TABLE OF CONTENTS

At	ostract	i
Re	esumen	iii
Re	esum	٧
1. IN	TRODUCTION	1
1.1.	IDENTIFICATION AND DISCOVERY OF ABA	3
1.2.	CHEMICAL FEATURES OF ABA	3
1.3.	PHYSIOLOGICAL ROLES OF ABA IN THE PLANT	5
1.3.1.	ROLE OF ABA UNDER DROUGHT AND SALT STRESS CONDITIONS	5
1.3.2.	ROLE OF ABA UNDER BIOTIC STRESS CONDITIONS	7
1.3.3.	GROWTH AND DEVELOPMENT	8
1.4.	REGULATION OF ABA LEVELS IN THE PLANT IN RELATION	9
	TO ITS PHYSIOLOGICAL ROLES: METABOLISM, STORAGE	
	AND TRANSPORT	
1.5.	ABA SIGNALLING CASCADE	15
1.5.1.	TYPE 2C PROTEIN PHOSPHATASES (PP2C): NEGATIVE	15
	REGULATORS IN THE ABA SIGNALLING CASCADE	
1.5.2.	PROTEIN KINASES INVOLVED IN THE ABA SIGNALLING	21
	CASCADE	
1.5.2.	1. Ca ²⁺ -INDEPENDENT KINASES	22
1.5.2.	1.1. SNF1-RELATED PROTEIN 2 FAMILY (SnRK2s)	22
1.5.2.	2. Ca ²⁺ -REGULATED KINASES	26
1.5.2.	2.1. CALCIUM DEPENDENT KINASES (CDPKs/CPKs)	26
1.5.2.	2.2. SnRK3s /CIPKs	27
1.5.3.	TRANSCRIPTION FACTORS INVOLVED IN ABA SIGNALLING	29
1.5.3.	1. ABI5/AREB/ABFs bZIP-TYPE TRANSCRIPTION FACTORS	30
1.5.4.	REGULATION OF TARGET PROTEINS INVOLVED IN	33
	STOMATA CLOSURE	
1.5.5.	HORMONE SENSING AND PERCEPTION	38
1.5.5.	ABA RECEPTORS IDENTIFIED UP TO NOW	38
1.5.6.	ELUCIDATION OF THE CORE ELEMENTS AND	45
	RECONSTITUTION OF THE ABA SIGNALLING PATHWAY	
1.5.7.	SECOND MESSENGERS IN ABA SIGNALLING	49
1.5.8.	ARCHITECTURE AND FUNCTION OF THE PYR/PYL/RCAR	53
	RECEPTORS	

1.5	.9.	ARCHITECTURE OF TERNARY COMPLEX: INSIGHTS OF THE	57
		ABA-INDUCED INHIBITION MECHANISM OF PP2Cs	
		1.5.9.1.A MOLECULAR EXPLANATION FOR abi1 ^{G180D} , abi2 ^{G168D}	62
		and hab1 ^{G246D} MUTANTS	
2.	OE	BJECTIVES	65
3.	RE	SULTS: CHAPTER 1	69
	Mc	dulation of drought resistance by abscisic acid receptor PYL5	
	thr	ough inhibition of clade A PP2Cs	
4.	RE	SULTS: CHAPTER 2	89
	Th	e abscisic acid receptor PYR1 in complex with abscisic acid	
5.	AP	PENDIX RESULTS: CHAPTER 2	107
6.	RE	SULTS: CHAPTER 3	119
	A t	hermodynamic switch modulates the abscisic acid receptor	
	sei	nsitivity	
7.	RE	SULTS: CHAPTER 4	145
	Th	e ABA-PYR/PYL/RCAR-PP2C signalling pathway is conserved in	
	cul	tivated plants	
8.	GE	NERAL DISCUSSION	169
8.1		HORMONE SENSING AND PERCEPTION: a critical overview on	171
		the ABA receptors	
8.2		ARCHITECTURE AND FUNCTION OF THE PYR/PYL/RCAR	180
		RECEPTORS	
8.3		BIOTECHNOLOGICAL APPLICATION	192
9.	CC	DNCLUSIONS	195
10.	10. REFERENCES		199
11.	AP	PENDIX 1	221