SERVICE MANAGEMENT IN OPEN
ENVIRONMENTS

Author: Elena del Val Noguera
Supervised by: Dr. Miguel Rebollo Pedruelo

Dissertation submitted in partial fulfillment
of the requirements for the Master in
Artificial Intelligence, Pattern Recognition and Digital Image
Valencia

September, 12, 2008

Contents

1 Introduction
1.1 Objectives
1.2 Organization
2 Service Discovery and Composition
2.1 Imtroduction.
2.2 Discovery and Composition process
2.3 Semantic Web Services Discovery
2.3.1 Service discovery based on keywords.
2.3.2 Service discovery based on semantics.
2.3.3 Service Discovery based on complex discovery model and
negotiation/contracting.
2.4 Service Discovery in Agent Based Systems
2.4.1 Agent features in matchmaking algorithms
2.4.2 Matchmaking algorithms in centralized and distributed
environments
2.5 Final Remarks
3 THOMAS Architecture
3.1 Imtroduction
3.2 Architecture Model Lo
3.3 SF: Service Facilitator Lo
3.4 OMS: Organization Management System
3.5 PK: Platform Kernel
4 Service Facilitator
4.1 Introduction e
4.2 Service Facilitator: High-Level Design
4.3 Service Facilitator: Low-Level Design
4.3.1 Services
4.3.2 SF Agent Implementation
4.4 SF Service Discovery and Composition

4.4.1 Temporal Service Specification
4.4.2 Temporal Service Composition

I

= =

O © 00 I

22
23
24

27
31

35
35
36
36
38
40

II

CONTENTS
4.4.3 PDDL Specification from an OWL-S Description 60
4.5 Conclusions 61
Example: Packing a Box 63
5.1 Introduction L 63
5.2 Problem Description 0oL 63
5.3 Packing Box Model with THOMAS 64
5.4 Packing Cell Execution. 65
5.5 Packing Cell Service Composition 68
5.6 Conclusions 69
Conclusions and Future Work 71
6.1 Conclusions 71
6.2 Future Work 72
6.3 Publications 73
A OWL-S SF Service Descriptions 74
Al AddProvider OWL-S Service Profile Description 74

A2 AddProvider OWL-S Service Process and Grounding De-
scriptiono Lo 74
A3 AddProvider WSDL 75
B OWL-S Service Descriptions 77
B1 Getltems OWL-S Service Description 77
B2 InitialOntology.owl 80
B3 GoalOntology.owl 80
C PDDXMLo e 82
C1l An Action Description in PDDXML 82
D PDDL 2.1 84
D1 Problem.pddlo 84
D2 Domain.pddl o 85

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
9.3

Discovery Process oo oo 9
Hypergraph o o 17
THOMAS components 37
Example of SFusage 50
Service Facilitator 51
Service Description in OWL-S 51
Steps for AddProvider Service Implementation 53
RDF graph 53
RDF triples o 54
SPARQL Query 54
Message 1 55
Message 3o 55
Register Profile o 56
Get Process and SellBook, 57
Precondition with temporal label 59
Non-Functional Parameter Duration 59
Process From OWL-Sto PDDL 2.1 60
Durative-Action GetOrderService 62
Packing Cell 64
Sequence of services of the first plan 70
Sequence of services of the second plan 70

III

v

LIST OF FIGURES

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3

4.1

5.1

Service Discovery Algorithms
Service discovery in agent based systems
Agents service discovery in distributed and centralized environ-

ments oL oL e e e e

SF meta-services
OMS meta-services v v v i e e e e e e
PK services e

Mapping between OWL-S service and PDDL action description .

Available Services in the Organization PackingCell

VI

LIST OF TABLES

Chapter 1

Introduction

One of the toughest jobs for managers today is keeping up with the rapid changes
in technology. The advent of service-oriented architectures makes this more
important, because these technologies are changing the way of building internal
systems and how internal systems interact with external systems. The aim
of the service-oriented architectures is build compatible software components
that will reduce costs of software systems and at the same time increasing the
capabilities of the systems.

SOA is an architectural style whose goal is to achieve loose coupling among
interacting software agents. A service is a unit of work done by a service provider
to achieve desired end results for a service consumer. Both provider and con-
sumer are roles played by software agents on behalf of their owners. In SOA,
web services are a step along a much longer road. The notion of a service is
an integral part of component thinking, and it is clear that distributed archi-
tectures were early attempts to implement service-oriented architecture. It is
important to recognize that web services are part of the wider picture that is
SOA. The web service is the programmatic interface to a capability that is in
conformance with protocols. So web services provide us with certain architec-
tural features and benefits specifically platform independence, loose coupling,
self description, and discovery and they can enable a formal separation between
the provider and consumer because of the formality of the interface. In fact web
services are not a mandatory component of a SOA, although increasingly they
will become so.

Service-Orientation supports a common principles that are commonly ac-
cepted by all major SOA platforms in the SOA industry. The following guiding
principles define the ground rules for development, maintenance, and usage of
the SOA [22]:

e Reuse, granularity, modularity, composability, componentization, porta-
bility and interoperability

e Compliance to standards (both common and industry-specific)

2 CHAPTER 1. INTRODUCTION

e Services identification and categorization, provisioning and delivery, and
monitoring and tracking

The following specific architectural principles for design and service defini-
tion focus on specific themes that influence the intrinsic behavior of a system
and the style of its design [9]:

e Service encapsulation: Many web-services are consolidated to be used
under the SOA Architecture. Often such services have not been planned
to be under SOA.

e Service loose coupling: Services maintain a relationship that minimizes
dependencies and only requires that they maintain an awareness of each
other

e Service contract: Services adhere to a communications agreement, as de-
fined collectively by one or more service description documents

e Service abstraction: Beyond what is described in the service contract,
services hide logic from the outside world

e Service reusability: Logic is divided into services with the intention of
promoting reuse

e Service composability: Collections of services can be coordinated and as-
sembled to form composite services

e Service autonomy: Services have control over the logic they encapsulate

e Service optimization: All else equal, high-quality services are generally
considered preferable to low-quality ones

e Service discoverability: Services are designed to be outwardly descriptive
so that they can be found and assessed via available discovery mechanisms

Web services naturally support a subset of these principles, which provides
an indication as to why the web services technology platform is considered so
suitable for building service-oriented solutions.

Nowadays, there are two of the principles presented before that are getting
more relevance: discovery and composition. Reusable, loosely coupled services
can be achieved, but even the most reusable service is not useful if it cannot
be found by those responsible for creating potential consumers. Furthermore,
even the most loosely coupled services will have limited reuse potential if they
cannot be assembled into effective compositions. This is where the principles of
service discoverability and service composition became important.

The characteristic of discoverability essentially helps avoid the creation of
redundant services or services that implement redundant logic. Because each
service operation provides a potentially reusable piece of automation logic, the
metadata attached to a service needs to sufficiently describe not only the ser-
vice’s purpose, but also the functionality offered by its individual operations.

1.1. OBJECTIVES 3

As the number of services grows in size, service compositions will become
an unavoidable and increasingly important design aspect of building service-
oriented solutions. The main reason this particular principle is so important is
because it ensures that services are designed in such a manner so that they can
participate as effective members, or controllers, of these compositions.

The requirement for any service to be composable also places an emphasis on
the design of service operations. Composability is simply another form of reuse
and therefore operations need to be designed in a standardized manner (and with
an appropriate level of granularity) to maximize composition opportunities.

Discovery and service composition principles are closely related. A funda-
mental rule of service abstraction is that a service can represent any range of
logic from any types of supported sources, including other services. If services
encapsulate others, we have a composition. To build a useful composition, the
service designer will need to find the most suitable services to act as composition
members. Furthermore, once the composition is completed and deployed, po-
tential consumers of the service representing the composition will benefit from
an awareness of its existence, purpose, and capabilities.

In many cases the problem in service discovery and composition is that
there are many available services which provide similar or identical functionality,
although with different Quality of Service (QoS), a choice needs to be made
to determine which services are to participate in a composite service. One
parameter that could be considered is time. Sometimes service quality decays
with time and, in some way, the provider have to determine how much time
takes the service to be executed. If the execution of the service takes to much
time, maybe the service has not interest for the user.

This problem is present in open environments where entities like web ser-
vices or agents need to locate other entities to achieve cooperation, delegation
or interoperation. Web services and agents are autonomous entities that pro-
vides services to others, maintaining their independency and modularity. In
both cases they can cooperate to develop complex tasks. But agents are above
services, providing some solutions to the drawbacks of web services or even se-
matic web services. The nature of agents, as intelligent and flexible entities with
autoorganizative capabilities, facilitates the implementation automatic service
composition and discovery.

1.1 Objectives

The work presented is inside the projects THOMAS (MeTHods, Techniques and
Tools for Open Multi-Agent Systems)! and Consolider Agreements Technolo-
gies?. The aim of THOMAS is the investigation and development of dynamic
agent organizations that self-adjust in order to make the most of their current
environment. These organizations could appear in dynamic or emerging societies
of agents such as Grid domains, peer-to-peer networks, or other environments

IProject TIN2006-14630-C03-01
2Project CONSOLIDER-INGENIO 2010 under grant CSD2007-00022

4 CHAPTER 1. INTRODUCTION

in which the agents coordinate in a dynamic way in order to offer composite
services. The aim of Agreement Technologies is developing models, frameworks,
methods and algorithms for constructing large-scale open distributed computer
systems. The main idea is anticipate solutions for the needs of next generation
computing systems where autonomy, interaction and mobility will be the key
issues. In both projects there is an objective in the development of intelligent
service coordination techniques/methods within open, decentralized multiagent
systems: intelligent service location (directory services, syntactic and semantic
comparison techniques for services) and generation and adaptation of composed
services. This work is included inside this objective an also has a more specific
objectives:

e Analyze the service discovery and composition problem

e Review the solutions to discovery and composition problem in web services
and in agent systems

e Analyze the weak points in the solutions to discovery and composition
e Propose an extension of OWL-S for service composition

e Integrate the techniques in service discovery and composition in the THOMAS
Service Facilitator module which is responsible of service discovery and
composition.

1.2 Organization

This work is organized in five chapters. The work starts with a review of the
current situation in service discovery and composition area and ends with a
service composition proposal.

e Chapter 2: In this chapter a comprehensive survey in automatic service
discovery is presented. We have scrutinized the literature and critically
reviewed works originating from the fields of web services and agents to
provide a comprehensive overview of service discovery work to date. We
start by defining the main elements that take part in the service discovery
process and the different stages that are part of the process. To continue,
we review algorithms in the field of web services taking into account their
features such as the information that use in their process, if they manage
different ontologies or if they take into account service composition. In the
next section we review some agent features that could be useful to consider
in the discovery process and present some works in this area. Furthermore,
we present a classification of some of the algorithms presented in agent
systems according to the environments where they are applied. Finally,
we make some final conclusions and remarks.

1.2.

ORGANIZATION 5

Chapter 3: In this chapter a service oriented architecture is presented.
THOMAS is an open multi-agent system architecture consisting of a re-
lated set of modules that are suitable for the development of systems
applied in open environments. THOMAS is an extension of FIPA archi-
tecture, it expands its capabilities to deal with organizations, and to boost
up its services abilities. The modules that compound the architecture are
presented.

Chapter 4: In this chapter the Service Facilitator(SF) module is presented
and described with more detail. The SF is a redefinition of the FIPA Di-
rectory Facilitator which is able to deal with services in a more elaborated
way, following Service Oriented Architectures guidelines. A SF view from
an high-level design and from a low level-design is provided. Furthermore
a proposal included in the fuctionality of the SF for service composition
is presented. This proposal is an OWL-S extension to include temporal
qualified services by including duration as a non-functional parameter and
temporal constraints in the preconditions and effects of the service. The
temporal annotated services in OWL-S are translated in durative actions
in PDDL 2.1, so any planner that deals with that language can be used.

Chapter 5: An example of a Packing Cell is presented. This problem is
modelled with THOMAS and it is an explanation with more detail of the
service composition process presented in the previous chapter.

e Chapter 6: Conclusions and future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Service Discovery and
Composition

2.1 Introduction

Nowadays, the need for communication among loosely-coupled distributed sys-
tems is bigger than ever. In open, dynamic and distributed environments, agents
and web services offer a variety of services that can be discovered taking into ac-
count certain kind of information in order to achieve a goal or to give a response
to a necessity. The main obstacle affecting the service discovery mechanisms is
heterogeneity between services. The identification of different kinds of hetero-
geneity gives an impression on what has to be considered in order to avoid or
mitigate them [56]: technological, ontological and pragmatic heterogeneities.

There is an enormous amount of diverse work originating form different
communities who try to overcome different aspects of this heterogeneity in order
to match the best service available and claim some sort of relevance to service
discovery [74][73]. Web services and agents are two important fields that face
the problems in a different way but also have some points in common. This
chapter aims to make a comprehensive survey in automatic service discovery and
composition. We have scrutinized the literature and critically reviewed works
originating from the fields of web services and agents to provide a comprehensive
overview of service discovery and composition work to date.

We start in section 2.2 by defining the main elements that take part in the
service discovery and composition process and the different stages that are part
of the process. To continue, in section 2.3 we review algorithms in the field of
web services taking into account their features such as the information that use
in their process, if they manage different ontologies or if they take into account
service composition. In the section 2.4 we review some agent features that could
be useful to consider in the discovery process and present some works in this
area. Furthermore, in section 2.4.2 we present a classification of some of the
algorithms presented in agent systems according to the environments where they

7

8 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

are applied.

2.2 Discovery and Composition process

Discovery and composition process aim is to locate and compose, if it is neces-
sary, services with similar or exactly service descriptions. Mainly, this process
consists of possible matchings between possible services providers and service
requests. It could be structured in two stages: (i) a first stage where the possible
providers that offer the requested capability are selected using a matchmaking
algorithm, and (ii) a second stage that refines the set of providers. A third
stage where the obtained results in previous stages are evaluated can be also
considered (Fig2.1). More detailed description of these stages is presented in
the following items.

e Selection Process. In this stage a service request is received and sent to a
matchmaker. The matchmaker is responsible of finding a suitable service
or set of services according with the requested description. In this stage,
the matchmaker uses a matchmaking algorithm which returns a service
or set of services, ordered according to the suitability with the request.
The suitability depends on the information that the algorithm considers,
usually is the degree of similarity between service provider and server
request and it will depend on the degree of similarity between input and
output parameters (I0’ s).

e Ranking. In this stage the set of possible service providers is refined ac-
cording to additional information that the client has defined previously to
choose the more suitable provider. To achieve this, the concept of non-
functional attributes, in most of cases related to quality of service (QoS),
is introduced. These attributes are used in ranking functions that gives a
mark or punctuation to the set of providers selected in the previous stage.
For example we can consider a set of candidate services S and a ranking
function F(S, z, R) = S’, where S is the set of services, z is the ranking
attribute and R the order (ascendent, descendent). The result of the rank-
ing function is the ordered set of candidate services. If we consider a set
of services S = {s1, s2}, x = {cost} and R = {ascending}, assuming that
Cost of s1 is more than s2, after the execution of the ranking function we
obtain S’ {s2, s1}. Furthermore, the user can define an threshold to filter
the services obtained.

e FEvaluation. When the results of the matchmaking process are obtained,
it is recommended evaluate these results to identify possible modifications
in some matchmaking parameters. The most important points to be eval-
uated are the quality of the results and the system execution. Obviously,
a measure for these aspects is needed. In these cases, precision and re-
call measures are used. Recall measures how good discovery architecture
retrieves all relevant services. Precision measures how good the architec-
ture retrieves relevant services. A service can be considered relevant if the

2.3. SEMANTIC WEB SERVICES DISCOVERY 9

user that performs the query consider it relevant. If we consider = as the
number of relevant services retrieved for the user, n as the total number of
relevant available services and N as the total number of services returned
to the user. Therefore, we can define recall as z/n and precision as x/N.
An evaluation of information retrieval methodologies and a survey of the
current evaluation approaches in the area of semantic services discovery
is presented by Kuster et al. [42].

Suitable The most
Service appropiate
User's Query Descriptions User’s Service
Parameters Descriptions
A 4 Y_
Selection Proces R
.] - .
Matchmaking » Ranking > Evaluation
Algorithm - .
=
Service
Directory

Figure 2.1: Discovery Process

2.3 Semantic Web Services Discovery

Since the appearance of semantic web, web service discovery has been changed.
At the beginning, all existing approaches used syntactic similarity to establish
the degree of matching between two service descriptions. With the arrival of
semantic web, service descriptions include data structures and relationships be-
tween other concepts. Furthermore, constraints and rules that allows inference
process are present. In this situation, more complex algorithms which have to
consider semantic information to attend user requirements are needed. These
algorithms are based on semantics. Moreover, in some complex environment, in
which several self-interested entities are involved, it can be possible to establish
discovery models based on negotiation protocols. In this section the main ap-
proaches of the web service discovery are defined. In each approach we present
some of the existent discovery algorithms and its main features.

In following sections the main approaches which are in service discovery are
reviewed. Basically these approaches can be divided in three groups: discovery
based on keywords or syntactic information which is commonly used in web ser-
vice environments, discovery based on semantics that is present in environments
of semantic web services and finally discovery based on negotiation.

10 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

2.3.1 Service discovery based on keywords.

It is a first step towards semantic service discovery. Most of the times, services
can be filtered by doing a search based on keywords. A typical keyword scenario
is a search engine that receives queries with keywords and after that the engine
engages query keywords with service description keywords. This model is fol-
lowed by the legacy UDDI Standard and the discovery mechanism it supports.
The retrieval stage comprises a user or a search program, entering a query to
the catalogue. The query consists of keywords, which are matched against the
stored descriptions. The matched web services are then returned as a candidate
answer set and the user browses them in order to find which one of them really
suits her needs. The available search tools are very simple and do not take into
consideration any cross-correlations between web services and the qualitative
characteristics of each web service, forcing the user to repeat the search from
the beginning using new key words. The main problem of keyword discovery
is that do not allow retrieval of WS with similar functionality; two WSDL de-
scriptions can be used to describe the same service but with different words. A
web service discovery review based on keywords is presented in [5].

2.3.2 Service discovery based on semantics.

The use of vocabularies with a formal and explicit semantic is considered as a
second approach. Ontologies, which provide a formal and explicit specification
of shared concepts, can be used for this goal. Ontologies give us a shared and
explicit terminology to describe web services and queries with a logic formal-
ization. By maintaining ontology hierarchies, it is possible to perform semantic
matching, which is subsequently performed by exploiting the subsumption capa-
bilities of ontology languages. Semantic matching has several advantages. First
of all it provides matching flexibility, because results are returned can differ
syntactically with the input query. It also provides accuracy since no matching
is performed unless this is derived from the hierarchy and finally the concept of
matching degree can be supported [27].

In this kind of discovery, some approaches according to the service descrip-
tion language used have been found. Among them, the most important ones
use OWL-S, WSMO and SAWSDL (based on WSDL-S) languages. These lan-
guages provide the answer to the main questions that arise when a web service
has to be described: what are the service requirements from the user?, What is
provided by the service to the users?, How does the service work?, and How a
service can be used?.

Taking into account this information, there are different matchmaking pro-
posals in the area of web services and semantic web. Some of them have been
reviewed paying attention to features such as the information that they use to
deal with the matchmaking process, if they take into account service compo-
sition or cross ontologies or if they use QoS information during the discovery
process. According to that, the approaches reviewed have been classified in the
following types:

2.3. SEMANTIC WEB SERVICES DISCOVERY 11

e J/OPE’s: Inputs, Outputs, Preconditions and Effects are used during the
discovery process.

o (Composition: when there is not a single service which can answer the user
query the algorithm for discovery tries to give an answer composing single
services.

e Cross ontologies: the services and user queries can be described using
different ontologies. This is an important point to take into account in
the process of discovery.

e Hypergraphs: the structure used to represent service information is a hy-
pergraph that facilitate also the process of discovery.

e Model checking: Techniques commonly used in Model checking can be also
be considered in web services composition.

e Non-functional parameters: the algorithm besides the IOPE’s tales into
account parameters related with QoS (Quality of Service).

e Efficient matching: discovery process is a non-trivial problem. Some algo-
rithms use different ideas to improve the efficient of the discovery process.

e Other trends: there are proposals that present other techniques (reasoning
techniques or fuzzy logic) that can be also taken into account.

IOPE’s

In general, most of the existing matchmaking algorithms use just inputs and
outputs as information to determine the matching degree between requests and
announcements. Most of these algorithms are based on Paolucci’s algorithm|[58].
This algorithm considers that a matching between a service advertisement and
a service request consists of matching all the service request outputs with those
of the service advertisement; and all the inputs of the service advertisement
with those of the service request [71]. The degree of similarity between service
provider and server request will depend on the degree of similarity between input
and output parameters (I0’ s). The similarity degree depends on the relation
between the concepts (taken from the ontologies) that are being compared, and
it is reduced to calculate the minimal distance between them in the taxonomic
tree. The denomination of degrees varies according to literature [3][43][58][18].
Mainly, can be stablished the following degrees of matching:

e Fzact: when the two concepts in the request and in the advertisement are
equivalent.

e Subclass of: when request concepts are a subclass of the advertisement
concepts.

e Subsumption: there are two types:

12 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

— Plug-in or Contained: when the concepts of the advertisement A in-
clude the concepts of the request P. Formally, P C A. In this case, the
request can be satisfied due to the advertisement concepts are more
general than the requested concepts. Therefore, it exists the possi-
bility that the client can achieve the goals. But it is not considered
that a directed subclass relation exists.

— Subsume or Container: when the request concepts include the adver-
tisement concepts; formally, A C P. This kind of matching do not
satisfy completely the request but it can be considered as a valid, par-
tial solution because it allows the client to achieve partial objectives
or goals.

e Fuail, Null o Disjoint: when there is no inclusion relation between concepts;
formally (A (| P) C L.

Once that the similarity degree is calculated for each 10, the next step is ordering
all the services. To order them, an algorithm that orders the services obtained
after the matchmaking process is designed. This algorithm gives more priority
to the service output matchings than to the service input matchings due to what
the client hopes to obtain (the output of the service) is more important. Given
two services, first they are ordered according to the outputs and only if there is
a draw the services will be ordered with the similarity degree of the inputs.

Wolf-Tilo defines a different matchmaking algorithm [77]. In this algorithm,
first of all they make a search based on keywords and, later, once is obtained
a list of results, the user could introduce I0’s parameters that must have the
services and the values for these parameters. Finally, a reasoner eliminates those
services that do not have these defined parameters and the resultants will be
executed with the values that were introduced by the client. The results of the
executions are ordered following some constraints that benefit the client, as the
quality of service.

Klusch presents OWLS-MX, a hybrid matchmaking algorithm that computes
the degree of semantic matchmaking for a given pair of service advertisement
and request by successively applying five different filters: ezact, plug-in, sub-
sumes, subsumed-by and nearest-neighbor[39]. The first three are logic based
only whereas the last two are hybrid due to the required additional computa-
tion of syntactic similarity values. The objective of hybrid semantic web service
matching is to improve semantic service retrieval performance by appropriately
exploiting means of crisp logic based and approximated semantic matching.

The OWLS-MX matchmaker takes any OWL-S service as a query and re-
turns an ordered set of relevant services that match the query, each one anno-
tated with its individual degree of matching, and syntactic similarity value. The
user can specify the desired degree and syntactic similarity threshold. OWLS-
MX determine the degree of logical match and the syntactic similarity between
the conjunctive I/O concept expressions in OWL-Lite. Any failure of logical
concept subsumption produced by the integrated description logic reasoner of
OWLS-MX will be tolerated if and only if the degree of syntactic similarity be-
tween the respective unfolded service and request concept expressions exceeds a

2.3. SEMANTIC WEB SERVICES DISCOVERY 13

AlgOI’ithm 1 Generic OWLS-MX Match: Find advertised services S that best hybridly match
with a given request R; returns set of (S, degreeO fMatch, SIMr(R, S)) with maximum degree
of match (dom) unequal FAIL, and syntactic similarity value exceeding a given threshold «

function MATCH(Request R, o)

local result,degreeO f M atch,hybrid Filters={SUBSUMED-BY, NEAREST NEIGHBOUR}
for all (S,dom) € CANDIDATESinputset (INPUTSR) A (S, dom') €
CANDIDATESoutputset (OUTPUTSR) do

degreeO f Match «— MIN(dom, dom”)

if degreeOfMatch > minDegree A (degreeOfMatch ¢ hybridFilters V SIMr(R,S) >
a)then

result:= result U { (S, degreeO fMatch, SIMr(R,S))}

end if

end for

return (result)

end function

[y

given similarity threshold. The pseudo-code of the generic OWLS-MX matching
process is shown in algorithm 1.

Composition

Another aspect that web service discovery considers is that the discovery of ser-
vices would be seriously limited to discover single services if the algorithms do
not address the issue of discovering service compositions. In many situations,
queries that cannot be satisfied by a single service might be frequently satis-
fied by composing several services. Currently, this feature is present in some
discovery algorithms [4][10][15][38][11] [48][34][18]that achieve a more flexible
matching. Most of them use the information provided by the service model to
achieve this goal. In these section, algorithms with more flexible matching for
service composition are presented.

Aversano displays a discovery algorithm that allows service composition dis-
covery. Their algorithm analyzes DAML-S service profiles as the previous al-
gorithms. The algorithm takes as objective the outputs of the user request
and considers the possibility of reaching it with only one service. If to satisfy
the user request with only one service is not possible, the method includes a
backward-chaining algorithm with the purpose of verifying the possibility of
finding a match for the user request by means of a composition of several ser-
vices. This algorithm is also capable of performing cross ontology matching for
service descriptions that use different ontologies. However, it crosses ontologies
at query time, hence severely affecting the efficiency of the whole procedure. In
future work, the algorithm will be extended to take into account pre-conditions
and post-conditions [4].

The matching algorithms described until now are based on DAML-S/OWL-S
and use the service profile. The matching based on the service profile shows up
some problems when composition is needed. This process is similar somehow to
matching two black boxes: a service request asking for two outputs O; and O,
with a service advertisement that provides either O or Os but not necessarily
both (e.g., a choice process)[15]. This match would not be correct because
the process is not capable of providing these two outputs. In order to clearly

14 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

specify the behavior of such service, two service profiles, corresponding to the
two alternatives, have to be provided. This would lead to advertise a large
number of profiles. Moreover, analyzing web services only through their service
profile (i.e., their I0s) can severely affect the process of discovery of service
aggregations that satisfy a request. That is because the service profile does not
describe the internal behavior of services so, in some cases, it does not provide
valuable information needed for composing services. For these reasons, there are
many discovery algorithms that use the information, provided by the process
model.

The first discovery algorithm based on the analysis of the DAML-S Process
Model was proposed by Bansal and Vidal [10]. The Bansal and Vidal algo-
rithm stores advertisements of services as tree structures corresponding to their
process models. The compound processes correspond with intermediate nodes,
whereas the atomic processes correspond with the leaves. The root of the pro-
cess model corresponds with the root of the tree. The matchmaking algorithm
begins in the root of the tree of the advertisement of the service and, recursively,
it visits all the subtrees finishing in the leaves. For each node, the corresponding
matchmaking algorithm verifies the compatibility between the 10s of the service
and the IO0s of the query.

Service Aggregation Matchmaking (SAM)[15] is an extension of the match-
making algorithm proposed by Bansal and Vidal that provides more flexible
matching and considers service composition in the situations in which the queries
cannot be satisfied only by one service [10]. SAM can also return, when a com-
plete matchmaking is not possible, a list of partial matchings (a composition
of subservices that can provide only certain requested outputs by the client).
Besides, when it does not find any match, SAM is able to suggest to the user
additional inputs that can be enough to reach complete match. The main lack
of this algorithm is that does not consider the use of different ontologies.

The SAM algorithm consists of two main parts:

e Construction of a graph representing the dependencies among atomic pro-
cesses of the services in the registry;

e Analysis of such dependency graph to determine a service composition ca-
pable to satisfy the query (or part of it, when no service composition can
fully satisfy the query).

For atomic nodes for example, Match checks whether the corresponding
atomic process is already contained in the graph. If this is not the case, Match
verifies the compatibility between the inputs and the outputs of the atomic node
and the data nodes currently contained in the graph. If all its inputs or at least
one of its outputs are contained (w.r.t. compatibility) in the graph then the
atomic process is considered to be matched and added to the graph. Match
then creates a new process node, new data nodes and all needed edges and
constraints, and inserts them in the dependency graph (See Alg.2).

Klus presents an algorithm based on hypergraphs [38]. This algorithm also
deals with the goal of service composition. In section 2.3.2 of hypergraphs the

2.3. SEMANTIC WEB SERVICES DISCOVERY 15

Algorithm 2 MATCH

1: Match(AtomicProcess P, Graph G)
2: if (P ¢ G) then

3: if (I, € GV Op UG # 0) then

4: Add P to G;

5: forall outputs O in O, do

6

7

8

. if (O ¢ G) then Add O to G;
: Add (P,0) to G;
: forall inputs I in I, do
9: if (I ¢ G) then Add I to G;
10: Add (I,P) to G;
11: forall predecessors PR in Prev, do
12: if (PR € G) then Add (PR, P) to G;
13: forall choice processes PC in Choice, do
14: if (PC € G) then Add (P, PC) V (PC, P) to G;

main algorithm features will be explained.

Another interesting point to take into account related with service compo-
sition is related with goals. There are languages, such as WSMO, that consider
goals to achieve a composition. The work presented by Birna and Wirsing points
out how goal-oriented techniques, which increase flexibility in handling failures,
can be applied in the context of service-oriented systems and, specifically, in
web services composition [75].

Cross Ontologies

Crossing ontologies is another issue that service discovery algorithms have to
face. Individual users or user communities hope to be able of making queries
about interesting services using descriptions that are expressed in terms of their
own ontologies, which do not have to fit in with the ontologies used in the
searched service descriptions. There are algorithms that do not address properly
or do not address at all the problem of crossing ontologies. In some of them,
even all services are assumed to share the same ontology or multiple ontologies
are inefficiently crossed. This feature is getting more and more important to
facilitate semantic interoperability between services [17][4][59][13][39].

The algorithm proposed by Cardoso allows to manage multiple ontologies.
The algorithm uses a function to calculate the degree of similarity of two con-
cepts taking into consideration the ontology(ies) associated with the concepts,
being compared [17]. Different similarity functions are used depending on the
concepts, if they are from the same ontology or from distinct ontologies. The
evaluation of the similarity of two concepts is based on their composing proper-
ties. The similarity function, of the concepts which belongs to the same ontology,
computes the geometric distance between the similarity of the domains of con-
cept O and concept I and the ratio of matched input properties from the concept
I. The similarity function for the concepts which do not share a common on-
tology uses the same rationale that have been exploited to compare input and
output concepts from the same ontology without any parent/child relationship.
Additionally, they also take into account syntactic similarities among concepts.

Pathak also deals with the fact that different users may use different ontolo-

16 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

gies to specify the desired functionalities and capabilities of a service [59]. An
ontology mapping during service discovery is proposed. Such terms and con-
cepts in the service requester’s ontologies are brought into correspondence with
the service provider’s ontologies. To do the mappings they use interoperability
constraints, i.e. a set of relationships that exists between elements from two
different hierarchies.

An extension of SAM based on hypergraphs that allows to cross different on-
tologies is presented by Brogi et al. [13]. The matchmaking system consists of
two main modules: the Hypergraph Builder and the Query Solver. The Hyper-
graph Builder analyses the ontology-based descriptions of the registry-published
services in order to build a labeled directed hypergraph, which synthesizes all
the data dependencies of the advertised services. The vertexes of the hypergraph
correspond to the concepts defined in the ontologies employed by the analyzed
service descriptions, while the hyperedges represent relationships among such
concepts (subConceptOf, equivalentConceptOf and intra-service dependency).
The Query Solver explores the hypergraph by suitably considering the intra-
service and inter-service dependencies to address the discovery of (compositions
of) services as well as by considering the subConceptOf and equivalentConceptOf
relationships to cope with different ontologies. There are other proposals of
matchmaking algorithms based on hypergraphs but they do not consider the
task of crossing ontologies. We will see these algorithms in next section.

Hypergraphs

In order to store the knowledge derived from the preprocessing of ontologies and
service descriptions, a data structure capable of suitably representing service
and data dependencies is needed. Hypergraphs seem to be a good candidates as
dependencies can be naturally modelled by means of hyperedges. A hypergraph
is a generalization of a graph, where edges (hyperedges) can connect any number
of vertexes. Formally, a hypergraph is a pair (X, E) where X is a set of nodes
or vertexes and F is a set of non-empty subsets of X called hyperedges. While
graph edges are pairs of nodes, hyperedges joints arbitrary sets of nodes and
they can, therefore, contain an arbitrary number of nodes(Fig2.2). There are
many proposals in discovery algorithms that use hypergraphs to manage the
data provided by service descriptions and requests.

Brogi et al. present a directed hypergraph that is used to model the nec-
essary data to discover and compose suitable services to answer a user request
[14]. In this approach, the vertexes of the hypergraph correspond to the con-
cepts defined in the ontologies used by the analyzed service descriptions, while
hyperedges represents relationships among such concepts. The relationships
could be: subConceptOf, equivalentConceptOf, intra-service dependency.

The discovery algorithm takes as input a client query specifying the set of
inputs and outputs of the desired service (composition). The search algorithm
explores the hypergraph by performing a depth-first visit, in order to discover
the (compositions of) services capable of satisfying the client request. Basically,
the algorithm searches the services which produce each requested output. If

2.3. SEMANTIC WEB SERVICES DISCOVERY 17

X={w1, w2 w3 v wE b, v,
E={el, a2 ed, ed}={{v1, v2 w3} {v2, v3} w3 w5 vE} {vd}l}

Figure 2.2: Hypergraph

the algorithm does not find a service which produce the output, the algorithm
fails since the query can not be fulfilled. Otherwise, for each service which
generates a requested output, the algorithm adds that service to composition and
updates the set of avaliableOutput by adding the service outputs and updates
neededOutput by adding the inputs of the service and by removing the concepts
that are now available. Next, the algorithm continues recursively.

Prabhu uses hypergraphs to model web services more accurately than reg-
ular graphs [61]. The graph G is the search space, composed of vertices V
representing concepts, and directed edges E representing web services in W (set
of existing web services that are available to the central agent). The central
composition algorithm works both forwards from seed I (set of user given input
concepts) and backwards from seed O (set of user expected output concepts)
simultaneously, performing a breadth-first search from each end (albeit differ-
ently) on G. At the end of each stage (BFS tree layer), it checks if there is
a collision between the two trees. When a collision is detected, it signifies the
shortest path calculation.

Bailey presents a method for discovery interesting collections of web services,
according to user specified cost constraints [6]. To carry out this task they
reduce the discovery problem to one involving hypergraphs. Each web service
is modeled as a vertex, W represents the set of all web services and w represent
a single vertex. Each edge corresponds to a set of vertices (web services) which
offer a particular functionality requested by the user. F' is used to represent
the set of all possible functionalities and f to represent a single functionality.
A transversal of the web service hypergraph now corresponds to a set of web
services that cover all the functionalities requested by the user. The process
to find sets of web services satisfying the user query can be reduced to finding

18 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

transversals of the web service hypergraph.

Benatallah et al. propose a service discovery algorithm derived from hyper-
graphs theory. They show that the discovery problem is similar to the so-called
best covering problem [11]. The discovery problem is viewed as a service request
Q@ and a ontology of services T. The goal is to compute the best combinations of
web services that satisfy as much as possible the outputs of the request ¢ and
that require as little as possible of inputs that are not provided in the description
of). The best profile covering problem can be interpreted in the framework of
hypergraphs as the problem of finding the minimal transversals with a minimal
cost.

Yang et al. use arc-labeled and arc-weighted trees to represent product/service
requirements and offers. An arc-labeled, arc-weighted tree is a 5-tuple T' =
(V, E, Lv, Le, Lw) where V is a set of nodes, E a set of arcs, Lv is a set of node
labels, Le a set of arc labels and Lw = [0, 1] is a set of arc weights. (V, E, Lv, Le)
is an arc-labeled tree and there is an (n — 1,n > 1) mapping from the elements
in F to the elements in Lw [79].

A tree similarity algorithm which traverses input trees top-down (root-leaf)
and then computes their similarity bottom-up is proposed. During tree simi-
larity computation, when a subtree in T} is missing in tree Ty (or viceversa),
the algorithm computes the simplicity of the missing subtree. The tree sim-
plicity measure takes into account the node degree at each level, the depth of
the leaf node and the arc weights for the recursive tree simplicity computation.
This algorithm allows partial product descriptions representations via subtrees
missing. In order to take into account the effect of a missing subtree on the
similarity between two trees, the algorithm uses a implicit measure.

Hashemian uses an specific notation, called interface automaton—which is a
state-base model—in order to formally model web services [34]. The information
that an interface automaton exposes is the IO of a component and the temporal
ordering of the actions it performs. This information can be extracted form
the OWL-S specification of web services. Based on the properties exposed by
interface automaton of each web service, three pieces of information are stored
in a repository: its set of inputs, its set of outputs and dependency informa-
tion between 10’s of the web service. The repository is stored as a graph that
contains web services information. The nodes represents I/O and there is a di-
rected edge form node v; to node v if and only if there is a dependency between
the input and the output. The problem is solved in two steps: (i) finding web
services that can potentially participate in the composition, and (ii) finding the
composition setup based on the web services found in the previous step. In the
first step, a BFS (Breadth First Search) procedure finds all dependencies that
are satisfied by the dependency graph. In the second step, binary composition
operators supported by OWL-S (composition, sequential execution, conditional
execution and parallel execution) are used.

2.3. SEMANTIC WEB SERVICES DISCOVERY 19

Model Checking

Web services are composed online from pieces of software created by different
programmers. Individual services can be checked to ensure that they are error-
free, but when new services are composed there are no means to check whether
the composed service fulfils its purpose. Some formal methods, as model check-
ing, has been proposed to verify the correctness of complex services. But current
languages are semiformal, so the correctness of the composition depends on the
cleverness of the designer. To use formal models requires translations from the
languages used to describe WS, such as BLEP or WSDCL, into more formal
ones.

Gao et al. translate web services specified in BPEL4WS into pi-calculus,
which is nearer to programming languages than finite automaton or temporal
logics [26]. Nevertheless, this formal description is not soundness and some
manual translation is still needed. Model checking is used with two purposes:
(i) to check if services satisfy customer’s demands and and designer’s specifi-
cations, and (ii) to check if orchestration satisfies liveness, safety, fairness and
reachability. Different methods are used: bisimulation to verify the specifica-
tion, mu-calculus to check properties as safety or reachability and pi-calculus to
eliminate ill behaviors.

Nakajima claims that to verify a composite web service prior to its execution
may be mandatory [51]. First, translates a WSFL description into Promela,
the specification language for SPIN model checker. Furthermore, additional
properties are expressed in LTL to be added to the model checking process.
The verification process detects reachability, deadlock freedom and specific user
properties.

Planning as model checking [31] is a method for solving planning problems
modeling them as model checking problems. This solution is based on transition
systems, but web services are a message passing paradigm, so some special
considerations have to be made. Yu and Reiff-Marganiec make a formulation of
the solution by modifying the strong cycle planning algorithm, which guarantees
that all paths reach a solution and they are fair [80]. A four-phased algorithm
is proposed. First, the planning goal and the initial knowledge are specified.
After that, it automatically selects from the repository relevant web services
to build the plan. In third place, the algorithm searches for plans. Finally, a
physical composition step allows clients to choose the better plan, generates a
executable plan specified in BPEL and monitors its execution, replanning when
a failure is detected.

Walton uses model checking to validate the correctness of communication
protocols between agents in an platform that integrates agents and web services
[76]. The services are described in WSDL. Complex interactions among the
entities that offer services are represented by the protocols, who are specified in
a directly executable language called MAP. As the Nakajima’s algorithm, it uses
SPIN as model checker, so the specification is translated into Promela language.
This one provides a complete automatic translation that allows non-expert to
validate their services.

20 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

The main problem in all these approaches is the complexity of the state
space. All of them make different simplifications to the problem to be capable
of managing the validation process by limiting the number of services (or agents)
and the length of the message interchanging mainly. Moreover, designer’s inter-
vention is often needed to translate service descriptions into formal languages
for model checking.

Non-functional Parameters

Another point to take into consideration is to restrict the set of candidate ser-
vice providers based on user-specified non-functional attributes, namely Qual-
ity of Service (QoS). These factors and domain specific characteristics affect
on the service selection and have been taking into account in some algorithms
[59][41][4]. According to Radatz, the Quality of Service is a set of non-functional
attributes that may impact the service quality offered by a web service [36]. The
main problem of this kind of information is that we cannot trust the QoS char-
acteristics published by provider.

Different aspects of QoS might be important in different applications. Be-
sides, different classes of web services might use different sets of non-functional
attributes to specify their QoS properties. Pathak stablishes a categoriza-
tion in two groups[59]: domain-dependent and domain-independent attributes.
The domain-independent attributes represent those QoS services characteristics
which are not specific to any particular service (for example, scalability or avail-
ability). On the other hand, domain-dependent attributes capture those QoS
properties which are specific to a particular domain and most of the times are
dynamic and depends on the instant in which the service is executed.

It is important to have an infrastructure which takes into account the QoS
provided by the service provider and the QoS desired by the service requester so
the best possible match between the two during service discovery can be found.
Kokash proposes three categories to embed quality information in the service
discovery process [41]:(i)solutions that rely on service providers to advertise
their QoS information, (ii)solutions that rely on service clients to review service
quality, (iii) solutions that rely on a third party evaluation of a web service or
a provider.

Related with QoS in web services, there are some approaches that deal with
the problems of relying in QoS information or with the use of this information
in the matchmaking process. To deal with information reliability, service repu-
tation is an specially interesting property that could be regarded as a measure
that accumulates a user opinion about QoS in general. Kalepu et al. address
this problem [37].

There are other approaches that use QoS information in the discovery pro-
cess. A taxonomy for the non-functional attributes which provide a better
model for capturing various domain-dependent and domain-independent QoS
attributes of the services is presented by Pathak et al. [59]. These attributes
allow users to dynamically select services based on their non-functional aspects.
This work also introduces the notion of personalized ranking criteria, which

2.3. SEMANTIC WEB SERVICES DISCOVERY 21

enhances the traditional ranking approach, primarily based on the degree of
match. Furthermore, in this work a kind of ontology mapping is presented .

Following this trend, Kokash presents an approach based on the applica-
tion of a distributed recommendation system to provide QoS information and
on testing of retrieval methods on service specifications [41]. To improve the
relevance of services to the requester in pervasive environments, Steller et al.
present a service discovery model that uses semantics and context [69].

The approach presented by Aversano [4] bases the searching process on syn-
tactic information and on service quality metrics and semantics to increase the
precision of the discovery process. To take into consideration the QoS in the
discovery process, the customer of the service will assign a weight to every at-
tribute. For each selected service, a weighted sum is performed among all the
attributes an the final value represents the quality of the service.

Efficient Matching

Discovery process is not a trivial problem. Due to the complexity of the under-
lying semantic reasoning, matching semantic web service capabilities is a heavy
process. Furthermore, the matchmaking process could be intractable when the
number of available services gets large. The matchmaking process should be ef-
ficient: it should not burden the requester with the excessive delays that would
prevent its effectiveness.

Mockhtar describes a solution towards the efficient matching of semantic
service capabilities [48]. This approach combines optimizations of the discov-
ery process at reasoning and matching levels. Towards the optimization of the
discovery process at reasoning level, they use the solution proposed by Constan-
tinescu for encoding concept hierarchies [18]. They propose to encode classified
ontologies, represented by hierarchies of concepts, using intervals. These hier-
archies represent the subsumption relationships between all the concepts in the
ontologies used in the directory. The main idea is that any concept is associated
with an interval. Under the assumption that service advertisements and service
requests already contain the codes corresponding to the concepts that they in-
volve, semantic service reasoning reduces to a numeric comparison of codes.
Furthermore, they propose to group capabilities provided by networked services
into hierarchies of capabilities. These hierarchies are represented using directed
acyclic graphs (DAG). If there is no matching between a requested capability
and a capability situated on top of a hierarchy, its possible to infer that it will
also fail with all the other capabilities contained in the sub-hierarchy of this
capability in the graph. On the other hand, if a matching between a requested
capability and a capability situated at the bottom of a hierarchy we can infer
that the matching will also succeed with all the predecessors of this capability.

Constantinescu emphasizes the need of efficient indexes and search struc-
tures for directories. Towards this goal, they propose to numerically encoded
service descriptions in OWL-S. This is done by numerically encoding ontol-
ogy class and property hierarchies by intervals. More precisely, each classes
(resp. property) in a classified hierarchy is associated with an interval. Then,

22 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

each service description maps to a graphical representation in the form of a set
of rectangles defined by the sets of intervals representing properties combined
with the set of intervals representing classes. Furthermore, for efficient service
retrieval, the authors base their work on techniques for managing multidimen-
sional data being developed in the database community. More precisely, they
use the Generalized Search Tree (GiST) algorithm for creating and maintaining
the directory of numeric services. Combining encoding and indexing techniques
performing efficient service search.

Srinivasan et al. present an approach to optimize service discovery in a
UDDI registry, augmented with OWL-S for the description of semantic web
services [68]. This approach is based on the fact that the publishing phase is
not a time critical task. Therefore, the authors propose to exploit this phase
to pre-compute and store information about the incoming services. More pre-
cisely, a taxonomy that represents the subsumption relationships between all
the concepts in the ontologies used by services is maintained. This proposal in-
creases the time spent for publishing service advertisements, but it considerably
reduces the time spent to answer a user request compared to approaches based
on on-line reasoning.

Other Trends

Related to discovery and composition process other trends have appeared. The
Torino group [25] suggests the use of reasoning techniques (inferences over a
knowledge-based representation, planning, ...) to achieve adaptivity in the in-
teraction with users and gaining flexibility in discovery process.

In [44] the proposed matchmaking approach uses fuzzy logic and user values
to find a suitable service. For the ranking of service matches a match score is
calculated whereby the wight values are either given by the user or estimated
using a fuzzy approach. Furthermore, an evaluation of both weight assignment
approaches is conducted identifying the scenarios in which one works better
than the other.

The majority of the algorithms presented in the area of web services faces
the discovery problem using the I0’s parameters and trying to solve problems
such as service composition or cross ontologies and also in some of them non-
functional parameters are taken into consideration. But they do not explode
all the possibilities that semantic offers and; furthermore, only a few of them
take into account new interesting ideas from related areas such as multiagent
systems to achieve more flexibility in that process.

2.3.3 Service Discovery based on complex discovery model
and negotiation/contracting.

It comprises discovery models based on interaction protocols, forwarding QoS
and privacy requirements, negotiation dialogs for refining discovery and estab-
lishing service requirements.

2.4. SERVICE DISCOVERY IN AGENT BASED SYSTEMS 23

There are some proposals that consider the global schema of execution, which
is given by the choreography, in the matchmaking process. Baldoni et al. face
the problem of automatic selection and composition of web services by taking
into account service descriptions with richer information [8]. They not only
consider the traditional inputs, outputs, preconditions and effects properties
they also consider interaction protocols. Web services are viewed as software
agents, communicating by predefined sharable interaction protocols. Moreover,
they use a logic specification of the interaction protocols which makes possible to
apply reasoning techniques in order to introduce some degree of flexibility, that
is necessary for personalizing the selection and composition of web services in
an open environment. The main advantages of the proposed approach are that
it leaves out services that would in no case allow the achievement of the user’s
goals respecting all the requirements, as well as it allows the exact identification
of those permitted coursers of interaction that satisfy them. The agent will
know in advance if it is worthwhile to interact with that partner.

The task of selecting a web service, that should play a role in a choreogra-
phy (rather than using the choreography as the design of a new set of services),
implies verifying two things: the conformance of the service to the specification
of a role of interest, which guarantees that the message exchange will produce
correct and accepted conversations, and that the use of that service allows the
achievement of the goal, that caused its search. The achievement of the goal
depends on the operation sequence because each operation can influence the
executability and the outcomes of the subsequent ones. Performing a match op-
eration by operation, does not preserve the global goal [7]. They also show how
to overcome these limits by exploiting the choreography definition. Actually, it
is possible to extract from the choreography some information that can be used
to bias the matching process so that the global goal will be preserved.

This kind of service discovery has been used in multiagents systems [16]
and in e-market environments. Agent-based services discovery mechanisms can
also extends existing mechanisms by considering the types of interactions that
services can use. The efficiency and precision of the matchmaking process can
be enhanced by including this kind of information.

2.4 Service Discovery in Agent Based Systems

Agent orientation is an appropriate design paradigm to enforce automatic and
dynamic collaborations, especially for e-business systems with complex and dis-
tributed transactions. Agent paradigm has technical advantages in software
construction, legacy systems integration, transaction-oriented composition and
semantics-based interaction. For this reason, many ideas from research in mul-
tiagent systems could be used in service-oriented computing approaches.
Nowadays, service oriented computing (SOC) brings additional considera-
tions, such as the necessity of modelling autonomous and heterogeneous com-
ponents in uncertain and dynamic environment. Such components must be
autonomously reactive and proactive yet able to interact flexibly with other

24 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

Algorithm | Language 10’S/ Composition Cross QoS
IOPE’S Ontologies
Paolucci02 | DAML-S 10’s
Abela02 DAML-S 10’s
Constant.02 | DAML-S 10’s Vv
Cardoso02 | DAML-S 10’s Vv v/
Lei03 DAML-S 10’s
Wolf03 10’s Soft
constr.
Bansal03 DAML-S 10’s Vv
Brogi03 OWL-S 10’s Vv
Benata.03 DAML-S 10’s Vv
Aversa.04 DAML-S 10’s N4 Vv Vv
PE’s?
Sriniv.04 OWL-S 10’s N4
KluS05 OWL-S 10’s N4
PE’s?
Pathak05 OWL-S IOPE’s V4 v
Hashem.05 OWL-S I0’s Vv
Yang05 OWL-S I0’s Vv
Kokash05 WSDL 10’s v
Klusch06 OWL-S 10’s Vv
Brogi06 OWL-S 10’s N4 N4
Mokhtar06 | DAML-S 10’s N4
Corfini06 OWL-S 10’s Vv Vv
Bailey06 Functionalities Vv
Prabhu07 10’s N4
Baldoni07 IOPE’s - Roles Vv

Table 2.1: Service Discovery Algorithms

components and environments. As a result, they are best thought of as agents
who collectively form MAS. SOC represents an emerging class of approaches
with MAS-like characteristics for developing systems in large-scale open envi-
ronments. Key MAS concepts are reflected directly in SOC with ontologies,
process models, choreography, directories and facilitators, service level agree-
ments and quality of service measures. In this section, the ideas and agents
features used in the area of service discovery and how matchmaking algorithms
have used them to improve the service discovery process are presented. Classi-
fication of the matchmaking algorithms taking into account if they are used in
centralized or distributed environments is also given 2.4.2.

2.4.1 Agent features in matchmaking algorithms

In the scope of matchmaking, agent paradigm, due to its features can be taken
into consideration to achieve more flexibility and better results in service dis-
covery algorithms. In this section some agent features used in service discovery

2.4. SERVICE DISCOVERY IN AGENT BASED SYSTEMS 25
are presented.

Interactions and conversations

In multiagent systems, agents replace the procedure call method for service invo-
cation by a communication-based mechanism. This allows complex interactions
instead of simple input-output schemas.

This agent feature allows us to provide another way to discover and invoke
(request) services in a more flexible and suitable way. There are some proposals
for web services that consider the global schema of execution in the match-
making process, which is given by the choreography. Baldoni et al. face the
problem of automatic selection and composition of web services taking into ac-
count interaction protocols [8][7]. Web services are viewed as software agents,
communicating by predefined sharable interaction protocols.

Furthermore, there are some approaches as WSIG[32], WSDL2JADE[52] or
WSAI[2] that allows requests using FIPA messages and interaction protocols to
demand services provided by agents or by web services.

Recommendation

Web services have an implicit knowledge about the world, while agents are ex-
pected to base their knowledge and their actions in the observable behavior of
other agents. When an entity, agent or service, request a service, the entity is
being confident with the provider because it depends on it for having the work
done. Reputation and Trust are measures for maintaining this confidence and
select trustful services. Some approaches in the agent area propose a framework
for semantic discovery and selection of web services using a trust management
model that consist on capturing user’s trust disposition, verifying trustworthi-
ness level, making trust decision and evaluation after a transaction [65].

There are other approaches that use a knowledge called community culture
to facilitates the discovery of web services satisfying user needs. Community
culture is based in the knowledge about acting effectively in the environment,
which is often implicit and specific to the community. Kokash in [41] presents
a system based on the implicit culture that uses the history of user-systems
interactions and client-service communication logs to provide recommendations
on web services.

Many approaches consider ratings of service providers based on subjective
opinions of web service users. For instance, Manikrao describes a service selec-
tion framework which combines a recommendation system with semantic match-
ing of service requirements [45]. There are other proposals where agents act as
proxies to collect information and to build the reputation of semantic web ser-
vices [46].

In other approaches, the objective experience data of agents is used in order
to evaluate its expectation from a service provider and to make decisions using
its own criteria and mental state [64]. Basically, service consumers collect pre-
vious experiences form other service consumers with similar requirements and

26 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

make decisions using different methods. By simply sharing their experiences,
service consumers lead to the emergence of a consumer society in which the
overall satisfaction increases.

An extension of the algorithm used in IMPACT (platform for collaborating
agents)[70] is presented by Zhang[81]. This extension consist in adding to the
usual service description (service name, inputs, outputs and attributes) an ex-
tra component that consists of a registry that keeps the evaluation that other
consumers gave to the service. The registry is formed by pairs of two elements:
the number of times that it has been delegated and the satisfaction degree of
the executed service.

Cooperation and roles

Agents are cooperative, forming teams and coalitions that provide higher-level
services. In these coalitions, agents can play several roles depending on the
situation or their interests. This feature can be exploited in agent-based service
discovery mechanisms, where the information provided by the organizational
model underlying the multiagent system can be used. In order to improve the
efficiency and the usability of agent-based service-oriented architectures, Caceres
et al. suggest exploiting common organizational concepts such as social roles and
types of interactions to further characterize the context that certain semantic
services [16] [23]. Following this idea, a matchmaker which makes use of roles
and interactions types is presented. The matchmaker is an extension of the
hybrid matchmaker OWLS-MX][39] that improves the efficiency and precision
of the matching process.

Negotiation

Web services, as currently are defined, are not considered totally autonomous.
Autonomy among agents is understood as a social autonomy, where agents are
aware of the existence of other agents and they are sociable and can cooperate to
achieve common goals. This agent feature allows negotiations where the agents
can reach agreements in service composition, or in non-functional parameters
related with services. There are some approaches in the discovery process that
use negotiation techniques and protocols to select the suitable services.

Negotiation protocols are another mechanism used in multiagent systems in
e-commerce or online supply chains applications. Participant agents negotiate
about the properties of the services they request and provide to enter into bind-
ing agreements and contracts with each other. Dang presents in [20] a protocol
that supports many-to-many negotiation in which many agents negotiate with
many other agents simultaneously using colored petri nets.

Bircher proposes to implement an environment based on agents and mar-
ketplaces where agents, representing wireless service customers, can detect and
meet other agents (representing wireless network service providers) negotiate
with them about the offered services and reserve the resources for the agreed
price [12].

2.4. SERVICE DISCOVERY IN AGENT BASED SYSTEMS 27

In electronic commerce, negotiation is a common method in the discovery
tasks. Ouksel presents an example where the organization needs a matchmak-
ing process in which provider agents are matched with demanding agents [55].
These matched agents can establish negotiations directly or with the control of
a referee entity. The matchmaking process allows to match the agents with the
less conflict interests. The algorithm matches each provider with a buyer, the
problem can be seen as a not directed biparted graph, complete and weighted.
The aim is to find the suitable matching that maximizes the sum of the weighed
edges.

2.4.2 Matchmaking algorithms in centralized and distributed
environments

In open multi-agent systems, agents can be asked for tasks that they alone can
not achieve. But agents can delegate these tasks to other agents or cooperate
with them. So agents need to know which services can be provided by other
agents and how to contact with them. The solutions to the service discovery
problem in multi-agent systems follow two lines: a centralized approach and a
distributed one. In this section we review both lines with more detail.

Service discovery algorithms in centralized middle agents

Regards to matchmaking algorithms, agents and web services have some aspects
in common. This is more obvious in the algorithms used by middle-agents. The
approach based in middle agents is used in open and dynamic systems where the
scalability and the workload are low. The main advantage is that matchmakers
could provide an optimal matching because they can take into account all the
registered services in the system. Furthermore, middle-agents usually make
an efficient search and get a good throughput. The most important drawback
is that this kind of agents could be a bottleneck in systems with high work
load. They are also complex, they need a huge amount of memory to keep
advertisements, and they should understand different languages.

One of the firsts matchmaking algorithm used in agents systems was pre-
sented by Sycara et al.[71]. It uses its own language, LARKS. It is an expres-
sive language able to support automatic inferences. The implementation of the
matchmaking process for LARKS specifications uses different techniques from
information retrieval, IA and software engineering that calculate semantic and
syntactic similarity between the advertisements and requested descriptions of
the agent capabilities. Matchmaking engine consists of five filters that progres-
sively restricts the number of advertisements that are candidates for a match:
the higher the precision is, the longer the time the matchmaker needs before
delivering an answer. These filters can be configured by the user to reach the
desired solution. The disadvantage of this algorithm is that uses an own lan-
guage for service description. Besides, in the matchmaking process does not
consider criteria related to the user preferences or QoS. In addition, as in other

28 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

matchmaking algorithms seen for web services[58][3][77], service composition is
not considered either.

Other algorithms have been developed taking into account criteria related
to QoS or user preferences. Mecar[47] presents a matchmaking algorithm based
on semantic information of service descriptions coded with DAML-S. The algo-
rithm is very similar to the presented by Paolucci[58], but it considers the user
preferences related to QoS. The main feature of the algorithm is that it divides
the matchmaking procedure in several parts: input matching, output matching,
profile matching and user matching. Each part is independent of the other three
which makes the process more flexible. The final result will be based on the
results of each stage of matchmaking.

Corradini et al.[19] present a matchmaker agent which its aim is to obtain a
service with a certain QoS. With the purpose of assuring the choice of the quality
of a requested service, the matchmaker communicates with a QoS authority.
Besides the functions of the matchmaker agent, we could also emphasize another
functions as service coordination based on protocols and the capability to obtain
services considering quality and confidence.

Another important aspect for matchmaking algorithms is to be able to con-
sider service composition. Trazec et al.[72], as in the algorithms presented pre-
viously in web services[15][13][10], present a matchmaking algorithm that uses
the Process Model. The Process Model is based on the process as a key concept,
and that describe the service not only in terms of inputs, outputs, preconditions
and effects. When it is appropriate, the algorithm uses the service decomposi-
tion in subprocesses. The matchmaking process requires two different tasks: to
abstract the required query capabilities and to compare those capabilities with
the service providers available.

Flexibility in another important characteristic in matchmaking algorithms.
PHOSPHOROUS|29] uses an specific language to express agent capabilities and
requests. Both are automatically translated in descriptions which are organized
in a subsumption hierarchy that exploits the descriptions in the ontology do-
main. PHOSPHOROUS reasons with the complete expression that specifies
capabilities and requests, including parameters and whatever constraint in the
capability constraints. PHOSPHOROUS uses a matching based on the reverse
of subsumption to find agents whose capabilities are subsumed by the capabil-
ities of the request. Therefore, they can satisfy some aspects from the original
request. In other cases, it could be possible to complete the request splitting
it and expressing it in a different terms. PHOSPHOROUS also allows query
reformulation, providing a more flexible service.

To improve the service matchmaking, algorithms could use information re-
lated with the system in which the agents are. Céceres et al. present an ap-
proach that takes into account aspects as organizations, roles or interactions
[16]. The mechanism for service discovery in multiagent service uses the in-
formation provided by the organizational model of the system. Following this
idea, a matchmaker which make use of roles and interactions types is presented.
The matchmaker is an extension of the hybrid matchmaker OWLS-MX[39] that
improves the efficiency and precision of the matching process. The main rou-

2.4. SERVICE DISCOVERY IN AGENT BASED SYSTEMS 29

tine of the algorithm calculates the matching degree between the requester role
and a role of a service advertisement. For each role, the matching with the
service advertisement and the matching between the necessary and requester
roles, are calculated. The matching degree is the minimum difference between
both values. The semantic match between two roles is calculated depending on
the role ontology. It depends on two values: the match degree and the distance
between roles in the ontology. Another extension of OWLS-MX is presented in
the CASCOM abstract architecture[23], which combines agent technology and
semantic web services, peer-to-peer, and the mobile computation for service mo-
bile environments. This architecture presents, in its service coordination layer,
a semantic discovery service that is composed of two types of agents: Service
Discovery Agents (SDA) and Service Matchmaking Agents (SMA).

Service discovery algorithms in distributed entities

Different approaches are suggested to overcome the above mentioned problems
related with the centralized paradigm. These solutions distribute the infor-
mation about agent capabilities among other elements of the system. These
approaches are suggested in environments with high scalability and workload.
The main advantage that they provide is that they have not only one fail point.
Furthermore, they provide a decrease in time communications and spread the
memory needed by agents. The main drawback is that some distributed ap-
proaches, such as coalitions or peer-to-peer, do not guarantee a matching or
the best matching and, in some situations, the broadcast could overload system
communications.

Peer-to-peer. Peer-to-peer approach takes advantage of the fact that each
agent already knows its own capabilities and those of a few peers, and uses peer-
to-peer search (recursively) for locating agents with the needed capability [55].
An agent broadcasts a query to its neighbors local knowledge and the agent
that receives such a request either offers its services to the original caller or
broadcasts the request to its own neighbors. This approach relies on each agent
indeed holding a neighbor list of its peers and adhering to the location protocol.
The drawback of this approach to service discovery is that the communication
among agents in is essential and the overall communication traffic overhead may
be large. It also requires a connection model among the agents that will ensure
a high number of correct answers (good hit ratio for queries) and in the same
time control communication overhead so that the network is not overwhelmed
by the messages of the location protocol. This approach is used, as we have
seen in the previous section, in electronic commerce[55].

Negotiation protocols, as we have seen previously, are another mechanism
used in multiagent systems in e-commerce or online supply chains applications.
Participant agents negotiate about the properties of the services they request
and provide to enter into binding agreements and contracts with each other [20]
[12].

30 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

Coalitions. Another way to locate distributed services is to form coalitions o
clusters. Nevertheless, the choice of what coalitions are going to be formed is a
difficult task. This entails recursively to calculate the values of the coalitions and
later selecting the coalition with the best result. The calculation of the coalition
values can be made in parallel, but this phase requires that each agent knows
the rest of agents of the system (global knowledge). In addition to determine
the best value, they have to use broadcast. Therefore, in some situations, the
system could be overload.

Ogston and Vassiliadis present an algorithm for consumer agents that only
wants a suitable matching but not the best [54][53]. In this algorithm, each agent
has a number of tasks and needs to delegate in other agents. This agents are
located randomly around its neighbors, checking if its characteristics are similar
to the searched features. When a matching between two agents is founded, it
is considered that these agents are able to cooperate. These agents get into a
coalition which allows each agent to extend its neighbors and the scope of search
is extended for future tasks. In the case that the agent do not find another agent
with the desired characteristics, the agent will look for them in other coalitions.

The discovery mechanism presented by Moore and Sura [49] is based on the
use of relations. With the similarity of keywords, historical information and
clustering, each agent can determine which relations should choose. Similarity
among keywords is the ratio of keywords that an agent and its partner of relation
have in common. Agents with similar keywords will be near in the relationship
network. Furthermore, inside the clusters, it could be possible to create new
subclusters in which the second keyword is shared among the members. In
this algorithm, the historical relations are presented as an improvement of the
algorithm.

Distributed middle-agents. Another way for agents to locate services in a
more efficient way is the distribution of the middle agents o facilitators[50]. This
approach consists on the distribution of the service directory, its memory and
the pass messaging cost. Jha et al. propose to split the function of the facilitator
among a group of agents [35]. The system designer assigns a local matchmaker
to each host or segment of the system, which provides matchmaking services to
agents in its vicinity (its segment). The local matchmaker can consult its peers
or a central matchmaker whenever it cannot provide an answer to a local query.
This type of solution reduces communication traffic and confines it to network
segments (in which communication is fast). Moreover, it reduces message queue
sizes, improving scalability and fault tolerance. This approach is applicable in
systems that have a hierarchical topology, in which information sharing can be
confined to local segments.

In systems with very large segments the problems of scalability are only
marginally relieved by this approach (because the large segments become over-
loaded systems which have local bottlenecks). Another case in which this ap-
proach is not useful is in systems with many cross-links between segments. In
this case the overhead of coordinating tasks among local matchmakers might be

2.5. FINAL REMARKS 31
Approaches Problems Suitable Environ. | Advantages Drawbacks
Centralized: less fail tolerance | low workload efficient search complex
bottleneck low scalability good throughput memory
optimal match manage
great quantity
of queries
Distributed: comm. overload high scalability direct queries couldn’t find match
coord. overload high workload spread information low throughput
better fault tolerance | if no interactions
between neighbors

Table 2.2: Service discovery in agent based systems

greater than the benefit obtained from their distribution.

Sigdel et al. present an adaptative system [66]. The framework suggested
allows automatically adaptable matchmaking methods for service localization
depending on the network structure and characteristics. This approach is based
on two levels: system adaptation level and node adaptation level.

In the system adaptation level the system adapts itself to the changing cir-
cumstances of the network, the number of nodes and the service load. If anyone
of these circumstances increases, the system introduces new matchmakers that
will reduce the service load of the central matchmaker. These new matchmak-
ers are defined in a segment of consumers and suppliers where they could be
created. When some of the previous circumstances decrease, for example the
service load, a mechanism unify the segments and eliminates the created match-
makers to increase the productivity of original matchmaker.

In the node adaptation level, nodes suppliers or consumers could be pro-
moted to matchmakers with small modifications. When matchmakers are not
required in the system they could return to consumers or suppliers. In each seg-
ment, there is a matchmaker in charge of looking for the matchmaking between
consumers and suppliers. If the matchmaker cannot find a suitable matching it
sends the request to others matchmakers. The communication and cooperation
between matchmakers are fundamental.

2.5 Final Remarks

In sections 2.3 and 2.4 we have described and showed examples of works related
to service discovery and composition. In this section we elaborate on important
topics that emerged when examining these works. While the main sections of
this chapter aims to act as a road map of service discovery, herein we critically
review issues concerned with the information used in the discovery process, if
compositions is considered or if crossing ontologies have been taken into account.

We start by discussing the proposals in the scope of web services. Most
of them, basically based on 10’s. Paolucci’s algorithm is limited to discover
simple services. It does not consider the composition discovery nor the use

32 CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

Algorithms Centralized Env. | Distributed Env. | Main Features
LARKSS82 v Own Language
Mullen88 Distr. Middle-Ag | distributed directory
Corradini88 Vv QoS
Use of protocols
Jha98 Distr. Middle-Ag | Comunication segments
Hierarchical topology
Phosphor.01 N reverse of subsumption
request splitting
reformulation
Ogston01 Coalitions Clustering
IMPACTO1 v Trust and reputation
Moore02 Coalitions Clustering

Similarity keywords
Historical relations

Trzec04 v Service composition

Ouksel04 P2P Negotiation

Bircher04 pP2p Negotiation

Mecar05 v User preferences
Flexible

Sidgel05 Distr. Middle-Ag | Adaptative system

Céceres06 V4 Roles

Dang06 pP2p Negotiation

Table 2.3: Agents service discovery in distributed and centralized environments

of different ontologies. Another lack is that the process of matching does not
consider parameters related with quality of service (QoS); it is only based on
the input and output parameters. From this algorithm arose others that made
some modification to deal with some of its deficiencies [3][39][4][17] [43] [18].

There are some algorithms that, apart from 10’s information, take into ac-
count preconditions and postconditions (IOPE parameters). This information
can be important to be taken into consideration in negotiations and allow mak-
ing inferences about that. In some situations, for example, if a user is looking for
a rent car service with a normal credit card and there are two services s; and ss
that offer that service. s; only allows to pay with special kind of credit card and
s1 accepts any kind of credit card. The discovery process returns as a solution
both services but in fact, the user are only interested in so. For these reason,
it could be interesting to take into account preconditions and postconditions to
restrict the possible suitable services.

Where the conventional IOPE-based matchmaking algorithms are unable to
determine suitable matches for a request, is decisive take into account compo-
sitions. This characteristic is present in some discovery algorithms [4][10][15]
[38][11][48][34][18]that achieve more flexible matching. Most of them use the
information provided by the service model to achieve this aim. Although these
kind of algorithms have a worst case timing analysis, the average case perfor-
mance is actually much better since most of the possible advertisement process

2.5. FINAL REMARKS 33

nodes are not explicitly examined.

In some of the presented algorithms important points as crossing ontologies
[17][4][59][13][39] or Quality of Service (QoS) to restrict the set of candidate
service providers based on user-specified non-functional attributes [59][41][4] are
taken into account.

Although the features that are present in the algorithms that improve ser-
vice discovery, the algorithms also have some weakness. For example, in most
of them they do not exploit all the data provided in the service profile. The ma-
jority of the algorithms use IO’s but forget the preconditions and postconditions
and the capability to make inference about this data to obtain new information
that could be useful to eliminate false suitable services. Furthermore, they not
emphasize in other aspects that could give them more flexibility in the discov-
ery process such as allowing partial matching or fuzzy data. There are other
points which limit the capability of new ways of matchmaking. For instance,
web services nor have internal state and neither awareness of changes in its
environment. This fact makes a web service not be able to take advantage of
new capabilities in their environment or customize their services to users such
as providing improved services. Another point is synchronous communication.
As a consequence of that, hardly ever you can see algorithms that use com-
plex interactions similar to FIPA protocols in agents. In addition, web service
discovery algorithms do not consider temporal constraints over services.

Operations as service discovery can also be realized through agent-oriented
techniques. This paradigm is appropriate to automatic and dynamic collabora-
tion especially for systems with complex and distributed transactions. Agents
present an extended proposals that provide a more flexible and efficient match-
making process. Some of the proposals use algorithms very similar to web
services but they add agent features to achieve a more efficient and flexible
matching. We have seen in this chapter that the use of roles[16] [23], interaction
patterns|[8][7], trust [65][41][45][46] or negotiation [20][12][55] could be another
suitable way of afford discovery problem. Furthermore, agents presents some fea-
tures such as awareness of theirs internal states or asynchronous message inter-
change which allows to establish conversations and negotiations which provides
more flexibility. Similar to web service discovery approaches, in agent-based
approaches are some open issues to consider such as QoS in the matchmaking
process and also take into account temporal constraints. These characteristics
are useful to limit the possible candidates to be a suitable provider and to make
easier to find the requested service. In some agent and web services propos-
als, these ideas are being taken into account, but it is difficult task due to the
complexity of the required solution.

34

CHAPTER 2. SERVICE DISCOVERY AND COMPOSITION

Chapter 3

THOMAS Architecture

3.1 Introduction

The areas of Service Oriented Computing (SOC) and Multi-agent Systems
(MAS) are getting closer and closer. Both trying to deal with the same kind of
environments formed by loose-coupled, flexible, persistent and distributed tasks.
Moreover, MAS must cooperate with others inside a ”society”. Due to the tech-
nological advances of recent years, the term ”society”, in which the multi-agent
system participates, needs to meet several requirements such as: distribution,
constant evolution, flexibility to allow members enter or exit the society, ap-
propriate management of the organizational structure that defines the society,
multi-device agent execution including devices with limited resources, and so on.
All these requirements define a set of features that can be addressed through the
open system paradigm and virtual organizations in multiagent systems. There
are other problem that should be addressed: the integration of multiagent sys-
tem paradigm and the service-oriented computing paradigm. Nowadays, service
oriented computing (SOC) brings additional considerations, such as the neces-
sity of modelling autonomous and heterogeneous components in uncertain and
dynamic environment. Such components must be autonomously reactive and
proactive yet able to interact flexibly with other components and environments.
As a result, they are best thought of as agents who collectively form MAS. SOC
represents an emerging class of approaches with M AS-like characteristics for de-
veloping systems in large-scale open environments. They key MAS concepts are
reflected directly in SOC with ontologies, process models, choreography, direc-
tories and facilitators, service level agreements and quality of service measures.
For these reasons it is also interesting to integrate these two technologies to
model autonomous and heterogeneous computational entities in dynamic and
open environment.

In this chapter THOMAS (MeTHods, Techniques and Tools for Open Multi-
Agent Systems) is presented as an architecture that deals with the integration
of agents and services, being agents complex entities that can handle the prob-

35

36 CHAPTER 3. THOMAS ARCHITECTURE

lem of service discovering and composition in dynamic and changing open en-
vironments [63][33]. These agents are organized not in plain societies, but in
structured organizations that enclose the real world with the society represen-
tation and ease the development of open and heterogeneous systems. Current
agent platforms must integrate these concepts to allow designers employ higher
abstractions for modeling and implementing these complex systems. All these
concerns are gathered in the THOMAS architecture.

3.2 Architecture Model

THOMAS architecture basically consists of a set of modular services. Though
THOMAS feeds initially on the FIPA architecture, it expands its capabilities to
deal with organizations, and to boost up its services abilities. In this way, a new
module in charge of managing organizations has been introduced into the archi-
tecture, along with a redefinition of the FIPA Directory Facilitator that is able
to deal with services in a more elaborated way, following Service Oriented Ar-
chitectures guidelines. As it has been stated before, services are very important
in this architecture. In fact, agents have access to the THOMAS infrastructure
through a range of services included on different modules or components. The
main components of THOMAS are the following (Figure 3.1):

e Service Facilitator (SF), this component offers simple and complex ser-
vices to the active agents and organizations. Basically, its functionality is
like a yellow page service and a service descriptor in charge of providing
a green page service.

e Organization Management System (OMS), it is mainly responsible of the
management of the organizations and their entities. Thus, it allows cre-
ation and management of any organization.

e Platform Kernel (PK), it maintains basic management services for an
agent platform.

3.3 SF: Service Facilitator

The Service Facilitator (SF') is a service provider which is in charge of service
management (service discovery and composition) and also of the access to the
THOMAS platform. The SF offers all services needed for a suitable service
management and access performance. These services have also to be used by
the rest of THOMAS components (OMS and PK) to advertise their own services.
Services that are going to be registered in the SF should be described in a OWL-
S specification for semantic web services, extended when needed to empower its
functionality. The service description should be a tuple:

<serviceID, goal, profile, process, grounding, ontology>

37

3.3. SF: SERVICE FACILITATOR

Sjuaby

leulalxy

(Md) 1suiay wione|d

Jahe ylomiaN

SIAV

uonedIUNWWOYD dpISINQe
sofessa|\ anl9d9Ye
sabessa|\ puase
JoReT S I0MIBN
91940 anIT "By
Konsap ‘uoneald uabye
SV

|ouIay wioje|d

Jjuswabeuew
sannua wiopne|d

uolyeol|gnds
yoJeas.
=@ papuaxg
uonsodwo)e
Bupewyorepe
AK1anoasige
uondiosaq 92InIasS
103e11|1984 92IAIBS

uoneziueblo [01U0De
919K anI "BIQ.
uoireziuehio Aonsaqe
uoneziuebiio ayealde
wa1sAs 1uswabeuep
uoneziuebio

Slomauwre.y
uonnoaxa
uoneziuehbio

Figure 3.1: THOMAS components

38 CHAPTER 3. THOMAS ARCHITECTURE

and it is organized in two parts: one related with general information of the
service and the other related with a low-level.

To manage services the SF offers a set of meta-services that can be classified
in three types: registration, affordability, discovery. It is briefly described as
follows (Table 3.1). In the next chapter the SF is described with more details.

Type Meta-service Description
RegisterProfile Creates a new service description (pro-
file)
Registration | RegisterProcess | Creates a particular implementation
(process) for a service
ModifyProfile Modifies an existing service profile
ModifyProcess Modifies an existing service process
DeregisterProfile | Removes a service description
Affordab. AddProvider Adds a new provider to an existing ser-
vice process
RemoveProvider | Removes a provider from a service pro-
cess
SearchService Searches a service (or a composition of
Discovery services) that satisfies the user require-
ments
GetProfile Gets the description (profile) of an spe-
cific a service
GetProcess Gets the implementation (process) of
an specific a service

Table 3.1: SF meta-services

3.4 OMS: Organization Management System

The Organization Management System (OMS) is in charge of organizations
life-cycle management, including specification and administration of both their
structural components (roles, units and norms) and their execution components
(participant agents and roles they play and active organizational units).

Organizations are structured by means of organizational units, which rep-
resent groups of entities (agents or other units), that are related in order to
pursue a common goal. Those organizational units have an internal topology
(i.e. hierarchical, team, plain), which imposes restrictions on agent relationships
and control (ex. supervision or information relationships).

In THOMAS, a “virtual” unit has been defined in order to represent the
“world” system in which agents participate by default. The OMS creates orga-
nizations inside this “virtual” unit, by means of registering organizational units,
which can also be composed of more units. Moreover, roles are defined in each
unit. They represent all required functionality needed in order to achieve the

3.4. OMS: ORGANIZATION MANAGEMENT SYSTEM 39

Type Subtype Meta-service Description
RegisterRole Creates a new role inside a
unit
. . RegisterNorm Includes a new norm inside a
Registration .
unit
RegisterUnit Creates a new unit inside a
specific organization
Structural DeregisterRole Removes a specific role de-
scription from a unit
DeregisterNorm Removes a specific norm de-
scription
DeregisterUnit Removes a unit from an orga-
nization
InformAgentRole Indicates roles adopted by an
agent
InformMembers Indicates entities that are
Information members of a specific unit
QuantityMembers Provides the number of cur-
rent members of a specific
unit
InformUnit Provides unit description
InformUnitRoles Indicates which are the roles
defined inside a specific unit
InformRoleProfiles Indicates all profiles associ-
ated to a specific role
InformRoleNorms Provides all norms addressed
to a specific role
Basic RegisterAgentRole Creates a new <entity, unit,
role> relationship
Dynamic DeregisterAgentRole | Removes a specific <entity,
unit, role> relation
AcquireRole Requests adopting a specific
Compound role inside a unit
LeaveRole Requests leaving a role
Expulse Forces an agent to leave a spe-

cific role

Table 3.2: OMS meta-services

unit goal. They might also have associated norms for controlling role actions
(i.e. which services agents playing that role are allowed to request, offer or serve;
permissions for accessing resources). As a result, agents can dynamically adopt
roles inside units, so the OMS controls this role adoption process and which are

40 CHAPTER 3. THOMAS ARCHITECTURE

the entities that play each role through time.
The OMS component makes use of the following information:

e UnitList: it stores existing units, together with their objectives, topology
and parent unit.

e RoleList: is stores the list of roles defined in each unit and their attributes
(accessibility, visibility, position and inheritance). Accessibility indicates
whether a role can be adopted by an agent on demand; Visibility indicates
whether agents can obtain information of this role on demand; Position
indicates whether it is a supervisor, subordinate or member of the unit;
and Inheritance indicates its parent role.

e NormlList: it stores norms defined in the system.

e EntityPlayList: it describes jentity, unit, roles; association, i.e. which roles
have been adopted by an entity (agent) inside each unit.

The OMS offers all services needed for a suitable organization performance.
These services are classified as: structural services, that modify the structural
and normative organization specification; and dynamical services, that allow
agents to entry or leave the organization dynamically, as well as role adoption.
The complete list of the OMS services is detailed in Table 3.2. Those services
are briefly described as follows.

3.5 PK: Platform Kernel

The Platform Kernel (PK) is in charge of providing the usual services required
in a multi-agent platform. Therefore, it is responsible for managing the life
cycle of the agents included in the different organizations, and also allows to
have a communication channel (incorporating several message transport mech-
anisms) to facilitate the interaction among entities. On the other hand, the PK
offers a safe connectivity and the necessary mechanisms that allow multi-device
interconnectivity.

A previous security mechanism is assumed for some of the services described
below, which permits to manage who can invoke each service and over whom.
For example, the supervisor of an organization may have the option of creating
new agents inside its organization. For this, the agent Register Service should
be invoked at platform kernel level.

The services offered must be FIPA legacy, with some modifications. The
PK services needed in a THOMAS infrastructure are classified in four types: (i)
Registration: they allow to add, modify and remove native agents from the plat-
form; (ii) Discovery: services to get some information about the native agents
active in the platform; (iii) Management: services to control the activation state
of native agents in the platform; (iv) Communication: services to communicate
agents in the platform and outside it.

3.5. PK: PLATFORM KERNEL 41

The complete relation of the PK services is detailed in Table 3.3. Those
services are briefly described as follows.

Type Service Description
Register Registers a new agent in the platform
Registration Deregister Eliminates an agent registration

Update register | Modififies the information appearing
in an agent register (except the agent

name).
. Agent Search Request information from a registered
Discovery
agent on the platform.
Get Description | Obtain the platform description.
h i f ifi
Management Suspend Suspend the execution of an specific
agent.
Activation Activate the execution of an agent who
currently is suspended.
Communication | Send Send a message to any agent in the plat-

form or outside it.

Table 3.3: PK services

42

CHAPTER 3. THOMAS ARCHITECTURE

Chapter 4

Service Facilitator

4.1 Introduction

The Service Facilitator (SF) is a mechanism and support by which organiza-
tions and agents can offer and discover services. The SF provides a place in
which the autonomous entities can register service descriptions as directory en-
tries. The SF deals with one of the THOMAS objectives: develop intelligent
service coordination techniques/methods within open, decentralized multiagent
systems: intelligent service location (directory services, syntactic and semantic
comparison techniques for services) and generation and adaptation of composed
services.

To deal with the objective of service composition Al planning techniques
can be employed to automate the process. PDDL planners are widely used in
service composition. The reasons of this fact are that PDDL is widely recog-
nized as a standardized input for state-of-the-art planners and OWL-S has been
strongly influenced by PDDL language, mapping from one representation to an-
other is straightforward (as long as only declarative information is considered).
When planning for service composition is needed, OWL-S descriptions could be
translated to PDDL format [62].

Another important point in service composition is the service descriptions
and the information that is used in that process. In many cases only the in-
puts and outputs are considered and non-functional information is only used
for ranking the service. An important non-functional parameter to take into
account is the time. In many cases service duration is assumed to be a snapshot
and it is not taken into account in service composition. But time parameter
is important to consider. Sometimes service quality decays with time and, in
some way, the provider have to determine how much time takes the service to
be executed. If the execution of the service takes too much time, maybe the
service has not interest for the user. In service compositions it is also important
to consider the time to select the less time consuming composition if the user is
concerned about that feature.

43

44 CHAPTER 4. SERVICE FACILITATOR

One of the objectives of the SF is provide an intelligent service location
(directory services, syntactic and semantic comparison techniques for services)
and generation and adaptation of composed services. To deal with this objective
and taking into account the situation presented in the previous paragraphs a
proposal is presented. This proposal consists of an OWL-S extension to include
temporal qualified services by including duration as a non-functional parameter
and temporal constraints in the preconditions and effects of the service. The
temporal annotated services in OWL-S are translated in durative actions in
PDDL 2.1, so any planner that deals with that language can be used.

4.2 Service Facilitator: High-Level Design

The Service Facilitator (SF) is a mechanism and support by which organizations
and agents can offer and discover services. The SF acts as a:

e Gateway to access the THOMAS platform. It manages this access trans-
parently, by means of security techniques and access rights management.

e Discovery and Composition Service which searches a service (or service
composition) for a given service profile or goals that can be fulfilled when
executing the service (or service composition). This is done using the
matchmaking and service composition mechanisms that are provided by
the SF.

e Yellow Pages Manager which can find which entities provide a given ser-
vice.

A service represents an interaction of two entities, which are modeled as
communications among independent processes. Regarding service description,
a service offers some capabilities, each of which enables fulfilling a given goal.
The service may have some preconditions, which need to be true for the ser-
vice execution. Moreover, both service client and provider exchange one or
more input and output messages during the service execution, which has some
effects on their environment. Furthermore, there could be additional parame-
ters in a service description, which are independent of the service functionality
(non-functional parameters), such as quality of service, deadlines and security
protocols. Finally,the service results can be enhanced using automatic service
composition mechanisms (for example, partial matchmaking). To do this the
SF maintains the description of the internal processes that are executed when
the service is running.

In our case, the Multi-agent Technology provides us with FIPA communi-
cation protocols which are well established mechanisms in order to standardize
the interactions. In this way, every service has an associated protocol. In those
cases in which the service requires the execution of a chain of protocols, the
service is marked as complex. Taking into account that THOMAS works with
semantic services, another important data is the ontology used in the service.
Thus, when the service description is accessed, any entity will have all needed

4.2. SERVICE FACILITATOR: HIGH-LEVEL DESIGN 45

information in order to interact with the service and make an application that
can use this service.

Normally, a service can be supplied by more than one provider in the system.
In this way, a service has an associated list of providers. All providers can offer
exact copies of the service, that is, they share a common implementation of the
service. Or they may share only the interface and each provider may implement
the service in a different way. This is easily achieved in THOMAS because the
general service profile is separated from the service process.

A service is defined as a tuple (sID, goal, prof, proc, ground, ont):

e sID is an unique service identifier;

e goal is the final purpose of the service and it provides a first abstraction
level for service composition;

e prof is the service profile that describes the service in terms of its IOPEs
(Inputs, Outputs, Preconditions and Effects) and non-functional attributes,
in a readable way for those agents that are searching information (or
matchmaking agents which act as searching service agents). This type
of representation includes a description of what the service fulfills, the
constraints about its applicability and the quality of service, and the re-
quirements that clients have to satisfy in order to use the service.

e proc describes how a client has to use the service, specifies the seman-
tic content for using the service, situations in which it is obtained, and,
whenever it is required, the step by step processes to get these results. In
other words, it specifies how to call a service and what happens when the
service is executed.

e ground specifies in detail how an agent can access the service. A grounding
specifies a communication protocol, the message formats, the contact port
and other specific details of the service. It is specified using the OWL-S
standard extended with FIPA protocols.

e ont is the ontology that gives meaning to all the elements of the service.
OWL-DL is the chosen language.

This proposal is based on OWL-S specification for semantic web services,
extended when needed to empower its functionality. Goals, preconditions and
effects (or postconditions) are logical formulas.

The tuple defined above for service specification is implemented in two parts:
the abstract service, general for all providers; and the concrete service, with the
implementation details. In this way, services are stored inside the system split
into these two parts: the service profile (that represents the abstract service
specification) and a set of service processes specifications (that detail the con-
crete service). Thus, in THOMAS services are implemented as the following
tuple, in which its elements are OWL-S extended specifications:

46 CHAPTER 4. SERVICE FACILITATOR

<ServicelD, Providers, ServGoal, ServProfile>

Providers ::= <ProvIDList, ServImpID, ServProcess, ServGround>+
ProvIDList ::= ProviderID+
where:

e Providers is a set of tuples composed of a Providers identifier list (ProvIDList),
the service process model specification (ServProcess), and its particular
instantiation (ServGround).

e ProvIDList maintains a list of service provider identifiers

The SF supplies a set of standard services (meta-services) to manage the
services provided by organizations or individual agents. These meta-services
have also to be used by the rest of THOMAS components (OMS and PK) to
advertise their own services. SF meta-services can be classified in three types:

e Registration: they allow to add, modify and remove services from the SF
directory. Avaliable services are:RegisterProfile, RegisterProcess, Modi-
fyProfile and ModifyProcess.

e Affordability: for managing the association between providers and their
services. Avaliable services are: AddProvider and RemoveProvider.

e Discovery: for searching and composing services as an answer to user
requirements. Avaliable services are: SearchService, GetProfile and Get-
Process.

Next, SF services are described with more detail.

Service 1 RegisterProfile

Precond.: }S € SF|S.ServProfile = ServProfile

Input: the service goal and the service profile

Output: a service 1D

Effects: 3S € SF|S.Servicel D = Servicel D A S.ServProfile = ServProfile

RegisterProfile: it is used when an autonomous entity (an organization or
an agent) wants to register a new service description. To do this, the profile
structure has to be completed in order to provide the service description.

Service 2 RegisterProcess

Precond.: 3S € SF|S.ServicelD = ServicelD A (BI €
S.Providers|I.ServProcess = ServProcess A I.ServGround = ServGround)
Input: service ID, its process, its grounding and provider ID

Output: a unique service ID for this process (ServImpID)

Effects: BN € SF|S.Servicel D = ServiceID A (31 S
S.Providers|I.ServImpID = ServImpID A ProviderID € I.ProvIDList A
I.ServProcess = ServProcess A I.ServGround = ServGround)

4.2. SERVICE FACILITATOR: HIGH-LEVEL DESIGN 47

RegisterProcess: it is used when an agent wants to register a particular im-
plementation of a given service. The ID of the service and the provider entity
(EntityID) have to be specified. There could be several providers for the same
service process. In this case, the first time an implementation is going to be
added, the RegisterProcess meta-service has to be used. If other providers offer
the same process model for this service, they can be attached to it by using the
AddProvider meta-service.

Service 3 ModifyProfile

Precond.: S € SF|S.Servicel D = Servicel D

Input: ServicelD, goal and profile

Output: —

Effects: 35S € SF|S.ServicelD = ServiceID A S.ServGoal = ServGoal A
S.ServProfile = ServProfile

ModifyProfile: it is used for modifying the description (profile) of a registered
service. The client specifies the part of the service to be modified (the goal or
the profile). The service ID will not change.

Service 4 ModifyProcess

Precond.: 3S € SF|S.ServiceID = ServicelD A 3P € S.Providers A
P.ProviderID = Providerl D

Input: ServImplID, process and grounding

Output: —

Effects: 3P € Providers|P.ServiceImpID = ServImpID A 3P €
S.ProvidersA\P.Provider]I D = ProviderI DAP.ServProcess = ServProcess/A
P.ServGroun = ServGroun

ModifyProcess: it is used for modifying the implementation of a registered
service. The client specifies the part of the service to be modified. The service
ID will not change. If more than one provider implements the service, then the
implementation will not be modified.

Service 5 DeregisterProfile

Precond.: 35 € SF|S.Servicel D = Servicel D
Input: a valid service ID

Output: —

Effects: 3S € SF|S.ServiceI D = Servicel D

DeregisterProfile: it is used for deleting a service description.

48 CHAPTER 4. SERVICE FACILITATOR

Service 6 AddProvider

Precond.: 3P € Providers|P.ServiceImplID = ServimpID A ProviderID ¢
P.ProvlIDList

Input: IDs of the service (ServImpID) and the provider (ProviderID)

Output: —

Effects: 3P € Providers|P.ServimpID = ServImpID A ProviderID €
P.ProvIDList

AddProvider: adds a new provider to an existing service implementation.

Service 7 RemoveProvider

Precond.: 3P € Providers|P.ServImpID = ServImplID A ProviderID €
P.ProvIDList

Input: 1Ds of the service (ServImpID) and the provider (ProviderID)

Output: —

Effects:
1. 3P € Providers|P.ServImpID = ServimpID A ProviderID ¢
P.ProvlID List
2. 3P € Providers|P.ProvIDList = 0 —

[ModifyProcess(P.ServImpID,(, 0, 0)]
3. 35 € SF|S.Providers =) — [Deregister(S.Servicel D)]

RemoveProvider: it deletes a provider from a service implementation. If it is
the last provider, then the service implementation is automatically erased. Fur-
thermore, if that is the unique implementation of the service, then the provider
is alerted and it can deregister the service.

Service 8 SearchService

Precond.: —

Input: ServicePurpose

Output: list of tuples < Servicel D, Ranking >
Effects: —

SearchService: it searches a service whose description satisfies the client re-
quest. The search process can use matchmaking, composition and other tech-
niques to solve complex queries. To request a service, the user has to specify a
ServicePurpose. It is a general structure in which the request is stored. It can be
expressed as a ServiceGoal, a partial ServiceProfile description or a combination
of both. The result of the search is a list of tuples < Servicel D, Ranking >,
where ranking indicates the matching degree between the service and the re-
quest.

4.3. SERVICE FACILITATOR: LOW-LEVEL DESIGN 49

Service 9 GetProfile

Precond.: 3serv € SF|serv.Servicel D = Servicel D
Input: a valid service ID

Output: service profile and goal

Effects: —

GetProfile: it is used to retrieve the profile details (description) for an specific
service.

Service 10 GetProcess

Precond.: 3serv € SF|serv.Servicel D = Servicel D

Input: a valid service ID

Output: a ProvidersList that contains service implementation details
Effects: —

GetProcess: it is used to retrieve the process details (implementation) for an
specific service.

The usage of SF meta-services is explained in the following example (see
Figure 4.1). In a book selling scenario, there are two providers (Al and A2)
that can sell books. Al registers a new service profile in the SF called SellBook
Profile (message 1). The SF identifies this service as S4 (message 2). Then
agent A1l declares itself as a provider for this new service with its particular
service process and grounding (message 3). The SF registers this service imple-
mentation description with S724 identifier (message 4). Lately, agent A2 adds
itself as an additional provider for service SellBook Profile. 1t represents an
alternative provider with the same process and grounding as Al, so it just adds
itself as a provider of an existing service implementation (message 5). Finally,
a client searches for a low cost book seller (message 6). The SF provides a
ranked list with each ServiceID and its corresponding matching grade (message
7). With this information the client can retrieve all the service details through
GetProfile and GetProcess meta-services.

4.3 Service Facilitator: Low-Level Design

From the point of view of the implementation, the SF module has two main
elements: the SF Agent and the SF services (Figure 4.2) . SF services are the
web services that implements the services offered by the platform. SF agent is
an intermediate agent and acts as a gateway between agents and web services.
This agent receives service requests through FIPA request protocol and it is
responsible of making the request to the web service. In the next sections the
different technologies and languages used to implement the SF components are
described.

50 CHAPTER 4. SERVICE FACILITATOR

SF
Provider List
Service List ProvIDList, ServimplID, ServProcess, ServGround
— P24, S1254, <ServProcess>, <ServGround>
ServicelD, Providers, ServGoal, ServProfile -
/ | 1 P245, SI24, <SellBook Process>, <SellBook Ground>

8123, Pg4, “Get Minimum Price”, <ServProfile> / \

- / \

— \

iS4, P254, “Minimum Time”, <SellBook Profile> \\
e \ ProviderID List
P24 P254
A12 A2 \\\
\
03 N \
ad \ A A

/ \ //1. RegisterProfile(“Minimum Time”, <SellBook Profile>) |
2. ServiceRegistered, S4 / | |

| \
| 5. AddProvider(SI24,A2) |) | ‘
\ \ 3. RegisterProcess(S4, <SellBook Process>, <SellBook Ground>, A1) | |

\ /
\ 4. ServiceRegistered, S124 | |
[\ /

/\ \‘Q) / /
A2

/ \ 6. SearchService(“Purchase Low Cost Books”) / //
A1 /,,
7. {<S123, 50%>,
ient <824, 30%>}

Figure 4.1: Example of SF usage

4.3.1 Services
Service Description

The SF Services are implemented as web services. Each service has a service
description in OWL-S and a description in WSDL. The Web Services Description
Language (WSDL)[78] is an XML format for describing network services as a
set of endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message format
to define an endpoint. OWL-S [57] is a OWL-based web service ontology, which
supplies web service providers with a core set of markup language constructs for
describing the properties and capabilities of their web services in unambiguous,
computer-interpretable form. OWL-S markup of web services will facilitate the
automation of web service tasks, including automated web service discovery,
execution, composition and interoperability. OWL-S allows for the description
of a web service in terms of a Profile, which tells "what the service does”, a
Process Model, which tells "how the service works”, and a Grounding, which
tells "how to access the service”. The Profile and Process Model are considered
to be abstract specifications, in the sense that they do not specify the details
of particular message formats, protocols, and network addresses by which a

4.3. SERVICE FACILITATOR: LOW-LEVEL DESIGN o1

SF services:
R RegisterProfile

RegisterProcess
- GetProfile
GetProcess
SearchService
AddProvider

Apache Tomcat (Axis 2)

SPARQL

OWL-S Service
Descriptions

SF Agent

MySQL database Jade

JENA

APl OWL-S |
MindSwap

FIPA
Request Protocol

Client Agent
Jade

Figure 4.2: Service Facilitator

Web service is instantiated. The role of the grounding is to provide these more
concrete details. For each service in the SF should be two OWL-S documents,
one with the profile description (Anexo A) and the other with the process and
grounding description (Anexo A). The reason to divide the service description
in two files is to avoid redundant information in the SF. In some situations could
be a service which is provided by two providers. Both providers offer the service
with the same IO parameters (same profile) but different implementation (so
different process model and grounding)(Figure 4.3).

| OWL-S Service Description |

Vv

General Service Data:

10's, Service Name, ... [V
WSDL

Details

Figure 4.3: Service Description in OWL-S

The WSDL language, developed independently of OWL-S, provides a well
developed means of specifying these kinds of details, and has already acquired
considerable visibility within the commercial web services community. There-
fore, the authors of OWL-S have chosen to define conventions for using WSDL
to ground OWL-S services. These conventions are based upon the observation

that OWL-S’ concept of grounding is generally consistent with WSDL’s concept
of binding (Anexo A).

52 CHAPTER 4. SERVICE FACILITATOR

Service Development

The runtime chosen for SF web service is Axis2[60]. Based on the Axis2 archi-
tecture, there are two implementations of the Apache Axis2 Web services engine
- Apache Axis2/Java and Apache Axis2/C. We have decided to use the Apache
Axis2/Java due to there are a lot of utilities related with web services which
are developed in Java. Apache Axis2 is the core engine for web services. It is
a complete re-design and re-write of the widely used Apache Axis SOAP stack,
built on the lessons learnt from Apache Axis. Apache Axis2 is more efficient,
more modular and more XML-oriented than the older version. It is carefully
designed to support the easy addition of plug-in "modules” that extend their
functionality for features such as security and reliability.

The services have been developed using the Eclipse Web Tools Platform
(WTP) which extends the Eclipse platform with tools for developing web and
Java EE applications. The WTP platform contains tools for developing and
interacting with Java web services. It consists of:

e web services wizards for creating web service and web services client wiz-
ards for consuming Web service

e web services Ant tasks for creating and consuming web services

e wizard extensions for the Apache Axis v1.4 and Apache Axis2 web service
runtimes.

To develop the SF services the following step have been followed (Figure
4.4):

1. Generate service descriptions in OWL-S and its correspondent WSDL doc-
ument.

2. With the Eclipse WTP a web service can be generated automatically from
the WSDL file.

3. To add the service logic, the Java implementation file with the skeleton of
the service must be modified.

4. .WAR file should be generated to export the service
5. Finally the web service .WAR file have to be located in the Apache Tomcat.

All of the SF web services manipulate semantic information in OWL or
service descriptions in OWL-S. To manage and keep all these semantic data in
OWL we have used JENA[21]. Jena is a Java framework for building semantic
web applications. It provides a programmatic environment for RDF, RDFS and
OWL, SPARQL and includes a rule-based inference engine. Jena provides an
implementation of the RDF model interface that stores the triples persistently
in a database. Each triple is an arc in an RDF model which is called a statement.
Each statement asserts a fact about a resource. A statement has three parts :

4.3. SERVICE FACILITATOR: LOW-LEVEL DESIGN 93

AddProviderProfile.ow!
AddProviderProcess.owl!

AddProvider.wsdl

T

Automatically
Generated

Java Class
AddProviderSkeleton.java

Export AddProvider.war
web service

Apache Tomcat (webapp)

Figure 4.4: Steps for AddProvider Service Implementation

e the subject is the resource from which the arc leaves
e the predicate is the property that labels the arc
e the object is the resource or literal pointed to by the arc

In Figure 4.6 and 4.5 there is an example of some of the statements kept in
the SF database. These statements are from a registered search hotel service

profile.
Resource #SearchHotelProfile
Property
#SearchCheapHotellnputCity

Resource

Property

profilethasinput

#SearchCheapHotellnputCategory

#SearchCheapHotellnputCountry |

Figure 4.5: RDF graph

This saves the overhead of loading the model each time, and means that you
can store RDF models significantly larger than the computer’s main memory,
but at the expense of a higher overhead (a database interaction) to retrieve
and update RDF data from the model. The database used to keep the OWL
data is MySQL, an open-source SQL database system available without fee
under GPL (Gnu General Public License). It combines good performance with
a wide feature set and comes in a variety of configurations to support difference
application requirements.

As a query language SPARQL[67] have been used. SPARQL is ”data-
oriented” in that it only queries the information held in the models; there is
no inference in the query language itself. The Jena model may be ’smart’ in
that it provides the impression that certain triples exist by creating them on-
demand, including OWL reasoning. SPARQL does not do anything other than
take the description of what the application wants, in the form of a query, and

54

CHAPTER 4. SERVICE FACILITATOR

<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelProfile>;

a profile:Profile ;
profile:contactInformation
profile:hasInput

<http://.../SearchCheapHotelProfile.
<http://.../SearchCheapHotelProfile.
<http://.../SearchCheapHotelProfile.

profile:hasOutput

<http://.../SearchCheapHotelProfile.
<http://.../SearchCheapHotelProfile.

mind:ProviderA ;

owl#SearchCheapHotelInputCity>;,
owl#SearchCheapHotelInputCategory>;,
owl#SearchCheapHotelInputCountry>;

owl#SearchCheapHotelOutputHotel>;,
owl#SearchCheapHotelOutputHotelCompany>;

profile:serviceName "SearchCheapHotel"@en ;
service:isPresentedBy
<http://.../SearchCheapHotelProfile.owl#SearchCheapHotelService>;

Figure 4.6: RDF triples

returns that information, in the form of a set of bindings or an RDF graph. In
Figure 4.7 there is an example of a SPARQL query about the service profile of
a service with the name ”SearchCheapHotel” @en.

PREFIX profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>;
SELECT 7x
WHERE

{ ?x profile:serviceName "SearchCheapHotel"@en .}

Query Result

ServicelD:
http://.../SF/0OWLS/SearchCheapHotelProfile.owl#SearchCheapHotelProfile
Profile http://.../SF/0OWLS/SearchCheapHotelProfile.owl

Figure 4.7: SPARQL Query

4.3.2 SF Agent Implementation

The SF has been developed as a JADE agent. To implement the logic of the
agent we have used the OWL-S API provided by Mindswap. OWL-S API pro-
vides a Java API for programmatic access to read, execute and write OWL-S
service descriptions. When a FIPA request client message arrives at the SF
agent it uses the OWL-S API to access to the service description in OWL and
execute the web service.

Executing a service means executing the process it has. The process should
have a valid grounding specification in order to invoke the service successfully.

4.3. SERVICE FACILITATOR: LOW-LEVEL DESIGN 95

The WSDL and groundings are supported by the API. A process is executed
by the ProcessExecutionEngine.execute(Process, ValueMap) function where sec-
ond parameter specifies the values for input parameters. This function returns
another ValueMap which contains the output value bindings.

The usage of SF web services is explained in the following example (see
Figure 4.10). In a book selling scenario, there are two providers (Al and A2)
that can sell books. These two agents are JADE agents. Al registers a new
service profile in the SF called SellBook Profile following the FIPA Request
Protocol, so the first message is a request message(message 1) (Figure 4.8). The

(REQUEST

:sender (agent-identifier :name Al@paracetamol:1099/JADE

:addresses (sequence http://...:7778/acc))

:receiver (set (agent-identifier :name SF@paracetamol:1099/JADE))

:content "http://.../SF/OWLS/RegisterProfileProcess.owl
RegisterProfileInputServiceGoal=SellBook
RegisterProfileInputServiceProfile=http://.../SellBookProfile.owl#SellBookProfile"

Figure 4.8: Message 1

SF intermediate agent is waiting for requests. If SF agent receives a request
from a client and can provide the required service it sends an agree message
(message 2). In this situation, SF agent gets the message content and read the
process service description to get the information to execute the service (process
and input values). To execute the service the SF uses the OWL-S API. The
RegisterProfile web service starts its execution. Basically, the service keeps the
service profile in the database and return the service ID. The SF agent gets the
answer from the web service and creates an inform message (message 3) to send
the returned values.

(INFORM

:sender (agent-identifier :name SF@paracetamol:1099/JADE

:addresses (sequence http://...:7778/acc))

:receiver (set (agent-identifier :name Al@paracetamol:1099/JADE

:addresses (sequence http://...:7778/acc)))

:content "RegisterProfileProcess=
[1,http://...:8080/SF/0OWLS/SellBookProfile.owl#SellBookProfile]"

:reply-with Al@paracetamol:1099/JADE1221060273666)

Figure 4.9: Message 3

Then agent Al declares itself as a provider for this new service with its
particular service process and grounding. To do that the conversation follows
the FIPA request protocol. The agent send a request message (message 4) to
the SF agent intermediator. If the SF agent can execute the service it sends an

56 CHAPTER 4. SERVICE FACILITATOR

. Register Axis2
- Profile.war Apache-Tomcat

<subject, predicate, object>
SF Agent
SF Database

JENA ml(request)

m2(agree)

Apache-Tomcat

SellBook.war

no”

SellBookProfile.owl
SellBook.wsdl
SellBookProcess.owl

P m3(inform
-~ Provider ()

A1l Agent

Figure 4.10: Register Profile

inform message (message 5) and executes the RegisterProcess web service. The
web service RegisterProcess loads the process description into the SF database.
The data loaded is kept in RDF triples. The answer obtained is sent to the
agent Al in an inform message (message 4). .

Lately, agent A2 adds itself as an additional provider for service SellBook
Profile. Tt represents an alternative provider with the same process and ground-
ing as Al, so it just adds itself as a provider of an existing service implementa-
tion. The protocol that the conversation follows is the FIPA Request, as in the
previous conversations.

Finally, a client searches for a low cost book seller. The client sends a
request message requiring the web service SearchService. The SF agent sends to
the client an agree message in the case that it can make the request and if the
SF can, it executes the service and sends the answer to the client in an inform
message. The SF provides a list with each ServiceID and its corresponding
matching grade (message 7). With this information the client can retrieve all
the service details through GetProfile and GetProcess web services (Figure 4.11).

4.4 SF Service Discovery and Composition

Many research efforts tackling Web service composition problem via Al planning
have been reported. In general, a planning problem can be described as a five
tuple <S5,50,G,A,G>, where S is the set of all possible states of the world, S0
denotes the initial state of the world, G denotes the goal state of the world

4.4. SF SERVICE DISCOVERY AND COMPOSITION o7

<subject, predicate, object>

ml(request)

TAXisZ Apache-Tomcat |

T BN m10(inform)

SellBook.war :_ '
—
m7(agree
o eoes S
.-~ Provider m5(inform)
e Al Agent

D D ’ m6(request)

SellBookProfile.owl
SellBook.wsdl
SellBookProcess.owl

m2(agree)

Figure 4.11: Get Process and SellBook

the planning system attempts to reach, A is the set of actions the planner can
perform in attempting to change one state to another state in the world, and
the translation relation I' € G x A x S defines the precondition and effects
for the execution of each action. In the terms of web services, SO and G are
the initial states and the goal states specified in the requirement of Web service
requesters. A is a set of available services. G further denotes the state change
function of each service.

PDDL is widely recognized as a standardized input for state-of-the-art plan-
ners. Moreover since OWL-S has been strongly influenced by PDDL language,
mapping from one representation to another is straightforward (as long as only
declarative information is considered). When planning for service composition
is needed, OWL-S descriptions could be translated to PDDL format [62].

OWL-S service descriptions have not temporal labels in its preconditions
and effects. To add this temporal annotations we have to consider that they
are represented as logical formulas. Getting logical formulas into RDF is not
easy, but is reasonably clear how to proceed. There are actually several possible
approaches, depending on how close to RDF/OWL one wants to remain. The
key idea in OWL-S is to treat expressions as literals, either string literals or XML
literals. The latter case is used for languages such as PDDXML whose standard
encoding is in XML. The former case is for other languages such as KIF[30] or
PDDL. In our proposal PDDXML, which is based on PDDLJ1], has been chosen
to express the content of temporal annotated preconditions and effects. In the
following sections is explained how PDDL 2.1 actions are annotated and how
annotate an OWL-S service taking as reference PDDL 2.1.

58 CHAPTER 4. SERVICE FACILITATOR

4.4.1 Temporal Service Specification

PDDL2.1 has been designed to be backward compatible with the fragment of
PDDL that has been in common usage since 1998[24]. This compatibility sup-
ports the development of resources which help to establish a scientific foundation
for the field of AI planning. PDDL2.1 extends PDDL with numeric and durative
extensions to achieve the additional expressive power.

The modelling of temporal relationships in a discretized durative action is
done by means of temporally annotated conditions and effects. All conditions
and effects of durative actions must be temporally annotated.

Conditions. The annotation of a condition makes explicit whether the as-
sociated proposition must hold:

e at the start of the interval (the point at which the action is applied)

e at the end of the interval (the point at which the final effects of the action
are asserted)

e over the interval from the start to the end (invariant over the duration of
the action)

Invariant conditions in a durative action are required to hold over an interval
that is open at both ends (starting and ending at the end points of the action).
These are expressed using the over all. If one wants to specify that a fact p
holds in the closed interval over the duration of a durative action, then three
conditions are required: (at start p), (over all p) and (at end p).

Effects. The annotation of an effect makes explicit whether the effect is im-
mediate (it happens at the start of the interval) or delayed (it happens at the
end of the interval). No other time points are accessible, so all discrete activity
takes place at the identified start and end points of the actions in the plan.

Duration. The action duration is represented by a variable called duration
that represents the durative interval.

OWL-S has been strongly influenced by PDDL language, mapping from
one representation to another is straightforward (as long as only declarative
information is considered).

In our proposal, all the temporal annotations in preconditions and effects of
a OWL-S service description are inside a PDDXML expression. PDDXML is
a XML dialect of PDDL that simplifies parsing, reading, and communication
PDDL descriptions using SOAP[40]. We have extended this XML language with
new labels to facilitate the temporal annotation in the OWL-S service descrip-
tions.

Preconditions and Effects. The OWL-S pre-conditions and effects have been
temporally annotated with the same labels that appear in a PDDL domain def-

4.4. SF SERVICE DISCOVERY AND COMPOSITION 99

inition: at start, at end and overall (Figure 4.12).

<process:hasPrecondition>
<pddxml :PDDXML-Condition rdf:ID="PDDXML-Precondition">
<expr:expressionBody rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
<and>
<atStart>
<not>
<pred name="agentHasKnowledgeAbout">
<param>?http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent
</param>
</pred>
</not>
</atStart>
</and>
</expr:expressionBody>
</pddxml : PDDXML-Condition>
</process:hasPrecondition>

Figure 4.12: Precondition with temporal label

Inputs and Outputs. The OWL-S inputs and outputs are not temporally
annotated, but if the service is consider as a durative action all input parameters
are considered as if they were annotated with the label at start. The case of the
outputs is similar, but the parameters are considered as if they were annotated
with the at end label.

Duration. A new non-functional parameter in service description to spec-
ify service duration can be specified. In Figure 4.13 there is an example of how
specify the service duration.

<Duration_param:hasLocal>
<duration:Duration-Expression rdf:ID="PDDXML-Duration">
<expr:expressionBody rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
<and>
<equals>
<variable><var type="object">?duration</var></variable>
<constant><const type="int">8</const></constant>
</equals>
</and>
</expr:expressionBody>
</duration:Duration-Expression>
</Duration_param:hasLocal>

Figure 4.13: Non-Functional Parameter Duration

60 CHAPTER 4. SERVICE FACILITATOR

4.4.2 Temporal Service Composition

The proposal presented allows temporal service composition. Each service is
represented as a durative action in PDDL 2.1, so any planner that deals with
that language can be used.

The conversion process from OWL-S to PDDL takes a set of available OWL-
S temporal service descriptions, a domain description and a planning query as
input. The domain description and the planning query contain OWL individuals
(facts) which are true initially or are to be achieved by the plan, respectively.
They also contain the necessary OWL ontologies. The process result is a plan
sequence, i.e a composite service, which satisfies the planning query considering
temporal annotations.

For this purpose, the composing process is divided in three stages:

e From OWL-S to PDDXML converts the domain ontology and service de-
scriptions in OWL and OWL-S, respectively, to an intermediate language
in XML. This stage is an extension of the converter presented in [40]. The
converter presented in [40] converts OWL-S documents with PDDXML
expressions in service preconditions and effects, but neither consider tem-
poral annotations nor the duration non-functional parameter, so time an-
notations can not be considered in the service composition process.

o From PDDXML to PDDL 2.1 is a process in which a parser translate the
domain and problem specification in PDDXML in an equivalent PDDL
2.1 problem and domain descriptions (Figure 4.14).

e Planner deals with PDDL 2.1 language and it is used to obtain a sequence
of durative-actions that represent the service composition.

InitialOntology.owl Domain.pddxml

L -G -G

Problem.pddxml

GoalOntology.owl
OWL-S Service l
Description
Domain.pddl
<« Planner <

Plan with the

sequence of

actions - services Problem.pddl

Figure 4.14: Process From OWL-S to PDDL 2.1

4.4.3 PDDL Specification from an OWL-S Description

PDDXML is a XML dialect of PDDL that simplifies parsing, reading, and com-
munication PDDL descriptions using SOAP[40]. The conversion of OWL-S 1.1

4.5. CONCLUSIONS 61

service descriptions to PDDXML requires the transcription of types and prop-
erties to PDDL predicates as well as the mapping of services to actions.

Any OWL-S service profile input parameter correlates with an equally named
one of a PDDL action, and the hasPrecondition service parameter can directly
be transformed to the precondition of the action by use of predicates. The same
holds for the hasEffect condition parameter. For the conversion of the output of
an individual OWL-S service to PDDL, the service output parameter is mapped
to a special type of the service hasEffect parameter. This is because the service
hasEffect condition explicitly describes how the world state will change while
this is not necessarily the case for a hasOutput parameter value, though it could
implicitly influence the composition planning process. However, PDDL does
not allow describing such non-physical knowledge. This problem can be solved
by mapping the service output parameter X to a special type of the service
hasEffect parameter. In particular, every output variable X is described in, and
added to the current(physical) planning world state by means of a newly created
add-effect predicate in PDDL uniquely named ”agentHasKnowledgeAbout(X)”.
Similarly, each input variable Y is mapped to an input parameter Y of an PDDL
action complemented by precondition predicate “agentHasKnowledge About(Y)”
(Table 4.1). In Appendix A, there is a service description in OWL-S and in
Appendix B the result of service conversion in PDDXML.

OWL-S 1.1 PDDL 2.1
hasPrecondition parameter precondition predicate
hasEffect parameter effect predicate
hasInput parameter input predicate +

additional precondition
agentHasKnowledgeAbout(Input param)
hasOutput parameter effect predicate +
agentHasKnowledgeAbout(Output param)

Table 4.1: Mapping between OWL-S service and PDDL action description

The second stage of the process is the conversion from PDDXML to PDDL
2.1. The transcription of the domain and the problem from PDDXML to PDDL
is direct. Once the PDDL files are obtained, the last stage is use a planner to
get the plan, the sequence of services, that is needed to achieve the user goals.

4.5 Conclusions

In this chapter the service facilitator has been described with more detail due to
is the component that is closely related with the objectives of this work. The SF
components have been described from a high level explaining the functionality
of each service that it offers. Furthermore a description from a low level is
provided. This description shows the technologies used to develop the SF web
services and the SF intermediate agent. An example of an initial version is

62 CHAPTER 4. SERVICE FACILITATOR

(:durative-action GetOrderService
:parameters (
?GetOrderInputNotificationEvent - object
?GetOrderOutputItemTypelist - object
?GetOrderOutputOrderCode - object)
:duration (= 7duration 4)
:condition (and
(at start (agentHasKnowledgeAbout 7GetOrderInputNotificationEvent))
(at start (NotificationEvent ?GetOrderInputNotificationEvent))
(at start (ItemTypelList 7GetOrderOutputItemTypeList))
(at start (OrderCode ?GetOrderQOutputOrderCode))
(at start (not(agentHasKnowledgeAbout ?GetOrderQOutputOrderCode)))
)
:effect (and
(at end (agentHasKnowledgeAbout ?GetOrderQOutputItemTypelist))
(at end (identity ?7GetOrderOutputItemTypelList 7GetOrderOutputItemTypeList))
(at end (agentHasKnowledgeAbout ?GetOrderOutputOrderCode))
(at end (identity 7GetOrderOutputOrderCode ?GetOrderQutputOrderCode))
)

Figure 4.15: Durative-Action GetOrderService

provided. This first version has been implemented with the aim of trying the
functionality of the SF web services. This version is available and a demo
example is also provided.

Besides the service facilitator description a new approach for composing
web services based on temporal annotations of services to be included in the
SF functionality is provided. The presented procedure exploits numeric and
temporal function supporting planers to build the composition. It also provides
the facility to generate compositions of web services by using existing PDDL
planners such as LPG. To facilitate this task, an extension to OWL-S to include
temporal qualified services by including duration as a non-functional parameter
and temporal constraints in the preconditions and effects of the service has been
developed.

Chapter 5

Example: Packing a Box

5.1 Introduction

There are some environments where the time takes more importance. One of
this environments is the manufacturing system in which each process stage has a
controlled execution time. In this section a problem in this kind of environment
is presented. The problem is in a a packing cell that provides gift boxes. The
actions in this cell are presented as services and the problem presented is find
the less time consuming service composition to answer a rush order.

5.2 Problem Description

A packing cell is a group of automated machinery and robots. This system
enables the customer to select any three of four types of personal grooming
items (e.g. razor, shaving gel, deodorant or shaving foam), and pack them into
gift boxes. There are two classes of box: a 3-in-a-row, and a T-shape, each
with a different configuration of slots where items can be placed. The system is
intended to be responsive to changes in the requirements of customers orders,
and to be robust to hardware alterations.

A three-loop conveyor system is used to transport shuttles around the cell.
Shuttles hold batches of raw materials and the boxes into which items are placed.
The track (with its independently controlled gates) provides a high degree of
responsive behavior by switching gates to control the flow of shuttles. Shuttles
always move forwards along the track unless they touch stop-dogs on the track
near the gates and docking stations (which the PLC controls to let the shuttles
move when ready) or when their infra-red sensors indicate that another shuttle
is in close proximity. There are also two docking stations where shuttles are held,
so the robot can process a shuttle’s contents: pack item into boxes, unload raw
materials into the item storage zone, and unpack items if the box is no longer
required for an order (Figure 5.1).

63

64 CHAPTER 5. EXAMPLE: PACKING A BOX
Rol: storage

Agent: A5
A Rol: storage
A Agent: A4
STORAGE AREA

0000 < A

DOCKING Agent: A3
STATION o o l |

Rol: dockingStation
Agent: Al

ROBOT

7‘\ DOCKING

t

STATION

o It A 173
(——
1\ o) o) o) fo)] \l,
| [

FEEDER LOOP

Figure 5.1: Packing Cell

5.3 Packing Box Model with THOMAS

In this example the packing cell is going to be modelled as a organization unit
(PackingCell). In the organization unit there are four types of roles PackingCell:
DockingStation, Robot, Order, Storage. Each role has associated servicesb.1.
Next, each role and its services functionality are explained: .

e DockingStation: This role is responsible of the shuttles that are navigating
in the docking station carrier and also controls the Piston that blocks or
leaves the shuttles. The services of this role are:

— LockPiston: senses the arrival of a shuttle, it locks it in place using
a pneumatic piston ensuring the position of the shuttle. Once the
shuttle has arrived and is locked in, it sends a notification event.

— UnLockPiston: receives the arrival of a finish event and unlocks the
pneumatic piston. This allows the shuttle to continue its its naviga-
tion in the package cell.

e Robot: This role is responsible of filling the boxes with the correct items.
Besides that, control the robot that takes the items from the storage to
the box situated on the shuttle. The services of this role are:

— GetltemsOp: receives a notification event which means that there
is a shuttle ready to be filled, the list of items to put inside the
box and the confirmation of the storage items availability. With this
information the robot starts to pick up the items form the storage
and drop them in the boxes. This service first looks up items in the

5.4. PACKING CELL EXECUTION 65

storage and if there are not products in it the service looks up items
in the tracks. When the robot has filled the box with the items the
service sends a finish event.

— Getltems: This service is similar to GetItemsOp but when the robot
has to pick up the items, first of all it looks up them in the tracks
to clean it. So the process takes more time because the robot has
to wait the arrival of a item that is navigating around the cell. The
idea of this service is first of all clean the three-loop conveyor system
of single products.

e Order: This role controls the arrival of new request for the packing cell and
besides that is responsible of sending a message, when the box is packed,
indicating that the order has been satisfied. The services of this role are:

— GetOrder: when a notification event arrives means that there is a
shuttle with a box ready to be filled with the products specified in a
order. The service query its list of orders and select the first order.
The output of the service is the order code and the list of items that
appears in it to fill the box.

— SendOrder: When the packing box process is finished, with the or-
der code this service generates a package code that will identify the
package in subsequent stages. Finally, the service answers with the
availability or not of the items.

e Storage: The storage controls the items that are available in stock. These
items could be inside the storage or navigating around the carriers. The
services of this role are:

— QueryCarriersAndStorage: when receives a list of items query the
docking stations and the feeder loop to know it the items required
are available. If not, the service query the storage.

— QueryStorage: this service when receives a list of items query the
storage to know it all the items required are available. In the case
that the items are not available, the service query if the items are
navigating around the cell. Finally, the service answers with the
availability or not of the items.

All the agents that belong to the unit organization have to take a role and
have to implement the services associated with that role.

5.4 Packing Cell Execution

The PackingCell unit should be created by an agent. If an agent wants to get
into THOMAS and use its services provided by the OMS and SF should request
a role of the organization by default. The services specifications offered by the
SF and OMS are described with more detail in [33].

66 CHAPTER 5. EXAMPLE: PACKING A BOX

Role \ Service Inputs \ Outputs \ Dur. ‘
LockPiston ShuttleEvent LockPistonFlag 3
OrderEvent NotificationEvent
DockingSt. | UnLockPiston FinishEvent UnLockPistonFlag | 2
LockPistonFlag
Robot GetltemsOp NotificationEvent | FinishEvent 5
’ Material Stock
List of Item Types
Getltems NotificationEvent | FinishEvent 8
Material Stock
List of Item Types
GetOrder NotificationEvent | List of Item Types | 4
Order OrderCode
SendOrder FinishEvent PackageCode 3
OrderCode
QueryCarriersAndStorage | List of Item Types | MaterialStock 8
Storage QueryStorage List of Item Types | MaterialStock 4

Table 5.1: Available Services in the Organization PackingCell

AcquireRole(UnitID, RoleID)
AcquireRole("Virtual", "Member")

After that, the agent could use the services provided by the OMS and SF. The
agent manager have to create the unit PackingCell, therefore it should request
to the OMS the registration of the unit through the service RegisterUnit.

RegisterUnit (UnitID, Type, Goal, ParentUnitID)
RegisterUnit ("PackingCell", "Team", "Pack", "Virtual")

There are four types of roles which interact in the unit PackingCell: Dock-
ingStation, Robot, Order, Storage. These roles should be registered through
the service RegisterRole provided by the OMS the agent.

RegisterRole(RoleID, UnitID)
RegisterRole("DockingStation", "PackingCell")
RegisterRole("Robot", "PackingCell")
RegisterRole("Order", "PackingCell")
RegisterRole("Storage", "PackingCell")

The agents that are going to take part in the organization unit should request
a registration as a PackingCell members through the service RegisterAgentRole
provided by the OMS. For example, the agent Al should send request to the
OMS.

RegisterAgentRole (AgentID, RoleID, UnitID)
RegisterAgentRole("A1", "DockingStation", "PackingCell")

5.4. PACKING CELL EXECUTION 67

RegisterAgentRole("A2", "Robot", "PackingCell")
RegisterAgentRole("A3", "Order", "PackingCell")
RegisterAgentRole("A4", "Storage", "PackingCell")
RegisterAgentRole("A5", "Storage", "PackingCell")

After that the agents have to register their services through the SF services:
RegisterProfile and RegisterProcess. For example, the services QueryCarrier-
sAndStorage and QueryStorage has the same profile (same inputs and outputs)
but the implementation of the service is different. For this reason, there are
only one RegisterProfile and two RegisterProcess

RegisterProfile(ServiceGoal, ServiceProfile)
RegisterProfile("Query", "QueryProfile")

RegisterProcess(ServiceID, ServiceProcess, ProviderID)
RegisterProcess("QueryCarriersAndStorage",
"QueryCarriersAndStorageProcess", "A4")
RegisterProcess("QueryStorage", "QueryStorageServiceProcess", "A5")

In the PackingCell organization unit, when an order has been placed, and
received, and once the shuttle has navigated to the correct docking station, the
box can be packed. The start of this process is based on the recognition of a
shuttle arrival event. When agent Al (plays the role “DockingStation”) senses
the arrival of a shuttle, it locks it in place using a pneumatic piston. This
provides a reliable way of ensuring the position of the shuttle. Once the shuttle
has arrived and is locked in, agent Al notify the controller agent A2 (plays
the role “robot”). Agent A2 takes different actions depending on whether the
shuttle has a box and whether the box is full or not. If there is a box, and the
box is empty, it is assumed that this box is ready to be packed. The packing
operation currently happens on an ”all-or-nothing” basis, i.e. it packs all three
items into the box, or none of the items will be packed and the shuttle is released
for processing later. Since packing is all or nothing, all items must be found
within the storage stacks at the start.

The first step is to ask agent A3 (plays the role “order”) for the list of
item types to be packed into the box. This ”bill of materials” is sent to agent
A4 (plays the role “storage”) to see if it can be satisfied. Agent A4 does not
assign items as yet and this is possibly a limitation of the design. In addition,
it was found to be simpler and more robust, but perhaps less efficient, to wait
until starting the process of packing a box before detecting and responding to
a material shortage. Agent A4 flags whether or not the ”bill of materials” is
completely satisfied by the items available in the stack or on shuttle carriers
circulating in the cell. If the items are available, but only on shuttle carriers,
these shuttles are sent to an appropriate docking station.

As soon as all items are available, the process of building the gift box begins.
For each item type, the first step is to find a particular instance of that type in
the stack. When the correct stack is found, items are removed from the bottom
of that stack until an item of the right type is found. Note that the item type

68 CHAPTER 5. EXAMPLE: PACKING A BOX

can be sensed as it is the first part of the EPC (electronic product code) and
is registered by RFID readers that sit at the base of the stack. Also note that
the item is logically removed from the base as well as physically removed by
sending a message to the robot agent.

This process is to send a completion message to agent A3, giving the EPC’s
of the specific items packed into the box. A2 agent also send a message to the
docking station to release the shuttle.

In these environments time is important to be taken into account. In some
situations the configuration of the assembly line can change with the number of
orders or with the order types. For example, a factory can use a configuration
when the number of orders is not to high, but when a rush order arrives, the time
became important and the service configuration in the assembly line changes.
In the example, if a rush order arrives, the PakingCell agent A3 has to make a
new composition of services taking into account the services that are available
at that moment and the time of these services because there is a time deadline.
To do that A3 agent sends a request to the SF agent. The request is for the
service SearchService. The A3 agent is looking for a service which should have
the inputs: ShuttleEvent and OrderEvent and the output: PackageCode. The
PackingCell available services are (Table 5.1).

5.5 Packing Cell Service Composition

In the example, when the agent A3 requires the SF service SearchService the
service composition process starts. First of all the SearchService tries to find
a service with the required characteristics but there is not a single service that
fulfill the A3 agent request. In that case the service SearchService starts the
process to find a composition that satisfies the requirements. This process is
explained with more detail next. To start the composition process, it is necessary
to have three type of files:

e Temporal service descriptions in OWL-S: In Appendix B, there is an ex-
ample OWL-S service description with the non-functional parameter du-
ration and with a temporal label in a precondition.

e Initial state: OWL file that is composed of facts which are true initially:
shuttle event and order event. This facts are ontology individuals (Ap-
pendix B).

e Goal state: OWL file in which appears the facts (OWL individuals) that
are to be achieved by the plan. In the example, these facts are: pack-
age code, notification event and intermediate facts that also have to be
achieved by the plan: order code, item type list, material stock, etc. (Ap-
pendix B).

With the OWL-S service descriptions and the initial and goal states the
conversion process From OWL-S to PDDXML starts. As a result of this stage
two files are obtained: problem.pddzml and domain.pddzml:

5.6. CONCLUSIONS 69

e problem.pddrml contains the objects that are present in the problem in-
stance, the initial state description and the goal that the user has defined
in the files InitialOntology.owl and GoalOntology.owl. In difference to ac-
tion preconditions, the initial state and goal descriptions should be ground,
meaning that all predicate arguments should be object or constant names
rather than parameters.

e domain.pddzml contains the domain predicates and operators (called ac-
tions in PDDL) that represent the services. These actions are durative-
actions because the non-functional parameter duration and the temporal
labels are used (Appendix C).

The input of the stage From PDDXML to PDDL 2.1 are the PDDXML files
generated in the previous stage. These files can not be managed by the planners,
so it is necessary to translate them. To that end, we have implemented a parser
to translate the PDDXML files into PDDL 2.1 files. The output of this stage
is the same planning problem but in PDDL (Appendix D) and can be used by
any PDDL planner.

Finally, once the problem and domain files in PDDL 2.1 are generated, the
planner takes them as input and obtains, if it is possible, a plan or several
plans that contains the sequence or sequences of durative actions (temporal
service compositions) to achieve the goal state from the initial state. In the
example the planner used is LPG (Local search for Planning Graphs)[28]. LPG
is a planner based on local search and planning graphs that handles PDDL2.1
domains involving numerical quantities and durations. In this planner the user
can specify the running mode. In this case has been chosen the incremental
mode. In this mode LPG-td finds a sequence of solutions. When the number ”x”
of solutions specified for the incremental mode is greater than 1, each solution
computed is an improvement with respect to the previous one (in terms of the
plan metric indicated in the problem file).

In this example the number of solutions chosen is two. The first one (Figure
5.2) is a plan of six steps (six services involved), and the duration is 23. In
the second solution the plan consists on six steps also, but the duration is 19
(Figure 5.3). Both plans achieve the same goal with the same number of services
involved, but in the example, if in the packing cell arrives an order with temporal
constrains the manager of the cell has to cope with it changing the configuration
to another one. In these case, the best configuration of services is the second
one.

5.6 Conclusions

In this chapter an example of the owl-s temporal extension is presented. The
example is a manufacturing system, more concretely a packing cell. In these
kind of environments there are a high probability of time changing restrictions.
In the problem presented the problem is the arrival of a rush order that makes
necessary a change in the service configuration to deal with the order in time.

70 CHAPTER 5. EXAMPLE: PACKING A BOX

Time:<ACTION> [action duration; action cost]

0.0003: (LOCKPISTONSERVICE ARRIVAL_A ORDER_A LOCKPISTONFLAG_A NOTIFICATIONEVENT_A) [3]
3.0005: (GETORDERSERVICE NOTIFICATIONEVENT_A ITEMTYPELIST_A ORDERCODE_A) [4]

7.0008: (QUERYCARRIERSANDSTORAGESERVICE ITEMTYPELIST_A MATERIALSTOCK_A) [8]

15.0010: (GETITEMSSERVICE MATERIALSTOCK_A ITEMTYPELIST_A NOTIFICATIONEVENT_A
FINISHEVENT_A) [8]

23.0012: (SENDORDERSERVICE ORDERCODE_A FINISHEVENT_A PACKAGECODE_A) [3]

23.0015: (UNLOCKPISTONSERVICE LOCKPISTONFLAG_A FINISHEVENT_A UNLOCKPISTONFLAG_A) [2]

Solution number: 1
Actions: 6
Execution cost: 6.00
Duration:23.000
Plan quality:23.000

Figure 5.2: Sequence of services of the first plan

Time:<ACTION> [action duration; action cost]

0.0003: (LOCKPISTONSERVICE ARRIVAL_A ORDER_A LOCKPISTONFLAG_A NOTIFICATIONEVENT_A) [3]
3.0005: (GETORDERSERVICE NOTIFICATIONEVENT_A ITEMTYPELIST_A ORDERCODE_A) [4]

7.0008: (QUERYSTORAGESERVICE ITEMTYPELIST_A MATERIALSTOCK_A) [4]

11.0010: (GETITEMSOPSERVICE NOTIFICATIONEVENT_A MATERIALSTOCK_A ITEMTYPELIST_A
FINISHEVENT_A) [5]

16.0012: (SENDORDERSERVICE ORDERCODE_A FINISHEVENT_A PACKAGECODE_A) [3]

16.0015: (UNLOCKPISTONSERVICE LOCKPISTONFLAG_A FINISHEVENT_A UNLOCKPISTONFLAG_A) [2]

Solution number: 2
Actions: 6
Execution cost: 6.00
Duration:19.000
Plan quality:19.000

Figure 5.3: Sequence of services of the second plan

There are seven services described using the OWL-S temporal extension pre-
sented in the previous chapter. In the cell there is a initial configuration of
the services that controls the machinery and the different stages of the process,
but the time that they spend is not admissible to deal with the arrival of the
new order. The manager that controls the activity in the packing cell has to
consider a new service configuration. In this situation the service composition
taking into account the time became a key to give a solution. In the example
there is only seven services, but in a real system the number of services that
controls the machinery could be intractable to consider all the services available.

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

The aim of the service-oriented architectures is build compatible software com-
ponents that will reduce costs of software systems and at the same time increas-
ing the capabilities of the systems. To achieve these objectives service discovery
and composition play an important role. Service composition is a form of reuse
pieces of software designed in a standardized manner (and with an appropri-
ate level of granularity) to maximize the opportunities. To build an effective
composition, the service designer will need a way of finding the most suitable
services to act as composition members. Furthermore, once the composition
is completed and deployed, potential consumers of the service representing the
composition will benefit from an awareness of its existence, purpose, and capa-
bilities. Service discovery is responsible for publish these new composed services.
Service discovery allows the designer to find the most suitable services to act
as composition members. Furthermore, service discovery avoids the accidental
creation of redundant software and as the number of services grows in size the
task of selecting an adequate service can quickly grow tedious if all services
that are listed under a certain description have to be compared manually for
the final selection. In this work a state of the art in this area is presented.
With this review the important information required to take into account in
service discovery and composition have been analyzed from the point of view of
web services and agents systems. The weak and strong points of the presented
algorithms have been also analyzed.

Most of the algorithm are centered in the information provided by the 10’s.
Furthermore, some algorithms are limited to discover simple services. It does not
consider the composition discovery nor the use of different ontologies. Another
lack is that the process of matching does not consider parameters related with
quality of service (QoS); it is only based on the input and output parameters.

71

72 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

There are some algorithms that, apart from I0’s information, take into account
preconditions and postconditions (IOPE parameters). Where the conventional
IOPE-based matchmaking algorithms are unable to determine suitable matches
for a request, is decisive take into account compositions. In some of the presented
algorithms important points as crossing ontologies or Quality of Service (QoS)
to restrict the set of candidate service providers based on user-specified non-
functional attributes are taken into account. In addition, web service discovery
algorithms do not consider temporal constraints over services.

THOMAS architecture has been presented. This architecture is presented
as an architecture that deals with the necessity of virtual organizations and the
integration of agents and services, being agents complex entities that can handle
the problem of service discovering and composition in dynamic and changing
open environments. In this way, two modules are responsible of managing or-
ganizations and dealing with service discovery and composition. The module
responsible for the last task is the service facilitator (SF) which is along with a
redefinition of the FIPA Directory Facilitator that is able to deal with services
in a more elaborated way, following Service Oriented Architectures guidelines.
The SF acts as a Discovery and Composition Service but also as gateway and
yellow pages manager.

To deal with the SF objectives related with service discovery and composi-
tion a new approach for composing services based on temporal annotations of
services is provided. The presented procedure exploits numeric and temporal
function supporting planers to build the composition. It also provides the facil-
ity to generate compositions of web services by using existing PDDL planners
such as LPG. To facilitate this task, an extension to OWL-S to include tempo-
ral qualified services by including duration as a non-functional parameter and
temporal constraints in the preconditions and effects of the service has been
developed. An example of application in manufacturing environments has been
also described.

6.2 Future Work

As a future work there are several ideas related with the Service Facilitator and
with the proposal for service composition. The idea related with the SF is to
continue with the development of the SF module in THOMAS Architecture. To
do that, the following items are being considered:

e Validate the OWL-S documents of the services that require to be registered
in the SF.

e Complete the functionality of the SF web services.

e Use a choreography language based on FIPA protocols for service compo-
sition.

e Distribute the SF and develop a method for distributed composition.

6.3. PUBLICATIONS 73
e Organize services registered in the SF to restrict the number of services
to take into consideration in the discovery and composition process.
e Error handling
e Take into account roles in discovery process
Related with the composition proposal the future work is:

e Integration of this approach with a toolkit related with soft-constrains in
real time.

e Analyze different planners to find the most suitable for service composi-
tion.

6.3 Publications

e E. Del Val and M. Rebollo
A SURVEY ON WEB SERVICE DISCOVERING AND COMPOSITION
Web Information Systems and Technologies(Webist) Vol. I pp. 135-142.
(2008)

e E. Del Val and M. Rebollo
Service Discovery and Composition in Multiagent Systems
Proceedings of Fifth European Workshop On Multi-Agent Systems (EU-
MAS 2007) pp. 197-212. (2007)

74 CHAPTER 6. CONCLUSIONS AND FUTURE WORK
Appendix
A OWL-S SF Service Descriptions

A1l AddProvider OWL-S Service Profile Description

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE uridef [
<IENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY dir "http://.../AddProvider/services/AddProvider?wsdl">
1>

<service:Service rdf:ID="AddProviderService">
<service:presents rdf :resource="#AddProviderProfile" />
</service:Service>

<profile:Profile rdf:ID="AddProviderProfile">
<service:isPresentedBy rdf :resource="#AddProviderService"/>
<profile:serviceName xml:lang="en">AddProvider</profile:serviceName>
<profile:hasInput rdf:resource="#AddProviderInputServiceImplementationID"/>
<profile:hasInput rdf:resource="#AddProviderInputProviderID"/>
<profile:hasQOutput rdf:resource="#AddProviderQutputServiceStatus"/>
</profile:Profile>

</rdf :RDF>

A2 AddProvider OWL-S Service Process and Grounding
Description

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE uridef [
<IENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY dir "http://paracetamol.dsic.upv.es:8080/AddProvider/services/AddProvider?wsdl">

]>

<service:Service rdf:about="http://.../AddProviderProfile.owl#AddProviderService">
<service:presents rdf:resource="http://.../AddProviderProfile.owl#AddProviderProfile"/>
<service:describedBy rdf:resource="#AddProviderProcess"/>

<service:supports rdf:resource="#AddProviderGrounding"/>

</service:Service>

<profile:Profile rdf:about= "http://.../AddProviderProfile.owl#AddProviderProfile">
<profile:contactInformation>

<actor:Actor rdf:ID="Providerl">

<actor:name>Provideri</actor:name>

</actor:Actor>
</profile:contactInformation>

A. OWL-S SF SERVICE DESCRIPTIONS 75

</profile:Profile>

<process:AtomicProcess rdf:ID="AddProviderProcess">

<service:describes rdf:resource="http://.../AddProviderProfile.owl#AddProviderService"/>
<process:hasQOutput rdf:resource="#AddProviderQutputServiceStatus"/>

<process:hasInput rdf:resource="#AddProviderInputServiceImplementationID"/>
<process:hasInput rdf:resource="#AddProviderInputProviderID"/>

</process:AtomicProcess>

<process:Input rdf:ID="AddProviderInputServiceImplementationID">
<rdfs:label>InputServiceImplementationID</rdfs:label>
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
</process:Input>

<grounding:WsdlGrounding rdf:ID="AddProviderGrounding">

<service:supportedBy rdf:resource="http://.../AddProviderProfile.owl#AddProviderService"/>
<grounding:hasAtomicProcessGrounding rdf:resource="#AddProviderWsdlAtomicProcessGrounding"/>
</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="AddProviderWsdlAtomicProcessGrounding">
<grounding:owlsProcess rdf:resource="#AddProviderProcess"/>
<grounding:wsdlDocument rdf:datatype="&xsd;anyURI">
http://.../AddProvider/services/AddProvider?wsdl
</grounding:wsdlDocument>
<grounding:wsdlOperation>
<grounding:WsdlOperationRef>
<grounding:portType rdf:datatype="&xsd;#anyURI">
http://.../AddProvider/services/AddProviderOperationsPortType
</grounding:portType>
<grounding:operation rdf:datatype="&xsd;#anyURI">
http://.../AddProvider/services/AddProvider
</grounding:operation>
</grounding:WsdlOperationRef>
</grounding:wsdlOperation>

<grounding:wsdlInputMessage rdf:datatype="&xsd;anyURI">
http://.../AddProvider/services/AddProviderMessage
</grounding:wsdlInputMessage>

</grounding:WsdlAtomicProcessGrounding>

</rdf :RDF>

A3 AddProvider WSDL

<?xml version="1.0" encoding="UTF-8" standalone="no"7>

<wsdl:definitions name="AddProvider" ... >
<wsdl:types>...</wsdl:types>
<wsdl:message name="AddProviderResponse">...</wsdl:message>

76 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

<wsdl:message name="AddProviderMessage"> ...</wsdl:message>
<wsdl:portType name="AddProviderPortType">
<wsdl:operation name="AddProvider">
<wsdl:input message="tns:AddProviderMessage" />
<wsdl:output message="tns:AddProviderResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="AddProviderSOAP" type="tns:AddProviderPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="AddProvider">
<soap:operation soapAction="http://wtp" />
<wsdl:input><soap:body use="literal"/></wsdl:input>
<wsdl:output><soap:body use="literal"/></wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="AddProvider">
<wsdl:port name="AddProviderSOAP" binding="tns:AddProviderSOAP">
<soap:address location="http://158.42.185.224:8080/AddProvider/services/AddProvider"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

B. OWL-S SERVICE DESCRIPTIONS 7

B OWL-S Service Descriptions

Bl Getltems OWL-S Service Description

<?xml vers
<!DOCTYPE
<IENTITY
<IENTITY
<IENTITY
<IENTITY
<IENTITY
<IENTITY
<IENTITY

]>...

<service:S
<service:
<service:
<service:
</service:

<profile:P
<service:
<profile:
<profile:
<profile:
<profile:
<profile:
</profile:

<process:A

<service:

<process:

<process:

<process:

<process:

<process:

<pddxml:

<expr:e
<and>

<atSt

<not

<pr

<p

</

</p

</no

ion="1.0" encoding="UTF-8"7>
uridef [

rdfs "http://www.w3.org/2000/01/rdf-schema#">

rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

owl "http://www.w3.org/2002/07/owl#">

service "http://www.daml.org/services/owl-s/1.1/Service.owl#">
profile "http://www.daml.org/services/owl-s/1.1/Profile.owl#">
process "http://www.daml.org/services/owl-s/1.1/Process.owl#">
grounding "http://www.daml.org/services/owl-s/1.1/Grounding.owl#">

ervice rdf:ID="GetItemsService">

presents rdf :resource="#GetItemsProfile"/>
describedBy rdf :resource="#GetItemsProcess"/>
supports rdf:resource="#GetItemsGrounding"/>
Service>

rofile rdf:ID="GetItemsProfile">

isPresentedBy rdf:resource="#GetItemsService"/>
serviceName xml:lang="en">GetItems</profile:serviceName>
hasInput rdf:resource="#GetItemsInputNotificationEvent"/>
hasInput rdf:resource="#GetItemsInputMaterialStock"/>
hasInput rdf:resource="#GetItemsInputItemTypeList"/>
hasOutput rdf:resource="#GetItemsOutputFinishEvent"/>
Profile>

tomicProcess rdf:ID="GetItemsProcess">

describes rdf:resource="#GetItemsService"/>

hasInput rdf:resource="#GetItemsInputNotificationEvent"/>

hasInput rdf:resource="#GetItemsInputMaterialStock"/>

hasInput rdf:resource="#GetItemsInputItemTypeList"/>

hasOutput rdf:resource="#GetItemsOutputFinishEvent"/>
hasPrecondition>

PDDXML-Condition rdf:ID="PDDXML-Precondition">

xpressionBody rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

art>

>

ed name="agentHasKnowledgeAbout">
aram>?http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent
param>

red>

t>

78 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

</atStart>
</and>
</expr:expressionBody>
</pddxml : PDDXML-Condition>
</process:hasPrecondition>
<Duration_param:hasLocal>
<duration:Duration-Expression rdf:ID="PDDXML-Duration">
<expr:expressionBody rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
<and>
<equals>
<variable><var type="object">?duration</var></variable>
<constant><const type="int">8</const></constant>
</equals>
</and>
</expr:expressionBody>
</duration:Duration-Expression>
</Duration_param:hasLoca1>
</process:AtomicProcess>

<process:Input rdf:ID="GetItemsInputNotificationEvent">
<rdfs:label>InputNotificationEvent</rdfs:label>

<process:parameterType rdf:datatype="&xsd;#anyURI">&serv;NotificationEvent
</process:parameterType>

</process:Input>

<process:Input rdf:ID="GetItemsInputMaterialStock">
<rdfs:label>InputMaterialStock</rdfs:label>

<process:parameterType rdf:datatype="&xsd;#anyURI">&serv;MaterialStock
</process:parameterType>

</process: Input>

<process:Input rdf:ID="GetItemsInputItemTypeList">
<rdfs:label>InputItemTypelList</rdfs:label>

<process:parameterType rdf:datatype="&xsd;#anyURI">&serv;ItemTypelList
</process:parameterType>

</process:Input>

<process:0utput rdf:ID="GetItemsOutputFinishEvent">
<rdfs:label>0OutputFinishEvent</rdfs:label>

<process:parameterType rdf:datatype="&xsd;#anyURI">&serv;FinishEvent
</process:parameterType>

</process:0utput>

<grounding:WsdlGrounding rdf:ID="GetItemsGrounding">

<service:supportedBy rdf:resource="http://.../Packing/GetItems.owl#GetItemsService"/>
<grounding:hasAtomicProcessGrounding rdf:resource="#GetItemsWsdlAtomicProcessGrounding"/>
</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="GetItemsWsdlAtomicProcessGrounding">
<grounding:owlsProcess rdf:resource="#GetItemsProcess"/>

<grounding:wsdlDocument rdf:datatype="&xsd;anyURI">
http://.../GetItems/services/GetItems?wsdl

</grounding:wsdlDocument>

B. OWL-S SERVICE DESCRIPTIONS 79

<grounding:wsdlOperation>
<grounding:WsdlOperationRef>
<grounding:portType rdf:datatype="&xsd;#anyURI">
http://.../GetItems/services/GetItemsOperationsPortType
</grounding:portType>
<grounding:operation rdf:datatype="&xsd;#anyURI">
http://.../GetItems/services/GetItems
</grounding:operation>
</grounding:WsdlOperationRef>
</grounding:wsdlOperation>
<grounding:wsdlInputMessage rdf:datatype="&xsd;anyURI">
http://.../GetItems/services/GetItemsMessage
</grounding:wsdlInputMessage>
<grounding:wsdlOutputMessage rdf:datatype="&xsd;anyURI">
http://.../GetItems/services/GetItemsResponse
</grounding:wsdlOutputMessage>
<grounding:wsdlInput>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#GetItemsInputNotificationEvent"/>
<grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
http://.../GetItems/services/NotificationEvent
</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>
</grounding:wsdlInput>
<grounding:wsdlInput>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#GetItemsInputMaterialStock"/>
<grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
http://.../GetItems/services/MaterialStock
</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>
</grounding:wsdlInput>
<grounding:wsdlInput>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#GetItemsInputItemTypeList"/>
<grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
http://paracetamol.dsic.upv.es:8080/GetItems/services/ItemTypeLlist
</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>
</grounding:wsdlInput>
<grounding:wsdlOutput>
<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="#GetItemsOutputFinishEvent"/>
<grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
http://paracetamol.dsic.upv.es:8080/GetItems/services/FinishEvent
</grounding:wsdlMessagePart>
</grounding:WsdlOutputMessageMap>
</grounding:wsdlOutput>
</grounding:WsdlAtomicProcessGrounding>

80

</rdf :RDF>

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

B2 InitialOntology.owl

<?7xml version="1.0"7>
<rdf :RDF

xmlns
xmlns:
xmlns:
xmlns:

:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xsd="http://www.w3.org/2001/XMLSchema#"
rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
owl="http://www.w3.org/2002/07/owl#"

xmlns="http://.../Packing/ServiceOntology.owl#"
xml:base="http://.../Packing/ServiceOntology.owl">
Ontology rdf:about=""/>

<owl:

<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:

Class
Class
Class
Class
Class
Class
Class
Class
Class
Class

rdf:
rdf:
rdf:
rdf:
rdf:
rdf:

rdf

ID="ShuttleEvent"/>
ID="LockPist0nFlag"/>
ID="NotificationEvent"/>
ID="0rderEvent"/>
ID="ItemTypeList"/>
ID="UnLockPistonFlag"/>

:ID="MaterialStock"/>
rdf:
rdf:
rdf:

ID="FinishEvent"/>
ID="PackageCode"/>
ID="0rderCode" />

<ShuttleEvent rdf:ID="arrival_A"/>
<OrderEvent rdf:ID="Order_A"/>
</rdf :RDF>

B3 GoalOntology.owl

<?7xml version="1.0"7>
<rdf:RDF

xmlns:
xmlns:
xmlns:
xmlns:

rdf="http://wuw.w3.0org/1999/02/22-rdf-syntax-ns#"
xsd="http://www.w3.org/2001/XMLSchema#"
rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
owl="http://www.w3.0rg/2002/07/owl#"

xmlns="http://.../Packing/ServiceOntology.owl#"
xml:base="http://.../Packing/ServiceOntology.owl">

<owl

<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:
<owl:

Class
Class
Class
Class
Class
Class
Class
Class
Class

rdf:
rdf:
rdf:
rdf:
rdf:
:ID="UnLockPistonFlag"/>
rdf:
rdf:
rdf:

rdf

:Ontology rdf:about=""/>

ID="ShuttleEvent"/>
ID="LockPistonFlag"/>
ID="NotificationEvent"/>
ID="0rderEvent"/>
ID="ItemTypeList"/>

ID="MaterialStock"/>
ID="FinishEvent"/>
ID="PackageCode"/>

B. OWL-S SERVICE DESCRIPTIONS 81

<owl:Class rdf:ID="OrderCode"/>

<PackageCode rdf:ID="PackageCode_A"/>
<NotificationEvent rdf:ID="NotificationEvent_A"/>
<ItemTypelist rdf:ID="ItemTypeList_A"/>
<PackageCode rdf:ID="PackageCode_A"/>
<MaterialStock rdf:ID="MaterialStock_A"/>
<FinishEvent rdf:ID="FinishEvent_A"/>

<0rderCode rdf:ID="OrderCode_A"/>

<LockPistonFlag rdf:ID="LockPistonFlag_ A"/>
<UnLockPistonFlag rdf:ID="UnLockPistonFlag_A"/>

</rdf :RDF>

82 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

C PDDXML

C1 An Action Description in PDDXML

<action name="http://.../Packing/GetItems.owl#GetItemsService">
<parameters>
<param type="object">
?http://.../Packing/GetItems.owl#GetItemsInputMaterialStock
</param>
<param type="object">
?http://.../Packing/GetItems.owl#GetItemsInputItemTypelList
</param>
<param type="object">
?http://.../Packing/GetItems.owl#GetItemsInputNotificationEvent
</param>
<param type="object">
?http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent
</param>
</parameters>
<duration>
<and>
<equals>
<variable>
<var type="object">7duration</var>
</variable>
<constant>
<const type="int">8</const>
</constant>
</equals>
</and>
</duration>
<precondition>
<and>
<pred name="agentHasKnowledgeAbout">
<param>7http://.../Packing/GetItems.owl#GetItemsInputMaterialStock</param>
</pred>
<or>
<pred name="http://.../Packing/ServiceOntology.owl#MaterialStock">

<param>7http://.../Packing/GetItems.owl#GetItemsInputMaterialStock</param>

</pred>

</or>

<pred name="agentHasKnowledgeAbout">
<param>7http://.../Packing/GetItems.owl#GetItemsInputItemTypelList</param>

</pred>

<or>

<pred name="http://.../Packing/ServiceOntology.owl#ItemTypeList">
<param>7http://.../Packing/GetItems.owl#GetItemsInputItemTypelList</param>
</pred>

</or>

<pred name="agentHasKnowledgeAbout">

C. PDDXML 83

<param>7http://.../Packing/GetItems.owl#GetItemsInputNotificationEvent</param>
</pred>
<or>
<pred name="http://.../Packing/ServiceOntology.owl#NotificationEvent">
<param>?http://.../Packing/GetItems.owl#GetItemsInputNotificationEvent</param>
</pred>
</or>
<or>
<pred name="http://.../Packing/ServiceOntology.owl#FinishEvent">
<param>7http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent</param>
</pred>
</or>
<atStart>
<not>
<pred name="agentHasKnowledgeAbout">
<param>7http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent</param>
</pred>
</not>
</atStart>
</and>
</precondition>
<effect>
<and>
<pred name="agentHasKnowledgeAbout">
<param>7http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent</param>
</pred>
<pred name="identity">
<param>7http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent</param>
<param>7http://.../Packing/GetItems.owl#GetItemsOutputFinishEvent</param>
</pred>
</and>
</effect>
</action>

</define_domain>

84 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

D PDDL 2.1

D1 Problem.pddl

(define (problem probleml)
(:domain InitialOntology)

(:objects

UnLockPistonFlag_A
PackageCode_A
FinishEvent_A
MaterialStock_A
LockPistonFlag_A
ItemTypeList_A
arrival_A
Order_A
OrderCode_A
NotificationEvent_A
)
(:init
(agentHasKnowledgeAbout Order_A)
(identity Order_A Order_A)
(OrderEvent Order_A)
(agentHasKnowledgeAbout arrival_A)
(identity arrival_A arrival_A)
(ShuttleEvent arrival_A)
(identity PackageCode_A PackageCode_A)
(PackageCode PackageCode_A)
(identity OrderCode_A OrderCode_A)
(OrderCode OrderCode_A)
(identity NotificationEvent_A NotificationEvent_A)
(NotificationEvent NotificationEvent_A)
(identity MaterialStock_A MaterialStock_A)
(MaterialStock MaterialStock_A)
(identity ItemTypelist_A ItemTypelist_A)
(ItemTypeList ItemTypeList_A)
(identity UnLockPistonFlag A UnLockPistonFlag_ A)
(UnLockPistonFlag UnLockPistonFlag_ A)
(identity FinishEvent_A FinishEvent_A)
(FinishEvent FinishEvent_A)
(identity LockPistonFlag_ A LockPistonFlag_A)
(LockPistonFlag LockPistonFlag_A)
)
(:goal (and
(agentHasKnowledgeAbout PackageCode_A)
(identity PackageCode_A PackageCode_A)
(PackageCode PackageCode_A)
(agentHasKnowledgeAbout OrderCode_A)
(identity OrderCode_A OrderCode_A)

D. PDDL 2.1

(OrderCode OrderCode_A)

(agentHasKnowledgeAbout NotificationEvent_A)
(identity NotificationEvent_A NotificationEvent_A)
(NotificationEvent NotificationEvent_A)
(agentHasKnowledgeAbout MaterialStock_A)
(identity MaterialStock_A MaterialStock_A)
(MaterialStock MaterialStock_A)
(agentHasKnowledgeAbout ItemTypelList_A)
(identity ItemTypelList_A ItemTypelist_A)
(ItemTypelist ItemTypeList_A)
(agentHasKnowledgeAbout UnLockPistonFlag_A)
(identity UnLockPistonFlag A UnLockPistonFlag_A)
(UnLockPistonFlag UnLockPistonFlag_A)
(agentHasKnowledgeAbout FinishEvent_A)

(identity FinishEvent_A FinishEvent_A)
(FinishEvent FinishEvent_A)
(agentHasKnowledgeAbout LockPistonFlag_A)
(identity LockPistonFlag_ A LockPistonFlag_ A)
(LockPistonFlag LockPistonFlag_A)

)

D2 Domain.pddl

(define (domain InitialOntology)

(:requirements :durative-actions)

(:predicates
(NotificationEvent 7individual_O - object)
(FinishEvent ?7individual_O - object)
(ShuttleEvent 7individual_0 - object)
(identity ?individual_O - object 7individual_1 - object)
(PackageCode 7individual_O - object)
(OrderEvent 7individual_0 - object)
(agentHasKnowledgeAbout 7object_parameter - object)
(MaterialStock ?individual_O - object)
(UnLockPistonFlag 7individual_O - object)
(OrderCode 7individual_O - object)
(LockPistonFlag 7individual_0 - object)
(ItemTypelList 7individual_O - object)

(:durative-action GetOrderService
:parameters (
?GetOrderInputNotificationEvent - object
?GetOrderOutputItemTypelList - object
?GetOrderOutputOrderCode - object)
:duration (= ?duration 4)
:condition (and

85

86

(at
(at
(at
(at
(at
)

:effect (and

(at
(at
(at
(at

)

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

start
start
start
start
start

(agentHasKnowledgeAbout 7GetOrderInputNotificationEvent))
(NotificationEvent ?GetOrderInputNotificationEvent))
(ItemTypeList 7GetOrderOutputItemTypeList))

(OrderCode 7GetOrderOutputOrderCode))

(not (agentHasKnowledgeAbout ?GetOrderOutputOrderCode)))

end (agentHasKnowledgeAbout 7GetOrderOutputItemTypelList))
end (identity 7GetOrderOutputItemTypelList 7GetOrderOutputItemTypeList))
end (agentHasKnowledgeAbout ?GetOrderOutputOrderCode))

end (identity ?GetOrderOutputOrderCode ?GetOrderOutputOrderCode))

Bibliography

(1]
2]

3]

Pddl— the planning domain definition language by too many people to mention
at too many places to mention.

Web services agent integration project.
URL http://wsai.sourceforge.net/index.html

C. Abela, M. Montebello, Daml enabled web services and agents in the semantic
web, in: WS-RSD’02, Germany, 2002.

L. Aversano, G. Canfora, A. Ciampi, An algorithm for web service discovery
through their composition, in: IEEE International Conference on Web Services
(ICWS04), 2004.

D. Bachlechner, K. Siorpaes, H. Lausen, D. Fensel, Web Service Discovery - A
Reality Check, 2006.

J. Bailey, Fast discovery of interesting collections of web services, in: WI ’06:
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web In-
telligence, IEEE Computer Society, Washington, DC, USA, 2006.

Baldoni, Baroglio, Martelli, Patti, Schifanella, Service selection by choreography-
driven matching, in: ECOWS Workshop on Emerging Web Services Technology,
2007.

M. Baldoni, C. Baroglio, A. Martelli, V. Patti, Reasoning about interaction pro-
tocols for customizing web service selection and composition, No. Vol.70, 2007.

Y. Balzer, Improve your soa project plans (2004).

S. Bansal, J. Vidal, Matchmaking of web services based on the daml-s service
model, in: Second International Joint Conference on Autonomous Agents (AA-
MASO03), T. Sandholm and M. Yokoo, 2003.

B. Benatallah, M.-S. Hacid, C. Rey, F. Toumani, Request rewriting-based web
service discovery, in: International Semantic Web Conference, 2003.

E. Bircher, T. Braun, An Agent-Based Architecture for Service Discovery and
Negotiation in Wireless Networks, 2004.

A. Brogi, S. Corfini, J. Aldana, I. Navas, Automated discovery of compositions
of services described with separate ontologies.

A. Brogi, S. Corfini, J. F. A. Montes, I. N. Delgado, A prototype for discovering
compositions of semantic web services., in: G. Tummarello, P. Bouquet, O. Sig-
nore (eds.), SWAP, vol. 201 of CEUR Workshop Proceedings, CEUR-WS.org,
2006.

87

88 BIBLIOGRAPHY

[15] A. Brogi, S. Corfini, R. Popescu, Composition-oriented service discovery, Hako-
date, Japan, 2003.

[16] C. Céceres, A. Ferndndez, S. Ossowski, M. Vasirani, Role-based service descrip-
tion and discovery, in: International Joint Conference on Autonomous Agents
and Multi-Agent Systems, 2006.

[17] J. Cardoso, A. Sheth, Semantic e-workflow composition, Journal of Intelligent
Information Systems (JIIS).

[18] I. Constantinescu, B. Faltings, Efficient matchmaking and directory services,
Technical Report No 1C/2002/77 (2002).

[19] B. Corradini, C. Ercoli, E. Merelli, B. Re, An agent-based matchmaker, in: In
proceedings of WOA 2004 dagli Oggetti agli Agenti - Sistemi Complessi e Agenti
Razionali, 1988.

[20] J. Dang, M. Hungs, Concurrent Multiple-Issue Negotiation for Internet-Based
Services, No. Vol.10 - 6, 2006.

[21] I. Dickinson, Jena ontology api, http://jena.sourceforge.net/ontology/index.html.
[22] T. Erl, SOA: Principles of Service Design, 2007.

[23] A. Fernandez, M. Vasirani, C. Caceres, S. Ossowski, An abstract architecture
for semantic service coordination in agent-based intelligent peer-to-peer environ-
ments, in: poster paper at the ACM SAC Special Track on Coordination Models,
Languages and Applications (SAC’06), 2006.

[24] M. Fox, D. Long, Pddl2.1: An extension to pddl for expressing temporal planning
domains, J. Artif. Intell. Res. (JAIR) 20 (2003) 61-124.

[25] S. Fronk, I. Jelnek, Semantic mining of web documents, in: In International
Conference on Computer Systems and Technologies.

[26] C. Gao, R. Liu, Y. Song, H. Chen, A model checking tool embedded into services
composition environment, in: GCC ’06: Proceedings of the Fifth International
Conference on Grid and Cooperative Computing (GCC’06), IEEE Computer So-
ciety, Washington, DC, USA, 2006.

[27] J. Garofalakis, Y. Panagis, E. Sakkopoulos, A. Tsakalidis, Web service discovery
mechanisms: Looking for a needle in a haystack?

URL citeseer.ist.psu.edu/garofalakisO4web.html

[28] A. Gerevini, I. Serina, Lpg: A planner based on local search for planning graphs
with action costs., in: AIPS, 2002.

[29] Y. Gil, S. Ramacachandran, Phosphorus: A task-based agent matchmaker, in:
Proceedings of the International Conference on Autonomous Agents (Agents’01)
(Short paper), 2001.

[30] M. L. Ginsberg, Knowledge interchange format: the kif of death, AT Mag. 12 (3)
(1991) 57-63.

[31] F. Giunchiglia, P. Traverso, Planning as model checking, in: ECP, 1999.

URL citeseer.ist.psu.edu/giunchiglia99planning.html

[32] D. Greenwood, Jade web service integration gatway (wsig), in: JADE AAMAS
Workshop, 2005.

[33] GTI-IA, An abstract architecture for virtual organizations: The thomas project
(2007).
URL http://www.fipa.org/docs/THOMASarchitecture.pdf

BIBLIOGRAPHY 89

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

S. Hashemian, F. Mavaddat, A graph-based approach to web services composi-
tion, In IEEE Computer Society.

S. Jha, P. Chalasani, O. Shehory, K. Sycara, A formal treatment of distributed
matchmaking, in: Proc. of the 2nd Int. Conference on Autonomous Agents, No.
Vol.3, 1998.

J.Radatz, M. Sloman, A standard dictionary for computer terminology: Proyect
610, IEEE Computer.

S. Kalepu, S. Krishnaswamy, S. Loke, Reputation = f(user ranking, compliance,
verity), in: Proceedings of the IEEE International Conference on Web Services,
2004.

S. KluS, F.Hashemian, A graph-based approach to web services composition, in:
Symposium on Applications and the Internet (SAINT’05), 2005.

M. Klusch, B. Fries, K. Sycara, Automated semantic web service discovery with
owls-mx, in: Proceedings of 5th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), Hakodate, Japan, 2006.

M. Klusch, A. Gerber, Semantic web service composition planning with owls-
xplan, in: In Proceedings of the 1st Int. AAATI Fall Symposium on Agents and
the Semantic Web, 2005.

N. Kokash, Web service discovery with implicit qos filtering, in: Proceedings of
the IBM PhD Student Symposium, 2005.

U. Kuster, H. Lausen, B. Konig-Ries, Evaluation of semantic service discovery -
a survey and directions for future research, in: Proceedings of the 2nd Workshop
on Emerging Web Services Technology (WEWSTO07) in conjunction with the 5th
IEEE European Conference on Web Services, Halle (Saale), Germany, 2007.

L. Lei, I. Horrocks, A software framework for matchmaking based on semantic
web technology, in: Twelfth International World Wide Conference (WWW2003),
Germany, 2003.

S. Ludwig, Weight assignment of semantic match using user values and a fuzzy
approach, in: International Conference on Service-Oriented Computing, 2007.

U. Manikrao, T.V.Prabhakar, Dynamic selection of web services with recommen-
dation system., in: Proceedings of the International Conference on Next Gener-
ation Web Services Practices (NWESP), No. 117, 2005.

E. Maximilien, M. Singh, A framework and ontology for dynamic web services
selection, No. Vol.8 - 5, 2004.

I. Mecar, Agent-oriented semantic discovery and matchmaking of web services,
in: 8th International Conference on Telecommunications, 2005.

S. Mokhtar, A. Kaul, N. Georgantas, V. Issarny, Towards efficient matching of
semantic web service capabilities, in: Proc. of WS-MaTe06, 2006.

M. Moore, T. Suda, A decentralized and self-organizing discovery mechanism, in:
Proc. Of the First Annual Symposium on Autonomous Intelligent Networks and
Systems, 2002.

S. Mullender, P. Vitanyi., Distributed Match-Making, No. Vol.3, 1988.

S. Nakajima, Model-checking verification for reliable web service, in: OOPSLA
2002 Workshop on Object-Oriented Web Services, Seattle, Washington, 2002.

90 BIBLIOGRAPHY

[62] T. Nguyen, R. Kowalczyk, Ws2jade: Integrating web service with jade agents, in:
Technical Report: SUTICT-TR2005.03, 20 July 2005.

[53] E. Ogston, S. Vassiliadis, Local distributed agent matchmaking, in: Proceedings
of the 9th International Conference on Cooperative Information Systems, 2001.

[64] E. Ogston, S. Vassiliadis, Matchmaking among minimal agents without a facilita-
tor, in: Proceedings of the 5th International Conference on Autonomous Agents,
2001.

[65] A. Ouksel, Y. Babad, T. Tesch, Matchmaking software agents in b2b markets,
in: Proceedings of the 37th Annual Hawaii International Conference on System
Sciences (HICSS’04), 2004.

[56] S. Overhage, On specifying web services using uddi improvements (2002).

[57] Owl-s: Semantic markup for web services,
http://www.w3.org/Submission/2004/SUBM-0WL-S-20041122.

[58] M. Paolucci, Semantic matching of web services capabilities, in: The First Inter-
national Semantic Web Conference, 2002.

[59] J. Pathak, N. Koul, D. Caragea, V. Honavar, A framework for semantic web
service discovery, in: WIDM’05, Germany, 2005.

[60] S. Perera, A. Ranabahu, Axis2 - the future of web services,
http://www. jaxmag.com/itr/online_artikel/psecom,id, 747 ,nodeid, 147 .html.

[61] S. Prabhu, Towards distributed dynamic web service composition, in: ISADS ’07:
Proceedings of the Eighth International Symposium on Autonomous Decentral-
ized Systems, IEEE Computer Society, Washington, DC, USA, 2007.

[62] J. Rao, X. Su, A survey of automated web service composition methods, in:
LNCS, vol. 3387/2005, Springer, 2005, pp. 43-54.
URL http://wuw.springerlink.com/content/4m6w37g0jffkobv4

[63] V. J. S. Ossowski, J. Bajo, H. Billhardt, V. Botti, J. Corchado, Open mas for
real world applications: an abstract architecture proposal.

[64] M. Sensoy, C. Pembe, H. Zirtiloglu, P. Yolum, A. Bener, Experience-based service
provider selection in agent-mediated e-comerce, in: Engineering Applications of
Artificial Intelligence, No. 3, 2007.

[65] A. Shaikh, S. Ludwig, O. Rana, A cognitive trust-based approach for web service
discovery and selection, in: European Conference on Web Services, 2005.

[66] K. Sigdel, K. Bertels, B. Pourebrahimi, S. Vassiliadis, L. Shuai, A framework
for adaptive matchmaking in distributed computing, in: In proceeding of GRID
Workshop, 2005.

[67] Sparql query language for rdf, http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115.

[68] N. Srinivasan, M. Paolucci, K. Sycara, Adding owl-s to uddi implementation
and throughput, in: In Workshop on Semantic Web Service and Web Process
Composition, 2004.

[69] L. Steller, S. Krishnaswamy, J. Newmarch, Discovering relevant services in per-
vasive environments using semantics and context, in: IWUC, 2006.

[70] K. Sycara, M. Klusch, Brokering and matchmaking for coordination of agent
societies: A survey, Coordination of Internet Agents: Models, Technologies and
Applications (2001) 197-224.

BIBLIOGRAPHY 91

[71]

[72]

(73]

[74]
[75]

[76]

[77]
(78]

[79]

[80]

[81]

K. Sycara, S. Widoffand, M. Klusch, J. Lu, Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace, Journal on Autonomous Agents and
Multi-Agent Systems.

K. Trec, A. Devli, G. Jei, M. Kuek, S. Dei, Semantic matchmaking of advanced
personalized mobile services using intelligent agents, in: Proceedings of the 12th

International Conference on Software, Telecommunications and Computer Net-
works (Soft COM), 2004.

E. D. Val, M. Rebollo, Service discovery and composition in multiagent systems,
in: Proceedings of Fifth European Workshop On Multi-Agent Systems (EUMAS
2007), Association Tunisienne D’Intelligence Artificielle, 2007.

E. D. Val, M. Rebollo, A survey on web service discovering and composition, in:
Web Information Systems and Technologies(Webist), vol. I, 2008.

M. B. van Riemsdijk, M. Wirsing, Goal-oriented and procedural service orches-
tration - a formal comparison, in: MALLOW-AWESOME’007, Durham, 2007.

C. Walton, Model checking multi-agent web services, in: Proceedings of the 2004
Spring Symposium on Semantic Web Services, Stanford, CA, USA, 2004.
URL citeseer.ist.psu.edu/walton04model.html

B. Wolf-Tilo, W. Matthias, Towards personalized selection of web services, in:
The Twelfth International WWW Conference en Budapest, 2003.

Web services description language (wsdl) 1.1,
http://www.w3.org/TR/2001/NOTE-wsd1-20010315.

L. Yang, B. K. Sarker, V. C. Bhavsar, H. Boley, A weighted-tree simplicity algo-
rithm for similarity matching of partial product descriptions, in: In Proceedings
of ISCA 14th International Conference onIntelligent and Adaptive Systemsand
Software Engineering, Toronto, 2005.

H. Q. Yu, S. Reiff-Marganiec, Semantic web services composition via planning as
model checking, Tech. Report CS-06-003, University of Leicester (2006).

Z. Zhang, C. Zhang, An improvement to matchmaking algorithms for middle
agent, in: AAMAS, 2002.

92

BIBLIOGRAPHY

