
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Implementation and evaluation of a particle mover
using mixed precision arithmetic

DEGREE FINAL WORK

Degree in Computer Engineering

Author: Francisco José Palacios Márquez

Tutor: Stefano Markidis // José Miguel Alonso

Course 2018-2019

Abstract

Computer simulations are broadly used nowadays in order to obtain information that
would be impossible to gain otherwise. These computational workloads have grown in
size to the point where even a small improvement in its implementation can lead to a
substantial speed-up. For this reason, researchers have studied the impact linked to the
usage of less precise numbers, since it would accelerate calculations. Likewise, this study
aims to determine the feasibility of using mixed-precision arithmetic in iPIC3D, a 3D
implicit Particle-in-cell (PIC) implementation used in plasma simulations. Specifically,
the use of mixed-precision numbers will be limited to the particle mover, the section that
solves the equations of motion for each particle of the plasma, resulting in the most time-
consuming part of the code.

The results show a maximum divergence or error of about 2% between the original
implementation and the new one when comparing the output values. All of this, per-
forming a relatively short simulation of 2250 cycles, therefore, with longer tasks we the
error could increase. Thus, we come to the conclusion that in most cases, the loss in
precision is too high to justify the use of this new implementation.

ii

Acknowledgments

I would like to acknowledge everyone who played a role in the fulfillment of this thesis,
from my supervisor and examiner to everyone who provided feedback to improve upon
it.

But, I wanted to specially acknowledge Pablo, without whom I would have never
been able to finish this project.

Contents

Contents iii
Introduction v

0.1 Research Question . v
0.2 Initial hypothesis . v
0.3 Scope . v

Background vii
0.4 High Performance Computing (HPC) . vii
0.5 Computer Simulation . vii
0.6 Floating-point format . vii
0.7 PIC: Particle-in-cell . ix
0.8 Particle mover . x
0.9 iPIC3D . x
0.10 Related Work . x

Method xiii
0.11 Objectives . xiii
0.12 Data set . xiii
0.13 Test machine . xiii
0.14 Implementation . xiii
0.15 Evaluation . xiv

Results and Analysis xvii
0.16 Electric field . xvii
0.17 Magnetic field . xxvii
0.18 Cumulative difference .xxxviii
0.19 Macro quantities . xxxix

Discussion xli
0.20 Precision impact . xli
0.21 Performance impact . xli

Conclusion xliii
Bibliography xlv
Additional plots xlvii

iii

Introduction

Computer simulations are extremely powerful tools that have been used by the scientific
community for a long time. The main reason behind their popularity is that they provide
knowledge that would be impossible to gain otherwise.

These simulations have increased in size and complexity, from simple interactions
between atoms [1] to complex systems like liquids [2] or, like in this study, plasma [3].
Thus, the power required to recreate these conditions is higher than ever before, resulting
in the mandatory use of parallelism in order to be able to complete these workloads in
a reasonable amount of time. The computations are typically conducted using double
precision floating point numbers in most cases [4] due to their rigorous nature. We aim
to study if we can use a combination of both single and double precision in one of these
critical simulation workloads without loosing accuracy.

iPIC3D is a PIC implementation used in particle simulations [5], that will provide us
valuable information since it is properly tested and therefore, a reliable source of data.

0.1 Research Question

In this project we aim to answer:

How is iPIC3D’s particle mover affected by the precision of the numbers used?

0.2 Initial hypothesis

Even before the study, we can hypothesize that the reduction in precision is going to
have an impact in the final results, both in performance as well as reliability. The aim of
this thesis is to evaluate if this impact is negligible enough, enabling us to improve the
performance of iPIC3D’s simulations.

0.3 Scope

This project has a limited scope, focusing only in iPIC3D and specifically, its particle
mover. Due to the dependency between our results and iPIC3D’s implementation we
will not be able to generalize our results to any other simulation software.

On the other hand, due to the deterministic nature of iPIC3D, the results obtained
in this project could, in theory, be generalised to some extent when performing similar
simulations.

v

Background

In this section we will provide some context and explain some specific terms that may be
required for any reader that is not familiarized in the field of study.

0.4 High Performance Computing (HPC)

High-performance computing refers to the use of multiple computers, usually clusters,
which take advantage of parallelization techniques in order to perform calculations that
would be impossible otherwise.

The term is often used interchangeably with super-computing and broadly popular in
computer science since its use is required in certain fields like molecular simulations[6],
cryptography [7], etc.

0.5 Computer Simulation

Computer simulations aim to mimic a given physic system making use of computers fol-
lowing a certain mathematical model. This model describes the behaviour of the physical
system in a way that makes possible estimate with meticulous precision its progress.

Simulations have been used in multiple fields, as we mentioned in the introduction.
Because of its complexity, is one of the fields that would benefit the most if we could
make use of mixed precision numbers in its calculations, accelerating a great amount of
heavy workloads that require a long time to be completed.

0.6 Floating-point format

In order to be capable of using real numbers in computer calculations, a new way of
representing them with binary digits had to be established. At first, each manufacturer
used their own representation, shortly after however, it became apparent that a standard
was needed in order to improve portability and save resources. This standard [8] was
created back in 1985 by the Institute of Electrical and Electronics Engineers (IEEE) in the
document known as "IIIE754".

IEEE754 defined floating point numbers as a composition of three fields. The first
one is 1 bit that indicates the sign, the second is a biased exponent and the last one is
the significand of the number. The length of both the exponent and the significand, also
known as mantissa, depends on the precision used to represent those given number, the
more bits used the more precise our representation of that number will be.

These are the most common formats that were defined in IEEE754:

vii

viii Background

• Single precision:

In single precision 32 bits are used. The first one is always the sign, the next 8 bits
are the exponent which bias is 127 and, finally, the mantissa is 23 bits long. This
method of representation provides a precision of roughly 7 decimal digits.

Figure 1: Single precision representation format

0.7 PIC: Particle-in-cell ix

• Double precision:

Double precision numbers are represented using 64 bits. Just like in single pre-
cision, the first bit is the sign. The exponent however, is different (1023) and is
represented with 11 bits. Finally, The mantissa is also longer, specifically 52 bits,
which provides roughly 16 decimal digits of precision.

Figure 2: Double precision representation format

0.7 PIC: Particle-in-cell

PIC has been extensively explored since the 50s when it was designed [9]. One of the
best explanations about this method can be found in a paper written by D. Tskhakaya,
K. Matyash, R. Schneider and F. Taccogna [10]. In that article it is explained that PIC
is a widely used method in simulation software that allows the program to recreate the
progress of certain particle systems using discretization of time and space and interpola-
tion . It is mostly used in plasma simulations[11] but it also can be applied in some other
fields like quantum physics[12] and pure electromagnetism [13]. The goal of PIC is to
keep track of each individual particle and use their position and velocity to calculate the
macro-quantities of the whole system at each step of the simulation. In order to achieve
this, the computer solves the equation of motion for every particle and time step.

∂~Xi

∂t
= ~Vi (1)

∂~Vi

∂t
= ~Fi(t,~xi,~vi, A) (2)

Figure 3: Motion equations for a given particle i

In the previous equations L1 and L2 are some operators, A = L1(B) is a macro-field acting
on particles, B L2(~X1, ~V1, ..., ~XN , ~VN) for i = 1, ..., N is a macro-quantity associated with
particles and ~Fi is the force acting on a particle i.

Further details about PIC implementations applied to plasma and electromagnetic
fields (using MaxWell’s equations) can be found at the previously mentioned article[10],
delving into the equations is out of the scope of this project.

x Background

0.8 Particle mover

A particle mover is the part of the code that follows the trajectory of the particles during
a particle-in-cell simulation. Due to the huge amount of particles found in a real system,
it is not possible to simulate every one of them. Instead, every simulated particle is
assumed to be a group of physical particles called super particle.

Superparticles keep the same properties than the real particles they are supposed to rep-
resent, the ratio charge/mass is the same and thus, the trajectory it follows is also iden-
tical. This reduction in the number of particles allows much more complex systems to
be simulated. However, there are cases where even the number of super particles is ex-
tremely high, thus, optimizing this part of the code is crucial in any simulation software.
There have been some improvements in the algorithm over the years [14] and any in-
crease in performance is welcomed, so much so that this need for optimization motivates
this whole project.

0.9 iPIC3D

iPIC3D is a parallelized, implicit PIC implementation used in computer simulation of
plasma [5] in 3 dimensions. From the software point of view, it is written in C++, with
a complex structure and around 20000 lines of code. From the scientific point of view,
is also pretty complex, it makes use of the Vlasov [15] and Maxwell equations in order
to describe the evolution in time of a distribution function of plasma particles. That
equations system is then solved using the PIC method previously described (figure 3).

Let E and B be the electric and magnetic fields, respectively, v the particle velocity, r
its position, q and m the charge and mass, respectively:

∂ f
∂t

+ v · ∂ f
∂r

+
q
m
(E +

v × B
c

) · ∂ f
∂v

= 0 (3)

ρ = ∑ q
∫

f dv (4)

J = ∑ q
∫

v f dv (5)

Figure 4: Vlasov, charge density and current density equations, respectively

The way iPIC3D simulations workflow is always the same, the particles are initialized
following a distribution function, after this, the parameters r, v, B, E are set as established
in the input file and finally, it solves Maxwell and motion equations for each particle as
many cycles as it is supposed to. Alternatively, the simulation can be finished after a
certain amount of time.

0.10 Related Work

There have been several studies regarding the use of mixed precision arithmetic in sen-
sitive workloads, therefore, we will only cover the most relevant and closest to our own
project.

0.10 Related Work xi

Performance and accuracy of mixed-precision solvers

In this study [16], they compared double precision solvers with emulated (two single float
numbers) and mixed-precision solvers. The performance advantages were described as
speedups over native double precision code and also as reductions in memory use.

The conclusion reached is that mixed precision works nicely when using paralleliza-
tion, beating double precision by a factor of 4-5 in time performance and 3-4 in memory
use, all of this without losing any significant amount of accuracy compared to a double
precision execution.

Hybrid CPU-GPU PIC implementation

The paper[17] describes an efficient, mixed-precision hybrid CPU-GPU implementation
of an implicit 1D PIC method that was proposed in 2011 [18]. The method uses a JFNK
[19] solver that is kept on the CPU in double precision while the particle mover is imple-
mented on the GPU using single precision arithmetic.

The particle mover using a Nvidia GeForce GTX580 is about 100 times faster than us-
ing a single-core implementation in an Intel Xeon X5460. Likewise, they claim that with
the test case they chose, the mixed-precision hybrid implementation performs about 100
times faster than the old implementation using only CPU and double precision arith-
metic.

Mixed precision algorithms

This paper [20] describes how to improve some previously used algorithms using a com-
bination of double and single precision arithmetic. It argues that in many cases, a single
precision solution can be improved until it reaches double precision accuracy. Likewise,
since 32-bit operators usually perform almost twice as fast than the ones using 64-bit
arithmetic, some modifications can be made in several algorithms in order to get an im-
provement in performance while not losing any accuracy.

They provide some algorithms that have been modified with this idea in mind, for
example, the LU factorization of the coefficient matrix using Gaussian elimination that is
used in the solution of linear systems. Their results show a significant speed-up, from 1.5
to almost 11, varying greatly with the hardware and matrix used.

Finally, they provide some guidelines in how to apply their method to other algo-
rithms in order to encourage more scientists to apply this knowledge.

Method

0.11 Objectives

Our approach in this study consisted in:

• Determine the inputfile used to run our tests (testGEM2Dsmall)

• Obtain the data and plots from the original implementation of iPIC3D, the one us-
ing double precision numbers.

• Locate the particle mover from the source code, finding the function that imple-
ments it.

• Change the variables used to represent position and velocity from double to float.

• Run the simulation again using the new implementation

• Compare the results

0.12 Data set

The inputfile used in both simulations is "testGEM2Dsmall.inp", a modified version from
the Geospace Environmental Modeling (GEM) magnetic reconnection challenge [21] which
is included in iPIC3D’s source code and also can be found in the git repository.The only
modifications done in the file are the output path and the variables that MPI uses to
distribute the simulation across all cores. The file can be found in GitHub 1.

0.13 Test machine

The computer used in the study is an "HP Pavilion - 15-bc450ns" laptop. It integrates an
i5-8300H CPU, 8 GB of RAM, and as the GPU, the 4GB version of the NVIDIA GTX 1050.
The operating system is Windows 10, fully-updated as May 2018. From the native Win-
dows OS, Virtualbox v.6.0.8 r130520 was used to launch an Ubuntu 16.04 virtual machine
that has 4 GB of ram available.

0.14 Implementation

The particle mover is located inside the "particles" folder of iPIC3D, in a file called "Par-
ticles3D.cpp". Specifically, the method "mover_PC_Aos".The only required change in the

1https://gits-15.sys.kth.se/fjpm2/thesis/.

xiii

xiv Method

code is the transformation of the variables used in both position and velocity from "dou-
ble" to "float". These changes are located from the lines 866 to 871:

1 double xavg = xor ig ;
2 double yavg = yorig ;
3 double zavg = zor ig ;
4 double uavg_old , uavg = uorig ;
5 double vavg_old , vavg = vorig ;
6 double wavg_old , wavg = worig ;

Figure 5: Original particle mover code

These lines of code are modified changing the variables type to float:

1 f l o a t xavg = xor ig ;
2 f l o a t yavg = yorig ;
3 f l o a t zavg = zor ig ;
4 f l o a t uavg_old , uavg = uorig ;
5 f l o a t vavg_old , vavg = vorig ;
6 f l o a t wavg_old , wavg = worig ;

Figure 6: Modified particle mover code

Finally, in order to obtain the plots used to compare both implementations, we will
visualize the data that iPIC3D outputs making use of Paraview, a visualization software
as well as Microsoft Excel for some additional plots.

0.15 Evaluation

We want to provide both qualitative and quantitative data. First, we will show the plots
from both simulations at each step of the simulation, one next to the other, so the different
quantities can be perceived in a graphical way. After that, we will show the plot obtained
by subtracting both data sets, this will provide an intuitive and easy way to spot any
difference between them. As for the quantitative part, we will plot the error in percentage
of the macro quantities iPIC3D outputs. These quantities are dependant of the whole
system, like the total energy of the system or the momentum and therefore, we come to
the conclusion that they would be a good way to quantify the overall error.

0.15 Evaluation xv

1 import vtk
2 input1 = s e l f . GetInputDataObject (0 , 0)
3 input2 = s e l f . GetInputDataObject (0 , 1)
4 s c a l a r s 1 = input1 . GetPointData () . GetSca lars (’ #VariableName ’)
5 s c a l a r s 2 = input2 . GetPointData () . GetSca lars (’ #VariableName ’)
6 auxArray1 = vtk . vtkDoubleArray ()
7 auxArray1 . SetName (’ Set Signed Err ’)
8 auxArray2 = vtk . vtkDoubleArray ()
9 auxArray2 . SetName (’ Set Rel Err ’)

10 auxArray3 = vtk . vtkDoubleArray ()
11 auxArray3 . SetName (’ Set Rel Err ’)
12 f o r i in xrange (input1 . GetNumberOfPoints ()) :
13 v1 = s c a l a r s 1 . GetValue (i)
14 v2 = s c a l a r s 2 . GetValue (i)
15 e r r o r = v1 − v2
16 auxArray1 . InsertNextValue (e r r o r)
17 auxArray2 . InsertNextValue (abs (e r r o r))
18 auxArray3 . InsertNextValue (abs (e r r o r) /abs (v1))
19 # I n i t i a l i z e the output and add the l a b e l s array
20 output = s e l f . GetOutput ()
21 output . ShallowCopy (input2)
22 output . GetPointData () . AddArray (auxArray1)
23 output . GetPointData () . AddArray (auxArray2)
24 output . GetPointData () . AddArray (auxArray3)

Figure 7: Custom python filter used in Paraview in order to show the difference between our
obtained datasets

Results and Analysis

We have created different types of plots from the data provided by iPIC3D. First, we plot-
ted the state of both simulations side-by-side from cycle 0 to cycle 2250 with a step of 250
cycles, this will provide a general picture of both simulations. The parameters shown are
E (Electric field), B (Magnetic field) and both components J of the charge density (Je and
Ji). This decision was made because we thought they would be the most representative
of all, since there were more parameters like several pressures that were difficult to un-
derstand. It should be mentioned that not every one of the plots will be shown in this
section, only the ones from both electric and magnetic fields. This is due to certain prob-
lems we encountered with Paraview and space limitations as explained in the appendix,
the rest of the plots are also provided in the appendix A. Lastly, all 4 plots follow the
same pattern so we think that showing half of the plots is enough for the understanding
of the results.

0.16 Electric field

Here are the plots that provide us with information from the electric field, the plots from
the top represent the intensity of the electric field at each time step. The greater the
intensity at a given point, the more red it will show in the picture. On the other hand, we
can see at the bottom part the plot that shows the difference from the other 2. The greater
the difference is in this case, the more white it will show.

From the cycle 0 to the 1500 we see no noticeable difference in any of the plots. How-
ever, from that point forward we can see that there are a moderate amount of points that
show how the simulations are, in fact, not the same.

xvii

xviii Results and Analysis

Figure 8: We see no difference between implementations at the initialization stage, since both
simulations are performed with the same parameters. The second graph shows a perfectly black

graph, showing that there is no error or difference.

0.16 Electric field xix

Figure 9: After 250 cycles, there is no difference shown in the graphs. This is more obvious when
looking at the difference plot, where we can observe that the image is still perfectly black.

xx Results and Analysis

Figure 10: After 500 cycles, both simulations still are, from the electric field point of view, equal.

0.16 Electric field xxi

Figure 11: After 750 cycles, the same criteria still applies, showing no difference whatsoever.

xxii Results and Analysis

Figure 12: Even after 1000 cycles performed by the software, there is no difference between im-
plementations.

0.16 Electric field xxiii

Figure 13: At cycle 1250, we still see no difference.

xxiv Results and Analysis

Figure 14: After 1500 cycles, finally, there is a difference, we can observe green dots at the top-left
and top-right parts of the error chart. This means that, in those spots, the intensities of the electric

field differ. Since the dots are isolated and dark, the error is relatively small.

0.16 Electric field xxv

Figure 15: After 1750 cycles, the error increases significantly to the point where we see some spots
that show a white color, this means that the difference at those points reaches the maximum error

of 9.0e+2.

xxvi Results and Analysis

Figure 16: After 2000 cycles, there is an increase in the number of points showing a different
intensity, and therefore, the error. The points are not the same as before, but the number of white

and whiter points has increased overall, mostly in the bottom part of the graph.

0.17 Magnetic field xxvii

Figure 17: After 2250 cycles, the error seems to have distributed across the whole graph, showing
multitude of points wit noticeable error.

0.17 Magnetic field

As for the magnetic field, we found a fairly similar behaviour, with no difference until
around cycle 1750, from that point forward the differences begin to appear, although
these differences seem smaller than in the electric field case. Is worth mentioning that in
this case the difference is shown with blue and red colors in its respective plot and we
also find some yellow lines that, from what we understand, are due to a problem with
the filter used in Paraview and they should not have any impact in the overall results.

xxviii Results and Analysis

Figure 18: Just as in the electric field case, at the initialization there is no difference between
simulations. The graph showing the error has changed colors, if it is blue like in this case, there is
no error. Meanwhile, if it is red, the error is maximum. The yellow lines are not part of the data,

they are due to an error with Paraview and they will not be considered.

0.17 Magnetic field xxix

Figure 19: After 250 cycles, there is no difference whatsoever, the only thing that catches the eye
are the yellow lines, but as stated before, they are not due to the data and should not be considered

xxx Results and Analysis

Figure 20: After 500 cycles, the plots are the same

0.17 Magnetic field xxxi

Figure 21: After 750 cycles, we still do not see any difference

xxxii Results and Analysis

Figure 22: After 1000 cycles, as well as in the electric field, there is no discrepancy between both
cases

0.17 Magnetic field xxxiii

Figure 23: After 1250 cycles, the variation between simulations is non-existent

xxxiv Results and Analysis

Figure 24: After 1500 cycles, unlike the electric field, the magnetic field does not show any error.

0.17 Magnetic field xxxv

Figure 25: After 1750 cycles, this is the point where we can begin to see a contrast. There are
around 3 points that show difference between implementations, the error is not high since the

points are bluish, but it exists.

xxxvi Results and Analysis

Figure 26: At the 2000 cycle mark, there has been an increase in the number of points showing a
discrepancy between both cases. Is worth mentioning that the points have moved and they are

not located in the same spots than before.

0.17 Magnetic field xxxvii

Figure 27: After 2250 cycles, we see a broad variety of colors in the difference graph, showing that
the error has spread over the whole system. The maximum error is located around the bottom-left

part of the graph where we can find some red spots.

xxxviii Results and Analysis

0.18 Cumulative difference

Showing the evolution of the simulation is not enough, we also need to show the actual
impact that the different implementation has in the accuracy of the simulation. In order
to obtain this data, some more plots are provided.

As for the first one (Figure 4.21), this plot shows the cumulative difference between
each of the parameters (32 in total) along the simulation, this is done subtracting each
one of the parameters from both simulations and adding up the errors at each cycle. The
results correlate with the previous graphs since we only see a major difference from the
cycle 1750 forward and the tendency the plot follows suggests that it will keep growing
after.

Figure 28: Cumulative difference at each cycle

0.19 Macro quantities xxxix

0.19 Macro quantities

As for the last graph we have (Figure 4.22), it was obtained from the macro quantities
iPIC3D calculates along the simulation. These quantities are some different types of en-
ergy and the overall momentum of the system. They were used in order to quantify the
actual difference between simulations due to the fact that these magnitudes are depen-
dent of the whole system and therefore, sensitive to any changes.

This graph presents 2 major differences from the others, finding a significant error at
the cycle 500 that is later reverted and also a major decrease in the error when it reaches
the cycle 1250, suggesting that the trend is not the same as before, not growing as the
number of cycles. The maximum error encountered along the simulation is around 2% at
the cycle 2000.

Figure 29: Error in macro quantities in %

Discussion

0.20 Precision impact

From the results we can deduce a pattern. The trend seems to be that, until around
cycle 1750, there is no major difference between both implementations and the values are
fairly similar. From that point forward, we see a growth in the error that would seem to
increase with time, following our initial hypothesis. However, that is not the case of the
macro-quantities, since they show the maximum error at the cycle 2000, from where it
decreases very significantly. This could mean that, somehow, either by chance or due to
other cause, the total value of the energies converge. Further study in this regard should
be performed since we have not found a logical explanation for the divergence in the
data. We will suppose, however, that the overall conclusions of the study are correct and
the maximum error encountered is the 1.8% found at the cycle 2000.

0.21 Performance impact

Due to the limitations in our study (virtualized machine) there is no possibility to prop-
erly measure a difference in performance and therefore we can not reach any scientific
conclusion in this regard. However, as an informal measure we observed a 15-20%
speed-up in the time of execution of the float implementation. The degree of relation
this speed-up has with the implementation is uncertain, since it could also be related
with the management done by the OS during the execution of the code.

xli

Conclusion

At this point, we are able to answer the question we set at the beginning of the study.
We wanted to answer how is iPIC3D’s particle mover affected by the precision of the
numbers used and therefore determine whether we could improve the speed of the soft-
ware without any significant impact in its precision. In our particular study we found
no significative difference between implementations until around cycle 1750, where the
error begins to grow and reach a maximum of around 2%. This means that, if anyone
that uses iPIC3D in order to perform their simulations knows that they can allow an er-
ror grater than than this 2%, the speed-up will be "free". However, we think that plasma
and electromagnetic simulations are from a field of study so concrete and scientific by
nature that this will not be the case most of the time. Is also worth mentioning that we
found a divergence that we are not able to explain between the error shown by the macro
quantities and any other result obtained in the study, and thus, should be investigated.

Finally, we think that future research could be further developed regarding mixed
precision impact in iPIC3D, since our limitations do not allow us to cover every possibil-
ity that the program provides. We think that larger simulations could be useful in order
to observe whether the impact we found is smaller or greater on a larger computation.

xliii

Bibliography

[1] Frank H Stillinger and Thomas A Weber. Computer simulation of local order in
condensed phases of silicon. Physical review B, 31(8):5262, 1985.

[2] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford
university press, 2017.

[3] Charles K Birdsall and A Bruce Langdon. Plasma physics via computer simulation. CRC
press, 2004.

[4] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Accelerating double precision
FEM simulations with GPUs. Univ. Dortmund, Fachbereich Mathematik, 2005.

[5] Stefano Markidis, Giovanni Lapenta, et al. Multi-scale simulations of plasma with
ipic3d. Mathematics and Computers in Simulation, 80(7):1509–1519, 2010.

[6] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C Smith,
Berk Hess, and Erik Lindahl. Gromacs: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX, 1:19–
25, 2015.

[7] Guerric Meurice de Dormale and Jean-Jacques Quisquater. High-speed hardware
implementations of elliptic curve cryptography: A survey. Journal of systems archi-
tecture, 53(2-3):72–84, 2007.

[8] IEEE Computer Society. Standards Committee and American National Standards
Institute. IEEE standard for binary floating-point arithmetic, volume 754. IEEE, 1985.

[9] Martha W Evans, Francis H Harlow, and Eleazer Bromberg. The particle-in-cell
method for hydrodynamic calculations. Technical report, LOS ALAMOS NA-
TIONAL LAB NM, 1957.

[10] D Tskhakaya, K Matyash, R Schneider, and F Taccogna. The particle-in-cell method.
Contributions to Plasma Physics, 47(8-9):563–594, 2007.

[11] Vladimir V Serikov, Shinji Kawamoto, and Kenichi Nanbu. Particle-in-cell plus di-
rect simulation monte carlo (pic-dsmc) approach for self-consistent plasma-gas sim-
ulations. IEEE transactions on plasma science, 27(5):1389–1398, 1999.

[12] M Radmilović-Radjenović, Jae Koo Lee, Felipe Iza, and GY Park. Particle-in-cell sim-
ulation of gas breakdown in microgaps. Journal of physics D: applied physics, 38(6):950,
2005.

[13] John P Verboncoeur, A Bruce Langdon, and NT Gladd. An object-oriented electro-
magnetic pic code. Computer Physics Communications, 87(1-2):199–211, 1995.

xlv

xlvi BIBLIOGRAPHY

[14] Guangye Chen and Luis Chacón. An analytical particle mover for the charge-and
energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm. Jour-
nal of Computational Physics, 247:79–87, 2013.

[15] Anatoli Aleksandrovich Vlasov. Reviews of topical problems: the vibrational prop-
erties of an electron gas. Soviet Physics Uspekhi, 10:721–733, 1968.

[16] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Performance and accuracy
of hardware-oriented native-, emulated-and mixed-precision solvers in fem simula-
tions. International Journal of Parallel, Emergent and Distributed Systems, 22(4):221–256,
2007.

[17] Guangye Chen, Luis Chacón, and Daniel C Barnes. An efficient mixed-precision,
hybrid cpu–gpu implementation of a nonlinearly implicit one-dimensional particle-
in-cell algorithm. Journal of Computational Physics, 231(16):5374–5388, 2012.

[18] Guangye Chen, Luis Chacón, and Daniel C Barnes. An energy-and charge-
conserving, implicit, electrostatic particle-in-cell algorithm. Journal of Computational
Physics, 230(18):7018–7036, 2011.

[19] Dana A Knoll and David E Keyes. Jacobian-free newton–krylov methods: a sur-
vey of approaches and applications. Journal of Computational Physics, 193(2):357–397,
2004.

[20] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien
Langou, Piotr Luszczek, and Stanimire Tomov. Accelerating scientific computations
with mixed precision algorithms. Computer Physics Communications, 180(12):2526–
2533, 2009.

[21] J Birn, JF Drake, MA Shay, BN Rogers, RE Denton, M Hesse, M Kuznetsova, ZW Ma,
A Bhattacharjee, A Otto, et al. Geospace environmental modeling (gem) magnetic
reconnection challenge. Journal of Geophysical Research: Space Physics, 106(A3):3715–
3719, 2001.

Additional plots

These are not all the plots obtained, the rest of them are in GitHub 2 since it was impos-
sible to obtain them from Paraview with the proper format (probably due to some bug).
Thus, our only possibility was to obtain the images with a transparent background but
that made them impossible to properly show in the thesis. They follow the same struc-
ture as shown in the results section so they will be understandable by anyone that has
read the whole paper.

Current density (Je)

Figure 30: As well as in the magnetic field case, this difference graph shows the error to discrep-
ancies between data sets corresponding to both simulations in a blue-red color. It is completely

blue and therefore, the error is non-existent.

2https://gits-15.sys.kth.se/fjpm2/thesis/.

xlvii

xlviii Additional plots

Figure 31: After 250 cycles, the plot it is still completely blue.

Figure 32: After 500 cycles, the plots are the same

xlix

Figure 33: After 750 cycles, we still do not see any difference

Figure 34: After 1000 cycles there is no discrepancy between both cases

l Additional plots

Figure 35: After 1250 cycles, the variation between simulations is non-existent

Figure 36: After 1500 cycles the current density does not show any error.

li

Figure 37: After 1750 cycles, we still see no difference, showing that the current density exhibits
a lower error than the other magnitudes

Figure 38: After 2000 cycles we begin to see some discrepancies, they are located at the bottom-
rigth part of the graph. The error is still low.

Figure 39: After 2250 cycles, we finally see some more noticeable points at the bottom part of the
grpah that show that the error has increased at this stage.

	Contents
	Introduction
	Research Question
	Initial hypothesis
	Scope

	Background
	High Performance Computing (HPC)
	Computer Simulation
	Floating-point format
	PIC: Particle-in-cell
	Particle mover
	iPIC3D
	Related Work

	Method
	Objectives
	Data set
	Test machine
	Implementation
	Evaluation

	Results and Analysis
	Electric field
	Magnetic field
	Cumulative difference
	Macro quantities

	Discussion
	Precision impact
	Performance impact

	Conclusion
	Bibliography
	Additional plots

