
Research Article
A Multiobjective Genetic Algorithm for the Localization of
Optimal and Nearly Optimal Solutions Which Are Potentially
Useful: nevMOGA

Alberto Pajares ,1 Xavier Blasco ,1 Juan M. Herrero ,1 and Gilberto Reynoso-Meza 2

1Instituto Universitario de Automática e Informática Industrial, Universitat Politecnica de Valencia, Valencia, Spain
2Industrial and Systems Engineering Graduate Program-PPGEPS, Polytechnic School, Pontifical Catholic University of
Paraná (PUCPR), Curitiba, PR, Brazil

Correspondence should be addressed to Alberto Pajares; alpafer1@upv.es

Received 26 February 2018; Accepted 2 August 2018; Published 2 October 2018

Academic Editor: Guido Caldarelli

Copyright © 2018 Alberto Pajares et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traditionally, in a multiobjective optimization problem, the aim is to find the set of optimal solutions, the Pareto front, which
provides the decision-maker with a better understanding of the problem. This results in a more knowledgeable decision.
However, multimodal solutions and nearly optimal solutions are ignored, although their consideration may be useful for the
decision-maker. In particular, there are some of these solutions which we consider specially interesting, namely, the ones that
have distinct characteristics from those which dominate them (i.e., the solutions that are not dominated in their neighborhood).
We call these solutions potentially useful solutions. In this work, a new genetic algorithm called nevMOGA is presented, which
provides not only the optimal solutions but also the multimodal and nearly optimal solutions nondominated in their
neighborhood. This means that nevMOGA is able to supply additional and potentially useful solutions for the decision-making
stage. This is its main advantage. In order to assess its performance, nevMOGA is tested on two benchmarks and compared
with two other optimization algorithms (random and exhaustive searches). Finally, as an example of application, nevMOGA is
used in an engineering problem to optimally adjust the parameters of two PI controllers that operate a plant.

1. Introduction

In industry, there are many situations where a design prob-
lem turns into an optimization problem. Moreover, it is usual
that these problems have conflicting objectives, which gener-
ates a multiobjective optimization problem (MOP) ([1–3]). A
MOP basically consists of three stages [4]: its definition, the
optimization problem (search), and the multicriteria
decision-making (MCDM). In an a priori multiobjective
approach [5], the stages of optimization and decision-
making are carried out at the same time, which results in a
single solution, since the desired preferences are defined
beforehand. On the contrary, in an a posteriori approach
[6], the search does not supply a single solution but a set of
optimal solutions (Pareto optimal solutions). This procedure
is more time-consuming, but it gives the designer informa-
tion about different solutions and provides them with a better

understanding of the problem, which will allow them to
make a well-informed decision in the decision-making stage.
On the other hand, an optimization problem may have
multimodal solutions ([7–9]) or nearly optimal solutions
([10, 11]) that are useful for the designer. These alternative
solutions, which have a similar or even the same performance
as the optimal solutions, are ignored in a traditional multiob-
jective approach, although they offer interesting and useful
information to the designer. In order not to lose this valuable
information, there must be taken into account not only the
optimal solutions but also the nearly optimal ones ([12]).

Including the multimodal and nearly optimal solutions in
the decision-making scenario increases the number of alter-
natives available to the designer. However, this poses two
issues. On the one hand, the number of solutions will
increase considerably and this may slow the algorithm to
the point of becoming inoperative. On the other hand, having

Hindawi
Complexity
Volume 2018, Article ID 1792420, 22 pages
https://doi.org/10.1155/2018/1792420

http://orcid.org/0000-0002-2036-2709
http://orcid.org/0000-0002-9737-2833
http://orcid.org/0000-0003-1914-7494
http://orcid.org/0000-0002-8392-6225
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/1792420

a huge amount of alternatives to choose makes the decision-
making process more complicated. For this reason, it is
important in most cases to reduce, in some way, the number
of solutions. The way in which this reduction is performed
will depend on the criterion or approach that the designer
decides to adopt, which, in turn, depends on the application
or the context. The existing algorithms usually perform this
reduction by means of a discretization of the objective space.
But this discretization is carried out without taking into
account any consideration of the location of the solutions
in the parameter space. The result of proceeding in this way
is that nearly optimal solutions which have distinct charac-
teristics could be neglected. Despite this drawback, this
method is suitable for some applications.

One possible approach, however, and the one that we
assume here, is the following: (1) finding a manageable num-
ber of solutions (so that the two issues mentioned above can
be avoided) but, at the same time, (2) without neglecting the
existing diversity in the characteristics of the nearly optimal
solutions. We think that this approach is common in many
applications and the existing algorithms do not serve in this
case, precisely because they do not pay attention to the
characteristics of the solutions. This is why, in this work,
we have developed an algorithm to provide the designer
with those solutions, among all the nearly optimal solu-
tions, that fulfill that particular criterion, namely, the non-
dominated in their neighborhood. These solutions are the
information that our designer finds more relevant. For
example, a designer adopting this approach will not want
to be given two nearly optimal solutions which have sim-
ilar characteristics (neighboring solutions), if one of them
is dominated by the other (i.e., worse for at least one of
the objectives and not better for the rest), as he or she will
logically choose the nondominated one. However, if these
two solutions have significantly different characteristics
(i.e., they are nonneighboring solutions), then both of
them will be interesting for the designer. If the designer
has these solutions available, they can analyze them a pos-
teriori (for example, by including new indicators or by
considering the physical sense of the solutions), in order
to decide which one is the most suitable. From now on,
we will call these solutions potentially useful solutions.
This does not mean that the rest of nearly optimal solu-
tions are useless, but simply that they are dispensable for
a designer who has adopted the approach specified before.
These potentially useful solutions are the ones that accord-
ing to his or her criterion gives them the most relevant
information, the information that they want to get.

An example where the specified approach could be the
chosen one and, therefore, it is desirable to find the nearly
optimal solutions nondominated in their neighborhood, is
when one of the objectives cannot be included in the optimi-
zation process due to its high computational cost. In this case,
it is possible to exclude that objective from the optimization
process and to obtain the set of optimal solutions for the rest
of objectives. When the optimization process has finished,
the excluded objective can be evaluated (only at the optimal
solutions previously obtained) and incorporated into the
decision-making process. The problem here (if a classical

MOP approach is followed) is that, since the excluded
objective is ignored in the search, there will be interesting
solutions (those with a good performance for the excluded
objective and with similar performance for the rest of objec-
tives) which will be missed. The new approach that we are
proposing in this paper finds them. Another situation where
it may also be interesting to examine nearly optimal solutions
nondominated in their neighborhood happens when sev-
eral objectives are aggregated, which is a way of defining
a priori preferences. When a MOP has a lot of objectives,
the decision-making stage becomes too complicated. That is
why sometimes several objectives are aggregated in groups
(for example, performance, cost, and robustness), in order
to simplify the problem. However, this approach could miss
valuable solutions for the designer. This loss of information
can largely be avoided by finding the nearly optimal solutions
nondominated in their neighborhood.

So, finding the nearly optimal solutions nondominated
in their neighborhood solves the lack of information that
typically appears in a classical multiobjective approach.
Moreover, taking into account these solutions has two
additional advantages: (1) it enables the designer to reassess
the design objectives—if there are nearly optimal solutions
which display certain characteristics that are absent in the
optimal ones, this could mean a poor formulation of the
objectives—and (2) it detects the existence of overparameter-
ization (i.e., when the number of parameters is higher than
needed, which could result in a man-made multimodality).

In this work, a new algorithm is presented, nevMOGA,
which is aimed at finding the sets of optimal solutions and
nearly optimal solutions nondominated in their neighbor-
hood. There exist several algorithms in the literature that
consider nearly optimal solutions as well ([13, 14]). However,
they use these solutions simply as a means to compute an
approximation of the Pareto front, whereas nevMOGA dis-
criminates them and returns some of them (the nondomi-
nated in their neighborhood) as its outcome. nevMOGA is
based on an algorithm called evMOGA, which is described
in [15]. This new algorithm includes additional parameters
to define when a solution is considered to be a nearly optimal
solution and the size of a neighborhood.

2. Background

In this section, the concepts of multiobjective optimization
problem and Pareto set are formally introduced, and the
problem which we are dealing with is graphically explained
(i.e., the problem of finding optimal and nearly optimal solu-
tions nondominated in their neighborhood).

A multiobjective optimization problem (A maximization
problem can be converted into a minimization one. For
each of the objectives that have to be maximized, the trans-
formation: max f i x = −min −f i x can be applied.) can
be stated as follows:

min  
x∈Q

f x

subject to xi ≤ xi ≤ xi, i = 1,… , k ,
1

2 Complexity

where x = x1,… , xk is defined as a decision vector in the
domain Q ⊂ Rk and f : Q→ Rm is defined as the vector of
objective functions f x = f1 x ,… , f m x . xi and xi are
the lower and upper bounds of each component of x.

Definition 1 (dominance [16]). A decision vector x1 is
dominated by any other decision vector x2 if f i x

2 ≤ f i x
1

for all i ∈ 1,… ,m and f j x
2 < f j x

1 for at least one j, j ∈
1,… ,m . This is denoted as x2⪯x1

Definition 2 (Pareto set). The Pareto set (denoted by PQ) is
the set of solutions in Q which are not dominated by another
solution in Q:

PQ ≔ x ∈Q ∣ ∄x′ ∈Q x′⪯x 2

Definition 3 (Pareto front). Given a set of Pareto optimal
solutions PQ, the Pareto front f PQ is defined as

f ≔ f x ∣ x ∈ PQ 3

Figure1 showsanexample to clarifywhatwemeanbyopti-
mal solutions, nearly optimal solutions, and nearly optimal
solutions nondominated in their neighborhood in a monoob-
jective (Figure 1(a)) and a multiobjective (Figure 1(b)) prob-
lem. Let us consider the monoobjective case. In theory, all the
nearly optimal solutions (grey lines) could be interesting for
the decision-maker. However, considering all these solutions
makes the decision-making stage too difficult. Moreover,
manyof these solutions (neighborhood1)willhavevery similar
characteristics to the optimal one (x1), since they are close to it
in the parameter space. This, in addition to the fact that they
have a worse performance than the optimal one, leads us to
consider them, under the criterion assumed, less relevant and
in some cases dispensable. The rest of them (neighborhood2)

will have similar characteristics to x2, which is the best in nei
ghborhood2 and, therefore (always under the specified crite-
rion), they could be dispensable. Consequently, the solutions
which provide more relevant information (potentially useful
solutions) arex1 andx2, i.e., theoptimal solutionand thenearly
optimal solution nondominated in its neighborhood. Like-
wise, in themultiobjective case, all thenearly optimal solutions
(grey area) could be considered but, again, taking into account
all of them would significantly complicate the decision-
making stage while most of these solutions do not add much
relevant information to theprocess. So, the setsSETn1 (optimal
solutions) and SETn2 (nearly optimal solutionsnondominated
in their neighborhood) provide themost valuable information
to the designer without unnecessarily complicating the
decision-making process.

An example of the usefulness of finding the nearly opti-
mal solutions nondominated in their neighborhood is when
one of the objectives cannot be included in the optimization
process due to its high computational cost. The usual way
to cope with this difficulty consists of solving the MOP for
the rest of objectives and then computing the excluded one
only for the optimal solutions. The problem with that (if a
classical MOP approach is followed) is that there will be
nearly optimal solutions with an outstanding performance
with respect to the excluded objective (and therefore worth
considering) that will be ignored. On the other hand, if one
is not willing to miss all those interesting solutions and
decides to take into account all the nearly optimal solutions,
then the time-consuming objective will be evaluated at a vast
number of solutions, many of which are not even worth
considering, as they will have similar characteristics to
the optimal solutions (because they are neighboring solu-
tions). In summary, approaching this kind of problems with
a classical strategy leads to either neglecting potentially useful
solutions or having to evaluate a time-expensive objective at
many dispensable solutions, whose inclusion in the decision-
making stage will, furthermore, unnecessarily complicate the

Neighborhood1

Neighborhood2

Neighborhood3

Optimal and nearly
optimal solutions

f
(x
)

x3x1 x2

x

f(x1)

f(x2)

f(x3)

(a)

f
2(
x
)

Neighborhood2

Neighborhood3

Optimal and nearly
optimal solutions

Optimal and nearly
optimal solutions

f(SETn3)

x
2

SETn2

SETn3

Neighborhood1
x1

SETn1

f(SETn2)

f1(x)

f(SETn1)

(b)

Figure 1: A monoobjective example (a) and a multiobjective example (b). In the monoobjective problem, the optimal solution is x1 (blue
triangle) and the nearly optimal solution nondominated in its neighborhood is x2 (green triangle). In the multiobjective problem, the
optimal solutions are the ones in set SETn1 (blue front) and the nearly optimal solutions nondominated in their neighborhood are the
ones in SETn2 (green front).

3Complexity

decision.With our new approach, these problems can be over-
come. Let us look at it with a concrete example.

Let us suppose a MOP with three objectives f x = f1 x
f2 x f3 x tominimize. Table 1 shows five possible solutions
to the problem (x1 to x5). In a classicalMOP, all these solutions
belong to the Pareto set (except either x1 or x2, as they are
multimodal solutions and, therefore, one of them would be
discarded). Now, assume that the objective f3 is computa-
tionally impracticable, i.e., its incorporation into the opti-
mization process is impossible. For this reason, the
search stage has to be solved for the first two objectives
f x = f1 x f2 x and then f3 will be evaluated only
at the solutions previously obtained. First, note that in a
classical MOP, only the Pareto front is obtained, so either
x1 or x2 (multimodal solutions) and x3 would be discarded,
although x1, x2, and x3 seem to be good solutions, since they
are nearly optimal solutions in different neighborhoods and
thus worth considering.

With our new approach, x1, x2, and x3 would also be
found, because they are nondominated in their neighbor-
hood; in other words, they have significantly different param-
eter values. x4 would be discarded since it is dominated by x1

and they are neighboring solutions, i.e., they are expected to
have similar characteristic. x4 has a better performance in
f3 than x1; however, this improvement is insignificant (if
the neighborhoods are well defined) as they are very similar
solutions (neighboring solutions). Through this new proce-
dure, from all the neighboring solutions, only those with
the best performance over the objectives considered in the
optimization process (in this example, f1 and f2) would be
selected. The solution x3 displays a better value for f3 than
x1 and x2 (which are in different neighborhoods) but worse
values for f1 and f2 (this is why it is a nearly optimal solution)
and, therefore, in a classical MOP, it would be discarded,
although its analysis may be interesting for the decision-
maker. Logically, x5 would be ruled out since it is much worse
for f1 and f2, although it has a better value for f3. With the
proposed approach, f3 is only evaluated at x1, x2, and x3

but not at x4 (x1 is preferred instead) and x5 (which is dis-
carded, since it is not a nearly optimal solution) and, conse-
quently, the computational burden is alleviated. Therefore,
thanks to this new approach; it is possible to reduce the com-
putational cost while obtaining the potentially useful solu-
tions for the designer.

Another example that shows the usefulness of obtaining
also the nearly optimal solutions nondominated in their

neighborhood can be found when several objectives are
aggregated, which is a common procedure when there are a
great number of them. Let us suppose that a MOP originally
has four objectives f x = f11 x f12 x f21 x f22 x to min-
imize. Let be x1 to x4 (Table 2) the four solutions to this
MOP. In a classical MOP, all these solutions would be
selected to form the Pareto set.

If the designer wanted to reduce the number of objec-
tives, a possibility would be to add f11 and f12 to obtain f1
(f1 = f11 + f12) and f21 and f22 to obtain f2 (f2 = f21 + f22).
But now, only x1 or x2 (multimodal solutions) would be the
optimal solution (in a classical MOP). Let us suppose that
the algorithm chooses x1 and discards x2. In this case, x2

and x3 are discarded, although they are interesting solutions
for the designer. However, if the algorithm keeps also the
nearly optimal solutions nondominated in their neighbor-
hood, x2 and x3 would not be excluded with the aggregated
objectives. Finally, x4 presents a poor performance for both
f1 and f2 (clearly dominated) and, therefore, it does not seem
to be a good solution.

In conclusion, when the objectives are aggregated, a clas-
sical MOP finds only one solution from the three that are
interesting and the other two are missed. Therefore, finding
the nearly optimal solutions nondominated in their neigh-
borhood allows the designer to aggregate objectives (and, in
this way, simplifying the decision-making stage) without los-
ing potentially useful solution.

In summary, as seen in the examples, the multimodal
solutions and the nearly optimal solutions which are signifi-
cantly different from those which dominate them are solu-
tions that can be potentially useful for the designer during
the decision-making stage. This additional information is
not provided to the decision-maker when these kinds of
MOPs are approached in a classical manner.

3. Materials and Methods

In this section, we present in detail a novel algorithm, nev-
MOGA, which is the main contribution of this work, as well
as the metric and benchmarks that have been used to demon-
strate its correct functioning. Let us begin with the new set of
interest and its discretization, which is performed by nevMOGA.

3.1. New Set of Interest. The nevMOGA algorithm is aimed at
finding not only the optimal solutions but also the nearly
optimal solutions nondominated in their neighborhood. In
the following, both sets of solutions are defined.

Table 1: Analysis of a MOP example with three objectives (f1 x to
f3 x) and five possible solutions (x1 to x5).

Solutions f1 x f2 x f3 x

x1 =[0 1] 0.2 0.2 0.2

x2 =[0.5 0.5] 0.2 0.2 0.2

x3 =[0.75 0.75] 0.201 0.201 0.19

x4 =[0 0.99] 0.201 0.2 0.199

x5 =[0.25 0.75] 1 1 0.15

Table 2: Analysis of a MOP example with four objectives (f11 x ,
f12 x , f21 x , and f22 x) and four possible solutions (x1 to x4)
where the MOP is reduced by aggregating f11 and f12
(f1 = f11 + f12) and f21 and f22 (f2 = f21 + f22).

Solutions f11 x f12 x f1 x f21 x f22 x f2 x

x1 =[0 0] 0.2 0.2 0.4 0.2 0.2 0.4

x2 =[0 1] 0.18 0.22 0.4 0.24 0.16 0.4

x3 =[1 0] 0.179 0.221 0.4 0.241 0.161 0.402

x4 =[1 1] 0.9 0.199 1.119 0.9 0.9 1.8

4 Complexity

Definition 4 (−ϵ-dominance [17]). Define ϵ = ϵ1,… , ϵm as
the maximum acceptable performance degradation. A deci-
sion vector x1 is −ϵ-dominated by another decision vector
x2 if f i x

2 + ϵi ≤ f i x
1 for all i ∈ 1,… ,m and f j x

2 +
ϵi < f j x

1 for at least one j, j ∈ 1,… ,m . This is denoted

by x2⪯−ϵx
1.

Definition 5 (−ϵ-Pareto set [18]). The −ϵ-Pareto set
(denoted by PQ,ϵ) is the set of solutions in Q which are
not −ϵ-dominated by another solution in Q:

PQ,ϵ ≔ x ∈Q ∣ ∄x′ ∈Q x′⪯−ϵx 4

Definition 6 (neighborhood). Define n = n1,… , nk as the
maximum distance between neighboring solutions. Two
decision vectors x1 and x2 are neighboring solutions
(x1= nx

2) if ∣x1i − x2i ∣ < ni for all i ∈ 1,… , k .

Definition 7 (n-dominance). A decision vector x1 is n-dom-
inated by another decision vector x2 if they are neighbor-
ing solutions (Definition 6) and x2⪯x1. This is denoted by
x2⪯nx

1.

Definition 8 (n-Pareto set). Then-Pareto set (denotedbyPQ,n)
is the set of solutions of PQ,ϵ which are not n-dominated by
another solution in PQ,ϵ :

PQ,n ≔ x ∈ PQ,ϵ ∣ ∄x′ ∈ PQ,ϵ x′⪯nx 5

The set PQ,n (optimal solutions and nearly optimal solu-
tions nondominated in their neighborhood) is the new set of
interest, i.e., what nevMOGA has to find. In order to clarify
its nature,wewill use a graphical example (see Figure 2). In this
example, the set of interest is formedby theunionofPQ andPQ′ .

PQ′ is a set of solutions nondominated in their neighborhood

which belong to the set PQ,ϵ. PQ″ is a set of solutions non-
dominated in their neighborhood which do not belong to
the set PQ,ϵ. x

4 is not a nearly optimal solution, and, there-
fore, it will be discarded since it does not have the desirable
performance (PQ,ϵ). x

2 is n dominated (i.e., dominated by a
neighboring solution) by x1 and, as a result, this alternative
provides less relevant information and, for this reason, is
discarded. x3 is dominated by nonneighboring solutions
but not by neighboring solutions, so it belongs to PQ,n,

and the same can be said of any solution in PQ′ . x1 belongs
to the optimal set PQ. In summary, nevMOGA searches

for the set PQ,n, in our example, PQ ∪ PQ′ .
The set PQ,n clearly depends on the values given to the

new parameters ϵ (Definition 4) and n (Definition 6).
Given that in most problems, the objectives have a physical
sense, it is possible to decide a priori how much perfor-
mance we are willing to lose and to define ϵ consequently.
Similarly, when the decision variables x have a physical
sense, the parameter n can also be set intuitively. By setting
n, the designer establishes to what extent the two solutions
are considered “similar”; in other words, setting n defines
the neighborhood.

If the decision variables do not have a physical sense and
it is not evident how to choose n, it is still possible to follow a
simple procedure (see Figure 3) which will help us to do it if ϵ
has been previously set. First, a reference solution xR is cho-
sen. Second, in the objective space, a rectangle is defined with
the center at f xR and twice ϵ in width and in height. Then,
starting from xR (in the search space), the value of each var-
iable decision is increased and decreased independently, until
the solution leaves the rectangle which was previously
defined. Finally, each element of the vector neighborhood n
is set to the minimum distance between ϵ and the first solu-
tions (one for each direction) which left the mentioned

f1(x)

f
2(
x
)

f(P′Q)

f(x1)

f(PQ,𝜖)

f(PQ,n) := f(PQ) U f(P′Q)

f(PQ)

f(x3)

f(x4)

f(P″Q)

f(x2)

𝜖

(a)

x1

x
2

x1

Neighborhoodx2

Neighborhoodx3

Neighborhoodx4

PQ
P″Q

x2

x4

x3 P′Q

PQ,𝜖

PQ,n := PQ U P′Q

n1n2

(b)

Figure 2: Graphical example. The set of interest is PQ,n. The set of optimal solutions is PQ, and the set of nearly optimal solutions

nondominated in their neighborhood is PQ′ . x2 is discarded since it is n dominated (i.e., dominated by a neighboring solution) by x1

(neighborhoodx2). The solutions in PQ′′ are discarded since their performances fall out of the area of acceptable performance (grey area).

5Complexity

rectangle (n1 and n2 in Figure 3). Through this procedure, we
manage to quantify what excursion is needed in the search
space in order to get significant changes in the objective space
and, in this way, we are able to define n when no other crite-
rion is available.

3.2. Discretization of the New Set of Interest. Another issue is
that PQ,n may contain infinite solutions, so it is necessary to
discretize it and to obtain a finite set of solutions (P∗

Q,n) which
are adequately distributed. In order to carry out this task, the
concepts of box, n_box, and their associated dominances
have to be defined beforehand.

Definition 9 (box [19]). Let δi = fmax
i − fmin

i /n boxi, with
n box = n boxi,… , n boxm for all i ∈ 1,… ,m . Given a
decision vector x, box x is defined as the vector box x =
box1 x ,… , boxm x , where

boxi = ∀i ∈ 1,… ,m , 6

for δi > 0, and where fmax
i and fmin

i are the maximum
and minimum values of f x .

Definition 10 (box dominance [19]). Given two decision vec-
tors x1 and x2 whose boxes are box x1 and box x2 , respec-
tively, x1 is said to box dominate x2, box x1 ⪯box x2 , if
boxi x1 ≤ boxi x2 for all i ∈ 1,… ,m and boxj x1 < boxj
x2 for at least one j, j ∈ 1,… ,m .

Definition 11 (n-box dominance). Given the neighboring
decision vectors x1 and x2 whose boxes are box x1 and
box x2 , respectively, x1 is said to n-box dominate x2, box
x1 ⪯nbox x2 , if box x1 ⪯box x2 .

The algorithm only keeps non-n-box-dominated solu-
tions. A box cannot contain two neighboring solutions.
When a neighboring solution is found in the same box,
the nearest solution to the ideal corner (the lower left
one) will be chosen (see Figure 4, d1 and d2) and the rest
will be discarded. Figure 4 shows how the algorithm per-
forms the discretization. x1 is n-box dominated (i.e., box
dominated by a neighboring solution) by x2 and, therefore,
it is discarded. x3 is box dominated but not n-box domi-
nated (since x2 and x3 are nonneighboring solutions), so
it is an alternative, as it is a nearly optimal solution. x4,
x5, and x6 are in the same box. Two neighboring solutions
cannot be in the same box, so either x4 or x5 has to be
eliminated. In this case, x4 is eliminated because it has a
greater distance to the ideal corner than x5 (d2 < d1). x

6

is a good alternative because it is a nearly optimal solu-
tion, it is not n-box dominated and it does not belong
to either the neighborhood of x4 or x5.

The algorithm searches a discretization of the set of
interest. This new discrete set is P∗

Q,n. The maximum num-
ber of solutions (in the worst case) of P∗

Q,n is ∣P∗
Q,n∣ (see 7).

Similarly, P∗
Q and P∗

Q,ϵ are the discrete sets of PQ and PQ,ϵ,
respectively.

P∗
Q,n ≤

m
i=1 ϵi/δi + nboxi

maxmi=1 ϵi/δi + nboxi

k

j=1

xj − xj
ni

7

3.3. Description of nevMOGA. The algorithm nevMOGA is
based on the algorithm evMOGA [15]. The main difference
between them is that nevMOGA computes an additional
population, namely, the set of nearly optimal solutions

f1(x)

f
2(
x
)

Pareto set
xR (reference solution)
Nearly optimal olutions
Solutions leaving the rectangle

𝜖

(a)

x1

x
2

n1 := min (dist1, dist2)

n2 := min (dist3, dist4)

dist4

dist3

dist1 dist2

(b)

Figure 3: Determination of the vector neighborhood n when no other criterion is available. Each element of the vector n (n1 and n2) is set to
the minimum distance between xR and the first solutions (one for each direction) which leave the rectangle.

6 Complexity

nondominated in their neighborhood (subfront(t)). Its main
characteristics are the following:

(i) It is an elitist algorithm with two archives where
the individuals of P∗

Q and P∗
Q,n/P∗

Q are stored. It
has also an additional, auxiliary population formed
by the new individuals which are created during
the process

(ii) It is a real-coded algorithm and uses crossover
(extended intermediate crossover) and mutation
(random Gaussian distribution) operators

The algorithm manages four populations (see Figure 5):

(1) P t : by means of the population P t , the search
space is explored, with the aims of obtaining the solu-
tions of PQ,n and having diversity in the set of solu-
tions. The number of individuals in this population
is constant and equal to NindP

(2) Front t is the archive where P∗
Q is stored, i.e., a

discrete approximation of the Pareto front. The
size of this population varies but is always less
than or equal to a given maximum size which
depends on the number of boxes previously defined
by the user

(3) Subfront t is the archive where P∗
Q,n/P∗

Q is stored,
i.e., the nearly optimal solutions nondominated in
their neighborhood. Its size is variable but bounded,
depending on the number of boxes

(4) G t is an auxiliary population where the new indi-
viduals generated by the algorithm in each itera-
tion are stored. The number of individuals of this
population is NindG, which must be multiple of 4

Now that the archives front t and subfront t have
been presented, it is possible, with the help of the prior
definitions, to establish the conditions that a solution must
fulfill in order to enter them. This is the aim of the follow-
ing two additional definitions:

Definition 12 (inclusion of x in front t). Given a solution x
and the archive front t , x will be included in front t if
and only if

∄x∗ ∈ f ront t box x∗ ⪯ box x ∨ box x∗

= box x ∧ dist x∗ ≤ dist x ,
8

where dist z is the distance from z to the ideal corner (lower
left) of the box (see Figure 3, d1 and d2). Additionally, if x is
included in front t , then all the solutions x∗ that fulfill the
following condition will be eliminated from front t :

f(x5)

f(x4)

f(x2)

f(x1)

f(x3)

f(x6)

𝛿2

𝛿1

Box

f1
maxf1

min

f1 (x)

f2
min

f2
max

f 2
 (x

)

(a)

x
2

x1

Neighborhoodx5

Neighborhoodx1

x5

x1

x6
x3

x4 x2

(b)

Figure 4: An example of discretization of a MOP with nevMOGA. x1 is discarded because it is n-box dominated (i.e., box dominated by
neighboring solutions) by x2. x4 is eliminated since there is a neighboring solution (neighborhoodx5) in the same box (x5) with less
distance to the ideal corner (d2 < d1).

Update

Initialize t=0

Front (t)

Subfront (t)

P(t)

G(t)

Cr
ea

te

Save

Figure 5: Structure of nevMOGA, formed by four populations.

7Complexity

box x ⪯ box x∗ ∨ box x = box x∗ ∧ dist x ≤ dist x∗

9

Then, it will be determined whether any of these solu-
tions x∗ which have been eliminated from front t is
included in subfront t or not, by applying Definition 13.
Furthermore, all the solutions x′ that fulfill the following con-
dition will be eliminated from subfront t :

x⪯−ϵx′ 10

Definition 13 (inclusion of x in subfront t). Given a solution
x such that x ∉ f ront t , x will be included in subfront t if
and only if

∄x∗ ∈ f ront t x∗⪯−ϵx ∨∄x
∗ ∈ f ront t

⋃ subfront t box x∗ ⪯n box x

∨ box x∗ = nbox x ∧ dist x∗ ≤ dist x

11

Additionally, if x is included in subfront t , then all the
solutions x∗ that fulfill the following condition will be elimi-
nated from subfront t :

box x ⪯ nbox x∗ ∨ box x = nbox x∗ ∧ dist x ≤ dist x∗

12

In order to maintain the diversity of solutions in P∗
Q,n,

it is necessary that the population P t be diverse too.
For this, P t is permanently ordered by using the niche
count, which is an indicator of how densely populated a
solution is in P t (Definition 14). In this way, during
the processes of selection and substitution, the solutions
in the less populated areas have a higher probability of
being chosen to generate new individuals, whereas those
in the more populated areas have a higher probability
of being substituted.

Definition 14 (niche count [20]).

nichei = 〠
Nindp

i=1
sh dij , 13

where sh dij is the sharing function, which gives a measure
of how similar two elements in a population are and is
defined by

sh dij =
〠
k

j=1
1 −

x1j − x2j

nj
, if x1 = nx

2,

0, otherwise

14

The algorithm pseudocode is the following:
Lines 3, 6, 8, 10, 13, 14, and 15 of the previous pseudo-

code constitute the changes which have been added to
evMOGA, the algorithm on which ours is based. Next, the
most important steps in nevMOGA are explained:

(i) Lines 7 and 12 (Algorithm 2). Here, it is determined
whether a new individual is included in f ront t or
not. For this, the individual has to fulfill Definition
12. If the new individual is finally included in
front t , then it is analyzed whether its inclusion
eliminates other individuals from front t (in which
case it will be established whether they must be
included in subfront t) and from subfront t

(ii) Lines 8 and 13 (Algorithm 3). Here, it is determined
whether a new individual which was not included in
front t has to be included in subfront t or not. For
this, the individual has to fulfill Definition 14. If the
new individual is included in subfront t , then it is
analyzed whether its inclusion eliminates other indi-
viduals from subfront t

1: t:=0;
2: Front (t):= ∅;
3: Sub-Front (t):= ∅;
4: Create initial population P (t) at random
5: Calculate f (x) ∀ x ∈ P (t)
6: Order population P (t) according to the niche count ⊳ Definition 14
7: Inclusion of the individuals of P (t) in Front (t) ⊳ using Algorithm 2
8: Inclusion of the individuals of P (t) ∉ Front (t) in Sub-Front (t) ⊳ using Algorithm 3
9: for t≔ 1:Number of iterations
10: Create population G (t) ⊳ using Algorithm 4
11: Calculate f (x) ∀ x ∈ G (t)
12: Inclusion of the individuals of G (t) in Front (t) ⊳ using Algorithm 2
13: Inclusion of the individuals of G (t) ∉ Front (t) in Sub-Front (t) ⊳ using Algorithm 3
14: Update P (t) with the individuals of G (t) ⊳ using Algorithm 5
15: Order population P (t)
16: end for

Algorithm 1: Main pseudocode

8 Complexity

(iii) Line 10 (Algorithm 4). The population G t is cre-
ated by using the following procedure:

(1) Two individuals are chosen at random, one from
front t (xF) (where any individual has the same

1: if ∃ x∗ ∈ Front t x∗⪯−ϵx then
2: return

3: else if ∃ x∗ ∈ Front t ⋃ Sub − Front t Box x∗ ⪯nBox x then
4: return
5: else if ∃ x∗ ∈ Front t Box x∗ = nBox x & dist x∗ ≤ dist x then
6: return
7: end if
8: Include x in Sub-Front (t)
9: if ∃ x∗ ∈ Sub − Front t Box x ⪯nBox x∗ then ⊳ Remove non-nearly-optimal solutions
10: Remove x∗ from Sub-Front (t)
11: else if ∃ x∗ ∈ Sub − Front t Box x = nBox x∗ & dist x ≤ dist x∗ then
12: Remove x∗ from Sub-Front (t) then
13: end if

Algorithm 3: Inclusion of x in subfront t . ⊳ Definition 13

1: if ∃ x∗ ∈ Front t Box x∗ ⪯Box x then
2: return
3: else if ∃ x∗ ∈ Front t Box x∗ = Box x & dist x∗ ≤ dist x then
4: return
5: end if
6: Include x in Front (t)
7: if ∃ x∗ ∈ Front t Box x ⪯Box x∗ then ⊳ Remove non-optimal solutions
8: Remove x∗ from Front (t)
9: else if ∃ x∗ ∈ Front t Box x = Box x∗ & dist x ≤ dist x∗ then
10: Remove x∗ from Front (t)
11: end if
12: if ∃ x∗ ∈ Sub − Front t x⪯−ϵx

∗ then ⊳ Remove non-nearly-optimal solutions
13 Remove x∗ from Sub-Front (t)
14: end if

Algorithm 2: Inclusion of x in front t . ⊳ Definition 12

1: Choose xF ∈ Front (t) ⊳ Random selection
2: Choose xP1 ∈ P (t) ⊳ According to an exponential distribution (μ =NindP/10)
3: u≔ random(1)
4: if u> Pc/mthen⊳Pc/m is the probability of crossover and mutation
5: xG1 and xG2 are obtained by crossing over xP1 and xF

6: else
7: xG1 and xG2 are obtained by mutating xP1 and xF

8: end if
9: Choose xSF ∈ Sub-Front (t) ⊳ Random selection
10: Choose xP2 ∈ P (t) ⊳ According to an exponential distribution (μ =NindP/10)
11: u≔ random(1)
12: if u>Pc/m then
13: xG3 and xG4 are obtained by crossing over xP2 and xSF

14: else
15: xG3 and xG4 are obtained by mutating xP2 and xSF
16: end if

Algorithm 4: Create population G t

9Complexity

probability of being chosen) and another from
P t (xP) (where each one has a different proba-
bility of being chosen). In effect, the solutions of
P t are ordered according to their niche count
(from least to greatest) and its individual is cho-
sen according to an exponential distribution,
which makes it more likely for a solution with
a lower niche count to be chosen. This procedure
favors the uniform distribution of the solutions

(2) A random number u ∈ 0 1 is generated. If u >
Pc/m (probability of crossover/mutation), then
a crossover will be performed (step 3); otherwise,
a mutation will be performed (step 4)

(3) xP and xF are crossed by means of an extended
intermediate crossover operator, which pro-
duces two new individuals xh1 and xh2:

xh1i = αi t x
P
i + 1 − αi t xFi ,

xh2i = 1 − αi t xPi + αi t xFi
15

The parameter αi t is a random value uniformly
distributed which belongs to interval −d t 1 +
d t , and d t is a parameter which is adjusted
by using an exponential decreasing function, as
in simulated annealing [19]:

d t =
dini

1 + dini/d f in
2 − 1 t/tmax−1

, dini < d f in

16

Figure 6 shows d t from t = 0 to t = tmax − 1,
where d 0 = dini and d tmax − 1 = d f in.

(4) xP and xF are mutated by using a random muta-
tion with Gaussian distribution:

xh1i = xPi +N 0, β1i t ,

xh2i = xFi +N 0, β2i t ,
17

where the variances β1i t and β2i t are
expressed as a percentage of xi max − xi min.
These variances are calculated by a function

which is similar to the one previously used for
the parameter d t :

β t =
βini

1 + βini/βf in
2 − 1 t/tmax−1

18

(5) xh1 and xh2 are included in G t

These five steps are repeated again from step one but
now with a solution from subfront t instead of one
from front t . The whole process is executed again
and again untilG t is full. In order to set the param-
eters which appear in the equations of the steps 3
and 4, the default values suggested by [19] for the
original algorithm (evMOGA) are taken.

(iv) Line 14 (Algorithm 5). In the updating of P t , it
is determined whether a new individual from G t
(xG) substitutes any other existing individual in P t
or not. The search for the individual to be
substituted (xP) starts from an individual chosen
by an exponential distribution which is the inverse
of the one used for the choice of xP in the creation
of G t (line 10, Algorithm 4) and, therefore, now
the more populated solutions will be more likely to
be chosen. This is aimed at achieving a more uni-
form distribution of the solutions. During this
updating, there may occur three distinct cases:

(1) The new individual xG is ϵ dominated by some
member of front t . In this case, an individ-
ual xP dominated by xG will be searched to
be substituted

(2) The new individual xG is not ϵ dominated by any
member of front t , and there exists an indi-
vidual xP dominated by xG which is ϵ domi-
nated by some member of front t . In this
case, it will be substituted

(3) The new individual xG is not ϵ dominated by any
member of front t , and there does not exist an
individual xP dominated by xG which is not ϵ
dominated by any member of front t . In this
case, the initial solution xP is chosen. If xP and
xG are neighboring solutions, a solution n dom-
inated by xG will be searched to be substituted.
If they are not, a solution n dominated by xP

will be searched to be substituted. In this last
case, if that solution is not found, xG will be
randomly substituted by a solution from the
neighborhood of xP

3.4. Performance Metrics. Next, we present one metric which
will serve to assess the performance of the different algo-
rithms to be compared. This metric measures both the con-
vergence and the diversity between two sets (the outcome

tmax−1
t

0
dfin

dini

d
(t
)

Figure 6: Graph of d t from t = 0 to t = tmax − 1. The parameters
dini and d f in are the initial and final values of d t .

10 Complexity

set and the target set). The outcome set of each algorithm is
the set of solutions that it returns, whereas the target set
results from discretizing the search space with a fine grain.
We use this metric to measure the performance of the algo-
rithms in the objective space (convergence toward the front)
and in the parameter space (diversity of solutions).

3.4.1. Averaged Distance Hausdorff. A single indicator is used
to measure the convergence and diversity between two sets
(averaged distance Hausdorff Δp, [21]). The sets Y and
X have ny and nx solutions, respectively. The Δp is calcu-
lated by

Δp X, Y ≔max
1
nx

〠
nx

i=1
dist xi, Y

p

1/p

,
1
ny

〠
ny

i=1
dist X, yi

p

1/p

,

19

where

dist u, A ≔ inf
v ∈A

u − v 20

This indicator is the average of the Hausdorff dis-
tance, and we use it here in order to measure the perfor-
mance between an outcome set H and a target set P∗

Q,n.
This performance is measured both in the objective space
and in the parameter space. In this way, it is possible to
measure convergence toward the front and diversity of
solutions. We use p = 2. It is desirable that this indicator

has the smallest possible value. Ideally, when H = P∗
Q,n,

then Δp = 0.

3.5. Benchmarks. Our algorithm nevMOGA has been
tested on two distinct benchmarks. In this section, we
describe them.

3.5.1. Benchmark 1. The first benchmark considered in this
work corresponds to an academic example [18] and is stated
as follows:

min
x

 f x = f1 x f2 x , f1 x

= x1 − t1 c + 2a + a 2 + x2 − t2b
2 + δt , f2 x

= x1 − t1 c + 2a − a 2 + x2 − t2b
2 + δt ,

21

where

t1 = sgn x1 min
∣ x1 x1 ∣ −a − c/2

2a + c
, 1 ,

t2 = sgn x2 min
x2 − b/2

b
, 1 ,

δt =
0, for t1 = 0, t2 = 0,

0 1, else,

22

1: Choose xPInitial ∈ P (t) ⊳ According to an exponential distribution (μ =NindP/10)
2: if ∄ x′ ∈ Front (t) x′⪯−ϵx

G then
3: if ∃ x∗ ∈ P (t): ∃ x′′ ∈ Front (t) x′′⪯−ϵx

∗& xG⪯x∗ then ⊳The search for x∗ starts from xPInitial

4: x∗ ≔ xG

5: return
6: else
7: XN ≔∀x∗ ∈ P t : xPInitial= nx

∗

8: if xG= nx
PInitial then

9: if ∃ x∗ ∈ XN xG⪯x∗ then ⊳ The search for x∗ starts from xPInitial

10: x∗ ≔ xG

11: return
12: end if
13: else
14: if ∃ x∗1 & x∗2 ∈ XN x∗1⪯x

∗
2 then

15: x∗2 ≔ xG

16: return
17: end if
18: end if
19: end if
20: xPRandom =Random(XN) ⊳ Random selection of an individual from XN

21: xPRandom ≔ xG

22: else
23: if ∃ x∗ ∈ P (t): xG⪯x∗ then ⊳ The search for x∗ starts from xPInitial

24: x∗ ≔ xG

25: end if
26: end if

Algorithm 5: Update of P t with the individuals of G t

11Complexity

subject to

x = −8 − 8 ,

x = 8 8
23

Setting a = 0 5, b = 5, and c = 5, this MOP has one global
Pareto set:

P0,0 = −0 5,0 5 x 0 = PQ, 24

and eight local Pareto sets:

P−1,−1 = −6 5, −5 5 x −5 ,

P0,−1 = −0 5,0 5 x −5 ,

P1,−1 = 5 5,6 5 x −5 ,

P−1,0 = −6 5, −5 5 x 0 ,

P1,0 = 5 5,6 5 x 0 ,

P−1,1 = −6 5, −5 5 x 5 ,

P0,1 = −0 5,0 5 x 5 ,

P1,1 = 5 5,6 5 x 5

25

3.5.2. Benchmark 2. The second benchmark is an adaptation
of the modified Rastrigin [22]. This benchmark has been
modified in order to turn it into a MOP with one optimal
set and nearly optimal solutions lying in different neighbor-
hoods. This is its formulation:

min  
x

f x = f1 x f2 x , f1 x

= − 〠
2

i=1
10 − 9 cos 2π · ki · xi

1 − x1 − 0 65 2 + x2 − 0 5 2 , f2 x

= x1 + x2 − 1 4,
26

where k1 = 2 and k2 = 3 and subject to

x = 0, 0 ,

x = 2, 2
27

4. Results and Discussion

In this section, we present the results of nevMOGA on the
two benchmarks introduced and on a control design prob-
lem. These results will be analyzed on the basis of the
metric which was introduced in Section 3.4. In addition,
we compare nevMOGA with two other algorithms, namely,
random and exhaustive searches. In order to make this com-
parison possible, all three algorithms evaluate the objective
functions the same number of times. Although there do exist
algorithms which search the set of nearly optimal solutions

([17, 18, 23]), none of them has the same set of interest as
nevMOGA (P∗

Q,n). For this reason, nevMOGA cannot directly
be compared with any of them. In order to obtain statistical
results, each algorithm is tested 50 times on each benchmark.
For the exhaustive search case, the evaluated points are uni-
formly distributed over the search space, forming a hyper-
grid. In order for it to obtain different results, the hypergrid
is slightly lifted each time.

4.1. Benchmark 1. In this benchmark, since the global Pareto
set and the local Pareto sets are known (Section 3.5.1), we can
set the parameters ϵ and n more easily. Here, we set ϵ =
0 15 0 15 so that the eight sets described in (25) are
regarded as nearly optimal solutions. We get n by applying
the procedure described in Section 3.1 with a reference
solutionxR = 0 0 and theparameterϵ previously set, resulting
in n = 0 13 0 38 . Once these parameters have been deter-
mined, the set to be found (target set P∗

Q,n, see Figure 7) is

PQ,n ≔ P0,0 ⋃ P−1,−1 ⋃ P0,−1 ⋃ P1,−1 ⋃ P−1,0

⋃ P1,0 ⋃ P−1,1 ⋃ P0,1 ⋃ P1,1

28

Figure 8 and Table 3 show the statistical results of the
three algorithms (each one is tested 50 times on this bench-
mark) that have been compared (nevMOGA, random
search, and exhaustive search) using the metric Δp. Each
algorithm evaluates the objective function 5000 times in each
test run. The outcome sets of the three algorithms are com-
pared with the target set P∗

Q,n. In Figure 8(a), there are the
results against Δp f H , f P∗

Q,n , whereas in Figure 8(b)
against Δp H, P∗

Q,n , using boxplots and density estimation.
The values yielded by nevMOGA for the metric in the objec-
tive space and in the parameter space are good (near 0) and
better than those provided by random and exhaustive
searches. For the random search, the approximation quality
to the front varies enormously. For the exhaustive search,
the results display less variability, although it performs worse
than nevMOGA in both spaces. Moreover, a multiple com-
parison test ([24, 25]) leads to the conclusion that the results
of the three algorithms are significantly different with respect
to the metric in both spaces. For these reasons, it can be con-
cluded that nevMOGA significantly outperforms random
and exhaustive searches on benchmark 1.

In order to graphically compare the three algorithms, a
representative solution (from the 50 test runs) of each one
has been plotted in Figure 9. This representative solution
has been chosen as the one whose values of Δp H, P∗

Q,n and
Δp f H , f P∗

Q,n are closest to the average values of that
metric inboth spaces.Theoutcome set obtainedbynevMOGA
has 70 solutions, whereas those obtained by random and
exhaustive searches have 78 and 48 solutions, respectively.
The great number of solutions found by nevMOGA in addi-
tion to the results shown in Figure 9 proofs that nevMOGA is
capableof characterizing the target setP∗

Q,n better than its com-
petitors (random and exhaustive searches) on benchmark 1.
This result, plus the fact that nevMOGA achieves lower values

12 Complexity

0.04

0.07

0.1

∆
p
(f
(H

),
f
(P
⁎ Q

,n
))

Random Exhaustivenev-MOGA

(a)

0.06

0.1

0.14

∆
p
(H

,P
⁎ Q

,n
)

Random Exhaustivenev-MOGA

(b)

Figure 8: Boxplots for benchmark 1, comparing nevMOGA, random search, and exhaustive search. (a) Δp f H , f P∗
Q,n measures the

approximation of the outcome set toward the Pareto front. (b) Δp H, P∗
Q,n measures the approximation of the outcome set toward the

Pareto set. The most significant values are shown in Table 3.

Table 3: Numerical values of the statistical results presented in Figure 8.

Δp f H , f P∗
Q,n Δp H, P∗

Q,n

nevMOGA Random Exhaustive nevMOGA Random Exhaustive

Maximum 0.0715 0.121 0.0778 0.122 0.169 0.103

Third quartile 0.0604 0.0750 0.0754 0.0903 0.140 0.103

Mean 0.0578 0.0676 0.0697 0.0790 0.133 0.0933

Median 0.0572 0.0661 0.0673 0.0717 0.130 0.101

First quartile 0.0551 0.0549 0.0668 0.0668 0.123 0.0840

Minimum 0.0447 0.0349 0.0665 0.0621 0.108 0.0777

P⁎

P⁎
Q,𝜖

P⁎
Q

P⁎
1Q

f(P⁎)

f(P⁎Q,n)=f(P
⁎
Q) ∪f(P⁎1Q)

f(P⁎
1Q)

f(P⁎
Q)

f(P⁎
Q,𝜖)

0

0.5

1.0

1.5

2

f
2(
x
)

0.5 1 1.5 20
f1(x)

(a)

−8

0

8

x
2

−8 80
x1

(b)

Figure 7: Target set P∗
Q,n, formed by P∗

Q ∪ P∗
1Q. It consists of nine subsets, one of them contains the optimal solutions, and the rest the nearly

optimal ones.

13Complexity

of the metric Δp, leads us to conclude that nevMOGA accom-
plishes a better general performance on this benchmark.

This benchmark has also been solved by [18], where
the set PQ,ϵ is characterized. The algorithm tested in that

work is calledPQ,ϵ-MOEA.Acomparisonof the results ofnev-
MOGA with those of PQ,-MOEA shows that nevMOGA
obtains a significantly smaller number of solutions
(approximately four times smaller) without missing any

Target set PQ,n
nev-MOGA

0 1
f1(x)

0

1
f
2(
x
)

−5

0

5

x
2

−6

(a) nevMOGA outcome set compared with the target set P∗
Q,n

Target set PQ,n
Random

0 1
f1(x)

0

1

f
2(
x
)

0 6−6
x1

−5

0

5

x
2

(b) Random search outcome set compared with the target set P∗
Q,n

Target set PQ,n
Exhaustive

10
f1(x)

0

1

f
2(
x
)

−5

0

5

x
2

−6 60
x1

(c) Exhaustive search outcome set compared with the target set P∗
Q,n

Figure 9: A representative solution of each one of the three algorithms is compared with the target set P∗
Q,n in the parameter space (right) and

in the objective space (left). This representative solution has been chosen as the one whose values of Δp are closest to the average values of that
metric in the objective space and in the parameter space.

14 Complexity

neighborhood containing nearly optimal solutions. This
was our goal, namely, finding only those solutions that
provide the most relevant information, and this with two
aims: (1) not to slow down the algorithm and (2) to sim-
plify the decision-making stage.

4.2. Benchmark 2. The statement of this second optimiza-
tion problem was presented in Section 3.5.2. First, and
with the aim of setting the two parameters of nevMOGA
(ϵ and n), a tentative search for solutions is carried out
within the defined range. This leads us to choose ϵ. Once
ϵ = 7 7 0 3 has been set, we take a reference solution xR =
0 66 0 5 and follow the procedure detailed in Section
3.1 to obtain n. This results in n = 0 15 0 15 . The selec-
tion of ϵ and n leads to a particular target set P∗

Q,n, which

is shown in Figure 10. As can be seen in the figure, P∗
4Q is

dominated by the set P∗
3Q but they are in distinct neigh-

borhoods. The set P∗
4Q does not have any solution domi-

nated in its neighborhood and, therefore, it is part of the
target set P∗

Q,n.
Figure 11 is similar to Figure 8 but for benchmark 2. Each

algorithm is run 50 times and can evaluate the objective func-
tion 5000 times in each test run. Again, nevMOGA achieves
better results than random and exhaustive searches with
regard to the metric Δp, since it reaches values which are
closer to zero. As we did in benchmark 1, we have also per-
formed a multiple comparison test on these results. This
comparison shows that the results obtained by the three
search strategies are significantly different in both spaces.
For these reasons, it can be concluded that nevMOGA

f(P)

f(P⁎Q,𝜖)
f(P⁎Q)

f(P⁎1Q)

P⁎Q,n:=P
⁎
Q ∪ P⁎1Q

P⁎2Q

P⁎3Q

P⁎4Q

−1.4

−0.6

0.2
f
2(
x
)

−20 0−40
f1(x)

(a)

P⁎4Q

P⁎2Q

P⁎3Q

0

0.85

x
2

1.10
x1

(b)

Figure 10: The target set P∗
Q,n is formed by P∗

Q ∪ P∗
1Q. The set P

∗
4Q is dominated by the set P∗

3Q; however, they lie in distinct neighborhoods and,
for this reason, both sets belong to the target set.

0.3

0.5

0.7

∆
p
(f
(H

),
f
(P
⁎ Q

,n
))

Random Exhaustivenev-MOGA

(a)

0.01

0.03

0.05

∆
p
(H

,P
⁎ Q

,n
)

Random Exhaustivenev-MOGA

(b)

Figure 11: Boxplots for benchmark 2, comparing nevMOGA, random search, and exhaustive search. (a) Δp f H , f P∗
Q,n measures the

approximation of the outcome set toward the Pareto front. (b) Δp H, P∗
Q,n measures the approximation of the outcome set toward the

Pareto set. The most significant values are shown in Table 4.

15Complexity

significantly outperforms random and exhaustive searches
on benchmark 2.

Figure 12 shows a representative solution (chosen in the
same way as we did in benchmark 1) of each algorithm (nev-
MOGA, random, and exhaustive searches). A glance at the
figure is sufficient to show that nevMOGA accomplishes
a better approximation to the target set P∗

Q,n. Moreover,
the outcome set obtained by nevMOGA has 73 solutions,
whereas those obtained by random and exhaustive searches
have 62 and 48 solutions, respectively. These two last
facts (a better approximation to the target set P∗

Q,n and
a greater number of solutions) confirm the conclusion drawn
before, when the results were statistically examined,
namely, that nevMOGA outperforms both random and
exhaustive searches.

4.3. Multiobjective Control Design Problem. In this section,
we present the application of nevMOGA to a real design
problem in the field of control engineering. The problem
consists of optimizing the performance of two PI controllers,
which operate a multivariable plant with two inputs and
two outputs.

The model of the plant is [26]

Y s =
y1 s

y2 s
= G s

u1 s

u2 s
, G s =

5e−40

100 s + 1
1e−4

10 s + 1
−5e−40

10 s + 1
5e−40

100 s + 1

,

29

where y1 and y2 are the outputs of the plant, and u1 and u2
are the inputs (control actions). The time constants are all
in seconds.

The control structure (also taken from [26]) is defined as
a multiloop PI control which uses an off-diagonal pairing
scheme, i.e., output y1 is controlled by u2 and y2 by u1. That
is to say,

u2 s = Kc1 e1 s +
1
Ti1

1
s

e1 s ,

u1 s = Kc2 e2 s +
1
Ti2

1
s

e2 s ,
30

where Kc1 and Kc2 are the proportional gains, Ti1 and Ti2
are the integral time constants, and e1 = r1 − y1 and e2 =

r2 − y2 are the errors, where r1 and r2 are the setpoints
for y1 and y2, respectively (see Figure 13).

The optimization problem is stated as follows:

min  
x

f x = f1 x f2 x , 31

where

f1 =
t f

0
e21 + e22 r1=1,r2=0dt +

t f

0
e21 + e22

r1=0,r2=1
dt,

f2 =
t f

0
u21 + u22 r1=1,r2=0dt +

t f

0
u21 + u22

r1=0,r2=1
dt,

32

subject to

x ≤ x ≤ x,

f1 x < 300,

f2 x < 200, stable in closed loop,

33

and where

x = Kc1, Ti1, Kc2, Ti2 x = −1, 1, 0 1,1 ,

x = −0 1,200,10,1000 ,

t f = 1000 seconds

34

We launch two different simulations, sequentially. In the
first one, a unitary step is applied to r1, whereas r2 is kept to
zero. In the second one, the unitary step is now applied to r2
and r1 is kept to zero. In each simulation, themetric ISE (Inte-
gral Squared Error) is calculated for both outputs y1 and y2.
Our first objective f1 is then defined as the sum of the values
of the ISEmetrics of each simulation. So, the objective f1 mea-
sures the setpoint tracking performance of the control system.
The second objective f2 is calculated in a similar manner but
using the control action signals instead of the errors. There-
fore, f2 measures the control effort. Note that each objective
(f1 and f2) can be seen as a sum of 4 subobjectives (see 32).

Once the optimization problem has been defined, the two
parameters of nevMOGA (ϵ and n) have to be set. It is impor-
tant to choose these parameters correctly, especially n. First of
all, we have to decide what performance loss (with respect to

Table 4: Numerical values of the statistical results presented in Figure 11.

Δp f H , f P∗
Q,n Δp H, P∗

Q,n

nevMOGA Random Exhaustive nevMOGA Random Exhaustive

Maximum 0.460 0.687 0.641 0.0322 0.0697 0.0394

Third quartile 0.357 0.633 0.601 0.012 0.0412 0.0348

Mean 0.338 0.609 0.584 0.0119 0.0403 0.0337

Median 0.322 0.612 0.584 0.0110 0.0383 0.0340

First quartile 0.306 0.581 0.555 0.0104 0.0362 0.0325

Minimum 0.295 0.511 0.529 0.00946 0.0321 0.0291

16 Complexity

Target set PQ,n
nev-MOGA

−1.4

−0.6

0.2
f

2(
x
)

−20 0−40
f1(x)

0

0.85

x
2

1.10
x1

(a) nevMOGA outcome set compared with the target set P∗
Q,n

Target set PQ,n
Random

−1.4

−0.6

0.2

f
2(
x
)

−20 0−40
f1(x)

0

0.85

x
2

1.10
x1

(b) Random search outcome set compared with the target set P∗
Q,n

Target set PQ,n
Exhaustive

−1.4

−0.6

0.2

f
2(
x
)

−20 0−40
f1(x)

0

0.85

x
2

1.10
x1

(c) Exhaustive search outcome set compared with the target set P∗
Q,n

Figure 12: A representative solution of each one of the three algorithms is compared with the target set P∗
Q,n in the parameter space (right)

and in the objective space (left). This representative solution has been chosen as the one whose values of Δp are closest to the average values of
that metric in the objective space and in the parameter space.

17Complexity

thePareto set)we arewilling to accept (i.e., the parameter ϵ), in
other words, what we are still going to regard as a nearly
optimal solution. Choosing a high value would lead to a
great number of possible solutions, whereas a low value
would provide very few. In this application example,
although the design objectives do have a physical sense,
it is not self-evident how to choose ϵ. In order to solve
this difficulty, we have proceeded in the following way.
First, we have taken the values of f1 and f2 corresponding
to the control designed in [26] as a reference solution. Then,
we have pinpointed that solution on the Pareto front (which
we have taken from [27]). Finally, on the basis of that
information, we have decided to choose ϵ = 10 5 . Note
that there is an unavoidable subjective element concerning
the way in which ϵ is chosen. Now, we have to assign a
value to n, which is the most critical parameter of the
algorithm. On the one hand, choosing an excessively low
value would make most solutions be nonneighboring solu-
tions, which in turn would cause the algorithm to tend to
obtain the whole set P∗

Q,ϵ. On the other hand, choosing an
excessively high value would result in many solutions
being neighboring solutions, which would cause the

algorithm to tend to obtain only the set P∗
Q. This is why

it is crucial that n be chosen carefully, supporting the
choice with good reasons. Next, we describe how we have
set n. First, we choose a reference controller x = −
0 36,7 86,0 64,628 4 (taken from [26]). Second, starting
from the solution corresponding to this reference controller,
the value of each of its parameters is increased and decreased
independently, until reaching significant changes in the
system response (see Figure 3). In this way, we finally
get n = 0 25 50 0 1 200 ; these are the values from which
the system response is significantly different from the
one provided by the reference controller.

As mentioned before, the objective functions include
several terms which measure the performance and the
control effort of each control loop (as if there were 4 sub-
objectives added for each objective). For this reason, there
may be solutions with the same objective value which are,
however, completely different. This way of defining the
objective functions is useful when the number of control
loops is high, since it reduces the number of objectives and
simplifies the decision-making stage. Yet, this approach has
a shortcoming, namely, many interesting solutions may be

r1

r2

e1
+

+

−

−
e2

Gr1(s)

Gr2(s)

u1

u2
G(s)

y1

y2

Process model

Figure 13: The control structure: a multiloop PI control which uses an off-diagonal pairing scheme.

Nearly optimal solutions (subfront(t))
Optimal solutions (front(t))

f(x1)

f(x5)

f(x6)

f(x4)

f(x3)

f(x2)

100

150

200

f
2(
x
)

100 150 200 250 30050
f1(x)

(a)

x3
3 and x4

3

x1
2, x3

2, x5
2 and x6

2

x1
3 and x2

3 x3
4 and x4

4

x2
1 x4

1 x3
1

x1
1 x5

1
x6

1

x5
1

x4
2

x2
2

x2
4 x1

4 x5
4

x6
4x6

3

0

0.5

1

1.5

2-
no

rm

−0.6 −0.4 −0.2−0.8
x1

0

0.5

1

1.5

2-
no

rm

1 1.5 20.5
x3

100 150 20050
x1

0

0.5

1

1.5

0

0.5

1

1.5

600 800 1000400
x4

(b)

Figure 14: Set P∗
Q,n found by nevMOGA. The optimal solutions (set PQ) are shown in red and the rest (nearly optimal solutions nondominated

in their neighborhood) in blue. x1, x3, and x5 belong to PQ (Pareto optimal solutions), whereas x2, x4, and x6 are nearly optimal solutions.

18 Complexity

neglected, because they may become nearly optimal solutions
or multimodal solutions. Figure 14 shows the set of solutions
P∗
Q,n found by nevMOGA (for a given discretization of the

objective space), where x1, x3, and x5 are the optimal solu-
tions, and x2, x4, and x6 are the nearly optimal solutions. In
order to show the decision variables, we employ a visuali-
zation tool called level diagrams ([28, 29]). For the ordi-
nate axis, we have used the 2-norm. For the graphical
representation of the objectives, we have not used this tool
though, since there are only two and, in this case, plotting
them on a single graph, where they can directly be com-
pared, is preferable. Let us draw attention to the decision
variables x1 and x2 (Figures 14(b)). Note how nevMOGA
has been able to identify new areas in the search space
containing solutions which may be interesting for the
decision-maker and that would have been neglected in a
traditional optimization approach, where only the set of
Pareto optimal solutions PQ is characterized.

Figure 15 shows the system responses for the solutions x1

(optimal solution) and x2 (nearly optimal solution), which
have very similar values of f1 and f2 (see Figure 14(a)). These
two solutions lie in distinct neighborhoods, and their corre-
sponding responses are different too. This should not cause
surprise since their corresponding controllers are signifi-
cantly dissimilar from each other.

A more careful comparison of these two transient
responses shows that x1 presents a much better response
than x2 with respect to y2 when the step is applied to r1,
but x2 presents a better response than x1 with respect to y2
and y1 (better in the sense that it displays less overshoot)
when the step is applied to r2. Therefore, it is not clear at
all which solution should be chosen. In these cases, the
decision-maker will have to include new criteria or prefer-
ences, in order to make the decision. Anyway, note that
the nearly optimal solution x2could ultimately be preferred
over the optimal one x1. This evidences that it would not

have been wise to discard x2 in the search stage and proofs
the convenience of finding the nearly optimal solutions
besides the optimal ones. This situation is very common
when the objective functions are defined as an aggregation
of several subobjectives, as is the case here. Additionally, it
is worth noting that if this MOP had been addressed with
a traditional approach and eight objectives (one for each
term in 32, without adding objectives)—which is the ideal
approach if one wants to find all the optimal solutions,
although impractical in the decision-making stage—then
x2 would not be dominated by x1 and both x1 and x2

could belong to the Pareto front. This is an additional evi-
dence of the relevance of x2, which nevMOGA has been able
to identify.

Next, we assess the robustness of every solution found by
the algorithm, that is to say, how well each controller main-
tains its performance when identification errors are contem-
plated. This analysis is typical in control design. In order to
do that, first, we get 50 sets of plant parameter (gains, time
constants, and time delays) by generating random values
for each parameter within a range of ±20%. Each of this sets
represents a deviation from the nominal plant. Then, we
evaluate the performance (f1 and f2) of each controller for
each one of those deviations. Including an additional objec-
tive which measures robustness and computing it in the opti-
mization stage, along with the two other objectives, would
have been very expensive computationally. This is why this
robustness analysis is shifted to the decision-making stage.
As an example of the results of this robustness analysis,
Figure 16 shows the boundaries of the performance degrada-
tion (determined by the values of f1 and f2 when they are
evaluated for each one of the 50 sets of plant parameters)
experienced by two controllers (x3 and x4). Note that x4

(a nearly optimal solution) experiences less degradation
than x3. This is a very valuable information and could make
the decision-maker opt for x4 instead of x3.

Step in r1, r2 = 0 Step in r2, r1 = 0

0
1
2

y
1

0
0.2
0.4

𝜇
1

−1
0
1

𝜇
2

800 1000300 400 500 600 700100 9002000

800 1000300 400 500 600 700100 9002000

800 1000300 400 500 600 700100 9002000

100

x1

x2

200 300 400 500 600 700 800 900 10000
Time (s)

100 200 300 400 500 600 700 800 900 10000

100 200 300 400 500 600 700 800 900 10000

100 200 300 400 500 600 700 800 900 10000

100 200 300 400 500 600 700 800 900 10000

Time (s)

−0.5
0

0.5

y
2

0
0.2
0.4

𝜇
2

−1
0
1

𝜇
1

0
1
2

y
2

−0.5
0

0.5

y
1

Figure 15: System responses for x1 (optimal solution) and x2 (nearly optimal solution). Although f x2 ≃ f x1 , both transient responses are
different, since x1 and x2 are nonneighboring solutions.

19Complexity

Let us look at one last proof of the convenience of consid-
ering the nearly optimal solutions. If we compare x5 (optimal
solution) and x6 (nearly optimal solution), we see that they
have a similar performance with respect to both f1 and f2.
However, x6 has lower values (in absolute value) of the gains
Kc1 and Kc2. From a design perspective, this fact may be an
advantage, since this solution will present less sensibility to
any measurement noise in the outputs of the plant and,
therefore, it could be preferred over the optimal solution.

5. Conclusions

In this paper, we have presented a new multiobjective genetic
algorithm, nevMOGA, which is capable of characterizing not
only the Pareto set but also the set of nearly optimal solutions
nondominated in their neighborhood. We think that this
algorithm will be useful for designers who want to get a
manageable number of solutions without neglecting the
existing diversity in the characteristics of the solutions. In
comparison with other algorithms that only return the Pareto
front, our algorithm provides, in addition, new alternatives to
be analyzed in the decision-making stage. Given that these
solutions have a very similar performance to the optimal
ones and significantly different values in the parameter space,
they will be regarded by a designer adopting the specified
approach as solutions worth studying. This is why obtaining
these solutions, which we have called potentially useful solu-
tions, can be very valuable in many multiobjective optimiza-
tion problems.

nevMOGA has been compared with two other algo-
rithms (random search and exhaustive search) on two
benchmark problems, in order to assess its performance.
It has not been compared to any other because no genetic
algorithm of similar characteristics (one which is capable

of finding nearly optimal solutions nondominated in their
neighborhood) is available in the literature. In order to
perform this comparison, the metric Δp has been employed,
which measures the approximation quality of the outcome
set of an algorithm to the target set P∗

Q,n (the set of solutions
to be found) in the objective space and in the parameter
space. In addition, a statistical analysis has been conducted.
The results reveal the outperformance of nevMOGA in char-
acterizing the set of optimal and nearly optimal solutions in
both spaces.

nevMOGA has also been applied to a real design problem
in the field of process control engineering. This design prob-
lem consists of optimally adjusting the parameters of two PI
controllers (Kc and Ti) which operate a plant with two inputs
and two outputs. The control performance is evaluated by
two widely used, conflicting metrics: f1, which measures the
setpoint tracking performance of the control system, and f2,
which measures the control effort. Each of these objective
functions has been formulated as a sum of four subobjectives
(see 32), which means that eight different objectives have
been incorporated in the problem definition. Dealing with
eight independent objective functions would have compli-
cated enormously the analysis of the Pareto front and, conse-
quently, the decision-making stage. This is why the eight
objectives have been aggregated to form only two objective
functions, whose Pareto front can be plotted on a two-
dimensional graph and, thus, easily analyzed.

Aggregating objectives has, however, a major drawback if
the optimization algorithm searches only for the optimal
solutions: the resulting set of Pareto optimal solutions will
lack many solutions that may be interesting and useful for
the designer and, in some cases, even preferable to the opti-
mal ones. nevMOGA, as it searches for nearly optimal solu-
tions nondominated in their neighborhood too, is capable
of finding those valuable solutions which are neglegted by a
classical optimization algorithm. This means that the
decision-maker will have a greater number of alternatives,
all of them worth considering. For instance, if we compare
x2 (a nearly optimal solution) and x1 (an optimal solution),
we see that they have similar performances (f x2 ≃ f x1)
but their corresponding system responses are different, since
they lie in distinct neighborhoods. The designer could choose
the nearly optimal solution x2 instead of the optimal solution
x1, since the former achieves a better system response when
the step is applied to the setpoint r2. A comparison between
x5 (optimal solution) and x6 (nearly optimal solution) leads
to the same conclusion: they have similar performances
(f x6 ≃ f x5) but x6 has lower values of Kc1 and Kc2 (the
gains of the PI controllers) than x5 and, therefore, x6 will be
less sensitive to the measurement noises in the outputs,
which is a considerable advantage in some applications. This
could make the designer prefer x6 to x5.

For this same design problem, a robustness analysis
has been performed on the optimal and nearly optimal
solutions obtained in the optimization stage. The results
of this analysis show how a nearly optimal solution (x4)
can be more robust than an optimal one (x3) while pro-
viding a similar performance with respect to the objective

f1(x)

f
2(
x
)

f(x3)

f(x4)

Boundary for x3

Boundary for x4

Figure 16: Boundaries of the performance degradation for x3

(optimal solution) and x4 (nearly optimal solution) when the plant
parameters vary in ±20% from their nominal values. It must be
highlighted that a traditional MOP approach would not have
found the solution x4.

20 Complexity

function (f x3 ≃ f x4). This is due to the fact that they
are nonneighboring solutions and, therefore, likely to pres-
ent distinct characteristics. If we had included robustness
as a metric in the definition stage in the same way as we
did with f1 and f2, the computational cost would have
increased drastically (around 50 times higher).

These examples demonstrate the pertinence of the crite-
rion assumed and, consequently, the great convenience of
taking into account the potentially useful solutions, that is
to say, the nearly optimal solutions that are not dominated
in their neighborhood. This approach is specially advisable
when the MOP presents multimodal solutions, either
because they are intrinsic to the problem or because they
have arisen artificially as a result of aggregating several objec-
tives into one single-objective function. Likewise, having the
nearly optimal solutions available represents an advantage
when there exist objectives which cannot be incorporated
within the optimization process due to its high computa-
tional cost. When this happens, these objectives are excluded
from the optimization stage and evaluated afterwards only
for the optimal and nearly optimal solutions resulting from
the search.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the Ministerio de Econ-
omía y Competitividad (Spain) Grant numbers DPI2015-
71443-R and FPU15/01652, by the local administration
Generalitat Valenciana through the project GV/2017/029,
and by the National Council of Scientific and Techno-
logical Development of Brazil (CNPq) through the grant
PQ-2/304066/2016-8.

References

[1] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 1,
Kluwer Academic Publishers, 1998.

[2] K. Deb, Multi-Objective Optimization Using Evolutionary
Algorithms, vol. 16, John Wiley & Sons, 2001.

[3] G. Reynoso-Meza, J. Sanchis, X. Blasco, and M. Martinez,
“Evolutionary algorithms for PID controller tuning: current
trends and perspectives,” Revista Iberoamericana de Automá-
tica e Informática Industrial, vol. 10, no. 3, pp. 251–268, 2013.

[4] G. Reynoso-Meza, J. Sanchis, X. Blasco, and S. García-Nieto,
“Physical programming for preference driven evolutionary
multi-objective optimization,” Applied Soft Computing,
vol. 24, pp. 341–362, 2014.

[5] J. Sanchis, M. Martinez, and X. Blasco, “Integrated multiobjec-
tive optimization and a priori preferences using genetic

algorithms,” Information Sciences, vol. 178, no. 4, pp. 931–
951, 2008.

[6] J. Branke, K. Deb, and K. Miettinen, Multiobjective Optimiza-
tion: Interactive and Evolutionary Approaches, vol. 5252,
Springer Science & Business Media, 2008.

[7] K. Deb and A. Saha, “Finding multiple solutions for multi-
modal optimization problems using a multi-objective evolu-
tionary approach,” in Proceedings of the 12th annual
conference on Genetic and evolutionary computation - GECCO
'10, pp. 447–454, Portland, Oregon, USA, July 2010.

[8] J. Liang, C. Yue, and B. Qu, “Multimodal multi-objective opti-
mization: a preliminary study,” in 2016 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 2454–2461, Vancouver, BC,
Canada, July 2016.

[9] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolu-
tion with neighborhood mutation for multimodal optimiza-
tion,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 5, pp. 601–614, 2012.

[10] P. Loridan, “ε-Solutions in vector minimization problems,”
Journal of Optimization Theory and Applications, vol. 43,
no. 2, pp. 265–276, 1984.

[11] D. J. White, “Epsilon efficiency,” Journal of Optimization The-
ory and Applications, vol. 49, no. 2, pp. 319–337, 1986.

[12] M. Vasile and M. Locatelli, “A hybrid multiagent approach for
global trajectory optimization,” Journal of Global Optimiza-
tion, vol. 44, no. 4, pp. 461–479, 2009.

[13] E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: a comparative case study and the strength Pareto
approach,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 257–271, 1999.

[14] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the
strength Pareto evolutionary algorithm,” TIK-Report, vol. 103,
2001.

[15] J. M. Herrero, S. García-Nieto, X. Blasco, V. Romero-García,
J. V. Sánchez-Pérez, and L. M. Garcia-Raffi, “Optimization of
sonic crystal attenuation properties by ev-MOGA multiobjec-
tive evolutionary algorithm,” Structural and Multidisciplinary
Optimization, vol. 39, no. 2, pp. 203–215, 2009.

[16] V. Pareto, Manual of Political Economy, A. M. Kelley, New
York, NY, USA, 1971.

[17] O. Schütze, C. A. C. Coello, and E. G. Talbi, “Approximating
the ε-efficient set of an MOP with stochastic search algo-
rithms,” in Lecture Notes in Computer Science, pp. 128–138,
Springer, 2007.

[18] O. Schütze, M. Vasile, and C. A. Coello Coello, “Computing
the set of epsilon-efficient solutions in multi-objective space
mission design,” Computing, vol. 8, no. 3, pp. 53–70, 2011.

[19] J. M. Herrero, Identificacion Robusta de Sistemas no Lineales
mediante Algoritmos Evolutivos, [Ph.D. thesis], Editorial Uni-
versitat Politècnica de València, 2006.

[20] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching
methods revisited,” IEEE Transactions on Evolutionary Com-
putation, vol. 2, no. 3, pp. 97–106, 1998.

[21] O. Schutze, X. Esquivel, A. Lara, and C. A. C. Coello, “Using
the averaged Hausdorff distance as a performance measure
in evolutionary multiobjective optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 4, pp. 504–
522, 2012.

[22] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark
functions for CE2013 special session and competition on nich-
ing methods formultimodal function optimization,” in RMIT

21Complexity

University, Evolutionary Computation and Machine Learning
Group, Tech. Rep, Australia, 2013.

[23] O. Schütze, C. A. C. Coello, E. Tantar, and E. G. Talbi, “Com-
puting a finite size representation of the set of approximate
solutions of an MOP,” 2008, http://arxiv.org/abs/0804.0581.

[24] L. E. Toothaker, Multiple Comparison Procedures, Sage, 1993.

[25] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a meth-
odology for comparing evolutionary and swarm intelligence
algorithms,” Swarm and Evolutionary Computation, vol. 1,
no. 1, pp. 3–18, 2011.

[26] T. Mc Avoy, Y. Arkun, R. Chen, D. Robinson, and P. D.
Schnelle, “A new approach to defining a dynamic relative
gain,” Control Engineering Practice, vol. 11, no. 8, pp. 907–
914, 2003.

[27] J. M. Herrero, G. Reynoso-Meza, C. Ramos, and X. Blasco,
“Considerations on loop pairing in MIMO processes. A
multi-criteria analysis,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 4454–4459, 2017.

[28] X. Blasco, J. M. Herrero, J. Sanchis, and M. Martínez, “A new
graphical visualization of n-dimensional Pareto front for
decision-making in multiobjective optimization,” Information
Sciences, vol. 178, no. 20, pp. 3908–3924, 2008.

[29] X. Blasco, J. M. Herrero, G. Reynoso-Meza, and M. A.
Martínez Iranzo, “Interactive tool for analyzing multiobjec-
tive optimization results with level diagrams,” in Proceedings of
the Genetic and Evolutionary Computation Conference Com-
panion on - GECCO '17, pp. 1689–1696, Berlin, Germany, July
2017.

22 Complexity

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

