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Resum
Una de las tasques importants de la intel·ligència artificial consisteix en crear in-

tel·ligència capaç de dominar múltiples tasques en lloc d’especialitzar-se en una sola. Els
videojocs són un entorn ideal per provar i comparar tot tipus de tècniques d’intel·ligència
artificial. Una de les vessants d’aquesta àrea consisteix a aconseguir que un mateix pro-
grama sigui capaç de enfrontar-se a diversos tipus de jocs (General Video Game), de manera
que un mateix agent pugui dominar diferents tipus de joc.

Aquest projecte es centra en la creació d’un agent amb les bases de la competició Ge-
neral Video Game - Artificial Inteligence el que vol dir que l’agent serà capaç de jugar en
diferents videojocs inspirats en l’estil arcade (similars al Atari 2600) A més de enfrontar-
se a diferents tipus de jocs, l’agent no tindrà informació prèvia sobre el funcionament i els
objectius del joc. De fet l’agent es pot trobar jocs contra els que no ha jugat prèviament.

Un dels objectius del nostre projecte consistirà en avaluar una tècnica de recerca ano-
menada Iterative Width (IW) com a nucli principal del nostre agent. Es buscarà entendre
les bases d’aquesta tècnica alhora que desenvolupem l’agent. Estudiarem l’ús d’aquesta
tècnica per General Video Game, enfrontant el nostre agent basat en IW contra 30 jocs de
diferents tipus.

Compararem el nostre agent amb un altre agent basat en Monte Carlo Tree Search
que és una tècnica àmpliament utilitzada en General Video Game. Finalment es dissenya-
rà i implementaran millores sobre l’algoritme bàsic de iterative Width, que explotin les
fortaleses d’aquest algoritme i supleixin les debilitats amb determinats jocs.

Paraules clau: Agents, Videojocs, General video game, Intel·ligència artificial, Iterative
Width

Resumen
Una de las tareas importantes de la inteligencia artificial consiste en crear inteligencia

capaz de dominar múltiples tareas en lugar de especializarse en una sola. Los videojue-
gos son un entorno ideal para probar y comparar todo tipo de técnicas de inteligencia
artificial. Una de las vertientes de este área consiste en conseguir que un mismo progra-
ma sea capaz de enfrentarse a varios tipos de juegos (General Video Game), de manera que
un mismo agente pueda dominar distintos modos de juego.

Este proyecto se centra en la creación de un agente con las bases de la competición
General Video Game - Artificial Inteligence lo que quiere decir que el agente será capaz de
jugar en diferentes videojuegos inspirados en el estilo arcade (similares al Atari 2600) El
agente no solo debe ser capaz de enfrentarse a distintos tipos de juegos, sino que carecerá
de información previa sobre el funcionamiento y los objetivos del juego. De hecho el
agente se puede encontrar juegos contra los que no ha jugado previamente.

Uno de los objetivos de nuestro proyecto consistirá en evaluar una técnica de bús-
queda denominada Iterative Width (IW) como núcleo principal de nuestro agente. Se
buscará entender las bases de esta técnica a la vez que desarrollamos el agente. Estudia-
remos el uso de esta técnica para General Video Game, enfrentando nuestro agente basado
en IW contra 30 juegos de diferentes tipos.

Compararemos nuestro agente con otro agente basado en Monte Carlo Tree Search
que es una técnica ampliamente utilizada en General Video Game. Por último se diseñará
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e implementarán mejoras sobre el algoritmo básico de iterative Width, que exploten las
fortalezas de dicho algoritmo y suplan las debilidades con determinados juegos.

Palabras clave: Agentes, Video Juego, General video game, Inteligencia artificial, Iterati-
ve Width

Abstract
One important task of artificial intelligence is to create intelligence capable of mas-

tering multiple tasks rather than specializing in a single task. Video games are an ideal
environment to test and compare all kinds of artificial intelligence techniques. One field
of this area is to achieve that the same program is able to face several types of games
(General Video Game), allowing the same agent to dominate different game styles.

This project focuses on the creation of an agent with the bases of the General Video
Game - Artificial Inteligence competition which means that the agent will be able to play
in different arcade-inspired video games (e.g. similar to Atari 2600). The agent must not
only be able to deal with different types of games, but will also lack prior information
on the functioning and objectives of the game. In fact the agent can find games against
which he has not previously played.

One of the goals of our project will be to evaluate a search technique called textbfIt-
erative Width. (IW) as the nucleus of our agent. We will try to understand the bases of
this technique at the same time that we develop the agent. We will study the use of this
technique for General Video Game, confronting our agent based on IW against 30 games of
different types.

We will compare our agent with another agent based on Monte Carlo Tree Search
which is a technique widely used in textGeneral Video Game. Finally we will design and
implement improvements on the basic algorithm of iterative Width, which exploit the
strengths of that algorithm and compensate the weaknesses with certain games.

Key words: Agents, Video Game, General video game, Artificial intelligence, Iterative
Width
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CHAPTER 1

Objectives/Motivation

One of the great challenges of our time is to get algorithms to perform tasks that until a
few years ago we thought were reserved only for humans. A subset of this great challenge
consists of elaborating programs capable of playing games like a human or even better.
One of the great milestones in this field was made by AlphaGo in 2015 when it became
the first machine to beat a professional Go player.

There are many examples of AI focused on this field, although we could differentiate
two large groups. Those who like AlphaGo are focused on a single game, and those in
which the AI is capable of adapting and playing several games. In single games, pro-
grammers has the possibility of provide specific knowledge about the game. That is,
using advisable or unadvisable movements or even by means of the use of databases,
such as for example openings in the game of chess.

On the other hand, there is another branch in which the aim is to develop AI tech-
niques capable of playing several games, being able to adapt to new environments and
to learn the rules and functioning of the game on the fly, thus simulating the learning pe-
riod that a human being would have. In this case we have platforms such as the Arcade
Learning Environment (ALE) or the General Video Game AI competition (GVGAI) that
facilitate the development of these agents.

Our goal in this project is to develop an agent capable of performing in several games,
according to the bases of the GVGAI competition. This agent must be able to be faced
with games that it has not seen previously and of which he does not know their rules.
It will analyze the games functionality applying state-of-the-art search algorithms to
achieve the goals of each game at many different scenarios as possible.
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CHAPTER 2

Related Work

Games have long been popular benchmarks for Artificial Intelligence (AI). Many re-
searchers have studied algorithms and techniques that try to approximate optimal play in
computer games as different as Chess, Go, Car Racing games, Ms. PacMan, Real-Time Strat-
egy (RTS) games and Super Mario Bros. Research on these and other games has enabled
some interesting advances in algorithmic AI such as the use of parallelized Alpha-Beta
pruning (in Chess), or the progress seen in one of the most popular algorithms in Game
AI, Monte Carlo Tree Search (MCTS), in the game of Go [24] [28].

Early research put the focus on board games like Chess, Scrabble or Checkers. Thanks
to the great advances in the development of tree-search methods, games like Scrabble or
Checkers are now resolved [25].

Nowadays researchers are more interested in video games where the complexity is
harder and there is room for improvements. The main games addressed by researchers
are those in which an agent can easily learn how to play but it is difficult to master.
In order to create and evaluate agents developed by researchers, platforms such as The
Arcade Learning Environment [7] and the General Video Game - Artificial Intelligence
(GVG-AI) [2] have emerged.

In this project we will focus on a specific type of video games developed for the GVG-
AI competition framework with some particular features that we will detail below. Most
of them are inspired by old arcade games like Pacman, Alliens or Boulder Dash, among
others.

2.1 Game definition

Following we will define some relevant concepts of game theory that will allow us to
describe and to contextualize the kind of games addressed in this research.

• According to the number of players, games can be divided into:

– One-player games. There is only one character in the game, who must solve
the problem or obtain the best score possible. This kind of games are some-
times named puzzle games [15].

– Two-player games. These games are characterized by trying to beat an op-
ponent. There are often two fronts with opposing interests trying to achieve
the game objectives. Board games like Chess or Go are examples of two-player
games with a large tradition in AI for games researches [10].

– Multi-player games. Games that feature more than two players are comprised
in this group. The complexity of these games increases because players can

3



4 Related Work

form alliances or competitions among themselves. In these games, there are
common and opposed interests with the rest of players, and in some cases it is
necessary to carry out some type of negotiation in the best interest of a subset
of players.

Games are characterized by different features that determine the type of game. Fol-
lowing we enumerate a list of features that are used to characterize games. The
concepts described below are not incompatible, so a game may present several of
the following features.

• Zero-Sum games. In some games, the payoff for player A equals exactly the nega-
tive of the payoff for player B. This means that whatever A wins, B must pay, and
vice versa. In this type of games, there does not exist a win-win solution. Poker
[8] and Gambling are popular examples of zero-sum games since the sum of the
amounts won by some players equals the combined losses of the others. Games
like Chess and Tennis, where there is one winner and one loser, are also zero-sum
games.1

• Stochastic vs deterministic games. Stochastic games are dynamic games with
probabilistic transitions played by one or more players. In each step, a new ran-
dom state is created whose distribution depends on the previous state and the ac-
tions chosen by the players. In contrast, a game is deterministic if the result of the
actions taken by the players leads to completely predictable outcomes [31].

• Simulatenous games vs sequential games. In game theory, a simultaneous game
is a game where each player chooses his action without knowledge of the actions
chosen by other players. In other words, more than one player can issue actions
at the same time. Games like Rock-paper-scissors or RTS games are some examples
of simultaneous games [22]. In contrast, sequential games are those in which one
player chooses his action before the others choose theirs. In this case, the latter
players have information available of the first players’ choice, which allows them
to create more informed strategics. Chess or Go are some examples of sequential
games.

In game theory, the representation of the games varies according to the type of
game. Simultaneous games are often represented by a matrix that encompasses all
possible combinations of players’ moves. Each cell specifies the reward and penalty
for each player if that combination of moves is feasible. The game Rock Paper Scissor
is represented in Figure 2.1a. Sequential games are commonly represented by deci-
sion trees in which the time axis is represented by the depth of a node in the tree.
The first steps of the game Tic-Tac-Toe are represented in Figure 2.1b.

• Perfect, imperfect and incomplete information games. Perfect information refers
to the fact that each player has the same information that would be available at the
end of the game. This is, each player knows or can see other player’s moves. A
good example would be Chess, where each player sees the other player’s pieces on
the board.

Imperfect information games are those where players know perfectly the types of
other players and their possible strategies, but are unaware of the actions taken by
them.

In incomplete information games, other details of the game are unknown to one or
more players. This may be the player’s type, their strategies, their payoffs, their

1https://www.investopedia.com/terms/z/zero-sumgame.asp

https://www.investopedia.com/terms/z/zero-sumgame.asp
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(a) Rock Paper Scissor normal matrix. (b) Decission tree in Tic-Tac-Toe

Figure 2.1: Game theory representation of simultaneos and sequential games.

preferences or a combination of these. Imperfect information games are therefore
incomplete information games but not vice versa.

Games with simultaneous moves are generally not considered games of perfect
information. This is because players hold information that is hidden to the others
and so every player must make a move without knowing the opponent’s hidden
information [16].

• Combinatorial games. In this type of games, the difficulty of finding an optimal
strategy stems from the combinatorial explosion of possible moves. Combinatorial
game theory typically studies sequential games with perfect information. Thanks
to the advances in mathematical techniques over the last years, the complexity of
combinatorial games has been largely reduced. This improvement has led to the
creation of different variants of games with a high combinatorial component. One
example is the Infinite Chess, where the game is played on an unbounded chess-
board [18].

2.2 Control strategies

In this section we present some of the most relevant control strategies for developing
game agents.

• Hand-coded strategies

This type of strategy consists of the design of manually coded heuristic to guide the
search process.

Rule-based controllers use hand-coded strategies that return the action that com-
plies with a set of relatively simple conditions. An example of rule-based controllers
can be found in the Super Mario Bros game, which defines a particular behaviour
where the character Mario constantly runs right and jumps whenever possible. In
this case, the game agent would contain a single rule that determines when to jump.

Creating a rule-based agent entails having a detailed knowledge on the dynamics
of the game so as to be able to extract all possible situations and actions. In addition,
an unforeseen situation could lead to an unexpected behaviour.

Another limitation of rule-based agents is that the rules are derived from the me-
chanics of the game. As a result, we will get an agent specialized in that game but
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unable to adapt its actions to new environments. For example a world-champion
StarCraft agent will not be able to play Pac-Man at all [9].

• Combinatorial Search

This strategy consists in turning the goal of finding the best move into a search
problem. The game is simulated at each player’s turn producing all possible move
combinations. The result of the simulations is then used to build a search tree that
helps find the best possible move to realize [27].

In most cases the search space is too large and so we cannot guarantee the optimal
solution, thus making necessary to implement heuristics to guide the search. In
dynamic environments it is also recommended to start the search at every step of
the game. This is because the new information enables to narrow down the search
space and hence discard the exploration of useless parts of the search tree.

The sequential two-player games typically use this type of control strategy. The
complete information of sequential games makes the simulation unique without
possible variations as it happens in stochastic games. In addition, the fact that
players move by turns provides players with a natural computational time to think
about the next move, a time that can be used to execute AI algorithms.

Algorithms like minimax or alpha-beta [17] are designed to exploring sequential
games where a player tries to find the movement that maximizes an evaluation
function while minimum values of this function favor the opponent. Alpha-beta
incorporates a pruning condition that improves the search speed with the same
result of a minimax algorithm.

Unlike sequential games, in stochastic games there is no guarantee that the game
evolution will follow the search exploration carried out by the player. One pos-
sible solution to overcome the difficulties of stochastic games is to apply stastical
approximations along several iterations of the game. One example of combinato-
rial search algorithms is Monte carlo tree search (MTCS) [11]. The MTCS analyzes
the most promising moves, expanding the search tree based on random sampling
of the search space from a selected leaf node of the tree. In the selection process,
better nodes are more likely to be chosen.

• Learning-based controllers

This type of control strategy consists in improving the behaviour of a game agent by
using previously recorded examples of the game. The agent is trained by playing
multiple games or observing professional matches, and iteratively penalizing or
rewarding the agent actions in order to obtain better outcomes [29].

The state of the art in learning-based controllers is plagued with numerous varia-
tions of neural networks (NN), specially deep convolutional neural networks. In
games like Chess or Go, NN are used to evaluate a concrete intermediate state of
the game and predict the final outcome. In addition, NN are used to predict the
best action to apply in the current state of the game. The combination of search
strategies like MTCS with NN is very helpful to conduct a search simulation.

One more advantage of learning-based controllers over combinatorial search con-
trollers is that is not necessary to run a simulation process to find the best action.
Instead, as a result of the training process we get a model embedded in the con-
troller that acts as a function, returning the action to execute in every state.

A different approach that generally outputs good results is using Genetic algo-
rithms. They are stochastic, parallel search algorithms based on the mechanics of
natural selection and evolution. Genetic algorithms were designed to efficiently
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search large, non-linear, poorly-understood search spaces where expert knowledge
is scarce or difficult to encode and where traditional optimization techniques fail
[12]. The development of a game agent based on genetic algorithms requires first to
decide the game parameters to be optimized and then encode these parameters into
a chromosome layout. Subsequently, an initial population with sufficiently differ-
ent chromosomes to guarantee genetic diversity is created. Iteratively, we simulate
the behaviour of each individual of the population in the game and create a new
generation crossing some individuals, which are chosen according to the results ob-
tained. The idea is to select the fittest individuals and let them pass their genes to
the next generation. In order to avoid the tendency towards local optimization, a
mutation component is introduced, where genes not coming from any of the par-
ents are included with certain probability.

• Hybrid Approaches:

Hybrid approaches emerge as a combination of some of the aforementioned de-
scribed techniques. The Dynamic scripting [23] game is an example of the utilization
of an hybrid approach, where hand-coded strategies are combined with learning-
based algorithms. Under this hybrid approach, the agent is guided by a set of rules
but the decision of which rule to choose is made by means of a reinforcement learn-
ing process. Dynamic scripting executes the agent multiple times, adding a reward
or penalty proportional to how well the agent performed in a particular level of the
game.

2.3 Multi-game algorithms

Research in videogames aims at developing two types of game agents:

• Agents oriented to play a single game; e.g., AlphaGo [1] which was the first AI
program that won versus a professional championship of Go; or Stockfish [5], which
won the 14th Top Chess Engine Championship of Chess; or competitions like the
Mario AI championship [4] shown in Figure 2.2.

• Agents able to play several games and to adapt themselves to new environments.
The implementation of agents for playing different games is encouraged by plat-
forms such as the Arcade Learning Environment or the General Video Game AI
competition (GVG-AI).

The goal of agents that play a single game is to find a behaviour that allows them
to master in such game, trying to maximize the score or minimize the time it takes to
solve the game. To this end, researchers implement techniques like the ones explained in
section 2.2 and build an specialized agent for a specific game. The result is an agent that
excels in the game in question. The limitation of one-game agents is that they are unable
to adapt to the conditions of a new game and they would most likely get poor results
when playing a different game [32].

On the other hand, some researchers are interested in developing general game agents
capable of playing different games, even games for which the agent has never been
trained for. In this case, the final objective is to test agents in general game competi-
tions and to develop AI techniques that can possibly be later applied to some real-life
tasks. Ultimately, researchers aim to develop general AI techniques applicable to differ-
ent games instead of a specialized tool for only one game.
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Figure 2.2: Genetic-based controller in Mario AI competition

Our aim in this Master Thesis is to develop a general game agent, specifically adapted
to the framework provided by the GVG-AI competition, whose details will be explained
in section 3.1. Since we are interested in agents that are capable of playing various differ-
ent games, we discard the use of hand-coded strategies as they would excel in one game
but would most likely perform badly in other games.

Among the remaining control strategies presented in section 2.2, we believe the use of
combinatorial search strategies are more appropriate for general game agents. Compared
to learning-based controllers, combinatorial search algorithms do not require massive
training data and they are more easily extendible to different games, allowing us to draw
conclusions about their strengths and weaknesses.

There exist a large number of combinatorial search algorithms applicable to general
video games. In the following section, we present the Monte Carlo Tree Search algorithm,
one of the most widely spread technique for game playing.

2.3.1. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a tree-search algorithm that became very popular
in the last decade due to its performance in the game Go. It is a search algorithm that
builds an asymmetric tree in memory using a forward model of the game. MCTS builds
on the idea of estimating the true value of an action through random simulations and
using these values for an efficient best-first policy. The algorithm works iteratively in an
anytime fashion, that is, it progressively computes a more accurate estimate as long as
more time is given to the algorithm and it can be terminated at any point, returning the
current best estimation [14].

The MCTS algorithm is used in General Video Games context to decide the next action
to be played by the agent at the game. For this purpose at each movement the agent runs
a search process that allows to make more informed decision. To guide the search process,
MCTS is based on four stages that are summarized in the figure 2.3. These four stages
are repeated iteratively until a stop condition is reached, which can be a time limit or any
other condition. In General Video Game that limit should be a maxim time allowed to
return the next move. The first action to the best path obtained at the moment of the stop
will be returned for be played by the agent. The stages are:
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Figure 2.3: Monte Carlo Tree Search loop

1. Selection: In the selection step, the algorithm choose the tree node that will be ex-
panded in the current iteration. For this purpose, MCTS uses a utility function that
measures how desirable is the node to be expanded. One of the most widely used
functions is Upper Confidence Bound for Trees (UCT) as it combines the experi-
ence provided by previous iterations (explotation) along with the desire to explore
paths not yet explored (exploration). MCTS utility function must have an equilib-
rium between exploration and explotation. Otherwise the behaviour would not be
as desired. If we mitigate the exploration component, the algorithm will behave
voraciously based on the experience gained in the Playout phase. That is to say, the
search will be marked by the first rewards obtained being always the same nodes
the ones selected for the expansion. On the other hand, if we eliminate the experi-
ence component, the algorithm will always choose the unexplored nodes, obtaining
a behavior similar to a BFS. In the example of the figure 2.3 we can appreciate how
the algorithm starts at the root node, chooses the child located to his right because
it is the one with the highest score according to the evaluation function. It continue
descending by the tree and ends in the lower level choosing the right by the same
criterion. The selection process ends when it reaches a node that either represents a
terminal state (where the game has been ended or the branch has been pruned), or a
node that is not completely extended (i.e. a node in which there are some applicable
movements or actions have not been considered yet).

2. Expansion: An unexplored successor of the node that was not fully extended is
randomly chosen and a new node is added to the tree to be evaluated.

3. Simulation: A simulation (also called a playout) is performed from the expanded
node in order to determine its value. That is, from the recently added state a com-
plete game is simulated, either randomly, with a weighted heuristic, or using com-
putationally expensive evaluations with more sophisticated heuristics. The result
of simulation (Whether the game has been won or lost, or the score obtained in the
simulation) is used for to obtain a value (prize, reward, etc.) that determines the
usefulness of that branch for the player.

4. Backpropagation: The value of the new node is back-propagated all the way up
to the root node through the selected nodes. This value, is extracted from the sim-
ulation result. It can be the game score of final simulation node, or an evaluation
function applied to last node. In any case, the value propagated to the explored
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nodes of the search tree will be part of the exploitation component of the utility
function of step 1 (selection).

MCTS includes a family of algorithms that perform the above steps but they vary in
the strategies involved along the process. The three strategies are:

• A strategy for selecting tree nodes according to their usefulness (in the selection
phase). Among the possible choices for selecting a node are: (1) selecting the suc-
cessor with the greatest profit; (2) selecting the node which has been visited in the
greatest number of winning games; (3) selecting a node that verifies the two pre-
vious conditions; (4) selecting a node that maximizes a function like UCT (Upper
Confidence Bound for Trees).

• A strategy for the creation of new nodes (in the expansion phase). A uniform ran-
dom creation strategy is usually chosen, but if some additional information on the
problem is available, it can be used to make a decision on which action to take (and,
consequently, which node is created).

• A strategy of generating a complete game from the newly created node (in the sim-
ulation phase). Here it is relatively common to introduce, if necessary, some specific
knowledge of the domain of the problem (of the game).

The main difficulty in selecting a child node is to maintain an equilibrium between the
exploitation of the average win rate obtained in previous simulations and the exploration
of moves with few new simulations. The main formula for balancing exploitation and
exploration in games is called UCT (Upper Confidence Bound for Trees)[14].

UCTj = X̄j + C

√
ln n
nj

This equation is solved at every selection step. In this equation, X̄j is the average value
of node j determined by the simulations and is normalized to be in [0, 1]; n is the total
number of selections performed from the parent node, and nj is the number of times the
child node j is selected. In the equation, the left term (X̄j) stands for exploitation while the

right term (
√

ln n
nj

) represents the exploration. The parameter C controls this relationship
allowing us to direct the algorithm, favoring one of the two factors.

Also the function resolves the selection of unvisited nodes. When the successor has
not yet been visited, the UCT value of the node will be ∞ and, therefore, the successor
will be chosen by the strategy.



CHAPTER 3

Background

In this chapter we will detail the necessary concepts to follow the contributions of this
project. First, we introduce The General Video Game AI Competition (GVG-AI) [2],
where all the rules that govern a game agent are defined. Next, we will explain the
most relevant concepts about automated planning as well as the selected algorithm to
implement our game agent.

3.1 General Video Game - Artificial Intelligence competition

General Video Game-AI (GVG-AI) competition is a platform whose objective is to ex-
plore the problem of creating controllers for general video game playing. In other words,
agents oriented to play in multi-game environments.

The competition has been running since 2014 and is organized annually by the Uni-
versity of Essex. In the competition, participants can upload their agents to be tested
with different games. Figure 3.1 shows the main web page of the GVG-AI competition
that took place in 2018 [2].

The aim of the GVG-AI competition is for participants to create a single agent capable
of playing any given game, that is, an agent that is able to play a wide variety of games
but that when playing a game it does not actually know which game is playing. The
competition is meant to put complex algorithms to the test, challenging their adaptability
to new situations.

GVG-AI provides a framework that facilitates the task of developing game controllers.
The framework presents a batch of different games in which the developed game agents
will be executed and it also provides mechanisms to allow the agent interact with states
of the game. Hence, the task of the participants focuses on creating and developing the
algorithms that will allow the avatar (game agent) to play. That is, developers can put
their efforts in creating the AI strategies without requiring any knowledge or particular
skills on game programming. This allows experts in the field to quickly and effectively
develop and test new techniques.

According to the rules of the GVG-AI competition, the game agent is called at every
step of the game, and the agent must return a discrete action to apply in a particular
game state state in no more than 40ms. In this time period, the agent needs to explore the
different paths or combinations of actions in order to obtain the best rewarding action
and eventually win the game. The deadline of 40ms together with the complexity of
the games makes it difficult to explore all possible combinations. For this reason, an
intelligent strategy that enables to obtain a good action and avoid the “game over” is
needed. In addition, the agent has one second time at the start of the game to perform

11
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Figure 3.1: Snapshot of the GVG-AI competition main page

any loading or pre-processing task that it requires. In case of exceeding any of the two
time limits (40ms to return an action and 1s. to perform pre-processing tasks), the agent
would automatically lose the game.

Information about the games is given following an object-oriented representation.
The framework uses the Video Game Description Language (VGDL) (see section 3.1.3)
to define games in a more general way. Although the game description is available at
the time of developing the game agent, the agent has not such information at execution
time. This forms part of the GVG-AI rules, which determine that the agent has to face a
completely unknown environment when playing a game. It is during the game playing
that the agent discovers the game rules and the goals to achieve.

During game playing, the agent can obtain information of a game state like the posi-
tion of the elements of the game (also called ‘sprites’), the available resources, the score
of the moves, etc. Also the framework provides a simulator to explore the different paths
that come up after each possible move. With this information, the agent must discover
the game mechanics and do its best to win the games.

3.1.1. Games and guidelines

In this project, we will work with a subset of games among the ones provided in the
framework of the GVG-AI. We will deal with games that have a limited number of ap-
plicable actions, particularly a maximum of four directional actions plus one action for
interacting with the game. The behaviour of this extra action corresponds to pushing a
“fire” button and depends on the game; in some games this action is not permitted, in
other games the agent is allowed to shoot, attack or create objects among other possibili-
ties.

The type of games treated in this project are neither very complex nor very large-size
problems. Hence, the application of search techniques enable to explore the search space
of the game with an affordable computational cost. Nevertheless, although the search
space may not have a very large branching factor, these games cannot be solved with
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algorithms like BFS that explore the entire space to find the optimal solution but quickly
exhaust the available memory.

More specifically, we handle games that deploy in a virtual world composed of a
two-dimension grid where the position of the sprites (characters of the game) are repre-
sented via x and y coordinates, and there can be characters of different types in one same
position. The main characteristics that define these games are:

• Zero-sum games: All of the games define an agent that attempts to win or to lose
and so they are zero-sum games. In some cases a defeat will be given by the death of
our avatar. This happens in games like Aliens where our battleship can be destroyed
by an enemy laser shot. In other cases the game over is caused when the agent
collides with a static element like in the game Frogs, where the agent dies if he falls
into the water. In the rest of cases, the loss of game will be given by a time limit.

• Two-player video games: Most of games fall into this category in which the game
agent represents the avatar controlled by the human. The game agent is confronted
by a virtual opponent that we will refer to as the “computer”, which controls the
rest of the characters in the game and will attempt to make our avatar lose the game.

• Stochastic games: Every game in the two-player subset is a stochastic game where
it is not possible to determine the direction in which the characters controlled by the
computer will move. This is an important factor to take into account because the
simulation made from the current state is only an approximation of the next steps
of the game. Consequently, the actual future steps will not necessarily correspond
with the result of the simulation even if when the executed action is the same as the
simulated action.

• Simultaneous games: The set of two-player games is also characterized for being
simultaneous games; i.e., the computer plays at the same time as our game agent.

• Imperfect information: The GVG-AI framework provides all past information of
a game. In other words, there is no hidden information regarding the past actions
of both players (the game agent and the computer). However, we do not have
information about the rules of the game or the possible actions to be carried out
by the computer. This is so because the aim of the competition is that the agent
discovers the rules of the game and adapts to new environments.

• Puzzle games: Among the selected games, some of them are characterized as one-
player games (puzzle games). Puzzle games are deterministic since the only actions
that affect the state of the game are those performed by our avatar.

To summarize, the game agent to develop in this work will play two different types
of games:

(a) Two-player simultaneous games, with stochastic transitions between movements.

(b) One-player deterministic games that we will refer to as “Puzzle games”.

Once the characteristics of the collection of games used in this project have been de-
scribed, we now explain the guidelines we followed to design and implement the game
agent. In order to control our agent, we must first decide what the agent’s objective is.
There are two main possibilities:

(a) To seek a victory independently on how this is obtained.
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(b) To maximize the game score by trying to achieve all the intermediate subgoals.

In this project we will evaluate the games following the first approximation and our ob-
jective will be to maximize the number of wins across the different games. For this pur-
pose, the agent must decide what action should use at each game-step and our algorithm
have to determine the best action to be applied. In order to do so, the framework allow
us to make simulations at each step of the game and determine which action is the most
profitable. We can make those simulations iteratively to explore large paths using search-
ing algorithms with different heuristics. Additionally, we should take into account the
non-deterministic behaviour of some of the games and obtain a safe route that minimize
the possibilities of losing the game.

As mentioned before, we choose to use combinatorial search for developing the game
agent. In order to explore the different combinations of movements we will use a search
tree that represents the evolution of the game. A node of the search tree represents a state
of the game, being the root node the representation of the current state at the each step at
each step of the game. The applicable actions in each state generate the successor nodes
of such state.

There are two possible ways of representing a game state:

(a) By reading the pixels of the screen, that is, using directly the game representation
where each pixel has a RGB discrete value, or

(b) By using the game state representation provided by the GVG-AI framework.

Using the pixel representation would entail a very large number of variables, as many as
necessary to account for the resolution of the game ( number of width pixel ∗ number of
heigth pixels), and each variable would take on a value between 255 ∗ 255 ∗ 255 Colors.
Instead the GVG-AI framework provides a high level representation of the state. As a
result a lower number of variables and values are needed, which increases the number of
nodes that can be explored within a time slot. The representational scheme of GVG-AI is
detailed in the following section.

In order to build the search tree we use the simulator supplied in the GVG-AI frame-
work to execute a series of actions in a node and obtain the resulting states. We can use
different approximations to measure the quality of a node:

(a) We can use the score of the game in the particular game state.

(b) We can infer the score from the specific characteristics of the game for example in
Super Mario, as in many platform games the goal is to maximize the further point
in the map minimizing the time to arrive to this point, for this reason the quality of
a node in that kind of games could be measured with a function that maximize the
furthest position the player can reach and minimize the time to reach this position.

In this project we decide to use game score to guide our search algorithm because it is a
common property accessible in all GVG-AI games that provides us information about the
objective of the game. It will be 0 or > 0 in games without reward where the score > 0
belongs to a state of the game where agent reach the victory, in rest of cases the score will
be kept at 0. In games with rewards the score will be increased by obtain these rewards
and it will be a clue that the agent is behaving correctly within the game.

With these guidelines we developed our algorithm capable of playing different games
of the GVG-AI. But before explaining the method used we must understand how to inter-
act with the game, as well as the mechanisms used to perform the search. In the following
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section we will explain in more detail the simulator provided by the framework and the
tools provided for it.

3.1.2. Simulator

The framework of the GVG-AI competition provides participants with an API that the
controller can use to query the state of the game at every game cycle. This API allows
the programmers to focus in logic implemented in agents. Programmers can use the API
as a gateway between the logic and the mechanics of the game. The API provide some
functions that allow the controller to extract information about the current state of the
game. Besides we can make simulations about futures movements in order to find the
best combination of actions to obtain our best score. One of the elements provided by the
API is the StateObservation Object. This element provides information about the game
(score, winner, game tick, available actions). This attributes of the current state of the
game can be asked by means of some of the next functions[3]:

Queries to the State

• Advance: The framework includes a Forward Model that allows the agent to ad-
vance the game state (by simulating that an action is taken). This function updates
all entities in the game.

• Copy: This function allow to make a copy of the actual so we can keep intermediate
copies of the state and expand them without the need to perform the complete
simulation from the initial state.

Queries to the Game

• getGameScore: This methods is used to obtain the score of the game in a concrete
observation. Thanks to this it is possible determine if an action is increasing, de-
creasing or not affect to the game reward.

• getGameWinner: Indicates if there is a game winner in the current observation.

• isGameOver: Indicates if the game is over or if it hasn’t finished yet.

Queries to the Avatar

• getAvailableActions: Allow the agent to know which actions are available in the
provided game.

That set could vary throughout the games too. For example in Plants vs zombies,
which we can see a screenshot in the image 3.2, the agent has the four actions
of movement plus the action button with which it installs plants to defend itself,
meanwhile in Space invaders agent only can displace in two directions and can also
use the action_use action to shot and kill its enemies.

The following are the set of possible actions in each game:

– ACTION_NIL: It’s a reserved action used by the system when the agent do
not choose an action in the time provided previously to disqualify.

– ACTION_UP: Mainly permit to the agent to move or to orientate upwards.

– ACTION_LEFT: Mainly permit to the agent to move or to orientate to the left.

– ACTION_DOWN: Mainly permit to the agent to move or to orientate down-
wards.
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Figure 3.2: Screenshot of games Plants vs zombies

– ACTION_RIGHT: Mainly permit to the agent to move or to orientate to the
right.

– ACTION_USE: It is the most versatile action. Its result depends on each game
although in many of the games it is not operative.

• getAvatarResources: Returns the resources in the avatar’s possession. As there can
be resources of different nature.

Queries to the Observations

• getObservationGrid: With this query we can obtain the map representation of the
game. This method provide information about the sprites positioned at each cell in
the game.

The sprites can be the different kinds:

– Non-player-characters (NPC): It’s composed by that characters that interfere
in the game excepting the principal character that is controlled by us. They
could be enemies that try to hurt us or sprites that we should defend.

– Immovable: Formed by all those sprites that had a fixed position in our grid.
Mainly contain sprites that form the ground, the walls, obstacles and other
elements that remain static throughout the course of the game.

– Movable: Included in this group are those elements that can be moved and are
not included in the NPC set. They can vary greatly depending on the game,
but include bullets, boxes that can be moved by our avatar, and many others.

– Resources: That list contain the resources that can be used by our avatar.

– Portals: In this list are included the positions of that elements in the game able
to transport us between distant positions of the game, as well as to create or to
make disappear other sprites.

Also there are queries for each kind of sprite. Agent can ask about one determined
type of sprite.

Sprites have different behaviors depending of the game and could vary a lot depending
of game. It made almost impossible to extrapolate rules for play in all games. Being
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necessary to use strategies that allow discover the mechanics of the game and find the
best actions in each step.

3.1.3. Video Game Definition Language

Thanks to the simulator, we can visualize and play all the available games. That is possi-
ble thanks a common language to be created, represented and interpreted for our simu-
lator. The Video Game Definition Language (VGDL) is the language chosen by this task.
It’s a language design by Tom Schaul, originally implemented by him in Python using
py-game.

It’s a simple, high-level description language for 2D video games that permit a library
to parse and play those games. The streamlined design of the language is based on defin-
ing locations and dynamics for simple building blocks, and the interaction effects when
such objects collide, all of which are provided in a rich ontology [26].

To define a game we need crate two text files, on the one hand the Game Description
file define all the elements and the interaction between them. On the other hand, the
level description, fix the initial state. This file defines the characters that will appear in
the game and their positions in the grid.

Figure 3.3: Game description of zelda in lenguaje VGDL.

The Game description is simply a text string file with four differenced blocks:

• The LevelMapping permit read the level description to generate the initial state,
transforming each character in the corresponding sprites.

• The SpriteSet section defines all the ontology of sprites. Using nested indentations
we define the hierarchy where nested elements share the objects properties of their
parents. We can augmented the definition of a sprite class adding keywords options
in its definition.
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Figure 3.4: Level description file of VGDL game and its transformation on the simulator repre-
sentation.

• The InteractionSet governs the transitions between states, especially in relation to
collisions between sprites. Here we define which sprites are destroyed or created
or when a sprite can’t move to a position grid for be occupied by another sprite.

• The TerminationSet defines different ways by which the game can end. Each termi-
nation instance defines if game end with our victory or in a game over.

And example of game description of game Zelda is seen in the figure 3.3

The Level description file its a text a lines for each row of the grid Map similar to the
left image of figure 3.4. Each line is composed for a number of chars equal to the number
of columns in map. Each char represents one element of the LevelMapping and decide
which sprite is located in that cell of the grid. An example of this representation is seen in
the right image of figure 3.4. One game can have different levels each one represented by
one level description File. The level executed will be one parameter for the framework.

3.2 Automated planning

Automated planning in Artificial Intelligence (AI) can be defined as the art of building
control algorithms for dynamic systems. More precisely, a planning task is a search prob-
lem whose purpose is finding a set of actions that leads the system to an objective state
from a given initial situation. The vast majority of approaches model planning as a single-
agent procedure, in which a single entity or agent carries out the entire search process,
developing the complete course of action to solve the task at hand.

This section analyses the principal elements of a planning task. First we define the
most important planing concepts than make possible to understand the main paradigms
in planning. Then we define the most relevant planning paradigms, paying special atten-
tion to the state-based planning approach, which is the paradigm our game agent draws
upon.
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3.2.1. Planning concepts

Single-agent planning is a search process in which starting from an initial situation, the
agent has to find a plan or course of actions that allows it to reach a final state that in-
cludes the goals to achieve. In a classical planning model we adopt a series of assump-
tions to reduce the complexity of the problem and to be able to define its components
more easily.

• The world is represented through a finite set of situations or states.

• The world is fully observable. In other words, the single agent has complete knowl-
edge of the environment.

• The world is deterministic; that is, the application of an action can only generate a
single other state.

• The world is static, the state of the world does not evolve until an action is applied.

• The planner handles explicit and immutable goal states.

• The planning process is carried out offline, so a planner does not consider external
changes that occur in the world.

We will now detail the most relevant components of a planning task. A state is rep-
resented by a set of instantiated state variables named literals. The literals reflect those
characteristics of the world that are interesting for the task at hand. The states of the
world change through the application of the planning actions. Actions define the con-
ditions that must hold in the world for an action to be applicable and the effects that
result from the application of the action. Conditions are statements quering the value of
a variables and effects are statements assigning a value to a variable.

Definition 3.2.1. Action. An action is a tuple α = PRE(α)→ {ADD(α), DEL(α)}, where
PRE(α) is a set of literals describing the preconditions necessary for α to be applied,
ADD(α) is the set of literals added to the state once the action has been applied and
DEL(α) is the set of literals deleted.

Given a world state s, the set of all actions whose preconditions satisfy in s form the
set of applicable actions in s. The application of an action a in state s will generate a new
state s′ as the result of adding the “ADD” effects of a in s′ and deleting the “DEL” effects
from s.

Definition 3.2.2. Single-agent planning task. A single-agent planning task is a tuple T =
〈I, A, G〉. I is a state that represents the initial situation of the world. A is a set of actions
that can be applied by the planning agent to solve T and G is the goal state we desire to
reach.

Definition 3.2.3. Solution plan. A solution plan for a task T is a sequence of actions
{α0, · · · , αn} whose application over I leads to a state S, where G ⊆ S

An important aspect in planning is how to represent all the components of a task
with a compact and expressive language. One of the first planning languages is STRIPS
(STanford Research Institute Problem Solver), which has influenced most of the exist-
ing planners. STRIPS is a compact and simple language that allows the specification of
planning domains and problems.
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Despite its advantages, STRIPS has some expressive limitations that make it diffi-
cult to describe some real problems. As a result, many extensions have been developed
over the past years, enriching its expressiveness and simplifying the definition of plan-
ning domains. One of these extensions is Planning Domain Definition Language (PDDL),
the standard language used in the International Planning Competitions (IPC) within the
planning community. When designing a PDDL problem, we need to define two separate
blocks. On the one hand we must define the domain that includes the rules that govern
the world of the problem. On the other hand we must define the problem, that entails
to expose a particular situation within the domain previously described. Into the prob-
lem we must specify the initial state, as well as the objectives to be solved. The domain
describes the general features of a particular domain, such as the types of objects, the
predicates that describe situations of the world and the operators that can be applied by
the planning entity to solve the task. The problem block models the specific details of the
task, such as the actual objects in the world, the initial situation of the task and the goals
that must be achieved in order to solve the planning task.

An example of PDDL code can be seen in the figure 3.5 where is defined an action in
domain block of game Sokoban.

Figure 3.5: Action move in game sokoban

3.2.2. Planning paradigms

Single-agent planning systems are usually classified according to the search space they
explore and the direction of the search. The next subsections describe in detail the most
important planning paradigms.

State-based planning

In State-based planning, world is described through a finite number of states and define
a plan as a sequence of actions whose application over the initial situation of the world
leads to a certain state.

Most state-based planners are forward search algorithms, they start the construction
of the plan in the initial state and move forward using available actions to the final state.
An heuristic is usually used to guide the search. A function classifies states according to
their desirability and the next state is selected according to this ranking.

Some of the most important state-based planners are:

• The Heuristic Search Planner (HSP) is one of the first state-based systems which
uses domain-independent heuristic search. The additive heuristic of HSP is defined
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as the sum of costs of the individual goals in G, where the cost of a single atom is
estimated by considering a relaxed planning task in which all delete lists of the
actions are ignored.

• The Fast Forward (FF)planning system is one of the most influential approaches to
state-based planning. It uses the relaxed plan heuristic hFF , which is defined as the
number of actions of a plan that solves the relaxed planning task. FF works with
a Enforced Hill Climbing search, that is searching exhaustively nodes with a better
heuristic value.

• Fast Downward (FD) is a heuristic-based planner that uses a multi-valued repre-
sentation for the planning tasks. FD use SAS+ [13] to model the facts that con-
form states. Each variable has associated a Domain Transition Graph (DTG). In this
structure is reflexed the evolution of that variable according to the actions of the
task. DTGs are used to compile the Causal Graph in which are reflected the depen-
dencies between different state variables. FD sue a best-first multi-heuristic search
alternating hFF and hCG a heuristic inferred of the Causal Graph

• LAMA satisficing planner apply landmarks to improve the accuracy of the heuristic
search. A landmark is a fact that holds at some point in every solution of a planning
task. LAMA is based in FD pllanning but reuses the multi-heuristic search strategy
of FD to alternate a landmark-based estimator and a variant of the hFF heuristic.

Partial-Order Planning

Partial-Order planners (POP) works over all the task goals simultaneously, maintain-
ing partial-order relations between actions without compromising a precise order among
them.

In a pop system, the search is build as a search tree in which each node represents
a partial plan. It begin the planning task with the goals, and build the solution plan
backwards. The concrete order of actions is only established when it is necessary to
ensure the objectives.

A partial order plan is formed by:

• A set of nodes where each node represents a partial state where some literals are
defined.

• A set of order relations Si < Sj where Si should occurs in some moment previously
to Sj

• A set of variable’s restrictions, e.g. X=A.

• A set of casual links Si
c−→Sj that means that Si obtain c for Sj. They also represent

order relations between nodes. Furthermore, casual links protect preconditions.
They are not allowed if the action remove the preconditions of next action.

A solution plan should be complete and consistent.

Definition 3.2.4. Complete plan. It is a plan in which each operator’s precondition must
be satisfied by another operator.

Definition 3.2.5. Consistent plan. It is a plan where there is not contradictions in order
restrictions or restrictions on variables.
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When an action destroys the effect of a bond, it constitutes a threat that must be solved
by an ordering constraint. That action should be executed after or before the actions
involved in the link. This take the name of promotion or demotion respectively.

Once all preconditions have been propagated from the final state to the initial state
and all threats have been solved, we have the partial plan solution.

A partially ordered plan corresponds to a set of fully ordered plans. Therefore, we
only need to obtain a total order plan from the solution by adding the order restrictions
necessaries.

Figure 3.6 shows an example of resolution of Sussman Anomaly [30]. Sussman Anomaly
is an classic example of planing task into the world blocks in which two goals collided
and it is impossible achieve both objectives without first eliminate some preconditions of
one objective.

Figure 3.6: Pop solution of Sussman Anomaly

Planning graph

It consists in relaxing the problem to obtain all the possible plans up to a pre-established
length. This technique uses a novel planning graph to reduce the amount of search
needed to find the solution from a straightforward exploration of the state space graph.

In this graph, the nodes are possible states and the edges indicate the reachability
through a certain action.

Commonly the solution of this relaxed problem is used to guide the search process.
By using graphplan we can see the goals that can be reached, pruning as many of them
as possible thanks to incompatibility information.

Figure 3.7 shows the resolution of the Sussman anomaly problem with planning graph.

Hierarchical Task Network

Hierarchical Task Network (HTN) is planning paradigm that solves a planning task by
applying a successive goal decomposition. A solution to an HTN problem is then an
executable sequence of primitive tasks that can be obtained from the initial task network
by decomposing compound tasks into their set of simpler tasks, and by inserting ordering
constraints.
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Figure 3.7: Planning graph solution of Sussman Anomaly

Constraints among tasks are expressed in the form of networks, called (hierarchical)
task networks. A task network is a set of tasks and constraints among them. Such a
network can be used as the precondition for another compound or goal task to be feasible.

The input of an HTN planner includes a set of actions and a set of methods to indicate
how a task can be decomposed. Hence, HTN progressively decomposes tasks until only
primitive or executable actions remain.

3.3 Iterative-Width algorithm

The idea of search for novelty is first introduced in the work [19] as a search technique
that ignores the objective of the search and searches for behavioral novelty. Specifically,
a novelty search algorithm searches with no objective other than continually finding novel
behaviors in the search space. Yet because many points in the search space collapse to the
same point in behavior space, it turns out that the search for novelty is computationally
feasible.

Iterative-Width (IW) is a novelty-based pruned breadth-first search (BFS) that uses a
set of atoms (i.e., pairs of state variables with their corresponding associated value) to
represent a state and prunes states that do not satisfy a given novelty condition.

In IW, a state is composed of a set of state variables.

V = {v1, v2, . . . , vN}

Each state variable vj ∈ V has a finite and discrete domain Dvj that defines the possi-
ble values of that variable. A state is a total assignment of values to the state variables

The IW(i) algorithm is an implementation of a standard BFS starting from a given
initial state s0, but that prunes any state that is considered not novel where the novelty
condition is defined as follows:

Definition 3.3.1. State novelty. When a new state s is generated, IW(i) contemplates all
n-tuples of atoms of s with size n ≤ i. The state is considered novel if at least one tuple
has not previously appeared in the search, otherwise the state is pruned.
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Assuming that the N state variables have the same domain D, IW(i) visits at most
O((N × |D|)i) states. A key property of the algorithm is that while the number of states
is exponential in the number of atoms, IW(i) runs in time that is exponential in only in
i. In particular, IW(1) is linear in the number of atoms, while IW(2) is quadratic. IW(i)
is then a blind search algorithm that eventually traverses the entire state-space provided
that i is large enough.

To understand the algorithm, let us present as example a simple search task. The
objective of the counters problem is defined as finding a given number with a predefined
number of counters. It is a simple search task that allows us to explain the different
concepts of the IW algorithms and illustrate the potential of these algorithms.

In the counters problem the state variables are integers numbers each representing the
value of a counter. For example, if we have 3 counters, we will need 3 variables x1, x2 and
x3. The initial state is by convention the situation where all counters are fixed to 0, in our
example, x1 = 0 , x2 = 0 , x3 = 0. The goal or final state will be to reach a predetermined
number. For our example goal will be x1 = 3 , x2 = 3 , x3 = 3. To transit between different
states we define a function per counter that increments the counter value in one.

f1 → x1 += 1 , f2 → x2 += 1 , f3 → x3 += 1

In IW(i) atoms are a subset of variables of size i with an specific value; for example in
the initial state of our example task, there are three true atoms of size 1 {(x1 = 0), (x2 =
0), (x3 = 0)}. For IW(2) there are three atoms of size 2, {(x1 = 0, x2 = 0), (x1 = 0, x3 =
0)(x2 = 0, x3 = 0)} and so on. The number of possible atoms increases exponentially in
function of i, for IW(1) there are 30 possible atoms whereas for IW(2) the number raises
to 300 and for IW(3) reaches 1000 atoms.

Figure 3.8 shows the trace of the IW(1) in our counters problem example. Nodes in red are
pruned because they do not satisfy the novelty condition. That is, other nodes of the tree
previously discovered the atoms that appear in the pruned node. For example, the first
red node has three atoms x0 = 1, x1 = 1 and x2 = 0; the first atom of this node appears in
the parent node, the second atom appears in the second node of previous level, and the
last atom comes from the root node. Hence, the node {x0 = 1, x1 = 1, x2 = 0} does not
provide any new atom and does not satisfy the novelty condition for IW(1). Green nodes
represent atoms that satisfy an individual goal (we remind that the goal of the problem
in our example is to reach {x0 = 3, x1 = 3, x2 = 3}). We can observe that IW(1) always
finds individuals goals in an optimal path.

Since we are not able to solve a problem with IW(1), we would increment the width
(number of parameters) and come up with more complex goals. IW(2) will account for
two simultaneous goals at the cost of augmenting the number of produced nodes. And
IW(3) would solve the complete problem achieving the goal of the problem; i.e., the num-
ber 333.

The same problem can be solved by running IW(1) until one objective is achieved, and
then starting the algorithm again in that state to find the subsequent objectives (because
in this particular problem goals are serializable). The first execution allows the IW(1) al-
gorithm to reach the goal x0 = 3 as in the Figure 3.8. Starting from the first green node,
the second goal will be reached in the second iteration. And the last iteration will eventu-
ally achieve the global goal. With this serial implementation of the IW(1) algorithm, we
can achieve the given three objectives in one same execution. This is possible provided
that the objectives of the problem are independent. That is, when the achievement of one
objective does not interfere in the accomplishment of another objective. In the case that
the objectives are dependent to each other, it will be needed to increase the width level
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Figure 3.8: Trace of IW(1) to the counters problem.

of the algorithm to achieve them. For instance, in the game Bait game, it is necessary to
first grasp a key in order to open a door. With IW(1) we will be able to reach the key or
the door, but we may not achieve the two objectives. However, if we try first to reach the
key, we will succeed in the second objective, opening the door.

To summarize, by using IW(i), we can obtain as many objectives as the value of the
width equal to the i parameter. On the other hand, with a serialized implementation of
IW we can reduce the i param to achieve independent objectives.





CHAPTER 4

New novelty-based technique for
videogames

As commented in Chapter 1, the aim of this research project is to develop a game agent
in the context of GVG-AI using a search technique that draws on a new notion of width.
In this chapter, we will explain the design and implementation details of our game agent
based on an Iterative Width (IW) algorithm.

4.1 Abstract representation of the game states

This section details the representation of the state of a game as an abstraction of the game
screen. Specifically, we will explain the representation of states handled by the IW algo-
rithm as well as the method used by the game agent to generate the nodes of the search
space.

To choose this representation, we must remind that IW(i) generates nodes propor-
tional to the number of atoms and runs in time that is exponential in i only. On the other
hand, the time limit provided by the GVG-AI competition to execute an action is 40ms.
Hence, we must find a balance between an accurate representation that would allow us
a more exhaustive search, with a more abstract representation, which allows us to search
further in the tree and perform more complex actions.

The controller uses the grid component provided by the GVG-AI framework to rep-
resent a state of the game state observation. This component divides the game screen in a
grid of cells represented with x and y coordinates that denote the horizontal and vertical
position of the cell, respectively. Each cell contains information about all the sprites that
are positioned at this point of the map. For each sprite the component provide us the fol-
lowing information: an unique Id, the category of the sprite (if it is our agent, an enemy
an static element.) and a type inside that category.

To define the atoms of states, one representation may be create a boolean feature for
each element in each position in the map. That is make an atom true where an element
with unique Id it is moved to a new position in the search exploration process. The
problem of this representation is that the set of Ids change dynamically throughout the
game being created and destroyed numerous sprites. As a result a big number of nodes
are be created and this negatively affected the outcome of our algorithm.

Instead, we opt for a representation where a state is composed of a set of boolean fea-
tures as the ones just representing whether an object of a certain category is in a given cell
of the grid. This reduces the complexity of our node representation, generating a good

27
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balance between precision in the state abstraction and the depth that can be achieved
with that representation.

The figure 4.1 shows an example of representation for the Survive zombies game, where
several atoms are displayed. A boolean variable in our IW algorithm is represented
by a composition of (posx, posy, type) along with its associated value (TRUE,FALSE).
A state will be represented by an atom (posx, posy, type) =TRUE if an element of type
type is located in position (x, y). Otherwise the state will be represented by the atom
(posx, posy, type) =FALSE.

Figure 4.1: State representation

In addition, we need extra game information to control our algorithm. First, we ex-
tract whether the actual state is a winning state. This property is included as part of the
goal of our IW algorithm and it is used as the stop condition for the algorithm to final-
ize. Another important property is the game over. We should include this property and
penalize the algorithm when a path reaches a game over state. Finally, we also collect
the reward property. This property does not form part of the IW algorithm but it is used
to choose the best action when IW is not able to reach the goal of the game. The last
property of the game extracted to implement our controller is the reward.

At each movement, the agent collect all previous information to generate the initial
state of the IW search. Also, the agent re-starts the novelty table and begins the IW ex-
ploration. The agent uses the simulator to pull out the stats of the nodes and decomposes
each state into its constituent atoms to upgrade the novelty table and pruning all states
that not satisfy the novelty condition.

To collect this information the state observation provides a bidimensional array where
each element of the array contains a list of all observations positioned in that cell. By
iterating over this list, we obtain the character types of the cell. This allows us to update
the novelty table and check the atom that provides the component of novelty, if this is the
case, to continue exploring the branch.
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4.2 Preprocess

As the characteristic_extraction class completely explores the states with all its sprites, we
have included some methods that have allowed us to know the peculiarities of the frame-
work. Including at this part a debugging task that allow us discover for example that
when the agent dies change its position to the cell (0,0) or than some movable objects, ap-
parently resources to be collected, disappear when our avatar collide with them without
becoming part of the available resources of our avatar.

Another problem of the IW algorithm is that it makes a deterministic search simula-
tion that may be an optimistic approximation in stochastic games of the GVG-AI frame-
work and cause some unexpected outputs. To avoid this problem we implement a pre-
vious process to the IW simulation. We named to this process look ahead and consist in
simulating the first steps of our avatar many times to take statistics of the danger of each
action. Experimentally we conclude that a single step repeated 5 times avoid the game
over in a computational time adequate to continue expanding the search tree.

Figure 4.2: Look ahead of the first action in game survive zombies to prevent dangerous actions.

For illustration, we can see the figure 4.2 where it is observed that the left movement
causes death once out of 3 simulations. While the downward movement, for example
does not cause our death in any case. After the simulation made in the look ahead step,
we would conclude that the movement to the left is less safe, so we would prune the
corresponding part of the tree.

To conclude with the preprocessing methods, in this research is included a simple
agent to understand better the games involved in the framework and to be able to clas-
sify them according to their similarities and differences. We developed an agent that
recollects information about the characteristics of the game. This agent recollect informa-
tion about which games have enemies that try to kill us, what games are puzzle types, in
which games we complete the IW node expansion.... That information, recollected in the
tables of appendix A allow us to understand better, which characteristics are necessaries
in a game for the rightful behaviour of our algorithm. This table allows to analyze the
characteristics of games where IW not produce the best results. That information will be
useful to improve our algorithm and perform future researches where a metaheuristic
based in this type of games will determine the best algorithm for use at each moment.
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4.3 Iterative Width

Due to the little computational time available for action selection in the GVG-AI compe-
tition (40 ms) we consider only IW(1) because it just requires linear time in the number
of atoms. Unlike heuristic search algorithms, IW algorithms do not exploit the goals to
guide the search process (i.e. goals are only used as the conditions to finalize the search).
Further, in our implementation, we will use rewards as an objective to maximize (since
there is usually not enough time to conclude search in just 40 ms). More precisely, we
will interleave IW(1) explorations to find the best possibles rewards, with actions chosen
according to the maximum reward obtained with these explorations.

Next, we present our adaptations of the IW algorithm to build an agent for the games
of the GVG-AI competition.

4.3.1. Basic approximation

Our first goal was to elaborate a simple agent based on Iterative Width capable of play-
ing multiple GVG-AI games. To do so, we included the IW(1) search algorithm as the
backbone of our agent, with these basic tuning:

1. The agent runs the IW(1) search as an anytime function at each moment to decide
the next action to be executed. To this tend, an action selection function is needed
that is based on choosing the action that contains the descendant with the highest
score in the game.

2. A tie-breaking mechanism is added to the IW(1) search for two or more actions
that have the same score. Our agent implements a random function over the actions
available to guarantee that the same action is not ever chosen.

3. A Look ahead is implemented to make the agent avoid actions that may cause its
death. Because the stochastic nature of some games, in a particular simulation the
agent may not be dead after applying a dangerous action.

Now we describe in detail the behavior of our basic agent. In each step of the game,
the Basic Approximation initializes the IW(1) novelty list to decide which nodes to prune
for the IW(1) explorations. Given that the time limit per move in the GVG-AI competition
(40ms) is very short, it is important an efficient implementation of the search loop. For
this reason, we decided to implement the novelty table reserving a large space into a big
boolean array with a dimension equal to the number of possible cells multiplied by the
different types of characters, twenty types. This ensures that we check whether an atom
has already been explored in a constant time.

Before starting the IW(1) exploration, the agent checks what actions are unsafe in the
actual state. To do this, it makes use of the look ahead mechanism explained in the previous
point. Safe actions are the only ones included in the search tree. Then, the agent begins
the IW(1) exploration to determine the more desirable paths. The agent runs IW(1) as an
anytime algorithm providing a time parameter in which the search must terminate. For
this we use the 95% of the competition time to explore the nodes. The tree is explored
as a BFS algorithm expanding completely the actual level of the tree, and subjecting each
new node to the novelty analysis. If a node does not pass the novelty condition, it will
be pruned. Each node is formed with the forward model provided by the simulator. To
use it, we need the previous state and the action that we will simulate. Therefore, it is
necessary to save in each node, either the current state, in order to generate new states, or
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the action that caused it, in order to undo the path and generate the complete path that
forms that state.

When the IW(1) time is exhausted, the best node is chosen and its parent root action is
returned. In other words, the node with the best reward obtained in the simulator is the
objective of our agent. To achieve that node we must back-propagate the node reward
throw its parent to the root node. The action that has generated the branch that gives us
the greatest reward is the result output by the IW(1) exploration.

We also introduced a mechanism for tie-breaking at games that have scarce rewards
like Sokoban. Let’s take as an example a fictitious game in which the score only changes
when a victory is reached. Let’s imagine that our avatar aims to reach a point located in
the lower right corner, but far enough so that the exploration of IW(1) does not achieve it.
In this example our avatar would expand the nodes with the movements in the following
order: left, up, right and down. After exploring the map in the given time, IW(1) will
not find an action with a reward higher than 0 so the agent will return the first explored
action; that is, it will conclude that the best solution is going left. This conclusion is
repeated until reaching the left margin. At this point the algorithm discards the left action
for not being within the possible actions, so the best solution would be the next available
action, i.e. moving upwards. As a consequence, the avatar will end up in the upper left
corner in just a few seconds, finding itself stuck in a loop from which it cannot exit.

The solution to overcome this issue is simple: exploring the actions in a random order.
This avoids to repeatedly choose the same action when all actions have the same reward,
and thus avoid the agent making the same movements endlessly and wasting the time
without exploring different parts of the map. We pre-compute some random steps, and
reuse them in a loop of “random” movements.

Subsequently, we introduce enhanced versions of our basic approximation with the aim
of improving its performance.

4.3.2. Reward Shaping plus Discount Factor

For our second version of the IW agent, we designed two techniques that will potentially
overcome some of the limitations observed in the basic approximation. These improve-
ments are:

1. Reward Shaping: the application of this technique will enhance the selection of
nodes that account for subgoals of the game which are otherwise inaccessible with
the basic approximation.

2. Discount Factor: the application of this technique will give more preference to the
nodes closer to the root node which are scored with a high reward. Discount Factor
is introduced with the purpose of achieving goals sooner, that is, with fewer actions.

These improvements are detailed below.

Reward Shaping

When playing games like Sokoban or Portals, we observed that some changes occur along
the game playing that might be exploitable for improving the performance of these games.
The idea lies in rewarding these changing situations, which go unnoticed in IW(1), with
a higher score. To this end, we implemented a Reward Shaping function. This function
returns a reward value which is calculated as a combination of the score obtained from
the current state plus an increment if one of the following events occurs:
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• Type 1: This type of event detects when movable objects of the game are removed,
and this change is not reflected in the score of the node. This happens, for instance,
in games like Bait, which is represented in Figure 4.3. In this game, the avatar
grasps a key that is later needed to open a door, where the key is the movable
object detectable in this type of event. When this happens, we increase the score of
the node by one point.

• Type 2: This event detects when the type of the avatar changes. Some games like the
Real Portals include different types of the main avatar, and these types are used to
decide the results of the actions; for example, the action ’use’ in Real Portals creates
a different kind of portal depending on the avatar’s type. A different usage of the
avatar’s type is to restrict access to some parts of the map for a particular avatar
type. In this case, the avatar must eventually change its type in order to achieve the
game objective. When the avatar changes its type, we increase the score of the node
by five points.

The increments of one and five points for the events of Type 1 and Type 2, respectively,
were experimentally chosen. We observed that events of Type 1 tend to yield more false
negative results than events of Type 2.

Reward Shaping aims at improving the agent performance in complex games where
a victory usually requires going through different stages, achieving a sub-goal at each
stage. Our hypothesis is that there is more chance to reach a sub-goal when either an
event of Type 1 or Type 2 occurs in the game. Reward Shaping gives more priority to the
nodes in which these events will happen, so the search is guided by these events as well
as by the score increments provided by the game.

One of the games that is altered by this improvement is the Bait, which is represented
in Figure 4.3. In this game our avatar must reach a key needed to later open a door. The
basic approximation of IW(1) will return the same reward for all actions since none is
able to reach the key and get to the door before being pruned for novelty. The fact of
not finding any reward in the search tree makes the agent choose the next action with
a random criterion. With this random component, it might be possible for the agent to
reach a state from which it is impossible to win the game. For example, at figure 4.3, the
agent might randomly choose to execute action-down twice. The second time, the action
would move the box over the key, being impossible to move the box to access the key at
the rest of game. Since we cannot get the key, we cannot win the game. So we would have
lost the game without any negative reward to indicate it. In contrast, with the Reward
Shaping version, the agent will get a reward when he reaches the position where the key
is located and this helps his actions be guided by this sub-objective.

Figure 4.3: Screenshot of Bait
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The games influenced by the Reward Shaping function are reflected in the tables of
Appendix A with the value True (T) in the “Reward shaping” row.

Discount Factor

To improve the performance of the game agent we included a discount factor to calculate
the node score. The discount factor is used to penalize the nodes that are found at deeper
levels in the search tree and favour rewards obtained in the upper levels of the search
tree.

The Discount Factor penalty is used to discard, for one same objective, the paths that
have more actions. That is, if we have to move to an adjacent left cell to get a reward is
preferable to reach it with a single action (action-left) that with three actions (action-up,
action-left, action-down). This can be seen in Figure 4.4 where the bottom node has a
reward of 0.99 while the top node on the right has a reward of 0.97 because more actions
are needed to reach this node. Minimizing the number of actions to reach one particular
states gives the agent extra time to continue increasing the reward.

Figure 4.4: Example of discount factor function

Another reason for including this penalty stems from stochastic games where each
action involves a certain random factor, which accumulates along a chain of actions. Be-
cause of this, deeper states are more unlikely than states close to the root. Thanks to the
Discount Factor, the agent will prefer to reach close rewards that have more certainty of
being reached rather than distant rewards which are more uncertain.

It is also worth noting that the chosen Discount Function should not penalize lower
levels to a large extent. Otherwise, the agent will always opt for the closest rewards,
forgetting the deeper levels of the search tree. The function chosen for our agent is:

∆Reward ∗ 1
1.01L

where L is the level of the node in the search tree. As an example, exploring a game
with a node in the first level with an increment of 100 reward units will result in 100 ∗

1
1.011 = 99.01 while considering a node in the ninth level that reports an increment of 105
reward units results in 100 ∗ 1

1.019 = 96.01 despite the reward is 5 points higher.

4.3.3. Iterative Width (3/2)

The last variant implemented in the IW algorithm is called IW(3/2), a version halfway
between IW(1) and IW(2) where some informative atoms are handpicked to build 2-atom
tuples.
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In our case we decided to include together with the atoms chosen for the basic version
some variables with which to form two-atom tuples. These informative variables are:

• The score of the game in the current state.

• The type of the main avatar.

In addition, we also contemplate whether a sprite of some kind is included in a cell
using a combination of the type and the category of each element, which gives more
precision to the abstraction of the state.

In the IW(3/2) version we consider a novelty state if it provides a new score or if it
provides a new avatar type. This is particularly useful in games like Real Portals where it
is necessary to change the avatar type because each type create a different kind of portal.
At the game agent must create different types of portals for get a key and resolve the
puzzle game. The IW(3/2) version allows the avatar to achieve complex rewards without
increasing the complexity towards a quadratic algorithm like in IW(2).

This version uses tuples of two atoms to update the table of novelties. The tuples are
formed by:

• One atom whose variable belongs to the set of variables used in the basic imple-
mentation. That is, the atom indicates if an element of a certain type is in a specific
position.

• The other atom must contain an informative variable like the one described above
(score of the game or type of main avatar).

Thanks to this enhancement, the agent can go back inside the search space once it
finds a reward or when it reaches a position that makes it change its type. This additional
advantage enables solving problems composed of these two properties, thus improving
the operation of the IW(1) especially in those cases in which the IW(1) expands com-
pletely the search tree in the given time. These games are identified in the row “Ends
exploration” of the appendix A.

In other words, the use of a pair of atoms to check the novelty condition makes more
unlikely that a node will be pruned, so the search performs a more detailed analysis,
which allows the agent to achieve goals out of range in the previous versions based on
IW(1). The games affected by the IW(3/2) version are reflected in the tables of Appendix
A with a value higher than 1 in the row “Avatar types”. The other informative variable
take into account for the IW(3/2) is the score of the game. Therefore, the number of
times that the score changes during the game will have impact on the development of
the search algorithm. That is to say, a game in which the score is not updated until the
victory, will not be affected by this variable of the IW(3/2), whereas a game that updates
the score continuously, will delay the pruning to a greater extent, contemplating many
nodes that until now were not considered. All this information is reported in the row
“Rewards” of the Apendix A where are reflected the number of different scores detected
by the exploration agent throughout each game.
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Results

In this chapter we will present the results obtained by a game agent that implements our
adaptations of the IW(1) algorithm. To this end, we have created a series of experiments
to test our agent on various different games of the GVG-AI competition and we will
discuss the strengths and weaknesses of our approach compared to baseline algorithms.

5.1 Game-set description

For the experimental evaluation, we used 30 games from three training sets of the GVG-
AI competition. The GVG-AI site provides, for each game, description files associated
to five game levels that feature different configurations of the initial state and a different
difficulty level. We run 25 experiments distributed across the five game levels for every
game.

The 30 games used in the experimental evaluation are split into three different game
sets. Following we describe the general features of the games comprised in each of the
three sets.

The games in Game Set 1 are characterized for being a kind of reactive games that
require agents endowed with reflexes and react abilities. This set was used as (the only)
training set during at the Computational Intelligence and Games (CIG) competition at
2014. This game set include games like:

• Aliens: in this game the agent controls a ship at the bottom of the screen shooting
aliens that come from space. The agent must dodge the bullets at all times while
trying to eliminate enemy ships. When the agent kills an enemy, the game updates
the score. This score represents a reward that tells the agent the progress made
towards the global goal. A screenshot of the game is shown in Figure B.1a.

• Frogs: the objective of this game (represented in figure B.1e) is for the avatar (a
frog) to cross a road and a river in order to reach the finish line. The path is full of
obstacles; there are cars on the road that must be avoided, and trunks floating on
the river which can be used by the avatar to hop over them and move along the
river. There is no intermediate reward in this game, the only score outcome is at the
end of the game.

The Game Set 2 was used as the validation game set for the CIG 2014 competition.
The games comprised in this set are very much alike the games of the Set 1 but slightly
more complex. Hence, while the gist of the games in this set also lies in dodging obstacles
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to reach a finish location, the games are usually more difficult than the games in Set 1 and
require longer solution paths. Some examples of this games are:

• Camel race: in this game the avatar must get the finish line before any other camel
competing in the race. The race consists of a long straight circuit, moving from the
left side where the starting line is located to the right side where the finish line is.
The raceway also presents some barriers that the agent must avoid. Unlike other
games, the width dimension of the map in the Camel race is considerably enlarged
(see Figure B.3a). Specifically, while the map dimensions in the rest of games are
usually 12x26 or 12x31 squares, the map in the Camel race is 10x50 squares. This
makes the distance between the finish line and the start to be significantly longer
and so a longer solution path.

• Firecaster (B.1e): in this game the avatar must find its way to the exit by burning
wooden boxes down. In order to be able to shoot, the avatar needs to collect am-
munition (mana) scattered around the level. Flames spread, being able to destroy
more than one box, but they can also hit the avatar. The avatar has health, that
decreases when a flame touches him. If health goes down to 0, the player loses.
When a box is destroyed the score of the game increases regardless how directly it
contributes to a win. The agent will burn boxes all along until it finds the long path
to the exit, when it will receive the highest reward.

The games of the Game Set 3, which was used for the 2018 CIG competitions, are
all puzzles. Therefore this type of games are less reactive and more deliberative. They
typically require more complex solutions, combining the achievement of several sub-
objectives within the game. Among the games of this third set, we can find:

• Bait: in order to reach the goal of this game, the avatar must collect a key first.
The player can push boxes around to open paths. There are holes in the ground
that kill the player, but they can be filled with boxes (and both the hole and the
box disappear). The player can also collect mushrooms that give points. There are
not intermediate rewards in this game, a solution path to this game must include
an action to pick up a key and actions to move along the map. A screenshot that
shows an image of the first level of this game can be seen at B.5a.

• Real portals: the avatar must find the exit of the level. It is armed with a gun that
allows to open portals in the walls of the level. Two types of portals can be opened
(entrance or exit portals), and the avatar must change its weapon in order to open
one type or another. The avatar can travel through these portals, shooting through
them or pushing rocks. There can also be a key that opens locks on the way to the
exit. Once the avatar has the key, it must create the portals to reach the exit. And
all this while changing the weapons for each kind of portal. As we can see in figure
B.6a the weapons are represented by red and green scepters, depending on whether
they create entrance or exit portals.

5.2 Comparative analysis of the Basic Approximation with MCTS

In this section we will compare the performance of the Basic Approximation of our IW
algorithm (see section 4.3.1) with a Monte Carlo tree search (MCTS). For this comparison,
we used the MCTS implementation provided by the GVG-AI framework. As commented
in Section 4.3.1, the basic approximation of the IW(1) algorithm includes the essentials of
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the Iterative Width behaviour and allows us to compare with a MCTS method in similar
terms. With this comparative analysis we expect to cover the main aspects of the algo-
rithm, understanding its functionality as well as its strengths and weaknesses so as to be
able to suggest later improvements accordingly to the results.

We define three different settings for all the games used in the experimental evalua-
tion. The first setting gives the agent a 40 ms deadline to return an action as specified in
the rules of the GVG-AI competition. In the other two settings, we relax the time limit
and we set a deadline of 300ms and 1 sec respectively. Our purpose is to understand how
the time limitation affects the functioning and performance of the algorithms.

5.2.1. Results for Game Set 1

The results obtained for the games in Set 1 are displayed in Table 5.1.

Table 5.1: Problems solved with MCTS and our Basic Approximation of IW(1) in Game Set 1

Time 40ms 300ms 1s

Game IW(1) MCTS IW(1) MCTS IW(1) MCTS
Aliens 25 25 25 25 25 25
Boulderdash 2 0 4 1 3 0
Butterflies 24 21 25 24 25 24
Chase 1 0 11 0 7 1
Frogs 18 5 25 0 25 4
Missile Command 25 15 25 15 25 19
Portals 16 4 20 3 21 6
Sokoban 4 4 7 11 8 10
Survive Zombies 11 11 13 11 13 12
Zelda 11 6 13 6 8 4

Total 137 91 168 96 160 105

Table 5.1 shows the number of problems solved in each game out of a total of 25
problem instances per game for both the MCTS and our basic implementation of IW(1).
As we can see in the table, IW(1) clearly outperforms the MCTS in the three settings.

The IW(1) shows an outstanding behaviour in three games across the three settings,
namely the Aliens (Figure B.1a in Appendix B), the Missile Command (Figure B.1f in Ap-
pendix B) and the Butterflies (Figure B.1c in Appendix B) games. In these three games,
IW(1) is able to solve all of the problems except for one instance in the Butterflies game
within 40ms, while the MCTS shows a weaker performance in the Missile Command and
slightly lower than IW(1) in the Butterflies. These three games are distinguished for being
highly reactive games where the avatar needs to react nimbly and early rewards help
eliminate the enemies.

We can also observe that IW(1) is much better suited for the games Frogs (Figure
B.1e in Appendix B) and Portals (Figure B.2a in Appendix B) than MCTS, which only
wins in 20% of the executed problems. The purpose of both games is to find the finish
line while moving along a path hampered by a number of obstacles that may cause the
death of the game agent. In the IW(1) algorithm, the application of the novelty pruning
allows the agent to expand through the grid map and to eventually find the finish line.
In contrast, the behaviour of the MCTS algorithm is rather different. Since these games
feature multiple paths where the avatar can die, the nodes in MCTS that explore the
hazardous zones of the map receive a lower score than nodes that explore the safety
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zones. The avatar needs, however, to get into the danger zones to be able to progress
towards the finish line but then this results in a lower score and so the avatar backs off.
This happens successively along the multiple simulations of the MCTS to update the
score of a node, meaning the algorithm is stuck in a local minimum. This is the reason
that explains the performance of MCTS is significantly worse in these two games.

There are, however, other games like Chase (Figure B.1d in Appendix B) and Zelda
(Figure B.2d in Appendix B) where IW(1) is not able to get such good results as in the
previous games but yet it performs better than MCTS. Both algorithms show difficulties
in solving these two games because a rather long sequence of actions is needed to reach
the goal. In the case of Chase this is due to the sprites controlled by the computer run
off as rapidly as our avatar and hence the agent has to chase and corner them in order
to get them caught. The complexity of Zelda stems from the fact that the avatar needs
to apply two actions in order to move in one particular direction: a first rotation move-
ment to point at the right direction and a second action that effectively moves the avatar.
The rotation requirement increases the number of action combinations thus augmenting
considerably the size of the search tree. Despite the complexity of these two games, the
superior performance of IW(1) is due to the novelty pruning, which enables focusing the
search toward deeper nodes (objectives) of the tree.

Conversely, the MCTS exhibits a better performance in the Sokoban game, solving
four more problems when running the algorithms with a 300ms deadline and two more
problems under a 1 sec deadline. A solution to this game involves complex actions that
are likely to be found in branches of the tree which IW(1) prunes because they do not
bring enough novelty when only 1-atom tuples are considered. The simulation of the
MCTS algorithm, however, is able to get rewards that suitably focus the search in the
right direction towards the goal.

It is also worth noting that IW(1) reaches the sweet spot in the 300ms setting solving
168 problems. While giving additional time to IW(1) does not bring an improvement in
terms of total problems solved, the MCTS gets to solve 9 more problems (from 96 solved
instances to 105) with a 1 sec deadline. The reason why IW(1) does not get to solve
more problems when the deadline is extended to 1 sec is because the strong novelty
pruning largely reduces the size of the search tree, which implies the algorithm already
exhausts the search space when using only 300ms. In contrast, a longer time favours
MCTS because it can run more simulations and obtain more accurate predictions for each
node.

5.2.2. Results for Game Set 2

The results obtained for the games in Set 2 are displayed in Table 5.2.

When comparing the results of the Game Set 2 in Table 5.2 with the results of the Game
Set 1 in Table 5.1, we observe that the number of wins for Game Set 2 is noticeable lower
for both algorithms. This is due to the games of this second set generally involve more
complex solutions that require searching deep down into the search tree. For example,
in the 40ms setting, IW(1) wins 137 games in Game Set 1 to 102 wins in Game Set 2. A
similar trend is observed in all the settings and for both algorithms, IW(1) and MCTS.

Due to the higher complexity of the games in Game Set 2, we also observe another dif-
ference with respect to Game Set 1. While the sweet spot of IW(1) in Set 1 is reached with
300ms, the sweet spot in Set 2 occurs when the deadline is set to 1 second. This means
that more time benefits IW(1) in more complex games. Specifically, the increment in the
number of problems solved when switching from 300ms to 1sec is as follows: MCTS
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Table 5.2: Comparing MCTS with our basic implementation of IW(1) in Game Set 2.

Time 40ms 300ms 1s

Game IW(1) MCTS IW(1) MCTS IW(1) MCTS
Camel Race 2 2 25 3 25 1
Digbug 0 0 0 0 0 0
Firestorms 9 1 18 4 19 5
Infection 24 25 25 25 24 25
Firecaster 0 1 0 1 0 0
Overload 15 6 12 3 15 7
Pacman 0 0 0 0 0 0
Seaquest 13 25 18 24 18 24
Whackamole 21 24 18 23 21 25
Eggomania 18 0 18 3 19 5

Total 102 84 134 86 141 92

solves 8.5% more problems in Game Set 1 and 6.5% more in Game Set 2 while IW(1) goes
from -4.7% in Game Set 1 to 5% in Game Set 2.

Analyzing the particularities of both algorithms in the games, we observe in Table 5.2
that IW(1) solves only two problems in the game Camel Race (Figure B.3a in Appendix
B) with a 40ms deadline but gets to solve all of the instances when more time is given.
Again, this is an indication, as commented above, that more time largely favours IW(1),
which is the case for almost all of the games when the deadline is 1sec.

On the other hand, the MCTS algorithm performs very poorly in the Camel Race across
the three settings. As we mentioned before, the width of the screen in this game is sig-
nificantly larger than in other games (about 50 squares between the finish line and the
starting line) so the goal line is found at a depth level 50 of the search tree and the search
space comprises 450 possible combinations to reach the goal. On top of that, since there
are no intermediate rewards in this game, the agent plays randomly. This explains that
the MCTS simulations will rarely achieve a victory; only in those cases where the camel
approaches by chance close enough to the goal it will be capable of reaching the finish
mark. In contrast, the IW(1) algorithm expands linearly across the grid map generating a
number of nodes similar to the number of squares on the map.

Table 5.2 also shows that MCTS is superior to IW(1) in two games, the Seaquest (Figure
B.4c in Appendix B) and Whackamole (Figure B.4d in Appendix B). The game mechanics
in these two scenarios is similar; the avatar is chased by enemies who may cause its
death, and while the avatar dodges his enemies, it picks up items that increase the score
in spite of this putting him in danger. IW(1) is more prone to pick up the items and raise
the score of the node despite the existence of enemies nearby who can kill the avatar.
However, the multiple simulations of the MCTS in a node reveal the probability that the
avatar dies if a particular action is taken; this value is backpropagated to the ancestor
nodes, penalizing the branches that statistically show a higher probability of dying even
though reporting a raising reward. In other words, the simulations of the MCTS return an
accurate estimate on how dangerous an action is thanks to the backpropagation carried
out by the descendant nodes which penalize enormously the dangerous actions despite
the achievable reward. In contrast, the one-action lookahead of our basic approximation
of IW (explained in section 4.2) only prevents the agent from dying if death occurs in
the next action, which is clearly not enough in some cases. These arguments explain the
superior behaviour of MCTS in the games Seaquest and Whackamole.



40 Results

Table 5.2 also shows that both algorithms perform very poorly in games such as Dig-
bug (Figure B.3b in Appendix B), Pacman (Figure B.4b in Appendix B) or Firecaster (Figure
B.3e in Appendix B) where the result for both controllers is close to 0. These are complex
games whose solutions involve linking several actions together and are found at a deep
level in the search tree. Additionally, the score that the player obtains in these games is
not an indication of how close the agent is to a win. The score is a positive reinforce-
ment which helps the agent understand the mechanics of the game and be aware of how
well it is doing so far but not a value that shows how easy/difficult is for the agent to
win the game. Indeed, an agent can be highly rewarded after executing an action even
if this action guides the agent to a dead-end node. In short, the reward in these games
is not necessarily correlated with progressing towards the goal and the complexity of the
solutions implies that not every action is a good move towards winning the game.

Consequently, due to the lack of helpful information to advance to the goal, the search
process may select actions that increment the score and makes the agent fall in a local
maximum from which it can not exit. Thereby when the action selected by the agent
achieves a sub-objective that increases the score but does not imply a step towards win-
ning the game, the agent may end up either eventually been killed by the enemies (dead-
end node) or stuck in a local point of the game. In this latter case, the only thing the
agent can do is to play randomly while waiting for the deadline to expire and the game
officially declared to be over.

5.2.3. Results for Game Set 3

The results obtained for the games in Set 3 are displayed in Table 5.3.

This set comprises the most difficult games, all of them puzzle games that require
more elaborated solutions. Unlike the other two sets, selecting an action in a game of Set
3 involves a more sophisticated reasoning process. Let’s see this with an example of the
Real Sokoban game represented in Figure B.6a in Appendix B. The goal of this game is to
push all boxes to the circle-shaped targets or platforms. In the particular situation shown
in Figure B.6a, the only action that leads the player to a victory is to move the box on
the left because any other action will eventually lead the agent to a dead-end situation
from which it will lose the game. For instance, if the first move of the agent is to push the
upper box upwards, the box will be moved to the first row next to the top wall. Then the
rest of possible actions for this box will be to move it to the left or to the right but none of
these actions will ever get the box in one of the platforms and the agent will end up in a
dead-end node. Obviously, the agent is unaware of this result when selecting the box to
push.

The explanation of the above paragraph gives an idea why Game Set 3 is particu-
larly tricky. The reward or score of these games, if any, does not supply an informative
feedback about the implications of certain moves in the accomplishment of the final goal.
This type of situations are only avoidable with the use of heuristics that would provide
the cost of the solution to reach the goal. But heuristic-based search is not affordable in
interactive video-games like the ones treated here.

Table 5.3 shows that the best results are obtained for the games Modality (Figure B.5e
in Appendix B) and Painters (Figure B.5f in Appendix B). The small-size grids of these
two games, 5x7 and 4x3 respectively, enable the agent to explore a large portion of the
search tree.

Most of the victories in Game Set 3 are achieved in the first level of the games, which
was included by the developers to easily test the game agent. This is the case of the game
Bait (Figure B.5a in Appendix B) where the size of the grid in the first level of the game
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Table 5.3: Comparing MCTS with our basic implementation of IW(1) in Game Set 3.

Time 40ms 300ms 1s

Game IW(1) MCTS IW(1) MCTS IW(1) MCTS
Bait 2 3 3 5 1 5
Bolo Adventures 0 0 5 0 5 0
Brain Man 0 2 1 2 0 1
Chips Challenge 3 5 4 4 2 4
Modality 10 5 12 5 10 7
Painters 19 19 15 21 18 20
Real Portals 0 0 0 0 0 0
Real Sokoban 0 0 0 0 0 0
The Citadel 5 2 3 5 5 8
Zen Puzzle 5 1 7 4 7 6

Total 44 37 50 46 48 51

is considerably smaller than the rest of levels (5x6 cells in the first game level and 14x9
in the second game level). In Chips Challenge (Figure B.5d in Appendix B), The Citadel
(Figure B.6c in Appendix B) or Zen Puzzle (Figure B.6d in Appendix B), the first game
level is relatively simpler than the rest of levels. For instance, in the game Chips Challenge
the first level does not include hurdles like water or fire that require to pick up specific
items to overcome them.

Another characteristic of the games in this set is that MCTS achieves more victories
when switching from 300ms to 1sec while IW(1) solves fewer problems. Particularly
noticeable is the fact that some games achieve worse results in IW(1) when more time
is given. This is the case, for instance, of the Bait, Chips Challenge or The Citadel games,
which get to solve two less problems when comparing the results of 300ms versus 1sec.
As commented in Chapter 4, we introduce a random exploration of the actions in the
IW(1) algorithm in order to avoid the agent to systematically choose the first applicable
action when all actions obtain the same reward (including the case of a value 0 when the
game does not report intermediate rewards). In these games, the agent selects actions
randomly until it is close enough to the solution, moment at which the rewards usually
become more informative and help the agent focus the search towards the goal.

This random behaviour occurs both in IW(1) and MCTS, having a higher impact in
IW(1). This explains that the number of times a game level is solved will vary accordingly
to the execution, which in turn explains the small drop in the number of solved problems
when the deadline is extended.

In summary, we have observed that our algorithm, despite obtaining good results,
also exhibits some issues when tackling the more complex games in Game Set 3 where a
solution typically involves the achievement of a series of intermediate steps or subgoals.
Specifically, as we commented in Chapter 4, the number of sub-objectives that the IW(i)
algorithm can address increases with the value of i.

The refinements over IW(1) presented in sections 4.3.2, 4.3.2 and 4.3.3 are precisely
intended to overcome the appointed limitations of IW(1). To this end, the next two sec-
tions, Section 5.3 and Section 5.4, describe the improvements accomplished with the re-
finements explained in Chapter 4.
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5.3 Basic approximation versus Reward Shaping

We developed an enhanced version of the Iterative Width algorithm that includes Re-
ward Shaping (see section 4.3.2) as an attempt to improve the reward function by intro-
ducing new elements of the environment when calculating the score of the node. Our
hypothesis is that a more informative score might be helpful to better guide the search
towards the goal.

For example, imagine a game in which the agent needs to pick up a key for opening
a door and this operation increments the score of the node. The reward shaping version
of IW, IW(RS) hereafter, is intended to output a reward that reflects that grasping the key
is an action on the right track towards a victory. This way, the IW(RS) algorithm will
favour nodes where the key is grasped as this operation represents a first sub-objective
that needs to be achieved. Subsequently, the algorithm will focus the agent towards the
door to eventually reach the final goal of the game.

In addition, we apply a Discount Factor refinement (see Section 4.3.2) to obtain higher
scores in nodes located in upper levels of the tree (nodes closer to the root node). The
Discount Factor is intended to accelerate the search process for achieving the rewards of
the game.

We will refer to IW(RS) as the version of IW(1) that implements both the Reward
Shaping and Discount Factor. As we will see in the results our hypothesis that IW(RS)
improves performance is highly dependent on the characteristics of each of the games.

The setup of this experiment is the same used in the experiments of the previous
section; that is, 25 executions per game divided into 5 different game levels with three
different time limits (40ms, 300ms and 1 sec). We will compare the results of IW(RS) with
the Basic Approximation of IW(1).

5.3.1. Results for Game Set 1

The results obtained for the games in Set 1 are displayed in Table 5.4.

Table 5.4: Comparing IW(RS) versus our basic implementation of IW(1) in Game Set 1.

Time 40ms 300ms 1s

Game IW(1) IW(RS) IW(1) IW(RS) IW(1) IW(RS)
Aliens 25 25 25 25 25 25
Boulderdash 2 2 4 2 3 2
Butterflies 24 25 25 25 25 25
Chase 1 5 11 7 7 6
Frogs 18 18 25 25 25 25
Missile Command 25 23 25 25 25 25
Portals 16 18 20 20 21 21
Sokoban 4 4 7 4 8 7
Survive Zombies 11 13 13 14 13 14
Zelda 11 8 13 10 8 9

Total 137 141 168 157 160 159

In general terms, we can say that IW(RS) does not improve the results of IW(1) in
Game Set 1. In view of the figures shown in Table 5.4 we cannot conclude that either
algorithm is more effective for this game set. Indeed the results obtained with IW(RS)
are not particularly impressive, showing only a very modest improvement in the 40ms
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setting with a total of four more solved problems. It is also noticeable the performance
drop in the 300ms setting. We should though note that Game Set 1 is mostly composed of
games that require reactive rather than deliberative skills to be solved, which is likely to
be reason why the improvement implemented in IW(RS) has such a small impact in this
game set.

5.3.2. Results for Game Set 2

The results obtained for Game Set 2 are shown in Table 5.5. We can observe a high equal-
ity of results except in the 300ms setting where IW(RS) outperforms IW(1). This is justi-
fiable as follows. IW(RS), which is more costly to compute than IW(1), will most likely
take more than 40ms to be effectively applied. This would explain that non-appreciable
differences are observable in this setting. On the other hand, since the enhanced reward
value of IW(RS) is helpful to better discriminate between nodes, IW(RS) will be able to
explore nodes which are more informative within a fixed time. This clearly favors the
300ms scenario. However, extending the time for reasoning to 1sec does not bring any
clear advantage with respect to IW(1); that is, the potential benefit of IW(RS) is not no-
ticeable in this setting because the objectives deducible by IW(RS) in one-second time
slot are also reachable by IW(1) within the same time. In other words, IW(RS) is worthy
when no much time is available and we are interested in exploiting as much information
as possible about the context within the given time.

The reason why the gain from using IW(RS) is more significant in the results of Game
Set 2 than in the results of Game Set 1 in Section 5.3.1 may be explained for the higher
complexity of the games in the Set 2.

According to the general results obtained in this game set, we can conclude that the
answer to the question as to whether it is worth applying sophisticated and costly rea-
soning methods such as IW(RS) is found in a trade-off between the problem complexity
and the reasoning time.

Table 5.5: Comparing IW(RS) versus our basic implementation of IW(1) in Game Set 2.

Time 40ms 300ms 1s

Game IW(1) IW(RS) IW(1) IW(RS) IW(1) IW(RS)
Camel Race 2 3 25 25 25 25
Digdug 0 0 0 0 0 0
Firestorms 9 13 18 25 19 25
Infection 24 25 25 25 24 25
Firecaster 0 0 0 0 0 0
Overload 15 15 12 15 15 12
Pacman 0 0 0 0 0 0
Seaquest 13 14 18 20 18 21
Whackamole 21 16 18 19 21 17
Eggomania 18 16 18 19 19 19

Total 102 102 134 148 141 144

It is also worth commenting the impact of the reward function in some individual
games. We can see in Table 5.5 that while IW(RS) reports better results than IW(1) for the
game Firestorms (Figure B.3c in Appendix B) , the opposite occurs in the game Whackamole
(Figure B.4d in Appendix B).
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The Reward Shaping function in both games draws upon events of Type 1 (removal of
movable objects – see Section 4.3.2), which are interpreted as a reward by the agent. The
difference though lies in that while the events of Type 1 are helpful in Firestorm to reach
a victory in the game, the opposite occurs in Whackamole. That is, a higher score value
does not mean being closer to a win in the Whackamole game. This illustrates one of the
downsides when applying the Reward Shaping to the General Video Game framework.
The point is that it is difficult to find events that are beneficial to all games, since an event
observed in one specific type of game can be detrimental when applied to the context
of another game. Nevertheless, the two generic events, Type 1 and Type 2 explained in
section 4.3.2, selected for the reward function have proven to be useful in a large majority
of games.

5.3.3. Results for Game Set 3

The results obtained for the games in Set 3 are displayed in Table 5.6. As a whole, we
do not observe a major improvement of IW(RS) over IW(1). While it was expected that
IW(RS) would perform better in Game Set 3 (this set comprises the most difficult and
deliberative games), the design of the generic reward functions highly influences the
results in this set.

Table 5.6: Comparing IW(RS) versus IW(1) in Game Set 3.

Time 40ms 300ms 1s

Game IW(1) IW(RS) IW(1) IW(RS) IW(1) IW(RS)
Bait 2 5 3 5 1 5
Bolo Adventures 0 0 5 5 5 5
Brain Man 0 2 1 2 0 1
Chips Challenge 3 5 4 4 2 5
Modality 10 5 12 5 10 5
Painters 19 19 15 20 18 17
Real Portals 0 0 0 0 0 0
Real Sokoban 0 0 0 0 0 0
The Citadel 5 4 3 1 5 3
Zen Puzzle 5 6 7 6 7 8

Total 44 46 50 48 48 49

Looking at the breakdown of Table 5.6, we can affirm that no significant differences
exist between both versions. However, a detailed look at each game will help us under-
stand the advantages and disadvantages of IW(RS) in this game set.

The data of Table A.3 in Appendix A show that almost every game of the set features
events of the two types considered in the design of the Reward Shaping function (Type 1
and Type 2). However, three games are particularly affected by the rewards:

• In the games Bait and Chips Challenge , represented in the figure B.5d of Appendix
B, IW(RS) obtains better results (5 wins in one game level in almost all of the exper-
iments in both games). As we can see in Table A.3, Bait has rewards of Type 1 and
Type 2 and Chips Challenge has rewards of Type 1. In both cases, the reward results
from the collected items, an action which is also necessary for winning the games.

• In contrast, the number of wins with IW(RS) in the game Modality is significantly
lower than with IW(1). Unlike the previous games, the reward in this game is only
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given by events of Type 2, which is determined by the four different types of avatar
that exist for this game (see Table A.3). The avatar always chooses the node with the
highest score returned by the reward shaping and it consequently gets stuck in a
loop switching its type repeatedly and without possibility of advancing to reaching
the goal of the game.

5.4 Basic approximation versus Iterative Width (3/2)

In this section we present the results obtained with the intermediate version between
IW(1) and IW(2), IW(3/2), explained in Section 4.3.3. This new version tests the novelty
condition using a combination of two atoms, one of them being a special (informative)
variable as reflected in the section 4.3.3. The features selected for IW(3/2) have been cho-
sen through expert knowledge of the games, particularly for their relevance in searching
a path towards the goals. Our hypothesis is that some of the nodes in the solution paths
feature score increments and/or changes in the type of the main avatar. By introducing
these elements in a 2-atom tuple for checking the novelty of new nodes, we allow the al-
gorithm to expand the search in those branches in which variations of these two features
occur. In practice, this entails finding a solution to a more deliberative objective. That is,
the addition of a new atom in the tuples will bring the possibility to reach joint objectives
as long as they involve a variation in the atoms.

The other atom of the 2-atom tuple is one regular atom like the used in the basic
approximation of IW(1), that is a boolean atom that indicates if an element of a particular
type is found in a particular grid position. The pair of atoms is evaluated to check the
novelty condition, and prune the corresponding nodes if necessary. The details of this
implementation are in section 4.3.3.

The computational cost of IW(3/2) is, obviously, higher than the other two previous
versions of IW but in return the game agent will be able to find paths that reach combi-
nations of two sub-goals. The improvement is designed to increase the victories in the
deliberative games and, therefore, it will have less relevance in reactive games.

In this section, we will compare the results obtained by the agent in IW(3/2) with
the basic approximation of IW(1). Again, the setup of this experiment is composed of 25
executions per game divided into 5 different game levels and using three different time
limits.

5.4.1. Results for Game Set 1

The results obtained for the games in Set 1 are shown in Table 5.7

There are no significant differences when comparing the basic approximation of IW(1)
with IW(3/2) in the first game set. This is because Game Set 1 is mostly composed of re-
active games with a lot of feedback in the form of increments at the game score. This
gives us enough information for our IW(1) algorithm. Therefore the additional informa-
tion provided for the IW(3/2) algorithm is redundant and does not provide significant
improvements.

We can emphasize the game Chase. In this game, the IW(3/2)-based agent, achieves a
higher number of victories thanks to the enhanced vision of the search tree provided by
this algorithm. This enables the agent to improve the strategy for capturing its enemies,
contemplating more deliberative routes to corner rivals.
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Table 5.7: Comparing IW(3/2) with IW(1) in Game Set 1.

Time 40ms 300ms 1s

Game IW(1) IW(3/2) IW(1) IW(3/2) IW(1) IW(3/2)
Aliens 25 24 25 25 25 24
Boulderdash 2 1 4 6 3 7
Butterflies 24 25 25 25 25 25
Chase 1 5 11 10 7 10
Frogs 18 21 25 25 25 25
Missile Command 25 23 25 24 25 23
Portals 16 15 20 19 21 20
Sokoban 4 6 7 9 8 4
Survive Zombies 11 9 13 15 13 15
Zelda 11 8 13 12 8 8

Total 137 137 168 170 160 161

Table 5.8: Comparing IW(3/2) with IW(1) in Game Set 2.

Time 40ms 300ms 1s

Game IW(1) IW(3/2) IW(1) IW(3/2) IW(1) IW(3/2)
Camel Race 2 1 25 25 25 25
Digdug 0 0 0 0 0 0
Firestorms 9 9 18 25 19 24
Infection 24 25 25 25 24 25
Firecaster 0 0 0 0 0 0
Overload 15 16 12 16 15 16
Pacman 0 0 0 0 0 0
Seaquest 13 15 18 11 18 16
Whackamole 21 17 18 18 21 21
Eggomania 18 11 18 20 19 19

Total 102 94 134 140 141 146

5.4.2. Results for Game Set 2

The results obtained for the games in Set 2 are shown in Table 5.8

In the second set is noticeable the importance of a good balance between the reliability
representing the states and the increment in the reasoning time that this reliability brings.
In other words, more detailed states (more atoms taken into account to calculate the nov-
elty, or a higher number of variables), provide us with more information and therefore
more possibilities of making better decisions. However, we must take into account the
time limit, so the increment in complexity will make the search algorithm explore fewer
nodes. This may prevent the search algorithm from reaching a node with a reward, caus-
ing the agent to adopt a random behaviour.

This characteristic is clearly seen in the experiment carried out with the games of the
Set 2 for a 40 ms time limit, where the algorithm IW(3/2) obtains fewer victories due to
the computational cost of adding the new 2-atom tuples. In a short time-frame like 40ms,
the application of IW(3/2) entails a lower number of explored nodes, hindering a deeper
exploration of the search tree and causing that the agent not to be able to find distant re-
wards. In contrast, with a time limit of 300ms, the IW(3/2)-based agent is able to achieve
more victories than the IW(1) basic approximation. The wider time slot allows the agent
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Table 5.9: Comparing IW(3/2) with IW(1) in Game Set 3.

Time 40ms 300ms 1s

Game IW(1) IW(3/2) IW(1) IW(3/2) IW(1) IW(3/2)
Bait 2 5 3 9 1 7
Bolo Adventures 0 0 5 5 5 5
Brain Man 0 0 1 1 0 2
Chips Challenge 3 8 4 9 2 6
Modality 10 5 12 5 10 5
Painters 19 24 15 23 18 25
Real Portals 0 0 0 0 0 0
Real Sokoban 0 0 0 0 0 0
The Citadel 5 4 3 6 5 8
Zen Puzzle 5 5 7 5 7 6

Total 44 51 50 63 48 64

to explore a higher number of nodes. In addition, the use of 2-atom tuples augment the
precision in the search, exploring more branches that would have been pruned pruned
otherwise with IW(1). The larger exploration occurs at all levels, from the branches close
to the root as to deeper branches of the tree. This justifies the increase of victories ob-
tained for both 300ms and 1 second.

It is also worth commenting the impact of the algorithm in some individual games.
We can see in Table 5.8 that while IW(3/2) reports better results than IW(1) for the game
Firestorms (Figure B.3c in Appendix B) , the opposite occurs in the game Seaquest (Figure
B.4c in Appendix B). In the case of the Firestorms, the IW(3/2) version allows exploring
a larger part of the tree finding more elaborated solutions that make the agent get the
victory in more cases. In contrast, in the case of Seaquest, the big number of increments
of score (see Table A.2) causes the search tree grow up more in width than in depth. That
is, the changes of the game score will make that hardly any node will be pruned. So the
algorithm will have a behavior similar to a BFS. This causes the search algorithm to not
reach the deeper levels of the tree causing the submarine representing the avatar to be
unable to surface in time and remain without oxygen.

5.4.3. Results for Game Set 3

The results obtained for the games in Set 3 are displayed in Table 5.8

Regarding Game set 3, which comprises the most complex games that require in
some cases complex strategies to reach the partial objectives, we find that the algorithm
IW(3/2) provides significant improvements. This version of IW increases the wins by 7,
13 and 16 regarding the victories obtained by the IW(1) in the different time sets.

In this set, games like Painters are improved to the point of winning in almost all
instances.

The games Bait, Chips Challenge and The Citadel improve their results in comparison
with the basic approximation. Due to the prune of IW(3/2) is less aggressive than in the
basic approximation, the IW(3/2) is able to expand more nodes of the tree search. This
exploration allows the agent to reach more complex objectives such as those included in
these three mentioned games where some goals are dependent on other sub-goals.
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5.5 Conclusions

From the results described in this chapter we have extracted certain characteristics about
the different versions of the agents. This Section is devoted to summarize these charac-
teristics in order to establish the relevant points of each type of algorithm as well as the
types of games in which it specializes.

Firstly, comparing IW(1)-based agent with MCTS-based agent we can conclude that
IW is more suitable to face games of the difficulty proposed by the GVG-AI competition.
In general terms, IW(1) outperfroms MCTS across the three time settings.

Specifically, we can draw different conclusions depending on the types of game eval-
uated:

• The IW(1) algorithm specializes in reactive games, which require reflexes on the
part of the agent, games in which the system provides enough rewards to con-
tribute to the search. However this type of games do not represent a problem for
other algorithms of General Video Game as is the case of the MCTS so it does not
represent a significant improvement.

• The IW(1) algorithm is ideal for games with simple objectives that do not require
the realization of several sub-objectives, even if they require a distant solution in
the search space (such as the games of Set 2). This algorithm, with very little time,
expands the search tree to the point of obtaining diverse states, covering great part
of the map and also covering a lot of different new variables into the states of the
game. On the other hand, if there are no rewards, the MCTS algorithm will show
a random behavior and perform contradictory movements within the search space.
The IW(1) algorithm can be expanded to a distant target and thus achieve victory
in some games.

• When confronted with complex objectives, especially in puzzle games such as in
Set 3, the IW(1) algorithm might prune the branches that contain the solution, as it
does not satisfy the condition of novelty. In contrast, the MCTS will always have
access to that branch. So theoretically, with enough time, it would reach the right
solution. Despite this, for the three time limits, the behavior of both game agents is
fairly similar, slightly better IW(1) for the shortest times (40ms and 300ms) and the
MCTS for the highest time (1 sec.).

• On studying the games, we observed that in some cases the increments of score are
not a sufficiently informative indicator towards the objectives of the game. As an
example, the action of collecting some items – which is required in some games in
order to win - is not reflected as an increase in the score so an agent guided by the
score will not benefit from this action. In addition, in many games the increase in
score is not a direct indicator that progress is being made. Some of the examples in
which this happens are:

– Puzzle games in which items are collected to improve the score as a comple-
ment to solve the main problem like in Brainman.

– Games in which a positive reinforcement is given to understand that the game
is about making that event although that event is not beneficial for the resolu-
tion of the problem. This is the case of the Firecaster where destroying any box
increases our score.

In these cases it is easy for the agent to be guided by a local minimum and may end
up losing the game or reaching dead spots.
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Figure 5.1: Comparison of total victories between IW(1), IW(RS) and IW(3/2) in a time-frame of
40 milliseconds

• We also observed that IW(1) completes the search tree in certain games. For this rea-
son, it is feasible to implement improvements that increase its complexity and allow
taking advantage of the exceeding time. These improvements would be thought to
be used exclusively for those games in which the search tree is completely explored
since to use it in the rest of cases, could be counterproductive.

Covering those needs, in this project we have implemented the improvements of
IW(RS) and IW(3/2). Figures 5.1, 5.2 and 5.3 show a comparison of the algorithms based
on the total results for each set.

From these tables we can see that the IW(RS) does not represent a significant improve-
ment. In most of the experiments, the results remain at the same rate as the basic version
of IW(1). The only mentioned differences are observed within 300ms (Figure 5.2) where
set 1 gets 11 victories less than the basic version and set 2 gets 14 victories more. This
could support our hypothesis that the reward shaping version, prioritizes the nodes with
rewards, making the rewards more accessible despite being at a deep level of the search
tree so it gives better results in the set2 whose rewards are usually far from the initial
node. It also confirms that any increase in complexity involves a cost, as it damages the
number of observable nodes per unit of time. Therefore, in a real application of these
algorithms, we should be selective with the problems to which we can and cannot apply
these improvements.

It is also necessary cautiously choose the events that can be recognized as subjective
rewards. Remember that the goal within the GVG-AI is to make agents capable of adapt-
ing to new environments. In this context, an event that can be considered positive in one
game might negatively influence another.

In summary, IW(RS) can help us to make accessible certain objectives using a single
atom to check novelty condition. Objectives, that are not accessible by the characteristics
of the game using IW(1). However, we must include generic events to avoid an agent
specialized in a certain type of games.
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Figure 5.2: Comparison of total victories between IW(1), IW(RS) and IW(3/2) in a time-frame of
300 milliseconds

On the other hand, the IW(3/2) version obtains great results. From the results in Table
5.1 it can be concluded that the ideal type of game where to include this improvement are
the puzzle type. In this figure we can visualize how the games of the set 3 ( most of them
puzzle games) increase their victories. On the other hand, the set 1, which is composed
of reactive games, remains constant. Finally, the games of the set 2, which require longer
solution paths, suffer a reduction in the number of victories.

In addition, by increasing the time limitation, the increase of victories in the set 3 is
favored by this new version. Going from 15.9% more victories for 40ms experiments to
26% more for 300ms set-time and 33.3% more victories with IW(3/2) in 1 second set-time.

Unlike the reward shaping version, the IW(3/2) version allows the search algorithm to
go deeper into the search tree compared to the basic version. This is thanks to the fact
that 2 properties or atoms are compared simultaneously at the time of verifying if they
bring novelty to the search algorithm. This makes it less likely that a new state will be
pruned. This then increases the number of explored branches producing more complex
behaviors.
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1 second





CHAPTER 6

Future work

This chapter discusses several research directions that can be followed in the near future
to improve the performance of IW-based agents at video-game playing.

Exploiting game structure

First we propose to exploit knowledge about the particular structure of the games, like
the information reported in appendix A. As discussed in chapter 4.2, this project imple-
mented a simple agent capable of collecting representative information of the games as
it plays. The information collected by that agent has been compiled in the tables of the
appendix A and they have served us as support, to be able to relate and understand the
contributions included both for the IW-based agents. However, the collected data is not
exploited in the decision making process of the implemented IW-based agents. For in-
stance, we could using the most appropriate algorithm for each game according to its
structure.

We believe that the information gathered in these tables can serve as characteristics
for the use of machine learning techniques to classify the games according to their type,
as well as choose the best applicable strategy for the game. In more detail, what is pro-
posed in this section is to use clustering algorithms to detect similar games, according to
the features included in those tables, as well as more characteristics that are considered
interesting. These clusters might differentiate the games between deliberative or reactive,
might join those games in which it is required an objective more elaborated like collect-
ing an item to use it to obtain a goal in the game, might group those games in which
there are enemies and it is required that the agent dodges them with agility. In summary,
similar games would be grouped to be treated with the same algorithm. The objective of
these clusters is taking advantage of the processing of 1 second that allows the GVG-AI
for each game to extract its characteristics of new games and classify it according of the
models extracted of these clusters. To do this we can use a K-Nearest Neighbors classifier
or some kind of linear classifier (We can check experimentally which offers better results).

Finally, once we have the type of game we’re dealing with, we should be able to
choose the algorithm that’s most beneficial to the game. To do this, we can make use of
the results tables, checking the average number of victories that each type of game has
for each of the agents developed in this project (or even adding other types of agent like
a more refined version of the MCTS). With this correspondence between game types and
the best strategy to be used by our new agent, it is trivial to choose the right strategy for
the new game we are facing.
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Planning with pixels

Another possible research direction is to use IW for general video game playing but,
using as state atoms features that are extracted directly from the screen. This approach
has acquired relevance in recent years due to its great results in the field of General Video
Game [6]. It is based on the philosophy that a human being, when facing a video game,
does not have access to the variables in Ram memory or the methods provided by an API
such as the ones used in this project. Instead, the human faces a game through a screen,
which transmits the relevant information of the game. With the same philosophy, the
input received by an agent oriented to planning with pixels, is the content of the screen,
i.e. the color that represents each of the pixels of the screen. In the case of the games we
are facing, based on an Arcade video console, the domain of each pixel has 128 values,
representing the full range of colors.

The first change to be applied is the use of different atoms to implement the IW search.
In planning with pixels, the atoms are extracted directly of screen. The node will be rep-
resented by a number of variables equal to the resolution of screen (Number of width
pixels × Number of height pixels). Each variable has a value between 0 and 127 rep-
resenting the color of this pixel in the game. The number of different atoms is so large
that could make the search process intractable. For this reason there are some techniques,
aimed at reducing the amount of atoms we use for the IW search, such as Convolutional
neural networks or the B-PROST features [20].

Improving the any-time behaviour

While IW(1) is a linear time algorithm that has been shown effective at the GVG-AI com-
petition, its performance when actions have to be taken in a few milliseconds is limited
by the underlying breadth-first search. IW(1) can search much deeper than a regular
breadth-first search over a limited time window, but if the window is small, nodes that
are beyond a certain depth will not be explored either. This issue is evidenced at games
like camel race, chase, frogs or firestorms, where the performance of IW(1) for 40ms is much
lower than the performance of the same algorithm but for 300ms and 1 sec time windows.

Recently an alternative to IW(1), called Rollout IW(1) has been developed [6], that
does not have this limitation and has better any-time behavior than IW(1). In addition,
Rollout IW(1) asks less from the simulator: while tree search algorithms like IW(1) need
the facility of expanding nodes, i.e., of applying all actions to a node the rollouts in Roll-
out IW(1) apply just one action per node.

Integrating planning and learning

Last but not least, IW algorithms are pure exploratory planing algorithms that do not im-
plement any kind of learning of the previous decision making episodes. In other words,
if our IW-based agent plays twice the same game it will start again the IW(1) searches
from scratch.

A promising research direction here is to integrate IW algorithms with machine learn-
ing techniques, for instance within a reinforcement learning framework similar to the
popular game playing algorithms Alphago, Alphazero and Alphastar [21].
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Table A.1

Games Aliens Boulderdash Butterfies Chase Frogs Missile Command Portals Sokoban SurvZombies Zelda
Avatar types 1 1 1 1 1 1 1 1 1 1 2
Reward shaping2 F F F F T F F F T T
Dead3 T T F T T F T F T T
Portals 4 F T F F F F T F F T
Resources 5 F T F F F F F F F F
NPC 6 1 2 1 2 0 1 1 0 2 1
Movable 7 1 1 0 0 3 0 2 1 1 0
Inamobibles 8 1 1 1 2 4 3 6 3 4 2
From Avatar 9 T T F F F T F F F T
Rewards 10 71 6 11 7 2 5 2 1 25 9
Num Sprites 11 7 10 5 6 10 6 12 5 8 8
Ends exploration 12 0,07 % 0,00 % 1,20 % 0,00 % 10,00 % 2,00 % 0,00 % 99,00 % 0,00 % 99,00 %
Max Nodes13 345 135 232 248 148 310 260 368 392 300

1Number of different Main avatar’s type in the game. (Reward shaping of Type 2 if > 1)
2Games with events captured as a reward in the reward shaping version. (Reward shaping of Type 1 or Type 2)
3Games in wich the avatar can die.
4Games with portal elements.
5Games with resources provided by the GVG-AI framework.
6Number of Non-Player-Character types in game.
7Number of movable sprites types in game.
8Number of inamobibles sprites types in game.
9Games with elements of the game or sprites made by the avatar like shots.

10Number of changes in the game score.
11Number of different sprite types in game.
12Percentage of movements in wich the avatar ends the exploration search in IW(1).
13Max number of nodes observed in game for experiments in 40ms.
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Table A.2

Games Camel Race Digbug Firestorms Infection Firecaster Overload Pacman Seaquest Whackamole Eggomania
Avatar types 1 1 1 2 1 1 1 1 1 1
Reward shaping T T T T F F F T T F
Dead T T T F T T T T T T
Portals T T T T T F T T T F
Resources F F T F T T F F F F
NPC 1 0 0 3 0 1 4 2 1 2
Movable 3 3 1 0 1 0 0 2 2 1
Inamobibles 2 4 1 2 4 5 5 2 1 3
From Avatar F T F T T T F T F T
Rewards 2 16 8 35 15 17 10 63 71 8
Num Sprites 9 11 7 10 10 10 14 11 7 7
Ends exploration 5,00 % 1,00 % 4,00 % 1,00 % 99,00 % 0,81 % 0,00 % 0,00 % 97,00 % 94,00 %
Max Nodes 208 165 300 290 245 255 66 440 564 360
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Table A.3

Games Bait Bolo Adventures Brain Man Chips Chall. Modality Painters R. Portals R. Sokoban The Citael Zen Puzzle
Avatar types 2 1 1 1 4 1 2 1 1 1
Reward shaping T T T T T T T F T T
Dead F T T T T F T T T T
Portals F F F F T F T F F F
Resources 0 0 0 5 0 0 1 0 0 0
NPC 0 0 0 0 0 0 0 0 0 0
Movable 2 4 3 1 1 2 2 2 1 1
Inamobibles 4 4 6 9 5 2 8 2 3 3
From Avatar F F F F F F T F 0 F
Rewards 7 1 12 23 2 31 10 3 2 34
Num Sprites 8 10 10 17 11 5 16 7 6 6
Ends exploration 0.81 0.02 0.99 0.03 0.99 0.94 0.99 0.99 0.96 0.99
Max Nodes 152 232 284 284 96 72 185 180 284 588



APPENDIX B

Games

(a) Aliens (b) Boulderdash

(c) Butterflies (d) Chase

(e) Frogs (f) Misilecommand

Figure B.1: Game Set 1
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64 Games

(a) Portals (b) Sokoban

(c) Survivezombies (d) Zelda

Figure B.2: Game Set 1
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(a) Camel Race

(b) Digdug

(c) Firestorms (d) Infection

(e) Firecaster

Figure B.3: Game Set 2
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(a) Overload (b) Pacman

(c) Seaquest

(d) Whackamole (e) Eggomania

Figure B.4: Game Set 2
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(a) Bait (b) Bolo Adventures

(c) Brainman (d) Chips Challenge

(e) Modality (f) Painter

Figure B.5: Game Set 3



68 Games

(a) Real Portals (b) Real Sokoban

(c) The Citadel (d) Zen puzzle

Figure B.6: Game Set 3
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