
Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València

An Argumentation System for Assisting Users with
Privacy Management in Online Social Networks

MASTER’S THESIS

Master’s Degree in Artificial Intelligence, Pattern Recognition and Digital
Imaging

Author: Ramon Ruiz-Dolz

Tutors: Ana Maria Garcia Fornes
Stella María Heras Barberá

Experimental Director: Jose Alemany Bordera

Course 2018-2019





M’agradaría dedicar aquest treball i agrair la seua implicació en ell...
als meus pares, per facilitar-me tots els mitjans al seu abast i l’educació necessaria,

a Stella, per descobrir-me noves i interesantíssimes arees de recerca i confiar tant en mi,

a Ana, per guiar-me i donar-me l’orientació necessaria en un moment tan important,

a Jose, per prestar tota l’ajuda possible i per estar sempre quan ha sigut necessari,

i al GTI-IA, per acollir-me tan prompte i permetre’m portar el meu treball a un nivell superior.

Moltes gràcies a totes i tots.

iii



iv

Resum
L’ús de les xarxes socials empra gran part del temps d’oci de les persones en aques-

tos darrers anys. Les xarxes socials, normalment de tipus gratuït, proporcionen els seus
usuaris un entorn on interactuar, xatejar i compartit tot tipus d’informació amb la resta
d’usuaris. Habitualment, les xarxes socials proporcionen una serie de mecanismes de
control de la privadesa del propi usuari. Aquestos mecanismes solen estar ubicats als
ajustos o a la configuració del perfil. No obstant això, gran part dels usuaris desconeix
l’existència d’aquestos mecanismes o directament els ignora degut a la poca importància
que li solem donar a la pròpia privadesa. Aleshores, es de gran importància conscienci-
ar aquestos usuaris sobre la rellevància de la seua privadesa, a la vegada que s’avisa de
potencials disputes o violacions de privacitat que podrien ocórrer al compartir un con-
tingut determinat a una xarxa social, abans de ser publicat. En aquest treball es proposa
una forma de confrontar aquest problema. Un sistema argumentatiu capaç de raonar a
l’autor d’una publicació entorn els motius pels quals no es deuría realitzar la publicació
(en cas de detectar qualsevol tipus de conflicte). Aquest sistema, a més de ser desenvo-
lupat i implementat, també serà integrat i utilitzat a una xarxa amb objectius educatius,
PESEDIA.

Paraules clau: Argumentació, Persuasió, Xarxes Socials, Privadesa, Seguretat

Resumen
El uso de las redes sociales acapara gran parte del tiempo de ocio de las personas en

estos últimos años. Las redes sociales, habitualmente de carácter gratuito, proporcionan
a sus usuarios un entorno donde interactuar, chatear y compartir información con los
demás usuarios. Normalmente, las redes sociales proporcionan una serie de mecanismos
de control de la privacidad del propio usuario. Estos mecanismos suelen estar ubicados
en los ajustes o en la configuración del perfil. Sin embargo, gran cantidad de usuarios
desconoce la existencia de estos mecanismos o directamente los ignora debido a la poca
importancia que se le suele dar a la privacidad. Es de gran importancia por lo tanto, con-
cienciar a estos usuarios sobre la relevancia de su propia privacidad, así como avisar de
potenciales disputas o violaciones de privacidad, que podrían suceder al compartir un
determinado contenido en una red social, antes de ser publicado. En este trabajo se pro-
pone una aproximación para lidiar con este problema. Un sistema argumentativo capaz
de razonar al autor de una publicación sobre los motivos por los que no se debería reali-
zar dicha publicación (en caso de detectar algún tipo de conflicto). Este sistema, además
de ser desarrollado e implementado, también será integrado y utilizado en una red social
de carácter educativo, PESEDIA.

Palabras clave: Argumentación, Persuasión, Redes Sociales, Privacidad, Seguridad

Abstract
The use of social networks consumes most of the leisure time of the people these last

years. The social networks, usually free to use, give the users an environment where in-
teract, chat and share information with other users. Usually, the social networks provide
the user with some tools that allow to control the own user’s privacy. These tools are usu-
ally located in the settings or the profile configuration. However, most of the users does
not know about them or directly ignores their existence due to the low concern regard-
ing its own privacy. Therefore, it is very important to raise users awareness regarding
its own privacy. In order to achieve that, it is interesting to warn the user of potential



v

disputes or privacy violations that may arise when sharing some specific content, before
being shared. This work proposes an approximation to deal with this problem. An argu-
mentation system able to give the reasons of why is not a good idea to share (in the case
of detecting any type of violation) some specific content. In addition to the development
and implementation, this system will also be integrated and used in an educational social
network, PESEDIA

Key words: Argumentation, Persuasion, Social Networks, Privacy, Security





Contents

Contents vii
List of Figures ix
List of Tables ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 5
2.1 Argumentation in Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Principles of Argumentation Theory . . . . . . . . . . . . . . . . . . 5
2.1.2 Abstract Argumentation Systems . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Structured Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Complexity in Argumentation Solving . . . . . . . . . . . . . . . . . 10

2.2 Privacy Management in Online Social Networks . . . . . . . . . . . . . . . 11
2.2.1 Comparative of Existing Privacy Management Systems . . . . . . . 13

3 Requirements Specification 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Overall Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Work Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 User Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Constraints and Dependencies . . . . . . . . . . . . . . . . . . . . . 17

3.3 Specific Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Argumentation System 23
4.1 Framework Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Feature Extraction Module . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Argument Generation Module . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Solver Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Dialogue Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 User-network Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Template Based Arguments . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 User Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation and Integration 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



viii CONTENTS

5.3 Argumentation System Implementation . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Argument Generator & Argumentation Solver . . . . . . . . . . . . 35
5.3.3 Argument Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.4 Persuasive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Argumentation System Deployment . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Network Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5.1 PESEDIA: An Educational OSN . . . . . . . . . . . . . . . . . . . . . 37
5.5.2 Argumentation Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 System Evaluation 41

6.1 Argumentation System Stress Test . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Functional Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Validation of content arguments generation . . . . . . . . . . . . . . 43
6.2.2 Validation of privacy arguments generation . . . . . . . . . . . . . . 45
6.2.3 Validation of risk arguments generation . . . . . . . . . . . . . . . . 46
6.2.4 Validation of trust arguments generation . . . . . . . . . . . . . . . 46

6.3 Persuasive Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Conclusions 49
8 Future Work 51
Bibliography 53



List of Figures

2.1 Example of an Argumentation Diagram . . . . . . . . . . . . . . . . . . . . 6
2.2 Argument Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Architecture of the argumentation system. . . . . . . . . . . . . . . . . . . . 25
4.2 Structure of interaction process . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Argumentation system structure . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 PESEDIA architecture diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Plugin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Diagram of the communication between the network and the argumenta-

tion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Example of post triggering an argument in the PESEDIA network . . . . . 39
5.6 Pop-up displayed to the user with a content argument of location (You can

be revealing information about where you are or where you’re going.) . . . . . . 40

6.1 Requests per second handled by the argumentation system . . . . . . . . . 42
6.2 Time required to solve N requests at a time . . . . . . . . . . . . . . . . . . 42

List of Tables

2.1 Comparative of different privacy management systems . . . . . . . . . . . 13

3.1 Function F01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Function F02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Function F03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Function F04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Function F05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Function F06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Function F07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Function F08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Function F09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 Function F10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Function F11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Function F12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Design Constraint DC01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14 Design Constraint DC02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15 Design Constraint DC03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.16 Design Constraint DC04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.17 Design Constraint DC05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



x LIST OF TABLES

3.18 Design Constraint DC06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.19 Design Constraint DC07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Template based arguments generated by our system. . . . . . . . . . . . . 30

6.1 Validation step 1 results (first part) . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Validation step 1 results (second part) . . . . . . . . . . . . . . . . . . . . . 45
6.3 Validation step 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Validation step 3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Validation step 4 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CHAPTER 1

Introduction

1.1 Motivation

One of the most interesting features related to the use of internet from the social point
of view is online interaction. The Online Social Networks (OSNs) populations in Eu-
rope1 and United States2 have been increasing rapidly during the last years. As OSN
users increase, the amount of information published on this sites also increases. Before
publishing content in an OSN many factors should be taken into account. For example,
a publication may contain sensitive information related to the own author or linked to
other users that are involved in the publication. It is also possible that this information
may be seen by undesired users. For instance, a classical dilemma regarding the privacy
of the users is the multi-party privacy conflict (MPPC). A MPPC may happen in a OSN
when any user publishes some content involving other users. A typical instance of this
conflict is given when a user publishes an image where different users appear [36]. Some
OSNs provide the option of reporting content in case of privacy violation, but that is a
posteriori solution. Using computational argumentation techniques, as proposed in [19],
it may be possible to prevent the violations before being done. To sum up, with the grow-
ing usage of OSNs it is important to raise the awareness of their users when publishing
content involving or not other parties.

This work presents a new argumentation system with the objective to give users ad-
vice on what should be shared and to whom. Most of the OSNs (eg. Facebook, Instagram,
Twitter, etc.) do not have any way to consider if the publication of some content can be
dangerous for its users privacy before making the publication. Some other OSNs as PESE-
DIA[10] implement a recommendation system that warns the user before publishing the
content. The main problem, as explained in [12], is that current recommendation systems
don’t provide a strong reasoning of why should the user take a determined action. With
an argumentation system, it is possible to generate customised information that gives
reasoned explanations to the users. By using an argumentation system, it is also possible
to improve the effectiveness of the recommendations when trying to persuade a specific
user.

This work is framed in the national project "Agentes Inteligentes para Asesorar en Pri-
vacidad en Redes Sociales" (TIN2017-89156-R) of I+D+I funded by the Ministerio de Ciencia,
Innovación y Universidades and proposed by the Computing Technology - Artificial Intel-
ligence (GTI-IA) group, member of the Valencian Research institute for Artificial INtel-
ligence (VRAIN). One of the main objectives of this project is to propose and develop
an argumentation framework able to persuade human users with the exchange of argu-

1https://www.statista.com/statistics/271430/social-network-penetration-in-the-eu/
2https://www.statista.com/study/40227/social-social-media-usage-in-the-united-states-statista-dossier/

1

https://www.statista.com/statistics/271430/social-network-penetration-in-the-eu/
https://www.statista.com/study/40227/social-social-media-usage-in-the-united-states-statista-dossier/


2 Introduction

ments, but also taking into account users’ preferences and values related to their privacy.
Therefore, this work can also be considered the first step taken towards achieving this
objective.

1.2 Objectives

The main purpose of this work is to develop a persuasive argumentation system able
to help users with their privacy management. Therefore, this system must be a complete
tool that performs a huge number of varied tasks. In order to be able to reach the purpose
of this work we need to define the following objectives.

The first objective consists on acquiring knowledge in computational argumentation,
the basis of this whole work. Since it is a domain that has not been learned during the
master courses, a deep study of the most important concepts and ideas will be performed.
The second pillar of this work is privacy management. An study of the existing tools that
assist users with privacy management will also be done. Since the purpose of this work
is quite innovative, it will not be possible to use an existing tool. Despite this, some
important ideas and concepts can be learnt in order to properly define our new system.

Once having settled up all the knowledge basis of this work, we need to identify and
define all the requirements that our argumentation system will have. This is the initial
step for carrying out the following tasks. The design of an argumentation framework to
deal with potential privacy disputes in OSNs and its implementation is the core objective
of this work. This system must also be integrated in a real OSN in order to be used with
human users in real contexts.

Finally, the system will be tested and validated before using it. A metric for evaluating
the persuasiveness of our system will also be proposed.

To sum up, the main objectives of this work are:

1. Analyse and study the most important concepts of computational argumentation
and the argumentation frameworks existing in the literature.

2. Study and compare the most relevant privacy management systems.

3. Identify the requirements of the system being developed in this work.

4. Propose a new value based argumentation framework to deal with potential pri-
vacy disputes in OSNs.

5. Implement and integrate the argumentation system in a real online social network.

6. Test and validate the operation of the system.

7. Define the evaluation of the persuasiveness of the system to be carried out when
gathering enough statistically representative data.

1.3 Document Structure

This document is structured in eight different chapters. In Chapter 2, a review over the
main concepts of computational argumentation and the main privacy management tech-
niques are described. Chapter 3 contains the formal specification of requirements de-
fined before carrying out this work. In Chapter 4, the new argumentation framework
proposed is defined, the architecture of the system is depicted and the interaction with



1.3 Document Structure 3

human users is also explained. Chapter 5 contains all the detailed information regard-
ing the implementation of the system and its integration in a real online social network.
There is also a brief description of how does the system behave once it is fully operative.
In Chapter 6, the process of testing and validation are described and the evaluation met-
rics proposed are defined. The most important conclusions reached while carrying out
this work can be found in Chapter 7. Finally, in Chapter 8, the open lines of research and
improvements over the system developed in this work are proposed.





CHAPTER 2

Related Work

This section is divided into two main blocks. The first block is focused on reviewing
the basis of argumentation in the artificial intelligence field. An analysis over the the-
oretical definition of argumentation, and a review of the most classical computational
argumentation approaches is done here. The second block is focused on studying the ex-
isting methods of privacy management in the OSN domain. With the analysis of existing
systems and methods, it will be easier to contextualise the purpose of this work.

2.1 Argumentation in Artificial Intelligence

In this section we perform a theoretical review of the existing concepts of argumenta-
tion in artificial intelligence [30]. Three main points are covered in this section: (i) the
most basic notions of argumentation theory, (ii) the concept of abstract argument and
the most relevant frameworks, and (iii) the definition of structured arguments with its
new approaches to argumentation systems. To close the section we also explained the
complexity of computational argumentation in order to emphasise on the computational
problems that may arise when designing and implementing an argumentation system.

2.1.1. Principles of Argumentation Theory

As stated in [39], four important tasks are carried out by argumentation. These tasks are
identification, analysis, evaluation and invention. Identification is the task of obtaining
the two main components of an argument from a given text, the premises and the con-
clusion. Analysis is the task of finding implicit premises or conclusions from a given
argument in order to be able to evaluate it correctly. It is common to do not communi-
cate all the premises or some conclusions of a determined argument if those premises or
conclusions can be implicitly understood. Even though they are not explicitly expressed,
it is important to make them explicit in the analysis task before evaluating the complete
argument. Evaluation is the task of determining whether an argument is weak or strong
in a given context. Finally, the task of invention is to create new arguments in order to
prove a specific conclusion.

In order to help undertaking these tasks, some techniques have been proposed in the
literature. Argument diagramming is an important tool to help with the task of anal-
ysis and evaluation. As can be observed in Figure 2.1, an argumentation diagram is a
graph where nodes are propositions and edges represent inferences. These diagrams are
really helpful when finding implicit premises or conclusions but can be also useful when
determining the value of an argument.

5



6 Related Work

Figure 2.1: Example of an Argumentation Diagram

Argumentation schemes [38] are stereotyped patterns of human reasoning commonly
used in argumentation. Some examples of these schemes can be arguments from conse-
quences (i.e. arguments should be used to persuade, since an argument provides a rea-
soned explanation of a topic), arguments from expert opinion (i.e. the campaign advisor
states that arguments should be used to persuade), arguments from popular opinion (i.e.
it is well known that the use of arguments can make it easier to persuade), etc. Each
scheme has a set of critical questions that can be made (e.g. are there other consequences
that should be taken into account?, can you really trust the expert?, etc.). Those critical
questions represent standard ways to doubt about an argument acceptability and there-
fore, determine the strength of an argument. Argumentation schemes can be very useful
to perform the evaluation task since the main weaknesses of the most important schemes
have been widely studied.

It is also important to define existing relationships between arguments. A way to at-
tack an argument is to ask a concrete critical question that may create doubt about the
acceptability of an argument. In order to graphically represent argument relationships,
[16] proposes an argumentation graph Ga = (A, R) where arguments are the set of nodes
A = { α ∈ {1, . . . , |A|}} where each α is an argument, and edges are the relationships R = {(i,
j) ∈ A × A}, where argument i attacks argument j. A relationship between two different
arguments can be seen as a support relationship or attack relationship. A support rela-
tionship between two different arguments happens when both arguments have the same
claim. An attack relationship between two arguments happens when a critical question
is asked. An example of this graph can be observed in Figure 2.2.



2.1 Argumentation in Artificial Intelligence 7

Figure 2.2: Argument Graph

On this example, α4 supports α1 and α5 supports α3 since those arguments are an-
swering some critical questions of α1 and α3. On the other hand, α3 attacks α1 and α2
attacks α5 because in this case, they are asking some critical question of α1 and α5.

Having the most important theoretical concepts of argumentation defined, the next
part focuses on describing the main approaches existing in the literature to deal with an
argumentation environment: Abstract Argumentation Systems and Structured Arguments.

2.1.2. Abstract Argumentation Systems

An abstract argumentation system or framework [16] is essentially a tuple <A, R> where
A is a set of arguments and R is the set of binary relationships between different argu-
ments. On Dung’s proposal, a relationship is called attack relation since there is only this
type of relation between arguments.

An important element in Abstract Argumentation Systems are the semantics. In [4]
an argumentation semantics is defined as the formal definition of a method ruling the argu-
ment evaluation process. In other words, given an argumentation framework, the seman-
tics can be seen as the rules that will define the output (acceptability) of the final evaluation
of the arguments. It is important to emphasise that for the same argumentation frame-
work, two different semantics can derive in a different acceptable set of arguments. There
exist two main styles of argumentation semantics in the literature: extension-based and
labelling-based.

Extension-based semantics propose to derive a set of extensions from an argumenta-
tion framework following an specified method. Basically, an extension E can be seen as a
subset of A from a given framework <A, R>. The main property of E is that all arguments
contained on it are collectively acceptable, meaning that are compatible between them.
Regarding this type of semantics, in [16] four different types were proposed: complete,
grounded, stable and preferred. But new proposals have appeared in the literature such as
semi-stable, stage or ideal semantics. These new semantics usually were created to get over
some limitation or to improve any undesired behaviour of the former semantics.

On the other hand, labelling-based semantics propose a way to derive a set of labels
from an argumentation framework. A labelling L is an assignment of a determined label
from the set to each argument existing in A. Therefore, when working with labelling-
based semantics, apart from the argumentation framework it is also compulsory to define
the set of labels and the labelling function L.

Having explained the structure and the semantics of the basic argumentation frame-
works, we will now focus on analysing different properties and variations of this basic
framework existing in the literature. Concretely, we will focus on value-based and bipo-
lar argumentation frameworks since they can be seen as the basis of our work.



8 Related Work

Value-Based Abstract Argumentation systems

Sometimes it is not possible to have a unique acceptable argument (or a set of arguments
with the same claim). It is very common to have different rationally valid positions or
perspectives regarding to a determined discussion. For example, let’s assume Alice and
Bob are in a theme park deciding which roller coaster will they ride next. Alice offers the
argument "let’s go to roller coaster A because there is no queue, so we will ride earlier"
for what Bob replied "we should go to roller coaster B since it is more intense". We can
observe in this example how both arguments are acceptable, and therefore neither Alice
or Bob can say the other is wrong. So that the final conclusion will be either A or B
regarding an agreement based on the personal preferences of both Alice and Bob.

Proposed in [6, 7], value-based argumentation framework (VAFs) are an abstract ar-
gumentation approach to deal with problems like the one from the example above. As
we can now imagine, to be able to persuade a determined audience in a value based
argumentation case, it will depend on the audience preferences to determine which ar-
guments will be more efficient. In order to handle with this, argument from VAFs usually
have a related value and different arguments may promote different values. Formally, a
Value Based Argumentation Framework is defined as an extension of the Abstract Argu-
mentation Framework as follows.

Definition 1 (Value-Based Argumentation Framework). A VAF is defined as a tuple
<A,R,V,val,P> where A is the set of arguments, R is the set of binary relationships on
A, V is a non-empty set of values, val is a function that maps elements from A to ele-
ments of V and P is the set of possible audiences.

A determined argument αi ∈ A is related to a concrete value v ∈ V if by accepting
α we are promoting v, the value given by val(α). Therefore, for the example above, any
argument that considers wait time will have a higher value for Alice (audience 1). And
any argument that takes into account the roller coaster intensity will have a higher value
for Bob (audience 2).

Bipolar Abstract Argumentation Systems

All the frameworks presented in this review of the state of the art have one common
thing. There is only one type of relationship between arguments, the attack relationship.
For some domains, having only attack relationships is not enough. Regarding prefer-
ences in VAFs, in the study made in [8] the conclusion is reached stating that two kind
of preferences can exist, positive preferences representing what a user wants and nega-
tive preferences representing what the user rejects. Another approach where bipolarity
can become a very interesting alternative and very related to this work objectives is de-
cision making. In [3, 15] it is proposed that, when making a decision, usually two types
of information are taken into account, arguments in favour and arguments against that
concrete decision. With some of the main applications of the bipolar systems explained,
an abstract bipolar framework is formally defined as follows.

Definition 2 (Bipolar Argumentation Framework). A BAF is defined as a tuple <A, R+,
R−> where A is the set of arguments, R+ is the set of binary relationships on A named
support and R− is the set of binary relationships on A named attack.

With the definition of BAFs it is possible to represent both relationships of attack and
support between arguments. Let’s retake the example of the last subsection where a deci-
sion has to be done regarding which roller coaster ride next. Alice now wants to decide
whether go to roller coaster A or not. To help answering this question, there will be two



2.1 Argumentation in Artificial Intelligence 9

main subsets of arguments, arguments in favour of riding and arguments against riding
roller coaster A. With support relationships it is now possible to group all the arguments
with the same orientation (in favour or against), and with attack relationships confront
opposite arguments. Therefore, let’s assume Bob wants to ride the roller coaster B. All
the arguments uttered by Bob in order to persuade Alice to go to roller coaster B can be
grouped with support relationships (R+

B ⊂ R+). On the other hand, all the arguments
uttered by Alice to persuade Bob to go to roller coaster A can be also grouped with sup-
port relationships (R+

A ⊂ R+). Finally, both sets can be related between them with attack
relationships (R−) since the claim of each set is the opposite.

Quantitative Bipolar Argumentation Framework

Based on both VAFs and BAFs, the quantitative bipolar argumentation framework [5] is
a bipolar framework where values are also taken into account.

Definition 3 (Quantitative Bipolar Argumentation Framework). A QBAF is defined as a
tuple <A, R+, R−, τ> where A is the set of arguments, R+ is the set of supports, R− is
the set of attacks and τ is a score function that for any αi ∈ A, τ(αi) is the score of the
argument αi.

With a QBAF it is possible to work both with two types of relationships and values
assigned to each argument. Retaking again the running example in this section, now with
this framework it is possible to combine both last examples. Let’s consider the situation
where Alice must choose whether go to roller coaster A or not. With the use of a QBAF,
all arguments in favour and all arguments against will be grouped with support relation-
ships. There will be also attack relationships between arguments of both groups. But,
each argument either in favour or against will have a value based on Alice preferences
(wait time). It is possible that now an argument against going to roller coaster A because
there is a roller coaster C where there is even less queue gets a higher score, since Alice
preferred to ride the lesser wait time roller coaster.

2.1.3. Structured Arguments

Now we will focus on describing the shape of the own argument as an entity. The defini-
tion of an argument from a classical logic point of view consists in a tuple <Φ, α> where
Φ is called the support of the argument, being all the logical formulae that proves α, the
claim of the argument. Starting from this definition it is also possible to define how will
attacking arguments or counterarguments be. We can consider a counterargument for
an argument <Φ, α>, another argument <Ψ, β> whose claim β invalidates the support
Φ. Two types of attacks are defined in the literature, the undercuts and the rebuttals. An
argument a1 = <Φ, α> is undercutted by a2 = <Ψ, β> if and only if the claim of a2, β is
in contradiction with the support of a1, Φ (e.g. a1: "We should ride roller coaster A since
it’s the one with lesser queue.", a2: "Roller coaster A has a lot of wait time since very few
people ride it at the same time."). On the other hand, we say an argument a2 = <Ψ, β>
rebuts another argument a1 = <Φ, α> if and only if both claims are contradicting each
other so that β→¬α and α→¬β (e.g. a1: "We should go to roller coaster A because there
is no queue.", a2: "We should not go to roller coaster A since it is boring.").

Having presented the basic concept of structured arguments, we will now briefly ex-
plain the Assumption-Based Argumentation, an argumentation approach based on struc-
tured arguments.



10 Related Work

Assumption-Based Argumentation

The main peculiarity of Assumption-Based Argumentation (ABA) systems is that argu-
ments are defined from deductions by the use of logical inference rules, and supported
by assumptions. This approach was proposed in [9] as an extension of Dung’s Abstract
framework [16]. Thus, an Assumption-Based Framework is defined as follows,

Definition 4 (Assumption-Based Argumentation Framework). An ABA Framework is a
tuple <L, R, A, > where (L, R) is the deductive system being L the language and R
the inference rules defining each framework. On the other hand A is a subset from the
language L whose elements are the assumptions. Finally, is the mapping from A to L.

It is now possible to observe the importance of the inference rules for each ABA frame-
work to be defined. Depending on the domain and the language, it is a very important
task to consistently define those inference rules in order to be able to infer correctly all
the arguments in a specific context. We can also observe how this framework does not
have an Argument element as such. In ABA frameworks arguments have also a defined
structure. An argument is a set of premises from the language that lead to a specific con-
clusion. Therefore, an argument has a claim inferred by a set of assumptions (support).

Apart from the structure it is also interesting to understand how do attacks and ac-
ceptability work on these frameworks. In ABA, an attack between arguments happens
when they have contrary conclusions so, for example if argument α1 states "buy product A"
and α2 states "buy product B" there will be an attack relationship between both arguments.
On the other hand, the concept of acceptability is similar to the result of evaluation for a
given semantics. An argument will be acceptable if it can be defended from counterargu-
ments and stay coherent. Then, a set of arguments is acceptable if it does not attack itself
and it attacks every other argument attacking it.

2.1.4. Complexity in Argumentation Solving

Once the argumentation graph is built from a specific framework, it comes the moment
to define the acceptable and the defeated sets of arguments. Since one of the main appli-
cations of artificial argumentation is human interaction, it is not nonsense to assume that
obtaining those argument sets must be achieved in a short period of time enough to keep
the human involved in the dialogue. Therefore, computational complexity in argumen-
tation solving is a first order concern when implementing an argumentation system.

In order to measure the complexity of this problem we will use the classical computa-
tional complexity classes (i.e. P (polynomial), NP (non-deterministic polynomial), etc.).
In [18] a set of decision problems over argumentation frameworks are defined in order to
measure the complexity. Concretely, Verification (VER), Credulous Acceptance (CA), Scepti-
cal Acceptance (SA), Existence (EX) and Non-emptiness (NE). In our case we will focus on
Sceptical Acceptance (SA) as this decision problem states for a given framework <A, R>
and an argument α ∈ A, to find if it is member of all acceptable extensions of the consid-
ered framework. That is equivalent to ask if the argument is valid in a specific instance.

As analysed in [17], to determine if an argument is sceptical acceptable under preferred
semantics is a problem beyond P and NP complexity classes, that means it is considered
highly unfeasible. Concretely, it is considered a ∏

p
2 -complete problem meaning that,

with the use of deterministic algorithms under the classical paradigms of computation,
solving this problem would have a super-exponential worst case running time. That is
even worse than NP problems whose usually are exponential worst case bounded.

Therefore, we must be very careful with the complexity of our solver algorithm when
defining our argumentation system. Since our system is focused on the direct interaction



2.2 Privacy Management in Online Social Networks 11

with humans, we must be able to compute the sceptical acceptable (SA) set of arguments in
a non significant lapse of time.

Taking all the theoretical concepts explained in this chapter into account, a new frame-
work will be defined in Chapter 4. Our approach is mainly based in the QBAF and its
properties. Later on, in Chapter 5, the implementation and integration process of our
theoretical framework in a real OSN will be explained.

2.2 Privacy Management in Online Social Networks

In this section, we will focus on the privacy management state of the art works. We will
give a glimpse over different approaches, but focusing on the argumentative approach.
We will finally make a comparison between all the different methods explained in this
section.

Nowadays privacy management is a very important concern. In the domain of online
social networks there have always been issues when trying to choose the correct privacy
configuration. The following six relevant privacy management methods have been iden-
tified in the literature:

• The classical Facebook1 privacy management system, which allow users to report
any publication made by another user that may infringe someones privacy prefer-
ences. This privacy management system initially only takes into account the crite-
rion of the publisher. It is only once the publication is made when the co-owners
can take part into the privacy preferences matter.

• Primma-Viewer [40] is a collaborative privacy management tool where each user
appearing in the publication can manage its privacy configuration. Initially, the
privacy policy is specified by the owner of the publication. Other users can be
invited to edit the policy previously defined. Therefore, always with the owner
supervision, it is possible to modify the initial privacy configuration.

• FaceBlock [28], a project for managing user privacy in photos. Each user can define
privacy rules with the use of a Semantic Web Rule Language. Then, the system
uses a reasoner to find out if any of those rules is triggered. If this happens, a
notification is sent with that user privacy preferences. If a user does not want to
appear, FaceBlock distorts its face before making the publication.

• CoPE [34] is another collaborative privacy management system where users can
define privacy policies for each publication. Each publication co-owner can define
its own privacy preferences and finally the result is decided with a votation. There-
fore, the privacy policy taken into account for a specific publication will be the most
voted policy.

• PriNego [25] is an agent based negotiation protocol to settle differences in the pri-
vacy preferences of different users. In this protocol, each agent represents a user
and it is responsible for keeping track of its privacy constraints. Each agent it is
also responsible of making deals with other agents. In order to do this, the con-
tent owner agent creates a post request before making a publication, each agent
can reject a specific request by giving a rejection reason. Once the creator of the re-
quest has received all the rejections, it can modify the privacy configuration and do
another iteration. The negotiation finishes when all agents agree with the content
owner or a maximum number of iterations (specified by the owner) is reached.

1https://www.facebook.com/

https://www.facebook.com/


12 Related Work

• PriArg [22] is an agent based framework argumentative approach for privacy man-
agement. Each agent has a specific ontology with the social network information,
the relationships and the content being published. With all this information, each
agent can make post requests to publish some content or evaluate other agents post
requests. Agents can also communicate between them to acquire any missing infor-
mation. Each agent is able to generate arguments from this set of information and
the final decision is made by an ABA framework.

It is possible to observe some similar properties between some of these methods.
Both Facebook and Primma-Viewer provide a posteriori solution to a privacy conflict for
a given publication. FaceBlock shows a very important limitation, since it is only de-
signed to work with photos. On the other hand, CoPE shows an interesting vote based
approach, but this methods lacks of any type of customisation nor intelligence, in fact is
the own user who must specify the privacy preferences. This fact can be a real problem
since all members of publications have to vote before publishing the content. Finally,
PriNego can be seen as a preliminary version of PriArg since both approaches are quite
similar and proposed by the same people. PriNego shows an interesting agent system
for choosing the privacy configuration of a publication. However, it also shows very im-
portant problems for a system intended to work in such a sensitive domain. In PriNego
the negotiation about privacy preferences can finish when an agreement between all par-
ties is found, that is the desirable case. But it also finishes when a maximum number
of negotiation rounds are carried out, and that number is defined by the owner of the
publication. This can be seen as a critical flaw in privacy terms, since the owner can set
that number to a very small number of rounds and therefore, finish the negotiation when
and how the owner agent obtains the maximum utility regarding its preferences. PriArg
seems to have this issue solved since the final decision is made based on the number
and the quality of the arguments in favor or against. Nevertheless, PriArg also shows an
important problem while performing the argumentation between agents. In PriArg, the
privacy configurations are not kept hidden. In fact, this information is sometimes used
as arguments.

Having reviewed and analysed all of the most important methods found in the liter-
ature, it comes out another important problem. All of the methods analysed are focused
on MPPC, but never consider the self violation of privacy preferences. At this point, it is
interesting to explain the subtle nuance between privacy preferences and privacy config-
uration. In an OSN, the privacy configuration is defined by a user following its privacy
preferences, therefore the privacy configuration can be seen as the tangible part of all this
privacy concern. On the other hand, privacy preferences are intrinsic to the user, and
those are usually based on users personality, education, awareness, etc. So it is important
to be aware and to have a strong knowledge of the dangers of privacy violations in order
to minimise the amount of undesired actions in the network. One may think that nobody
is going to self violate its own privacy preferences, but sometimes, depending on multi-
ple factors (e.g. emotional state, sentiments, etc.), people don’t take into account the same
criteria on decision making. In addition, as we will explain later on, it is also interesting
to handle all these situations in an educational domain, since OSN users may not have
a complete perspective to the dangers of privacy issues in OSNs yet. Also linked with
the educational domain, there is also another important lack in the methods explained:
we need an argumentation system that is able to provide the user a human readable rea-
soned explanation of what’s wrong with the publication (in the case there is any privacy
issue) in order to learn from it.



2.2 Privacy Management in Online Social Networks 13

Automation Concealment Protection Reasoning Genericity
Facebook 7 3 7 7 7

Primma-Viewer 7 3 7 7 7

FaceBlock 3 3 3 7 7

CoPE 7 3 3 7 7

PriNego 3 3 3 7 7

PriArg 3 7 3 7 7

Table 2.1: Comparative of different privacy management systems

2.2.1. Comparative of Existing Privacy Management Systems

In [25, 22] six concepts are presented in order to compare different privacy management
systems: automation, concealment, persuasion, external consultation, fairness and pro-
tection. As we can observe in Table 2.1, the comparative between methods done in this
work uses some of those concepts proposed in previous work but some new properties
are also introduced, since it may be interesting for the understanding of our work.

Automation refers to the capacity of the system of working without human interven-
tion. Only FaceBlock, PriNego and PriArg are automatic systems. With a previous user
configuration these three systems are capable to handle with the privacy management
by their own way. Other systems like Facebook, Primma-Viewer or CoPE require of user
intervention for each privacy conflict detected.

Concealment is the property that determines if a system reveals the hidden configura-
tion of a user to other users. Since we are working with privacy issues, we consider the
own privacy configuration as an important feature to keep hidden from other users in or-
der to preserve users privacy. Most of the systems have this property, in any of Facebook,
Prima-Viewer, FaceBlock, CoPE or PriNego, privacy preferences are hidden from other
users. But PriArg, reveals users privacy configuration in order to justify the arguments
generated. Argumentation is an important positive step in the development of a privacy
management system, however, we need an argumentative system that not endangers the
most basic privacy feature, the user preferences.

Protection refers to the capacity of a method when dealing with privacy violations. A
privacy violation can be solved before or after the publication has been done. It is a very
important issue to deal with a violation before the content has been published. There-
fore, we desire that any privacy management system has this property. Both Facebook
and Primma-Viewer do not have this property. These two systems provide users with the
options to deal with a privacy violation once the content has been published and there-
fore, the damage has already been done. FaceBlock, CoPE, PriNego and PriArg deal with
any potential privacy violation before publishing the content so, with these systems there
will always be less violations than with systems without protection property.

Reasoning is the property that determines if the user is given a reasoned explanation of
which is the best decision and why. None of the systems gives an explanation to the user.
Therefore, there is no system with reasoning property, a very important property for the
specific domain of this work. As we have mentioned before, it is not only desirable to
deal with privacy violations, but also to be able to give users some kind of feedback in
order to reduce the number of future privacy violations.

Genericity is the property for determining whether a method is able to deal with any
kind of situation or is focused on a specific type of conflict. This is another relevant prop-
erty that is not fulfilled by any of the systems analysed in this work. It is desirable to have
a flexible system capable to deal with privacy violations either in a party or individual



14 Related Work

context. Most of the systems currently available are only focused on the controversial
MPPC, but they ignore the existing self privacy violations.

We have analysed many privacy management systems in this section, some of them
useful for some specific domains. However, we have defined the five desirable properties
that our system should have, and none of the already existing systems was complete
regarding the desired properties. In the next chapter we will specify the requirements
our system will have in order to settle the bases of this whole work.



CHAPTER 3

Requirements Specification

3.1 Introduction

3.1.1. Purpose

The requirements specification carried out in this work has been done following the
IEEE830 standard. The main purpose of this chapter is to provide a detailed compila-
tion of all the system functions and design constraints to be taken into account in order
to accomplish all the objectives of this project. There will also be an analysis over the
expected user characteristics and a review over all the constraints and dependencies of
our system.

3.1.2. Scope

An argumentation system is going to be designed and developed in this work. Our sys-
tem must be able to automatically extract the information needed from the social net-
work, to generate user profiles based on their personality and the data available on the
network, and it also must be able to capture when a new interaction is going to be per-
formed and generate arguments based on the context. The system will determine the
acceptable set of arguments and, in the case that user interaction is required, the system
must also be able to carry out a persuasive direct interaction between the social network
and the human user. The final goal of this work is to completely integrate the argumen-
tation system in a real social network and be able to validate and evaluate the behaviour
of it in a real environment.

3.1.3. Overview

In order to totally accomplish the objectives of this work, it is interesting to define a range
of requirements. These requirements must guarantee the correct behaviour of our system:
data extraction and processing, argument generation and solving, human-network inter-
action, etc. Therefore, this chapter has been structured as follows. Section 3.2 contains
a general description of the work in order to contextualise our objectives. In Section 3.3
all the requirements and constraints of our system are listed and defined. In this work,
we will focus on the functionality of the system since we consider it as the key feature to
completely achieve our objectives.

15



16 Requirements Specification

3.2 Overall Description

3.2.1. Work Perspective

The argumentation system proposed and implemented in this work is framed in the
Agentes Inteligentes para Asesorar en Privacidad en Redes Sociales (AI4PRI) Spanish project
TIN2017-89156-R funded by the Ministerio de Ciencia, Innovación y Universidades. In fact,
one of the project’s objective (T03) is "To develop an argumentation framework that al-
lows influencing on the behavior of users through the exchange of arguments, based on
the preferences and values associated with the user’s privacy.". Therefore, the system
developed in this work will be completely functional in the PESEDIA environment, the
social network that frames AI4PRI project. The system will be implemented in Python3
and deployed as a service accepting requests from PESEDIA.

PESEDIA [10] is an educational social network developed with Elgg and using PHP.
A plugin for the network will also be implemented in order to capture events and make
requests to our argumentation system properly. Therefore, our plugin will follow all the
Elgg constraints and requirements in order to be able to totally integrate our argumenta-
tion system in the PESEDIA environment.

3.2.2. System Functions

The argumentation system carried out in this work must be able to assist human users in
privacy management when a privacy violation is detected. Therefore, the system must
accomplish the following functionalities:

• Receive requests from the OSN plugin.

• Detect privacy violations before the content is published.

• Extract the required information from the social network.

• Automatically generate user profiles based on the actions made in the OSN and
personality surveys.

• Generate internal arguments in favour or against sharing some content based on
the information retrieved from the network.

• Score the arguments based on the value preferences of the user profiles generated.

• Internally decide whether some content should or not be published taking into ac-
count the scores obtained by the arguments.

• Translate internal arguments to human readable template based arguments.

• Save statistics about behavioural changes in OSN users.

• Send results to the OSN plugin.

In addition to these functions defined for the argumentative system, the plugin de-
veloped to integrate the system within the OSN must also implement the following func-
tions:

• Send requests from the OSN to the argumentation system.



3.3 Specific Requirements 17

• Make specific queries to retrieve the required information from the OSN database.

• Receive results from the argumentation system.

• Display the arguments to the OSN users in order to give a reasoned explanation
about the privacy issues.

3.2.3. User Characteristics

The argumentation system is a user assisting tool for privacy management. Therefore, the
target user is a non-specific knowledge user. Since this work is framed in an educational
project, the main users of the system will be 13-14 year old users with elementary school
knowledge. Even though these will be the main users of this system, it is not limited to
any type of specific user/knowledge so, any social network user is a potential user of our
system, regardless of the age and/or the knowledge.

3.2.4. Constraints and Dependencies

The system will be implemented in python and deployed as a web service. In order to
correctly run our system, we identify the following constraints and dependencies:

• The installation of Python3 is required.

• Numpy and Flask python libraries must be installed.

• The system must run on a server or a stable machine connected to the OSN.

• Some specific ports must be opened in order to correctly communicate with the
social network plugin.

All these dependencies are defined regarding the argumentation system service by its
own, but a plugin must also be implemented. The plugin has to be integrated into the
allready developed OSN called PESEDIA, therefore some other constraints and depen-
dencies show up regarding the plugin being integrated in the OSN:

• The machine holding the OSN must have Ubuntu 16+ operative system.

• Apache server, MySQL 5.7+ and PHP 7+ are required.

• Elgg 2.3.10 must be installed.

Considering all these constraints and dependencies defined, the next section provides
a detailed list of specific requirements defined in order to fully meet our objectives.

3.3 Specific Requirements

In this section, the compilation of all the requirements of our system has been listed. The
section has been divided into two different blocks. The first block contains the list of all
the functions that our system must be able to carry out. The second block consists of a
list of all the requirements and constraints regarding the design of the system.



18 Requirements Specification

3.3.1. Functions

Identifier F01
Name Privacy violations detection
Description Automatic detection of privacy violations.
Input The textual content of the publication and user profiles in-

volved
Output Yes/No

Table 3.1: Function F01

Identifier F02
Name Privacy analysis
Description Calculation of user’s concern regarding privacy
Input Privacy preferences
Output Value in range [0,1] being 1 the most private configuration

and 0 the less private configuration settings

Table 3.2: Function F02

Identifier F03
Name Trust measurement
Description Computation of the trust value between two different

users.
Input Direct trust rating values and user profiles
Output Trust value in range [1,0] being 1 the highest trust and 0

the lowest trust between 2 users. Two different values are
computed, since trust is not a symmetric value.

Table 3.3: Function F03

Identifier F04
Name PRS computation
Description Obtain the propagation risk metric for a given publication

and a specific OSN topology.
Input Publisher user id and OSN user relationships
Output PRS value in range [0,1] being 1 the maximum risk and 0 if

there is no risk

Table 3.4: Function F04

Identifier F05
Name Content analysis
Description Analysis of the content of some specific publication.
Input The textual content of the publication
Output Vector with the parameters defining each type of content

appearing in the publication

Table 3.5: Function F05



3.3 Specific Requirements 19

Identifier F06
Name Feature extraction
Description Adapts and processes all the features previously extracted

in order to make them usable by the system
Input F02, F03, F04, F05 outputs
Output Dictionary structured data with requested features

Table 3.6: Function F06

Identifier F07
Name User profiling
Description Automatic generation of user profiles based on actions in

the OSN and personality surveys
Input Survey results
Output Vector with the parameters defining an specific user profile

(big 5 values)

Table 3.7: Function F07

Identifier F08
Name Internal argument generation
Description Automatic generation of internal arguments from the fea-

tures extracted from the network
Input Feature dictionary
Output List of 3 element tuples that define each internal argument

Table 3.8: Function F08

Identifier F09
Name Argument scoring
Description Assign each argument a customised score depending on

each user profile involved
Input User profile and internal argument
Output Score value for the argument

Table 3.9: Function F09

Identifier F10
Name Argumentation solving
Description Deciding whether some content should be published or not
Input List of scored internal arguments
Output Yes/Not

Table 3.10: Function F10



20 Requirements Specification

Identifier F11
Name Argument translation
Description Generate human readable arguments from the internal ar-

guments (3 element tuple)
Input Internal argument
Output Template generated argument

Table 3.11: Function F11

Identifier F12
Name Persuasive statistics saver
Description Save statistics about the behaviour changes occurred in the

network in order to evaluate the persuasiveness of our sys-
tem. The number of times that the argumentation system
has interacted with human users, which type of arguments
have been involved in users persuasion and the order of the
displayed arguments.

Input Directory
Output File with statistics recorded (Times persuaded/not per-

suaded, type and order of the arguments used by the sys-
tem)

Table 3.12: Function F12

3.3.2. Design Constraints

Identifier DC01
Name Time efficiency
Description Since all the process will happen whenever a user tries to

publish some content, the computation must be time effi-
cient in order to don’t make the user wait

Table 3.13: Design Constraint DC01

Identifier DC02
Name Automation
Description The system must operate automatically, the user must not

be involved in any systems task except from the direct user
interaction phase

Table 3.14: Design Constraint DC02

Identifier DC03
Name Concealment
Description Any user privacy preference or configuration must never

be revealed by the system

Table 3.15: Design Constraint DC03



3.3 Specific Requirements 21

Identifier DC04
Name Protection
Description The system must be able to prevent any type of privacy vio-

lation detected in the social network and persuade the user
with arguments

Table 3.16: Design Constraint DC04

Identifier DC05
Name Reasoning
Description The system must be able to provide reasoned explanations

of the violation detected to the OSN user

Table 3.17: Design Constraint DC05

Identifier DC06
Name Genericity
Description The system must be able to take part in any type of interac-

tion in the OSN domain (not only MPPC)

Table 3.18: Design Constraint DC06

Identifier DC07
Name Persuasive
Description The template based arguments generated by the system

must show good persuasive performance

Table 3.19: Design Constraint DC07

Having defined all the requirements of our system we have been able to set the bases of
this work. In the next chapter the we will define the argumentation system, the formali-
sation of our framework, the designed architecture and the human-computer interaction.





CHAPTER 4

Argumentation System

In this chapter, we define our argumentation system as an educational tool to preserve
the privacy of the users of an online social network. To this end, we assume that the
system operates in a OSN that includes the common features of these networks (e.g.
user information and preferences, friends, groups, privacy configuration) and that allows
users to perform common social actions (e.g. posting a comment, sharing a photo) [35].

Taking [32] as the starting point to define our argumentation system, the chapter is
organised as follows: in Section 4.1, the framework designed in this work is formally
defined, in Section 4.2, the architecture of the system is depicted. Finally, in Section 4.3,
the chosen way to carry out the user-network direct interaction is explained.

4.1 Framework Formalisation

Our Argumentation Framework is based on Quantitative Bipolar Argumentation Frame-
works (QBAFs) [5] previously defined.

Definition 5 (Argumentation Framework for Online Social Networks). We define an ar-
gumentation framework for online social networks as a tuple AFOSN = <A, R, P, τp>
where: A is a set of n arguments [α0, . . . , αn]; R is the attack relation on A such as A×A
→ R; P is the list of e profiles involved in an argumentation process [p0, . . . , pe]; and τp
is a function A× P → [0, . . . , 1] that determines the score of an argument α for a given
profile p.

In our framework, each individual argument α = (β, T, D) is defined by three param-
eters. β is the claim or bias of the argument. It is represented as a binary variable that
determines whether an argument acts in favour or against performing an action in the
social network. T is the label of the argument, which represents the four different types
of arguments that can be generated by our argumentation system: Privacy, Trust, Risk
and Content arguments. Finally, D is the support of the argument. This parameter con-
sists of a value representing all the information gathered from the social network in order
to infer the claim of a determined type of argument, and hence depends on the type of
argument.

Each relationship r = (αi, αj) represents an attack from αi towards αj. As proposed in
[27] and [29], a rebuttal attack happens when an argument invalidates other argument’s
claim (e.g. α1 = (-1, T1, D1) rebuts α2 = (+1, T2, D2) and vice versa). On the other hand,
an undercut attack is carried out when an argument’s claim invalidates other argument’s
support. The internal argumentation process performed by our system to generate argu-
ments for a particular action in the OSN only allows rebuttal attacks.

23



24 Argumentation System

Regarding the user profile, we define p = (ν,ρ,M) as the combination of the preference
values ν, the personality ρ and a list of miscellaneous information M.

The preference values ν is a vector containing the preferences that each user has to-
wards a determined value that the arguments of our system may promote [6]. We pro-
pose the following preferences based on [33] to be considered in our system: Privacy/Pop-
ularity, Closeness/Openness, Flexibility/Intransigence and Content Sensitivity. The first three
bipolar preferences P/P, are defined as a value v in the [0,1] range, being v the value as-
signed to P and (1 - v) to P. Therefore, a user profile with Privacy/Popularity = 0.2 would
have a 0.2 preference for Privacy and (1 - 0.2) preference for Popularity. The Content Sen-
sitivity preference is defined as a value v in the range [0, 1] being 1 the maximum concern
about the content sensitivity and 0 if the user does not really care about this preference.
This value is calculated as the average of the 6 different types of content considered in
this work and explained in subsection 4.2.1.

The personality of a user profile ρ is a 5 dimension vector that models the personal-
ity of a determined user based on the five parameters proposed in [31]. The personality
dimensions taken into account are the Openness, Conscientiousness, Extraversion, Agree-
ableness and Neuroticism. Here we assume that this information is available since users
of the network have undertaken a personality test or else, that these dimensions can be
automatically determined by the activities of the user in the social network [21].

The last part of the user definition (M) is a set of general information extracted from
a specific user profile such as the age, location, likes, etc.

Finally, we define the scoring function τp as the function that takes an argument α and
a profile p as input and determines the value of the argument in the context of a specific
user profile. In order to obtain this score, function τp is defined as,

τp(α, p) = αβ · αD · pνi (4.1)

Thus, the score of an argument for a determined user profile is basically the product of
the claim αβ (in favour or against) of that argument, the support value αD of the argument,
and the preference value pνi that promotes the argument.

Definition 6 (Defeat). An argument αi ∈ A defeats another argument αj ∈ A in a context
determined by a user profile p iff (αi, αj) ∈ R ∧ |τp(αi, p)| > |τp(αj, p)|.

Then, we can define de f eatp(αi, αj) if there exists a relation between both arguments
and the score of the argument αi is higher than the score of the argument αj. It means
that the argument αi is promoting a value that is preferred by the user that receives the
argument.

Definition 7 (Acceptability). An argument αi ∈ A is acceptable in a context determined
by a user profile p iff ∀ αj ∈ A ∧ de f eatp(αj, αi)→ ∃αk ∈ A ∧ de f eatp(αk, αj).

In other words, we consider that an argument is acceptable if there are not other
undefeated arguments attacking it.

4.2 System Architecture

An argumentative process is defined by the achievement of four main tasks: identifi-
cation, analysis, evaluation and invention [39]. Our system consists of four different
modules designed to perform all these essential tasks (see Figure 4.1).



4.2 System Architecture 25

Figure 4.1: Architecture of the argumentation system.

4.2.1. Feature Extraction Module

This module is in charge of processing all the relevant information for our framework
directly extracted from the OSN. The information obtained by this module will be used
to model user profiles and to get the parameters that will define an argument in our
system.

The main purpose of modelling user profiles is to be able to learn which arguments
are more persuasive to what type of user. Since one of our goals is to maximise the per-
suasion of our system, by defining a set of user profiles it is possible to do a generalisation
of that problem depending on the user’s activity in the social network. The information
extracted to define the profiles of users is obtained basically from three sources: the users
profile preferences, the personality analysis and the miscellaneous information.

The privacy configuration of each user is the first source from where, it is possible to
define a privacy vector that characterises each user. Usually, a social network user defines
some privacy parameters when registering. Those parameters usually are the profile
visibility (e.g. public, friends, private, etc.) and the default target of own publications
(e.g. public, friends, group, private, etc.). With the use of the OSN this information can
be updated in order to accurately model the privacy preferences of the users.

For the personality analysis, as pointed out before, the users’ personality can be ob-
tained either with a survey or by analysing users activity and interactions, considering
the big five model [31].

Finally, when creating a profile in a social network some personal information is
added by the user (e.g. the age, the location, the likes, etc.). All this data can also be
extracted to generate the user profiles for our system. Concretely, the miscellaneous in-
formation can be useful to determine the differences between two different user profiles.

Apart from the users profile information, the feature extraction module also obtains
all the parameters required to generate arguments in our system from the OSN data.
Those parameters are mainly divided into three types: the trust, the Privacy Risk Score
and the content features.

Trust is commonly understood as a way to measure the strength of a tie in a social
network. In order to formally define the trust metric we can assume a directed graph Gt =
(N, E) that represents the topology of the OSN. Let N = {i ∈ {1, . . . , |N|}} be the set of nodes
where i represents a user, and E = {(i, j) ∈ N × N } be the set of edges representing an
existing relationship from i towards j. Therefore, the trust value ti,j indicates the strength
of the tie that links user i with user j. It is important to emphasise that, since one of the
main properties of the trust is the bidirectionality, the value of ti,j may differ from tj,i.

Another important parameter that the system extracts from the network usage is the
Privacy Risk Score (PRS). Proposed in [2], PRS is an alternative way to measure the
reachability of a determined user in the social network. Therefore, the PRS provides
information of the risk of sharing a determined information to non-desired users.



26 Argumentation System

To calculate the PRS, the number of stages through where the shared information
passes is defined as T. This variable represents the maximum deepness that a post can
reach starting from the original user. It is also important to define a T × N reachability
matrix γi for each user i of the total OSN’s population N. This matrix is built in order to
register the number of posts spreaded by a determined user i in a concrete stage t and
have been received by other users.

The matrix γit,j is used to refer to the value from the γ matrix of a user i in a deter-
mined stage t respect to another user j. That value can be found in the t row and the j
column of the γi matrix, being the number of messages sent by i and reached by j in a
determined stage t. On the other hand, the notation Lai(l) means the set of users that can
be found in the l deepness level starting from the user i.

Therefore, given a stage t of the flowing process, at a deepness level l and starting
from the i user we define the Equation 4.2 as the average of the users that on this deepness
level can read the post in the stage t.

p(i, t, l) =
∑jεLi(l) γit,j

γit,i

(4.2)

With the value obtained from the latter equation, it is possible to get the PRS value
for a user i in a level l as proposed in Equation 4.3. This value can be interpreted as the
percentage of users that can read the post made by i at any stage.

PRS(i, l) =
1
T

T

∑
t=1

(
p(i, t, l)
|Li(l)|

)
(4.3)

Finally, by combining this two equations it is possible to obtain the PRS value from
all the OSN population. This computation is defined in Equation 4.4 for any i user as the
percentage of users that will be able to read the post made by that user at any stage.

PRS(i) =
1
T

T

∑
t=1

(
∑jεN γit,j

γit,i |N|

)
(4.4)

This measure can be really useful combined with the user profiles and their privacy
configurations in order to prevent making any information public for more than the ex-
pected users.

The third parameter used in our model to build arguments is the result of analysing
the own content of the publication. The content features are extracted from an analysis
of the text, we have defined the following classes of sensitive information considering
the ones proposed in [11]:

• Location. Information that reveals the location of any user involved in the interac-
tion.

• Medical. Information that reveals the medical condition of any user involved in
the interaction.

• Drug. Information that reveals the use of any kind of drugs/alcohol.

• Personal. Information that reveals any kind of personal information. From the
sexual orientation or the job, to more identifiable information as the credit card
number, the address or the birth date of any user involved in the interaction.



4.2 System Architecture 27

• Family/Association. Information that reveals the family members or their associa-
tions.

• Offensive. Information that may harass or offend other users.

The feature extraction module must determine whether a text feature contains sensi-
tive information or not, and classify the sensitive information in any of those classes.

4.2.2. Argument Generation Module

The argument generation module processes all the information gathered by the Feature
Extraction Module in order to create abstract arguments following the guidelines of the
argumentation framework. This module generates four different types of arguments
based on the type of information extracted from the OSN:

• Privacy Arguments. This class of argument emphasises on privacy vulnerabilities.
The argumentation system is able to create privacy arguments with the data ob-
tained from the user profile modelling. The argument is generated by computing
the distance between the privacy configuration of the user and the privacy config-
uration of the publication. If the distance does not surpass a predefined threshold,
the argument will have a positive bias. On the other hand, if it surpasses the thresh-
old the bias of the argument will be negative. Let us assume for example, a user
profile with a very restrictive privacy configuration. If that user tries to make a
publication containing personal information and sharing it with all the network,
the argumentation system will create a set of arguments regarding the privacy in-
coherence between the user profile and the action being done. Therefore, the main
feature to generate privacy arguments is the privacy configuration vector of each
user.

• Trust Arguments. Since the purpose of an OSN is to interact with other users, it
is a very common situation when a user involves other users with its actions. An
effective way to handle those privacy conflicts is to generate trust arguments. An
argument of trust contains all the information extracted from the social network rel-
ative to the strength of the ties between users. These arguments are generated from
the trust and the reputation computed with the information from the feature extrac-
tion module. Concretely, if trust from users involved in the publication towards the
user making the publication is not enough (i.e. does not surpass an established
threshold), an argument of trust against performing the action will be generated.

• Risk Arguments. When making a publication, it is impossible for the author to es-
timate how many users will be able to reach the information being published. Risk
arguments are generated in order to warn the user about the risk of the publication
being read by any undesired user of the network. The main feature used to generate
arguments of this type is the PRS, since the own metric is a risk indicator. Having a
high risk value will make the system generate an argument of risk against making
the publication.

• Content Arguments. Content arguments are generated from the data obtained by
the content features analyser. Therefore, there can be as many content arguments
as classes of content defined before. In addition, depending on the user personality
and privacy configuration some types of content arguments may be more or less
persuasive. Let us suppose that there is a specific user who usually shares medical
content on the OSN. To warn that user of the risks of sharing medical content may



28 Argumentation System

have no sense. But, now we will assume that same user shares a post containing
personal information. The system will detect the risk of sharing personal informa-
tion and a higher score will also be given to this specific content argument than to
the medical one.

The output of this module is an argumentation graph Ga = (A, R) where arguments
are the set of nodes A = { α ∈ {1, . . . , |A|}} where each α is an argument, and edges are
the relationships R = {(i, j) ∈ A × A}, where argument i attacks argument j. Therefore,
once the set of arguments is generated, the module also creates the relationships between
arguments.

In our argumentation framework, a relationship between arguments is defined by the
attack relation. To determine if there exist an attack relationship between two different
arguments, the parameter bias is used. An argument positively biased and an argument
negatively biased are both attacking each other by definition.

4.2.3. Solver Module

The solver module of our argumentation system performs the task of evaluating the ar-
gumentation graph. To solve our argumentation graph we apply the function τp to the
set of arguments generated, and the profiles involved in the argumentation process. Fi-
nally all the scores are added and the system checks if the result is positive or negative to
decide the set of acceptable arguments.

sol =
|A|

∑
i=1

τp(αi, p) (4.5)

where A is the set of arguments, α is a specific argument, p is the user profile creator
of the content being evaluated and τp is the score function defined before. If the result is
positive, there are no reasons to persuade the user on modifying his/her action. On the
other hand, if the result is negative, the system keeps all the negative biased arguments
and sorts them by their score in order to try to persuade the user to modify his/her action.

4.2.4. Dialogue Module

The purpose of this module is to handle the communication between the argumentation
system and the human user. This module receives the set of A′ acceptable arguments and
an argumentation strategy πa. We define an argumentation strategy as the policy that
an argumentation agent adopts when facing an opponent (either human or agent). In our
system, we have implemented this policy as a specific order to show arguments to the
user. The dialogue module uses each argument αn ∈ A following the strategy πa in or-
der to persuade the user to modify his/her action. In our case, the arguments are used
following a decreasing order, from higher to lower score. However, the definition of spe-
cific argumentation strategies remains opened as future work. In the next section there
is a more detailed review about our system behaviour when facing the user interaction
phase.

4.3 User-network Interaction

Once the acceptable set of arguments is defined, only in the case where the arguments
are against doing an action, an interaction between the social network and the user must



4.3 User-network Interaction 29

be started. On this section we will define how does the interaction process between the
social network and the human user works.

Figure 4.2: Structure of interaction process

A scheme of this process is depicted in Figure 4.2. As it can be observed, the inter-
action is divided in three main steps. The first one is to apply the persuasion strategy
selected and to order the set of arguments in order to maximise the persuasion. This
problem can be approached either with reinforcement learning techniques, as proposed
in [20] and [26] or by matching argument schemes with persuasive properties as pro-
posed in [37]. In this work, we have followed the basic approach of taking the order of
the score of the arguments obtained for each user profile involved in the process. Imple-
menting and testing more complex approaches remains future work.

The second step of the interaction process consists on the own argument exchange
with the user. The system will use each argument of the ordered set one by one and the
user will have the possibility of asking the system for more arguments. Finally, the last
step is completely in the hands of the user. Once the user made up his mind (persuaded
or not), the user must accept or refuse. By accepting, the user will stop from making the
publication in the OSN. The privacy violation can be fixed by modifying the initial pub-
lication in order to respect the users privacy preferences, or in the worst case by giving
up of doing that action. On the other hand, if the user refuses to take the arguments into
account, the publication will be done and a potential privacy violation with it.

The direct interaction with the human user is very important and the system should
be able to persuade any kind of user independently of their profile. Once the system
has computed all the scores for all the existing arguments, the arguments against making
the publication (the ones used to persuade the human user) are ordered from the highest
score to the lowest score. Since the user profile is involved in score calculus, we can
consider that each strategy will be different for each user unless two users share a profile
with the same features. When all the arguments are ordered, the system generates the
template based readable arguments as we explain in the next subsection.

4.3.1. Template Based Arguments

From the persuasive viewpoint, it is very important how the information is displayed to
the user. Once all arguments are ordered and ready to be used, they must be translated
into a human readable shape. Therefore, we have chosen, as a first approach, to generate
arguments from a template. Based on the values that define each internal argument (3
element tuples) we will generate one or another argument with some specific shape as
depicted in Table 4.1. Since the environment for which the system is being developed
is an educational Spanish platform, the arguments showed below have been written in
Spanish.

It is very important to remark that none of the templates used reveal any type of other
users’ confidential information (e.g. privacy configurations, trust values, etc.) since that
could be a critical issue in our system. In fact, if we analyse each one of the templates



30 Argumentation System

Type of Argument Argument Generated
Privacy ’La publicación va a ser leida por... (’nadie.’, ’tus amigos.’, ’una colección de amigos.’,

’todo el mundo.’)’
The publication is going to be read by... (no one., your friends., a collection of
friends., all the users.)

Trust ’Alguna de las personas que mencionas podría molestarse.’

Some of the people you mention might get upset.
Risk ’Tu publicación podrá ser leída por personas desconocidas.’

Your publication may be read by unknown people.
Location ’Puedes estar dando información de dónde estas o dónde vas.’

You can be revealing information about where you are or where you’re going.
Medical ’Puedes estar publicando información médica privada.’

You may be publishing private medical information.
Drugs ’La gente podría pensar que consumes drogas/alcohol.’

People might think you’re on drugs/alcohol.
Personal ’Podrías estar publicando datos personales sensibles.’

You could be publishing sensitive personal data.
Relatives ’Podrías estar haciendo pública información relacionada con familiares o amigos.’

You could be making public information related to family or friends.
Insults ’Tu publicación podría ofender a las personas que la lean.’

Your publication might offend the people who read it.

Table 4.1: Template based arguments generated by our system.

we can observe a common feature, all the arguments used can be seen as reasoned soft
recommendations since none of them are aggressive towards the human user to be per-
suaded. With this, we attempt to work with a friendly environment and don’t make the
user feel self-conscious.

4.3.2. User Responses

Finally, when a user receives an argument it is also very important to define the set of
actions available as response to that argument. When a privacy violation is detected
and therefore, an argumentation process is started, the user will have the first argument
displayed in the interface. The options available for this argument will be to agree or to
refuse it. If the user agrees with the argument, the user will have the chance to modify the
publication or, in a worst case, to decide not to publish that content. On the other hand, if
the user wishes to have more reasons, the second argument will be displayed and so on.
Finally, if the user disagrees with the argument, it is also possible to publish the content
without regarding the information provided by our argumentation system even though
that action can start a privacy dispute in the OSN. It is important to guarantee that the
users can make their decisions freely.

With this approach, when a privacy violation is detected, all users will have at least
to read the first argument before making the publication. Then the user can decide to
publish the content without reading more arguments or to disagree with the argument
but keep reading the following available arguments. The idea is to be able to measure
the effectiveness of our system approach by analysing how many users take into account
the arguments provided and displayed by the system.

In this chapter, the argumentation system has been proposed and a fine-grained de-
scription of the system behaviour has been provided. This proposal has been published
at the 19th Workshop on Computational Models of Natural Argument (19th CMNA) [32].
In the next chapter, we will explain the implementation process carried out to make our



4.3 User-network Interaction 31

argumentation system completely functional and the process followed in order to inte-
grate our system with the PESEDIA social network.





CHAPTER 5

Implementation and Integration

5.1 Introduction

The main purpose of this chapter is to describe the implementation process carried out
and the integration of the argumentation system into PESEDIA, an educational OSN.

This chapter is structured as follows. In Section 5.2 all the technologies used to carry
out this work are presented. In Section 5.3 the implementation process of the argumen-
tation system is depicted and in Section 5.4 the deployment process of the system is
explained. In Section 5.5 we explain the development of the plugin that integrates the
argumentation system with the social network. Finally, in Section 5.6 the communication
between the system and the network, and the dataflow between both of them is explained.

5.2 Technologies

To fulfil the development of both argumentation system and plugin, several technologies
have been used. The decision of using the following technologies has been made taking
into account the context of this work, but also trying to be as straightforward as possible.
Each of the technologies used is briefly described below.

• Python. This programming language is an interpreted high-level, dynamic typed
and multiplatform programming language. One of its main characteristics is its
readability due to the use of the own indentation as one of its syntax rules. Even
though Python is an scripting language, it also supports object oriented program-
ming, functional programming or procedural programming, among others. This
language has also a huge collection of libraries and packages with many varied
functions that make easier to start working on new projects. Python has been cho-
sen as the main language to implement the argumentation system engine.

• Numpy. This is the main Python package for scientific calculus. NumPy provides
us the main tools and technologies to work with huge matrices and to process data
easily. It is mainly used for efficient vector operations in the argumentation system.

• Flask. This package makes possible to build web services. Flask is a web frame-
work developed in Python that does not require any additional library. With Flask,
we have deployed our argumentation system as a web service in order to make pos-
sible the communication with the social network and the exchange of messages.

• Apache. This technology provides the necessary tools to build HTTP servers. Apache
is an open source project that makes possible to develop and maintain HTTP servers

33



34 Implementation and Integration

in modern operating systems. With Apache, it has been possible to do the commu-
nication between the argumentation system and PESEDIA safely and complying
with all the restrictions that have been found in the process.

• Elgg is an open-source social networking engine. It provides a framework to build
any type of social network from scratch. The PESEDIA network has been developed
using this framework. To integrate our argumentation system with this network,
an Elgg plugin has been implemented.

• PHP. This programming language, originally designed for web development, is the
main way to build and customise an Elgg social app. In this work, PHP is used to
implement the Elgg plugin required to integrate the argumentation system with the
OSN.

• JavaScript is an interpreted high-level programming language with many pur-
poses, commonly used in the development of web applications. This multi-paradigm
language supports event-driven, functional or imperative programming styles. In
the context of this work, we have used JavaScript in the plugin development. Specif-
ically, to add all the new functions to the OSN.

• Git. In order to have a proper version control of the project, Git has been used. The
implementation of both system and plugin has been carried out by one person, de-
spite this, the use of a version control system can be very useful to have a controlled
register of the modifications made to the project.

As it can be appreciated above, we can clearly distinguish two main groups from the
technologies depicted. The technologies used to implement the argumentation system
(Python, NumPy and Flask) and the technologies used to develop the social network
plugin (Elgg, PHP and JavaScript). The next sections give all the details about the pro-
cess carried out to implement and integrate the argumentation system and how these
technologies have been used for each purpose.

5.3 Argumentation System Implementation

The argumentation system has been completely implemented using Python as the pro-
gramming language. In order to have a proper organisation and to make easier to under-
stand the project for possible future modifications, the code has been structured with the
Python modules described below and graphically depicted in Figure 5.1.

Figure 5.1: Argumentation system structure



5.3 Argumentation System Implementation 35

where process.py is the web service file that makes the required calls to our system
files.

5.3.1. Feature Extraction

The feature_extraction.py module provides all the required functions to obtain all the in-
formation from the social network. Specifically the functions to retrieve the post privacy
configuration and content features, the author privacy preferences, the privacy risk score
(PRS) and the content values defining authors content preferences.

In order to capture the content features of the publication, a content analyser is used.
The content analyser integrated in the argumentation system has been developed by
other researchers of the group as another part of the same project (TIN2017-89156-R).
This content analyser makes possible to detect any of the 6 types of content defined in
this work. Therefore, a 6 element vector is obtained indicating which type of content has
been detected.

On the other hand, the values of author content preferences are also managed by
this module. Initially, every user has the same value (1) towards each type of content.
As posts are generated, the value regarding each type of content must be adjusted as
depicted in Equation 5.1

value(t) = max(1− n(t)
total

, ε) (5.1)

where n is the number of publications containing some specific type t and total is
the total amount of publications made by the user. We decided to model the content
preferences with this function since it is a way to have a proportional adjustment of each
value regarding the total amount of publications made by the user. It is also important
to emphasise that, with only the initial publications, the value regarding some specific
type of content can be dropped to the minimum without having much information. This
may happen if the user focuses all the initial publications on the same topic. To correctly
handle this situation, we decided to smooth the initial decrements with a minimum ε
higher than zero.

5.3.2. Argument Generator & Argumentation Solver

The implementation of both argument_generator.py and argumentation_solver.py modules
has been quite straightforward regarding the definitions provided in the subsection 4.2.2
and in the subsection 4.2.3. The generator receives the data gathered by the feature ex-
traction module and generates all the computational arguments, being each argument a
list of three elements (claim, type and score). The argumentation solver receives the list of
all arguments, aggregates all the scores and depending on the result of the aggregation
determines if there has been a significant privacy violation (negative aggregation) or not
(positive aggregation).

5.3.3. Argument Template

Assuming there has been a significant privacy violation regarding some specific publi-
cation, the main purpose of the argument_template.py module is to translate our computa-
tional arguments into a human readable shape following the criteria described in the last
chapter. Therefore, this Pyhton module receives as input the set of acceptable arguments



36 Implementation and Integration

given by the solver and, depending on the type of the argument, returns the pre-defined
text template associated to that specific type.

5.3.4. Persuasive Statistics

Finally, once the direct interaction with the human user finishes, the persuasive_statistics.py
module gathers and stores all the useful information from the argumentation process in
order to be able to evaluate and improve our argumentation system in newer versions.
Therefore, the data stored is the number of times that a user gets persuaded when start-
ing an argumentation process, the arguments required to persuade the user and its order,
and the number of times that the system fails to persuade a user. With all this information
it is possible to observe not only the effectiveness of our system but also the effectiveness
of each type of argument defined in our framework.

At this point it is important to remark that all the data gathered by this module is
completely anonymous. In addition to all the data described before, an ID is also saved
in order to have a reference to match data from different sources. Once the usage of the
network finishes, it is not possible to reach any real names or personal data with this ID.
As stated before, the only purpose of this ID is to be able to link data gathered by different
modules in a coherent way.

Before registering to the PESEDIA network, all the data that is going to be gathered
and used is clearly enumerated and the user must agree with it. Therefore, the data
processed and stored by this module complies with all restrictions stated in the Spanish
"Ley Orgánica de Protección de Datos Personales y garantía de los derechos digitales." (LOPD-
GDD).

5.4 Argumentation System Deployment

In order to manage the communication of the argumentation system with PESEDIA, the
system has been deployed as a web service. First of all, the system has been deployed us-
ing Flask, the Python library. It is also important to remark that the web service has been
deployed in the same server as PESEDIA. Additionally, due to the nature of PESEDIA, our
web service must be able to handle HTTPS requests, since all the data is encrypted fol-
lowing the HTTPS protocol. Therefore, all the required certificates are loaded and used
by the web service.

On the other hand, since the web service is deployed in the same server as PESEDIA,
we developed an Apache configuration file. This file has been developed as a proxy, to
redirect the requests from the url in which the OSN is located to the port being listened by
our web service. This step is very important to correctly send and receive requests, since
due to the limitations of the UPV, it was not possible to easily open the desired ports of the
server. It is also important to remark that the Apache configuration file developed also
complies with the HTTPS protocol. Therefore, all the communication steps are secure,
and all the data transferred has been encrypted following the HTTPS protocol.

5.5 Network Integration

The most important features of the implementation process of the argumentation system
have been explained. However, the system must be integrated into a social network in
order to take advantage of it. As it has already been mentioned in this work, the network



5.5 Network Integration 37

chosen to integrate the argumentation system is PESEDIA, an educational OSN. Since one
of the main objectives of the network is to educate teenagers on privacy management
and risks of OSNs, the use of the argumentation system developed in this work is ideal.
With it, the users can have a reasoned feedback on their actions in the social network
and justified recommendations on whether share or not some specific content. To make
easier to understand the context of this section, a brief description of PESEDIA has been
provided.

5.5.1. PESEDIA: An Educational OSN

PESEDIA [10] is a pedagogical OSN for educational and research purpose. Some of these
purposes are the development of behaviour change methods that can improve privacy
management from the user point of view, or the implementation of new functions to
assist users with content management. Therefore, PESEDIA is an ideal context to carry
out this work.

The social network was implemented using Elgg [14], an open source engine designed
to build and create social environments. The resulting social network is quite similar to
other social environments (e.g. Facebook). Figure 5.2 shows the architecture of PESEDIA.
As it can be observed, PESEDIA architecture is divided into two main layers: the Platform
Layer and the User Layer. The Platform Layer is the core of the architecture, it contains
the Social Network Services that provide the social network basic functions, and the Stor-
age System, which allows to store all the data generated with the usage of the OSN. On
the other hand, the User Layer has the purpose of managing the data associated to each
user profile. This data can be divided into three main categories, user information (e.g.
profile items, publications), user contacts and user privacy settings (e.g. privacy policies,
audience selectors).

Figure 5.2: PESEDIA architecture diagram



38 Implementation and Integration

5.5.2. Argumentation Plugin

The main way to modify, extend and add functions to an Elgg network is by the develop-
ment of plugins. Therefore, in order to integrate our argumentation system in PESEDIA

we have implemented an Elgg plugin that communicates with the system and makes
possible the direct human-network interaction. Every plugin must follow some specific
structure in order to be correctly loaded by the OSN. The structure of the plugin devel-
oped in this work can be seen in Figure 5.3.

Figure 5.3: Plugin structure

The files located in the root directory manifest.xml and start.php are the ones that make
possible to load our plugin and define its behaviour:

• manifest.xml contains the description of the plugin with the following mandatory
fields: id, name, author, version, description and requires. These parameters will be
displayed in the OSN configuration site and it is the main way to identify and be
able to distinguish between the different plugins available.

• start.php contains all the initial calls made by the plugin. In our case, this file will
extend the main view with the code located in /views/default/arguments.

Thus, the main view will be modified with the new functions defined in both files
arg.php and argumentation_session.js. These files make possible to display the arguments
processed by the argumentation system to the user and to have some interaction with
him/her.

• arg.php is the file that defines the extension of the main view. The main purpose
of this file is to load argumentation_session.js and to gather the required information
for the argumentation system. The information gathered by this file is the user ID,
the prs and the user privacy preferences.

• argumentation_session.js is the code in charge of adapting the network interface to
display arguments and making requests to the argumentation system when a user
wants to share some content. It also gathers the lacking data required to generate
arguments: the content of the publication and its privacy configuration.

As it can be appreciated, there must be communication between the argumentation
system and the network plugin in order to have the system properly working. The pur-
pose of the next section is to explain that communication process and give a complete
overview of the system operation.



5.6 System Operation 39

5.6 System Operation

When designing all the components of this work, one of the most important constraints
to take into account was to have a fast and smooth communication between the argu-
mentation system and the Elgg plugin. Since the system is intended to be used in a social
network, it would make no sense to make the user wait for the results of the system.
Therefore, the user experience must be similar to the use of the network without having
the argumentation system integrated. The interaction process between OSN and argu-
mentation system is graphically depicted in Figure 5.4.

Figure 5.4: Diagram of the communication between the network and the argumentation system

The argumentation system web server will always be listening for requests. Then,
every argumentation process will always be initialised by the plugin. For every user con-
nected to the OSN, when trying to publish some content to the network (e.g. Figure 5.5),
a request with all the gathered data is sent to the argumentation system web server. Once
the list of readable arguments is generated, a response to the OSN with this information
is sent. When receiving the response, the OSN displays the arguments to the user with a
pop-up as the one shown in the Figure 5.6.

Figure 5.5: Example of post triggering an argument in the PESEDIA network



40 Implementation and Integration

Figure 5.6: Pop-up displayed to the user with a content argument of location
(You can be revealing information about where you are or where you’re going.)

As illustrated in the figures, several options are given to the user following the user-
network interaction protocol defined in Section 4.3. In the case of detecting a privacy
violation, a list of arguments is generated. Therefore, the user can accept the argument by
choosing to modify the content of the publication, reject the argument by publishing the
content without taking into account the system arguments, and request another argument
in the case of not being yet sure of what to do.

The interaction with the user finishes when either he/she modifies the content or
publishes it without doing any change. Then, depending on the result of the interaction,
another message is sent to the web server containing all the data regarding the interaction
(e.g. the number of arguments needed to persuade the user, the type of the persuading
argument). Finally, the argumentation system processes and stores all these data in order
to be able to analyse it later on.



CHAPTER 6

System Evaluation

In this chapter, we present the different tests and evaluations made to validate the argu-
mentation system proposed and its implementation. The chapter is divided into three
main sections. Section 6.1 details the process carried out to analyse the performance of
the argumentation system web service by varying the amount of simultaneous requests.
In Section 6.2 it is explained all the functional validation performed in order to guarantee
the correct behaviour of our system in multiple situations. Finally, Section 6.3 explains
the persuasive evaluation defined to be carried out once having gathered all the usage
results.

6.1 Argumentation System Stress Test

The purpose of the argumentation system stress test is to find out the maximum feasible
load that our system can handle from a computational viewpoint. It is important to de-
fine the feasibility concept in order to understand the analysis performed in this section.
The social network where the system is going to be integrated is an educational social
network (PESEDIA) that will have a total population of no more than 200 users. In addi-
tion, the activity in the social network will be divided into batches. There will never be all
the users registered in the network connected at the same time. There will be 3 different
batches of 75 users each one. In order to carry out this stress test we have used JMeter1,
an open source application designed for testing Web Applications.

Taking the previous specifications into account, we performed different stress tests,
each test with a different amount of requests at the same time. Each petition contains the
same features. The chosen features trigger the feature extraction module so the system
is forced to generate both positive and negative arguments. Figure 6.1 represents the
amount of requests processed per second by our system. The red line represents an ideal
throughput where all the requests received are processed in a second. It is possible to
observe that only with 5, 10 and 15 requests at the same time we can approximate that
ideal situation. When the system receives more than 20 requests at a time, it is possible
to appreciate that the number of requests per second drops and gets stabilised around
12-13 pet/sec. Even though this may seem an inconvenient, it is also possible to observe
that there is no significant difference between receiving 20 or 75 requests at a time. As we
are making worst case assumptions for the stress test, it is possible to conclude that the
system will handle smoothly all the requests received.

1https://jmeter.apache.org/

41

https://jmeter.apache.org/


42 System Evaluation

Figure 6.1: Requests per second handled by the argumentation system

Figure 6.2: Time required to solve N requests at a time

Another interesting graphical representation of the data retrieved from the stress tests
can be observed in Figure 6.2. It graphically depicts the amount of time required to
answer all the requests received at the same time. It is possible to appreciate how the
time required to give an answer to 200 requests or less at a time increases moderately.
However, with more than 200 requests, the time required to process all of them starts to
increase exponentially. Anyway, focusing on the worst case that may happen when using



6.2 Functional Validation 43

the network (75 requests at a time) the response time will never surpass 6 seconds. This
is an acceptable wait time for our domain.

6.2 Functional Validation

Taking into account the nature of this work, it is very important to be sure that the system
will behave as expected. In order to be able to evaluate the persuasiveness of the argu-
mentation system proposed, we need to previously validate both generation and scoring
of arguments of the own system.

The functional validation is divided into four main validation steps, one per each type
of argument. For each validation step, we also defined different cases in order to test that
the system is generating the expected arguments and scoring them following the strategy
previously defined.

6.2.1. Validation of content arguments generation

The first validation step has been designed taking into account the content arguments
generation. Since six different types of arguments have been defined in this work, in or-
der to be able to see the behaviour of both argument generation and scoring, we decided
to define a content value vector that represents the author where the values follow a de-
creasing relationship. Six different cases with this configuration have been designed. In
each case a permutation over the content value preferences of the author is done. Addi-
tionally, we also considered the extreme cases where all the values are ones and zeroes as
depicted in Table 6.1. For all the cases considered in this validation step, we assume that
the same publication is going to be published. That publication contains all the possible
types of content. Therefore, we expect the system to generate all the possible content
arguments.

Taking into account the definitions provided in the Chapter 4, the arguments (claim,
type and support) have been generated correctly considering the content values prede-
fined. For instance, we can compare the data in the two first rows. It is possible to observe
how, with a publication containing all the content types, when having the content values
defined as input in the first row (1 to location, 0.9 to medical, 0.7 to drug, 0.5 to insults,
0.3 to relatives and 0.1 to personal) the system generates all the arguments scored with
the result obtained by applying the score equation τ previously defined. When we apply
a permutation on the values vector as in the second row respect to the first, the output
behaves as expected by swapping the scores between the expected arguments (location
with medical).

On the other hand, when looking at the extreme cases where all the values are the
same either ones or zeroes, we can observe how the arguments are also generated and
scored properly. Assuming the initial case when registering to an OSN (all values to one)
all the arguments generated regarding the content features of the publication will have
maximum score. If all the preference values are forced to be zero (this case will never
happen in a real situation due to the smoothed decreasing of the conten values) none of
the arguments will have any score different than zero.

For this first validation step, a second situation has been considered. In order to see
that the system is correctly generating the arguments not only depending on the user con-
tent values but also depending on the types of content detected, we propose the following
situations. As depicted in Table 6.2, different combinations have been defined. The first
publication containing the three first types of content (location, medical and drug), the



44 System Evaluation

Author: Content Values Arguments (Score)

[1, 0.9, 0.7, 0.5, 0.3, 0.1]
[-1, ’Location’, 1](-1.0), [-1, ’Medical’, 1](-0.9),

[-1, ’Drug’, 1](-0.7), [-1, ’Insults’, 1](-0.5),
[-1, ’Relatives’, 1](-0.3), [-1, ’Personal’, 1](-0.1)

[0.9, 1, 0.7, 0.5, 0.3, 0.1]
[-1, ’Location’, 1](-0.9), [-1, ’Medical’, 1](-1.0),

[-1, ’Drug’, 1](-0.7), [-1, ’Insults’, 1](-0.5),
[-1, ’Relatives’, 3](-0.3), [-1, ’Personal’, 1](-0.1)

[0.9, 0.7, 1, 0.5, 0.3, 0.1]
[-1, ’Location’, 1](-0.9), [-1, ’Medical’, 1](-0.7),

[-1, ’Drug’, 1](-1.0), [-1, ’Insults’, 1](-0.5),
[-1, ’Relatives’, 1](-0.3), [-1, ’Personal’, 1](-0.1)

[0.9, 0.7, 0.5, 1, 0.3, 0.1]
[-1, ’Location’, 1](-0.9), [-1, ’Medical’, 1](-0.7),

[-1, ’Drug’, 1](-0.5), [-1, ’Insults’, 1](-1.0),
[-1, ’Relatives’, 1](-0.3), [-1, ’Personal’, 1](-0.1)

[0.9, 0.7, 0.5, 0.3, 1, 0.1]
[-1, ’Location’, 1](-0.9), [-1, ’Medical’, 1](-0.7),

[-1, ’Drug’, 1](-0.5), [-1, ’Insults’, 1](-0.3),
[-1, ’Relatives’, 1](-1.0), [-1, ’Personal’, 1](-0.1)

[0.9, 0.7, 0.5, 0.3, 1, 0.1]
[-1, ’Location’, 1](-0.9), [-1, ’Medical’, 1](-0.7),

[-1, ’Drug’, 1](-0.5), [-1, ’Insults’, 1](-0.3),
[-1, ’Relatives’, 1](-0.1), [-1, ’Personal’, 1](-1.0)

[1, 1, 1, 1, 1, 1]
[-1, ’Location’, 1](-1.0), [-1, ’Medical’, 1](-1.0),

[-1, ’Drug’, 1](-1.0), [-1, ’Insults’, 1](-1.0),
[-1, ’Relatives’, 1](-1.0), [-1, ’Personal’, 1](-1.0)

[0, 0, 0, 0, 0, 0]
[-1, ’Location’, 1](0.0), [-1, ’Medical’, 1](0.0),

[-1, ’Drug’, 1](0.0), [-1, ’Insults’, 1](0.0),
[-1, ’Relatives’, 1](0.0), [-1, ’Personal’, 1](0.0)

Table 6.1: Validation step 1 results (first part)



6.2 Functional Validation 45

Publication: Content Detected Arguments (Score)

[1, 1, 1, 0, 0, 0]
[-1, ’Location’, 1](-1.0), [-1, ’Medical’, 1](-1.0),

[-1, ’Drug’, 1](-1.0)

[0, 0, 0, 1, 1, 1]
[-1, ’Insults’, 1](-1.0), [-1, ’Relatives’, 1](-1.0),

[-1, ’Personal’, 1](-1.0)

[1, 0, 1, 0, 1, 0]
[-1, ’Location’, 1](-1.0), [-1, ’Drug’, 1](-1.0),

[-1, ’Relatives’, 1](-1.0)

[0, 1, 0, 1, 0, 1]
[-1, ’Medical’, 1](-1.0), [-1, ’Insults’, 1](-1.0),

[-1, ’Personal’, 1](-1.0)

Table 6.2: Validation step 1 results (second part)

second one containing the last three types of content (insults, relatives, personal) and the
third and the last ones containing alternatively the different types of content. For this
second situation, we consider the same author is making those publications. The author
has all the content values settled to one.

Once again, it is possible to see how the correct arguments are generated. For this
second situation, different arguments have been generated for each case. In every case
the expected types of arguments have been generated with the maximum score each one.
This is due to the author that has all the content values initialised to one.

6.2.2. Validation of privacy arguments generation

The purpose of the second validation step is to assure that the privacy arguments are gen-
erated correctly. Four different cases are defined in this step. In each case we assume that
the user has a different privacy/popularity preference value: private (1), specific groups
or collections of friends (0.75), friends (0.5) or public (0), towards his/her publications.
We also considered different publications being shared. One publication configured to be
shared with public settings (0), one publication being shared with friends only (0.5) and
finally one publication shared in private settings (1). In Table 6.3 it is possible to observe
the results obtained.

Author: Privacy Value Publication: Privacy Setting Arguments (Score)
1 0 [-1, ’Privacy’, 1](-1.0)

0.75 0 [-1, ’Privacy’, 0.75](-0.5625)
0.5 0 [-1, ’Privacy’, 0.5](-0.25)
0 0 [+1, ’Privacy’, 1](0.0)
1 0.5 [-1, ’Privacy’, 0.5](-0.5)

0.75 0.5 [-1, ’Privacy’, 0.25](-0.1875)
0.5 0.5 [+1, ’Privacy’, 1](0.5)
0 0.5 [+1, ’Privacy’, 1](0.0)
1 1 [+1, ’Privacy’, 1](1.0)

0.75 1 [+1, ’Privacy’, 1](0.75)
0.5 1 [+1, ’Privacy’, 1](0.5)
0 1 [+1, ’Privacy’, 1.0](0.0)

Table 6.3: Validation step 2 results

In all these situations we can observe that privacy arguments have been generated. It
is also possible to appreciate how the arguments are scored. If the privacy of the publica-
tion is higher or equal than the user privacy/popularity preference, a positive argument



46 System Evaluation

is generated. In any other case, a negative argument is generated and scored following
the score function defined in this work. For example, the second row shows a situation in
which the privacy configuration of the publication is lower than the privacy preference
of the user. In this case, the support is computed as the distance between the value and
the privacy setting (0.75). The score is the product of the support by the value (with the
claim sign) as it can be observed (-0.5625). Therefore, both privacy arguments and their
scores are generated as expected by the argumentation system.

6.2.3. Validation of risk arguments generation

The third validation step aims to check the generation of risk arguments. Five different
cases have been defined for this validation step. Since the PRS is a user related parameter
computed and collected directly from PESEDIA, a gradual variation over this value is
taken into account. It is posible to appreciate the different configurations and results
obtained for this test in Table 6.4.

Author: PRS Arguments(Score)
0 [+1, ’Risk’, 1](1.0)

0.1 [+1, ’Risk’, 0.9](0.9)
0.4 [-1, ’Risk’, 0.4](-0.4)
0.8 [-1, ’Risk’, 0.8](-0.8)
1 [-1, ’Risk’, 1](-1.0)

Table 6.4: Validation step 3 results

Here, it is important to remark that the score assigned to each argument is the same
as its support. This is because we modeled all the users for this test having the maximum
preference value (1) regarding its privacy configuration (the score is computed by mul-
tiplying the support by the privacy value). It is also interesting to observe how the first
two cases generate a positive risk argument, when considering a positive argument, its
support is the complementary to the PRS value up to one. This is due to the threshold
defined. We consider any PRS over 0.2 a potential risk so, in order to minimise the noise in
the argumentation solving process, if the PRS value is under 0.2 the argument generated
is positive. Hence, the expected risk arguments are generated with their expected scores.

6.2.4. Validation of trust arguments generation

The last validation step tackles the trust arguments generation. Since two parameters
are involved in the scoring process of trust arguments, we tested the system taking into
account the values 1, 0.7, 0.4, 0 for the trust value and 1, 0.5, 0 for the closeness/openness
preference value (value that represents the importance of trust involved interactions for
a specific user). All possible combinations with these values have been tested. Therefore,
twelve different cases that cover all the possibilities have been considered as represented
in Table 6.5.



6.3 Persuasive Evaluation 47

User tagged
Arguments (Score)

Trust towards author Closeness/Openness value
1 1 [+1, ’Trust’, 1](1.0)

0.7 1 [+1, ’Trust’, 0.7](0.7)
0.4 1 [-1, ’Trust’, 0.6](-0.6)
0 1 [-1, ’Trust’, 1](-1.0)
1 0.5 [+1, ’Trust’, 1](0.5)

0.7 0.5 [+1, ’Trust’, 0.7](0.35)
0.4 0.5 [-1, ’Trust’, 0.6](-0.3)
0 0.5 [-1, ’Trust’, 1](-0.5)
1 0 [+1, ’Trust’, 1](0.0)

0.7 0 [+1, ’Trust’, 0.7](0.0)
0.4 0 [-1, ’Trust’, 0.6](0.0)
0 0 [-1, ’Trust’, 1](0.0)

Table 6.5: Validation step 4 results

A couple interesting properties can be seen in this table. First of all, a trust thresh-
old is defined. We consider that a tag in a publication may bother the user tagged if the
trust between the tagged user towards the author (first column) is lower than 0.6. There-
fore, in all the cases where the trust towards the author is higher than the threshold the
arguments generated are positive. On the other hand, in all the cases where the trust
value is lower than the threshold, a negative argument has been generated. Here it is
important to focus on the score assigned to those arguments. Since the lowest trust is 0,
we need to generate a negative argument with maximum score for that case depending
also on the preference value of the user (e.g. if the tagged user does not care about being
tagged in publications with other unknown people, the argument must not have a high
score). In order to achieve that, as for the negative arguments we expect the lower the
trust, the higher the score, the complementary value up to one is taken into account as
support. Therefore, it is possible to observe how the system is generating the expected
trust arguments with the correct scores following the properties previously defined.

6.3 Persuasive Evaluation

One of the main purposes of the system proposed and developed in this work is to be able
to persuade human users on decision making. Therefore, it is important to measure the
effectiveness of our system. In order to be able to evaluate how well does the system work
with an specific user we define the Persuasion Ratio (PR) as depicted in Equation 6.1.

PR(ui) =
per(ui)

tot(ui)
(6.1)

Where per(ui) is the number of times a specific user ui has been persuaded (i.e. when
receiving a system argument, the user decided either to cancel or to modify the publica-
tion) and tot(ui) is the total amount of argumentation processes started with that user.
It is also interesting to evaluate the system in a more global perspective. We define the
Average Persuasion Ratio (APR) depicted in Equation 6.2 in order to perform a global
evaluation taking into account the whole population of the network.

APR =
∑|U|i PR(ui)

|U| (6.2)



48 System Evaluation

where U is the set of users of the OSN involved in, at least, one argumentation pro-
cess. With this metric it is possible to know the success rate of our argumentation system
on persuading human users. The system is currently being tested with human users.
Therefore, we are currently processing these data to perform the evaluation defined in
this section.



CHAPTER 7

Conclusions

It is possible to identify two different lines of work in this final master thesis, both re-
search and development. Our research work resulted in a publication in one of the most
relevant workshops of the computational argumentation research community (19th In-
ternational Workshop on Computational Models of Natural Argument, CMNA1). Where
the new argumentation framework and the structure of the system has been presented.
Also an important development work has been carried out in order to implement all the
ideas and concepts proposed in the paper.

In the first chapter, we defined all the objectives that must be completed along the
process of carrying out this work. All those objectives have been achieved, as explained
below.

A review over the most important concepts of computational argumentation and their
implications in artificial intelligence has been performed (objective 1). The most im-
portant existing privacy management systems have also been compared and their main
properties identified (objective 2). Therefore, a complete revision over the existing work
on the main topics of this project has been performed. Once having acquired all the basic
knowledge, it has been possible to start with our proposal.

All the requirements of this work have been identified, and a formal requirement
specification has been performed (objective 3). With this specification, it has been pos-
sible to carry out this work with an organised planning. Having all the requirements
identified, a new argumentation framework for dealing with potential privacy conflicts
in online social networks has been proposed (objective 4). This framework has been de-
signed in order to fulfil all of these requirements.

Finally, the implementation of the framework has been carried out. The argumenta-
tion system has also been implemented according to the requirements. After that, it has
been integrated into a real OSN (objective 5). Once having the system working in a real
context, it has been tested and validated in order to make sure that it will behave prop-
erly with human users activity (objective 6). A metric to evaluate the persuasiveness of
the argumentation system has also been proposed (objective 7). However, it has not been
possible to evaluate it yet since it is currently being used in an experiment with real users
(July 2019) and the data has not already been processed.

To sum up, a completely functional argumentation system for assisting users with pri-
vacy management in OSNs has been proposed and implemented in this work covering
all the objectives defined in Chapter 1. It is also possible to observe how many differ-
ent fields of computer science (i.e. computational argumentation, artificial intelligence,
programming, etc.) and other disciplines (i.e. persuasion, psychology, etc.) converge in

1http://www.cmna.info/CMNA19/

49

http://www.cmna.info/CMNA19/


50 Conclusions

this work. The development of this system will make possible not only to assist human
users with privacy management, but also to study and observe users behaviour when
confronted of the arguments provided by our system.



CHAPTER 8

Future Work

This work provides a framework and a tool inside a real OSN that leaves many open
doors to future work. After using the actual approach with human users, and based on
the network usage, it will be possible to analyse user preferences towards some specific
type of argument. The addition of new types of arguments can be also considered. It will
be possible to observe the relevance of each feature taken into account, modify, or add
features, in order to try to improve the performance of our approach. Finally, regarding
network usage data it will also be possible to propose a new version of the system even
more focused on an educational domain.

Nevertheless, other lines of research keep opened for future work. Argument detec-
tion is an interesting future line of work and research. Currently the system provides
users with a close set of options that they can select as an answer. It would be a great
improvement to have an open interaction with the human user. An important problem
to tackle in this case is automatic argument detection [24, 23]. In order to interact in a
coherent way with the human user, the system must be able to understand the answers
given by the user. Since the system is giving arguments to the user, it is possible that
the user answers the system with a counter argument. Therefore, the system must be
able to detect the arguments written by the user and analyse the main components of an
argument (i.e. claim, support, etc.).

Related to argument detection, and walking towards that open argumentation sys-
tem, argument generation is another interesting line of work and research. Automatic
argument generation is a state of the art research topic, many companies and researchers
are working on it nowadays1. Therefore, it can be interesting to carry on the research
started in this thesis by generating more complex arguments. First steps towards this
challenge can be to consider the six persuasion prinicples identified by Cialdini [13] when
generating arguments or to use different argumentation schemes. The final goal would
be to build a system able to automatically detect and generate arguments for a specific
context (e.g a chatbot).

Finally, a remaining field of research that keeps also open is the definition of persiua-
sion strategies. As stated before, once analysing the usage of the system it will be possible
to extract relationships between types of argument and different user personalities. With
this information, we will be able to propose a more complex strategy not only based on
argument scores. There is a promising line of research that approaches the problem of
defining dialogue strategies by the use of reinforcement learning [20, 26, 1]. This also
paves the way for our future work in this line.

1https://www.research.ibm.com/artificial-intelligence/project-debater/

51

https://www.research.ibm.com/artificial-intelligence/project-debater/




Bibliography

[1] Sultan Alahmari, Tommy Yuan, and Daniel Kudenko. Reinforcement learning for
dialogue game based argumentation. In Accepted of the 19th Workshop on Computa-
tional Models of Natural Argument (CMNA19), 2019.

[2] J Alemany, E del Val, J Alberola, and Ana García-Fornes. Estimation of privacy risk
through centrality metrics. Future Generation Computer Systems, 82:63–76, 2018.

[3] Leila Amgoud, Jean-François Bonnefon, and Henri Prade. An argumentation-based
approach to multiple criteria decision. In European Conference on Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty, pages 269–280. Springer, 2005.

[4] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems.
In Argumentation in artificial intelligence, pages 25–44. Springer, 2009.

[5] Pietro Baroni, Antonio Rago, and Francesca Toni. How many properties do we need
for gradual argumentation? AAAI, 2018.

[6] Trevor Bench-Capon. Value based argumentation frameworks. arXiv preprint
cs/0207059, 2002.

[7] Trevor JM Bench-Capon. Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[8] Salem Benferhat, Didier Dubois, Souhila Kaci, and Henri Prade. Bipolar representa-
tion and fusion of preferences on the possibilistic logic framework. KR, 2:421–432,
2002.

[9] Andrei Bondarenko, Phan Minh Dung, Robert A Kowalski, and Francesca Toni. An
abstract, argumentation-theoretic approach to default reasoning. Artificial intelli-
gence, 93(1-2):63–101, 1997.

[10] José Alemany Bordera. Pesedia. red social para concienciar en privacidad. 2016.

[11] Aylin Caliskan Islam, Jonathan Walsh, and Rachel Greenstadt. Privacy detective:
Detecting private information and collective privacy behavior in a large social net-
work. In Proceedings of the 13th Workshop on Privacy in the Electronic Society, pages
35–46. ACM, 2014.

[12] CarlosIván Chesñevar, Ana Gabriela Maguitman, and María Paula González. Em-
powering recommendation technologies through argumentation. In Argumentation
in artificial intelligence, pages 403–422. Springer, 2009.

[13] Robert B Cialdini and Robert B Cialdini. Influence: The psychology of persuasion.
Collins New York, 2007.

[14] Cash Costello. Elgg 1.8 social networking. Packt Publishing Ltd, 2012.

53



54 BIBLIOGRAPHY

[15] Didier Dubois and Hélène Fargier. On the qualitative comparison of sets of positive
and negative affects. In European Conference on Symbolic and Quantitative Approaches
to Reasoning and Uncertainty, pages 305–316. Springer, 2005.

[16] Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial intelli-
gence, 77(2):321–357, 1995.

[17] Paul E Dunne and Trevor JM Bench-Capon. Coherence in finite argument systems.
Artificial Intelligence, 141(1-2):187–203, 2002.

[18] Paul E Dunne and Michael Wooldridge. Complexity of abstract argumentation. In
Argumentation in artificial intelligence, pages 85–104. Springer, 2009.

[19] Ricard L Fogues, Pradeep Murukanniah, Jose M Such, Agustin Espinosa, Ana
Garcia-Fornes, and Munindar Singh. Argumentation for multi-party privacy man-
agement. 2015.

[20] Kallirroi Georgila and David Traum. Reinforcement learning of argumentation dia-
logue policies in negotiation. In Twelfth Annual Conference of the International Speech
Communication Association, 2011.

[21] Jennifer Golbeck, Cristina Robles, and Karen Turner. Predicting personality with
social media. In CHI’11 extended abstracts on human factors in computing systems, pages
253–262. ACM, 2011.

[22] Nadin Kökciyan, Nefise Yaglikci, and Pinar Yolum. An argumentation approach for
resolving privacy disputes in online social networks. ACM Transactions on Internet
Technology (TOIT), 17(3):27, 2017.

[23] Ran Levy, Ben Bogin, Shai Gretz, Ranit Aharonov, and Noam Slonim. Towards an
argumentative content search engine using weak supervision. In Proceedings of the
27th International Conference on Computational Linguistics, pages 2066–2081, 2018.

[24] Ran Levy, Shai Gretz, Benjamin Sznajder, Shay Hummel, Ranit Aharonov, and
Noam Slonim. Unsupervised corpus–wide claim detection. In Proceedings of the
4th Workshop on Argument Mining, pages 79–84, 2017.

[25] Yavuz Mester, Nadin Kökciyan, and Pınar Yolum. Negotiating privacy constraints
in online social networks. In Advances in Social Computing and Multiagent Systems,
pages 112–129. Springer, 2015.

[26] Ariel Monteserin and Analía Amandi. A reinforcement learning approach to im-
prove the argument selection effectiveness in argumentation-based negotiation. Ex-
pert Systems with Applications, 40(6):2182–2188, 2013.

[27] Donald Nute. Defeasible logic. In International Conference on Applications of Prolog,
pages 151–169. Springer, 2001.

[28] Primal Pappachan, Roberto Yus, Prajit Kumar Das, Tim Finin, Eduardo Mena, Anu-
pam Joshi, et al. A semantic context-aware privacy model for faceblock. In Second
International Workshop on Society, Privacy and the Semantic Web-Policy and Technology
(PrivOn 2014), Riva del Garda (Italy), 2014.

[29] Henry Prakken and Giovanni Sartor. A dialectical model of assessing conflicting
arguments in legal reasoning. In Logical models of legal argumentation, pages 175–211.
Springer, 1996.



BIBLIOGRAPHY 55

[30] Iyad Rahwan and Guillermo R Simari. Argumentation in artificial intelligence, vol-
ume 47. Springer, 2009.

[31] Sebastiaan Rothmann and Elize P Coetzer. The big five personality dimensions and
job performance. SA Journal of Industrial Psychology, 29(1):68–74, 2003.

[32] Ramon Ruiz-Dolz, Stella Heras, José Alemany, and Ana García-Fornes. Towards
an argumentation system for assisting users with privacy management in online
social networks. In Proceedings of the 19th Workshop on Computational Models of Natu-
ral Argument co-located with the 14th International Conference on Persuasive Technology,
CMNA@PERSUASIVE 2019, Limassol, Cyprus, April 9, 2019., pages 17–28, 2019.

[33] Shalom H Schwartz. An overview of the schwartz theory of basic values. Online
readings in Psychology and Culture, 2(1):11, 2012.

[34] Anna C Squicciarini, Heng Xu, and Xiaolong Zhang. Cope: Enabling collaborative
privacy management in online social networks. Journal of the American Society for
Information Science and Technology, 62(3):521–534, 2011.

[35] Kaveri Subrahmanyam, Stephanie M Reich, Natalia Waechter, and Guadalupe Es-
pinoza. Online and offline social networks: Use of social networking sites by emerg-
ing adults. Journal of applied developmental psychology, 29(6):420–433, 2008.

[36] Jose M Such, Joel Porter, Sören Preibusch, and Adam Joinson. Photo privacy con-
flicts in social media: A large-scale empirical study. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pages 3821–3832. ACM, 2017.

[37] Rosemary J Thomas, Judith Masthoff, and Nir Oren. Is argumessage effective? a
critical evaluation of the persuasive message generation system. In International
Conference on Persuasive Technology, pages 87–99. Springer, 2019.

[38] D Walton. Argument schemes for presumptive reasoning. 1996, 1996.

[39] Douglas Walton. Argumentation theory: A very short introduction. In Argumenta-
tion in artificial intelligence, pages 1–22. Springer, 2009.

[40] Ryan Wishart, Domenico Corapi, Srdjan Marinovic, and Morris Sloman. Collabo-
rative privacy policy authoring in a social networking context. In 2010 IEEE Inter-
national Symposium on Policies for Distributed Systems and Networks, pages 1–8. IEEE,
2010.


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Document Structure

	Related Work
	Argumentation in Artificial Intelligence
	Principles of Argumentation Theory
	Abstract Argumentation Systems
	Structured Arguments
	Complexity in Argumentation Solving

	Privacy Management in Online Social Networks
	Comparative of Existing Privacy Management Systems


	Requirements Specification
	Introduction
	Purpose
	Scope
	Overview

	Overall Description
	Work Perspective
	System Functions
	User Characteristics
	Constraints and Dependencies

	Specific Requirements
	Functions
	Design Constraints


	Argumentation System
	Framework Formalisation
	System Architecture
	Feature Extraction Module
	Argument Generation Module
	Solver Module
	Dialogue Module

	User-network Interaction
	Template Based Arguments
	User Responses


	Implementation and Integration
	Introduction
	Technologies
	Argumentation System Implementation
	Feature Extraction
	Argument Generator & Argumentation Solver
	Argument Template
	Persuasive Statistics

	Argumentation System Deployment
	Network Integration
	Pesedia: An Educational OSN
	Argumentation Plugin

	System Operation

	System Evaluation
	Argumentation System Stress Test
	Functional Validation
	Validation of content arguments generation
	Validation of privacy arguments generation
	Validation of risk arguments generation
	Validation of trust arguments generation

	Persuasive Evaluation

	Conclusions
	Future Work
	Bibliography

