
Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València

Neural Paraphrasing Generation System
MASTER’S THESIS

Master’s Degree in Artificial Intelligence, Pattern Recognition and Digital
Imaging

Author: Jaume Zaragoza Bernabeu

Tutor: Francisco Casacuberta Nolla

Course 2018-2019

Abstract
A paraphrase is a restatement of the meaning of a text or passage using other words.

There are many applications of paraphrasing like rewording texts while writing, giving
alternative translations for a target sentence, identifying similar sentences, getting syn-
onyms or expanding search queries to match additional information. In order to help
all those applications, the aim of the project is to build a system that can provide para-
phrases of a given phrase. To build that system, we will explore different state-of-the-art
techniques based on neural networks, and more specifically, inspired by neural machine
translation recent work. Firstly, we will perform an unsupervised task that focuses in
the generation of sentence embeddings (vectors of real numbers) representing semantic
information in a continuous space. To generate sentence embeddings we will use large
corpora, with millions of sentences of of public available books or subtitles of TV series,
films and documentaries. Then, the embeddings will be tested in terms of semantic re-
latedness (what degree of similarity two sentences have) and paraphrase identification
(if two sentences are paraphrases). Finally, we will build a paraphrase generation model
using these embeddings to improve its performance.

Key words: Paraphrasing, Sentence Embeddings, Neural Machine Translation

Resum
Entenem com a paràfrasi l’acte de reescriure un text amb paraules diferents mantenint

el seu significat. Hi podem trobar moltes aplicacions de la paràfrasi tals com reescriure
paraules mentre s’escriu una text, proporcionar traduccions alternatives per a una frase
objectiu, identificar frase similars, obtenir sinònims o expandint consultes de cerca per a
trobar més informació. Amb l’objectiu d’ajudar a totes aquestes aplicacions, l’objectiu del
projecte és construir un sistema que proporcione paràfrasis a partir d’una frase donada.
Per a construir aquest sistema, explorarem diferents tècniques de l’estat de l’art basades
en xarxes neuronals, més concretament, inspirades en traducció automàtica neuronal.
Primerament realitzarem una tasca no supervisada que es centrarà en la generació d’em-
beddings de frases (vectors de nombres reals) que representen la informació semàntica
en un espai continuu. Per a generar aquests embeddings usarem corpus de gran tamany,
amb milions de frases de llibres públics o de subtítols de series de televisió, pelůlícules
i documentals. Després aquests embeddings seran provats en tasques sobre relació se-
màntica (quin grau de similitud tenen dues frases) i identificació de paràfrasi (si dues
frases són paràfrasi). Finalment, construirem un sistema de generació de paràfrasi usant
aquests embeddings per a millorar el seu rendiment.

Paraules clau: Paràfrasi, Representació vectorial de frases, Traducció neuronal

iii

Contents

Contents v
List of Figures vii
List of Tables vii

1 Introduction 1
1.1 Paraphrasing Definition . 1
1.2 Applications of Paraphrasing . 2
1.3 State of the Art . 3
1.4 Objectives . 4

2 Methodology 5
2.1 Summary . 5
2.2 Sequence to sequence . 5
2.3 Decoding . 6
2.4 Sentence Embeddings . 7

2.4.1 Mean vectors . 8
2.4.2 Skip-Thought . 8

2.5 Paraphrase Generation . 10
3 Experiments 11

3.1 Experimental framework . 11
3.2 Corpora . 11
3.3 Training . 13

3.3.1 Preprocessing . 13
3.3.2 Building Skip-Thought models . 14
3.3.3 Encoder . 15
3.3.4 Paraphrase Generation . 16

3.4 Evaluation . 16
3.4.1 Embedding tests . 16
3.4.2 Paraphrase generation tests . 18

4 Results 21
4.1 Embedding tests results . 21
4.2 Paraphrase generation tests results . 22

5 Conclusions 25

v

List of Figures

2.1 Illustration of the described sequence-to-sequence model performing a para-
phrase generation task. 7

2.2 Illustration from [Koe17] of the different beams explored during the search. 7
2.3 Illustration of word vector mappings. 8
2.4 The skip-thought model with a window context of 1. In this example, we

have the source sentence that is fed into the encoder I could see the cat on
the steps, the forward sentence I got back home that the forward decoder
tries to reconstruct, and the backward sentence This was strange that is re-
constructed by the backward decoder. The dotted square marks what is
considered to be the vector mapping of the source sentence. 9

3.1 The evolution of cross-entropy loss during training for training set and
development set. At the top we can see the model of a context window of
1 and at the bottom a context window of 2. 15

List of Tables

3.1 Pairs of sentences and its ground truth (1 means true paraphrase and 0
means not a paraphrase). 12

3.2 Pairs of sentences with their score; higher scores mean more semantic re-
lationship. 12

3.3 Some lexical and phrasal samples from the Paraphrase Database. The top
section shows examples from the database filtered by score higher than 3.9,
and the bottom section samples from the rest of the corpora. This example
illustrates how noisy can be this corpus if it’s not filtered. 13

3.4 Summary of all the corpora used. 20

4.1 SICK test results. The metrics are Pearson(r) and Spearman(ρ) correlation
coefficients (higher means better) and mean squared error (lower means
better). In the upper section there are our approaches, in the lower section
the ones from the literature. 22

4.2 MSRPC test results in terms of accuracy and f-measure. In the upper sec-
tion there are our approaches, in the lower section the ones from the liter-
ature. 22

4.3 Results on PPDB test set. 23
4.4 A sample of paraphrases from the test and the hypothesis produced by the

model. 24
4.5 Results of the human evaluation tests. 24

vii

CHAPTER 1

Introduction

1.1 Paraphrasing Definition

For a computer, like other natural language processing tasks, paraphrasing, i.e. identify-
ing if two or more sentences can be replaceable, or to search which sentences are equiv-
alents of one given sentence is still very complicated. Probably one of the reasons that
explains the complexity of this task is because not even humans have a unique definition
of what paraphrasing is. Since years, there has been a lot of research about paraphrasing
not only from the point of view of natural language processing (NLP), but also in linguis-
tics. Researchers define paraphrasing in many different ways including the expressions
"convey the same information", "can be replaced by each other" or "semantically equivalent".

According to Wikipedia, "a paraphrase /pærfrez/ is a restatement of the meaning of a
text or passage using other words. The term itself is derived via Latin paraphrasis from Greek
παράφρασις, meaning "additional manner of expression". Furthermore, [Ho+12] indicates
that a generalised definition could be: "paraphrases are different words, phrases or sentences
that express the same or almost the same meaning". But even having a general definition,
when it comes to determine if two sentences, phrases or words are paraphrases, some-
times not even even humans agree. The task becomes, then, very difficult to formalise
and to automate for a machine.

When dealing with paraphrasing, one can identify various types of paraphrases:

• Lexical paraphrases: synonyms or words that are replaceable in some similar con-
texts or carry out the same syntactic role. For example: secured→guaranteed or
shows→contains.

• Phrasal paraphrases: when more than one word is involved but not full sentences.
For example: extended an invitation→be invited to or portions of the→some parts of the.

• Sentential paraphrases: the ones that cover full sentences. For example: Two people
are riding a motorcycle→A bike is being driven by two people.

Another way to categorise paraphrases is paraphrasability, a form of describing in
which degree, or in which way, words or phrases are replaceable or interchangeable.
On the one hand, there are unidirectional paraphrases where one carries the meaning
of the other but not in the reverse way. On the other hand, bidirectional paraphrases
are paraphrases that can be interchangeable in both directions. For example: cat can
be replaced by animal, but animal cannot replaced by cat as it represents a wider meaning
including other animals like dog, bird, etc. An example of bidirectional lexical paraphrase
is common and usual. These are mutually replaceable in many contexts, although not in
all of them as we will see below.

1

2 Introduction

Context sensitivity is, then, another important aspect of paraphrases. There are para-
phrases that can be replaced when they are used alone (context insensitive) and others
that can be replaced only in certain contexts (context sensitive). With the examples above,
common and usual are context sensitive because there are contexts where they are not in-
terchangeable. For example, in the sentence We all have a common objective, the word usual
cannot be used to replace common because the meaning of the sentence would change
completely.

There are two main tasks involving paraphrasing: paraphrase extraction and para-
phrase generation. Paraphrase extraction also involves paraphrase detection, consisting
in identifying words or phrases that have the same or similar meaning. Once the phrases
have been identified, they are extracted in order to construct paraphrase tables, databases
or corpora. Then, these resources are used in the process of paraphrase generation (which
is more commonly known as paraphrasing), that is the production of candidates that ex-
press similar meaning for a given word, phrase or sentence.

1.2 Applications of Paraphrasing

In everyday life we use paraphrasing for many purposes: when rewording statements
to explain ourselves better by simplifying or summarising them, when using our own
words to write about a piece of news that we have recently read or when adapting to
a different register, like a doctor does when he or she explains a disease to a patient.
Paraphrasing can also be applied to many fields of NLP and has become very popular in
the last years as a research line:

• In text summarisation, where simpler or shorter paraphrases can be generated from
the source text, to preserve the original meaning while text is abbreviated. [Zha+18].

• In machine translation, to generate alternative translation candidates or translation
references to increase variability [ZSW19] or to evaluate systems more accurately
[ZLH06].

• In information retrieval, when expanding queries to improve the relevance of some
documents that don’t contain words of the query but contain related information
in other words, also increasing coverage [Aga+18].

• In information extraction, when patterns are retrieved from documents they can
be paraphrased in order to identify more patterns that have the same or similar
semantic information.

• In question and answering, alternative paraphrased questions [SR19a] from the
user can help to identify which question of the database match with the user’s.
Furthermore, it can be used to generate paraphrase answers to provide different
replies each time.

• In any scientific or technical field where language has to be simplified, as in [Has16],
where complex clinical jargon is simplified using paraphrasing to facilitate the com-
prehension of the diagnostics to the patients.

• In addition, there could be more applications that appear not to be investigated
yet to the best of our knowledge. For example, in text-to-speech generation where
voice is generated from written text, results can be paraphrased in order to adapt
to spoken language. Also, voice assistant systems can use paraphrasing to generate
alternate answers each time and sound more human.

1.3 State of the Art 3

As we can see, some of the applications have started to be investigated but there is still a
lot of work left. Moreover, there are a lot of applications that have not been explored. To
sum it up, paraphrasing appears to be one of the key factors to improve the performance
of many current and future NLP systems.

1.3 State of the Art

Before the rise of deep learning in the fields of NLP, paraphrasing approaches were usu-
ally based on hand-crafted features mainly using databases containing paraphrase tables
built with different paraphrase extraction techniques. Those involved knowledge-based
methods (paraphrases extracted using human-constructed databases of semantic and lex-
ical information about words and phrases) as well as lexico-syntactic methods (extraction
based on words appearing in the surrounding context, in terms of N-grams frequency or
TF-IDF counts, or on parsing the syntactic structure of the sentences and extracting words
playing similar roles). Also filtering paraphrase candidates with some heuristics and
performing hybrid methods that combine all lexical, syntactical and knowledge-based
features in different ways [GVC13].

Taking into account the complexity of paraphrasing previously discussed, classic ap-
proaches seem to be very limited. Recently, deep learning has proven promising in mak-
ing computers to deal with problems that are easy for humans to understand but difficult
to formalise. That is the reason why, nowadays, some of state-of-the-art approaches are
starting to explore deep learning techniques for paraphrasing, mainly concerning para-
phrase generation and sentence representations. These techniques are mostly the same
as the ones used in other natural language processing fields such as the use of recur-
rent neural networks, learning of fixed size representations of words and sentences into
a vector space, and sequence-to-sequence models.

Sentence embeddings is one of the most popular techniques used to learn represen-
tations of features that can then help to deal with other tasks. In paraphrasing, some
previous works have used sequence-to-sequence models, such as [Kir+15] and [Zha+18],
to learn distributed representations of sentences that encode their semantic information.
These representations are then tested in semantic relatedness and paraphrase identifica-
tion tasks.

Another approach that has benefited a lot from sequence-to-sequence models is para-
phrase generation. In the last years, [Pra+16] have explored more complex architectures
and [Xu+18] started on models that focuses on the diversity of generated paraphrases.
More recently, we have seen many improvements on these field. Ones exploring a more
controllable generation of paraphrases, like [Che+19] and [Li+19], and others improving
the decoding of neural models, such as [LMJ16] and [Kaj19]. Also another related fields,
like question answering are using diverse paraphrasing in order to improve the perfor-
mance of their models (see [JZS17] and [Dai+17]). Moreover, paraphrasing is becoming
very important on specific domains like clinical reports, [Has16] and [SR19b] showed
various applications.

In this regard, paraphrasing seems to start benefiting from deep learning in the same
way as machine translation, question answering and other fields started to do some years
ago. As we will see, one specific problem of paraphrasing is the lack of standard agreed
metrics or reference corpus for testing, comparing or reproducing past tests.

4 Introduction

1.4 Objectives

The main objectives of this project are:

• To explore a way of creating and evaluating sentence embeddings, that is to say, to
learn semantic features in a generic task and then test them on paraphrasing related
tasks.

• To investigate how these embeddings can be used to create a paraphrasing gener-
ation system based on neural network models exploring, as a start, sequence-to-
sequence models.

• To explore and discuss the different ways of evaluating paraphrase generation mod-
els.

CHAPTER 2

Methodology

2.1 Summary

This chapter is structured mainly in two parts. Firstly, we will explain the background of
our approaches: the sequence-to-sequence model in which our sentence embeddings and
paraphrase generation models are based and the decoding of the sequences generated by
this approach, needed for final paraphrase generation. Secondly, we will explain the
differences that we introduce on sections 2.4 and 2.5. For sentence embeddings, we will
use Skip-Though ([Kir+15]), that is a sequence-to-sequence model that uses one encoder
and two decoders to predict the surrounding context of a given sentence. Having this
as an input, for paraphrase generation we will introduce a new way of using a standard
sequence-to-sequence model: instead of creating an encoder with random weights, we
will use the encoder of Skip-Thought in order to take advantage of the previously learned
weights.

2.2 Sequence to sequence

The main approach used in this project is the use of sequence-to-sequence models that
we will describe in this section. These models are trained in order to learn how to convert
one sequence from a given domain to a sequence of another domain. Even though these
models are mainly used in the field of neural machine translation[SVL14], as paraphras-
ing can be considered a similar task, we find that they could also work for this task and
others that we will describe later.

The specific sequence-to-sequence model used in our work is the encoder-decoder
model based on recurrent neural networks, and more specifically the one made of Gated
Recurrent Unit[Chu+14] (GRU). Assuming we have a sentence pair se and sd (the source
and the target sentence), the model is divided in three parts: the encoder, the decoder
and the objective loss function.

The encoder is the first part of the model. It receives the w1
e , w2

e , ..., wN
e sequence of

words of the source sentence se where N is the number of words in that sentence. At
each time step t, produces a hidden state ht

e that is the representation of the sequence
formed by previous words and the current word (w1

e , ..., wt
e). So the last state hN

e is the
representation of the full sequence. In order to obtain this representation, the encoder

5

6 Methodology

model iterates over these equations:

rt
e = σ(Wr

ex
t
e + Ur

eh
t−1
e + br

e) (2.1)

zt
e = σ(Wz

ext
e + Uz

eht−1
e + bz

e) (2.2)

h̄t
e = tanh(Wh

e xt
e + Uh

e (r
t
e ⊙ ht−1

e) + bh
e) (2.3)

ht
e = (1 − zt

e)⊙ ht−1
e + zt

e ⊙ h̄t
e (2.4)

where σ is the hard sigmoid1 function, ⊙ is component-wise Hardamad product, W, U
and b are the weights matrices and the bias vector, rt

e is the reset gate at time step t, zt
e is

the update gate, h̄t
e is the proposed state update and ht

e is the hidden state.

The decoder is the second part of the model. It is a neural language model condi-
tioned on the encoder last hidden state hN

e and the previous words w1
d...wt

d of the target
sentence. It iterates over time steps following the same computations than the encoder,
with the difference that its initial state h1

d corresponds to the last state of the encoder hN
e :

rt
d = σ(Wr

dxt
d + Ur

dht−1
d + br

d) (2.5)

zt
d = σ(Wz

dxt
d + Uz

dht−1
d + bz

d) (2.6)

h̄t
d = tanh(Wh

i xt
d + Uh

d(r
t
d ⊙ ht−1

d) + bh
d) (2.7)

ht
d = (1 − zt

d)⊙ ht−1
d + zt

d ⊙ h̄t
d (2.8)

Given the hidden state ht
d, the probability of word wt

d given the previous t − 1 words and
the encoder last state hN

e is

P(wt
d|w<t

d , hN
e) ∝ exp(vwt

d
ht

d) (2.9)

The objective loss function is the third part of the model. It aims at optimising the
cross entropy (as minimising is equivalent to maximise log probability or maximise per-
plexity) of the target sentence conditioned on the last state of the encoder:

−∑
t

log P(ŵt
d)P(wt

d|w<t
d , he) (2.10)

where ŵt
d is the ground truth word of the target sentence at time step t.

Therefore, our encoder-decoder model produces a vocabulary distribution for each
time step of the target sequence, that is conditioned of the last state of the encoder, and
consequently, conditioned of the sequence of words of the source sentence.

2.3 Decoding

The decoding involves the process of converting the sequence of vocabulary distributions
into text. In our model, the most probable word for each time step is conditioned on
the previous predicted words. The decoder is a recurrent neural network and for each
iteration it receives the previous output. This input is the embedding of the last predicted
word, as we can see in 2.1. Also, the choice of the hypothesis word ŵt for each time step t
is conditioned on the previous chosen words as we show in the following equation (note
that the condition on the last state h of the encoder is omitted for simplicity):

ŵt = argmax
v∈V

P(wt
v|ŵ<t) 1 < t < N

1In Keras, sigmoid activation function for the update and reset gate is implemented with hard sigmoid,
which is a non-smooth version of sigmoid usually used in neural networks for speed-up computations when
precision is less important than speed.

2.4 Sentence Embeddings 7

Figure 2.1: Illustration of the described sequence-to-sequence model performing a paraphrase
generation task.

Where V is the probability distribution over the vocabulary.

Unlike other neural networks approaches, where the output that is considered correct
is the one with the highest probability, the search is not as simple as picking the most
probable word for each time step j conditioned on the most probable previous words.
Due to the fact that the sequence that produces this greedy approach is not the optimal,
we need to look for a more exhaustive search.

One of the most common search algorithms used for text generation in neural models
is beam search. This algorithm keeps the k best paths during the search, exploring more
candidates than the greedy approach. The probability distribution over words is com-
puted conditioned on all the different paths that are being explored. So, for each time
step and for each word, we have k different predictions based on the previous selected
words. Next, we select the top-k words from all those possible candidates. As a result,
we will have explored other paths that may look like less promising at the beginning but
turn into the best path at the end.

Figure 2.2: Illustration from [Koe17] of the different beams explored during the search.

2.4 Sentence Embeddings

There are many deep learning tasks that perform representation learning as a first step,
before addressing directly their problem in order to learn representations that encode the
nature of the data. Another common approach is to train a model that performs a generic
task and then fine-tune it to target a more specific problem.

In NLP the most popular representation learning task is to learn word embeddings.
It is performed by encoding words into a vector space (see [Ben+06]) so that words that
have similar semantic meanings are placed in a nearby area . Usually, to this aim, neural
networks trained to build the surrounding context of a given word (see [LM14]). Simi-
larly, sentence vector representations can be learnt. This is very relevant to paraphrasing,

8 Methodology

because if we have sentences of similar meanings encoded nearby, we can train models
that use this vectors to identify them as paraphrases.

To clarify what similar vector representations means we will give some examples. As
we can see in figure 2.3 word vector representations can encode different meanings, like
semantic meaning of gender or syntactic information of verbs. A typical example is: if
man vector is subtracted to king and then sum with woman we will obtain a vector whose
values are very close to queen. In our case, we would like that the vector of the sentence
My father is rich is close to, for example, My father has a lot of money.

Figure 2.3: Illustration of word vector mappings.

In this project, we will explore one of the state-of-the-art approaches for learning sen-
tence mappings to a vector space, that has proven reliable in some NLP tests, and more
specifically paraphrase detection and semantic relatedness. But, to provide a different
point of view, we will treat these sentence representations as a generic model that will be
later fine-tuned to target a specific task: paraphrase generation.

2.4.1. Mean vectors

Our baseline approach to sentence embeddings will be some naive operations with word
embeddings. We will see that, if we have pre-trained word vectors, a simple operation
like the mean of all the vectors that are part of a sentence, can perform very well some
paraphrasing tasks. It makes sense that, if we have encoded the semantic information of
words, combining them would keep this information. The resulting model will be an en-
coder that has the word embedding layer as input and the output layer will be the mean
of all word vectors from the input sequence. Thus we have a sentence representation
result of the mean of word vectors that will be used as a baseline.

2.4.2. Skip-Thought

For sentence embeddings, we will deeply explore skip-thought vectors [Kir+15]. Inspired
in skip-gram approach for words [Mik+13], skip-thought vectors encode sentences with a
model that reconstructs its surrounding sentences. Unlike the word-level approach, each
element of the sentence tuple (source, backward and forward, si−1, si, si+1) is made of a
sequence of words instead of single one. Consequently the model becomes a sequence-to-

2.4 Sentence Embeddings 9

sequence model. Accordingly, our vector representation will be the last state of the first
part of the model (the encoder), because this state would encode all of the information
obtained through the iteration over all the words of the sentence.

In the original article, we can see some variations of this model and their results.
We will explore a few more to evaluate the impact of learning of sentence embeddings
applied to paraphrase generation. One of the explored variations will be the extension
of the window context, since in the article only one backward and one forward sentences
are considered. By widening the context, we expect that the sequence-to-sequence model
will have more loss to optimise and, therefore, learn much more information.

Figure 2.4: The skip-thought model with a window context of 1. In this example, we have the
source sentence that is fed into the encoder I could see the cat on the steps, the forward sentence I got
back home that the forward decoder tries to reconstruct, and the backward sentence This was strange
that is reconstructed by the backward decoder. The dotted square marks what is considered to be

the vector mapping of the source sentence.

Assuming we have a sentence tuple (si−1, si, si+1 in the case of window context size 1
and si−2, si−1, si, si+1, si+2 of window of size 2), the model is described in three parts: the
encoder, the decoders (one for each target sentence) and the objective function. Let the
wt

i describe the t − th word for sentence i and xt
i its word vector, the model is described

as:

The encoder, as the first part of the model, receives the w1
i , ..., wN

i sequence of words
of the sentence si where N is the number of words in that sentence. At each time step t,
produces a hidden state ht,e

i in the same way as the encoder part described on section 2.2.
So the last state hN,e

i is the representation of the full sequence.

The decoder, as the second part of the model, is a neural language model conditioned
on the encoder last hidden state hN

i . It consists of as many decoders as target sentences
the model has. In the case of window context size 1, there is one decoder for the forward
sentence si+1 and another for the backward sentence si−1. And all of these decoders
are conditioned on the last state of the encoder, and as a result, produce a vocabulary
distribution at each time step for each target sequence of words.

The objective loss function to optimise is the sum of cross entropy of each context
sentence conditioned on the last state of the encoder, so in the case of window context
size 1 the sum will be:

−∑
t

log P(ŵt
i−1)P(wt

i−1|w<t
i−1, hi) +−∑

t
log P(ŵt

i+1)P(wt
i+1|w<t

i+1, hi) (2.11)

As the use of softmax function as output is very expensive to compute and the num-
ber of parameters grows dramatically when using large vocabularies, we will be con-
strained to train with with a small vocabulary of approximately 20,000 words. Then we
can use the same approach described in the original article to perform a vocabulary ex-
pansion. This vocabulary expansion is a linear mapping between a set of pre-trained
word representations and the vocabulary of the model. To learn this linear mapping,
we will train a linear regression model using the vocabulary that intersects with the pre-
trained embeddings. Then, the vocabulary from the pre-trained word embeddings that is

10 Methodology

not on the skip-though vocabulary will be mapped to that space. This will let our model
have a lot more words in the vocabulary.

At the end of the training, the decoders of this model are no longer required, since we
are only interested on sentence representations, as showed in figure 2.4. As a result, we
will obtain the encoder part, that receives a sentence and produce a multi-dimensional
vector that we will consider the semantic representation of that sentence. The main rea-
son why this approach has been chosen, is because it can be used to train a sequence-
to-sequence model for paraphrase generation that is initialised with the weights of this
pre-trained encoder, as we will see in the next section. Also because training is unsuper-
vised making the compilation of data much easier and avoiding the limitation of other
models like InferSent[Con+17] that need labelled data to be trained.

2.5 Paraphrase Generation

Paraphrase generation is a task that, given a sentence, phrase or word, aims at produc-
ing one or more sentences, phrases or words that have roughly the same meaning. This
can be viewed as a similar task to machine translation, but where the model is "trans-
lating" to the same language. Paraphrasing is some kind of "monolingual translation"
so, we assume that it can be performed by a model inspired in machine translation (see
2.1). Sequence-to-sequence models are the state-of-the art techniques in neural machine
translation and Skip-Thought is a similar approach. One of the goals of our work is
to take the advantage of the similarity of the architecture of Skip-Thought with neural
machine translation models. In order to create a sequence-to-sequence model whose en-
coder weights are pre-trained, we take advantage of modern learning libraries like Keras
([Cho+15]) to train and re-use, more easily, the encoder of Skip-Thought. Therefore, the
decoder of the paraphrase generation will act as a target language model conditioned
on the vector representation of the source sentence. Then, this sentence representation
will be pre-trained on a generic task which has proven to perform well on paraphrasing
related tests.

The optimised loss function will be the same as described on the previous section
2.2. Then, the Truncated Back-propagation Through Time [Bro17], will use the Adam
optimiser to optimise this loss function. That will result on a training algorithm that does
not need its parameters to be adjusted, since its parameters will adapt while training
evolves. Finally, the decoding process will be done in the same way as described in 2.3,
using beam search.

For our purposes, the paraphrase generation task will work at phrase level, that can
be considered a simplification of sentence level. Since our sentence encoder model works
with word sequences, it is also capable of encoding phrases. Basically, phrases can be
treated exactly as short sentences, that is, as sequences of words. The decision to work at
phrase level will allow also re-using the biggest and most widely used corpus available
in the literature (PPDB [GVC13]).

CHAPTER 3

Experiments

3.1 Experimental framework

First of all, we will explain the overall structure of the experiments, and then, further
details will be given in the next sections. In general, the followed steps have been:

1. Build our implementation of Skip-Thought.

2. Train various Skip-Thought models varying different hyper-parameters, like the
number of neurons, the size of the window or the training corpus.

3. Compare all the models with the baseline and the literature, in order to see if we
can improve the original Skip-Thought.

4. Use the pre-trained Skip-Thought encoder to create a paraphrase generation sys-
tem.

• Compare it to a baseline with random weights, in order to see if pre-trained
weights from Skip-Thought can improve the baseline performance.

• Compare it with other paraphrase generation systems from the literature.

3.2 Corpora

For the training and evaluation of our models, we used different corpora that are de-
scribed below. A summary of the corpora, what were they used for and their sizes, is
shown in table 3.4.

OpenSubtitles [Pie16] is a large multilingual data set made of subtitles of movies, TV
series and documentaries from the OpenSubtitles.org website. It was chosen because it
has a high variety of vocabulary and short sentences. Since we are interested in phrases,
short sentences were deemed to be interesting. Also because sentences in this corpus
preserve the order of the subtitles and we considered it very useful to extract the context
of each sentence to train our Skip-Thought models. We extracted 20 million sentences in
English for training.

BookCorpus[Zhu+15] is a data set of books in English crawled from the web. The
original corpus is no longer distributed, so we used the crawler published in the repos-
itory to collect our own corpus with the provided URLs in the repository. This data set
was used in the original paper of Skip-Thoughts and it also has continuous text that can
be used to extract the context for each training sample. The size of the corpora crawled
using the URLs from the toolkit repository is 8.6M sentences.

11

12 Experiments

Microsoft Research Paraphrase Corpus[DQB04] is a collection of pairs of sentences
tagged as paraphrases (positive = 1) or not (negative = 0). It consists of 4,076 sentence
pairs for training and 1,725 pairs for testing and 66% of the sentences are positive.

MSRPC samples
The results will be published the July 10 issue of the journal Nature.
The results appear in Thursdays issue of the journal Nature.
1
Physicians who violate the ban would be subject to fines and up to two years in prison.
Physicians who perform the procedure would face up to two years in prison, under the bill.
1
The broader Standard & Poor’s 500 Index rose 3.42 points, or 0.34 percent, to 1,007.84.
The technology-laced NASDAQ Composite Index .IXIC was down 1.55 points, or 0.09
percent, at 1,744.91.
0
Qanbar said the council members would possibly elect a chairman later Sunday.
US authorities have said the council would include 20 to 25 members.
0

Table 3.1: Pairs of sentences and its ground truth (1 means true paraphrase and 0 means not a
paraphrase).

SICK[Mar+14](Sentences Involving Compositional Knowledge) data set comes from
a semantic relatedness task from SemEval 2014. It consists of 4,500 sentence pairs for
training, 500 for development and 4,927 for testing. These pairs are annotated with a
5-point rating scale that indicates the degree of semantic relatedness between each sen-
tence.

SICK dataset samples

Five children are standing in front of a wooden hut
Five children are standing in a wooden hut
4.2

The equipment in front of the blond dancing girl is sound
A girl in white is dancing
2.7

A man is playing an electric guitar
A group of people is holding drinks and pointing at the camera
1

Four children are doing backbends in the gym
Four girls are doing backbends and playing outdoors
3.8

Table 3.2: Pairs of sentences with their score; higher scores mean more semantic relationship.

Paraphrase Database[GVC13] is a multilingual data set, that was automatically col-
lected, consisting of syntactical, lexical and phrasal paraphrase pairs. We sampled 5 mil-
lion paraphrases from the XXXL databases of lexical and phrasal paraphrases. For sam-
pling, we used the PPDB2.0[PRJ15] score provided for each paraphrase pair, in order to
filter the ones that have the highest probability of being paraphrases. The score threshold
was picked manually (3.9 for phrasal and 3.9 for lexical). This threshold allowed us to get
enough data for training and samples that are not very rare or erroneous paraphrases.

3.3 Training 13

PPDB samples

come to an end are completed
action on the measures in the
preferred demanded
rotates flips
an in-depth discussion detailed discussion
commissioned perpetrated
allows us also helps

and enables , thus giving
been authorised therefore, the
don’t you think especially

Table 3.3: Some lexical and phrasal samples from the Paraphrase Database. The top section shows
examples from the database filtered by score higher than 3.9, and the bottom section samples from

the rest of the corpora. This example illustrates how noisy can be this corpus if it’s not filtered.

3.3 Training

3.3.1. Preprocessing

For all tasks, minimal preprocessing was done. We created different data generator
classes to abstract the logic of reading the corpora, preprocessing them and providing
batches to the training models, since our models tend to use all GPU memory and all the
data cannot be loaded directly. The tasks performed by these classes behave as follows:

• Read the entire training corpus and load it on RAM.

• Tokenise the data using Keras[Cho+15] and store it in an index.

– It builds a dictionary of the corpus sorting the words by frequency.
– It transforms text into sequences of indexes from the vocabulary, tagging the

words below the vocabulary threshold as "unkown". Please note that filters
can be removed in order to have a dummy tokeniser that splits words by
spaces, if the data comes tokenised from an external tokeniser.

• Yield the batches needed during training. Keras training method requests an item
in every step of the training and the class gathers the data from its index and creates
a batch of tuples. Skip-Thought receives as input a batch of tuples (triplets in the
case of window 1) of source sentence and target sentences (forward and backward),
and outputs the target sentences (backward and forward). The paraphrase gener-
ation model is very similar to Skip-Thought but taking only one sentence as input
and output.

The only sophisticated method of preprocessing that has been explored is byte pair en-
coding (BPE) [SHB15]. BPE encodes rare or unseen words by means of sequences of
subword segments. These subword segments are learned on the training corpus and the
most frequent ones are added to the vocabulary. As a result, the model is trained without
unknown words ("theoretically complete coverage"), so the language model is forced to
explain all unkonw or rare words in terms of subword segments. The use of BPE has
proven to be very useful in neural machine translation and it is is nowadays considered a
standard preprocessing method. Moreover, it can be easily applied or ignored using just
one line of bash scripting. Despite this preprocessing was tried, no results were reported
since we don’t encounter any relevant results.

14 Experiments

3.3.2. Building Skip-Thought models

First of all, the Skip-Thought toolkit was downloaded in order to reproduce the experi-
ments showed in the paper. The pre-trained models are available to download and test
them, but the corpus used to train the models is no longer available and has to be crawled
with a toolkit. This made the experiments not fully reproducible.

After verifying that the toolkit works with another corpus (OpenSubtitles) and the
tests produce some results that prove that the model is working, we decided to re-implement
the code in Python 3 and Keras[Cho+15] as the available toolkit was using Python 2 and
Theano, making it very hard to use. On the one hand, Python 2 support will end by
2020, just a few months after launching our experiments. On the other hand, Theano
is a low-level library (making coding and maintenance more complex) and it has lower
performance than others like Tensorflow, the default Keras backend. Thus, implement-
ing the toolkit in Keras and Python 3 would allow for a much easier maintenance and
extension of the code and functionalities.

More in detail, implementing the toolkit in Keras brought the following benefits:

• Update the code to a more recent library and version of Python.

• Improve the extensibility, readability and maintainability of the code, since Keras
model architectures are much more explicit with many fewer lines of code.

• Ability to re-use the trained models along with others or plug-in different types of
decoders or encoders easily (re-use for paraphrase generation).

• Improve the overall performance and reduce training time.

• Ability to create multi-GPU models with one more line of code.

The code made for the project is available at [Zar19].

In Keras, we use categorical cross entropy as the loss function to optimise, as min-
imising the cross entropy is the same as maximising the log-likelihood. More specifically,
we use sparse categorical cross entropy, which can compute cross entropy with a given
vector of indexes that represent the position of the word in the vocabulary. This sparse
computation was the key point to train almost 4 times faster than before by explicitly
avoiding the use of one-hot vectors, that take a lot more space, and the softmax function,
much more expensive to compute.

The training of the Skip-Thought models was executed in a Nvidia GTX1080 GPU
and the gradient descent used was Adam with the default parameters of Keras (learning
rate of 0.01 with no decay), batches of 128 for context window size 1 and 64 for size 2,
since the model with context window size 2 is bigger with the risk of processing resulting
in an out of memory error. The tested hyper-parameters were:

• the number or neurons of the recurrent layer of the encoder and the decoder.

• the type of recurrent layer used (LSTM or GRU).

• the size of the context window (the number of forward and backward sentences to
predict)

• the different training corpora.

• the sharing or not the vocabulary matrix of the decoders.

3.3 Training 15

As we can see in the figure 3.1 the training is far from convergence and it is overfitting,
these could be due to the simplicity of the encoder and the decoder, the only have one
layer. We can also observe that the model with window 2 evolves in the same way as the
one with window 1, but it has more distance between the train loss and the development
loss because it has 4 decoders as output (and therefore, 4 loss sources). Another remark-
able aspect is that the model stops improving on almost on epoch 27, meaning that only
approximately 3.8M sentences were seen (much less than the total corpus), as batch size
is 128 sentences and steps per epoch are 1,000.

Figure 3.1: The evolution of cross-entropy loss during training for training set and development
set. At the top we can see the model of a context window of 1 and at the bottom a context window

of 2.

3.3.3. Encoder

An encoder class was created to handle the encoding of sentences to vector representa-
tions using the last state of the Skip-Thought encoder. This class performs the following
tasks:

16 Experiments

1. Load the pre-trained Skip-Thought model and the pre-trained embedding file from
GloVe[PSM14].

2. Find the vocabulary that is shared between the word embeddings file and the Skip-
Thought vocabulary.

3. Train a linear regression using the shared vocabulary as training samples, with the
Scikit-learn toolkit.

4. Apply linear regression to all the vocabulary from the pre-trained embeddings that
is not in the Skip-Thought vocabulary.

5. Create a new model using the configuration and the weights from the Skip-Though
model, but only the encoder part.

6. Append all the new vectors to the embedding layer of the new model.

7. Use the last state of the GRU as the output of the new model.

At the end, the encoder class provides a model that receives a sentence, tokenizes it and
encodes it. This class is then used on the embedding tests and also to create the para-
phrase generation model.

This encoder class also is able to create an encoder which performs the mean vectors
approach. It loads the embedding file and creates a Keras model that has the embedding
layer with these vectors as weights. All word embeddings from a given sentence are fed
into a lambda layer that computes the mean. Thus, it provides the same output shape of
the other encoder model, that is the mean of word embeddings instead of the last state of
a recurrent layer.

3.3.4. Paraphrase Generation

For the generation phase, we used the encoder explained in section 3.3.3 to set our base
weights and we appended a new decoder. The new decoder is made of a recurrent layer
of the same type and size than the encoder, and a fully-connected layer as vocabulary
distribution at its output. Since the decoder weights are not pre-trained, meaning that
weights of both parts of the model are unbalanced, we performed a two phase training
(well-known technique in transfer learning for neural networks). On the first phase, in
order to propagate gradient only to the decoder weights, the encoder weights (both recur-
rent weights and embedding weights) are frozen. This phase takes only about oen epoch
because at the beginning the gradient is much bigger and the parameters are learned
much faster. On the second phase, the encoder weights are unfrozen and all the model
weights are trained jointly, allowing the encoder to be fine-tuned to the specific task.

3.4 Evaluation

3.4.1. Embedding tests

We present two experiments to test the quality of the trained word vectors. The first
experiment has to do with the semantic relatedness task from the SICK dataset [Mar+14].
The aim of this task is to create a regressor that tries to predict a score for each pair of
sentences, a score that represents how similar are they in terms of semantic relationship.
The second experiment has to do with the paraphrase detection task from the MSRPC

3.4 Evaluation 17

[Com]. The aim of this task is to produce a classifier that identifies if a pair of sentences
are paraphrase or not.

In order to demonstrate the quality of the trained word vectors, we tested them in the
same way as showed in the literature. To train the models to perform these tests, only
two features were used, computed directly from the features learned on the sentence em-
beddings. In the same way as [SSM15] did, given two sentences we compute their u and
v vectors and then their absolute difference |u − v| and their component-wise product
uv̇. With these features, linear regression is trained for predicting the score as in the SICK
task and a classifier is trained to be able to classify paraphrases as in the MSRPC task.

The reason why the Skip-though approach is very powerful, is because it let us to
perform two experiments with features that are learned on a completely different task.
First of all, a task that does not specify the information of paraphrase identification or se-
mantic relatedness. And then, perform at par of other approaches that are built explicitly
for those tasks or perform a supervised feature learning, instead of Skip-Thought that is
unsupervised.

To perform these tests we used the same scripts that are provided in the Skip-Thought
toolkit, with some modifications to update the code and read the data more easily. Also,
in order to be able to apply BPE if the trained model required it, we have re-formatted
the two data sets used, removing the columns that are not relevant for these experiments.

The metrics used in these tests are:

• For the semantic relatedness task:

– Pearson’s r correlation coefficient, that measures the covariance of two vari-
ables in terms of quantity, but independently from the scale of the variables. A
value of 0 means no correlation and +1 or -1 mean that are completely related
negatively or positively.

– Spearman’s ρ correlation coefficient, that measures if the values of two vari-
ables are replaced in the same order. 0 means no correlation and +1 or -1 mean
positive or negative correlation.

– Mean squared error (MSE) is a non-linear measure of the difference between
two variables that penalises more when the difference is higher. It is a quite
often used measure of error in regression problems. The two correlation mea-
sures are used in order to verify if an improvement of this error also means
more correlation.

• For the paraphrase detection task:

– Accuracy: the most used metric in classification tasks. It measures the percent-
age of well classified samples.

– F-measeure, also called F1: a measure that is considered the harmonic mean
between precision and recall.

The baseline for these tests will be the mean-vectors approach described on the sec-
tion 2.4.1, because it is a naive model that does not require the training phase that Skip-
Thought performs. Other naive approaches that perform different word vectors oper-
ations like addition, subtraction or component-wise product were explored, but all of
them resulted on models that do not learn during the training process and they were,
therefore, discarded.

18 Experiments

3.4.2. Paraphrase generation tests

The models we compared to in the paraphrase generation task are:

• Diverse Paraphrasing Generation (D-PAGE)[Xu+18]: this model focuses on the di-
versity of generated paraphrases. To increase the diversity it uses several decoders
in its sequence-to-sequence model, each of them has a different reordering pattern
to produce different types of paraphrases. The number of encoders is appended at
the end of the model.

• Residual Long Short-term Memory (LSTM)[Pra+16]: a sequence-to-sequence model
where its encoder and decoder are made up of several stacked recurrent LSTM lay-
ers (ours only has one). Also these layers have residual connections between them,
this means that the hidden state of a given layer is a combination between its last
hidden state and the input of the previous layer.

The metrics used for the paraphrase generation tests are:

• BLEU (bilingual evaluation understudy)[Pap+01]: this score is considered as a de
facto standard in some NLP tasks like machine translation. It is also the only metric
that is common to all paraphrase generation articles reviewed. It counts the per-
centage of all possible n-grams (usually unigrams to 4-grams) from a reference sen-
tence that are present on a hypothesis sentence. Despite being widely used, BLEU
has been highly criticised due to its limitations [Tat15]. We see that the main limita-
tion for paraphrasing is that BLEU does not consider the meaning of the words or
alternatives so, for example, for a source phrase responses to, if the reference para-
phrase is replies to the and the hypothesis is replies to, the BLEU score between the
hypothesis and the reference will be 60 despite being a perfect paraphrase. And
worse, if the hypothesis is answers to the score will be almost 0, despite being also a
perfect paraphrase.

So, we deem important complementing this metric with another one.

• Greedy matching between word embeddings[RL12]: this method computes a score
based on the similarity of word embeddings of the hypothesis and the reference.
Thus if we have a phrase that is very different to the reference in terms of n-grams,
it can be scored quite well if the semantic relationship is high. For the example
above mentioned: replies to in front of replies to the has a 7.7 score and answers to
in front of replies to the has a score of 5.3, which is lower but it’s much closer than
BLEU scores. The pre-trained word vectors used for the test are Google News em-
beddings1 trained with Word2Vec at [MLS13], that is the same used in [Pra+16].

Automatic evaluation is very useful to test in a cheap and quickly way and to have
an impartial metric, but it is limited when evaluating deeply if the hypothesis are good
or not or what the source of errors is. As we have seen above, not all good scores corre-
spond to good hypothesis and vice versa. Also a humans can evaluate in many ways that
automatic metrics cannot do (i.e. they can take into account the whole structure phrase
or sentence, unlike BLEU). So, we decided to perform human evaluation also.

To perform this evaluation, we choose tree human evaluation metrics that are used in
[Has16]. Two people evaluated a subset of 100 phrases randomly selected from the test
set in terms of:

1The pre-trained vectors are available at https://github.com/mmihaltz/
word2vec-GoogleNews-vectors

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors

3.4 Evaluation 19

• Semantic relatedness: how much of the original meaning is retained on the candi-
date phrase.

• Novelty: how much the paraphrase is considerably different from the source.

• Grammaticality: how much the candidate paraphrase can be considered as correct
according to English grammar.

Each score can take values from 1(very bad) to 5(very good), then the mean between the
two human judgements is calculated and the final score is an average of the three metrics
for each model (the model type used is hidden to evaluators).

The baseline of these tests will be a sequence-to-sequence model, basically the same
that is created with Skip-Thought but with all the weights initialised as random. The
comparison with this model will show us if the pre-trained encoder can improve the
performance of the sequence-to-sequence model.

20 Experiments

C
orpus

D
escription

Train
size

D
ev

size
Testsize

U
sed

for

O
penSubtitles

T
V

and
m

ovie
subtitles

20M
10K

-
Train

sentence
em

beddings
BookC

orpus
Publicly

available
books

8.6M
10K

-
Train

sentence
em

beddings
M

SR
PC

Praphrase
identification

4K
-

1.7K
Testsentence

em
beddings

SIC
K

Pairs
ofsentences

and
their

sem
antic

relationship
4.5K

0.5K
4.9K

Testsentence
em

beddings
PPD

B
Pairs

ofphrasaland
lexicalparaphrases

5.3M
10K

4K
&

100
Train

and
testparaphrase

generation

Table
3.4:Sum

m
ary

ofallthe
corpora

used.

CHAPTER 4

Results

4.1 Embedding tests results

We present the results for the SICK and MSRPC tests in this section. These are shown
in tables 4.1 and 4.2 below. Each table is divided in two sections: in the upper section
our results and in the lower section the original Skip-Thought and other state-of-the-
art models results that are shown to illustrate in which range the scores are. In both
tables, our methods read as follows: uni-skip indicates the main name of our method
(unidirectional Skip-Thought), n indicates the number of neurons used on encoder and
decoder (2400 in all cases), w indicates the size of the context window (1 or 2) and finally
the name of the training corpus is shown (Books or Open-Subtitles).

In table 4.1, reporting SICK results from the literatures, we can find the following
methods:

• Mean vectors: the mean of word vectors, that is, presumably, the same that our
baseline.

• The three Skip-Thought[Kir+15] models (unidirectional, bidirectional and combined).

• Dependency-Tree LSTM[SSM15]: a model made for this types of tasks.

• InferSent[Con+17]: the best performance. It also learns generic sentence represen-
tations but using labelled data.

In table 4.2, reporting the MSRPC results, we can find the following methods:

• Cosine similarity of tf-idf weightening vectors[Com] (this is the original baseline of
the task).

• A combination of lexical and semantical features.

• The three Skip-Though[Kir+15] models: unidirectional, bidirectional and combined.

• TF-KLD[Com]: matrix factorisation with supervised re-weightening, that has the
best result on the task.

Observing these results, we can draw some conclusions:

• In the SICK tests, our approach outperforms the baseline results.

• In the MSRPC test, the baseline mean-vectors approach outperforms our results.

21

22 Results

Method r ↑ ρ ↑ MSE↓
uni-skip n2400 w1 books 0.7275 0.6569 0.4974
uni-skip n2400 w1 opensub 0.5640 0.5400 0.6371
uni-skip n2400 w2 books 0.7690 0.6996 0.4234
uni-skip n2400 w2 opensub 0.7347 0.6820 0.4892
mean-vectors (baseline) 0.6408 0.6348 0.61

mean-vectors [SSM15] 0.7577 0.6738 0.4557
uni-skip [Kir+15] 0.8477 0.7780 0.2872
bi-skip [Kir+15] 0.8405 0.7696 0.2995
combine-skip [Kir+15] 0.8584 0.7916 0.2687
Dep-Tree LSTM [SSM15] 0.8676 0.8083 0.2532
InferSent [Con+17] 0.883 - -

Table 4.1: SICK test results. The metrics are Pearson(r) and Spearman(ρ) correlation coefficients
(higher means better) and mean squared error (lower means better). In the upper section there

are our approaches, in the lower section the ones from the literature.

Method Acc↑ F1↑
uni-skip n2400 w1 books 66.78 75.52
uni-skip n2400 w1 opensub 65.44 74.81
uni-skip n2400 w2 books 68.92 77.13
uni-skip n2400 w2 opensub 66.95 75.11
mean-vectors (baseline) 74.9 82.40

Cosine sim [Com] 65.4 75.3
Lex&Sem feat. [Com] 76.6 79.6
uni-skip [Kir+15] 73.0 81.9
bi-skip [Kir+15] 71.2 81.2
combine-skip [Kir+15] 75.8 83.0
TF-KLD [Com] 80.4 85.9

Table 4.2: MSRPC test results in terms of accuracy and f-measure. In the upper section there are
our approaches, in the lower section the ones from the literature.

• In both tests, we could not reproduce the the state-of-the-art results, especially on
the MSRPC test. This can be due to the fact that our models were trained with much
less data and time than the original Skip-Thought model (they used 70 million sen-
tences and more than a week).

• We can see an improvement in our models, in both tests, when the window of
context size 2 is used. This confirms our initial hypothesis: the bigger the context,
the more the information it can provide to the encoder, and the more it can learn.

4.2 Paraphrase generation tests results

Table 4.3, reporting paraphrase generation results, is also divided in two sections like
the ones for the embedding tests results. It must be highlighted that the sampling of the
PPDB data set is not the same between the experiments of the cited papers and ours (see
explanation below), so the results are not completely comparable. Also BLEU scores are
not completely comparable as they depend on some parameters (like tokenisation and

4.2 Paraphrase generation tests results 23

casing) and these are not specified in the original papers. For computing BLEU metric
we used SacreBLEU1 toolkit[Pos18] with default parameters.

In the table, we can find the following methods that correspond to the mentioned
papers:

• Diverse Paraphrasing Generation (D-PAGE)[Xu+18]: for training and testing they
randomly sampled 4.5M and 0.5M sentences respectively, from the XXXL database.
They don’t seem to be filtering by score, and that means that their training corpora
could be very noisy (as we can see in table 3.3). Also, they only use the phrasal
database and not the lexical one.

• Residual Long Short-term Memory (LSTM)[Pra+16]: for training and testing they
used a corpus which is similar to us, sampling the lexical and phrasal PPDB L size.
This resulted in 5.3M paraphrases from which 90% are selected for training and 20K
randomly sampled from the remaining 10% are retained for testing.

Method BLEU Emb Greedy

seq2seq n2400 (baseline) 10.63 2.61 ± 0.00
seq2seq + skip n2400 w1 books 14.82 3.06 ± 0.00
seq2seq + skip n2400 w1 opensub 11.06 2.91 ± 0.00

D-PAGE-2 [Xu+18] 16.5 -
D-PAGE-4 [Xu+18] 15.4 -
D-PAGE-8 [Xu+18] 14.1 -
Residual LSTM [Pra+16] 20.3 34.77*

Table 4.3: Results on PPDB test set.

* The metric showed in this paper does not correspond to the metric that we have com-
puted. We used the same script and the same embeddings that they mention in the pa-
per, but results on the paper seem to be in a different scale. We computed the embedding
metric assuming that the hypothesis are all perfect (the same as the reference) and the
maximum score obtained was 9.6, so we don’t know how they could get to the reported
value. Also on the paper that originally proposed this metric, the values vary between
0.35 and 0.20. Thus, the values are not comparable.

As we can see in table 4.3 our proposed architecture of a sequence-to-sequence model
with a the pre-trained Skip-Thought encoder outperforms the baseline in BLEU and em-
bedding. We would like to remark that the baseline and the other two proposed models
have all the same number of parameters (varying a bit on the vocabulary, but negligi-
ble). Despite this improvement, the proposed model is bit far from the state-of-the-art.
In terms of BLEU is far from the Residual LSTM approach, but we have to consider that
this model has a more complex architecture. For the D-PAGE model, BLEU values are
similar but we need to take into account that this model is focused on the diversity of its
hypothesis.

Finally, we report the results comparing the baseline and our best system according
human evaluation tests. First, lets take a look to some random sampled paraphrases
extracted from it in table 4.4. This table shows that, despite the model does not guess
correctly the target paraphrases, most of the paraphrase preserve the original meaning
and are grammatically correct. Furthermore, there are examples where the hypothesis
meaning is closer to the source meaning than the target. For example: that’s just terrific

1The aim of this toolkit is to provide clear reports of BLEU scores that can be reproducible.

24 Results

Source Hypothesis Target

deputies from representatives of delegate to
be concluded conclusion, be celebrated
form an integral part are an integral component constitutes integral part
this is perfect that’s just terrific it’s fine
conditions were terms and conditions governing requirement as
president said chairman stated , the head of
enabled us have allowed us has made it possible
vacant posts vacant positions vacant positions
requires the there is a need requiring the
applies only to is restricted to applies to
of deciding to take a decision -

Table 4.4: A sample of paraphrases from the test and the hypothesis produced by the model.

is closer to this is perfect than it’s fine. Those are the things we are trying to test more
accurately when using the embeddings metric, not focusing on the exact n-grams of a
hypothesis paraphrase but rather on the meaning.

Model Meaning Novelty Grammaticality Average

seq2seq 3.11 2.29 2.84 2.74
seq2seq + skip n2400 w1 books 3.70 2.87 4,31 3.54

Table 4.5: Results of the human evaluation tests.

According to the results on the human evaluation reported in table 4.4 we can see
clearly that the proposed model outperforms the baseline. The grammaticality is quite
close to 5 (the highest score) in our best system and the meaning is also significantly better
than in the baseline. Only novelty is basically on par with the baseline. The reason behind
it can be that we did not made any modification on the model to focus on diversity, like
[Xu+18] did.

CHAPTER 5

Conclusions

This thesis described how Skip-Thought vectors, trained on a generic task that is not di-
rectly related to paraphrasing, can be used to initialise the encoder part of a paraphrase
generation model, and improve its performance. These vectors were also tested on para-
phrasing related tasks, and despite not being able to perform at the state-of-the-art level
due to the use of fewer data, we expect that we are on track of achieving this level in
future. By the time, we only tested a few variations of this model could bring. One of
the possible models to test in the future, could be [Xu+18] but using the initialisation
we introduced, training our proposed model using the LSTM architecture proposed by
[Pra+16], or exploring other ways of decoding. We also created a toolkit that is publicly
available and can be used, more easily than the original (because of newest code and
libraries), to extend its functionality and/or to test different architectures.

We showed that paraphrase generation addressed with deep learning is growing
faster, and it needs more consistent ways of testing it. Because of the lack of standard
metrics, corpora and the reproducibility of the experiments, this field can’t benefit of
more reliable comparisons. Compared to neural machine translation, these are experi-
ments are harder to accomplish.

25

Bibliography

[Pap+01] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine
Translation”. In: ACL. 2001.

[DQB04] Bill Dolan, Chris Quirk, and Chris Brockett. “Unsupervised construction of
large paraphrase corpora: Exploiting massively parallel news sources”. In:
Proceedings of the 20th International Conference on Computational Linguistics (Jan.
2004). DOI: 10.3115/1220355.1220406.

[Ben+06] Y. Bengio et al. “Neural Probabilistic Language Models”. In: vol. 3. May 2006,
pp. 137–186. DOI: 10.1007/3-540-33486-6_6.

[ZLH06] Liang Zhou, Chin-Yew Lin, and Eduard Hovy. “Re-evaluating Machine Trans-
lation Results with Paraphrase Support.” In: Jan. 2006, pp. 77–84. DOI: 10.
3115/1610075.1610087.

[Ho+12] ChukFong Ho et al. “Extracting lexical and phrasal paraphrases: a review of
the literature”. In: Artificial Intelligence Review (2012). DOI: 10.1007/s10462-
012-9357-8.

[RL12] Vasile Rus and Mihai Lintean. “A comparison of greedy and optimal assess-
ment of natural language student input using word-to-word similarity met-
rics”. In: June 2012, pp. 157–162. DOI: 10.1007/978-3-642-30950-2_116.

[GVC13] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. “PPDB:
The Paraphrase Database”. In: Proceedings of the Annual Meeting of the North
American Association of Computational Linguistics (NAACL). 2013. URL: http:
//www.aclweb.org/anthology/N13-1092.

[MLS13] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. “Exploiting Similarities among
Languages for Machine Translation”. In: ArXiv abs/1309.4168 (2013).

[Mik+13] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and
their Compositionality”. In: Advances in Neural Information Processing Systems
26. Ed. by C. J. C. Burges et al. 2013, pp. 3111–3119. URL: http://papers.
nips.cc/paper/5021- distributed- representations- of- words- and-
phrases-and-their-compositionality.pdf.

[Chu+14] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural Net-
works on Sequence Modeling”. In: CoRR abs/1412.3555 (2014). arXiv: 1412.
3555. URL: http://arxiv.org/abs/1412.3555.

[KB14] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: International Conference on Learning Representations (Dec. 2014).

[LM14] Quoc V. Le and Tomas Mikolov. “Distributed Representations of Sentences
and Documents”. In: CoRR abs/1405.4053 (2014). arXiv: 1405 . 4053. URL:
http://arxiv.org/abs/1405.4053.

27

https://doi.org/10.3115/1220355.1220406
https://doi.org/10.1007/3-540-33486-6_6
https://doi.org/10.3115/1610075.1610087
https://doi.org/10.3115/1610075.1610087
https://doi.org/10.1007/s10462-012-9357-8
https://doi.org/10.1007/s10462-012-9357-8
https://doi.org/10.1007/978-3-642-30950-2_116
http://www.aclweb.org/anthology/N13-1092
http://www.aclweb.org/anthology/N13-1092
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053

28 BIBLIOGRAPHY

[Mar+14] Marco Marelli et al. “SemEval-2014 Task 1: Evaluation of Compositional Dis-
tributional Semantic Models on Full Sentences through Semantic Relatedness
and Textual Entailment”. In: SemEval@COLING. 2014.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural Lan-
guage Processing (EMNLP). 2014, pp. 1532–1543. URL: http://www.aclweb.
org/anthology/D14-1162.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learn-
ing with Neural Networks”. In: CoRR abs/1409.3215 (2014). arXiv: 1409 .
3215. URL: http://arxiv.org/abs/1409.3215.

[Cho+15] François Chollet et al. Keras. https://keras.io. 2015.

[Kir+15] Ryan Kiros et al. “Skip-Thought Vectors”. In: arXiv preprint arXiv:1506.06726
(2015). arXiv: 1506.06726.

[PRJ15] Ellie Pavlick, Pushpendre Rastogi, and Chris Callison-Burch Juri Ganitkevitc-
hand Ben Van Durme. “PPDB 2.0: Better paraphrase ranking, fine-grained
entailment relations, word embeddings, and style classification”. In: Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics.
Beijing, China: Association for Computational Linguistics, 2015.

[SHB15] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Trans-
lation of Rare Words with Subword Units”. In: CoRR abs/1508.07909 (2015).
arXiv: 1508.07909. URL: http://arxiv.org/abs/1508.07909.

[SSM15] Kai Sheng Tai, Richard Socher, and Christoper Manning. “Improved Seman-
tic Representations From Tree-Structured Long Short-Term Memory Networks”.
In: (2015). DOI: 10.3115/v1/P15-1150.

[Tat15] Rachel Tatman. Evaluating Text Output in NLP: BLEU at your own risk. 2015.
URL: https://towardsdatascience.com/evaluating-text-output-in-
nlp-bleu-at-your-own-risk-e8609665a213.

[Zhu+15] Yukun Zhu et al. “Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books”. In: The IEEE Interna-
tional Conference on Computer Vision (ICCV). 2015.

[Has16] Sadid Hasan. “Neural Clinical Paraphrase Generation with Attention”. In:
(2016).

[LMJ16] Jiwei Li, Will Monroe, and Dan Jurafsky. “A Simple, Fast Diverse Decoding
Algorithm for Neural Generation”. In: (Nov. 2016).

[Pie16] Jörg Tiedemann Pierre Lison. “Opensubtitles2016: Extracting large parallel
corpora from movie and tv subtitles”. In: In Proceedings of the 10th International
Conference on Language Resources and Evaluation (LREC 2016) (2016). arXiv:
1804.01768.

[Pra+16] Aaditya Prakash et al. “Neural Paraphrase Generation with Stacked Residual
LSTM Networks”. In: COLING. 2016.

[Wie+16] John Wieting et al. “Towards Universal Paraphrastic Sentence Embeddings”.
In: (2016).

[Bro17] Jason Brownlee. How to Prepare Sequence Prediction for Truncated BPTT in Keras.
2017. URL: https://machinelearningmastery.com/truncated-backpropagation-
through-time-in-keras/.

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://keras.io
http://arxiv.org/abs/1506.06726
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
https://doi.org/10.3115/v1/P15-1150
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213
http://arxiv.org/abs/1804.01768
https://machinelearningmastery.com/truncated-backpropagation-through-time-in-keras/
https://machinelearningmastery.com/truncated-backpropagation-through-time-in-keras/

BIBLIOGRAPHY 29

[Con+17] Alexis Conneau et al. “Supervised Learning of Universal Sentence Represen-
tations from Natural Language Inference Data”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. Copenhagen,
Denmark: Association for Computational Linguistics, 2017, pp. 670–680. URL:
https://www.aclweb.org/anthology/D17-1070.

[Dai+17] Bo Dai et al. “Towards Diverse and Natural Image Descriptions via a Condi-
tional GAN”. In: (2017).

[JZS17] Unnat Jain, Ziyu Zhang, and Alexander G. Schwing. “Creativity: Generating
Diverse Questions using Variational Autoencoders”. In: CoRR abs/1704.03493
(2017). arXiv: 1704.03493. URL: http://arxiv.org/abs/1704.03493.

[Koe17] Philipp Koehn. “Neural Machine Translation”. In: CoRR abs/1709.07809 (2017).
arXiv: 1709.07809. URL: http://arxiv.org/abs/1709.07809.

[Aga+18] Basant Agarwal et al. “A deep network model for paraphrase detection in
short text messages”. In: Information Processing and Management (2018), pp. 922–
937. ISSN: 0306-4573. DOI: https : / / doi . org / 10 . 1016 / j . ipm . 2018 .
06.005. URL: http://www.sciencedirect.com/science/article/pii/
S0306457317308713.

[Pos18] Matt Post. “A Call for Clarity in Reporting BLEU Scores”. In: Proceedings of the
Third Conference on Machine Translation: Research Papers. Belgium, Brussels: As-
sociation for Computational Linguistics, Oct. 2018, pp. 186–191. URL: https:
//www.aclweb.org/anthology/W18-6319.

[Tak18] Akira Takezawa. How to implement Seq2Seq LSTM Model in Keras. 2018. URL:
https://towardsdatascience.com/how-to-implement-seq2seq-lstm-
model-in-keras-shortcutnlp-6f355f3e5639.

[Xu+18] Qiongkai Xu et al. “D-PAGE: Diverse Paraphrase Generation”. In: CoRR (2018).
arXiv: 1808.04364.

[Zha+18] Chi Zhang et al. “Semantic Sentence Embeddings for Paraphrasing and Text
Summarization”. In: CoRR abs/1809.10267 (2018). arXiv: 1809.10267. URL:
http://arxiv.org/abs/1809.10267.

[Che+19] Mingda Chen et al. “Controllable Paraphrase Generation with a Syntactic Ex-
emplar”. In: Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics. Florence, Italy: Association for Computational Linguistics,
July 2019. URL: https://www.aclweb.org/anthology/P19-1599.

[Kaj19] Tomoyuki Kajiwara. “Negative Lexically Constrained Decoding for Paraphrase
Generation”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Lin-
guistics, July 2019. URL: https://www.aclweb.org/anthology/P19-1607.

[Li+19] Zichao Li et al. “Decomposable Neural Paraphrase Generation”. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, July 2019. URL:
https://www.aclweb.org/anthology/P19-1332.

[SR19a] Sarvesh Soni and Kirk Roberts. “A Paraphrase Generation System for EHR
Question Answering”. In: Proceedings of the 18th BioNLP Workshop and Shared
Task. Florence, Italy: Association for Computational Linguistics, 2019. URL:
https://www.aclweb.org/anthology/W19-5003.

[SR19b] Sarvesh Soni and Kirk Roberts. “A Paraphrase Generation System for EHR
Question Answering”. In: Proceedings of the 18th BioNLP Workshop and Shared
Task. Florence, Italy: Association for Computational Linguistics, Aug. 2019.
URL: https://www.aclweb.org/anthology/W19-5003.

https://www.aclweb.org/anthology/D17-1070
http://arxiv.org/abs/1704.03493
http://arxiv.org/abs/1704.03493
http://arxiv.org/abs/1709.07809
http://arxiv.org/abs/1709.07809
https://doi.org/https://doi.org/10.1016/j.ipm.2018.06.005
https://doi.org/https://doi.org/10.1016/j.ipm.2018.06.005
http://www.sciencedirect.com/science/article/pii/S0306457317308713
http://www.sciencedirect.com/science/article/pii/S0306457317308713
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://towardsdatascience.com/how-to-implement-seq2seq-lstm-model-in-keras-shortcutnlp-6f355f3e5639
https://towardsdatascience.com/how-to-implement-seq2seq-lstm-model-in-keras-shortcutnlp-6f355f3e5639
http://arxiv.org/abs/1808.04364
http://arxiv.org/abs/1809.10267
http://arxiv.org/abs/1809.10267
https://www.aclweb.org/anthology/P19-1599
https://www.aclweb.org/anthology/P19-1607
https://www.aclweb.org/anthology/P19-1332
https://www.aclweb.org/anthology/W19-5003
https://www.aclweb.org/anthology/W19-5003

30 BIBLIOGRAPHY

[Zar19] Jaume Zaragoza. Paraphrasing repository. 2019. URL: https://github.com/
ZJaume/paraphrasing.

[ZSW19] Zhong Zhou, Matthias Sperber, and Alexander Waibel. “Paraphrases as For-
eign Languages in Multilingual Neural Machine Translation”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics: Stu-
dent Research Workshop. Florence, Italy: Association for Computational Lin-
guistics, 2019. URL: https://www.aclweb.org/anthology/P19-2015.

[Com] Association for Computational Linguistics. Paraphrase Identification (State of
the art). URL: https://aclweb.org/aclwiki/Paraphrase_Identification_
(State_of_the_art).

https://github.com/ZJaume/paraphrasing
https://github.com/ZJaume/paraphrasing
https://www.aclweb.org/anthology/P19-2015
https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)
https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)

	Contents
	List of Figures
	List of Tables
	Introduction
	Paraphrasing Definition
	Applications of Paraphrasing
	State of the Art
	Objectives

	Methodology
	Summary
	Sequence to sequence
	Decoding
	Sentence Embeddings
	Mean vectors
	Skip-Thought

	Paraphrase Generation

	Experiments
	Experimental framework
	Corpora
	Training
	Preprocessing
	Building Skip-Thought models
	Encoder
	Paraphrase Generation

	Evaluation
	Embedding tests
	Paraphrase generation tests

	Results
	Embedding tests results
	Paraphrase generation tests results

	Conclusions

