a pool of different human milk 

samples with flow cytometry. Bacterial DNA was later extracted, pooled and diluted, to 

construct standard curves. This allowed us to interpolate the resulting Cps in the 

standard curve, and to calculate bacterial counts as “one gene copy, one cell”. Results 

showed that bacterial loads were approximately 106 cells/ml (median values), with high 

variability between mothers and also over time, ranging between 104-108 cells/ml. We 

observed a tendency towards higher counts in transitional and mature milk, as reported 

by Khodayar-Pardo et al, although differences were not significant likely due to the high 

bacterial load variability in the samples. Thus, establishing a range of “normal” bacterial 

loads in healthy conditions seems complicated. Some researchers consider that human 

milk samples with more than 104 bacterial CFU/ml (culture estimates) would reflect an 

infection in the mammary gland (Arroyo et al. 2010; Fernández et al. 2016). However, 

those values are below our estimates for the human milk samples (qPCR estimates) from 

healthy mothers that we analyzed in Chapter 1. This difference is probably due to the 

culture basis of those experiments that would overlook part of the microorganisms 

present in the samples. However, and as we have mentioned previously, our estimates 

do not consider that part of the measured DNA likely belongs to dead microorganisms, 

and the real value must be in between culture-based and our qPCR-based bacterial loads 

estimates. In Chapter 2, we proved this methodology was also suitable for the detection 

and quantification of fungi in healthy human milk samples throughout lactation, by 

using primers against the ITS1-5.8S fungal region. With qPCR and our optimised 

calibration method (this time, sorting several fungal species obtained from pure 

cultures), we were able to detect fungal DNA in 90% of the analyzed samples, with 

estimated median values of 3.5x105 cells/ml, with no statistical significant differences 

between lactation stages.  In Chapter 3, median fungal load in human milk was 

estimated at 2.5x105 cells/ml, similar results to those obtained in Chapter 2. More than 

70% of Spanish and South African samples had detectable levels of fungal DNA, while 

less than 45% of the Chinese and Finish samples had detectable fungal levels. South 

African samples had the highest fungal loads, although we did not observe significant 

differences between countries. Differences in climate, diet, and genetics associated to 

each country may be responsible for the variable fungal levels and prevalence observed 

in the samples, as well as the natural variability within each mother. 

In the last decade, since the launching of the Human Microbiome Project, and with the 

fast evolution of DNA sequencing techniques, there has been an exponential growth in 



117 
 

our knowledge of the microbial communities living on and within us. Despite NGS 

represents a powerful method for describing microbial diversities in almost any human 

sample, it does not provide information about microbial quantities, but only relative 

abundances of specific taxa with respect to the total sequences obtained from a sample 

of interest.  In fact, some authors have criticized microbiome analyses based on bacterial 

frequencies. For example, a change in the levels of one bacteria would influence the 

proportion of others even if they do not change, and therefore microbiome data are 

compositional (Gloor et al. 2017). Most microbiome studies do not take into consideration 

bacterial or fungal loads, but this can be important under certain situations. For example, 

a specific taxon could represent 80% of the total sequences in two similar samples, but 

we could not detect if microbial loads were higher in one of them. This could be crucial 

if, for example, one of those samples belonged to a healthy individual, while the second 

one (with higher bacterial load) belonged to a diseased individual. By only looking at 

the sequencing data we would miss valuable information that could be key in the 

diagnosis or treatment of the disease. Thus, we propose including microbial load 

analyses in microbiome studies, and provide an easy approach to implement it in 

different human samples. If the sample is a fluid (milk, saliva), normalization can be 

performed per ml; if not, it could be performed by net weight or by the number of human 

cells in the sample (Boix-Amorós et al. 2016, 2017, 2019b; López-López et al. 2017). An 

example of this approach can be seen in Chapter 4, where we applied NGS together with 

qPCR in order to study bacterial composition and bacterial counts in milk from mothers 

suffering sub-acute mastitis, and from healthy controls. We observed that, during the 

course of the symptoms total bacterial loads increased significantly. After symptoms had 

disappeared, bacterial loads decreased, although did not reach control levels. We also 

estimated active bacterial load, by analysing bacterial RNA (after retro-transcription into 

cDNA), and observed increased active bacterial loads during and after the symptoms in 

the mastitis group.  

According to our results, under healthy conditions, human milk microbiota contains 

approximately 106 cells/ml, considering both bacterial and fungal cells. Those 

concentrations would depend on the health status of the mother (e.g. increased levels 

during locational mastitis) and on the milk collection method. It has been reported that 

the use of milk pumps may result in higher concentrations of contaminating Gram-

negative bacteria (such as Pseudomonas, Stenotrophomonas and enterobacteria) and yeasts 

arising from rinsing water and/or poor hygienic manipulation practices (Arroyo et al. 

2010). Quantifying bacterial loads in human milk (and other human samples) offer an 

ideal support for NGS studies, where microbial quantities cannot be inferred from 

sequencing data. Throughout the present thesis, we have analyzed bacterial and fungal 

loads in human milk, by applying our optimised protocols. Our results reinforce the 

importance of quantifying microbial loads in microbiota studies, and how qPCR 

represents an accurate and reliable technique for this purpose. In particular, we 

demonstrate that knowing bacterial or fungal loads can be crucial in the diagnosis of 
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infectious or dysbiotic conditions. We reinforce the importance of measuring microbial 

counts in human microbiota studies, and the methodologies presented in this thesis can 

be transversally applied to study any other human samples. 

 

Human Milk Microbiota and Interactions with Milk Macronutrients and Cells 

In this thesis, we have studied interactions between human milk microbiota and other 

milk components as we hypothesize that those interactions could affect the neonatal 

microbiota and immune system development. We observed correlations between 

bacterial (Chapter 1) and fungal (Chapter 2) taxa, milk macronutrients, bacterial and 

fungal loads, and somatic cell counts. Our results suggest that microbial communities in 

milk are influenced by milk macronutrient composition. For example, we observed that 

Staphylococcus, a potential opportunistic and pathogenic bacteria, correlated negatively 

with fat content. Thus, having higher amounts of fat in human milk may be protective 

of Staphylococcus infections. We also observed a positive significant correlation between 

Malassezia, the most abundantly detected yeast in human milk by NGS, and lactose. This 

interaction should be further evaluated, as Malassezia genus is not able to metabolize 

lactose. The observed correlation could be the result of microbial interactions (for 

example, synergistic relationships between this genus and other lactose-utilizing 

bacteria or fungi). Maternal diet has been shown to modulate several nutritional and 

bioactive elements, including protein content, lipidic profiles, immune compounds, etc. 

(Linnamaa et al. 2013; Palmer et al. 2008; Urwin et al. 2012). In addition, dietary habits 

modulate the adult and infant gut microbiota (David et al. 2014; De Filippo et al. 2010). 

Whether diet affects human milk microbiome populations is unknown. In a recent study, 

diet directly influenced the mammary tissue microbiota in primates (Shively et al. 2018). 

In particular, Mediterranean diet was associated with higher levels of Lactobacillus in the 

mammary gland, and modulation of dietary metabolites and bacterial products, with 

implications for breast cancer prevention. In Chapter 2, we identified fungal strains 

presumably from a dietary origin. In particular, Saccharomyces cerevisiae sequences were 

obtained with NGS, and one S.cerevisiae isolate was identified as a bakery strain. Results 

support a dietary effect outside the intestinal tract in distal sites such as the mammary 

gland, and future studies should address if human milk microbiota may depend on 

maternal diet. 

In addition to milk macronutrients, we also measured somatic cells numbers in human 

milk and studied potential correlations with milk microorganisms. In dairy cattle, the 

number of somatic cells is routinely used as a biomarker of udder infections, and its 

constituted mainly of leukocytes (Li et al. 2014; Olechnowicz & Jaśkowski 2012). In 

Chapter 1 we observed an absence of somatic cell increase with higher bacterial load (but 

rather a tendency towards a negative correlation), and in Chapter 2, we reported a weak 

negative correlation between fungal load and somatic cells, and a significant negative 

correlation between bacterial load and somatic cells. The absence of a somatic cell 
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increase under healthy conditions, suggests that microorganisms in milk are not sensed 

as a “threat” by the maternal immune system, and rather coexist with the host. However, 

we only analyzed breast milk from healthy donors and did not measure other anti-

inflammatory compounds in milk that could hamper an immune reaction.  

 

Effect of Maternal and Environmental Factors on the Human Milk Microbiota 

Lactation stage 

Human milk components, including fat, protein or immunoglobulins, change their 

composition throughout lactation. Up to date, there were only a few reports regarding 

milk bacterial composition and loads over the lactation stages. In a study, total bacteria, 

Bifidobacterium and Enterococcus spp. counts increased throughout lactation, as observed 

by qPCR analysis of the 16S rRNA gene (Khodayar-Pardo et al. 2014). 454-

pyrosequencing of human milk at three time points, separated by 1-2 weeks, showed 

that bacterial communities were often, yet not always, stable over time within an 

individual, and relatively heterogeneous between them (Hunt et al. 2011). However, 

researchers did not specify which lactation stages were analyzed, nor if all samples were 

collected within the same period of time. Cabrera-Rubio and colleagues compared 

colostrum samples with 1 and 6 months samples (mature milk) by 454-pyrosequencing. 

They observed a higher bacterial diversity in colostrum, as compared to mature milk, 

and an increase in typical oral inhabitants (Veillonella, Leptotrichia, and Prevotella) in 

mature milk. In Chapter 2, we applied 454-pyrosequencing of the 16S rRNA gene, and 

qPCR targeting the single-copy gen fusA to study human milk bacteria over the three 

lactation stages. We observed that bacterial abundances varied between mothers, and 

sometimes, over time within the same mother. In contrast to previous results, we 

observed a higher bacterial diversity and richness in transitional milk, which was 

consistent among most mothers, followed by colostrum and mature milk, although we 

could not identify any statistically significant differences between bacterial taxa.  Median 

bacterial loads increased as the lactation stage progressed, although, again, there was 

high variability. Interestingly, we also observed that bacteria distributed in a different 

manner depending on the lactation stage. Bacteria in colostrum were more frequently 

found aggregated to other bacteria and human cells, while in mature milk, bacteria were 

more frequently found in a planktonic state. This fact could be a reflect of the higher 

number of immune cells in colostrum under healthy conditions (Hassiotou et al. 2013a), 

although further studies where somatic cells subtypes are measured are needed in order 

to understand the nature of bacterial-human cells associations. In Chapter 2, we 

compared fungal loads in healthy mothers’ milk throughout lactation, and observed 

similar counts over time, with slightly lower counts in mature milk. Thus, bacteria 

appear to be more sensitive to the temporal variations during lactation than fungal 

communities. However, we could not compare fungal diversities between lactation 

stages, as we only sequenced a subgroup of 10 samples that corresponded mostly to the 
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mature stage. Further studies are needed in order to understand a potential influence of 

lactation time on the composition of breast milk fungal communities. 

Geographic location  

Geographic location can influence the composition of human microbial communities 

(Gaulke & Sharpton 2018; Yatsunenko et al. 2012). In the current thesis, we studied 

bacterial communities from healthy Spanish human milk samples. We identified a “core” 

of bacterial taxa shared in all mothers at the three time points, which was composed by: 

Streptococcus, Staphylococcus, Acinetobacter, Pseudomonas, Finegoldia, Corynebacterium and 

Peptoniphilus. Interestingly, the composition observed in these Spanish samples differed 

from that observed in other high-throughput sequencing studies on samples from other 

countries. Hunt et al (Hunt et al. 2011) were the first to apply NGS of the 16S rRNA gene 

to study human milk microbiota in American women. They found a core of 9 bacterial 

taxa: Staphylococcus, Streptococcus, Serratia, Pseudomonas, Corynebacterium, Ralstonia, 

Propionibacterium, Sphingomonas and Bradyrhizobiaccae that were present in all the 

samples. However, some of those bacteria likely correspond to environmental 

contaminants arising from extraction/sequencing kits, as initial microbiota studies did 

not include negative controls in their sequencing plates. Later, Cabrera-Rubio and 

colleagues (Cabrera-Rubio et al. 2012a) applied the same methodology to analyse Finnish 

human milk samples over the course of lactation. They found that Leuconostoc, Weissella, 

Lactococcus, Staphylococcus and Streptococcus were the most abundant genera in the 

samples while other authors (Jost et al. 2013) reported that Pseudomonas, Streptococcus, 

Staphylococcus and Ralstonia dominated Swiss human milk samples. Similar bacterial 

diversity patterns were observed in other studies by using Illumina MiSeq sequencing 

(Urbaniak et al. 2016a), and in two metagenomics approaches (Jiménez et al. 2015; Ward 

et al. 2013). Very recently, the influence of the geographic location on bacterial profiles 

was reinforced in a study comprising more than 300 milk and fecal samples from 8 

different countries (Lackey et al. 2019). In our last study (Chapter 4), specific differences 

on bacterial abundances were observed between healthy and mastitis-suffering women. 

However, we observed that Streptococcus, Staphylococcus, Rothia, Corynebacterium and 

Acinetobacter were most prevalent in the Spanish samples that were analyzed by Illumina 

MiSeq of the 16S rRNA gene. Putting all evidence together, results suggest that at least, 

Streptococcus and Staphylococcus are ubiquitously present in the human milk of healthy 

lactating woman. In Chapter 2, results from applying 454-pyrosequencing of the fungal 

28S rRNA gene revealed that Malassezia, Saccharomyces and Candida were prevalent in 

Spanish human milk samples. In Chapter 3, we observed a strong influence of the 

geographic location on human milk fungal composition, as inferred by Illumina 

sequencing of the ITS1 fungal ribosomal gene region of samples from Spain, Finland, 

China and South Africa. South African samples had the most different composition, with 

significantly higher abundances of Ascomycota, and lower levels of Basidiomicota, as 

compared to the other countries. Differences at genus, and sometimes at species level, 

were observed in all the countries, although no significant differences were observed in 
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the fungal loads nor alpha diversities of the different geographic locations. As for the 

bacterial fraction, we identified a fungal core comprised by Malassezia, Davidiella, 

Sistotrema and Penicillium, shared in all the samples.   

Differences observed between countries may be explained, at least partially, by 

geography-associated factors, such as genetics, diet, climate or cultural habits. For 

example, Finnish human milk samples were dominated by lactic acid bacteria, such as 

Lactococcus, Leuconostoc and Weissella (Cabrera-Rubio et al. 2012a). It is widely known that 

Nordic countries consume high quantities of dairy in their diet, and we could speculate 

that some microorganisms present in those products would reach the mammary gland 

and milk. Another potential factor associated to differences in milk microbiota profiles 

between countries could be the different use of antibiotics during birth. In Nordic 

countries the usage of antibiotics (including during pregnancy and delivery) is low 

compared with most other countries (Bergan 2001), and it is known that antibiotics can 

disrupt human microbial communities (Ubeda & Pamer 2012). Overall, our results and 

those from other researchers suggest that geographic location, and possibly other genetic 

and dietary factors, could be influencing microbial diversity in human milk, both 

directly and also by modifying mucosal-associated communities in different parts of the 

body, which would ultimately be translocated to the human milk. 

Mode of delivery 

Some studies had suggested a potential influence of mode of delivery on human milk 

microbiota (Cabrera-Rubio et al. 2012a, 2016; Hoashi et al. 2016; Khodayar-Pardo et al. 

2014; Toscano et al. 2017b), presumably due to differences in hormonal changes and 

physiological stress associated to the initiation of labor that may facilitate mucosal 

permeability and microbial translocation to the mammary gland.  Previous qPCR 

estimates showed that woman delivering via C-section had higher total bacterial counts 

in colostrum and transition milk, but lower abundances of Bifidobacterium spp 

(Khodayar-Pardo et al. 2014). Cabrera-Rubio et al showed that milk from mothers 

delivering by elective C-section had a significant decreased abundance of 

Leuconostocaceae and increased Carnobacteriaceae, as compared to the milk of mothers 

who delivered vaginally. Interestingly, bacterial profiles in mothers’ milk delivering by 

non-elective C-section were more similar to those from mothers delivering vaginally, 

than to milk from elective C-section  (Cabrera-Rubio et al. 2012a). This could be the result 

of the lack of physiological stress in elective C-section deliveries. In Chapter 3, we 

observed a significant effect of mode of delivery on the fungal profiles of human milk, 

although this effect was weaker as compared to the effect of geographic location. We 

observed that Cryptococcus genera was associated to vaginal deliveries, and other specific 

differences associated to delivery mode within every country. However, other studies 

have not observed differences in milk bacterial profiles depending on mode of delivery 

(Urbaniak et al. 2016a). In our study, we did not observe either significant differences on 

fungal loads nor alpha diversities associated to mode of delivery in any of the countries 
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of study. It should be taken into account that C-section deliveries are usually 

accompanied by antibiotics use, while in vaginal deliveries, antibiotics are usually 

applied under particular cases. For example, pre-partum antibiotics are recommended 

when the mother is carrier of group B streptococci bacteria (World Health Organization 

2015). However, some countries use antibiotics at delivery in a routinely manner.  

Our results and other researchers’ suggest a potential effect of environmental factors on 

human milk bacteriology. Recently, a research work comprising almost 400 

mother/infant pairs reported a significant effect of maternal BMI, parity, mode of 

delivery and breastfeeding practices on the human milk bacterial composition, in a sex-

specific manner (Moossavi et al. 2019). Results should be taken with caution, as some 

differences could be partly explained due to differences in studies methodologies, such 

as sample collection methods (manual or pump expression, skin cleaning procedure), 

use of different DNA extraction kits, and sequencing technologies. In addition, it should 

be taken into account that human milk contains relatively low amount of microbial 

DNA, as compared to other human niches, and amplification of extraction kits 

contaminants can occur, which could be over amplified during PCR steps (Salter et al. 

2014). For this reason, as it has been suggested for low-DNA yield samples, all studies 

should include careful negative controls at the moment of sampling, DNA extraction 

and sequencing (Biesbroek et al. 2012).  

 

Nature of Sub-acute Mastitis Aetiology  

In Chapters 1-3, we described bacteria and fungi in human milk during healthy 

conditions. In Chapter 4, on the other hand, we analyzed milk samples from mothers 

suffering lactational mastitis, and healthy controls, with the main objective of 

investigating the aetiology of sub-acute mastitis. In the last decade, the definition of sub-

acute mastitis as a sub-type of lactational mastitis was introduced, as the general term of 

“mastitis” failed to cover the wide symptomatology of the disease (Arroyo et al. 2010; 

Jiménez et al. 2015). Nowadays, sub-acute mastitis is generally recognised as a sub-type 

of mastitis that differs from acute mastitis or other sub-types (such as subclinical or 

chronic mastitis). However, the aetiology of this disease is still poorly understood and 

there are even many medical doctors that do not consider this condition has a microbial 

origin. We analyzed both total and active bacterial composition, by sequencing and 

quantifying the 16S rRNA gene from the DNA and RNA in the samples. Our results 

revealed that sub-acute mastitis, rather than being caused by a single or a few species, 

represents a dysbiotic process. We observed higher bacterial loads, decreased bacterial 

diversity and richness, in addition to altered bacterial patterns as compared to healthy 

controls’ milk. In support of this result, in vitro incubation of bacteria from sub-acute 

mastitis human milk on a breast tissue cell line, triggered the production of the pro-

inflammatory interleukin-8. We observed that total and active bacterial composition 

differed considerably between mothers suffering the disease. However, we identified a 
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few bacteria that were more prevalent and abundant during sub-acute mastitis. Those 

included S.aureus and Corynebacterium kroppenstedtii in the total DNA, and S.aureus and 

S.lactarius in the RNA fraction (and thus, live and active in the samples). S.aureus is 

considered the main etiological agent in acute mastitis (Jiménez et al. 2015; Osterman & 

Rahm 2000), and as we reported, it can also be involved in the sub-acute version. C. 

kroppenstedtii is commonly associated with granulomatous mastitis (Paviour et al. 2002), 

while S.lactarius, which had been previously isolated from healthy mothers’ milk (Martin 

et al. 2011), was reported to be the causing agent of a fastidious case of mastitis, in a 

single study (Tena et al. 2016). It should be noted that, contrary the observations in 

Chapter 1, in Chapter 4 we were able to detect Lactobacillus and Bifidobacterium genera in 

the human milk samples from healthy and mastitis-suffering women. In this case, we 

applied Illumina MiSeq sequencing of the 16S rRNA gene, which shows that this 

platform and the primers used overcome the low amplification efficiency in high G+C 

content taxa. Our results have shed some light on the understanding of the etiology of 

sub-acute mastitis. However, further extensive research is needed to uncover the 

potential causality of the observed dysbiosis on the onset of the disease. Future studies 

should target other milk components, including immune cells, cytokines, 

macronutrients or metabolomics analyses to fill in the gaps remaining in the current 

knowledge of sub-acute mastitis. This could permit the discovery of biomarkers that 

could be used for a correct diagnose and/or treatment of this fastidious condition, which 

we believe this thesis shows it has a microbial etiology. 

 

Total vs Active Bacteria in Human Milk: Viability Matters 

A special mention deserves the fact that for the first time we analyzed the 16S rRNA 

gene from the RNA fraction of human milk, by means of NGS. The majority of human 

microbiota studies are based on the sequencing of a genetic DNA region of the universal 

bacterial or fungal genes (amplicon-based NGS). However, most studies and the results 

inferred from them do not take into consideration that microbial DNA does not 

necessarily come from live or active microbes in the sample. In fact, part of that DNA 

likely belongs to dead or transient organisms, as well as to free DNA. Transcriptomic 

analyses surpass this problem by sequencing the total RNA molecules within a sample 

(Lowe et al. 2017). However, the big data amount generated by this method makes it 

hard to analyze, and the low RNA yield in human milk samples may prevent direct 

cDNA sequencing. In the present thesis, we have applied the amplicon-based NGS 

methodology to sequence the RNA of the bacterial 16S rRNA gene, which by definition 

would need to be transcribed in live or viable cells, and thus approximates to the real 

“active” bacterial composition of a sample. Analyzing human milk active bacteria, our 

study offers a more precise insight into the bacterial etiology of the SAM process, only 

considering live organisms that could interact with the host and contribute to the 

disease.  The methodologies applied in Chapter 4 open the possibility to calculate an 
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“activity ratio”, as the logarithm of the difference between reads of the 16S rRNA gene 

in the cDNA and DNA sequences, that could be used in future worsk to better identify 

infectious diseases’ etiology. This ratio would permit to stand out those bacteria that are 

not only present, but also active in human milk. On the other hand, RNA-based studies 

have some disadvantages, as RNA is more unstable and degrades more easily than 

DNA. In addition, RNA yields are lower than DNA, which makes it more prone to 

contamination. In our study, we retro-transcribed RNA into cDNA, to maintain its 

stability and facilitate its manipulation and amplification. 

Thus, RNA analyses offer a complementary vision to human microbiota studies. In this 

work, differences observed between human milk microbial DNA and RNA composition 

make clear that, by only analyzing total DNA, we would miss an important piece of the 

whole microbial picture. Detecting bacterial DNA in any human sample does not imply 

that the corresponding bacteria are actually live and exerting an effect on the human 

body, and therefore, results inferred from those observations could be incomplete. 

Taking into account the active fraction of human milk microbiota, our study offers a 

more precise insight into the bacterial origin in the SAM process and we recommend its 

use in other pathologies. 

 

Potential Origin and Roles of the Human Milk Microbiota 

Investigating the origin of human milk microbiota was not an objective of the present 

work. However, our results may shed some light on the debate of how bacteria and other 

microorganisms reach the mammary gland. Throughout this thesis, we have identified 

several organisms commonly found in other human body niches. For example, 

Streptococcus, one of the most commonly detected in human milk, is also a typical 

inhabitant of the oral cavity (including several species, such as S. mitis, S.salivarius or 

S.mutans that we also detected in human milk). Other oral bacteria, such as Veionella, 

Rothia, or Gemella, were detected in our milk samples. We also detected several fungi and 

yeasts, including Candida, Cladosporium, Fusarium, Saccharomycetales, or Cryptococcus, 

which have also been detected in the oral cavity. Similarly, we have detected two of the 

most prevalent bacterial and fungal inhabitants of the human skin, Staphylococcus and 

Malassezia. Among Staphylococcus sequences, S.epidermidis was the most frequently 

assigned at species level, and despite S.aureus was not detected (or detected in very low 

abundances) in healthy conditions, it was identified as one of the species associated to 

mastitis. Other common skin organisms detected in milk included Corynebacterium, 

Propionibacterium, Candida, Aspergillus or Penicillium. Our results support a potential 

microbial exchange between the infant oral cavity and the mammary gland, and further 

studies should address if there is a potential seeding of oral colonizers from the 

mammary gland, or vice-versa. This colonization from the oral cavity may also be 

responsible for the increase in diversity in transition milk observed in Chapter 2. As 

previously reported, a retrograde flux of milk from the infant’s oral cavity to the 
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mammary gland occurs during breastfeeding, which likely drags some microorganisms 

from the skin of the breast. However, although some bacteria are shared between oral 

cavity and skin with human milk, the overall composition and relative abundances are 

different, and specific bacterial DNA profiles also differ between milk and breast skin 

and areola (Cabrera-Rubio et al. 2012a; Martín et al. 2003). Future studies should compare 

fungi from those niches, and confirm that populations differ from each other. However, 

recent work has examined by both culture and high-throughput sequencing the bacterial 

composition of precolostrum, i.e. the milk produced by mothers before delivery (Ruiz et 

al. 2019). This work confirms the presence of oral bacteria in this fluid, which has 

obviously not been exposed to the baby’s oral cavity. In addition, several bacterial strains 

isolated from precolostrum and the oral cavity of the corresponding baby a week after 

delivery were fully sequenced and showed a 99.9-100% sequence identity at the genomic 

scale, supporting transfer of the same strains from precolostrum to the baby’s oral cavity.  

It is also important to underline that obligate anaerobes that are unlikely to survive to 

the aerobic conditions of the breast skin had been previously identified and isolated from 

human milk (Gueimonde et al. 2007; Jost et al. 2013, 2014). In the present thesis, we 

identified several strict anaerobes in human milk, including Bifidobacterium, Finegoldia, 

Anaerococcus and Veillonella, which colonize human mucous membranes, including that 

of the intestinal tract. Some fungi, such as Candida, Malassezia, Debaromyces, or S.cerevisiae 

detected in our samples, have also been found in the human adult and infant gut. Some 

microorganisms in human milk may have a dietary origin, as they can be found in the 

human gut and in several foods, including the bakery strain S. cerevisiae that we isolated 

from a milk sample in Chapter 2. As has previously been suggested, and in light of our 

observations, human milk likely seeds some colonizers to the infant gut (Delgado et al. 

2008; Jost et al. 2014; Martín et al. 2009). Interestingly, in Chapter 1 we observed bacteria 

in human milk adhered to the surface of milk cells. Although we did not characterize 

those cells types, they likely correspond to immune cells. Previously, Perez et al, 

observed that human milk and peripheral blood mononuclear cells in mothers after 

giving birth contained a number of viable bacteria and bacterial DNA (Perez et al. 2007). 

They also observed bacterial translocation from the maternal gut to mesenteric lymph 

nodes and mammary gland in a mice model.  Although we have not studied the infant 

microbiome, the presence of bacteria and fungi in human milk potentially shared with 

the maternal gut, in addition to the fact that they can be associated to human cells, would 

be in accordance with the entero-mammary pathway and with the transmission of milk 

microorganisms to the baby. 

In addition, we have observed that bacterial communities in human milk can play a role 

on maternal health. Previously, imbalances in milk bacteriome have been linked to 

several health disorders, including allergies (Grönlund et al. 2007), HIV (González et al. 

2013), celiac disease (Olivares et al. 2015) and breast cancer (Xuan et al. 2014). Lactational 

mastitis represents one of the main problems during lactation, that affects up to 30% of 

lactating women, being one of the main causes of undesired weaning. Despite the 
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etiology of acute mastitis is better understood, information about sub-acute mastitis and 

its aetiology is scarce (Arroyo et al. 2010; Jiménez et al. 2015). Our results showed that 

sub-acute mastitis is a dysbiotic process, with higher bacterial loads, lower diversity and 

altered bacterial patterns as compared to healthy controls. In addition, in vitro studies 

showed that exposure of bacteria from sub-acute mastitis human milk on a breast tissue 

cell line triggered an inflammatory response. Thus, bacterial imbalances in the 

mammary gland can have a direct effect on maternal health, and future studies should 

analyze cytokines in human milk during sub-acute mastitis, as well as potential 

influences on infant health. Interestingly, some bacteria which appeared to be associated 

to mastitis in our samples, like Gemella, were typical oral inhabitants, underlining again 

the importance of the oral cavity as a potential source of microbes (both beneficial and 

potentially pathogenic) which could reach the mammary gland. We believe that 

clarifying the complex, polymicrobial etiology of sub-acute mastitis will help in the 

diagnosis and treatment of this condition, and hope that the present thesis can be a step 

towards that end. 

Thus, the data would support both an endogenous route of transmission from different 

mucosal surfaces (including the maternal gut and oral cavity), together with colonization 

from the mother’s skin and the baby’s mouth (Mira & Rodriguez 2016). Independently 

from their origin, bacteria in human milk are transferred to the infant during 

breastfeeding, representing a microbial supply to the infant microbiota and health. In 

the present thesis, we have applied a cleaning protocol to avoid contamination from the 

breast’s skin prior sample collection. However, bacteria and fungi residing in the skin 

may also play important roles in the infant (Chen et al. 2018) and future works may 

consider them as part of the normal human milk microbiota. 

 

Conclusions and Future Prospects 

In this thesis, we have attempted to build on our understanding of the composition of 

the human milk microbiota under healthy conditions, and how microbial imbalances can 

influence the lactating mother’s health and lead to disorders such as lactational mastitis. 

Our investigations have contributed to human milk microbiota research with novel and 

valuable information. For instance, we have defined bacterial communities in healthy 

conditions by applying up-to-date NGS methodologies, how bacteria distribute in the 

samples, and showed that they are sometimes associated to human cells and correlate 

with several milk compounds. The results of this study, presented in Chapter 1, 

therefore, provided a more comprehensive view of the ecology of milk bacterial 

communities. We also identified fungi in milk under healthy conditions (Chapters 2 and 

3), although in lower frequencies than bacteria, and reported that Malassezia and Candida 

were the most abundant genera, that seemed to be ubiquitously present in human milk 

regardless of the geographic location. Our results, based on a broad range of 

methodological approaches, identified a much greater diversity of bacteria (and for the 
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first time, of fungi) in milk than what had previously been reported in culture-dependent 

and culture-independent studies that relied on less open-ended or accurate methods, 

such as qPCR, PCR, or DGGE, among others. NGS methodologies also allowed us to 

describe total DNA and active RNA 16S rRNA gene in milk samples from mothers 

suffering sub-acute mastitis, as compared to controls. Despite the fact that the 

application of NGS has revolutionized the study of complex microbial communities, 

including milk, these methods also present significant biases. For example, we have 

observed slightly differences when sequencing the 16S rRNA gene by 454-

pyrosequencing (Chapter 1) and by Illumina MiSeq (Chapter 4), which reflects that the 

drawbacks associated to NGS call for the need of a holistic approach to study the human 

milk microbiota (and that of any other human niches), combining those novel techniques 

with other classic or more restricted methodologies that complement them. 

In light of the findings presented in Chapters 2 and 3 on the presence of fungi in human 

milk under healthy conditions, it would be interesting to further determine potential 

influences of human milk fungal species on the infant mycobiota development and 

maternal-infant health. Although almost all the probiotics available in the market are 

composed of bacterial strains, some yeasts have demonstrated probiotic activities, such 

as Saccharomyces boulardii, which is commonly used to treat diarrhea and gastrointestinal 

diseases in adults and infants (Zanello et al. 2009). Several bacterial isolates from human 

milk are currently available for consumption, and it would be of interest to investigate 

whether fungal isolates from milk could also have probiotic properties.  

The provision of beneficial bacteria from human milk to the infant may not be limited to 

the gut or the oral cavity. In another study, for example, an association between the 

presence of Dolosigranulum and resistance to pneumococcal disease was detected in 

children (Chen et al. 2018), and a potential antagonistic effect between this bacterium and 

Streptococcus pneumoniae has been proposed. Dolosigraniulum is a very little studied lactic 

acid bacterium that is frequently found in the respiratory tract and nasopharynx of 

infants, but it has not been cultured to date. Given that it has been detected in the 

respiratory tract of breastfed infants  (Biesbroek et al. 2014) and in human milk DNA 

studies (Drago et al. 2017), and that children breastfed for longer periods had lower rates 

of pneumonia and other respiratory tract infections future studies should aim to isolate 

Dolosigranulum from human milk or from aspirates in breast-fed children and test it as a 

probiotic. In fact, the use of milk from healthy mothers as a source of efficient probiotics 

has been demonstrated before, with different applications (Arroyo et al. 2010; 

Maldonado et al. 2012). Similarly, other yeasts and fungi present in human milk could 

have probiotic properties that are worth further studying. For example, Debaryomyces 

hansenii, that has been recognized as one of the most prevalent yeasts in the infant gut 

during breastfeeding (Schei et al. 2017), can produce a killer toxin that has stable activity 

against pathogenic yeasts at 37 °C (Breuer & Harms 2006).  Although we were not able 

to isolate any D. hansenii strains in the current thesis, we did detect its DNA (by NGS) in 

milk from healthy mothers (Chapter 2), and other Debaryomyces sequences that could not 
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be assigned at species level (Chapter 3), but that could partially correspond to that 

species. D. hansenii is also a common yeast detected in cheese, meat and other foods 

(Breuer & Harms 2006). Some S.cerevisiae have also shown anti-fungal and anti-

inflammatory properties (Gabrielli et al. 2018; Zhu & Bussey 1989). Future studies should 

aim to isolate D.hansenii from breast milk, and address its potential dietary origin, and if 

it (and other yeasts, such as S.cerevisiae) exert any beneficial properties in the infant gut.  

Microorganisms living in human communities may have complex relationships, and 

these, ranging from cooperative to antagonistic, have been little explored, especially in 

human milk. In the light of our results from Chapter 3, where bacterial-fungal 

relationships in milk were observed, further studies should aim to understand inter-

kingdom interactions and their potential effect on human health. Results may, for 

instance, lead to the development of combined, bacterial-fungal probiotics of human 

milk origin. In fact, new probiotic strategies are directed towards multiple-species 

probiotics, as opposed to single isolates, in order to maximize colonization and beneficial 

effects, especially after the success of microbial fecal transplants to treat certain 

inflammatory disorders (Friedman-Korn et al. 2018; Kao et al. 2017). 

Finally, we have contributed to the understanding of the etiology of sub-acute mastitis, 

by analyzing human milk samples during the course of the symptoms and after the 

clearance of the disease, as compared to healthy controls. By applying NGS and novel 

protocols (studying not only the bacterial DNA, but also the RNA belonging to live, 

active bacteria), we have in Chapter 4 observed that sub-acute mastitis appears to be a 

real disease reflected on a microbial dysbiosis. This is opposed to acute mastitis, where 

S. aureus has been shown to be strongly associated to the disease, and has been proposed 

to infect the mammary gland, which is supported by our data in Chapter 1, where this 

species was not detected in healthy mothers. In addition, there is a vital need for finding 

biomarkers that could be used to diagnose and/or treatment of the disease.  Some studies 

have observed an increased permeability of the blood/milk barrier during mastitis, 

which could result in the detection of milk components in the maternal blood and urine 

(Nguyen & Neville 1998). Within this context, we are currently analyzing human milk 

and urine samples from our cohort of mastitis-suffering women, as well as the healthy 

controls, in order to try to identify biomarkers of the disease. To do so, we will 

investigate cells populations, immunoglobulins, hormones, macronutrients and 

metabolomics profiles that could result in a diagnostic test, which could prove of great 

value for a correct diagnosis and/or treatment of sub-acute mastitis in the lactating 

mother. 
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Main conclusions 
 

In the light of the results obtained in the present thesis, we can conclude that: 

 

1) Several culture-independent methodologies indicate that there is a specific 

bacterial composition of human milk samples from Spanish healthy mothers 

throughout lactation, dominated mainly by Staphylococcus, Pseudomonas, 

Streptococcus, and Acinetobacter. 

 

2) The total bacterial load in human milk samples from healthy Spanish mothers 

is around 106 bacterial cells/ml, as estimated by qPCR analysis using universal 

primers for the single-copy gene fusA. Thus, a lactating infant feeding 800 ml of 

human milk would ingest 107–108 bacterial cells daily. 

 

3) Human milk bacteria can be detected both in a free-living, “planktonic” state 

and associated to human immune cells. Future studies should evaluate if this 

association to human cells could represent a transport method to the mammary 

gland from other maternal body sites.  

 

4) Specific bacteria in human milk were associated to some milk macronutrients 

while no association was found with somatic cells, supporting the idea that milk 

bacteria are not sensed as an infection by the maternal immune system.  

 

5) Yeasts and other fungi were detected in human milk from healthy donors 

throughout lactation, by culture-dependent and independent methods. Using 

qPCR targeted at the ITS1 region, the total fungal load was estimated in 

approximately 105 cells/ml. Malassezia, Candida and Saccharomyces were the most 

prevalent genera detected by NGS, while Candida parapsilosis and Rhodotorula 

mucilaginosa were the most frequently isolated species.  

 

6) As described in milk bacteria, we demonstrated that the presence of a “milk 

mycobiota” is ubiquitous around the globe in healthy mothers, and factors such 

as mode of delivery and geographic location shape its composition.  

 

7) Total bacterial load significantly increases during the course of sub-acute 

mastitis and decreases to normal levels after cessation of the symptoms. Active 

load after symptoms’ cessation is higher than that of healthy controls and sub-

acute mastitis during the course of the symptoms. Bacterial diversity decreased 

at the DNA and RNA level during the course of mastitis, and was not recovered 

to control levels after the symptoms had disappeared. Richness also decreased 

significantly during the disease, but only at the DNA level, and increased after 

symptoms had disappeared, both at DNA and RNA level. This reduction in 

bacterial diversity and richness could reflect a dysbiosis in the milk 

environment during sub-acute mastitis. The incomplete recovery in bacterial 
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diversity, composition and activity after cessation of clinical symptoms indicate 

that SAM remission precedes full re-balance of the bacterial community. 

 

8)  There was a high variability in bacterial composition between healthy mothers 

and mothers suffering lactational mastitis. This suggests that mastitis, and 

especially the sub-acute version, is a complex and polymicrobial disease, which 

appears to be caused by a microbial dysbiosis rather than by one or a few 

specific infectious bacteria.  
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ANNEX A - Standardised Protocol for the Extraction and 

Isolation of Bacterial and Fungal DNA and RNA from 

Human Milk. 
 

This protocol has been developed with the MasterPure Complete DNA & RNA 

Purification Kit (Epicentre, Madison WI, USA). 

Bacterial and fungal DNA extraction 

1) Thaw 1.5-5 ml of human milk. Centrifuge at 13,000g for 10 minutes, discarding 

fat and whey from pellets.  

2) Add lysozyme (20 mg/ml; Thermomixer comfort, Eppendorf, Hamburg, 

Germany), and mutanolysin (4000 units/mg protein; Sigma-Aldrich, Madrid, 

Spain) for bacterial disruption, and add zymolyase (0.25 mg/ml; MP Biomedicals, 

Santa Ana, CA, USA) to the mix for fungal disruption. 

3) Incubate 1h at 37°C.  

4) Add 2 μl of proteinase K to the tubes were, and incubate for 15 minutes at 65°C. 

To enhance the disruption of microbial cell walls, add a mix of 150-212 μm and 

425-600 μm, acid washed glass beads (Sigma-Aldrich, San Luis, MI, USA) to the 

tubes. Perform one cycle of vigorous mixing in a FastPrep-24™ 5G Instrument 

(MP Biomedicals, Santa Ana, CA, USA) during 1 minute, wait 1 minute and 

repeat with a second mixing cycle. Fungal extractions can be improved by 

freezing the samples in dry ice and incubating 10 minutes at 65 °C between the 

mixing cycles. 

5) Precipitate proteins with 350 μl of protein precipitation agent and centrifuge 10 

minutes at 13,000g at 4°C, and transfer supernatants to new tubes.  

6) Add isopropanol to precipitate nucleic acids, and incubate at -20°C for at least 2 

hours. 

7) Centrifuge at 13,000g 10 minutes, and wash pellets with 70% ethanol. Repeat and 

wash with and 96% ethanol. 

8) Resuspended in 30 μl of TE buffer of purified H20. 

 

To continue with microbial RNA extraction 

9) Remove DNA from the nucleic acid pellets, to keep only RNA. In the present 

thesis, we have used the DNA-free DNA Removal Kit (Invitrogen, Carlsbad, CA, 

USA). Add 0.1 volume of the 10X DNase I Buffer and 1 µL of rDNase I to the 

tubes, and incubate at 37 °C for 30 minutes. Repeat 2 times. 

10) Add 0.1 volume of the DNAse Inactivation Reagent and incubate for 2 minutes 

at RT. 

11) Centrifuge at 10,000 g and 4°C for 2 minutes. Transfer supernatants containing 

clean RNA to new Eppendorf tubes. 

 

  

*Note: when performing RNA extractions, use only RNase-free solutions during the extraction, as well as 

RNase-free pipet tips and glassware. Allways keep aseptical conditions to avoid contaminations. 
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