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Abstract 

 

Background and Objective 

Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also 

referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for 

delays in subcutaneous insulin absorption in order to avoid initial post-prandial 

hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-

subject variability of insulin requirements. Most closed-loop systems compute this pre-meal 

insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. 

However, the performance of these calculators is limited due to a lack of adaptiveness in front 

of dynamic changes in insulin requirements. Despite some initial attempts to include 

adaptation within these calculators, challenges remain. 

 

Methods 

In this paper we present a new technique to automatically adapt the meal-priming 

bolus within an artificial pancreas. The technique consists of using an adaptive bolus 

calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop 

controller. Coordination between the adaptive bolus calculator and the controller was required 

to achieve the desired performance. For testing purposes, the clinically validated Imperial 

College Artificial Pancreas controller was employed.  

The proposed system was evaluated against itself but without bolus adaptation. The UVa-

Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult 

and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of 

insulin requirements and uncertainty on carbohydrate intake. 



 

Results 

Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves 

glycemic control when compared to its non-adaptive counterpart. In particular, the following 

statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean 

glucose 142.2±9.4 vs. 131.8±4.2 mg/dl; percentage time in target [70, 180] mg/dl, 82.0±7.0 

vs. 89.5±4.2; percentage time above target 17.7±7.0 vs. 10.2±4.1. Adolescents: mean glucose 

158.2±21.4 vs. 140.5±13.0 mg/dl; percentage time in target, 65.9±12.9 vs. 77.5±12.2; 

percentage time above target, 31.7±13.1 vs. 19.8±10.2. Note that no increase in percentage 

time in hypoglycemia was observed. 

 

Conclusion 

Using an adaptive meal bolus calculator within a closed-loop control system has the potential 

to improve glycemic control in type 1 diabetes when compared to its non-adaptive 

counterpart. 

 

Keywords: artificial pancreas; diabetes; case-based reasoning, run-to-run control 

 

1- Introduction	

 

Type 1 diabetes mellitus (T1DM) is an autoimmune condition characterized by elevated 

blood glucose levels due to the lack of endogenous insulin production. People with T1DM 

require exogenous insulin delivery to regulate glucose. Current therapies for T1DM 

management include the administration of multiple daily injections or continuous insulin 

infusion with pumps. However, such therapies are still suboptimal and require constant 

adjustment by the person with T1DM and carers. A closed-loop control system consisting of a 

continuous glucose sensor, an insulin pump and an algorithm that computes the required 

insulin dose at any instant [Trevitt 2015], has the potential to improve glucose control in 

people with T1DM. 

Recent studies evaluating a closed-loop system for automatic glucose control in type 1 

diabetes mellitus (T1DM), also referred to as artificial pancreas, have demonstrated safety 

and efficacy during in-clinic and ambulatory trials [Thabit 2015]. 

Ideally, a completely automated closed-loop control system would not require any user 

intervention, for example to announce meals, and would react in real-time to changes in blood 

glucose. However, delays in subcutaneous insulin absorption have led many investigators to 

include the use of a pre-meal insulin bolus within the artificial pancreas [Doyle 2014] (Figure 

1). The calculation of such pre-meal insulin bolus is usually done by means of a simple bolus 



calculator [Schmidt 2014], found in most insulin pumps. However, accurately computing a 

meal bolus remains a challenging task due to the high variability of insulin requirements in 

T1DM [Visentin 2015] and the uncertainty in carbohydrate estimations [Brazeau 2013]. 

 
Figure 1. Block diagram of a closed-loop system for glucose control incorporating a meal 

bolus calculator. 

 

The utilisation of an adaptive meal-priming bolus within an artificial pancreas has previously 

been proposed by El-Khatib et. al [El-Khatib 2015] showing some encouraging clinical 

results relative to an entirely reactive system with no meal-priming boluses. Such adaptive 

meal-priming insulin bolus consists of automatically adjusting the size of breakfast, lunch, 

and dinner doses by administering 75% of the average prandial insulin provided for previous 

meals at that time of day. However, this method has the limitation that assumes that 

carbohydrate intakes are fairly similar every day, which is not always the case. It also does 

not take into consideration intra-subject insulin variability due to factors such as exercise, 

alcohol, stress, weather, hormones, and variation in macronutrient meal composition. 

Outside the context of the artificial pancreas, the concept of an adaptive bolus calculator has 

been proposed Palerm et al. [Palerm 2007] by mean of Run-to-Run control [Wang 2009]. 

Although showing some promising preliminary clinical results, this approach has the 

limitation of being very sensitive to meal composition due to the employed control law. In 

[Tuo 2015], Tuo et al. propose a similar technique based on a high order Run-to-Run control 

scheme. The problem with this approach is that the employed control law does not account 

for hypoglycemia. Similar to the work proposed by El-Khatib et. al [El-Khatib 2015], these 

two approaches do not consider factors affecting insulin requirements, other than circadian 

variations. 

In this paper, we present a novel technique to automatically adjust the meal-priming 

bolus within an artificial pancreas. For this purpose, a Run-to-Run algorithm incorporating a 

new control law, which avoids some of the limitations of previously proposed techniques, is 

introduced. Then, Case-Based Reasoning [Aamodt 1994], an artificial intelligence technique 

which solve new problems based on the solutions of similar past problems, is employed to 



account for intra-subject insulin sensitivity variability. 

The proposed technique is based on an existing adaptive bolus calculator, referred to as 

Advanced Bolus Calculator for Diabetes (ABC4D) [Herrero 2015a, Herrero 2015b, Pesl 

2016a], which has been modified to fulfill the requirements of a closed-loop system for blood 

glucose control.  

For evaluation purposes, a novel version of the clinically validated Imperial College Bio-

inspired AP controller [Herrero 2012, Reddy 2014, Reddy 2015] (see Appendix A) and the 

UVa-Padova T1DM v3.2 system (T1DMS) simulation platform [Kovatchev 2009] were 

employed.  

 

2- Materials	and	Methods	
 

2.1 - Insulin Bolus Calculator  

A standard insulin bolus calculator [Schmidt 2014] is defined by the equation 

𝐵 = #$%
&#'

+ 	 (+,-+.)
&01

− 𝐼𝑂𝐵,  (1) 

where B (U) is the total calculated bolus, CHO (g) is the estimated amount of ingested 

carbohydrates, ICR (g/U) is the insulin-to-carbohydrate-ratio, GM (mg/dl) is the measured 

glucose at meal time, GT (mg/dl) is the glucose target to be achieved, ISF (mg/dl/U) is the 

insulin sensitivity factor, and IOB (U) is the insulin-on-board, which represents an estimation 

of the remaining active insulin in the body [Schmidt 2014]. 

The parameters of a bolus calculator (ICR, ISF) can be manually adjusted based on the time 

of the day (i.e. breakfast, lunch, dinner), exercise, or variation in hormonal cycles. However, 

these adjustments are often crude approximations and are rarely revised by the users (subject 

with T1DM or carer) on a regular basis. 

In order to provide the required adaptability within a bolus calculator to be able to cope with 

the significant intra-subject variability in T1DM management, a Case-Based Reasoning 

approach [Aamodt 1994] was proposed by Herrero and colleagues [Herrero 2015a]. 

 

2.2- An Adaptive Insulin Bolus Calculator  

The proposed adaptive meal bolus calculator for closed-loop control is based on an existing 

technique referred to as Advanced Bolus Calculator for Diabetes Management (ABC4D) 

[Herrero 2015a, Herrero 2015b]. ABC4D has previously been validated in silico [Herrero 

2015a, Herrero 2015b] and tested in clinical trials [Pesl 2016b, Reddy 2016].  

ABC4D enhances currently existing bolus calculators by means of a combination of Case-

Based Reasoning [Aamodt 1994] and Run-To-Run Control [Wang 2009]. Periodic use of 



continuous glucose monitoring (CGM) data is required in order to perform a retrospective 

optimization of the bolus calculator parameters as described in [Herrero 2015b].  

 

Case-Based Reasoning 

Case-Based Reasoning (CBR) is an artificial intelligence problem solving framework that 

solves a newly encountered problem, based on the information obtained from previously 

solved problems and stored as cases in a case-base. A case is defined by  

𝐶𝑎𝑠𝑒: = {𝑃𝑟𝑜𝑏𝑙𝑒𝑚:, 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:, 𝑂𝑢𝑡𝑐𝑜𝑚𝑒:}, (2) 

where Problemi is the description of the problem to be solved (insulin dosing for a breakfast 

with 70g of carbohydrates and planned moderate exercise); Solutioni is the solution to 

Problemi (administered insulin dose, i.e. parameters ICR and ISF of the bolus calculator); and 

Outcomei is the outcome resulting of applying Solutioni to Problemi (post-prandial excursion 

without hypoglycemia and mild hyperglycemia). 

CBR is usually described in four steps: Retrieve the most similar cases to the problem to be 

solved from the case-base; Reuse the solutions of retrieved cases; Revise the outcome of the 

applied solution to the new problem; and Retain the new problem if its solution is considered 

useful for solving future problems [Aamodt 1994]. Figure 2 show the four steps of the CBR 

cycle (Retrieve, Reuse, Revise, Retain) applied to the problem of meal insulin dosing using a 

bolus calculator. 

 
Figure 2. CBR cycle (Retrieve, Reuse, Revise, Retain) applied to the problem of meal insulin 

dosing using a bolus calculator. 

 

In ABC4D, cases are stored in a subject-specific case-base representing meal scenarios with 

significantly different insulin requirements (e.g. breakfast after exercise vs. dinner after 

watching a movie) and therefore, requiring a different meal insulin dose.  
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Cases are retrieved from the case-base by computing the Euclidian distance between the 

current problem and all the cases in the case-base and by selecting the case with the shorter 

distance [Herrero 2015a].  

If the retrieved case is different from the current scenario (e.g. breakfast with exercise vs. 

breakfast with exercise), its solution is reused (Reuse step) by applying a set of simple rules to 

guarantee that the applied solution is safe (e.g. increase ICR and ISF by 30%) and a new case 

is created for the new scenario. If the retrieved case is equal to the current scenario, then no 

new case is created. 

In order to perform the Revision step, the Run-to-Run algorithm proposed by Herrero et al. 

[Herrero 2015b] is employed, which adapt the solution of the retrieved, or newly created, case 

(i.e. ICR and ISF) when the glucose outcome is considered sub-optimal based on the analysis 

of the postprandial CGM measurements.  

Note that, unlike the traditional CBR approach [Aamodt 1994] where the solutions of the 

cases in the case-base are static, in ABC4D, such solutions (ICR and ISF) can be adapted if 

considered to be sub-optimal. This strategy partially solves the so-called problem of cold-start 

in CBR [Quijano-Sánchez 2012] (i.e. insufficient cases in the case-base) by initializing the 

case-base with a small set of sub-optimal, but safe, cases and letting the system converge 

towards an optimal solution while adapting solutions of existing cases and adding new cases 

to the case-base.  

 

Run-To-Run Algorithm 

Run-To-Run (R2R) is a control methodology designed to exploit repetitiveness in the process 

that is being controlled [Wang 2009]. Its purpose is to enhance performance, using a 

mechanism of trial and error. The simplest formulation of R2R may be, 

𝑢IJK = 𝑢I + 𝐾 · 𝑒𝑟𝑟𝑜𝑟,  (3) 

where u is the control action, K is a tuning gain and error is the tracking error defined as the 

difference between a measurement from the process and a set-point. 

The R2R algorithm used in revision step of the CBR algorithm in ABC4D is based on the 

hypothesis that, if the meal insulin bolus is not optimal, this is going to be reflected on the 

minimal glucose value achieved over the postprandial period, which in subjects with T1DM 

lasts around 5–6 h after a meal [ADA 2001]. Then, the meal insulin bolus can be adjusted 

based on the error between the minimal post-prandial glucose concentration (Gmin), obtained 

with a continuous glucose monitor over a predefined time window [t1, t2] (see Figure 3), and 

a glucose target (GT) preselected by the user or healthcare professional, which corresponds to 

the same glucose target in the bolus calculator (Equation (1)).  

Therefore, the adjusted bolus is calculated as 

𝐵IJK = 𝐵I + 𝐾 · 𝐺O:P − 𝐺Q ,  (4) 



where K·(Gmin- GT) is the extra insulin (Bextra1) that needs to be added (or subtracted) to the 

original bolus (Bk) in order to bring blood glucose levels back to the target (GT), and K is a 

tuning gain defined as K=1/ISF. 

In order to avoid unnecessary adaptations due to the inherent uncertainty in glucose 

management (e.g. sensor noise and carbohydrate estimation), a glucose target range [Gl, Gh] 

is defined where no adaptation is required if Gmin falls within this range (see Figure 3). For the 

same reason, the second term of Equation (1) (i.e. correction bolus) is set to zero if the 

glucose measurement at meal time (GM) falls within the glucose range [Gl, Gh]. Figure 3 

graphically represents how the error term (Gmin- GT) in Equation (4) is calculated. 

 
Figure 3. Graphical representation of the calculation of the error term (Gmin- GT) in Equation 

(4). tmeal corresponds to meal ingestion time. 

 

The proposed R2R algorithm for meal bolus adaptation is based on a second hypothesis that 

sustains that insulin-to-carbohydrate-ratio (ICR) and insulin sensitivity factor (ISF) are 

correlated [Walsh 2011] by the expression 

𝐼𝑆𝐹 = KSTU&#'
V.TX

,   (5) 

where 𝑊 is the weight of the subject (lbs).  

Thus, from Equation (1), the 𝐼𝐶𝑅 parameter can be updated according to the equation 

𝐼𝐶𝑅IJK =
#$%J [\[.

(]^_`/b._c)

(deJdfghij])J&%d
.  (6) 

However, Equation (6) is not fully suited to be used within the context of a closed-loop (CL) 

system for blood glucose control. Note that the CL controller can compensate for the lack of 

meal-priming bolus and bring glucose levels within the target range [Gl, Gh] over the time 

window [t1, t2], but the post-prandial glucose peak can still be significantly sub-optimal. 

Nonetheless, assuming that the CL controller is correctly tuned, the ABC4D R2R metric is 

still valid when Gmin falls below the target range. If Gmin falls within or above the target range, 

a new metric for adjusting ICR is required. 
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The new proposed metric is based on the hypothesis that, assuming that the CL controller is 

appropriately tuned, the insulin delivered by the CL controller during the postprandial period 

over the basal insulin, is insulin that should have been delivered by the meal-priming bolus. 

Thus, the bolus calculator parameters can be updated based on this additional insulin. 

 Let the insulin delivered by the CL controller over the basal insulin during a predefined 

postprandial time window [t3, t4] be defined as  

𝐵klmnoV 	= 	𝑚𝑖𝑛 𝐷 𝑘 ,mr
ms 𝐾V · 𝐵 , (7) 

where D(k) are the insulin doses delivered by the CL controller when glucose levels G(k) are 

above the glucose target range (G(k)>Gh), and K2 a tunable gain used to saturate Bextra2 to a 

maximum allowed dose of K2·B. Figure 4 graphically represents how Bextra2 in Equation (7) is 

calculated. Note that postprandial time windows [t1, t2] and [t3, t4] are tunable parameters 

and might have different lengths. 

 

 
Figure 4. Graphical representation of the calculation of the term Bextra2 in Equation (7). Solid 

and empty vertical bars represent insulin doses D(k) delivered by the CL controller when 

G(k)>Gh and G(k)<Gh respectively. 

 

Then, the updated ICR (ICRk+1), and consequently ISFk+1, can be easily obtained by replacing 

Bextra1 by Bextra2 in Equation (6). Note that, since the objective is to bring glucose levels within 

the target range [Gl, Gh], only the insulin delivered over G>Gh is considered in Equation (7).  

Finally, to filter potential outliers, the new ICR is obtained by computing the average of two 

consecutive ICR adaptations and the current value. Therefore, actual adaptations are only 

carried out every two adaptations for the same meal case. 

 

 

Finally, in order to integrate the presented adaptive meal bolus calculator (ABC) within a 

closed-loop (CL) controller two additional considerations need to be taken into account. First, 

since both the CL controller and the ABC include mechanisms to prevent insulin overdosing 
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(i.e. insulin-on-board), the insulin-on-board (IOB) term from Equation (1) and Equation (6) 

were omitted. Second, since the CL controller is meant to correct hyperglycemia during 

fasting condition, the correction bolus term from Equation (1) (second term) was omitted 

when GM> Gl. 

The reader is referred to Appendix A for details about the Imperial College Artificial 

Pancreas controller employed in this study. 

 

2.3- In Silico Evaluation under intra-day variability 

The latest version of the UVa-Padova T1DM simulator (v3.2) [Kovatchev 2009] was used to 

evaluate the proposed adaptive bolus calculator for closed-loop controllers. 11 adult subjects 

and 11 adolescent subjects were used for this purpose. The chosen basal insulin infusion rate 

for the virtual subjects was the one provided by the default insulin therapy of the simulator. 

The selected CGM and insulin pump models to perform the simulations were the Dexcom G4 

and Deltec Cozmo. A three-month scenario was selected in order to leave enough time to the 

meal bolus adaptation mechanism to converge. The selected daily pattern of carbohydrate 

dose intake was 7am (60g), 12pm (100g) and 6pm (80g). 

In order to test the benefits of the proposed technique, the Imperial College Artificial 

Pancreas (AP) controller with the adaptive meal bolus calculator (ABC-AP) was evaluated 

against the same controller without meal bolus adaptation (AP). 

 

Intra-day variability 

Intra-day variability was introduced to the simulator by modifying some of the parameters of 

the model described in [Dalla Man 2007]. In particular, meal variability was emulated by 

introducing meal-size variability (CV=10%), meal-time variability (STD=20) and uncertainty 

in the carbohydrate estimation (uniform distribution between -30% and +20%) [Brazeau 

2013]. Meal absorption rate (kabs) and carbohydrate bioavailability (f) were considered to be 

±30% and ±10% respectively. The 11 meals corresponding to each cohort were randomly 

assigned at each meal intake. Intra-subject variability in insulin absorption model parameter 

(kd, ka1, ka2) was assumed ±30% [Haidar 2013]. Insulin sensitivity parameters (Vmx, Kp3) were 

assumed to vary along the day following the sinusoidal pattern 

𝑝 𝑡 = 𝑝U + 0.3 · 𝑝U𝑠𝑖𝑛 2 x
Vr·TU

𝑡 + 2𝜋 · 𝑅𝑁𝐷,  (7) 

where p(t) is the corresponding time varying parameter (i.e. Vmx or kp3); p0 is the default 

parameter value in the simulator; and RND is a randomly uniformly generated number 

between 0 and 1. 

Note that despite all the variability introduced in the simulator, only three different cases were 

required within the CBR algorithm (i.e. breakfast, lunch and dinner).  



 

Controller tuning 

For this in silico study, the following tuning values were considered for the evaluation of the 

proposed algorithm: Gl = 80mg/dl; Gh=120 mg/dl; Gsp=100 mg/dl; t1=2h; t2=5h, t3=2h; 

t4=4h, K2=0.2. The rational for choosing such time windows was the fact that it usually takes 

about 2 hours to be able to say that a meal bolus is not enough to cover a meal due to the slow 

insulin pharmacokinetics (i.e. insulin-on-board), and that a postprandial glucose excursion for 

a standard mixed meal lasts around 5 hours [ADA 2001]. Note that these values could be 

individualized and such individualization could lead to superior glycemic outcomes. 

However, we wanted to prove that the proposed technique is still valid for a generic tuning. 

Regarding the CBR algorithm, since only three scenarios (i.e. cases) were considered 

(breakfast, lunch and dinner), the potential benefit of this algorithm could not be fully 

evaluated. Finally, the Imperial College Artificial Pancreas (AP) controller was tuned as 

described in Appendix A. 

 

Evaluation metrics 

The following glycemic metrics, which are widely accepted by the artificial pancreas 

community to evaluate glucose controllers [Maahs 2016], were selected for comparison 

purposes: mean blood glucose (BG); percentage time in glucose target range [70,180] mg/dl 

(%inT); percentage time below target (i.e. hypoglycemia) (%<T); percentage time above 

target (i.e. hyperglycemia) (%>T); glycemic variability indices: low blood glycemic index 

(i.e. risk of hypoglycemia) (LBGI), high blood glycemic index (i.e. risk of hyperglycemia) 

(HBGI), risk index (RI=LBGI+HBGI); and daily average of insulin delivered in units of 

insulin (TDI).  

 

3- Results	

Table 1 and Table 2 show the results corresponding to the 11 adults and 11 adolescents for 

each one of the evaluated control strategies (AP vs. ABC-AP). Figure 2 shows a comparison 

between AP and ABC-AP of the weekly evolution of three of the evaluated glycemic metrics 

(%inT, %<T and %>T) for the two studied cohorts. 

 

Table 1 – Glycemic results corresponding to the 11 adult subjects. 

 BG %inT %<T %>T RI LBGI HBGI TDI 

AP 142.2±9.4 82.0±7.0 
 

0.21±0.36 
 

17.7±7.0 3.7±1.3 
 

0.14±0.12 3.6±1.3 45.8±10.1 

ABC-AP 131.8±4.2 89.5±4.2 0.21±0.18 10.2±4.1 2.4±0.69 0.19±0.06 2.2±0.6 48.5±10.4 

p <0.001 <0.001 0.99 <0.001 <0.005 0.12 <0.005 0.002 



 

Table 2 - Glycemic results corresponding to the 11 adolescent subjects. 

 BG %inT %<T %>T RI LBGI HBGI TDI 

AP 158.2±21.4 65.9±12.9 2.2±2.7 31.7±13.1 
 

7.8±3.9 0.73±0.82 7.0±3.9 35.0±8.8 

ABC-AP 140.5±13.0 77.5±12.2 2.5±2.4 19.8±10.2 5.2±3.1 0.94±0.84 4.2±2.4 
 

38.3±10.2 

p <0.001 <0.001 0.6446 <0.001 <0.001 0.4 <0.001 <0.001 

 

 
Figure 2. Weekly evolution of the glycemic metrics %inT, %<T and %>T for the adult cohort 

(above) and the adolescent cohort (below) corresponding the AP controller without meal 

bolus adaptation (dashed red line) and the AP controller with meal bolus adaptation (ABC-

AP) method (solid blue line). Error bars represent the standard deviation. 

 

4- Discussion	

Integrating an adaptive meal bolus calculator within the Imperial College Artificial Pancreas 

controller (ABC-AP) significantly improves all the evaluated glycemic outcomes in a virtual 

T1D population (11 adults + 11 adolescents) when compared against the Imperial College AP 

without bolus adaptation over a three-month scenario with intra-day variability. It is 

important to note that the proposed adaptive meal bolus calculator is independent of the 

closed-loop controller employed and could be used within other artificial pancreas systems.  

It is also worth noting that the significant reduction in hyperglycemia was achieved without 

any increase in hypoglycemia – indeed in both the adult and adolescent there was a non-

significant reduction in time spent below target.  

Despite the significant intra-subject variability and uncertainty in carbohydrate intake 

estimation, the closed-loop controller was able to cope avoid remarkably well with 



hypoglycemia. Therefore, the inclusion of the adaptive meal bolus calculator did not 

introduce any improvement regarding time spent in hypoglycemia. 

Although statistically significant, the increase in total daily insulin delivered was not 

dramatically relevant (i.e. 3 U per day on average). This is an indicator that for this study, the 

most important factor for improving glycemic control is the way insulin was delivered and 

not the total amount.  

When analyzing the weekly evolution of the evaluated glycemic metrics, it was observed that 

glycemic metrics take about 8 weeks to converge without significant oscillations towards a 

steady state value and remain fairly stable along the simulation. This convergence rate could 

be increased by using a less conservative strategy when saturating/filtering the insulin-to-

carbohydrate ratio adaptation.  

In a real-life scenario, the convergence rate might take longer due to the consideration of 

more cases representing other scenarios such as exercise, alcohol consumption, hormone 

cycles or stress.  

Thanks to the additional intra-day variability introduced in the simulator, it was possible to 

evaluate the robustness of the proposed technique under conditions which might be not too far 

from a real-life scenario. Clinical trials to evaluate such a technique are currently in 

preparation. 

 

Appendix A - The Imperial College Artificial Pancreas Controller 

The Imperial College Artificial Pancreas (ICAP) controller has been previously in silico and 

clinically validated [Herrero 2012, Reddy 2014, Reddy 2015]. The original ICAP controller 

has as core component a mathematical model of the beta-cell physiology [Pedersen 2010]. In 

addition, it incorporates an insulin feedback term [Steil 2004] to avoid insulin stacking by 

compensating for delays associated with subcutaneous insulin delivery. It also includes a low-

glucose suspend (LGS) to minimize hypoglycemia. 

In this work, an updated version of ICAP is introduced, where the the original pancreatic 

insulin secretion model [Pedersen 2010] is replaced by a most recent model [Riz 2014]. The 

motivation for changing such model was it better performance in simulation studies as well as 

the reduced complexity of the new model which significantly speeds up the computations. 

The updated version of the ICAP controller is described by the equation 

𝑢 𝑡 = 𝑆𝑅 𝑡 + 	𝑆𝑅{ 	− 𝐾|𝐼}(𝑡),  (9) 

where SR is the pancreatic insulin secretion (SR) above basal secretion, SRb is the basal 

insulin secretion, and 𝐾|𝐼}	is the insulin feedback term, which is proportional (𝐾|) to the 

plasma insulin estimation 𝐼}	. 

As described in [Riz 2014], the pancreatic insulin secretion (SR) above basal secretion (SRb) 



is assumed proportional (m) to the amount X of readily releasable insulin in the beta-cells 

𝑆𝑅(𝑡) = 𝑚	𝑋(𝑡).  (10) 

The change in the insulin amount in the ready releasable pool (RRP) X results from the 

balance between the insulin secretion rate, the provision Y of insulin refilling the readily 

releasable pool, and recruitment of readily releasable insulin XD  
��(m)
�m

= −𝑚𝑋(𝑡) + 𝑌(𝑡) + 𝑋�(𝑡),									𝑋(0) = 0, (11) 

where XD is responsible for the first phase of secretion and is assumed to be proportional to 

the rate of increase of glucose via the constant parameter KD and expressed as 

𝑋�(𝑡) 	= 	
𝐾�

�+ m
�m

, 𝑖𝑓	 �+ m
�m

> 0;
0,																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (12) 

Remark: In the ICAP controller, the conditional statement in Equation (12) regarding the sign 

of the glucose derivative was eliminated. The rationale behind this modification is that delays 

in insulin absorption and glucose sensing due to the subcutaneous route make reducing 

insulin delivery when glucose is dropping desirable in order to minimize hypoglycemia.  

The provision Y generates the slower second phase and is controlled by glucose according to 

the equation 
��(m)
�m

= −𝛼 𝑌(𝑡) 	− 	𝛽(𝐺(𝑡) 	− 	𝐺{) ,									𝑌(0) = 0, (13) 

where Gb represents the basal value of glucose, and 𝛼 and 𝛽 are parameters. 

Parameter 𝛽 is employed as a personalised tunable gain proportional to the subject’s insulin 

sensitivity factor (ISF) used to overcome inter-subject variability. In particular, the following 

correlation was employed for this study, 𝛽 = 0.0225/ISF, where IFS is expressed in mg/dl 

per U. 

For simulation purpose, the model was discretized using Euler method with an integration 

step of one minute. To attenuate the delays associated with subcutaneous glucose sensing 

[Facchinetti 2014], glucose measurements are forecasted 20 minute ahead using a linear 

regression of the last 6 glucose values (i.e. the preceding 30 minutes). The basal insulin term 

(SRb) is set to the subject’s basal insulin infusion profile. To tackle the perturbation 

introduced by the meals, a meal announcement strategy is used consisting of giving an insulin 

bolus calculated using a standard bolus calculator [Schmidt 2014] immediately before the 

ingestion of the meal.  

To minimise hypoglycaemia, a low-glucose suspend (LGS) algorithm is incorporated on top 

of the controller. This LGS algorithm reduces the insulin delivery proposed by the controller 

to 50% if the forecasted glucose value falls below a predefined threshold (TH1) and suspends 

the insulin delivery if it falls below a second lower predefined threshold (TH1). To prevent 

rebound hyperglycaemia, the insulin suspension is limited to 90 minutes, after which time the 

insulin delivery is resumed to 50% for 30 minutes and after this period total suspension is 



activated again if the hypoglycaemic condition is satisfied. It is important to remark that the 

LGS algorithm does not affect the meal bolus insulin. Figure 2 shows a schematic diagram of 

the ICAP controller. 

 

 
Figure 2. Block diagram of the ICAP controller, where inputs are the amount of ingested 

carbohydrates, the glucose concentration from a continuous glucose sensor, and the basal 

insulin rate for a given subject, and the output in the insulin dose to be delivered by the 

insulin pump. 

 

Table 3 shows the values for the controller parameters employed for the simulation performed 

in this study. Such parameters where selected based on in silico tests. mean The mean 

population presented in [Hovorka 2004] were considered for the employed insulin absorption 

pharmacokinetic (PK) model to estimate plasma insulin concentration (𝐼}). 

 

Table 3. Values for the parameters employed for the simulation performed in this study 

Parameter Value 

m 0.5 

a m 

b (U per mg/dl) 0.0225/ISF 

KD (min) b·45 

Gb (mg/dl) 117 

Ky 50 

TH1 (mg/dl) 81 

TH2 (mg/dl) 99 
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