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Abstract

During the last years, on-line multimedia repositories have become key knowledge assets
thanks to the rise of Internet and especially in the area of education. Educational institutions
around the world have devoted big efforts to explore different teaching methods, to improve
the transmission of knowledge and to reach a wider audience. As a result, online video lecture
repositories are now available and serve as complementary tools that can boost the learning
experience to better assimilate new concepts. In order to guarantee the success of these
repositories the transcription of each lecture plays a very important role because it constitutes
the first step towards the availability of many other features. This transcription allows the
searchability of learning materials, enables the translation into another languages, provides
recommendation functions, gives the possibility to provide content summaries, guarantees the
access to people with hearing disabilities, etc. However, the transcription of these videos is
expensive in terms of time and human cost.

To this purpose, this thesis aims at providing new tools and techniques that ease the
transcription of these repositories. In particular, we address the development of a complete
Automatic Speech Recognition Toolkit with an special focus on the Deep Learning techniques
that contribute to provide accurate transcriptions in real-world scenarios. This toolkit is tested
against many other in different international competitions showing comparable transcription
quality. Moreover, a new technique to improve the recognition accuracy has been proposed
which makes use of Confidence Measures, and constitutes the spark that motivated the proposal
of new Confidence Measures techniques that helped to further improve the transcription quality.
To this end, a new speaker-adapted confidence measure approach was proposed for models
based on Recurrent Neural Networks.

The contributions proposed herein have been tested in real-life scenarios in different
educational repositories. In fact, the transLectures-UPV toolkit is part of a set of tools for
providing video lecture transcriptions in many different Spanish and European universities
and institutions.






Resum

Durant els dltims anys, els repositoris multimedia en linia s’han convertit en fonts clau de
coneixement gracies a I’expansi6é d’Internet, especialment en I’area de I’educacié. Institu-
cions educatives de tot el mén han dedicat molts recursos en la recerca de nous metodes
d’ensenyament, tant per millorar 1’assimilacié de nous coneixements, com per poder arribar
a una audiencia més amplia. Com a resultat, avui dia disposem de diferents repositoris amb
classes gravades que serveixen com a eines complementaries en 1I’ensenyament, o fins i tot
poden assentar una nova base a I’ensenyament a distancia. No obstant aix0, han de complir
amb una serie de requisits perque la experiéncia siga totalment satisfactoria i és aci on la
transcripci6 dels materials juga un paper fonamental. La transcripci6 possibilita una recerca
precisa dels materials en els quals ’alumne esta interessat, s’obri la porta a la traduccié
automatica, a funcions de recomanacid, a la generacié de resums de les xerrades i el poder fer
arribar el contingut a persones amb discapacitats auditives. No obstant, la generaci6 d’aquestes
transcripcions pot resultar molt costosa.

Amb aix0 en ment, la present tesi té com a objectiu proporcionar noves eines i técniques
que faciliten la transcripcié d’aquests repositoris. En particular, abordem el desenvolupament
d’un conjunt d’eines de reconeixement automatic de la parla, amb emfasi en les tecniques
d’aprenentatge profund que contribueixen a proporcionar transcripcions precises en casos
d’estudi reals. A més, es presenten diferents participacions en competicions internacionals on
es demostra la competitivitat del programari comparada amb altres solucions. D’altra banda,
per tal de millorar els sistemes de reconeixement, es proposa una nova técnica d’adaptacié
d’aquests sistemes a I’interlocutor basada en 1’is de Mesures de Confianga. A més, aixo va
motivar el desenvolupament de técniques per a la millora en 1’estimacié d’aquest tipus de
mesures per mitja de Xarxes Neuronals Recurrents.

Totes les contribucions presentades s’han provat en diferents repositoris educatius. De fet,
el toolkit transLectures-UPV és part d’un conjunt d’eines que serveix per generar transcripcions
de classes en diferents universitats i institucions espanyoles i europees.
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Resumen

Durante los tltimos afios, los repositorios multimedia en linea se han convertido en fuentes
clave de conocimiento gracias al auge de Internet, especialmente en el drea de la educacion.
Instituciones educativas de todo el mundo han dedicado muchos recursos en la bisqueda de
nuevos métodos de ensefianza, tanto para mejorar la asimilacién de nuevos conocimientos,
como para poder llegar a una audiencia mas amplia. Como resultado, hoy en dia disponemos
de diferentes repositorios con clases grabadas que siven como herramientas complementarias
en la ensefianza, o incluso pueden asentar una nueva base en la ensefianza a distancia. Sin
embargo, deben cumplir con una serie de requisitos para que la experiencia sea totalmente
satisfactoria y es aqui donde la transcripcién de los materiales juega un papel fundamental.
La transcripcién posibilita una busqueda precisa de los materiales en los que el alumno esta
interesado, se abre la puerta a la traduccién automatica, a funciones de recomendacién, a
la generacion de resumenes de las charlas y ademads, el poder hacer llegar el contenido a
personas con discapacidades auditivas. No obstante, la generacion de estas transcripciones
puede resultar muy costosa.

Con todo esto en mente, la presente tesis tiene como objetivo proporcionar nuevas her-
ramientas y técnicas que faciliten la transcripcion de estos repositorios. En particular, abor-
damos el desarrollo de un conjunto de herramientas de reconocimiento de automadtico del habla,
con énfasis en las técnicas de aprendizaje profundo que contribuyen a proporcionar transcrip-
ciones precisas en casos de estudio reales. Ademads, se presentan diferentes participaciones en
competiciones internacionales donde se demuestra la competitividad del software comparada
con otras soluciones. Por otra parte, en aras de mejorar los sistemas de reconocimiento, se
propone una nueva técnica de adaptacién de estos sistemas al interlocutor basada en el uso
Medidas de Confianza. Esto ademds motivé el desarrollo de técnicas para la mejora en la
estimacion de este tipo de medidas por medio de Redes Neuronales Recurrentes.

Todas las contribuciones presentadas se han probado en diferentes repositorios educativos.
De hecho, el toolkit transLectures-UPV es parte de un conjunto de herramientas que sirve
para generar transcripciones de clases en diferentes universidades e instituciones espafiolas y
europeas.
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2 1.1. Motivation

1.1 Motivation

Nowadays Artificial Intelligence (Al) is increasingly becoming a key technology component
that is changing the industry and, as such, constitutes one of the sources of progress that have
areal impact on our society. During the last years, this area has experienced a very important
breakthrough because of two fundamental factors: The availability of increasingly larger data
repositories as a result of the popularization of cloud-based services, and greater computational
power led by General Purpose GPU systems that are able to process such amount of data.
Well-known Machine Learning (ML) methods based on learning data representations have
specially benefited from those, and constitute the so-called Deep Learning (DL) revolution.
DL comprises a set of model architectures and algorithms that have made impressive advances
in different fields such as Computer Vision (CV) and Natural Language Processing (NLP).
This is particularly true in the case of Automatic Speech Recognition (ASR), the research
field that aims at giving computers the capability to transform an audio speech signal into
text. Different authors have led the utilization of DL technologies in the context of ASR
from different points of view; starting from generative and discriminative pretraining of Deep
Neural Network (DNN) architectures [37, 36, 2, 5, 12, 11, 46], hybrid systems based on DNNs
and Hidden Markov Models (HMMs) [4, 5, 16, 37] and their tandem counterpart [15, 13, 42]
or even proposing new speaker adaptation techniques [14, 36, 19, 45, 48].

ASR research has gained a lot of interest during the last years for industry leaders, and this
is mainly because of the huge amount of data in audio format that is generated nowadays and
the myriad of applications this technology offers. Other than providing speech transcriptions,
ASR enables analysis, classification and search functionalities on speech signals, and it also
constitutes the starting point to many other NLP applications: Machine Translation (MT),
Text-To-Speech synthesis (TTS), Text Summarization, Part-of-Speech tagging or Sentiment
Analysis among others. It can be applied to many different scenarios such as in-car virtual
assistants [20, 17, 22], health care medical documentation generation [28, 6], broadcast news,
TV videos and video repositories in general [23, 21, 26, 1].

The transcription of video repositories is particularly helpful in the area of education
where academic institutions have devoted big efforts to improve the way students can learn
by means of new digital online media repositories. In fact, different solutions have emerged
during the last years, the so-called Massive Open Online Courses (MOOC:s) such as edX [10],
Coursera [3] or Udacity [41], and video repositories such as VideoLectures.NET [44], poliMe-
dia [30], VideoApuntes [43] or TED talks [40]. These platforms offer thousands of lecture-like
videos from a wide range of topics and disciplines to reach as many users as possible. The
video quality varies depending on the platform: from videos with just one speaker recorded
in optimal acoustic conditions with a lapel microphone and semi-spontaneous speech, to
videos recorded with a microphone array where several distant speakers interfere in a fully
spontaneous manner, also known as far-field speech recognition. The availability of video
transcriptions for these repositories opens new communication channels to better transfer
knowledge and consequently expand its target audience, breaks down acoustic barriers for
students with hearing impairments and, as mentioned before, enables lecture classification,
search and analysis. However, the transcription of these videos is a costly task that cannot be
easily performed by human experts as it involves a considerable expenditure in terms of time
and money. At this point is where ASR systems are fundamental because they alleviate the
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problem by providing inexpensive yet reliable subtitles in a time efficient manner. Therefore,
ASR systems constitute a powerful tool that not only provide automatic transcriptions but also
expand the number of functionalities of these platforms.

Although the reliability of automatic transcriptions turns out to be crucial to guarantee a
good learning experience, ASR systems are still far from producing perfect results. Different
approaches can be followed to improve the system performance, such as increasing the size of
the training data or adapting the systems to the speaker and domain, both in terms of acoustic
or language model level. Also, confidence measures (CM) can play an important role in
this regard. In its simplest aspect, CMs give an insight into the reliability of the recognized
transcription by providing an score between 0 and 1 for each transcribed unit (usually at
word level), which is by itself helpful and can further be used in different situations. First of
all, in order to ensure good quality transcriptions a necessary step is to supervise its content
by human experts. In this scenario, CMs can help in the smart selection of those speech
segments that might require supervision (interactive speech transcription [34]), and therefore
greatly reducing human effort. Secondly, CMs can also be used to alleviate a problem most
ASR systems suffer: the mismatch between the acoustic conditions found during training
and test. This mismatch is one of the main reasons behind the poor quality transcriptions
that an ASR system might generate. As a result, the use of algorithms that adapt the model
parameters to match the acoustic conditions to those of the testing phase have gained a lot of
interest. Although, model adaptation based on the correct mapping between phoneme class
labels and their corresponding sound segment should produce the best results (supervised
adaptation), CM brings means to perform model parameters adaptation in an unsupervised
fashion [8, 7] . Thirdly, unsupervised training of acoustic models can be also carried out using
CMs by improving the data filtering and selection stage, as they can give an idea about the
alignments quality between the acoustic signal and manual transcriptions. Finally, in a setup
where several recognizers are run in parallel, CMs can be used to select the one that provides
the best confidence score for the whole transcription.

As mentioned before, the potential benefits that ASR technologies and CMs estimation can
provide on educational repositories are numerous. However, these repositories offer videos in
a wide range of formats, with high variability in acoustic conditions, different speaker accents,
spontaneous speech and very specific terminology. Therefore, the use of these technologies
in this kind of repositories constitutes a very challenging task. On the one hand, the lack of
open-source solutions and the requirement of skilled people to set them up drive away some
organizations to exploit such functionalities. On the other hand, the solutions that provide video
transcriptions are general purpose, and therefore, they do not take advantage of the meta data
associated to each lecture (speaker, title, notes, slides, etc.) to further improve the transcription
quality. In this context, this thesis aims at developing the latest ASR techniques to provide the
best transcriptions to be used in real educational repositories. Moreover, another goal is to take
advantage of the speaker meta data to propose new speaker adaptation techniques using Neural
Networks (NNs). Finally, given that CMs have demonstrated to be very helpful in different
situations when transcribing video repositories, the final goal is to propose state-of-the-art
(SOTA) techniques to further improve their estimation and to propose new applications to
better exploit their potential.
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1.2 Framework

The work developed in this thesis has contributed to 4 different research projects: iTrans2,
transLectures, EMMA and MORE. All share the continuous improvement and application
of ASR technologies towards the efficient transcription of video repositories and therefore,
to ease the communication channels by breaking down language barriers. Although iTrans2
overcomes the problem from a general perspective and serves as starting point, most of this
thesis was developed during transLectures, EMMA and MORE which have a clear focus on
educational video repositories. These last 3 projects also aspire to widen open education to
any student no matter her/his mother tongue or hearing disabilities and to enrich the learning
experience by facilitating new ways of learning.

The main goal of the transLectures project was to develop innovative, cost-effective tools
for producing accurate transcriptions and translations of videos from different educational
repositories. In this regard, the contributions of this thesis can be summarized in two main
takeaways: On the one hand, the development of a new ASR toolkit to build systems capable
of providing high-quality automatic transcriptions, which supported all the basic functionality
to train an ASR system from scratch, including the training of Context-Dependent Deep
Neural Networks (DNNs) [5, 4, 37]. On the other hand, considering ASR systems are far
from producing perfect transcriptions, it was considered to develop tools to facilitate human
supervision following an interactive approach. Although, the progress on CM estimation at
that time was still on an early stage, it was observed that CMs could greatly reduce human
supervision effort.

The project EMMA (European Multiple MOOC Aggregator) vision was to offer a unified
MOOC aggregator platform capable of providing free, open and online courses from different
European universities with the goal of preserving Europe’s rich cultural, educational and
linguistic heritage. In order to guarantee the maximum spread of these repositories, automatic
translation systems play a fundamental role to break down linguistic barriers. These reposito-
ries are usually composed of Open Educational Resources (OERs) from different natures such
as course materials, lecture slides or recorded lectures in audio or video format. All materials
in text format are easily handled by MT systems, but in the case of video lectures, a first step
in order to transcribe the audio is required. This thesis contributed to provide the best possible
transcriptions for those video resources and therefore constitute a follow up work from the
transLectures project, expanding the set of supported languages and also keeping the systems
updated with the latest ASR techniques.

The MORE (Multilingual Open Resources for Education) project aimed to dramatically
foster Open Education by providing multilingual access to OER and by enabling multilingual
online communication in MOOC platforms. In this context, Spoken Language Translation
(SLT), the task of translating a video from voice-to-voice plays a fundamental role. This kind
of systems are built using three components: ASR, MT and TTS. It’s a cascade-like task where
first, the ASR system should provide high-quality transcriptions because otherwise its errors
will propagate to the MT system and finally to the TTS system. Here again is fundamental to
keep ASR systems updated to tackle with different accents, spontaneous speech, noise, false
starts or hesitations.

The work of this thesis has contributed to achieve the goals of the different research
projects by providing tools for building ASR systems and also by proposing new competitive
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speaker adaptation techniques that are fundamental given the heterogeneous nature of the
repositories. Moreover, the progress made towards CM estimation by means of new Long
Short-Term Memory (LSTM)-based models along with speaker adaptation techniques had
a very positive impact given its importance in not only improving the overall transcription
quality but also to carry out interactive speech transcription or to provide an smart utterance
verification procedure.

1.3 Scientific and Technological Goals

The main goal of this thesis is to improve the performance of ASR systems in the context of
educational video repositories. In order to guarantee its achievement, the following scientific
goals can be derived:

e Improve ASR systems based on DNNs by means of unsupervised speaker adaptation
(SA).

e Improve CM estimation by means of NNs and SA.

1.4 Contributions

Improve ASR systems based on DNNs by means of unsupervised SA

One of the contributions towards this goal has been the publication of the transLectures-UPV
toolkit (TLK) which is presented in Paper 1. TLK has been continuously updated with the
latest SOTA techniques and constitutes the basic tool used to build all the systems presented
along the thesis. Its competitiveness has been particularly demonstrated in the two international
competitions presented in Papers 2 and 3. It features a simple interface and provides all the
functionality to build an ASR system from scratch: audio preprocessing and feature extraction
(MFCCs and filter bank), training (based on HMM:s or hybrid DNNs) and evaluation (following
the so-called Viterbi decoding).

Regarding TLK, the main focus of this thesis has been the development of the internal
DL tool for ASR. This tool was initially implemented in C++ and CUDA due to the lack of
good-enough alternatives, and featured the training and evaluation of the most common NNs.
At the time of writing this thesis, TLK provides support to train different NN topologies such
as DNNs or Deep Convolutional NNs, common activation functions, multilingual NNs which
are fundamental for languages with scarce resources, different speaker adaptation techniques,
cross-entropy (CE) loss function, Maximum Mutual Information (MMI) training and support
to train models using external DL libraries such as Tensorflow for recurrent-based topologies.
With respect to the papers presented in this thesis, in Paper 2 TLK features hybrid-based
systems with DNNs and CNNs trained following CE or MMI. Moreover, in Paper 3, Deep
Bidirectional LSTMs (BLSTMs) are used for the first time using an external API, and finally
in Paper 5 BLSTM-based acoustic models perform significantly better than DNNs.

Even though TLK was also updated with the latest unsupervised speaker adaptation
techniques, a new one that made use of CMs is proposed in Paper 2, which constitutes another
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important contribution. This technique basically consists on adding an additional recognition
step to the classical 2-steps (non-adapted and speaker-adapted recognitions), where the system
is adapted again on a per-speaker fashion based on the output from the previous step. From
that output, CMs are computed as word posterior probabilities or by means of other more
advanced approaches, and finally, the acoustic model is fine-tuned over this data using as
class-labels the CMs estimated. This technique provides competitive results in different setups,
and also motivates the research on CM to further improve the recognition accuracy. Moreover,
in Paper 5 it is demonstrated that even with high-quality ASR systems, this technique has a
significant impact in the final transcription quality.

Improve CM estimation by means of NNs and SA

The contributions made towards this goal are by far the most important of this thesis. Looking
at Confidence Estimation (CE) as a two-class classification problem in which class posterior
probabilities are estimated combining word-level predictor features [35, 38, 33, 25], in Paper 4
anew approach is proposed where Bidirectional LSTMs models are used together with speaker
adaptation techniques. The use of this kind of models is based on its modeling power of not
only left-to-right context but also right-to-left. In this paper, it is shown that in a speaker
independent setting, previous SOTA models such as Conditional Random Fields (CRFs) are
systematically surpassed by Neural Network-based models. Other than that, it is proposed a
simple yet effective speaker adaptation technique of CE models based on BLSTMs, that obtains
consistent gains, obtaining the best results in the publicly available dataset LibriSpeech [27].
In Paper 5 more exhaustive experiments were carried out in 3 different datasets: Lib-
riSpeech [27], poliMedia [30] and TED-LIUM [31]. Although CE accuracy is related to the
quality of the ASR system, in this second work it is demonstrated that even for cutting-edge
ASR systems (based on BLSTMs acoustic models), CE can benefit from the use of Neural
Network-based models. This is shown in different tasks where RNN-based (BLSTMs and
BRNNSs) models outperform non-NNs models, and the combination of the two obtains the
best results. Apart from that, a real adaptation setup is presented, where a general speaker-
independent CE system is trained and afterwards adapted with speaker-dependent data from
a different corpus. Moreover, the acoustic model is improved by means of the unsupervised
speaker adaptation technique presented in Paper 2 and the best RNN-based CE system.

1.5 List of Publications

In this section, all the international publications published under the scope of this thesis where
the PhD student is first author are summarized. The publications are presented in chronological
order and classified according to their type (journals or international conferences) as well
as whether they are listed in Journal Citation Reports? (JCR), in Computing and Research
Education Association of Australasia® or GII-GRIN-SCIE Conference rating® (GGS).

2http://thomsonreuters.com/journal-citation-reports
Yhttp://www.core.edu.au
¢http://gii-grin-scie-rating.scie.es
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1.5.1 Paper1

Title The transLectures-UPV Toolkit
Authors M. A. Del-Agua, A. Giménez, N. Serrano, J. Andrés-Ferrer,
J. Civera, A. Sanchis, A. Juan

Year 2014

Type Journal

DOI 10.1007/978-3-319-13623-3
Name Lecture Notes in Computer Science

Pages 269-278

In this paper, the transLectures-UPV toolkit (TLK) is presented, an ASR toolkit with
clear focus on transcribing video lectures but general enough as to be applied in conventional
ASR. TLK implements all the functionalities required to develop an ASR system from scratch.
It can be applied from feature extraction (standard Mel Frequency Cepstral Coefficients
or Filter Bank), acoustic model training based on Hidden-Markov-Models (HMMs) using
the well-known Baum-Welch and Viterbi algorithms, training based on tied-state HMMs,
DNN s training following an hybrid approach (Context Dependent HMMs-DNNGs), acoustic
model adaptation using the so called Maximum Likelihood Linear regression (MLLR) or
its constrained version (CMLLR), and Viterbi-based decoding using an external language
model. Moreover, features a simple yet effective interface as to easily perform each of the
steps mentioned before.

In order to assess the toolkit performance, two case studies are presented: VideoLec-
tures.NET, a video lecture repository mainly in English; and poliMedia, a Spanish and Catalan
video repository developed at the Universitat Politecnica de Valencia (UPV). As mentioned in
Section 1.1, the generation of usable subtitles for videos that belong to this kind of repositories
is not an easy task; spontaneous speech, different accents, technical terminology, etc. However,
the experimental section of the paper shows that TLK is a competitive ASR toolkit which
offers high quality transcriptions even in real-world educational repositories. In fact, it’s shown
a very good system performance in terms of Word Error Rate (WER) for video lectures in
Spanish (12.8%), Catalan (20.1%) and English (22.7%).

1.5.2 Paper 2

Title The MLLP ASR Systems for IWSLT 2015
Authors M. A. Del-Agua, A. Martinez-Villaronga, S. Piqueras,
A. Giménez, A. Sanchis, J. Civera, A. Juan

Year 2015

Type Workshop

Name The International Workshop on Spoken Language Translation
Pages 39-44

In this publication, a new unsupervised speaker adaptation technique is presented, which
constitutes one of the contributions of this thesis related to the first goal. The systems presented
were evaluated in the context of the challenging International Workshop on Spoken Language
Translation (IWSLT). Its participants are encouraged to develop state-of-the-art solutions to
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perform the full process of SLT (ASR, MT and TTS) on real-world scenarios. In fact, the case
study is composed of TED talks, which consist of videos from a set of conferences around the
world carried out by the non-profit organization Sapling Foundation.

Two ASR systems for the IWSLT 2015 evaluation campaign were presented, which
cover ASR for English and German. Most effort went into the development of the English
recognition system which is based on the ROVER combination of five subsystems. Each of
those subsystems was based on CD-HMM-DNNs with different input features (MFCCs and
filter bank), activation functions (sigmoid and rectified linear) as well as various architectures
such as CNN. These systems follow a three-step recognition approach where after the first
pass recognition, CMLLR speaker adaptation applied to the input features is used (fMLLR)
and finally the new unsupervised speaker adaption technique is applied. This last step is the
proposed new speaker adaptation step for NNs, where the main idea is to use inexpensive yet
reliable unsupervised speech data to further adapt the NNs. Thanks to the use of CMs at word
level (computed as word posterior probabilities) from the second recognition output, the NNs
were fine-tuned on a per-speaker basis using the CMs as new pseudo-truth class labels.

The new speaker-adaption technique provided consistent gains of about 1.2% to 3.7%
relative improvements depending on the system setup. In the context of the thesis work, this
new unsupervised adaptation technique opened the door of ASR system improvement through
the research of new CMs estimation techniques. The final English system obtained 13.3%
WER, which constitutes a very competitive performance, while the German system constituted
the first large scale speech recognition system trained using TLK. The final results of the
competition can be seen in Chapter 4.

1.5.3 Paper3

Title The MLLP system for the 4th CHiME challenge
Authors M. A. Del-Agua, A. Martinez-Villaronga, A. Giménez,
A. Sanchis, J. Civera, A. Juan
Year 2016
Type Workshop
Name The 4th CHiME Speech Separation and Recognition Challenge
Pages 57-59

The main goal of this work is to propose new model architectures based on DL that
incorporate a third unsupervised speaker adaptation step in a challenging task where the
systems face audio from multiple channels. Particularly, The CHiME Speech Separation and
Recognition Challenge invites participants to built ASR systems that are capable of working
in challenging and real noisy conditions in a muli-channel setting. The challenge consists of 3
different tracks: 1-channel, 2-channels and 6-channels. Each of which are different depending
on the number of channels available at test time. Therefore, the easiest track is the 6-channels
track which offers the best setup for the application of audio enhancement techniques, while
in the 1-channel or 2-channels, the systems should be able to handle audio from any of the 6
channels microphones (or apply audio enhancement in the case of 2-channels). This challenge
is one of the most relevant for ASR, where the best research groups in the world participate.

Even though this challenge could be faced from audio preprocessing, language modeling
or acoustic modeling point of views, our participation was focused on the acoustic modeling
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part. In particular, a system combination of two sub-systems based on DNNs and BLSTMs
following the hybrid approach was presented. Both systems were trained on the same data, and
tested in the most challenging 1-channel and 2-channel tracks. The final system combination
obtained 32% and 22.7% relative improvements over the 1-channel and 2-channels baselines,
which represents a good result taking into account the simplicity of the approach. This work
also reflects the continuous development of the TLK toolkit, which in this case added support
to train and decode using external tools, and in particular using Tensorflow for BLSTM models.
A comparison of the final results can be found in Chapter 4.

1.5.4 Paper 4

Title ASR Confidence Estimation with Speaker-Adapted Recurrent
Neural Networks

Authors M. A. Del-Agua, S. Piqueras, A. Giménez,
A. Sanchis, J. Civera, A. Juan

Year 2016
Type International Conference - Core A - GGS A
DOI 10.21437/Interspeech.2016-1142

Name InterSpeech 2016
Pages 3464-3468

In this paper, a novel approach to model CM is presented. In particular, it is proposed
for the first time the use of BLSTMs in conjunction with speaker adaptation techniques,
which constitutes a contribution with respect to the second goal of this thesis. The use of
BLSTMs is motivated because of its ability to model long-span relations, and thanks to
its bidirectional nature not only past context is taken into account but also future context.
Moreover, the application of speaker adaptation techniques is proposed as a fine-tuning step
starting from a general CE system where a different system is trained for each speaker using
speaker-dependent input features based on speaker-dependent vocabularies.

The experiments carried out are based on the publicly available LibriSpeech [27] corpus.
On the one hand, a competitive ASR system was built where the acoustic model part was
trained with TLK using a subset of 100 hours, while as language model was used a pre-built
4-gram provided by the authors of the corpus. On the other hand, the speaker-independent (SI)
CM system was trained using a different subset of 50 hours from the same corpus. Additionally,
20 speakers not used in the SI experiments were randomly selected in order to evaluate speaker
adaptation techniques of SI CE models.

The use of BLSTM Networks along with speaker-adaptation techniques constitutes a
novelty in word level CE. The results obtained in LibriSpeech show that this approach
improves over previous SOTA approaches such as CRFs in CM estimation. In this work, the
speaker-independent CM system based on BLSTM networks was able to produce relative
reductions in terms of Classification Error Rate (CER) of 4.7%, while the speaker-adapted
system was able to further reduce CER in 4.6%.
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1.5.5 Paper 5

Title Speaker-Adapted Confidence Measures for ASR Using Deep
Bidirectional Recurrent Neural Networks
Authors M. A. Del-Agua, A. Giménez, A. Sanchis, J. Civera, A. Juan

Year 2018
Type Journal - IF 2.950 - Ranking 5/31 - Quartile 1
DOI 10.1109/TASLP.2018.2819900

Name IEEE/ACM Transactions on Audio, Speech, and Language Processing
Pages 1198-1206

Following the same line of research from the previous paper, in this work it is presented
a comprehensive study on the improvement of CM and its applications through the use of
RNN-based classifiers and speaker adaptation. These classifiers and their bidirectional versions
(BRNNs and BLSTMs) have demonstrated their superiority in the estimation of CMs compared
to non-NN-based classifiers [25, 24, 9]. Moreover, the adaptation of CM has shown to be very
effective in improving baseline system performance [33, 9, 47, 18]. In scenarios where there
are scarce resources to estimate speaker-specific models, this is an important feature, since it
allows to adapt a general model with limited speaker data.

In this work, new technical contributions are reported, including an improved system
architecture for CE in which word embeddings and CE models are jointly trained (rather than
using pre-trained Glove [29] word-vectors). Moreover, new experimental results on CE are
shown using state-of-the-art ASR systems based on BLSTM acoustic models and a large
speech corpus consisting of 1000 hours from the English LibriSpeech task and 800 hours from
the Spanish poliMedia task [27, 39]. New speaker-adapted experiments are also carried out
considering a realistic task in which CM are applied into a multi-task framework. With this
in mind, RNN-based confidence classifiers trained in the LibriSpeech corpus are adapted to
speakers from the TED-LIUM corpus [32]. Finally, a novel unsupervised adaptation method
of the acoustic DBLSTM model based on CMs is proposed to improve the overall accuracy of
the speech recognition system.

Different experiments have been carried out in order to test all the contributions. From the
CE systems point of view, in both LibriSpeech and poliMedia, RNN models clearly outperform
non-NN-based classifiers which is statistically significant at the 95% confidence level to a
great extent. Regarding the speaker-adapted CM, it is shown that in general speaker-adapted
systems improve their non-adapted counterparts and relative 2 — 8% CER reductions are
obtained depending on the amount of speaker data and its quality. Finally, with respect to
the use of CM for acoustic model adaptation, relative reductions of 3.3%, 3.8% and 5.5% in
terms of WER are achieved in LibriSpeech, poliMedia and TED-LIUM respectively compared
to the non-adapted systems.

1.6 Document Structure

This document is structured in four sequential chapters that cover the topics, scientific and
technological goals proposed in this thesis.
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Chapter 1. Introduction: In this chapter, the motivation, goals and main contributions of
the thesis are presented. Also, the research projects involved during the development of
this thesis are briefly described. These projects also involve some real case studies were
the tools and techniques presented are assessed. Finally, the main contributions of each
selected publication are summarized.

Chapter 2. Selected Papers: In this chapter, all the resulting publications of this thesis are
presented.

Chapter 3. General Discussion of the Results: This chapter presents a general discussion
of the main results derived of this thesis.

Chapter 4. Conclusions and Future Work: In this last section, the conclusions and future
remarks are presented.

1.7 Abbreviations and Acronyms

Al — Auttificial Intelligence

ASR — Automatic Speech Recognition

BLSTM - Bidirectional Long Short-Term Memory

BRNN — Bidirectional Recurrent Neural Network

CE — Confidence Estimation

CER — Classification Error Rate

CM — Confidence Measure

CMLLR - Constrained Maximum Likelihood Linear Regression
CNN — Convolutional Neural Network

CRF — Conditional Random Field

Ccv — Computer Vision

DL — Deep Learning

DNN — Deep Neural Network

EMMA - European Multiple MOOC Aggregator project

fDLR — feature-space Discriminative Linear Regression
fMLLR - feature-space Maximum Likelihood Linear Regression
GGS —  GII-GRIN-SCIE Conference Rating

GII —  Group of Italian Professors of Computer Engineering
GRIN —  Group of Italian Professors of Computer Science
HMM — Hidden Markov Model

iTrans2 - Interactive Transcription and Translation project
IWSLT - International Workshop on Spoken Language Translation
JCR — Journal Citation Reports

LSTM — Long Short-Term Memory

MFCC — Mel Frequency Cepstral Coefficients



12

1.7. Abbreviations and Acronyms

EMMA
fDLR
fMLLR
GGS
GII
GRIN
HMM
iTrans2
IWSLT
JCR
LSTM
MFCC
MLLP
MLLR
MMI
MOOC
MORE
MT
NLP
NN
OER
PR
ReLLU
RNN
ROC
SA
SCIE
SI

SLT
SOTA
TLK
transLectures
TTS
UpPv
WER

European Multiple MOOC Aggregator project
feature-space Discriminative Linear Regression
feature-space Maximum Likelihood Linear Regression
GII-GRIN-SCIE Conference Rating

Group of Italian Professors of Computer Engineering
Group of Italian Professors of Computer Science
Hidden Markov Model

Interactive Transcription and Translation project
International Workshop on Spoken Language Translation
Journal Citation Reports

Long Short-Term Memory

Mel Frequency Cepstral Coefficients

Machine Learning and Language Processing Research Group
Maximum Likelihood Linear Regression

Maximum Mutual Information

Massive Open Online Course

Multilingual Open Resources for Education

Machine Translation

Natural Language Processing

Neural Network

Open Educational Resource

Pattern Recognition

Rectified Linear Unit

Recurrent Neural Network

Receiver Operating Characteristic

Speaker Adaptation

Spanish Computer-Science Society

Speaker Independent

Spoken Language Translation

State Of The Art

transLectures-UPV Toolkit

Transcription and Translation of video lectures
Test-To-Speech synthesis

Universitat Politecnica de Valencia

Word Error Rate
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Abstract

Over the past few years, online multimedia educational repositories have in-
creased in number and popularity. The main aim of the transLectures project
is to develop cost-effective solutions for producing accurate transcriptions and
translations for large video lecture repositories, such as VideoLectures.NET or
the Universitat Politécnica de Valéncia’s repository, poliMedia . In this paper,
we present the transLectures-UPV toolkit (TLK), which has been specifically de-
signed to meet the requirements of the transLectures project, but can also be used
as a conventional ASR toolkit. The main features of the current release include
HMM training and decoding with speaker adaptation techniques (fCMLLR). TLK
has been tested on the VideoLectures.NET and poliMedia repositories, yielding
very competitive results. TLK has been released under the permissive open source
Apache License v2.0 and can be directly downloaded from the transLectures
website.

1.1 Introduction

Online multimedia repositories are on the rise and becoming evermore consolidated as key
knowledge assets. This is particularly true in the educational area where large repositories of
video lectures are being established on the back of increasingly available and standardized
infrastructures. A well-known example of this is VideoLectures.NET, a free and open access
web portal that has so far published more than 15K educational videos. VideoLectures.NET is
a major player in the diffusion of the open source Matterhorn platform currently being adopted
by many institutions and organizations within the Opencast community [9]. Other examples
include massive open online course (MOOCSs) aggregators, such as Coursera, Udacity, EdX,
Udemy, iVersity, UPV[x] and others.

The generation of subtitles for these repositories is a costly task, both in terms of time and
money, which prohibits many repositories from having their videos transcribed. Most of the
video lectures available on VideoLectures.NET and MOOC aggregators, for instance, are not
transcribed, despite the obvious benefits of doing so, including the incorporation of search and
analysis functions. In order to overcome this deficit, the transLectures project aims to develop
innovative, cost-effective solutions for producing accurate transcriptions and translations for
video lectures. The project has two case studies: the aforementioned VideoLectures.NET,
and poliMedia, a Spanish and Catalan video lecture repository developed at the Universitat
Politecnica de Valencia (UPV).
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An important area of work at transLectures is to develop solutions that can be easily
transferred to other repositories beyond VideoLectures.NET and poliMedia. With this in mind,
the transLectures-UPV team has developed a whole series of transferable tools, including
online applications. This paper is focused on just one of these tools, the transLectures-UPV
toolkit (TLK). TLK implements all the functionalities required to develop an automatic speech
recognition (ASR) system. Although developed as part of the transLectures project to meet
the specific requirements of video lecture transcription, it can also be used as a conventional
ASR toolkit, like HTK [20], RASR [14] or KALDI [12]. In this paper, we go into more detail
about this toolkit, which can be freely downloaded [18] under the permissive (for research and
commercial purposes alike) Apache License v2.0.

This paper is organised as follows. Section 1.2 describes the different tools forming part of
TLK that can be used either to build an ASR system or simply to transcribe input media files.
A practical guide to the development of an ASR system using TLK is given in Section 1.3.
Finally, the performance of TLK is assessed in Section 1.4, and some conclusions are given in
Section 5.5.

1.2 Overview of the Toolkit

TLK can be divided into three major components: the library, the basic command line tools
and the high-level command line tools. The library, named 1 ibTLXK, is an ANSI C library and
implements the core functionalities of TLK (feature extraction, parameter estimation, decoding,
adaptation, etc.). A set of basic command line tools have been defined to use 1 ibTLK. Based
on these basic tools, high-level command line tools have also been developed in order to carry
out the main steps involved in building an HMM-based ASR system: preprocessing, training
and decoding.

Building an ASR System Using TLK Tools

As illustrated in Fig. 2.1, an ASR system can be built using three high-level TLK tools:
tLtask-preprocess, tLtask-trainand tLtask-recognise.

tLtask-preprocess

This tool takes time-segmented audio signals and the corresponding transcriptions as input
and performs feature extraction and phonetic annotation. It also extracts clusters from the
input audio, which can be used for speaker or video adaptation, and other useful data like the
original or non-punctuated text.

tLtask-preprocess uses the tLextract basic command tool to perform the Mel-
Frequency Cepstral Coefficients (MFCC) feature extraction process as described in [20].
tLextract supports a large number of audio file formats since it uses the 1ibsox li-
brary. The parameters involved in the extraction process are easy to configure: sampling
frequency, duration of the extraction window, number of cepstral coefficients, etc. Further-
more, t Lextract also allows the application of a mean variance normalization to the input
samples.

The phonetic transcription is obtained using different auxiliary scripts depending on the
input language. The current release supports Spanish and Catalan.
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Figure 2.1: Building an ASR system using TLK tools.

tLtask-train.

This tool takes the output from t Ltask-preprocess and performs the following training
schema to estimate the HMMs:

1. Standard model training: monophone training, triphone training, transformation of the
triphone model to a tied phoneme model, tied phoneme training.

2. Estimation of CMLLR matrices and CMLLR features.

3. CMLLR model training: CMLLR monophone training, CMLLR triphone training,
CMLLR transformation of the triphone model to a tied phoneme model, CMLLR tied
phoneme training.

This is the training schema for a two-step recognition system using f{CMLLR features [3],
and tied-state triphone HMMs. The final standard and CMLLR models are made up of
Gaussian mixture distributions estimated following on an iterative training schema in which
mixture components are mixed at each iteration (mixing is performed using t Lmumix). Tied-
state triphone HMMs are estimated following a phonetic decision tree approach [21]. This
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technique is implemented as an auxiliary Python script based on predefined linguistic rules.
These rules are implemented as regular expressions in Python and can be easily defined by
users. The current release includes rules for English, Spanish and Catalan.

tLtask-train uses the tLtrain basic command tool which implements Baum-
Welch and Viterbi algorithms for parameter estimation [1, 19]. t Lt rain has been designed
to be able to properly manage large corpora by scaling in cluster environments. Specifically,
tLtrainisused by tLtask-train following a Map-Reduce approach. That is, training
is split into two stages: a first stage in which t Lt rain is used to compute statistics, which can
be split over several independent processes; and a second stage where the statistics computed
in the previous stage are merged using the basic command line tool t Lupdate. It is worth
noting that t Lupdate has support for linear interpolation of counts which might be useful in
an online learning schema. Additionally, tLt rain allows samples to be packed into tar files
for a better I/0O latency in a cluster environment.

tLtask-train uses additional basic command tools to complete the CMLLR model
training. tLeml1lr is used to calculate a transformation matrix over all Gaussian mixtures
of a simple HMM using the Constrained MLLR algorithm (CMLLR), while t Lcmllrfeas
transforms samples into fCMLLR features using a CMLLR transformation matrix.

tLtask-recognise.

This tool transcribes audio samples produced by t Ltask-preprocess using HMM models
estimated by tLtask—-train following a two-step recognition schema:

1. Recognition using the standard tied phoneme HMMs.
2. Estimation of CMLLR matrices.
3. CMLLR transformation of input samples.

4. Recognition using the CMLLR tied phoneme HMMs.

tLtask-recognise uses the basic tool t Lrecognise, which implements the well-
known Viterbi algorithm, to obtain the most probable hypothesis [19]. In addition to
HMMs, a language model and a pronunciation dictionary must be provided for decoding.
tLrecognise allows two different language model representations. If the language model
is a wordnet (without back-off), decoding is carried out over a huge finite state model built by
embedding HMMs into the states of the wordnet [20]. In contrast, if the language model is in
ARPA format (back-off), the decoder follows a word-conditioned tree search approach [8].
Specifically, a prefix tree with all the possible pronunciations is pre-calculated. To speed up the
process, prior to decoding (tLtask—-recognise or tLrecognise), the language model
must be transformed into an internal format. This transformation is carried out by the basic
tool tLlmformat. tLrecognise implements several well-known pruning techniques:
beam search, histogram pruning, word end pruning and look-ahead. Although look-ahead is
not exactly a pruning technique, its use is highly recommended when pruning techniques are
applied in conjunction with a prefix tree approach [10]. tLrecognise also supports the
generation of lattices following the technique described in [11]. Two formats for lattices are
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supported: the TLK format and the HTK format [20]. If desired, lattices can be generated
including information related to time alignment at phoneme level.

As with tLtask-train, tLtask-recognise has been designed to work well in
cluster environments. Specifically, it can be configured to split recognition into parallel
processes, and cache big files (like models) on host machines.

The output of t Ltask—recognise is given in different formats: plain text, recognize
output, CTM format [15], etc.

Using TLK Tools For Decoding Only

TLK includes a high-level tool named tLtranscribe that allows users to directly tran-
scribe media files. This tool reads a preinstalled system, freeing the user from all the
technical details. As illustrated in Fig. 2.2, t Lt ranscribe makes use of the high-level
tools tLtask—-recognise and tLtask-segment. The tool t Ltask—segment uses
tLextract to automatically perform the segmentation of the audio signal. For the purposes
of testing the tLtranscribe tool, a system for Spanish transcription has been released
under a Creative Commons Attribution 4.0 International License.

1.3 Using TLK

This section describes how an ASR system can be built using TLK following the process
depicted in Fig. 2.1. A more detailed version of this tutorial is available on the transLectures
website [18].
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1. TLK installation and data preparation.

e The current version of TLK runs on Linux and Mac OS X, and can be easily
installed from the transLectures website.

e Acoustic data is also available on the transLectures website and can be downloaded
by executing:

wget translectures.eu/files/tlk/tlk-tutorial-data.tgz
tar —-xzvf tlk-tutorial-data.tgz

This will create the directory t1k—tutorial-data, which itself contains
several directories. The train directory contains the data that will be used to
train HMMs, while the test directory contains the data that will be used to asses
the system. These data correspond to Spanish lectures recorded at Universitat
Politecnica de Valencia and their annotations in .trs and .dfxp format.

e Now, running tLtask-preprocess the data is preprocessed obtaining the
required files for training and evaluation:

tLtask-preprocess es dfxp \\
tlk-tutorial-data/train preprocess-train

tLtask-preprocess es dfxp \\
tlk-tutorial-data/test preprocess-test

Note that the configuration options (i.e. es and dfxp) indicate the language and
the file format, respectively.

2. HMM training:

e First of all, a directory should be created to store the training files:
mkdir training; cd training

e Then, the two directories inside preprocess—train need to be linked to the
training directory:

ln -s ../preprocess—train/samples \\
../preprocess-train/lists

e Next, a template of the tool’s configuration file t Ltask—train should be gen-
erated:

tLtask-train --write-example-config-file > \\
config-file.ini

This configuration file contains the default parameters needed to train standard
HMMs for the Spanish language. In order to use previously preprocessed acoustic
data, the List s section of this configuration file has to be changed:

[Lists]
set_name = lists/samples

[General]

prefix-name = training-tutorial
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e Finally, the following command runs the tool t Ltask—train to perform the
HMM training:

tLtask-train config-file.ini --log-folder log

The tool tLtask-train will execute all necessary commands to train HMMs
following the training schema described in previous section Note that, although
certain processes are executed in parallel depending on the computer, this process
might take some time.

3. Automatic transcription:
e As in the case of training, a directory should be created in the base directory for
storing the automatic transcriptions:
mkdir recognition; cd recognition
e Also, some links must be created to the acoustic data and models:

In -s ../preprocess—-test/samples ../preprocess-test/lists \
. ./preprocess—test/references ../training/models \
../tlk-tutorial-data/misc/mono.lex \
../tlk-tutorial-data/misc/mlm.gz

e The tool tLtask-recognise needs a configuration file, easily generated by
running:

tLtask-recognise —--write-example-config-file > \\
config-file.ini

Some changes need to be made to this file in order to use previously preprocessed

test data:

[General]

prefix-name = tutorial

[HMM]

prefix-name = training-tutorial
[LM]

language-model = mlm.gz

lexicon = mono.lex

e Finally, upon executing the following command, the test audio samples will be
automatically transcribed following the two-step recognition schema described in
previous section:

tLtask-recognise config-file.ini --log-folder log

4. Measuring the transcription quality:

e The sclite tool in SCTK is used to compute the Word Error Rate (WER) of the
automatic transcriptions [15]:

sclite -r references/<video_id>.stm \
stm -h tutorial/cmllr_step2/transcription.ctm ctm



28

1.4 Empirical Results

TLK has been developed within the framework of the transLectures project to deal with the
transLectures of video lectures. Specifically, ASR systems have been developed for three
languages: English, Spanish and Catalan. The English ASR system has been developed for
the transLectures of English lectures from the VideoLectures.NET repository. The Spanish
and Catalan ASR systems have been developed for the poliMedia repository. For training and
evaluation purposes, three databases have been developed by manually transLectures video
lectures from these repositories. The main statistics of these speech databases are shown in
Table 2.1.

Table 2.1: Main statistics of the English, Spanish and Catalan speech databases used in
the transLectures project.

English Spanish Catalan

Videos 28 704 210
Speakers 104 83 33
Hours 26.6 114.2 25.8
Sentences 7.3K 41.6K 13.7K

Running Words 192K 1M 198K
Vocabulary Size 13K 359K 244K

From each database some lectures were selected for evaluation purposes: 3.4h for Spanish
and English, and 2.1h for Catalan. However, since video lectures from VideoLectures.NET are
longer (= 50min) than poliMedia lectures (= 10min), this means just 4 videos were selected
for English in absolute terms, while 23 and 16 videos were selected for Spanish and Catalan,
respectively. The remaining data were used for training and development. For tasks where
there was a lack of training data, as was the case for English and Catalan, the training data
was increased by out-of-domain corpora.

The progress of the ASR systems developed within the transLectures project using TLK
for each language is depicted in Fig. 2.3. As can be observed, the performances of the
three systems have improved continuously throughout the project. In particular, very high
performance levels have been achieved in Spanish (12.8% WER). Work began on the English
and Catalan systems later than on the Spanish system (specifically, one year later). However,
big improvements in WER have been achieved in the six-month period (20.1% in Catalan and
22.7% in English). In all languages, the performance is close or below 20% WER, which has
been reported as the threshold under which ASR output becomes useful for users [7]. All these
improvements can in part be explained by the fact that TLK has been under active development
since the beginning of the project. This includes some features currently being tested, for
example, hybrid models with deep neural networks (DNNs) [13, 2, 17], and multilingual
DNN:s [6]. It is worth noting that, in all cases, the language model used has about 200K words.
Moreover, the percentage of out-of-vocabulary words is below 2% (1.7% for Spanish). For
further details on the development of these systems, please refer to the public transLectures
reports [5, 16, 4].
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Figure 2.3: Progress measured in WER of the TLK ASR systems developed within the
transLectures project for Spanish (Es), English (En) and Catalan (Ca).

1.5 Conclusions and Further Remarks

In this paper we have presented the transLectures-UPV ASR toolkit (TLK) based on HMMs.
TLK implements well-known ASR features and released under the open source Apache License
2.0. The functionality of TLK has been recently extended, adding a new component that
supports Deep Neural Networks (DNN5s) following a hybrid decoding approach [2]. Although
the current release does not include DNN training, with this still being at an experimental
stage, it does include DNN support for recognition. In fact, beside the standard Gaussian
HMM based Spanish system, we have also released a Spanish system based on DNNs. Both
systems can be downloaded from the transLectures website [18].

As future work, we plan to improve TLK further by adding new state-of-the-art features,
such as convolutional NNs or recurrent NNs. Also, we plan to carry out extensive, comparative
tests with other toolkits.
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Abstract

This paper describes the Machine Learning and Language Processing (MLLP)
ASR systems for the 2015 IWSLT evaluation campaing. The English system is
based on the combination of five different subsystems which consist of two types
of Neural Networks architectures (Deep feed-forward and Convolutional), two
types of activation functions (sigmoid and rectified linear) and two types of input
features (fMLLR and FBANK). All subsystems perform an speaker adaptation
step based on confidence measures the output of which is then combined with
ROVER. This system achieves a Word Error Rate (WER) of 13.3% on the 2015
official IWSLT English test set.

2.1 Introduction

TED is a global set of conferences around the world carried out by the non-profit organisation
Sapling Foundation. Its talks cover a wide range of different topics such as science, culture,
economics or politics, always keeping in mind the slogan "ideas worth spreading". The
speakers are given a maximum of 18 minutes to present their ideas in the most appealing way
they can, typically in a storytelling format.

In order to ensure the maximum spread of these talks, turns out to be essential their
transcription and translation. Big efforts have been devoted to this task, such as The Open
Translation Project (OTP), which aims to reach out to the 4.5 billion people on the planet
who do not speak English. Nevertheless, the OTP utilises crowd-based subtitling platforms,
powered by volunteers to translate and caption the videos, which is still a very time-consuming
task.

TED talks conform a very appropriate case study where new technologies can be applied.
Particularly from the machine learning community, the International Workshop on Spoken
Language Translation (IWSLT) organises a yearly challenge which aims at evaluating the core
technologies in spoken language translation: automatic speech recognition (ASR), machine
translation (MT) and spoken language translation (SLT). Automatically transcribing this kind
of videos is still a challenging task due to the spontaneous nature of the speech; variety in
acoustic conditions, the presence of disfluencies, hesitations and different accents states a
great challenge even for cutting-edge technology in automatic automatic speech recognition.

This paper describes the English and German ASR systems developed in the MLLP group
for the IWSLT 2015 evaluation campaign. Most effort went into the development of the
English recognition system which is based on the ROVER combination of five subsystems.
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Each of those subsystems was based on hybrid Deep Neural Networks Hidden Markov Models
(DNN-HMM) [1] with different input features (MFCCs and filter bank), activation functions
(sigmoid and rectified linear) as well as various architectures such as Deep Convolutional
Neural Networks (CNN). It is worth noting that all of these systems were entirely trained
using our own software; the transLectures-UPV toolkit.

The rest of this paper is organised as follows. Section 3.2 describes the ASR toolkit used
for the experiments. In Section 2.3 the automatic audio segmentation technique is introduced.
Section 2.4 is devoted to the English transcription system. Similarly, in Section 2.5 the German
ASR system is described. Finally, conclusions are given in Section 2.6.

2.2 Translectures-UPV Toolkit

The transLectures-UPV toolkit (TLK) is composed by a set of tools that allows the development
of an end-to-end speech recognition system. Its application range extends from feature
extraction to HMM and DNN training and decoding. Since last state published of the toolkit [2]
new state-of-the-art techniques have been added:

e DNN training and decoding hybrid based systems.
o Support to Convolutional NNs.
e Support to Multilingual NNs.

e DNN speaker adaptation techniques such as output-feature discriminant linear regression
(oDLR) [11].

e DNN sequence discriminative training based on Maximum Mutual Information (MMI).

2.3 Audio Segmentation

The audio segmentation step performed by the MLLP group for English and German can be
viewed as a simplified case of ASR, in which the system vocabulary is constituted by the
power set of segment classes: speech and background noise.

Provided an audio stream 7, the segmentation problem can be stated from a statistical
point of view as the search of a sequence of class labels &'so that

¢ = argmax p(Z | &) (@) @.1)
cecx
where, as in ASR, p(Z | ¢) and p(¢) are modeled by acoustic and language models, respectively.
In our case, it should be noted that each word is composed by a single phoneme.

Acoustic models were trained on MFCC feature vectors computed from acoustic samples
using TLK. We used a 0.97 coefficient pre-emphasis filter and a 25 ms Hamming window that
moves every 10 ms over the acoustic signal. From each 10ms frame, a feature vector of 12
MEFCC coefficients is obtained using a 26 channel filter bank. Finally, the energy coefficient
and the first and second time derivatives of the cepstrum coefficients are added to the feature
vector.
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Each segment class is represented by a single-state Hidden Markov Model (HMM) without
loops, and its emission probability is modeled by a Gaussian Mixture Model (GMM). Acoustic
HMM-GMM models were also trained using TLK, which implements the conventional Baum-
Welch algorithm.

A 5-gram back-off language model with constant discount was trained on the sequence of
class labels using the SRILM toolkit [8]. Finally, the segmentation process (search) was also
carried out by the TLK toolkit.

2.4 English Transcription System
Acoustic Modeling

In this section the acoustic modeling process for the English system is described. First, the
data selected for training is showed as well as the techniques used for its collection. Then, the
training procedure is detailed along with all the subsystems associated.

Data Collection

This year, the IWSLT challenge allowed the use of any publicly available data for acoustic
modeling, including TED talks without publication date restrictions (except those listed as
disallowed). Given these requirements, roughly 400 hours of TED talks were downloaded
from its official web-page [9].

The subtitles attached to a large part of the talks neither match the speaker’s speech nor
the timings. Therefore, a data filtering process is needed, in which those segments with a
deficient or non-existent transcription must be removed. This process was performed in a
similar manner to the data filtering performed for building the TEDLIUM corpus [5].

First of all, the input audio was segmented and preprocessed according to the caption
timings. Secondly, a recognition step was performed using an out-of-domain acoustic model
and a finite state language model. This finite state language model was built using the sequence
of words from the reference with silence in-between, allowing loops (hesitations), initial state
to any word transitions and from any word to final state transitions.

This way, those segments whose recognition does not match the reference suggest that
either the timings are wrongly set or the system is unable to recognise the segment due to
non-speech audio. Therefore, after decoding, all of these incorrectly recognised segments
were removed, which left us a total of 245 hours of clean speech distributed among 1900 talks.

Training

Regarding feature extraction, two types of acoustic features were extracted. The first type
of features are Mel-frequency cepstral coefficients (MFCC), which were extracted with a
Hamming window of 25 ms, shifted at 10 ms intervals. The MFCC feature consisted of
16 MFCCs and their first and second derivatives (48-dimensional feature vectors). These
feature vectors were then normalised by mean and variance at speaker level. After that, a
single feature-space Maximum Likelihood Linear Regression (fMLLR) transform for each
training speaker was then estimated and applied to perform speaker-adaptive training (SAT).
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The second type of features are log Mel filter bank (FBANK) with first and second derivatives
which left 120 dimension feature vectors.

Five different acoustic models were trained in our system using TLK. All of them consisted
of context-dependent Deep Neural Networks (DNNs) following an hybrid approach. To train
these models, we first trained a basic context dependent triphone HMM model, after which
a second-pass feature-space Maximum Likelihood Linear Regression (fMLLR) was applied.
This model yielded a total of 10492 tied states, estimated following a phonetic decision
tree approach [12]. It is worth noting that, in order to obtain the best transcription as to
better perform fMLLR, an standard DNN was trained using the MFCCs features. The five
models were build on top of these HMM acoustic model and followed a three-pass recognition
approach as shown in Fig. 2.4.

From Fig.2.4, the fMLLR CD-DNN module can be switched among the five different
acoustic models. Three of them are feed-forward DNNs and the other two are Deep Convolu-
tional Neural Networks (CNNs). From the first set, all models took as input MFCCs feature
frames with a window size of 11. Moreover, all three subsystems shared the same topology:
528 — 2048 x 7 — 10492, i.e., an input layer with 528 neurons, 7 hidden layers with 2048
neurons and an output layer of 10492 neurons. The pre-training phase technique is also shared,
which consisted of the Discriminative Pretraining [7] approach. The first system was a DNN
with sigmoid activation functions, trained with the cross-entropy (CE) criterion (10 epochs)
and after that, with sequence discriminative training following the MMI criterion (hereafter
DNN-mmi). The second model was a DNN with rectified linear activation functions, trained
following the CE criterion during 45 epochs (hereafter DNN-relu). And the third model was
a DNN with sigmoid activation functions trained with the CE criterion during 45 epochs
(hereafter DNN-sigm).

Two models belong to the second set of acoustic models. Both take as input FBANK
features with a window size of 11 and share the same topology. It consist of one convolution
layer followed by a max pooling operation, 6 feed-forward hidden layers of 2048 units each,
and an output layer of 10492. The convolutional layer is composed of 128 filters with a filter
size of 9 and shift of 1. Meanwhile, the max-pooling layer was configured with a pooling
width and shift of 2. The difference between both models is the type of activation functions
used for the feed-forward layers: sigmoid (CNN-sigm) and rectified linear (CNN-relu).

DNN Speaker Adaptation

The output from the second recognition step was used to carry out speaker adaptation of DNNs
(as indicated at the lower box of Fig. 2.4). The technique used consisted of a conservative
training approach, using a very small learning rate and early stopping [13].

Moreover, we made use of confidence measures at word level to exploit inexpensive yet
reliable unsupervised speech data. Specifically, confidence measures are estimated from
the output of the second recognition pass in order to improve the DNN adaptation step.
Although there are many different ways to estimate confidence measures, here we will resort
to the conventional approach by which these measures are computed as word posterior
probabilities [10].

In order to take advantage of confidence measures, we decided to use them to weight
the samples during the adaptation. In this approach, all samples are taken into account, but
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the contribution of each sample is weighted by its corresponding confidence measure. The
rationale behind this method is that only samples with high confidence measures are relevant
for the adaptation process, whereas those with low confidence can be neglected. In some way,
this method can be seen as a refinement of taking away those samples behind an specified
threshold, avoiding the need of estimating that threshold.

Formally, adaptation with weighted samples is based on a modified cross entropy training
criterion:

] =

Cn Ing Sn | Xn)a (2.2)

n=1

where X{V is the set of frames, s,, is the senone (label) according to the output from the second
pass, and ¢,, € [0, 1] is its confidence measure. This modified criterion leads to a different way
to estimate errors in the Back-Propagation algorithm. In particular, the error for the nth frame
0™ is estimated as follows

6" = (yn —8n) - Cn, (2.3)

where y™ is the output of the last layer, and s™ are the target labels.

Language Modeling

We used several different text corpora to train the language models. They were preprocessed
to normalise capitalisation, remove punctuation marks and transliterate numbers. We can
distinguish two different types of corpora, out of domain corpora (OOD), most of them, and in
domain corpora (ID), in this case only TED train set. Table 2.2 summarises the main figures
of all the corpora used.

The vocabulary for the language models have been obtained by selecting the 200K most
frequent words of a 1-gram LM interpolation of the OOD corpora. The words form the ID
corpus are added to this selection, obtaining a final vocabulary of 209 660 words.

With this vocabulary, we trained standard Kneser-Ney smoothed n-gram models for each
one of the corpora using the SRILM toolkit [8]. The order of each model is adjusted to 3
or 4 depending on the size of the corpus. The last column of Table 2.2 shows the perplexity
obtained with all these models on the English development set.

All the resulting models are linearly interpolated to obtain a final powerful model adapted
to the characteristics of the task, optimising the interpolation weights on the development
set [3]. To reduce the size of the final model, it is pruned by removing those n-grams (n > 1)
whose removal causes (training set) perplexity of the model to increase by less than 2 x 10719,
This model obtained a perplexity of 126.1.

Experimental Results

In this section all the recognition experiments performed for the English transcription system
are described. Recognition experiments were carried out on the IWSLT 2015 English ASR
development and evaluation sets, the statistics of which are shown in Table 2.3.

Following the IWSLT evaluation requirements, tst2013 was used as development set,
tst2014 as progressive evaluation set and tst2015 as evaluation.
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Table 2.2: Stats of the different LM training corpora. The poliMedia [poliM ], Vide-
oLectures.NET and VL.NET subtitles [VideoLectures ] corpora were generated during
transLectures project.

Corpus Sentences | Words | Perplexity
Europarl 2.2M 53M 4543
Europarl TV 128K 1.2M 454.5
Giga 10 22M 55TM 296.9
Google Ngrams - 303B 1871.1
NewsCrawl 53M 1.1B 151.7
poliMedia 4K 95K 1393.1
VideoLectures.NET 5K 127K 871.4
VL.NET subtitles 85K 1.7M 371.5
Wikipedia 82M 1.5B 200.1
TED train 520K 3. ™M 218.2

Table 2.3: Statistics of the English ASR development and evaluation sets.

Set # Talks Time

tst2013 28 4h:39m
tst2014 15 2h:22m
tst2015 12 2h:25m

The decoding was performed for all the subsystems following the scheme from Fig. 2.4.
The first step was common and its output was used to perform fMLLR speaker adaptation.
After that, each subsystem performed the second recognition step, the output of which was
used to perform DNN speaker adaptation using confidence measures. Results from these two
steps are shown in Table 2.4.

Table 2.4: Effect of DNN Speaker Adaptation on each subsystem in terms of WER.
Results are shown on tst2013 data-set.

Subsystem | Non-Adapt | Adapt | R. Improvement
DNN-mmi 16.9 16.7 1.2%
DNN-sigm 17.1 16.7 2.3%
DNN-relu 18.5 17.8 3.8%
CNN-sigm 19.4 18.8 3.1%
CNN-relu 18.7 18.0 3.7%
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It is worth mention that none of the above results has been subjected to a process of
spelling normalisation by means of a global mapping file. As we can observe, the DNN-mmi
adaptation has not performed as the rest of system’s adaptations. To our knowledge this is
because there is not so much room for improvement as occurs in the other systems, and also to
the change in the training criterion (from MMI to CE during adaptation).

Finally, a recogniser output voting error reduction (ROVER) algorithm was applied to
combine the subsystem’s output and further improve the recognition results. The combination
weights were estimated based on the development set, giving 2:2:1:1:1 for DNN-mmi, DNN-
sigm, DNN-relu, CNN-sigm and CNN-relu. The final scoring results are shown in Table 2.5.
At the time of writing this paper results on the progress test set tst2014 were not provided.

Table 2.5: The final result of the English system in terms of WER. (* means official
result)

Set ROVER
tst2013 16.2
tst2015 13.3*

2.5 German Transcription System

In this section the German ASR system is described. The first section details the data and
training procedure, while the second section shows the results obtained by the system.

Training

For the acoustic modelling, we decided not to use the Euronews ASR provided corpus due
to processing power constraints and its acoustic conditions being far from target conditions.
Instead, we downloaded and processed the German Speechdata Corpus (GSC) [4], an open
source corpus recorded and released by the LT and the Teleccoperation group from the
Technical University of Darmstadt. This corpus contains 180 different speakers and 36 hours
of speech, recorded under controlled conditions with many microphones in parallel. The
whole corpus was used as train data. The grapheme-to-phoneme conversion was performed
with the help of MaryTTS software [6].

The training procedure for German was the same as the DNN-MFCC used in the English
system (Sec. 2.4). 48-dimensional MFCC acoustic vectors were extracted and normalised by
speaker. A single acoustic model was estimated for German, which consists of a feed-forward
DNN with a window size of 11 and 4 hidden sigmoid layers with 2048 neurons each. The
output layer features 12237 senones. The network initialisation was performed with the DPT
approach, and then the network was trained using the Cross-Entropy error criterion for 10
epochs.

The training and recognition follow the same three-step approach of the English system.
An speaker-independent model is used in the first step. The output transcription is then used to
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perform unsupervised fMLLR adaptation. This second transcription is employed to perform
DNN Speaker adaptation (Sec. 2.4). In the case of German, no confidence measures have been
used for this third step.

The language model for our German system is made up by a standard linear interpolation of
4-gram language models. These models were estimated from different open corpus downloaded
from the Internet. The corpora were normalised by lower-casing, removing punctuation marks
and transliterating numbers. The corpus statistics after this process can be found in Table 2.6.

Table 2.6: Statistics of the German LM corpus.

Corpus Sentences | Words | Perplexity
Europarl 2M 46M 515.5
News-crawl 135M 2B 352.0
Wikipedia 31M 326M 4234

When training, the vocabulary was restricted to 200k words, selected with the same
procedure described in Section 2.4. The interpolation weights were set to optimise the
perplexity of the dev set. In order to improve recognition time, the interpolated model was
pruned with a prune factor of 2 x 10~°. The perplexity of the language model is 290.4.

Experimental Results

We tested our system on the tst2013 corpus, which was set as the official development corpus
of the 2015 challenge. This corpus contains 9 videos from the TEDx website, with varying
acoustic conditions. The results are summarised in Table 2.7. At the time of writing this work
results on tst2014 set were not provided.

Table 2.7: The final results of the German system in terms of WER. (* means official
result)

Set WER
tst2013 | 43.6
tst2015 | 43.3*

Unlike the English task, we were not able to obtain state-of-the-art results for the German
task. We attribute this result to the lack of relevant in-domain acoustic resources and the
simplicity of the approaches employed.

2.6 Conclusions

In this paper we have described the English and German ASR systems developed for the IWSLT
2015 evaluation campaign. For the first participation of the MLLP group, the presented systems
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make use of the hybrid approach of HMM-DNN. Particularly, the decoding step of the English
system is based on the combination of five different transcription subsystems. Each one built
as a three pass recognition system and combining different types of NNs architectures, input
features and activation functions. Meanwhile, the German system constitutes our first large
scale speech recognition system on this language and it is based on a three pass recognition
system with DNN speaker adaptation.
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Abstract

The MLLP CHiME-4 system is presented in this paper. It has been built using
the transLectures-UPV toolkit (TLK) developed by the MLLP research group
which makes use of state-of-the-art automatic speech recognition techniques. Our
best system built for the CHiME-4 challenge consists on the combination of two
different sub-systems in order to deal with the variety of acoustic conditions. Each
sub-system in turn, follows a hybrid approach with different acoustic models,
such as Deep Neural Networks or BLSTM Networks.

3.1 Introduction

The CHiME Speech Separation and Recognition Challenge [5] encourage participants to
develop innovative ASR approaches capable of dealing with challenging noisy environments
that rely in speech processing, signal separation or machine learning. It is based on the Wall
Street Journal corpus sentences, spoken by talkers located in real noisy environments, such
as in a street junction, on the bus, or in a pedestrian area. All the audios have been recorded
using a common 6-channel tablet microphone array.

In previous years, the challenge consisted of obtaining the best possible transcription from
the 6 channels simultaneously, but given the successful results achieved, this year the challenge
proposes two more tracks: 1-channel and 2-channels tracks. Each track only differs in the
number of available channels for testing. Thus, the 6-channels track is the easiest since more
favorable audio enhancement techniques can be applied. In the case of the 1-channel and
2-channels tracks, the audio enhancement techniques cannot exploit channel information at all
which makes this tasks harder to deal with.

The MLLP CHiME-4 system has been developed focusing on the acoustic modeling
aspect. Specifically, two different acoustic models have been trained following the hybrid
approach. On the one hand, a Context-Dependent Deep Neural Network Hidden Markov
Model (CD-DNN-HMM) and on the other hand, a Bidirectional Long Short Term Memory
Neural Network (BLSTM). Both acoustic models will be trained on the same data and their
output combined. From the proposed three tracks, this global back-end system have been
tested in the 1-channel and 2-channel tracks.

The rest of this work is divided as follows. Section 3.2 describes the ASR toolkit used
for the experiments. In Section 3.3 the proposed system is described and the conclusions are
given in section 5.5.
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3.2 The TransLectures-UPV Toolkit

The MLLP CHiME-4 system has been developed using the transLectures-UPV Toolkit
(TLK) [2]. TLK comprises a set of tools for audio processing, feature extraction, HMM
and DNN training and decoding. The main latest features added to the toolkit are the follow-
ing:

Multilingual and Convolutional NNs.

e Different DNN speaker adaptation techniques: output-feature discriminant linear regres-
sion (0DLR) [7] or Kullback-Leibler Divergence based [8].

DNN sequence discriminative training based on Maximum Mutual Information (MMI).
e Online decoding.
e Gammatone feature extraction.

TLK has demonstrated to provide competitive results in challenging and well-known
tasks. In [3] the TLK-based system dealt with TED video lectures, and in [4] the TLK system
provided good results in the LibriSpeech [6] corpus.

3.3 Proposed System

The system proposed by the MLLP group is based on the TLK toolkit. It is composed of
two transcription sub-systems that are combined following a recognizer output voting error
reduction (ROVER). Each of those sub-systems are based on the HMM-NN hybrid approach.
The only difference is that for the first sub-system a classical DNN is used whereas for the
second sub-system a BLSTM NN is employed.

Each of those sub-systems perform a three step recognition process as can be observed in
Fig. 2.5. The first and second steps are shown in the upper box. Regarding the first step, it
is shared between both sub-systems, cepstral mean and variance normalization (CMVN) is
applied and the decoding is performed using a standard DNN which provides the best possible
transcription and a better feature-space Maximum Likelihood Linear Regression (fMLLR)
transform. For the second step, each sub-system makes use of their own acoustic model (DNN
or BLSTM) taking as input the transformed fMLLR features. The output of this system is
used to perform a final third-pass recognition (the lower box of Fig. 2.5). During this step,
an unsupervised speaker adaptation technique is applied to both, the DNN and the BLSTM.
Specifically, the technique used in this work consisted of a conservative training approach
using a very small learning rate and early stopping [8]. This means that a very small learning
rate is estimated for a fixed number of epochs as to minimize the Word Error Rate (WER) and
then this learning rate is used in evaluation. To the best of our knowledge, it is the first time
that this kind of technique is applied to BLSTM NN for acoustic modeling.

TLK allows to perform decoding efficiently with large vocabulary language models
applying pruning techniques: beam search, histogram pruning, word end pruning and look-
ahead. Thus, the provided 5-gram language model has been used to obtain the recognition
outputs along all the steps. Once the last step is performed, the output lattices are re-scored
using also the provided RNN-based language model.
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BLSTM NNs have been built using TensorFlow [1]. With this purpose, a new feature has
been added to TLK for decoding using TensorFlow-based graphs.

3.4 Experimental evaluation

The data used for training the acoustic models belong to the multi-condition training set
defined by the CHiME-4 challenge. In our case, all data from channels 1,3,4,5 and 6 have
been used to train the DNN and the BLSTM sub-systems.

Regarding feature extraction, classical Mel-frequency cepstral coefficients (MFCC) were
extracted with a Hamming window of 25 ms. shifted at 10 ms. intervals. This MFCC features
consisted of 16 MFCCs and their first and second derivatives (48-dimensional feature vectors).
The resulting feature vectors were then normalized by mean and variance at speaker level.
And after that, a single fMLLR transform for each training speaker was then estimated and
applied to perform speaker-adaptive training (SAT).

In order to train the DNN and BLSTM based acoustic models, we first trained a basic
context dependent triphone HMM model up to 64 component Gaussian mixtures, after which
a second-pass fMLLR was applied. This model yielded a total of 9079 tied states, estimated
following a phonetic decision tree approach.Both models were built on top of these HMM
acoustic model. On one hand, the DNN-based acoustic model took as input the fMLLR
features with a window size of 11, 5 hidden layers, sigmoid activation functions and an output
layer of 9079. It was applied a discriminative pre-training stage and after that, the network
was trained as to obtain the best frame accuracy on a validation set. On the other hand, the
BLSTM acoustic model was trained with fMLLR input features (without windowing) with 4
hidden layers of 500 units each (both forward and backward directions) and an output layer
of 9079. In this case, dropout was applied at the output of each cell with a probability of
0.1, and the Newbob strategy was also applied in order to reduce the learning rate by 0.8
each time the frame accuracy improved less than 3% relative on the validation set. Both
networks were trained by minimizing the cross-entropy loss function, following the classical
stochastic gradient descent algorithm. This two acoustic models were used for the 1-channel
and 2-channels tracks. It is worth mentioning, that in the case of the 2-channel track, the audio
enhancement beamformit was applied.

Table 2.8: WER (%) per step for the 1-channel track.

System | Rec. Pass Dev - Test -
real simu real simu
1 16.03 | 17.63 | 24.87 | 24.47
2 12.66 | 14.52 | 19.80 | 19.92
DNN 3 11.93 | 13.19 | 18.34 | 17.73
+RNNLM | 1045 | 11.98 | 17.20 | 16.56
1 16.03 | 17.63 | 24.87 | 24.47
2 15.10 | 17.18 | 23.09 | 23.56
BLSTM 3 13.40 | 14.46 | 19.30 | 18.47
+RNNLM | 11.96 | 12.79 | 17.78 | 17.03
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Table 2.9: WER (%) per step for the 2-channels track.

System Rec. Pass Dev - Test -
real simu real simu
1 13.83 | 14.35 | 21.14 | 20.80
2 10.39 | 11.49 | 16.26 | 15.75
DNN 3 9.60 | 10.46 | 14.77 | 13.71
+RNNLM | 8.45 9.29 | 13.71 | 12.57
1 13.83 | 14.35 | 21.14 | 20.80
2 12.81 | 14.22 | 19.09 | 19.64
BLSTM 3 11.63 | 12.67 | 15.50 | 14.93
+RNNLM | 10.12 | 11.36 | 14.31 | 13.46

In Table 2.8 the results after each recognition step from the 1 channel track are shown,
and similarly in Table 2.9 the results from the 2-channels track. As can be observed, the
first recognition step is common to both sub-systems and tracks. With respect to the rest of
recognition passes, very similar behaviors are observed in both tracks; the DNN performs
better in all recognition steps and the BLSTM obtains a huge gain after the third step. For the
first statement, we argue that the DNN is far more complex in terms of number of parameters,
as we have trained a 5 hidden layer neural network of 2048 units per layer, while the BLSTM
consist of 4 hidden layers of 500 units each one. Regarding the second statement, the huge
WER improvement from the BLSTM at the third step comes from the fact that we are using
the best transcription obtained during the previous step, i. e. the DNN, as to better perform
speaker adaptation to the NN during the third step.

Once the output from both systems has been obtained, ROVER technique is applied as to
combine both transcriptions. As can be seen in Table 2.10, the DNN system systematically
outperforms the BLSTM-based. However, the combination of both systems yields the best
result in both tracks. If we take a look to the real test set, the baseline provided by the
organizers for the 1-channel track yielded 23.70% WER points whereas our system obtains
16.11%. This represents 32% relative reduction in WER for the 1-channel track. In the case of
the 2-channels track, the baseline system achieved 16.58% average WER whereas our system
achieves 12.82%. This represents a 22.7% relative reduction in WER for the 2-channel track.
These improvements seems quite competitive, taking into account the simplicity of our system.

Table 2.11 summarizes the results obtained by the best system per environment. As shown,
the most challenging has been the bus environment in all tracks for the real test set. In fact, the
baseline system achieved 35.8%, while our system 21.61, which means almost 40% of relative
improvement in the 1-channel track. In the case of the 2-channels track, the improvement is
about 37% (from 25.37 to 16.00).

3.5 Conclusions

In this work we have described the MLLP ASR system developed for the CHiME-4 challenge
built using TLK. The system is based on the combination of two sub-systems which make use
of different acoustic models: DNNs and BLSTMs. The final system obtains 32% and 22.7%
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Table 2.10: Average WER (%) for the tested systems.

Dev Test

real simu real simu
DNN 10.45 | 11.98 | 17.20 | 16.56
1ch BLSTM 11.96 | 12.79 | 17.78 | 17.03
Combined | 9.95 | 11.13 | 16.11 | 15.72

DNN 8.45 9.29 | 13.71 | 12.57
2ch BLSTM 10.12 | 11.36 | 14.31 | 13.46
Combined | 7.96 8.93 | 12.82 | 12.06

Track System

Table 2.11: WER (%) per environment for the best system.

Dev Test
real simu real simu
BUS | 11.74 | 9.04 | 21.61 | 10.95
CAF | 11.18 | 14.68 | 18.12 | 19.57

Track | Envir.

Ieh |\ pED | 742 | 935 | 13.25 | 15.37
STR | 9.45 | 11.46 | 11.47 | 16.98
BUS | 8.84 | 7.73 | 16.00 | 8.67
sen | CAF | 870 | 11.55 | 13.78 | 14.34

PED | 6.27 | 7.45 | 11.17 | 11.77
STR | 8.02 9.00 | 10.31 | 13.47

relative improvements over the 1-channel and 2-channels tracks compared to the baseline.
This represents a good enough result taking into account the simplicity of our approach.
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ASR Confidence Estimation with Speaker-Adapted
Recurrent Neural Networks

M. A. Del-Agua and S. Piqueras and A. Giménez and A. Sanchis and J. Civera and A. Juan

Abstract

Confidence estimation for automatic speech recognition has been very recently
improved by using Recurrent Neural Networks (RNNs), and also by speaker
adaptation (on the basis of Conditional Random Fields). In this work, we explore
how to obtain further improvements by combining RNNs and speaker adaptation.
In particular, we explore different speaker-dependent and -independent data
representations for Bidirectional Long Short Term Memory RNNs of various
topologies. Empirical tests are reported on the LibriSpeech dataset showing that
the best results are achieved by the proposed combination of RNNs and speaker
adaptation.

Index Terms: speech recognition, speaker adaptation, confidence measures, recurrent neural
networks, blstm

4.1 Introduction

Confidence estimation (CE) has been broadly investigated in automatic speech recognition
(ASR) with the aim of assessing the reliability of the ASR output [3]. Over the years, an
approach that has demonstrated to be very effective is to consider CE as a classical two-
category (correct or incorrect) pattern recognition problem. Following this approach, CE has
been gradually improved by exploring novel input features and by designing more and more
accurate classifiers [3, 12, 11, 6].

Recent improvements to CE include the use of Recurrent Neural Networks (RNNs) [6] and
speaker adaptation [11]. On the one hand, the use of RNNs has yielded better performance
due to its ability to model context [6]. On the other hand, experimental results have shown that
speaker-adapted classifiers such as naive Bayes, logistic regression and conditional random
fields outperform their non-adapted counterparts [11]. It is worth noting, however, that RNNs
and speaker-adaptation have been studied separately, and thus it is still unclear whether using
them in conjunction would lead to further improvements in accuracy.

In this work, we explore possible ways to use RNNs and speaker-adaptation techniques in
conjunction. In particular, we propose to use the long short-term memory (LSTM) version
of RNNs [4]. In this way, the vanishing gradient problem will be conveniently addressed in
the case of long-span relations [1], while both history and future contexts will be modelled at
the same time through its bidirectional version (BLSTMs). Furthermore, we propose to apply
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speaker adaptation techniques to LSTM models through the use of speaker-dependent input
features based on their specific vocabulary, as well as training speaker-dependent models.

The content of the paper is organized as follows. The proposed speaker-adapted LSTM
architecture is presented in Section 5.3. Empirical results on the LibriSpeech dataset are
reported in Section 5.4, showing that the best results are achieved by the proposed combination
of RNNs and speaker adaptation. Finally, the conclusions of this work are summarized in
Section 5.5.

4.2 Speaker-Adapted LSTM Networks for Confidence Estimation

Recent work on CE [6] suggests that using temporal context by means of RNNs outperform
other approximations where the sequential dependence cannot be exploited. For that reason,
we propose to use LSTM networks as a further step towards context dependency. Aside
from circumventing the vanishing gradient problem, LSTM networks introduce a temporal
dependence over the entire segment by means of its bidirectional version. In this work, we use
LSTM networks with both unidirectional and bidirectional layers, and thus we will refer to
them simply as LSTMs.

What makes LSTM [4] networks different from RNNs is the use of purpose built-in
memory cells which perform element-wise multiplications to control the information flow in
the network. This memory cells are able to store information for a long period of time because
of a gating structure that determines when the input is relevant enough to remember, when
it should continue to remember or forget, and when it should yield an output. Specifically,
the LSTM cells replace the activation function of a classical RNN with the following set of
equations:

iy =0(Waixe + Whihe—1 + Weici—1 + b;) 2.4
It :a(Wwfxt + thht—l + Weypcr—1 + bf) 2.5)
ct = frce—1 + ig tanh(Waexy + Wiehy—1 + be) (2.6)
ot =0(Weoxs + Whohi—1 + Weoct + bo) 2.7
ht =0y tanh(c;) 2.8)

where o is the logistic sigmoid function and i, f, ¢, 0, h represent five different vectors at time
t from each gate: input, forget, cell memory activation, output and hidden layer, respectively.
As depicted in Fig. 2.6, the LSTM Network proposed in this work follows a classical LSTM
architecture. To use it in CE, input vectors at word-level are composed of two parts: a compact
representation of the word identity and a set of word-level features extracted from ASR
word-lattices.

Word identities have been included in the input vectors as they have been shown to be very
useful in CE [12, 11, 6, 5]. To this end, we have not used a conventional one-hot encoding
since this would entail a number of parameters growing linearly with the vocabulary size.
Instead, we have used a more compact global word vector representation based on a “GloVe”
model [9]. This is an embedding model, which tries to maintain the semantic similarities
between words in their vector representation. Two very similar words will result in two very
similar vectors. It is trained on the non-zero entries of a global word-word co-occurrence
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Figure 2.6: LSTM architecture for CE.

matrix which tabulates how frequently words co-occur with one another in a given corpus, in
this case, the same training as the one used for CE.

Given a sequence of input vectors X = (&1, ..., 27) which represents a sequence of T’
recognized words, the network produces a sequence of output vectors Y = (41, ..., y7) defining
a probability distribution over each class ¢ (¢ = {correct, incorrect}). These probabilities
correspond to the network’s estimate of observing each class c at time ¢ given X.

The LSTM network is trained to minimize the cross-entropy error of the targets using
a softmax output layer with 2 output units representing the two-category class using the
standard back-propagation through time algorithm (BPTT) [10]. Given a target sequence
Z = (A, ..., 1), the network minimizes the negative log-probability of the target sequence
given the input sequence:

—log P(Z|X) = Z log y;* (2.9)

After an LSTM network has been estimated based on Eq. (2.14) using a set of NV training
pairs {X, Z}¥V, we propose to adapt the LSTM to a new speaker by performing a few more
iterations of the BPTT algorithm using a small subset of training pairs belonging to that
speaker. It is worth mentioning that this adaptation also implies adapting the system to the
vocabulary of the speaker, so it becomes necessary to re-estimate the global word vector model
taking into account the new vocabulary of the speaker concerned. This is needed to ensure
that the same word representation is used before and after adaptation.
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4.3 Experiments
Experimental Setup

The proposed approach has been evaluated in the LibriSpeech ASR corpus [8]. The ASR
system has been built using the transLectures-UPV toolkit [2], which is an open source set of
tools for designing an ASR system from scratch. Acoustic models have been trained using the
train-clean-100 LibriSpeech subset (100 hours). They consist of an hybrid HMM-DNN built
on top of MFCC-CMLLR features. The DNN has been trained with a context window of 11
frames, 7 hidden layers with ReLu activation functions and 2048 units each. The number of
target tied-states accounts for a total of 8132. As language model, we have used the pre-built
4-gram provided by the authors in the release of the corpus.

The official dev-other and test-other subsets of the LibriSpeech corpus have been used
to adjust and evaluate CE models in a speaker-independent (SI) fashion. Also, 50h from
the train-other-500 LibriSpeech subset were randomly selected for the training of the SI CE
models. The main statistics of this experimental setting can be found in Table 2.12.

Table 2.12: Statistics of the speaker-independent setting.

Set  Duration (h) Words Vocab WER

Train 49 475K 27K 15.6
Dev 53 51K 7K 21.2
Test 5.1 52K 8K 23.1

Additionally, 20 speakers not used in the SI experiments were randomly selected from the
train-other-500 subset in order to evaluate speaker adaptation of the SI CE models. Specific
training, development and test subsets were built for each speaker using their own speech data.
Global statistics of this speaker-dependent (SD) setting are shown in Table 2.13.

Table 2.13: Statistics of the speaker-dependent setting.

Set  Duration (h) Words Vocab WER

Train 59 549K 8.6K  26.2
Dev 2 19.1K  4.6K 263
Test 2 193K 4.6K 255

It is worth mentioning that all the speakers in LibriSpeech have almost the same amount
of speech so as not to suffer from unbalanced speaker data. Therefore, in our SD partition,
there is almost the same amount of data for each speaker in order to adapt, adjust parameters
and evaluate.
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Evaluation metrics

We have used three metrics to evaluate the performance of the CE classifiers: the area under
a ROC curve (AUC), the classification error rate (CER) and the normalized cross entropy
(NCE).

Let us assume that ASR output results in C' correctly recognized words and I mis-
recognized words. Let False Rejection be the number of correctly recognized words with
confidence lower than a decision threshold 7 (F'R(7)) and, equivalently, let True Rejection
be the number of mis-recognized words with confidence lower than 7 (T'R(7)). The False
Rejection Rate (FRR(7)) and the True Rejection Rate (TRR(7)) for a decision threshold 7 are
computed as:

FR(T) TR(7)

1

A Receiver Operating Characteristic (ROC) curve represents TRR(7) against FRR(7) for
different values of 7. The AUC provides an adequate overall estimation of the classification
accuracy, being 100 a perfect classification and 50 a random classification (diagonal ROC
curve).

The Classification Error Rate (CER) for a decision threshold 7 is computed as:

FRR(r) = TRR(7) = (2.10)

FR(7r)+ (I — TR(7))
C+1

A baseline CER can be computed by classifying all the words as correct (i.e. 7 = 1):

CER(T) =

-100 @2.11)

CER(1) -100 (2.12)

R

Clearly, 7 = 1 is not necessarily optimal in the sense of minimizing Eq. (2.16). Therefore,
it is convenient to consider the classification threshold 7 = 7*, which minimizes the CER
criterion (usually that which provided the minimum CER in a development set):

7" = argmin CER(T) (2.13)

The Normalized Cross Entropy (NCE) is defined as the average log distance of the score
to the real class. It attains its maximum of 1 when the system provides perfect confidence
measures, that is, 0/1 values allowing us to perfectly discriminate between correctly and
incorrectly recognized words.

Results

As was mentioned in Section 5.3, a part of the input features of the LSTM Network are
extracted from an ASR word-lattice. In the experiments, we used 5 word-lattice based features
commonly used in CE [11]:

e SP: Word Acoustic log-score per time frame (10ms).
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e D: Duration (in ms) of the word.
e NL: Length of the N-gram in which the word was decoded.

e PAvg: Word posterior probability computed as the average of frame-based posteri-
ors [15].

e PMax: Like PAvg but using the maximum instead of the average [15].

On the other hand, a global word vector was obtained for SI and SD experiments, respec-
tively, using the training data of each experimental setting. The optimal size of the word
vectors was evaluated on the SI development set. Particularly, different vector sizes were
explored, establishing the number of training epochs and window size during the global word
vector model training. The best result was reached training during 30 epochs with a window
size of 15 and a vector dimension of 30.

Regarding the network topology, different models were built using several types of layers
and dimensions with the open source toolkit “currennt” [14]. All of them were tested on the
development set and, finally, the best topology corresponded with a network with 2 hidden
layers (BLSTM and LSTM) of 64 units each. This network architecture corresponds to that of
Fig. 2.6.

Table 2.14 summarizes the results obtained using the SI experimental setting in terms
of the different metrics presented in Section 5.4. The performance of the LSTM network is
evaluated comparatively with respect to conditional random fields (CRF) and naive Bayes
(NB), which have shown to achieve very competitive results in CE [12, 13]. The experiments
with CRF have been carried out using the Wapiti toolkit [7]. The best CRF models were
obtained using the training algorithm rprop- and modelling dependencies between consecutive
words.

Table 2.14: Results on the speaker-independent test-set.

AUC CER NCE

Baseline ——  20.66 -
NB 84.4 1654 -0.03
CRF 86.8 1530 0.31

LSTM 88.3 1458 0.35

As can be seen, LSTM models significantly achieve the best performance in terms of AUC,
CER and NCE. LSTM networks stated a relative improvement of 4.7% in terms of CER with
respect CRF. This statement is confirmed in Fig. 2.7, where the LSTM network outperforms
consistently (for all decision thresholds 7) the rest of the classifiers. For instance, given an
FRR of 20%, the LSTM classifier is the only one which can provide a TRR above 80%.

The evaluation of the speaker-adaptation technique proposed in Section 5.3 is shown in
Table 2.15. This table summarizes the results obtained by different experiments using the SD
experimental setting. First, the non-adapted LSTM network used in the SI experiments was
evaluated in order to establish a baseline performance. Second, starting from this non-adapted
LSTM network, we trained a speaker-adapted LSTM network per speaker applying a few



Chapter 2. Confidence Estimation with Speaker-Adapted RNNs 65

TRR

0.1 0.2

04 02 03 04 05 06 07 08 09 1
FRR

Figure 2.7: ROC curves on the speaker-independent test-set.

more training iterations using the BPTT algorithm with the data of each speaker. It is worth
mentioning that the global word vector model was re-estimated so as to take into account the
new speaker vocabulary along with the vocabulary from the SI experimental setting. Finally, a
linear interpolation between both models (non-adapted and speaker-adapted) was evaluated.
The optimal weights of interpolation were estimated using the development set.

Table 2.15: Results on the speaker-dependent test-set.

AUC CER NCE

Baseline —— 2183 -

CRF 874 1582 033
CRF+spkadapt 87.6 1556 0.34
LSTM 89.3 1448 0.38
LSTM+spkadapt 89.6 1442 0.39

LSTM+spkadapt (interpolated) 90.0 13.81 0.41

As shown, the model interpolation results in the best model giving a relative improve-
ment of 4.6% in CER with respect to the non-adapted model. This result is confirmed in
Fig. 2.8, where the speaker-adapted model outperforms for any threshold 7 their non-adapted
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Figure 2.8: ROC curves on the speaker-dependent test-set.

counterpart. From our point of view, this final approximation has performed better because it
has effectively prevented overfitting. This overfitting effect is usual when huge models such
as LSTM networks are trained with scarce data, which is the case of adaptation to a single
speaker.

For further analysis, Table 2.16 summarizes the performance of the interpolated model per
speaker. In general, it can be stated that speaker-adapted models outperform their non-adapted
counterparts in all cases in AUC, CER or both, except for speakers 4487 and 5248. For these
two speakers, the adapted model achieves slightly worse CER. This could be produced by
a particular vocabulary setting, quality of the adaptation data or a speaker-adapted system
overfitting that could not be avoided with the interpolation.

4.4 Conclusions and Future Work

In this work, we have presented speaker-adapted confidence estimation using LSTM Networks.
The use of LSTM Networks along with speaker-adaptation techniques constitutes a novelty
in word confidence estimation. The results obtained over a publicly available dataset such as
LibriSpeech confirm that LSTM networks improve state-of-the-art word confidence estimation
models such as conditional random fields. Particularly, LSTM networks are able to produce
relative reductions in CER of 4.7%. Moreover, the best speaker-adaptation technique presented
is able to further reduce CER in 4.6%.
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Table 2.16: Results on the speaker-dependent test-set per speaker.

AUC CER
SPK —Adapt Adapt R.I. | -~Adapt Adapt R.L
644  88.7 90.1 1.6 17.8 16.6 6.7
778  88.9 89.7 0.9 12.7 11.3 114
1065 88.0 88.3 0.3 14.0 13.1 6.3
1085 87.3 87.3 0.0 13.8 13.7 0.7
1544 89.9 89.8 0.0 11.9 11.2 5.5
3318 91.0 924 1.5 13.1 12.3 6.5
3793 92.0 927 0.8 12.8 11.9 7.0
3798 923 929 0.7 11.1 9.2 16.3
3992 90.8 90.8 0.1 11.3 10.9 4.1
4034 88.2 89.1 1.0 13.2 13.1 0.7
4487 879 88.6 0.8 13.8 143  -37
4546 86.7 87.5 0.9 12.3 11.7 4.9
5136 91.5 92.5 1.2 13.8 11.7 153
5248 86.9 872 03 16.1 16.2  -0.6
5993 89.4 90.1 0.7 10.4 10.4 0.0
6353 88.7 90.3 1.9 17.1 152 113
7389 91.7 92.6 1.0 12.5 11.7 6.5
7597 90.0 904 0.5 13.3 13.1 1.6
8042 84.8 85.3 0.6 20.2 19.7 2.5
8356 86.7 872 0.6 15.5 15.0 3.1

As future work, we plan to explore different word-embedding approaches. Also, we plan
to study adaptation techniques for the (nearly) unsupervised case.
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Abstract

In the last years, Deep Bidirectional Recurrent Neural Networks (DBRNN)
and DBRNN with Long Short-Term Memory cells (DBLSTM) have outperformed
the most accurate classifiers for confidence estimation in automatic speech recog-
nition. At the same time, we have recently shown that speaker adaptation of
confidence measures using DBLSTM yields significant improvements over non-
adapted confidence measures. In accordance with these two recent contributions
to the state of the art in confidence estimation, this paper presents a comprehen-
sive study of speaker-adapted confidence measures using DBRNN and DBLSTM
models. Firstly, we present new empirical evidences of the superiority of RNN-
based confidence classifiers evaluated over a large speech corpus consisting of
the English LibriSpeech and the Spanish poliMedia tasks. Secondly, we show
new results on speaker-adapted confidence measures considering a multi-task
framework in which RNN-based confidence classifiers trained with LibriSpeech
are adapted to speakers of the TED-LIUM corpus. These experiments confirm that
speaker-adapted confidence measures outperform their non-adapted counterparts.
Lastly, we describe an unsupervised adaptation method of the acoustic DBLSTM
model based on confidence measures which results in better automatic speech
recognition performance.

5.1 Introduction

Confidence Estimation (CE) aims at providing Confidence Measures (CM) of the Automatic
Speech Recognition (ASR) output at a certain level of granularity such as sub-word, word
or utterance [14]. CM are represented by scores usually between 0 and 1 which reflect the
reliability of any recognition output. Considering CM as probabilities of correctness, CE has
been largely addressed as a two-class (correct or incorrect) pattern recognition problem [14,
35, 37, 34, 29]. To this effect, a binary classifier is trained to map input features to class
posterior probabilities. Under this approach, CE has been gradually improved by exploring
novel features and by designing more and more accurate classifiers [14, 35, 37, 34, 29].
Recent significant improvements to word-level CE have come from the use of Recurrent
Neural Networks (RNN). Other classifiers that were considered until recently to be very
effective, such as Conditional Random Fields (CRF), Logistic Regression (LR) or naive
Bayes (NB), have been clearly outperformed by RNN [29, 28, 7]. In particular, both deep
bidirectional RNN (DBRNN) and DBRNN with long short-term memory units (DBLSTM)
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have shown their superiority when compared with non-NN-based classifiers or even with deep
feedforward NN (DNN) [29, 7].

At the same time, adaptation of CM has shown to be very effective in improving baseline
performance [34, 7, 47, 20]. This is a key point, from our point of view, especially for tasks
with limited training data, since adaptation allows us to easily obtain accurate task-specific
models from generic models trained on large, non-specific data sets. Moreover, there is an
increasing number of interesting applications in which relevant information for adaptation
is available, such as speaker identity in video lecture repositories. However, to the best of
our knowledge, thus far there have been very few contributions in adaptation of CM. To
address this, we were the first to implement speaker adaptation for CM. In [34], we evaluated
speaker-dependent features into an LR model with good results. Then, in a follow-up work [7],
we obtained even better preliminary results by using speaker-adapted DBLSTM.

In this paper, following our previous work [7], new technical contributions are reported,
including a new architecture for CE in which word embeddings and CE models are jointly
trained, and also a novel CE-based unsupervised adaptation method for acoustic BLSTM:s.
Furthermore, a multi-task empirical evaluation setting is applied to achieve solid empirical
results which confirm our previous preliminary results for a single task.

The content of this paper is organized as follows: a brief review of recent work in CE is
given in Section 5.2; the proposed speaker-adapted RNN architecture for CE is presented in
Section 5.3; empirical results are reported in Section 5.4; finally, the main conclusions of this
work are summarized in Section 5.5.

5.2 Recent work in confidence estimation

CE has been largely addressed following three main approaches [14]. One of them, known as
Utterance Verification (UV), formulates CE as a statistical hypothesis testing problem [22].
The second one is based on word posterior probabilities computed over N-best lists, word
lattices or confusion networks [43, 23]. The third approach considers CE as a two-class
classification problem in which class posterior probabilities are estimated combining predictor
features [35, 37, 34, 29]. The second approach is currently in wide use, since CM are computed
in a straightforward manner from the ASR output. However, significantly better performances
are generally reached using the third, classifier-based approach, mostly if word posteriors are
used as input features [35, 37, 29].

In recent years, the classifier-based approach has directly benefited from the use of deep
learning models outperforming the most accurate earlier classifiers such as CRF [29, 28, 7].
In a first proposal, DNN and kernel deep convex networks (K-DCN) were applied at the
utterance level to discriminate between in-grammar and out-of-grammar utterances [17]. In
later research, RNN have demonstrated outstanding performance in word-level CE [29, 28,
7, 19]. In particular, DBRNN and DBLSTM have confirmed their superiority over other
classifiers such as CRF, DNN, DRNN and DLSTM [29, 7].

The performance of CM can be further improved by means of adaptation techniques [34,
7,47, 20]. Significant performance gains have been reported by adapting generic CM using
a small amount of transcribed adaptation data in a post-processing step called confidence
calibration, based on different models such as maximum entropy, NN and deep belief net-
works [47]. Normalization of CM using adaptation data has also been proposed via confidence
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mapping to avoid decision threshold reselection when acoustic models are updated [20]. Very
recently, we proposed speaker adaptation of LR models and DBLSTM for CE, showing that
speaker-adapted models outperform their non-adapted counterparts [34, 7]. For instance,
speaker-adapted DBLSTM produced relative reductions in Classification Error Rate (CER) of
4.6% when compared with non-adapted DBLSTM.

5.3 Speaker-Adapted Confidence Measures using Deep Bidirectional Re-
current Neural Networks

RNN have proven to be extremely successful in many related fields of speech processing, e.g,
acoustic and language modelling, speech synthesis or spoken language understanding [42,
25, 8, 45]. RNN features recurrent connections which enable efficient modelling of temporal
dependencies, outperforming other models without this capability. The most basic form of
RNN was gradually improved to deal with some limitations such as the vanishing gradient
problem and the use of context information in only one time direction [2, 36]. With regard
to the former limitation, the LSTM architecture was proposed to overcome the vanishing
gradient problem by which long-term dependencies make difficult the training of RNN [16].
Basically, LSTM differ from RNN in the use of hidden layers composed of built-in memory
cells which are able to store information for long periods of time. As to the latter limitation,
both past and future time directions were incorporated by extending RNN to BRNN [36]. In
BRNN, hidden layers are composed of two separate forward and backward layers which are
responsible for the positive and negative time directions, respectively. It is worth mentioning
that BRNN with hidden layers composed of LSTM cells result in the BLSTM architecture [13].
In general, better performance can be expected from deep architectures stacking multiple
BRNN or BLSTM hidden layers [49]. In this section we describe our CE model based on
deep BRNN and BLSTM architectures, and the speaker adaptation process.

The architecture of the proposed CE model is depicted in Fig.2.9. For simplicity, we show
an architecture based on two bidirectional recurrent hidden layers. Both the DBRNN and
DBLSTM architectures are represented in this single figure, since the only difference between
them is the type of recurrent cell used in the hidden layers. The input layer is composed of a
set of R word-level predictor features along with a word embedding representation. Predictor
features are typically computed from the speech decoding, word-lattices and from the ASR
models (the features used in this work are described in Sec. 5.4).

Word embeddings are also fed into the first hidden layer, since word identities have shown
to be very useful in improving CE [35, 34, 29, 17, 19, 9, 10]. To this end, we have not used a
conventional one-hot encoding, as this would make the number of parameters grow linearly
with the vocabulary size V. Instead, we have used a more compact representation where each
word is mapped to a real word vector of a fixed dimension F' [26]. In the case of NN, this
word representation is learned by adding an extra layer to the NN which takes as input the
one-hot representation and outputs a fixed-length vector. This means learning a projection
matrix of size V' x F, in which the ith row corresponds to the embedding representation of the
ith word in the vocabulary. In this way, words with similar behaviour can be expected to be
represented by similar word embeddings. The vocabulary is typically restricted to the most
frequent words. In this way, an embedding representation for unknown words is learned by
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labelling low-frequency words as unknown. This parameter matrix is trained jointly with the
rest of the neural network parameters.

1

¥y
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Bidirectional Recurrent () OO e OO =)
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Input
input features+word embedding |@ - | |_
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Figure 2.9: DBRNN and DBLSTM architectures of two hidden layers for CE. Positive
(forward states) and negative (backward states) time directions are indicated by (+) and
(—), respectively.

Given a sequence of N input vectors X = (x1, ..., XN ) representing N recognized words
Wi, where each vector is composed of the R word-level predictor features along with the
word embedding representation, the network produces a sequence of N output vectors ) =
(¥1,...,yN) defining a probability distribution over each class ¢ = {incorrect(0), correct(1)}.
These probabilities correspond to the network’s estimation of observing each class ¢ at word n
given X.

The network is trained to minimize the cross-entropy error of the targets using a soft-
max output layer with 2 output units that represent the two-category class based on the
standard back-propagation through time algorithm (BPTT) [32]. Given a target sequence
Z = (21, ..., 2N), the network minimizes the negative log-probability of the target sequence
given the input sequence:
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N N
—log P(Z]X) = =) logp(c = zu|xn) = = > logy;" (2.14)
n=1

n=1

where y2» is the probability estimated at word n by the output neuron that represents the target
class z,.

Once the network has been estimated based on Eq. (2.14), M new training pairs {X, Z}
from one speaker are used for adaptation. Adaptation is performed by following a conservative
training strategy in which a very small learning rate and early stopping are used [11]. Note that
this strategy has become a conventional method for regularization in deep learning because
of its effectiveness and simplicity. To actually adapt models, the M given training pairs
are split into an adaptation set and a validation set. Adaptation data is used to update the
speaker-independent network (or part of it), whereas validation data is used to set the error of
the resulting speaker-adapted network. The adaptation process finishes when the validation
error stops changing significantly. Then, the final speaker-adapted network is trained from all
training pairs by running an “optimal” number of epochs, as determined by the early stopping
procedure.

5.4 Experiments
Experimental Setup

The experimental study was conducted over several speech tasks involving the English and
Spanish languages. Accordingly, a state-of-the-art ASR system was trained for each language
using the transLectures-UPV toolkit (TLK) [7, 4, 5, 6]. TLK is an open-source ASR toolkit
developed at the Universitat Politecnica de Valeéncia (UPV) by the MLLP research group
within the framework of the EU-funded project transLectures®. It comprises a set of tools for
audio processing, feature extraction, HMM and DNN training and decoding. Its main features
include multilingual and convolutional NNs, DNN sequence discriminative training based on
Maximum Mutual Information (MMI), and different DNN speaker adaptation techniques such
as output-feature discriminant linear regression (0DLR) [44] or Kullback-Leibler Divergence
based techniques [48]. TLK has shown to provide competitive results in challenging and
well-known tasks such as TED-LIUM, LibriSpeech, IWSLT or CHiME [7, 4, 5, 6].

The English ASR system was trained using the LibriSpeech training dataset, which
contains almost 1000 hours of read speech recordings from the LibriVox project’s audio
books [30] (statistics in Table 2.17). On the other hand, the Spanish ASR system was trained
using the poliMedia speech corpus enlarged to about 800 hours for training [38]. PoliMedia
is a high-quality multimedia educational repository developed by the UPV. It includes more
than 15,000 Spanish video lectures lasting up to 10 minutes each, created by more that 1800
lecturers, summing up a total amount of about 3000 hours. This speech corpus was developed
within the EU-funded project transLectures (statistics in Table 2.18).

The audio data was preprocessed with a Hamming window of 25 ms shifted at 10 ms
intervals into 16 Mel-frequency cepstral coefficients (MFCC) plus deltas and accelerations,
resulting into 48-dimensional feature vectors. Speaker-adapted features were then obtained by

dhttps://www.translectures.eu/web/
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Table 2.17: Statistics of the LibriSpeech corpus.

Set Duration (h) Speakers Words Vocab WER

Train 961 1210 9.4M 89K 4.7
Dev-other 5.3 33 51K 7.4K 12.5
Test-other 5.1 33 52K 7.6K 13.5

means of Cepstral Mean and Variance Normalization (CMVN) and applying a Constrained
Maximum Likelihood Linear Regression transform following the simple target model approach
(fMLLR) [40].

The acoustic models were based on hybrid models [3, 15, 12]. For hybrid training,
forced alignments of the senone (tied-state) transcriptions to the acoustic features (MFCC and
fMLLR) were obtained by training conventional context-dependent Gaussian mixture model
hidden Markov models (CD-GMM-HMMs). CD-GMM-HMMs consist of three left-to-right
tied-states estimated following a phonetic decision tree approach [46]. The resulting number
of tied-states was 8.3K and 10K, reaching up to a total amount of 256K and 478K Gaussians
for English and Spanish, respectively.

These baseline alignments were then used to train both speaker-independent and speaker-
adapted CD-DNN-HMMs [15] for each language with a context window of 11 frames, 7
hidden layers with ReLLU activation functions and 2048 units each. The trained speaker-
adapted CD-DNN-HMMs were then used to further improve the state alignments. Using these
DNN state realignments, we finally trained a speaker-adapted DBLSTM-HMM [12] for each
language using the open source toolkit TensorFlow [1]. In both cases, the DBLSTM network
had 5 bidirectional hidden layers with 1200 LSTM cells per layer, resulting in a total of 33.3M
and 36.3M weights for English and Spanish, respectively. Relative improvements in WER
of about 4.6% and 5.8% over the LibriSpeech and poliMedia test sets were achieved using
DBLSTM-HMMs compared to CD-DNN-HMMs.

For the English language model (LM), we used the freely available pre-built 4-gram model
released as part of the LibriSpeech corpus [30]. As for Spanish, we used the 4-gram LM built
by UPV within the transLectures project [33, 41]. Both models had a vocabulary size of about
200K words, and the test set perplexities were 146 and 205, respectively.

Speech processing was carried out following a two-pass decoding setup. The speaker-
independent CD-DNN-HMM ASR system was used primarily to obtain a transcription which
in conjunction with a simple “target” HMM allowed for the transformation of acoustic features
into speaker-adapted features. A word-lattice was then generated feeding the speaker-adapted
features into the hybrid DBLSTM-HMM ASR system. Both recognition steps were carried
out using a pruned version of the LMs to allow for very fast decoding. The final transcription
was produced by rescoring the word-lattice with the whole LM.

Word-level predictor features

A number of R = 20 common word-level predictor features have been used in this work.
These features have been computed from the speech decoding, word-lattices and from the
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Table 2.18: Statistics of the poliMedia speech corpus.
Set  Duration (h) Videos Speakers Words Vocab WER
Train 813 9.5K 205* 83M 36.6K 145
Dev 34 26 5 35K 2.6K 11.3
Test 32 23 5 30K 24K 125

(*) Lower estimate, since training set is not wholly speaker-
annotated.

ASR models. We briefly enumerate them here:

(i) Features based on speech decoding and ASR models:

1.

A

Decoding score: Word score produced jointly by the acoustic and language models
during decoding.

Acoustic log-score: As in 1, but considering only the acoustic model.
Normalized acoustic log-score: As in 2, but normalized per time frame (10 ms).
Duration: Word length in ms.

Language model probability: N-gram language model probability for the decoded
word.

6. Length of the N-gram in which the word was decoded.

7. Average number of alternative hypothesis within the decoding word boundaries.

8. Binary feature, equals 1 if the word appears in both the first and second decoding

hypotheses.

(ii) Features based on word-lattices:

9-11.

12-14.

Forward, backward and edge posterior probabilities: The forward-backward algo-
rithm is applied to the word-lattice to compute forward, backward and posterior
probabilities for every edge in the lattice. As usual, edges in a word-lattice are
associated with words occurring at specific intervals along the time axis; and
probabilities are computed from acoustic and language model scores by using
the (meta-)parameters set during the decoding phase. It is worth noting that edge
posterior probabilities are probability sums of all paths including the given edge
(normalized by the probability mass of all paths in the lattice).

Three variants of word posterior probabilities [43]: More precise word posterior
probabilities can be computed by summing up the posterior probabilities of all
edges containing the word in approximately the same interval time. Moreover, an
appropriate scaling of acoustic model probabilities during the forward-backward
algorithm is really needed to prevent (nearly) all posterior probability mass from
concentrating in a few word-lattice hypotheses. In this case, given a word w which



80

occurs at a specific point in time ¢ € [s, €], its accumulated posterior probability at
time ¢, A(w, t), is computed by summing the posterior probabilities over all edges
intersecting word w at time ¢. From this, three different variants of word posterior
probabilities are computed:

€
12. Intersection: Pse.(w, [s,e]) = > A(w,t)
t=s

13. Maximum: P,q,(w, [s,€]) = In[aX}A(w,t)
te|s,e

14. Average: Payg(w, [s,€]) = c—=5 > A(w, t)
t=s

15-17. Asin 12-14, but using only acoustic scores during the forward-backward algorithm.

18-20. As in 12-14, but using only language model probabilities during the forward-
backward algorithm.

Evaluation metrics

We have used three metrics to evaluate CE performance: (i) the area under a ROC curve
(AUQ), (ii) the classification error rate (CER), and (iii) the normalized cross entropy (NCE).
We briefly explain them in this section.

Let us assume that the ASR output results in C' correctly recognized words and I mis-
recognized words. Let False Rejection be the number of correctly recognized words with
confidence lower than a decision threshold 7 (F'R(7)) and, equivalently, let True Rejection
be the number of misrecognized words with confidence lower than 7 (T'R(7)). The False
Rejection Rate (FRR(7)) and the True Rejection Rate (TRR(7)) for a decision threshold 7 are
computed as:

FR(T) TR(T)

1
A Receiver Operating Characteristic (ROC) curve represents TRR(7) against FRR(7) for
different values of 7. The AUC provides an adequate overall estimation of the classification
accuracy, 100 being a perfect classification and 50 a random classification (diagonal ROC
curve).
The Classification Error Rate (CER) for a decision threshold 7 is computed as:

FRR(7) = TRR(r) = (2.15)

FR(r)+ (I —TR(7))
C+1
A baseline CER can be computed by classifying all the words as correct (i.e., 7 = 0):

CER(T) =

-100 (2.16)

CER(0) -100 (2.17)

e

Clearly, 7 = 0 is not necessarily optimal in the sense of minimizing Eq. (2.16). Therefore,
it is convenient to consider the classification threshold 7 = 7*, which minimizes the CER
criterion (usually that which provided the minimum CER in a development set):

7% = argmin CER(T) (2.18)



Chapter 2. Speaker-Adapted Confidence Measures for ASR Using DBRNNs 81

We have also used the Normalized Cross Entropy (NCE) as proposed by NIST [39]:

Hpao + 3 log(em(w)) + 37 log(1 — em(w))

weEcorrect weEincorrect
NCE =

Hmaa:

(2.19)

where cm(w) is the CM of word w and H 4, = —(plogp+ (1 — p)log(1l — p)), p being
the prior probability for a word to be correct. Note that the higher the NCE, the better the
CM performance, with optimal classification being reached when NCE equals one. It is worth
mentioning that NCE score is lower unbounded, as the logarithm of low values can occur in
samples with high scores on their opposite class.

Experiments on CE

We performed experiments on CE using the LibriSpeech and poliMedia speech tasks. For each
task, the training data were used to estimate DBRNN and DBLSTM models with TensorFlow
following the architecture described in Sec. 5.3. The optimal numbers of hidden layers,
neurons per hidden layer and word embedding size were tuned using the development set. The
characteristics of the optimal topologies for each task are shown in Table 2.19.

Table 2.19: Characteristics of the optimal DBRNN and DBLSTM topologies for the
LibriSpeech and poliMedia speech tasks.

LibriSpeech poliMedia
DBRNN DBLSTM DBRNN DBLSTM
# hidden layers 3 4 2 2
# neurons per layer 512 512 64 512
Word embedding size 80 20 80 10

Table 2.20 summarizes the results obtained in terms of the different metrics presented in
Section 5.4. CER(7*) figures in Table 2.20 correspond to the classification error attained in
the test set using a threshold 7* providing the minimum CER in validation. The performance
of the RNN was comparatively evaluated with respect to word posterior probabilities (WP)
and CRF [37, 43]. A linear interpolation of the RNN models was also tested aiming to further
improve their individual performance (BRNN+BLSTM). The interpolation weights were tuned
on the corresponding development set and fixed to 0.5 in the case of LibriSpeech and 0.3
(BRNN) and 0.7 (BLSTM) in the case of poliMedia. The experiments with CRF were carried
out using the Wapiti toolkit [21]. The best CRF models were obtained using the training
algorithm rprop- and modelling dependencies between consecutive words.

From the results in Table 2.20, it can be stated that RNN models clearly outperform CRF
and WP, confirming previous results [29, 7]. Better performance is consistently achieved in all
the evaluation measures using RNN models. The improvement in CER of the RNN models
over CRF and WP is statistically significant at the 95% confidence level to a great extent,
especially in the case of poliMedia. This better overall performance is depicted in Fig. 2.10,
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Table 2.20: AUC [%], NCE, CER [%] and 95% Confidence Interval (CI) of CER for
the different CM on the LibriSpeech and poliMedia evaluation data. The baseline CERs
(CER(0)) are 11.99 and 10.90 for LibriSpeech and poliMedia, respectively.

Task CM AUC NCE CER(*) 95%-CICER
WP 853 -0.74 10.71  [10.44,10.97]

CRF 89.6 0.36 9.29 [9.04,9.54]

LibriSpeech BRNN 91.1 0.40 8.82 [8.58,9.07]
BLSTM 91.0 0.38 8.85 [8.60,9.09]
BRNN+BLSTM 91.5 0.41 8.65 [8.41,8.89]

WP 83.6 -0.57 9.67 [9.33,10.00]

CRF 90.0 0.40 7.69 [7.39,7.99]

poliMedia  BRNN 91.6 0.44 7.00 [6.71,7.29]
BLSTM 92.0 0.44 6.77 [6.48,7.05]
BRNN+BLSTM 92.1 0.45 6.75 [6.47,7.04]

where the ROC curves of the RNN models clearly outperform the CRF and WP models for all
decision thresholds 7.

On the other hand, the different RNN models present very similar behaviour, with no
statistically significant differences visible between their performance. Even so, better figures
are obtained in general using BRNN+BLSTM interpolation. This is depicted in Fig. 2.10,
where small improvements can be observed when the linear interpolation of RNN models is
compared to their individual performance.

Experiments on speaker-adapted CM

The evaluation of the speaker-adapted CM was conducted considering a practical scenario
in which both ASR and confidence models may be used in multiple speech tasks. With
this purpose, the ASR models and the BRNN+BLSTM confidence estimator trained with
LibriSpeech were used to obtain the transcriptions and confidence scores of talks of eight
speakers chosen from the TED-LIUM corpus [31]. The selection of speakers was made on
the basis of having at least 4 talks per speaker, in order to perform a 4-fold cross-validation
evaluation and also to cover a reasonable range of error between 10% and 30% of WER. The
main characteristics of these talks are summarized per speaker in Table 2.21, where each
speaker set is composed of exactly 4 talks.

As mentioned, speaker adaptation of CM was evaluated following the k-fold cross-
validation method [27]. In this way, k = 4 experiments were performed per speaker, with the
supervised transcriptions of 3 talks being used for adapting the LibriSpeech BRNN+BLSTM
CE network, while the remaining talk was used for testing. With this strategy, each talk
was used three times for adaptation and only once for testing. Moreover, the non-adapted
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Figure 2.10: ROC curves of the different CM for the LibriSpeech (at the top) and
poliMedia (at the bottom) evaluation data. TRR is the True Rejection Rate and FRR is
the False Rejection Rate.
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Table 2.21: Global statistics of the 4 talks per speaker extracted from the TED-LIUM
corpus.

Speaker Duration (h:mm:ss) Running words (k) WER [%] CER(0) [%]

1 0:56:26 9.4 21.95 18.61
2 0:40:37 9.0 19.34 16.00
3 0:39:34 7.8 23.56 19.74
4 0:45:59 7.4 22.95 19.03
5 0:45:56 8.6 13.33 12.07
6 0:34:41 8.4 14.90 12.06
7 0:31:55 8.5 25.51 20.19
8 0:33:42 6.1 26.79 22.03
All 5:28:53 65.1 20.78 17.35

LibriSpeech BRNN+BLSTM CE network was used also to establish the baseline performance
of CM without speaker adaptation.

Comparative results in terms of AUC and CER between non-adapted and adapted CM
are shown in Table 2.22. It is worth noting that the non-adapted model corresponds to the
BRNN+BLSTM CE network achieving the best performance on the LibriSpeech corpus in
the CE experiments reported above. Also, this network was used to derive a speaker-adapted
model as described in Section 5.3. CER figures were obtained using the same decision
threshold 7 for both non-adapted and adapted experiments. The operative 7* for each speaker
was tuned over the adaptation data.

In general, it can be stated that speaker-adapted CM outperform their non-adapted coun-
terparts for all the speakers. Slightly better performance is achieved in terms of AUC, with
the only exception of speaker number 8, for which no differences were found. The overall
superiority of adapted CM is observed in Fig. 2.11, where ROC curves obtained considering
all the speakers as a whole are plotted comparatively. Similarly, relative improvements in CER
of about 2 — 8% are produced by using adapted CM, except in the case of speaker number
7, for which CER figures were nearly identical. Overall, considering all the speakers as a
whole, the improvement in CER is statistically significant at the 95% confidence level to a
great extent, since the confidence intervals are [11.94 — 12.47] and [12.39 — 12.93] for adapted
and non-adapted CM, respectively. It is worth noting that improvements notably depend on
the speaker. A possible explanation of this phenomenon is that model improvement is very
much dependent on the quality and amount of the speaker-dependent adaptation data.

In practice, it might not be realistic to assume that perfect transcriptions are available for
at least three talks. Therefore, one could argue that results in Table 2.22 are optimistic. In
order to study the CE performance in a more realistic setting, additional experiments were
conducted in which the proposed adaptation approach was tested as a function of the amount
of available adaptation data. We used the same 4-fold cross-validation procedure described
above, though in this case it was repeated for an increasing percentage of perfect transcriptions
available.

Figure 2.12 shows the CER for each speaker using increasing percentages of available
adaptation data (0, 10, 25, 50, 75 and 100). Note that 0% and 100% would correspond with
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Table 2.22: AUC [%] and CER [%] for the adapted and non-adapted CM per speaker
of the TED-LIUM corpus. The baseline CERs and the relative improvements (R.1.) in
CER over the non-adapted CM are also shown.

AUC CER(7*)

Speaker —Adapt Adapt CER(0) —Adapt Adapt R.L [%]
1 874 88.4 18.61 13.86 13.21 4.7
2 88.4 89.4 16.00 1223 11.53 5.7
3 88.1 88.3 19.74 1442 14.16 1.8
4 88.8 89.0 19.03 13.21  12.81 3.0
) 90.4 91.0 12.07 9.03 8.29 8.2
6 89.8 90.2 12.06 9.04 8.79 2.8
7 86.6 87.1 20.19 14.09 14.06 0.2
8 87.4 87.4 22.03 15.87 1548 2.5

All 88.6 89.1 17.35 12.66 12.21 3.6

CER results of non-adapted and adapted models, respectively, showed in Table 2.22. As
expected, Figure 2.12 confirms that the more adaptation data we use, the better CER we
achieve. Although this holds visibly for speakers 1, 2, 4, 5 and 6, the results for speakers 3,
7 and 8 do not follow this pattern so clearly. It is worth mentioning that, for almost all the
speakers, the CER improves already from the point where we use just 10% of the available
adaptation data, and thus we can conclude that the proposed adaptation approach is really
effective even when adaptation data is scarce.

Experiments on improving ASR performance

As mentioned before in Sec. 5.4, we followed a two-pass recognition strategy in which
unsupervised speaker adaptation is implemented in a second step based on fMLLR transformed
features. Further refinements of the second decoding hypothesis can be produced by means
of an additional unsupervised adaptation step. In this extra step, the layers of the acoustic
DBLSTM used in the second pass are retrained based on the senone alignments corresponding
to the second decoding hypothesis. The retraining is carried out following a conservative
training approach using a very small learning rate and early stopping [48]. In particular, given
T acoustic vectors of fMLLR features X = (X1, ...,xT) and the senone-level alignments
from the second pass hypothesis S = (s1, ..., sT), the parameters of the acoustic DBLSTM
are retrained to maximize the negative cross entropy

T T
1 1 .
CX,8) =~ > logp(s: | x¢) = —7 > logy;* (2.20)
t=1 t=1
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Figure 2.11: ROC curves for the adapted and non-adapted LibriSpeech BRNN+BLSTM
CE networks using the 8 speakers of the TED-LIUM corpus as a whole.

where y;* is an estimation of the probability at frame ¢ given by the output neuron associated
with the target class s;.

Unsupervised adaptation of the acoustic DBLSTM in the additional pass can benefit
from CE by adjusting the influence of the training samples as a function of CM. Formally,
we propose to apply a modified cross entropy training criterion for this kind of adaptation.
Following this idea, Eq. (2.20) becomes

T
C(x,S8) = ——Zlogp st | x¢) - em(s) = TZlogy -em(se) (2.21)
t=1

where c¢m(s¢) is the word-level CM of senone s;.

Once the adapted acoustic DBLSTM has been retrained, a third-pass decoding is performed
to produce the final hypothesis.

Table 2.23 shows the WER obtained for three different recognition settings on the Lib-
riSpeech and poliMedia test sets and the 8 speakers of the TED-LIUM corpus. The “2-pass”
setting corresponds to the baseline performance without performing the third adaptation pass.
The “3-pass” setting implies performing the third pass based on Eq. (2.20). Finally, the
“3-pass+CM” setting corresponds to applying Eq. (2.21) in the third pass.
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Figure 2.12: CER for different percentages of the whole adaptation data.

Table 2.23: WER [%)] using different recognition settings over LibriSpeech, poliMedia
test sets and the 8 speakers of the TED-LIUM corpus.

Recognition setting LibriSpeech poliMedia TED-LIUM

2-pass 13.50 12.53 20.78
3-pass 13.06 12.37 20.02
3-pass+CM 13.05 12.06 19.63

As we can see, relative reductions in WER of 3.3%, 1.3% and 3.7% are obtained in
LibriSpeech, poliMedia and TED-LIUM, respectively, by performing this additional adaptation
pass. Moreover, in the case of poliMedia and TED-LIUM, further improvements are achieved
by using the proposed third pass based on CM. These improvements reach relative reductions
in WER of 2.5% and 2% in poliMedia and TED-LIUM, respectively, with respect to the
“3-pass” setting. As a result, relative reductions in WER of 3.3%, 3.8% and 5.5% are achieved
in LibriSpeech, poliMedia and TED-LIUM, respectively, by performing this third pass based
on CM.
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5.5 Conclusions and Future Work

In this paper, we have presented a comprehensive study of speaker adaptation of DBRNN and
DBLSTM models for confidence estimation. The study has confirmed the superiority of RNN-
based models over the CRF and WP approaches. In particular, a linear interpolation of DBRNN
and DBLSTM models has obtained the best performance. Furthermore, we have shown that
speaker adaptation of confidence measures is an effective approach for improving confidence
estimation. This is an important practical outcome, since general-purpose confidence measures
have to be applied frequently in multiple applications and adaptation becomes necessary. As a
final contribution, we have proposed a novel unsupervised adaptation of the acoustic DBLSTM
based on confidence measures. Relative reductions in WER in the range of 3% — 5.5% have
been achieved in different speech tasks by adding an extra recognition pass of adaptation based
on confidence measures into a classical two-pass ASR decoder.

As future work, we plan to apply the same approach to estimate speaker-adapted confidence
measures at different levels, such as sub-word or utterance. The idea is to use a bottom-up
approach (from sub-word to utterance) where class probabilities generated by lower-level
RNN models are used as additional input features by RNN models at higher levels. Moreover,
based on previous works [24, 18], we plan to investigate different adaptation approaches in
which reestimation of specific parts of the network would be performed depending on the
amount of adaptation data.
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Chapter 3

General discussion of the results

In this chapter the results for each of the goals established will be presented as well as some
details about their impact in the research projects and beyond. The reader is invited to revisit
the list of goals in Section 1.3.

Improve ASR systems based on DNNs by means of unsuper-
vised speaker adaptation

This goal was achieved to a great extend thanks to the continuous development of the TLK
toolkit. It was presented in Paper 1 and constitutes the basic tool based on which different
systems have been built for all the experiments in the thesis and for real-world educational
repositories. Nowadays is the core transcription tool in different platforms such as VideoLec-
tures.NET?, poliTrans® and polisubs®. VideoLectures.NET is a free and open access web portal
that has so far published more than 20K educational videos. Politrans is a platform offered
by UPV for automatic video transcription and translation available for use by any interested
university or organization. Polisubs is a service used by UPV at university conference halls
for real-time speech transcription of lectures. Although TLK was first released under the open
source Apache License 2.0 during the transLectures project, the software was continuously
improved by the addition of new SOTA techniques. These new techniques ranged from new
feature extraction methods, new DL models to different speaker adaptation approaches.
TLK successfully contributed to achieve the main goal of this thesis related to the efficient
transcription of video lectures. The case studies from the research projects have always
constituted the best examples to test the toolkit and to obtain a good idea of its behavior in
real-life scenarios. In Fig. 3.1 the different systems trained in the context of transLectures
and EMMA projects are shown. Regarding the transLectures project, three systems were
trained and systematically improved: one system for VideoLectures.NET (English) and two
systems for poliMedia (Spanish and Catalan). With respect to EMMA, which took place

dhttp://videolectures.net
Phttps://politrans.upv.es
‘https://polisubs.upv.es
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after transLectures, five more systems were trained to transcribe courses from the Université
de Bourgogne (French), The Open Universiteit of the Netherlands (Dutch), Universidade
Aberta (Portuguese), Universita degli Studi di Napoli Federico II (Italian) and Tallin University
(Estonian).

translLectures EMMA
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Figure 3.1: Systems developed with TLK during transLectures and EMMA.

As can be observed in Fig. 3.1, taking a look at the transLectures project during months 20
and 26, the systems experimented a big improvement which is mainly explained by the use of
DNNss for acoustic modeling and adaptation. After that, this technique was gradually applied
to other languages such as Catalan and English. By the end of the project, different topologies
and training strategies were tested, such as CNNs [1], new regularization techniques such
as dropout [5], new activation functions like Rectified Linear Unit (ReLU) [2] and speaker
adaptation techniques like feature-space Discriminative Linear Regression (fDLR) [9].

In the case of EMMA, all systems started with state-of-the-art DNN-based acoustic models.
Although the quality of the systems in some cases was far from perfect, it should be mentioned
that in those cases the tasks were really hard. In fact, one of the main problems was the
lack of in-domain data (similar acoustic conditions to the videos that constitute a course).
Moreover, comparing TLK transcription quality with Youtube, TLK systematically provided
transcriptions with relative improvements of 54.1% for Italian, 40.4% for Dutch and 35.6%
for French. Other than that, among the new techniques applied we can highlight speaker
adaptation of DNNs based on Kullback-Leibler divergence [10], system combination (i.e.
DNNs and CNNs), multilingual DNNs [6] or the use of RNNs for language modeling [7].
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Although MORE is not shown in the plot, during its course the existing systems were
further improved thanks to the use of BLSTMs for acoustic modeling [11], the proposed
unsupervised speaker adaptation technique, LSTMs for language modeling and more training
data. In fact, all systems were improved, but the ones that experienced a greater leap in quality
were French (from 20.0 to 16.5) and Portuguese (from 42.0 to 23.3).

From the point of view of the publications shown in previous section (presented in chrono-
logical order), it can be observed the evolution of the toolkit and the pace at which new features
were added. Moreover, in Papers 2 and 3 TLK was subjected to two international competitions,
the IWSLT and CHiME-4 challenges. The IWSLT, constituted the first submission of a TLK
system to an ASR challenge. From a total of six research groups worldwide, the Machine
Learning and Language Processing (MLLP) group was the only one to take part with a system
completely based on the use of internally developed ASR technology.

As can be observed in Table. 3.1, the results of TLK were competitive enough compared
to the results from other research groups. It is also worth mentioning that, as there weren’t
limitations on the use of acoustic training data (except for a set of videos from TED), the
use of the appropriate technique for data selection and data filtering played a very important
role. Therefore, the question remains whether using the same acoustic data, the gap among
all results would have been greatly reduced or not. Other than that, we can consider that
the English ASR performance for this task was at a very good state given the almost human
performance.

Table 3.1: Results of the IWSLT 2015 evaluation campaign on English ASR.

Participant ASR Software Training Data (hours) WER (test 2015)
MITLL-AFRL (USA) KALDI+ HTK 336 6.6
HLT-12R (Singapore) KALDI 486 8.9

KIT (Germany) KALDI + JANUS 579 9.2
NAIST (Japan) KALDI 439 12.0
MLLP (Spain) TLK 245 13.3

IOIT (Vietnam) KALDI 520 13.8

Regarding the CHiME-4 challenge, presented in Paper 3, up to 14 participants from
around the world tried to design and train the best ASR system. There were academic
research groups from Germany (Paderborn, Aachen RWTH Universities), China (University of
Science and Technology among others), Japan (Tokyo Institute of Technology), USA (Georgia
Institute Laboratory) or Italy (Fondazione Bruno Kessler). There were also companies such
as Mitsubishi Electric, Google or Hitachi. Every participant was restricted to made use of
the same set of acoustic and text data in order to train their system. Nevertheless, different
approaches were proposed in order to improve the system from the acoustic or language model
point of view. In addition to this, the techniques for audio preprocessing and enhancement
were fundamental for tracks with more than one audio channel.

According to Table 3.2 the TLK system obtained competitive results compared to others
in the 1-channel track. It made use of a rather simple system were only 2 acoustic models
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Table 3.2: 1-channel results with baseline LM

Rank Team Dev Sim Dev Real Eval Sim Eval Real
1 Heymann et al. 7.2 % 5.5 % 11.7 % 9.9 %

2 Du et al. 8.2 % 6.1 % 13.6 % 11.2 %
3 Fujita et al. 7.4 % 5.9 % 9.2 % 11.4 %
4 Alam et al. 9.3 % 6.8 % 13.7 % 12.7 %
5 Tran et al. - - - 12.9 %
6 Qian and Tan 7.9 % 6.3 % 12.9 % 13.9 %
7 Del-Agua et al. 11.1 % 9.9 % 15.7 % 16.1 %
8 Matassoni et al. 9.5 % 9.0 % 16.1 % 16.9 %
9 Tanaka et al. 10.9 % 9.1 % 16.5 % 17.4 %
10 Bayestehtashk and Shafran  12.1 % 9.8 % 19.1 % 18.6 %
11 Xiao et al. 14.3 % 11.4 % 21.4 % 20.9 %
12 Baseline 13.0 % 11.6 % 20.8 % 23.7 %

Table 3.3: 2-channels results with baseline LM

Rank Team Dev Sim Dev Real Eval Sim Eval Real
1 Du et al. 4.9 % 3.6 % 7.3 % 5.4 %

2 Heymann et al. 4.5 % 3.8 % 5.4 % 6.4 %

3 Fujita et al. 5.9 % 4.2 % 7.3 % 8.6 %
4 Qian and Tan 5.7 % 4.8 % 8.7 % 9.1 %

5 Wang et al. 7.2 % 5.6 % 8.8 % 9.6 %
6 Tran et al. - - - 9.8 %

7 Alam et al. 6.7 % 5.1 % 10.3 % 10.0 %
8 Xiao et al. 7.1 % 5.9 % 10.7 % 10.5 %
9 Zhang et al. 6.3 % 5.5 % 7.8 % 11.0 %
10 Del-Agua et al. 8.9 % 8.0 % 12.1 % 12.8 %
11 Bayestehtashk and Shafran 8.8 % 7.3 % 13.9 % 13.8 %
12 Schrank et al. 8.5 % 6.7 % 14.5 % 14.0 %
13 Baseline 9.5 % 8.2 % 15.3 % 16.6 %

(BLSTMs and Feed-Forward based) were combined, but it was also patent that a better system
fine tuning was necessary with respect the BLSTM side. Regarding the 2-channel track, better
results could have been achieved by exploiting acoustic data preprocessing techniques as can
be drawn from the results in Table 3.3.

In IWSLT results a new unsupervised speaker adaptation step was proposed that made
use of CMs. This technique greatly contributed to improve the quality of the transcriptions
without human intervention. It was applied to 5 different systems with relative gains in the
range of 1.2% to 3.7% WER. Moreover, it was shown that the technique obtained good results
when the CE was further improved by CM models based on NNs. In fact, it was able to
consistently reduce WER even for cutting-edge ASR systems. More concretely, obtained
relative reductions of 3.3%, 1.3% and 3.7% in LibriSpeech, poliMedia and TED-LIUM.
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Improve CM estimation by means of NNs and speaker adap-
tation

This goal has been achieved thanks to the new model architecture proposed based on NNs
to model CMs. Moreover, motivated by the fact that educational video repositories usually
contain several videos from the same author, further improvements were achieved by means
of a new speaker adaptation step which demonstrated to be successful.

In fact, it is shown that RNN based classifiers outperform all previous SOTA classifiers. In
particular, both DRNNs and DBLSTMs have shown their superiority when compared with non-
NN-based classifiers or even with DNNs [8, 4, 3]. This is one of the main contributions of this
work, which has been described in Papers 4 and 5, where the CRF models are outperformed by
up to 12% and 5% relative improvement in poliMedia and LibriSpeech tasks in terms of CER.

Regarding CM adaptation techniques, there have been different attempts in the literature
such as confidence calibration or confidence measure re-normalization. In this thesis, a novel
unsupervised speaker adaptation technique for RNN-based models has been proposed. This
technique achieved 4.6% relative improvement in terms of CER, and it was further extended
and analyzed in Paper 5 for a different task. In all experiments the speaker adaptation step
consistently outperformed non-adapted systems. Moreover, in the latter work, it was also
carried out an study about the amount of adaptation data required to properly adapt the system,
and it was concluded that with just 3 — 5 minutes for each speaker was enough.
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Chapter 4

Conclusions and Future Work

In this chapter the main conclusions of this thesis and future work are described. First of all, a
new ASR tool was entirely developed from scratch within the framework of the transLectures
project to facilitate the transcription of video lecture repositories. State-of-the-art techniques
were implemented and particularly big efforts were devoted to add support for training and in-
ference with DL Models. Moreover, TLK was subjected to two international ASR competitions
and demonstrated to provide competitive results compared to the software used in different
institutions worldwide. Finally, following the research line of ASR accuracy improvement, a
novel approach for unsupervised speaker adaptation using CMs was successfully proposed.

Apart from that, a first approach based on BLSTMSs to improve CE was proposed. This
technique demonstrated to provide state-of-the-art results in a publicly available dataset known
as LibriSpeech. Moreover, it was also proposed a novel approach for unsupervised speaker
adaptation of the CM model which obtained further improvements.

A detailed analysis on the use of RNNs and LSTMs for CM estimation in different datasets
was carried out. In addition, speaker adapted CMs demonstrated to be the way to follow when
enough speaker data is available. Finally, an application of CMs to improve the output from
an ASR system was also proposed.

In summary, the main contributions of this thesis are:

e A simple yet powerful unsupervised speaker adaptation technique of acoustic models.

e Improvements over the state-of-the-art in CE by means of RNNs and BLSTMs neural
networks.

e A new approach for providing speaker-adapted CM using RNNs and BLSTM:s.

Regarding future work, the technological and scientific contributions of this thesis can
be further extended. In fact, TLK can be extended to support state-of-the-art NN topologies
such as end-to-end systems [3], where the entire system depends only on Neural Networks.
Moreover, it would be very interesting to add support for beam-forming [2] techniques as it
demonstrated to be very effective for robust speech recognition. It goes without saying that
the participation in new ASR challenges is fundamental to keep the software updated and
conveniently compared to other toolkits within the research community.

99



100

With respect to the improvements reported in CE, it was shown that even obtaining
highly competitive results in terms of recognition accuracy, these systems are still capable
of improving the CMs obtained as posterior probabilities. As future work, it would be really
interesting to explore different NNs topologies that have obtained competitive results in text
classification tasks such as Very Deep CNNs [1]. Apart from that, it would be also interesting
to explore different approaches to perform transfer learning [4], as to quickly adapt CM
systems to different language domains.
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