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Chapter 1

Preliminaries

1.1 Introduction

The work concerned by this thesis deals with the introduction of confidence
measures in the parsing world.

Parsing, when referred to Natural Language Processing (NLP), means to
recognize an input sentence and assign it a syntactic structure, or tree.

A parse tree is composed by substructures that are referred as edges, or
constituents. An edge is defined by a syntactic tag (or nonterminal) that
spans a substring of the input sentence. Thus, a tree is precisely determined
by all its edges, and always has a root edge that spans the whole input
sentence.

Several approaches exist when constructing parsing algorithms. One of
them is statistical parsing, in which the most fitting parse tree for a given
input string is calculated according to probabilistic criteria.

Statistical parsing usually makes use of an objective function that is maxi-
mized to obtain the best tree. Several objective functions can be chosen: one
of the most commonly used is the whole tree probability, which is maxi-
mized according to probabilities of grammar production rules, as it is done
in the classical Cocke-Younger-Kasami algorithm (CYK) [1]; quite different
objective functions can be used, like the one considering the probability of
individual edges, independently of the probability of the whole tree, as it is
done by Goodman in [13]. We have pointed out the specific objective func-
tion by Goodman because it is closely related to the application of confidence
measures to parsing, as both techniques share some theoretical foundations.

Confidence measures are a formalism that allow us to determine whether
the individual part of a given output is correct. Confidence measures are
widely used in fields like Automatic Speech Recognition (ASR) and Statistical

9



10 CHAPTER 1. PRELIMINARIES

Machine Translation (SMT) for different tasks. Within these two areas, they
give us the probability of correctness for each individual word pertaining to
a given output sentence.

In this work, we introduce the adaptation of the confidence measure
framework to parsing, which remains a largely unexplored field. We re-
search the use of confidence measures to assess the probability of each tree
constituent being correct. We apply confidence measures to trees obtained
by the first parsing approach mentioned above (maximizing the whole tree
probability).

We present expressions for calculating this statistical confidence measure
for each edge, based on their posterior probability. Equations for calculating
this measure using the inside and outside probabilities are given.

Once the theoretical framework for a purely statistical parsing confidence
measure has been set, we introduce experimentation showing the utility of
it. First we show that the confidence measure performs notably well for the
Confidence Error Rate (CER) and ROC curve metrics, which are widely used
for confidence measure evaluation in ASR and MT.

Then we report experiments showing the use of the confidence measure to
improve POS tagging, in a method which comprises the relabeling of edges
with low confidence.

Finally, we set out the basis for other confidence measure applications,
which we are currently developing. These include the introduction of Com-
puter Aided Parsing (CAP) systems that make use of confidence measures.
Such systems can be of great utility in the construction of new syntactically
annotated corpora, in English or other languages. Another use is the research
of new confidence measure-based parsing methods, similar to the Goodman
approach.

The rest of this chapter is organized as follows. In section 1.2 we re-
view the state-of-the-art work in syntactic parsing, mention some works that
present some kind of relationship between the parsing and the confidence
measure worlds, and we lay out the basics for parsing relevant for this the-
sis, such as the CYK algorithm. Section 1.3 includes information about how
confidence measures are used in other fields, and details about their use in
Automatic Speech Recognition.

1.2 Parsing

In this section we will first make a quick overview of the state-of-the-art
literature of the parsing field, we will also cite some parsing works relevant
to confidence measures, and then we will explain in detail some theoretical
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fundamentals relevant to the work presented in this thesis.

1.2.1 State-of-the-art parsing overview

Parsing plays an important role in problems like Semantic Analysis, Question
Answering, Language Modeling [9, 32], Machine Translation [40, 7], RNA
Modeling [36], and others. In the case of Natural Language Processing, its
aim is to precisely determine the syntactic structure of sentences written in
one of the several languages that humans use.

Several kinds of parsing algorithms exist, and among them one can found
those based on Probabilistic Context-Free Grammars (PCFGs) 1 , which form
the base of relevant and high performing parsers [6, 10, 8].

However, basic PCFGs present two problematic characteristics: context-
freedom and unlexicalization. The first, results in that probabilities of rules
only depend on the current nonterminal, e.g., a VP has the same probability
of being expanded as a verb followed by a noun, independently if it acts as
the main verbal phrase or as a modifier. The latter causes that nonterminal
are expanded regardless of the final word they affect, e.g., VPs both for
transitive and intransitive verbs have the same probabilities. These problems
cause performance of vanilla treebank grammars (grammars directly derived
from annotated corpus) to be insufficient, as can be seen in [5, 20].

Great efforts have been undertaken to improve performance of these
parsers. Lexicalization of grammars with elaborate smoothing accomplished
very promising results [6, 10]. Manual tree annotation and nonterminal split-
ting greatly shortened the gap between unlexicalized models and their better
performing lexicalized counterparts [18, 20]. And automatic tree annotation
systems, with a nonterminal split-and-merge approach and a hierarchy of
progressively refined grammars, improved over the best lexicalized results
[25, 29, 30]. The most impressive results are achieved by reranking systems,
as shown with the semi-supervised method of [26], or the forest reranking
approximation of [15] in which packed parse forests, compact structures that
contain many possible tree derivations, are used for the reordering.

1.2.2 Confidence measures and parsing in the litera-

ture

In this section we explain some similarities between our confidence measure
framework and some existing parsing algorithms and techniques.

1See section 1.2.3 for a definition of PCFGs.
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Currently, there exist efficient probabilistic parsing algorithms that are
able to obtain very good parsing results [25, 26, 30, 15]. Some of this parsers
use reranking techniques in order to achieve these results. In this work,
we propose to move forward in parsing techniques by detecting individual
erroneous syntactic structures. Confidence measures can be used to detect
specific erroneous constituents in a similar way as it is carried out in ASR
and SMT.

Other works have proposed to improve parsing results by defining parsing
algorithms that try to improve alternative objective functions. Goodman in
[13] derived an algorithm that maximized the chosen evaluation criterion
(labeled recall), rather than maximizing the whole tree probability, as the
classical CYK does. In his derivation, he used the same posterior probability
expression that we employ here in order to calculate the confidence measures.

Goodman’s algorithm presented the problem of producing trees that were
not grammatical, and as such, unsuitable for downstream processing. How-
ever, many applications can benefit from maximizing the number of correct
constituents, regardless of the grammaticality of the tree, for example, ma-
chine translation systems. The max-rule parser, a variation of Goodman’s
algorithm that solves the ungrammaticality issue, is used in very recent top
performing parsing systems [25, 30].

Smith in [37] used confidence to bootstrap feature-rich dependency parsers.
In that work, confidence is measured by Rényi entropy.

Finally, confidence measures for parsing were introduced in [3]. In that
work, confidence measures are computed from lists of n-best parse trees,
which is the main difference from the purely statistical approach presented
in this thesis.

1.2.3 Parsing fundamentals

Now that the best performing parsing works have been briefly cited, we will
explain some parsing basics necessary to have a deeper understanding the
work that is being presented here.

Syntactic parsing can be seen as the operation of chunking: that is, divid-
ing input data into syntactic units of a higher level, allowing us to organize
such data within a desired structure.

Parsing is a fundamental problem related to Natural Language Processing
(NLP). Within this field, it refers to the the process of recognizing an input
sentence and assigning it a syntactic structure or parse tree.

Figure 1.1 shows a typical parse tree. The figure displays a syntactically
annotated sentence, extracted from the Penn Treebank corpus, in which the
syntactics labels of its different parts can be seen. In this simple example we
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Figure 1.1: Example of a parse tree

observe that Champagne and dessert is the noun phrase (NP) that acts as
the sentence subject. The subject is in turn composed by two singular nouns
(NN) and a coordinating conjunction (CC). Only the past tense verb (VBD)
followed forms the verb phrase (VP) that acts as the predicate. For more
information on the syntactic labels and annotation conventions, see section
3.3 where the Penn Treebank corpus is explained.

A parse tree t is composed by substructures that are referred as edges, or
constituents. An edge tAij is defined by the nonterminal node (or syntactic tag)
A that spans the substring x between positions i and j, and represents the
set of all possible fitting derivations from the nonterminal to the substring.
Thus, the tree is precisely determined by all its edges, and has a root edge
that always spans 1 to |x|.

The constituents of the tree shown in Figure 1.1 are: tS1,5, tNP
1,3 , tV P

4,4 , t.5,5,
tNN
1,1 , tCC

2,2 , tNN
3,3 and tV BD

4,4 .

In statistical parsing, the most fitting parse tree for a given input string is
calculated according to probabilistic criteria. Thus, the parse tree is obtained
through a chosen parsing algorithm which uses a stochastic model.

Many parsing methods exist in the literature, which includes those based
on Probabilistic Context-Free Grammars (PCFGs), a specific type of formal
grammar.

A formal grammar is a precise definition of a formal language, which
in turn is a set of strings over some alphabet. Formally, a grammar is a
quadruple

G = (T,N, P, σ)
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where

T is a set of terminal symbols (the symbols of the formal language)

N is a set of nonterminal symbols

P is a set of derivation rules such as α → β

with α and β being sequences of nonterminal and terminal symbols,

α with the obligation of having at least one nonterminal,

and β with the possibility of including the empty string ǫ

σ ∈ N is the starting symbol.

The formal language generated by G is the set

L(G) = {w ∈ T ∗|σ ⇒∗ w}

where ⇒∗ denotes the use of zero or more derivation rules.

Another way of defining a parse tree, apart from listing its constituents,
is by the exact sequence of production rules applied. The sequence of pro-
duction rules describing the tree shown in Figure 1.1, with a left-to-right
depth-first order, is: (S− > NPV P.), (NP− > NNCCNN), (NN− >
Champagne), (CC− > and), (NN− > dessert), (V P− > V BD), (V BD− >
followed) and (.− > .).

This general definition of formal grammar is classified by the Chomsky
Hierarchy in four groups of progressively stricter grammars:

Type-0 Or unrestricted grammars, which is the less restrictive type and include
all formal grammars.

Type-1 Or context-sensitive grammars, which generate context-sensitive lan-
guages, in which a context of terminal and nonterminal symbols can
be added to the production rules.

Type-2 Or context-free grammars, which generate context-free languages, in
which the production rules take the form A → β with A ∈ N and
β ∈ (N ∪ T )∗.

Type-3 Or regular grammars, which generate regular languages, in which the
production rules can take the forms A → aB (or alternatively A →
Ba), A → a or S → ǫ, with B being a nonterminal, a a terminal, S the
starting symbol (which cannot appear in the right side of rules), and ǫ
the empty string.
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Although type-2 and type-3 grammars are less powerful than their higher
level counterparts, their simplicity allows the construction of efficient parsing
algorithms, and as such they are the most commonly used types.

Related to Context-Free Grammars, the class of our interest, is the notion
of Chomsky Normal Form (CNF) grammars. A CNF grammar has all its
production rules in the form A → BC, A → x, or S → ǫ, where A, B and C
are nonterminals, x is a terminal, S the starting symbol, and B,C 6= S.

Every context-free grammar can be transformed in an equivalent CNF
grammar, and every grammar in CNF is context-free. Several ways of bina-
rizing a grammar into a CNF equivalent are discussed in section 3.4 Quite
obviously, CNF grammars can only produce binary trees, fact which makes
possible simpler parsing algorithms, and which allows the introduction of
powerful expressions like the inside and outside probabilities, which we will
review in just a moment.

Probabilistic Context-Free Grammars are just context-free grammars in
which each rule has a probability associated to it, with pr(A → α) ∈ ]0, 1]
and the following added restriction

∑

∀αj

pr(A → αj) = 1 ∀A (1.1)

by which the probability of all the rules having the same left-hand nonter-
minal must sum one. More information on PCFG can be found on [23, p.
382].

The probability of a derivation t (or parse tree) for a given string x
produced by the grammar G is the product of the probabilities of the applied
derivation rules.

pG(t,x) =
∏

pr(A → α) ∈ t (1.2)

The probability of a string x being generated by the grammar is the sum
of the probabilities of all possible parses of that string

pG(x) =
∑

∀t∈T

pG(t,x) (1.3)

where T is the set of all possible parse trees for x by G.
Expression (1.3) can in fact be easily calculated by the use of the inside

probability, which we will now introduce. Alongside, the outside probability
is presented, which will come in handy later on. The inside β and outside
α probabilities are well known expressions, widely used in parsing for sev-
eral tasks, for example, learning the stochastic information of PCFGs by
maximum log-likelihood.



16 CHAPTER 1. PRELIMINARIES

The inside probability

βA(i, j) = pG(A ⇒∗ xi . . . xj) (1.4)

is the total probability of the nonterminal A generating the string xi . . . xj.
The outside probability

αA(i, j) = pG(S ⇒∗ x1 . . . xi−1 Axj+1 . . . x|x|) (1.5)

is the total probability of, beginning with the start symbol S, generating the
nonterminal A and all the words other than xi . . . xj. For more information
on these, see Figure 1.2, [1], and [23, p. 392].

S

A

αA(i, j)

βA(i, j)

x1 xi−1 xi xj xj+1 x|x|

Figure 1.2: Parse diagram showing the inside and outside probability.

Here we present recursive expressions used for calculating these probabil-
ities with grammars in the CNF

βA(s, t)































p(A → xs) s = t

∑

BC

(

p(A → BC)

t−1
∑

r=s

(

βB(s, r)βC(r + 1, t)
)

) s < t
(1.6)

αA(s, t)































1 s = 1 ∧ t = I ∧ A = S

∑

BC

(

p(B → CA)
s−1
∑

r=1

(

αB(r, t)βC(r, s − 1)
)

)

+
∑

BC

(

p(B → AC)
I

∑

r=t+1

(

αB(s, r)βC(t + 1, r)
)

)

(1.7)
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where 1 <= s, t <= |x|.
The probability of x being generated is the inside probability of the gram-

mar’s starting symbol S over the whole string x

pG(x) =
∑

∀t∈T

pG(t,x) = βS(1, |x|) (1.8)

With all this stochastic apparatus defined, the expression for obtaining
the most probable parse tree t̂ is easily defined as follows

t̂ = arg max
t∈T

pG(t,x) = arg max
t∈T

pG(t|x)p(x) = arg max
t∈T

pG(t|x) (1.9)

where pG(t|x) is the conditional probability of the tree t given the string x

using model G, and T is the set of all possible parse trees for x.

1.2.4 Cocke-Younger-Kasami algorithm

In this section we will explain and present the the stochastic version of the
Cocke-Younger-Kasami parsing algorithm (CYK) [14], and present its pseu-
docode. The classical version of the CYK algorithm just checks if a given
string is generable by a grammar. A stochastic version of the CYK can be
inferred which, by storing the probabilities of the partial subtrees, can find,
for a given string, the most probable tree and its probability.

From the most probable tree equation in (1.9) one can derive the following
recursive equations which are the basis for the CYK algorithm

t̂(Ai:j) =

{

arg mint∈T 1(Ai:j)
pr(t) j > i

< Ai:i > if j = i and A → xi ∈ P
(1.10)

where t̂(Ai:j) is the most probable subtree starting from the nonterminal
A and spanning xi . . . xj and

T 1(Ai:j) = {< Ai:j, T
1(Bi:k), T

1(Ck+1:j) >: A → BC ∈ P, i ≤ k < j} (1.11)

is the set containing the best possible subtrees for all rules that apply to the
current nonterminal.

Starting from the leaves, the algorithm fills the trellis until the tree root
field is completed. If and only if the initial symbol is there, the string is
generable by the grammar, and the derivation of the most probable tree and
its probability can be read from the trellis.

Here follows pseudocode for the CYK algorithm.
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Input

G = (N, T, P, S) (in Chomsky Normal Form)

GS = (G,Pr) Pr : P →]0, 1]
∑

1≤j≤ni

Pr(Ai → αj) = 1 ∀Ai

x = x1 . . . xn ∈ T ∗

Output

Parse table t[i, j] (i ≤ i, j ≤ n)

Parse probability table p[i, j] (i ≤ i, j ≤ n)

A ∈ t[i, j] ⇐⇒ A →∗ xi . . . xj

Method

forall i, j, A

p[i, j][A] = MAX DOUBLE

forall i in 1 ≤ i ≤ n do

forall (A → xi) ∈ P do

t[i, i][A] = t[i, i][A] = [(0, 0,−)(0, 0,−)]

p[i, i][A] = p[i, i][A] = pr(A → xi)

forall d in 1 ≤ d ≤ n − 1 do

forall i in 1 ≤ i ≤ n − d do

j = i + d

forall k in i ≤ k ≤ j − 1 do

forall (A → BC) ∈ P do

if (B ∈ t[i, k]) ∧ (C ∈ t[k + 1, j] then

newprob = p[i, k][B] ∗ p[k + 1, j][C] ∗ pr(A → BC)

if newprob < p[i, j][A]

t[i, j][A] = [(i, k, B), (k + 1, j, C)]

p[i, j][A] = newprob

end if

if p[1, n][S]! = MAX DOUBLE then x ∈ L(G) else x /∈ L(G)

End method

(1.12)

The time complexity of the algorithm is is O(|x|3 |P |) (or Θ((|x|2/2) (|x|/3) |P |))
for a tighter bound); and the the space complexity is O(|x|2 |N |) (Θ((|x|2/2) |N |).



1.3. CONFIDENCE MEASURES 19

1.3 Confidence measures

1.3.1 Introduction

Confidence measures are usually used to compute the degree of trust in some
part of the output of a recognition system. In the case of ASR and SMT,
confidence measures refer to the probability of individual words being correct
in the output sentences. Obviously, obtaining a sentence with maximizes the
global probability does not imply that all the words, individually, are the
most probable ones.

Given the difficulty and importance of parsing in all of its applications
[21], there exists an increasing necessity to detect erroneous syntactic struc-
tures. With the introduction of the confidence measure framework into the
parsing field, this powerful formalism can be used to detect, and eventually
correct, individual erroneous constituents.

Confidence measures have been successfully applied in the mentioned
tasks of ASR [39, 34], SMT [38], and even Spoken Dialogue Systems [33].
However, its use remains largely unexplored in parsing, and they have sev-
eral applications of great interest within this field. Assessing the correctness
of the different parts of the parsing is needed for the construction of efficient
Computer Assisted Parsing systems, which will be useful in the creation of
gold standard treebanks for new languages. Confidence measures can also
help to improve the parsing process itself, either by being used as a com-
ponent of an n-best reranker, or by directly recalculating parts with low
confidence.

Some confidence measures for parsing, in the form of combinations of
characteristics calculated from n-best lists were proposed in [3]. Nevertheless,
other alternatives can be considered, akin to graph-based methods in ASR
and SMT, in which the forward and backward probabilities are used for their
calculation.

Most of the cited methods for obtaining confidence measures in ASR and
SMT are based on calculating the posterior probability for a specific word.

One way to estimate the posterior probability is to use lists with the
n-best output sentences. In this case, intuitively, the probability of a word
of being correct is calculated by counting how many times does that word
appear in the same position over all the n-best sentences.

Another method of estimating the posterior probability is to use a forward-
backward expression over word graphs. Word graphs can be seen as a con-
densation of the information contained in an n-best list. In the ideal case of
a non-pruned word graph, it represents all the possible output sentences for
a given input. In practice word graphs are usually pruned so they contain
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only information about the most probable outputs. This approach presents
greater flexibility than n-best lists, as they are not limited by a predefined
number of n outputs, but rather take form depending on the distribution of
probability mass.

1.3.2 Confidence measures in Automatic Speech Recog-

nition

We will now develop on the fundamentals of statistical Automatic Speech
Recognition (ASR), explain word graphs acting a speech recognizer output,
and describe how confidence measures are precisely calculated over them.
For a deeper review on these concepts see [35].

The ASR problem can be statistically formulated [16, 17] as follows. Let
x = {x1, . . . xT} be a sequence of acoustic vectors representing a spoken
utterance over a lapse of time, and w = {w1, . . . wm} a sequence of m words.
P (w|x) is the probability of the sequence w corresponding to the utterance
represented by x. The word sequence that maximizes the probability for a
given acoustic vector is

ŵ = arg max
w

p(w|x) (1.13)

by the Bayes rule

= arg max
w

p(x|w)p(w)

p(x)
(1.14)

where p(x|w) is the probability of observing the acoustic vectors when w is
spoken, modeled by the acoustic model; p(w) is the probability of the word
sequence, modeled by the language model; and p(x) is the prior probability
of the acoustic sequence, which doesn’t affect the maximization and can be
omitted.

= arg max
w

p(x|w)p(w) (1.15)

The acoustic modelling is usually approached by the use of Hidden Markov
Models (HMMs) [16, 31], and the language model frequently corresponds to
an n-gram model (usually 2-grams or 3-grams) [27]. As we will not develop
on these concepts, refer to the cited work for further information.

Like already mentioned, a word graph can be seen as a condensation of
a n-best list of recognized word sequences. A word graph can be easily pro-
duced from a HMM model, and it is a very convenient tool for calculating
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the probabilities of the different word sequences and, for the part most con-
cerning us, the posterior probability of the individual words in each of the
sequences [28].

Formally, a word graph R = (Q,A, qi, qf ,F) is a directed and weighted
graph, without cycles, in which:

Q is a set of states, each state corresponds to one language model state,
and was activated in the instant t ∈ {1, . . . , T} of the recognition process.
Each state is denoted by ut, where u is the language model state, and t the
instant.

A is a set of edges, where each edge is composed of [w, uτ , vt], where w is
a word and uτ , vt ∈ Q are the states delimiting w in the recognition process.

qi = u1 ∈ Q is the initial state, qf = vT ∈ Q is the final state.
And F : QxQ → R is a function that assigns to each edge [w, uτ , vt] the

probability (or, in the more general case, a score) to the word w between the
states u and v, and between the instants τ and t.

Every path in the word graph starting from qi and ending in qf corre-
sponds to a suggested hypothesis h = {(wi, u

τ1
1 , vt1

1 ), . . . , (wk, u
τk

k , vT
k )}, where

ti−1 = τi − 1 ∀i = 2, . . . , k.
The probability of the hypothesized word sequence is the product of the

probabilities of the involved edges. The confidence measure of a word w is
its posterior probability given the acoustic sequence x

C(w|x) = p(w|x) (1.16)

The posterior probability of a word that occurs between the states uτ and
vt can be easily calculated over a word graph by summing the probabilities
of all hypothesis that contain the edge, which is done using the forward and
backward probabilities [w, uτ , vt]

p([w, uτ , vt]|x) =
p([w, uτ , vt], x)

p(x)
(1.17)

=
1

p(x)

∑

h∈R:∃[w′,u′,v′]:w′=w,u′=uτ ,v′=vt

p([w, uτ , vt], x) (1.18)

The normalization term, the probability of the acoustic sequence is cal-
culated by summing the probability of all hypothesis contained in the word
graph, which can be also calculated by the use of either the forward or back-
ward probability

p(x) =
∑

h

p(j,x) (1.19)
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A problem of this approach is that the posterior probability of a word only
is accumulated if the states delimiting the word u, v, and its time interval
[τ, t] are exactly the same. In practice the same word usually occurs in
similar but slightly different time intervals; and in different states. Hence,
the posterior probability scatters among the different intervals [τ ′, t′], and
states u′, v′. There are several techniques that are usually employed to avoid
this problem when calculating the confidence measure, so the probability of
the same words with similar intervals and different states is accumulated.



Chapter 2

A statistical confidence

measure for parsing

2.1 Introduction

In this chapter we introduce our main contribution, the statistical framework
for the calculation of confidence measures for each edge, using its posterior
probability. For it we employ the inside and outside probabilities.

2.2 Posterior probability of an edge

As already mentioned, a tree t is composed by edges , or constituents. Given
a tree t, an edge tAij is defined by a nonterminal node A that spans the
substring between positions i and j.

While in [3] confidence measures for parsing were calculated using n-best
parse lists, here we set a framework for probabilistic calculation of confidence
measures for edges consisting in their posterior probability. This purely sta-
tistical measure is similar to the posterior probability calculation over word
graphs and its use as a confidence measure presented in the above commented
works [39, 38].

Assume that using a chosen probabilistic grammar G as the model, the
parser analyzes the input sentence x = x1 . . . x|x| and produces the most
probable parse tree

t̂ = arg max
t∈T

pG(t|x), (2.1)

where pG(t|x) is the probability of the tree t given the string x using model G,
and T is the set of all possible parse trees for x.

23
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The posterior probability of an edge can be considered as a measure of the
degree to which the edge is believed to be correct. The posterior probability
of an edge given the string x is

pG(tAij|x) =
pG(tAij,x)

pG(x)
=

∑

t′∈T :tAij is in t′ pG(t′|x)

pG(x)
. (2.2)

Expression (2.2) is the normalized probability of the edge tAij being placed
on the tree in the exact position that spans the xi . . . xj substring. The upper
part is the sum of probabilities of all possible parse trees for x containing
the nonterminal A with the same exact start and end points i and j.

Expression (2.2) can be efficiently computed with the inside and out-
side probabilities, which were introduced in section 1.2.3. Following [2], the
equation can be rewritten as

pG(tAij|x) =
pG(tAij,x)

pG(x)
=

βA(i, j) αA(i, j)

βS(1, |x|)
. (2.3)

The posterior probability can now directly be used as a measure of the
confidence in each individual edge

C(tAij) = pG(tAij|x) . (2.4)

Expression (2.3) is the same that is maximized in [13] for the labeled
recall parsing algorithm, which can indeed be seen as a confidence measure
based parsing algorithm.

Figure 2.1 shows a synthetic example in order to clarify these definitions.
The figure shows the only four possible parse trees for the string abc: (a),
(b), (c) and (d). Let all productions in the example’s grammar carry the
same probability, and suppose that the parser returns the (a) tree. Then
the following confidence measure values are obtained for the edges in the (a)
tree: C(tS13) = 1, C(tZ12) = 2/4, C(tA11) = 1, C(tB22) = 1 and C(tD33) = 1/4. If
the correct parse tree is (e), which is unobtainable by the example grammar,
the use of a confidence threshold would allow us to know that the tD33 edge is
incorrect in the (a) tree.

It should be clear that the calculation of confidence measures for parsing
can be useful in any kind of problem which uses probabilistic parsing, and
not just NLP tasks. In the experiments presented in the following chapters
we show that our confidence measure can help parsing through the detection
of erroneous edges.
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Figure 2.1: Synthetic example of confidence measure calculation. All pro-
ductions in the example’s grammar have the same probability. The grammar
can only generate the (a), (b), (c) and (d) parse trees for the abc input string.
The reference parse tree is unobtainable. Confidence measures for the edges
in the (a) tree are C(tS13) = 1, C(tZ12) = 2/4, C(tA11) = 1, C(tB22) = 1 and
C(tD33) = 1/4.
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Chapter 3

Confidence measure

benchmarking

3.1 Introduction

In the previous chapter we introduced a purely statistical framework for
computing confidence measures in parsing. In this chapter introduce it to
basic and reproducible CYK parsing setup, similar to the one presented in
[20].

This chapter is divided as follows: section 3.2 describes how confidence
measures can be used to discern incorrect edges, and presents several eval-
uation metrics that are usually used to assert their performance; the Penn
Treebank corpus is described in section 3.3; the experimental setup is ex-
plained in section 3.4; and the obtained results are presented and discussed
in sections 3.5 and 3.6.

3.2 Evaluation Metrics

Given a parse tree that is obtained for an input string, the tree contains a
number N of edges which can then be checked against a reference or gold
tree, to find that a number Nc of them have a correct label and span, and
a number Ni of them have not. Optimally, confidence measures allow us to
precisely determine which of these constituents are correct and which are
not.

Once incorrect edges are detected, some action to correct them can be
carried out. In this work we introduce experimentation showing the recalcu-
lation of incorrect POS tags in chapter 4.

A threshold τ (τ ∈ [0, 1]) can be set in the use of confidence measures: tags

27
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with a confidence value lower than the threshold will be deemed incorrect,
and vice versa. After applying this threshold to a confidence measure, we
obtain a number Nf (τ) (Nf (τ) ∈ [0, Nc]) of edges correctly labeled by the
parser, but deemed incorrect by the confidence measure (false rejection); as
well as a number Nt(τ) (Nt(τ) ∈ [0, Ni]) of edges incorrectly labeled, and
determined incorrect by their confidence (true rejection). In the ideal case
of a perfect confidence measure, Nf (τ) = 0 and Nt(τ) = Ni for the best
threshold τ . Obviously, if we set τ = 0, all edges are considered to be correct,
so Nf (0) = 0 but Nt(0) = 0 too (likewise, Nf (1) = Nc and Nt(1) = Ni).

For our evaluation we employed some commonly used metrics that de-
termine whether confidence measures successfully discern correct labels from
incorrect ones. One measure is the Confidence Error Rate (CER), which is
the number of errors (false rejections plus false acceptances) performed by
the confidence measures divided by the total number of edges. The CER is
calculated for a given threshold, and it is computed as:

CER(τ) =
Nf (τ) + (Ni − Nt(τ))

Nc + Ni

(3.1)

The baseline CER is the one obtained assuming that all syntactic edges
are correct (the only possible assumption when confidence measures are not
available) and is:

CER(0) =
Ni

Nc + Ni

(3.2)

Two rates are directly derived from the true rejection and the false rejec-

tion values presented above: the False Rejection Rate (FRR): Rf (τ) =
Nf (τ)

Nc

and the True Rejection Rate (TRR): Rt(τ) = Nt(τ)
Ni

.
Another measure which determines the correctness of confidence measures

globally over all possible thresholds is the Receiver Operating Characteristic
1 (ROC) curve [11] which is the visual representation of the false rejection
rate against the true rejection rate for all possible values of τ ∈ [0, 1].

The worst case ROC is a diagonal line, and a good ROC is the one
that, for most thresholds τ , describes a curve with values near 0 for Nf and
near 1 for Ni. The AROC (area under a ROC curve divided by the area
of the worst-case diagonal ROC) varies between 1.0 and 2.0, and provides
and adequate overall estimation of the confidence measure’s accuracy. See
[39, 38] for examples of evaluating confidence measures with ROC curves.

1A variant of the ROC curve is the Detection Error Tradeoff (DET) curve which plots
the False Rejection Rate versus the False Acceptance Rate
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3.3 The corpus

The creation of large and high quality syntactically annotated corpora is a
difficult task. The manual annotation of large amount of text not only is
a laborious and time-consuming job, but usually there are several linguists
involved, so a list of predefined annotation conventions and guidelines have
to be enforced.

ADJP Adjective phrase
ADVP Adverb phrase

NP Noun phrase
PP Prepositional phrase

S Simple declarative clause
SBAR Clause introduced by subordinating conjunction or 0

SBARQ Direct question introduced by wh-word or wh-phrase
SINV Declarative sentence with subject-aux inversion

SQ Subconstituent of SBARQ excluding wh-word or wh-phrase
VP Verb phrase

WHADVP wh-adverb phrase
WHNP wh-noun phrase
WHPP wh-prepositional phrase

X Constituent of unknown or uncertain category

Table 3.1: Penn Treebank labels employed for skeletal annotation.

The Penn Treebank (PTB) is one of such high quality annotated corpora,
and has become the reference corpus to experiment with when benchmarking
parsing systems, widely used in the most relevant parsing literature. It is a
project 1 of the LINC Laboratory of the Computer and Information Science
Department at the University of Pennsylvania. All data produced by the
Treebank is released through the Linguistic Data Consortium 2. It consists
in one million words of 1989 Wall Street Journal material annotated. More
details about how the sentences are annotated can be found in [24].

Basically, there are two sets of nonterminal symbols used in the anno-
tations: the preterminals, or POS tags, which are the labels immediately
preceding the terminal words; and the syntactic tags, which are the nonter-
minals which form the skeletal structure of the sentences.

The 14 employed skeletal labels are shown in table 3.1, and 48 annotated
POS tags are shown in table 3.2.

1http://www.cis.upenn.edu/ treebank/
2http://www.ldc.upenn.edu/
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CC Coordinating conjunction TO to
CD Cardinal number UH Interjection
DT Determiner VB Verb, base form
EX Existential there VBD Verb, past tense
FW Foreign word VBG Verb, gerund/pres. participle
IN Preposition/subordinating conj. VBN Verb, past participle
JJ Adjective VBP Verb, non-3rd ps. sing. pres.

JJR Adjective, comparative VBZ Verb, 3rd ps. sing. present
JJS Adjective, superlative WDT wh-determiner
LS List item marker WP wh-pronoun

MD Modal WP$ Possessive wh-pronoun
NN Noun, singular or mass WRB wh-adverb

NNS Noun, plural # Pound sign
NNP Proper noun, singular $ Dollar sign

NNPS Proper noun, plural . Sentence-final punctuation
PDT Predeterminer , Comma
POS Possessive ending : Colon, semi-colon
PRP Personal pronoun ( Left bracket character
PP$ Possessive pronoun ) Right bracket character
RB Adverb ” Straight double quote

RBR Adverb, comparative ’ Left open single quote
RBS Adverb, superlative ” Left open double quote
RP Particle ’ Right close single quote

SYM Symbol (mathematics or science) ” Right close double quote

Table 3.2: Penn Treebank POS tagset.

3.4 Experimental setup

For our experiments three sets were defined, using several sections of the
PTB corpus. For the training set we chose sections 2 to 21 of the PTB,
which were directly used to obtain a vanilla Penn Treebank Grammar.

The development set comprised the first 346 sentences of section 24, and
the test set was the whole section 23 of the PTB. The chosen test and train
sets facilitate comparison with previous work.

Before obtaining the grammar, we carried out the NoEmpties transfor-
mation in all sets. As described in [19], it comprises the removal of functional
tags and cross-referencing annotations, plus the pruning of empty branches
(represented by the -none- tag on the corpus). Additionally, we followed
the common practice of substituting all cardinals appearing in the sentences
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(leafs below the CD label) by a newly introduced common terminal.
The CYK algorithm needs grammars to be in the Chomsky Normal Form

(CNF), so we obtained several binarized versions of the train grammar. Bi-
narization splits the non-binary rules (those with three or more siblings)
introducing dummy nonterminals between the parent and the children. This
transformation does not alter the probabilistic correctness of the parsing
process.

For calculating the binarized grammars, we used the Chomsky Normal
Form transformation method from the open source Natural Language Toolkit
(NLTK) [22] to obtain several right-factored binary grammars of different
sizes. This method implements the vertical (v value) and horizontal (h value)
markovizations discussed in [20]. Setting these two parameters we can con-
trol how many ancestors and siblings are annotated in the newly introduced
nonterminals. A vertical value of v = 1 means no ancestor information,
v = 2 adds parent information, v = 3 grandparent, and so on. With h = inf
all siblings are annotated, h = 0 annotates none of them, h = 1 one, and
so on. The binarization equivalent to a standard treebank PCFG grammar
corresponds to v = 1 and h = ∞ [20].

At parsing time we performed the confidence measure calculation using
equations (2.2) and (2.3) as described in chapter 2.

The obtained parse trees were binary, as they were produced by PCFGs in
CNF, so in order to compare them to the reference trees a trivial unbinariza-
tion process was performed. In this process newly introduced nonterminals
are removed and their children go up with their original parents.

The edges of each solution tree were then automatically compared to
the edges in the reference ones. For each edge in the solution tree, it was
labeled as correct if an edge with the same tag and span was present in the
corresponding reference tree, otherwise it was labeled as incorrect.

With the edges labeled as correct or not, we calculated the baseline
CER and the confidence measure CER. As the CER depends on the se-
lected threshold, the separate development set was used to obtain the best
threshold, and this value was used to calculate the CER within the test set.
Additionally, ROC curves for the development and test sets are presented,
with their corresponding AROC values.

3.5 CER and ROC results

In this section we present the results of the proposed confidence measure
for several CNF PCFGs, which were obtained modifying the vertical and
horizontal order of grammar markovization. Goodness of confidence mea-
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sures can be evaluated measuring the improvements of the best CER over
the baseline CER, and additionally with the ROC curve and its AROC.

Edges
PCFG (size) Dev Test

h=0, v=1 (561) 9,385 60,927
h=0, v=2 (2,034) 9,384 61,107
h=0, v=3 (5,058) 9,381 61,123
h=1, v=1 (2,174) 9,336 60,630
h=1, v=2 (5,434) 9,359 60,821
h=1, v=3 (11,420) 9,367 60,955

Table 3.3: Number of edges obtained for the development and test sets (Dev
and Test columns) for each PCFG. Parameters h and v are respectively the
horizontal and vertical markovization order, as discussed in [20]. Grammar
size represents the number of nonterminals in each PCFG after binarization.

In these first experiments we did not use smoothing, so not all sentences
were successfully parsed by our PTB grammar. For the development set 219
out of 346 sentences were parsed; and for the test set they were 1581 out of
2416 sentences. Despite only the parsed sentences were taken into account,
this did not cause a significant bias (see section 4.4).

Baseline Confidence M.
PCFG (size) CER CER AROC

h=0, v=1 (561) 16.4 12.3 1.78
h=0, v=2 (2,034) 15.0 12.6 1.74
h=0, v=3 (5,058) 15.1 13.1 1.72
h=1, v=1 (2,174) 12.6 10.4 1.74
h=1, v=2 (5,434) 11.9 10.8 1.72
h=1, v=3 (11,420) 12.1 11.1 1.70

Table 3.4: Results for the test set: Baseline CER, CER obtained using the
best development threshold and AROC, for each PCFG. Parameters h and
v are the vertical and horizontal markovization order. Grammar size is the
number of nonterminals.

The use of the different CNF transformations of the grammar, generated
by different markovization parameters, did not alter the number of success-
fully parsed phrases, given that the PCFG were all derived from the same
original one. However, the different markovizations caused changes in the
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obtained parse trees, which could vary in the number of generated edges.
Table 3.3 shows the total amount of edges obtained in each experiment.

The resulting CER and AROC values for the test set are shown in Ta-
ble 3.4. Confidence measures allowed us to clearly improve the baseline CER
for all PCFG. Notable improvements were obtained for PCFGs with worse
baseline CERs. The obtained relative reductions range from 8.2% to 25%.
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Figure 3.1: ROC curves of the test set for the most representative PCFGs.

Even for the PCFG with the best baseline CER (h = 1, v = 2), confidence
measures allowed us to detect that 1.1% of the edges could be erroneously
labeled, a relative reduction of 9.2%. We see that the best performing gram-
mar corresponded to markovization orders h = 1 and v = 2, which is along
the line of the results reported in [20, table on page 3].

ROC curves for the most representative PCFGs are presented in Fig-
ure 3.1. This figure shows the grammar with the highest relative gain (h = 0,
v = 1), the one with the lowest relative gain (h = 1, v = 3) 1, and the one
with the lowest baseline CER. We can see that the ROC curves and its
corresponding AROC values were reasonably good.

Our results can be compared by the ones presented in [3], in which con-
fidence measures were calculated from n-best lists obtained by the Charniak
parser. In this work we carried out unlexicalized parsing, therefore the ob-
tained baseline CERs are worse than the ones reported in the cited paper.
This higher baseline error rate could justify the notably higher CER relative
improvements and the better AROC values.

1All other ROC curves, and their AROCs, lie between those two.
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3.6 Posterior probability accumulation for over-

lapping edges

As already mentioned in section 1.3.2, when calculating confidence measures
in the ASR world, the posterior probability of a word is accumulated for
similar (bot not exactly alike) edges to avoid dispersion. In ASR, word
graph edges referring exactly to the same word can have slightly different
start and end instants, so some techniques are used to detect this and sum
the probability mass of the different edges.

Borrowing from this idea and applying it to parsing, we implemented
and performed some experimentation in which the confidence probabilities
of closely overlapping tree edges were accumulated.

We modified the confidence measure expression as follows

C(tAij) =
(

βA(i, j)αA(i, j)

k
∑

r=1

βA(i − r, j)αA(i − r, j)

k
∑

s=1

βA(i, j + s)αA(i, j + s)

k
∑

r=1

k
∑

s=1

βA(i − r, j + s)αA(i − r, j + s)
)

/βS(1, n)

(3.3)

which just accumulates the probabilities of edges with slightly different start
and end points. The proximity factor k control how far are the accumulated
edges.

For example, setting k = 1 produces the following expression

C(Aj
i ) =
(

βA(i, j)αA(i, j)+

βA(i, j + 1)αA(i, j + 1)+

βA(i − 1, j)αA(i − 1, j)+

βA(i − 1, j + 1)αA(i − 1, j + 1)
)

/βS(1, n)

(3.4)
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The obtained results, shown in table 3.5, were disappointing. Almost in
all cases, the CER and ROC worsen when probability from overlapping edges
is accumulated.

Baseline Confidence M. Overl. k=1. Overl. k=2
PCFG (size) CER CER AROC CER AROC CER AROC

h=0, v=1 (561) 17.1 12.1 1.81 12.0 1.80 12.4 1.76
h=0, v=2 (2,034) 14.7 12.4 1.76 12.5 1.75 12.4 1.75

Table 3.5: Results with overlapping for the dev set: Baseline CER, CER
obtained using the best development threshold and AROC, for each PCFG
and overlapping parameter.

3.7 Concluding remarks

In this chapter we have introduced evaluation metrics to assess the good-
ness of confidence measures, and have explained our experimentation setup.
Results show promising improvement in CER rates, and good ROC curves.
The idea of accumulating confidence probability for overlapping edges was
introduced, but did not produce improvements.
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Chapter 4

Confidence measures for POS

tag relabeling

4.1 Introduction

Once the evaluation metrics of the previous chapter have assessed that the
presented confidence measure has potential, it is necessary to test it in a real
parsing specific problem.

In this chapter we illustrate the use of our confidence measure in such an
application. We employed confidence measures to improve the accuracy of
POS tagging, using some of the grammars discussed in section 3.4. The chap-
ter organization is detailed here. Section 4.2 presents the experimental setup
and its results. In our experiments we relabeled POS tags when there existed
a candidate with a higher confidence value. In section 4.3 experimentation
with thresholds to avoid relabeling of tags with high confidence is introduced.
Finally, section 4.4 presents the rerun some experiments from section 4.2 af-
ter implementing a basic smoothing technique, to assess the significance of
the bias introduced by the lack of smoothing in previous experiments.

4.2 POS tag relabeling

The experiment consisted in the relabeling of POS tags: substitution of
POS tags with low confidence by another POS tag which yielded a higher
confidence when placed at the same position.

We modified our parser so the following process was carried out after the
best parse tree was obtained. For each POS tag (pre-terminal nods) in the
parse tree, the confidence of all other nonterminals placed in the same exact
position was calculated. The nonterminal yielding the maximum confidence
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was introduced as the new POS tag.
The proposed method did not produce a big number of label substitutions,

as usually labels with high confidence already have the maximum confidence
value among all nonterminals. Approximately 1% of the 30,057 POS tags in
the test set were replaced in the relabeling process.

It should be noted that the proposed relabeling procedure generated trees
that were not compatible with the grammar employed in the parsing process,
and thus are not suitable for downstream processing ([13] also showed this
issue). Likewise, our goal was not obtaining grammatical trees, but maxi-
mizing the number of correct constituents.

Baseline Relabeling
PCFG (size) tag acc. tag acc. improvement

h=0, v=1 (561) 95.62 95.78 0.16 ± 0.14
h=0, v=2 (2,034) 95.83 96.11 0.29 ± 0.11
h=0, v=3 (5,058) 95.73 96.10 0.34 ± 0.11

Table 4.1: POS relabeling results for the test set: baseline system tag accu-
racy, relabeling system tag accuracy, and increment in accuracy. Accuracy
values are bootstrap estimates with B = 104, and improvement interval is a
95% confidence interval based on the standard error estimate [4].

Table 4.1 shows obtained results for the test set. The accuracy of the
POS tagging process already was around 95% in the baseline system, so the
improvements provided by the relabeling system are small. Because of this,
the bootstrapping techniques presented in [4] were used to ensure statistical
significance: bootstrap estimates using B = 104 were obtained for the tag
accuracy on both systems and for their differential. The 95% confidence
interval for the differential between the two systems was also calculated based
on the standard error estimate.

We carried out some additional experimentation trying to replace all the
tree edges, instead of just the POS tags: we performed some precision and
recall calculations but these metrics did not improve. We believe this was
caused because our relabeling approach only dealt with erroneous tags, but
not with the possibly more severe structural errors within the bracketing end
and start points.

4.3 Relabeling thresholds

Rather then allowing the substitution of all POS tags, in this section we ex-
plore limiting the relabeling process by introducing several kinds of thresh-
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olds, so only labels whose confidence does not fulfill the chosen criterion are
considered for substitution.

We implemented and performed additional experiments using three dif-
ferent kinds of thresholds, that avoid the relabeling of POS tags with already
high confidence values. Let the edge candidate being considered for substi-
tution be t′, the thresholds work as follows

o, a fixed threshold. Using this setting, only tags with a confidence
value C(t′) < o were considered for substitution.

p, a relative proportional threshold. This threshold takes into account
the confidence score of the second highest candidate C(t′′) for that

position. If C(t′)
C(t′′)

< p, then t′ is considered for substitution.

q, a relative absolute threshold. This threshold is also relative to the
score of the second highest candidate. If C(t′) − C(t′′) < q, then t′ is
considered for substitution.

Unfortunately, these experiments did not improve the obtained results.
We believe that this is due to the already small number of effective sub-
stitutions without threshold, as usually candidates with a high confidence
value are not substituted in the first place. The results can be seen on ta-
bles 4.2, 4.3 and 4.4. We observe in all cases that the results worsen as the
threshold increments.

o threshold
baseline 95.75

value 0.75 0.50 0.25
accuracy 95.75 96.19 95.84

Table 4.2: Tag accuracy for the development set, for each threshold, with
PCFG h=0, v=1: baseline system tag accuracy, fixed threshold o, relative
proportional threshold p, and relative absolute threshold q.

4.4 Smoothing

Given the high number of rejected sentences due to words not being found
in the trained grammar, we evaluated whether some kind of bias could be
interfering with our results. In order to reran some of the experiments with
the full test corpus, we implemented a very basic smoothing method: when an
input word could not be derived by any of the preterminals in the grammar,
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p threshold
baseline 95.75

value 1.1 1.2 1.3 1.4 1.5 1.6 1.7
accuracy 95.75 95.64 95.62 95.58 95.54 95.54 95.58

value 1.8 1.9 2.0 2.1 2.2 2.3 2.4
accuracy 95.54 95.54 95.54 95.49 95.52 95.47 95.47

value 2.5 2.6 2.7 2.8 2.9 3.0 3.1
accuracy 95.47 95.45 95.43 95.39 95.37 95.37 95.37

value 3.2 3.3 3.4 3.5 3.6 3.7 3.8
accuracy 95.37 95.37 95.35 95.35 95.35 95.32 95.32

value 3.9 4.0 4.1 4.2 4.3 4.4 4.5
accuracy 95.32 95.32 95.32 95.32 95.32 95.32 95.32

value 4.6 4.7 4.8 4.9 5.0 5.1 5.2
accuracy 95.32 95.32 95.32 95.32 95.32 95.30 95.30

Table 4.3: Tag accuracy for the development set, for each threshold, with
PCFG h=0, v=1: baseline system tag accuracy, fixed threshold o, relative
proportional threshold p, and relative absolute threshold q.

a very small probability for that word was uniformly added to all of the
preterminals.

Tables 4.5 and 4.6 are the smoothed equivalents to Tables 3.4 and 4.1.
The smoothed results showed very similar gains to the unsmoothed ones,
fact that confirm the bias did not cause a very disturbing effect within the
results.

4.5 Concluding remarks

In this chapter we illustrated the use of our confidence measure in a real
parsing application: improving the accuracy of POS tagging by relabeling
edges with low confidence.

The results shown small but significative improvements for all tested
PCFGs. We introduced experimentation with thresholds to avoid relabeling
of tags with high confidence. Unfortunately, no improvements were observed
by these changes. Finally, results using a basic smoothing technique were
shown, which demonstrate that the bias introduced by the lack of smoothing
in the previous experiments was not significant.
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q threshold
baseline 95.75

value 0.05 0.10 0.15 0.20 0.25 0.30
accuracy 95.73 95.66 95.60 95.56 95.52 95.56

value 0.35 0.40 0.45 0.50 0.55 0.60 0.65
accuracy 95.49 95.49 95.43 95.37 95.32 95.32 95.32

value 0.70 0.75 0.80 0.85 0.90 0.95 1.00
accuracy 95.30 95.30 95.30 95.30 95.30 95.28 95.28

Table 4.4: Tag accuracy for the development set, for each threshold, with
PCFG h=0, v=1: baseline system tag accuracy, fixed threshold o, relative
proportional threshold p, and relative absolute threshold q.

Baseline Confidence M.
PCFG (size) CER CER AROC

h=0, v=1 (561) 18.1 12.8 1.79
h=0, v=2 (2,034) 16.7 12.8 1.76

Table 4.5: Smoothed results for the test set: Baseline CER, CER obtained
using the best development threshold and AROC, for each PCFG. Parame-
ters h and v are the vertical and horizontal markovization order. Grammar
size is the number of nonterminals.

Baseline Relabeling
PCFG (size) tag acc. tag acc. improvement

h=0, v=1 (561) 94.82 95.03 0.21 ± 0.10
h=0, v=2 (2,034) 95.03 95.37 0.34 ± 0.10

Table 4.6: Smoothed results for the test set: baseline system tag accuracy,
relabeling system tag accuracy, and increment in accuracy. Accuracy values
are bootstrap estimates with B = 104, and improvement interval is a 95%
confidence interval based on the standard error estimate [4].
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Chapter 5

Other applications

5.1 Introduction

In this chapter we lay out other applications of confidence measures in parsing
which at this stage we have in an early state of development. Section 5.2
explains a parsing algorithm which uses the confidence measure equation as
the objective function, and section 5.3 deals with computer aided parsing.

5.2 Confidence based parsing

In this section we present a proposal for a confidence based parsing algorithm,
in which we choose the derivation rule and cut point that maximizes the
posterior probability of the current constituent, from the root to the leaves.
Maximizing the posterior probability of the earlier and broader edges, will
lead us to the final small edges that are also correct.

Our approach is similar to the one presented by Goodman in [13], but here
it has been explicitly reformulated to fit our confidence measure framework.

We need a new definition of the inside probability, with the cut point and
children specified, which we will call the kBC-inside probability.

The kBC-inside probability

βA(i, j, k, B,C) = pG(A ⇒ BC,B ⇒∗ xi . . . xk, C ⇒∗ xk+1 . . . xj) (5.1)

is the total probability of the nonterminal A generating the string xi . . . xj,
using the rule A → BC and the cut point k.

The recursive equation show below relies on the classical inside formula-
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tion presented in section 1.2.3

βA(s, t, k, B, C)























p(A → xs) s = t = k

p(A → BC)
(

βB(s, k)

βC(k + 1, t)
) s < t, s ≤ k ≤ t

(5.2)

The kBC-inside probability can then be used calculate the kBC-confidence
measure, which is the posterior probability associated to a constituent, with
its first used production rule and the cut point (rather than just the con-
stituent alone).

For a given parse tree, we propose the following kBC-confidence measure
for each of its subtrees and cut point, the root being the nonterminal A, and
the leafs xi . . . xj, with the cut point of the A → BC production rule being
k

Ck,B,C(tAij) =
βA(i, j, k, B, C)αA(i, j)

βS(1, N)
(5.3)

Finally, we can obtain the tree that maximizes the confidence by recur-
sively using the following expression, starting from the root of the tree until
the leaves are reached

t̂Aij = arg maxk,B,C Ck,B,C(tAij) (5.4)

5.2.1 Pseudocode for the algorithm

Here we present the pseudocode for the confidence based parsing algorithm.
The first step is basically the CYK algorithm with the inside probability
calculations added. The second step performs the outside probability, kBC-
inside, and kBC-confidence measure calculations, and finds the tree by max-
imizing over the kBC-confidence trellis.

The running time is similar to the CYK algorithm, but the memory foot-
print requirements are much higher, as the kBC-inside and kBC-confidence
tables can be quite big.
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First step: Precalculating the inside tables

Input

G = (N, T, P, S) (in Chomsky Normal Form)

GS = (G,Pr) Pr : P →]0, 1]
∑

1≤j≤ni

Pr(Ai → αj) = 1 ∀Ai

x = x1 . . . xn ∈ T ∗

Output

Parse probability table p[i, j] (i ≤ i, j ≤ n)

p[i, j][A]! = NULL ⇐⇒ A →∗ xi . . . xj

Inside table e[i, j][A]

kBC-inside table e[i, j][A][k][B,C]

Method

forall i in 1 ≤ i ≤ n do

forall (A → xi) ∈ P do

p[i, i][A] = p[i, i][A][0, 0][0, 0][−][0, 0][−] = pr(A → xi)

e(A,< i, i, i,−,− >) = pr(A → xi)

e(A < i, i >) = pr(A → xi)

forall d in 1 ≤ d ≤ n − 1 do

forall i in 1 ≤ i ≤ n − d do

j = i + d

forall k in i ≤ k ≤ j − 1 do

forall (A → BC) ∈ P do

if (p[i, k][B]! = NULL) ∧ (p[k + 1, j][C]! = NULL) then

Calculate e(A,< i, j >)

Calculate e(A,< i, j, k, B,C >)

p[i, j][A] = pr(A → BC)

p[i, j][A][k][B][C] = pr(A → BC)

//p[i, j][A][i, k][B][k + 1, j][C] = pr(A → BC)

end if

if p[1, n][S]! = NULL then x ∈ L(G) else x /∈ L(G)

End method

(5.5)
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Last step: calculating the best parse tree

Input

G = (N, T, P, S) (in Chomsky Normal Form)

GS = (G,Pr) Pr : P →]0, 1]
∑

1≤j≤ni

Pr(Ai → αj) = 1 ∀Ai

x = x1 . . . xn ∈ T ∗

Output

Parse table t[i, j] (i ≤ i, j ≤ n)

Parse probability table p[i, j] (i ≤ i, j ≤ n)

Outside table f [i, j][A] (i ≤ i, j ≤ n)

kBC-Confidence table c[i, j][k][B,C] (i ≤ i, j ≤ n)

A ∈ t[i, j] ⇐⇒ A →∗ xi . . . xj

Method

Variables

Stack unexplored

unexplored.push back([(1, n, S)])

while unexplored.size() > 0 do

(i, j, A) = unexplored.pop()

Calculate f(A,< i, j >)

if (i! = j)

forall k : i < k < j; B,C : A → BC

c[i, j][A][k][B,C] = e(A < i, j, k, B,C >) ∗ f(A < i, j >)/e(S,< 1, n >)

t[i, j][A] = arg max
k,B,C

c[i, j][A][k][B,C]

unexplored.push back([(i, k, B)])

unexplored.push back([(k + 1, j, C)])

End method

(5.6)

5.3 Computer aided parsing

Tasks like the generation of newly annotated corpora, for English or other
languages, can greatly benefit from Computer Aided Parsing systems.
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Here we present the preliminary basis for a theoretical framework needed
in the development of a Computer Aided Parsing system. The search function
could be performed using the confidence based parsing algorithm presented
in the previous section. Additionally, confidence measures can play the role
of helping the user to visually identify edges that are likely to be incorrect.

Assume that using a chosen probabilistic grammar G as the model, the
parser analyzes the input sentence x = x1 . . . x|x| and produces the parse
tree t̂

t̂ = arg max
t∈T

pG(t|x) (5.7)

where pG(t|x) is the probability of parse tree t given the input string x using
model G, and T is the set of all possible parse trees for x.

In an interactive scenario, after obtaining the (incorrect) best tree t̂, then
the user modifies the incorrect edge tAij. When he does that, he chooses the
correct label for the span ij, and at the same time is validating all the edges
contained therein (tBmn , m >= i , n <= j). All these spans are then added
to the correct edge set tC because of this, the user must start working from
the leafs to the root. When the user modifies one edge, the parser provides
the best tree it can find for the non-yet-accepted edge set tN .

t̂N = arg max
tN∈T

pG(tN |x, tC)

= arg max
tN∈T

pG(tN , tC|x)

pG(tC)

= arg max
tN∈T

pG(tN , tC|x)

(5.8)

Since tN tP = t, this equation is very similar to equation (1.9), with the
difference that now the arg max search is performed over the non-yet-accepted
edge set tC instead over the complete edge set t. Thus, we can use the same
models, but modify the dynamic programming search part of the parsing
algorithms appropriately.
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Chapter 6

Concluding remarks

In this thesis, a new formal framework for calculating a purely statistical con-
fidence measure for probabilistic parsing has been introduced. Expressions
were provided to estimate the confidence based on the posterior probability,
using the inside and outside probabilities.

Results were obtained for the Penn Treebank corpus. Comparison of CER
values obtained using confidence measures with the baseline showed that the
proposed confidence measure discriminated correct edges from incorrect ones,
confirmed by similarly good AROC values. The advantage of the confidence
measure was notable in all PCFGs experimented with.

We introduced the idea of posterior probability accumulation for over-
lapping edges, inspired in the accumulation of similar time intervals for con-
fidence measures in Automatic Speech Recognition. However, no improve-
ments were obtained by this addition.

We also reported a real word experiment in which POS tagging was im-
proved using our confidence measure for relabeling edges with low confidence.
Statistical significant improvements were consistently obtained by our re-
labeling system. These experiments proved that the proposed method is
well-suited for edge confidence estimation, and that confidence measures are
useful in parsing related real tasks. We performed additional experiments us-
ing smoothing, that showed similar results to the unsmoothed experiments,
fact that confirms the bias owing to not using smoothing is small.

The work presented in this thesis has been submitted to the EACL ’09,
and is pending notification of acceptance.

Another applications of confidence measures such as confidence based
parsing, and computer aided parsing which are being worked on, were intro-
duced.

Possible future lines of work deal with the research of methods for ap-
plying confidence measures to improve state-of-the-art parsing systems, such

49
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as reranker systems; and the use of them in the aid of other parsing related
tasks, like coreference resolution.
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