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Abstract – In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indis-
pensable for statistical inference in non-standard models like generalized linear models with
genetic random effects or models with genetically structured variance heterogeneity. A particu-
lar challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the
high-dimensional vectors of genetic random effects and the associated covariance parameters.
We discuss various strategies to approach this problem including reparameterization, Langevin-
Hastings updates, and updates based on normal approximations. The methods are compared in
applications to Bayesian inference for three data sets using a model with genetically structured
variance heterogeneity

Langevin-Hastings /Markov chain Monte Carlo / normal approximation / proposal
distributions / reparameterization

1. INTRODUCTION

Given observations of a trait and a pedigree for a group of animals, the basic
model in quantitative genetics is a linear mixed model with genetic random ef-
fects. The correlation matrix of the genetic random effects is determined by the
pedigree and is typically very high-dimensional but with a sparse inverse. Max-
imum likelihood inference and Bayesian inference for the linear mixed model
are well-studied topics [16]. Regarding Bayesian inference, with appropriate
choice of priors, the full conditional distributions are standard distributions and
Gibbs sampling can be implemented relatively straightforwardly.
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The assumptions of normality, linearity, and variance homogeneity are in
many cases not valid. One may then consider generalized linear mixed mod-
els where the genetic random effects enter at the level of the linear predic-
tor. San Cristobal-Gaudy et al. [15] proposed another extension of the linear
mixed model introducing genetic random effects influencing the log residual
variances of the observations thereby producing a genetically structured vari-
ance heterogeneity. Considerable computational problems arise when aban-
doning the standard linear mixed model. Classical maximum likelihood and
Bayesian inference is complicated since it is not possible to evaluate explicitly
the likelihood function. Using conventional Gibbs sampling to approximate
the posterior distribution is difficult since the full conditional distributions are
not anymore of standard forms.

The aim of this paper is to discuss strategies to obtain efficient Markov
chain Monte Carlo (MCMC) algorithms for non-standard models of the kind
mentioned in the previous paragraph. Such algorithms may be used either
to approximate posterior distributions or to generate samples for importance
sampling approximations of the likelihood [6]. In particular we focus on the
problem of constructing efficient updating schemes for the high-dimensional
vectors of genetic random effects. We review the methodological background
and discuss the various algorithms in the context of the heterogeneous variance
model. Apart from being a model of great interest in its own right, this model
has proven to be a hard test for MCMC methods. We compare the perfor-
mances of the different algorithms when applied to three real datasets which
differ markedly both in size and regarding the inferences concerning the ge-
netic covariance parameters.

Section 2 discusses general strategies for obtaining efficient MCMC algo-
rithms while Section 3 considers these strategies in the specific context of the
San Cristobal-Gaudy et al. [15] model. Section 4 presents results of applying
two MCMC schemes to data sets with pig litter sizes, rabbit litter sizes, and
snail weights. Some concluding remarks are given in Section 5.

2. MCMC STRATEGIES FOR HIGH-DIMENSIONAL PROBLEMS

We initially discuss MCMC strategies in a rather general framework where
given the vector of random additive genetic effects a = (a1, . . . , aM) and
a parameter vector β, the vector y of observed traits follows some density
f (y|a,β). As usual in quantitative genetics, a is assumed to be zero mean nor-
mal with covariance matrix σ2

aA, where A is the additive genetic relationship
matrix that reflects the family structure, typically known, and σ2

a is the additive
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genetic variance. In the following (apart from Sect. 2.5) we assume known σ2
a

and β and focus on MCMC strategies for sampling from the posterior

p(a|y) ∝ f (y|a,β)p(a|σ2
a) (1)

where we for notational convenience omit β and σ2
a on the left hand side. An

algorithm for sampling a can typically easily be extended with updates of the
lower dimensional quantities β and σ2

a in order to sample the full posterior
distribution of (a, σ2

a,β) (Sect. 2.5). An introduction to MCMC can be found
e.g. in [16].

2.1. The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm generates a Markov chain a1, a2, . . . as
follows. Given the current value ai of the Markov chain, a proposal aprop is
generated from a proposal density q(aprop |ai). With probability

min

{
1,

p(aprop |y)q(ai |aprop)
p(ai|y)q(aprop |ai)

}
(2)

the new state ai+1 is given by aprop; otherwise ai+1 = ai. Under weak condi-
tions of regularity and after a suitable ‘burn-in’, the generated Markov chain
provides a dependent sample from the posterior distribution of a. The question
is now how to choose a suitable proposal density q.

A simple and often used proposal density is a multivariate normal den-
sity centered at the current value ai of the chain and with covariance matrix
hI where h is a user-specified proposal variance and I is the identity matrix,
i.e. q(aprop |ai) is the density of N(ai, hI). The resulting Metropolis-Hastings al-
gorithm is known as a random-walk Metropolis algorithm. In high-dimensional
problems, the random-walk Metropolis algorithm may converge very slowly
and produce highly auto-correlated samples.

A simple step forward is to use gradient information in the proposal density.
The proposal distribution of a Langevin-Hastings algorithm [1,11] is given by

N

(
ai + (h/2)

d
da

log p(ai|y), hI
)

(3)

where d
da log p(a|y) is the gradient of the log posterior density – i.e. the vector

of derivatives (d log p(a|y)/da1, . . . , d log p(a|y)/daM ).
Intuitively, the use of gradient information helps to direct the algorithm

towards regions of high posterior density. In applications in spatial statis-
tics [2] the Langevin-Hastings algorithm has proven superior to the random
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walk Metropolis algorithm. In the context of quantitative genetics, Langevin-
Hastings has been successfully applied to implement Bayesian inference
in [3, 9, 12, 17].

When choosing the proposal variance h, rules of thumb suggest that one
should aim at acceptance rates of about 25% for random walk and 60% for
Langevin-Hastings updates. Single-site schemes where the components in a
are updated in turn may lead to poorly mixing Markov chains due to high
correlation between the components of a.

2.2. Reparameterization

Simulation studies in [7] show that Langevin-Hastings updates may not
work well if the components of a have very different posterior variances. In
applications in quantitative genetics, the individuals may contribute with dif-
ferent numbers of observations and may have different numbers of relatives
with records. Hence posterior variances may be very different. The correlation
structure of the Langevin-Hastings proposal described in the previous section
moreover typically differs markedly from the posterior correlation structure
where the components are not independent. It may therefore be useful to trans-
form a into a quantity whose components are less correlated a posteriori. Us-
ing the factorisation A = TDTT [8], one may let a = σaγBT where B = TD1/2

and γ is a priori standard normal N(0, I) (note that we regard vectors as row
vectors). The posterior correlation matrix of γ given y is then closer to the
correlation matrix I of the Langevin-Hastings proposal. Note that we compute
a = σaγBT by solving a(T−1)T = σaγD1/2 with respect to a. This computation
is fast due to the sparseness of T−1.

The posterior of γ given y is of the form

pΓ(γ|y) ∝ f (y|σaγBT,β)pΓ(γ) (4)

where f is the sampling density in (1) and pΓ(γ) denotes the multivariate stan-
dard normal density of γ. Given a current value γi, the Langevin-Hastings
proposal is in analogy with (3) of the form

γprop = γi + (h/2)
d

dγ
log pΓ(γ

i|y) + ε i

= γi − (h/2)γi + (h/2)

[
d

da
log f (y|ai,β)

]
σaB + εi (5)

where −(h/2)γi = (h/2) d
dγ log pΓ(γ), ai = σaγ

iBT, ε i is N(0, hI) distributed,
and the chain rule for differentiation is used to obtain the second equation.
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Letting qΓ denote the corresponding proposal density, the Metropolis-Hastings
ratio becomes

f (y|σaγ
propBT,β)pΓ(γprop)qΓ(γi|γprop)

f (y|σaγiBT,β)pΓ(γi)qΓ(γprop|γi)
· (6)

A posterior sample a1, a2, . . . is straightforwardly obtained by back-
transforming the sample γ1,γ2, . . . drawn from (4).

If one prefers to work with the original posterior (1), an equivalent approach
to obtain a sample a1, a2, . . . is to use a proposal aprop obtained by transform-
ing the proposal (5). More specifically, given the current value ai, first com-
pute γi = σ−1

a ai(BT)−1, second γprop using (5), and finally aprop = σaγ
propBT.

The covariance matrix of aprop then becomes hσ2
aBBT = hσ2

aA, i.e. h times
the prior covariance matrix. Moreover, the Metropolis-Hastings ratio in (2)
coincides with the ratio (6) since p(a|σ2

a) = pΓ(γ)/|σaBT|, q(aprop |ai) =
qΓ(γprop|γi)/|σaBT|, and q(ai |aprop) = qΓ(γi|γprop)/|σaBT| where |σaBT| is the
Jacobian for the transformation from γ to a. A more general perspective on the
use of reparameterization is given in Appendix A.

2.3. Normal approximation of the posterior

Suppose for a moment that q(aprop |ai) is equal to the target density p(aprop |y).
The Metropolis-Hastings algorithm then produces independent draws from the
posterior. This indicates that an efficient Metropolis-Hastings algorithm might
be obtained by constructing a proposal density which is a good approximation
of the posterior density.

Consider the second-order Taylor expansion

log p(aprop |y) ≈
log p(â|y) + (aprop − â)

d
da

log p(â|y)T − 1
2

(aprop − â)H(â)(aprop − â)T (7)

around a value â where H(a) = − d2

daTda log p(a|y) = A−1/σ2
a − d2

daTda log f (y|a)
is minus the Hessian matrix of second derivatives. Suppose H(â) is positive
definite. By the identity

− 1
2

(x −m − bC−1)C(x −m − bC−1)T =

− 1
2

bC−1bT + (x −m)bT − 1
2

(x −m)C(x −m)T
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(for appropriate row vectors x, m, b and a positive definite matrix C), the
exponential of the right hand side of (7) is proportional to the density

q(aprop |ai) ∝ |H(â)|1/2 exp
(
− 1

2
(
aprop − μ(â)

)
H(â)

(
aprop − μ(â)

)T
)

(8)

of a multivariate normal distribution with mean μ(â) = â+ d
da log p(â|y)H(â)−1

and precision matrix H(â).
Several options are available for choosing â. One may e.g. let â be given

by the current value ai in the Markov chain or by the result of one Newton-
Raphson step starting from ai. When â depends on ai then so does the
value âprop, say, used when evaluating the proposal density

q(ai |aprop) ∝ |H(âprop)|1/2 exp
(
− 1

2
(
ai − μ(âprop)

)
H(âprop)

(
ai − μ(âprop)

)T
)
.

Thus in the Metropolis-Hastings ratio (2) we need to evaluate the ratio of deter-
minants |H(âprop)|1/2/|H(â)|1/2 using e.g. sparse matrix methods (see Sect. 2.4).
Alternatively one may iterate Newton-Raphson to convergence so that â be-
comes the mode of the posterior which does not depend on ai. Then μ(â) = â
and the ratio of determinants conveniently becomes one.

Sampling from a normal approximation is discussed in Section 2.4.

2.4. Implementation of the normal approximation

Typically, the genetic random effects enter the sampling density f (y|a) via a
linear predictor η = aZ (i.e. f (y|a) = f̃ (y|η)) where Z is an incidence matrix
relating the observed traits to the random effects. The precision matrix H(â) in
the normal approximation proposal density (8) then takes the form

A−1/σ2
a + ZΣ−1ZT

where Σ−1 = − d2

dηTdη log f̃ (y|η)|η=âZ. The normal approximation proposal dis-
tribution is thus formally equivalent to the conditional distribution of random
effects in a ‘virtual’ linear normal model

ỹ = apropZ + ε̃

where aprop is N(0, σ2
aA), E[aprop |ỹ] = μ(â), and ε̃ ∼ N(0,Σ), ỹ represents

‘virtual’ noise and data. Hence we may sample from the normal approxima-
tion by applying the García-Cortés and Sorensen [4] algorithm based on the
decomposition

aprop =
(
aprop − E[aprop |ỹ]

)
+ E[aprop |ỹ] = e + μ(â)
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where the ‘prediction error’ e = (aprop −E[aprop|ỹ]) and the ‘prediction’ μ(â) =
E[aprop |ỹ] are independent. Hence if esim is a simulation of e then

asim = esim + μ(â)

is a conditional simulation of aprop given ỹ. The simulated prediction error esim

may be generated as follows:

1) simulate (asim, ỹsim) from the joint distribution of (aprop, ỹ) (using the
Henderson factorization A = TDTT);

2) compute μ(âsim) = E[aprop|ỹsim] by solving the standard mixed model equa-
tions μ(âsim)[A−1/σ2

a +ZΣ−1ZT] = ysimΣ
−1ZT for the virtual linear model;

3) return esim = asim − μ(âsim).

Alternatively, one may exploit the sparseness of H(â) which
enables fast computation of the Cholesky factorization of H(â),
(see [13] and [14]). For the latter approach the c library GMRFLib
(www.math.ntnu.no/∼hrue/GMRFLib/ and Appendix B in Rue and Knorr-
Held [14]) provides an extensive suite of procedures for computation of
and sampling from normal approximations. Using this library, sophisticated
MCMC algorithms can be constructed with little programming effort. Note
that with sparse Cholesky factorizations, it is straightforward to evaluate ratios
of determinants |H(âprop)|1/2/|H(â)|1/2 possibly appearing in the Metropolis-
Hastings ratio (2). GMRFlib is used in [18] to implement Bayesian inference
for a multiple trait model.

2.5. Updating σ2
a

Introducing updates of the parameters σ2
a and β is in principle straightfor-

ward but regarding σ2
a there are some issues concerning whether we consider

the original random effects a or reparameterized random effects γ, cf. Sec-
tion 2.2.

Let p(σ2
a) denote the prior for σ2

a and suppose that given a current value σ2,i
a ,

we generate a proposal σ2,prop
a from some proposal density qΣ. Depending on

whether we use the original random effects or not, the Metropolis-Hastings
ratios become

p
(
ai|σ2,prop

a

)
p
(
σ

2,prop
a

)
qΣ

(
σ2,i

a |σ2,prop
a

)
p
(
ai|σ2,i

a

)
p
(
σ2,i

a

)
qΣ

(
σ

2,prop
a |σ2,i

a

) (9)

or
f
(
y|σprop

a γiBT,β
)

p
(
σ

2,prop
a

)
qΣ

(
σ2,i

a |σ2,prop
a

)
f
(
y|σ2,i

a γiBT,β
)

p
(
σ2,i

a

)
qΣ

(
σ

2,prop
a |σ2,i

a

) (10)
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which do not coincide. In particular, note that updating σ2
a with reparameter-

ized random effects effectively updates a too with ai+1 = σi+1
a γ

iBT.
This suggests a joint update of (σ2

a, a) in the case of no reparameterization.
If (σ2,i

a , ai) denotes the current joint value, the proposal is (σ2,prop
a , aprop) where

σ
2,prop
a is generated from qΣ and aprop = σ

prop
a ai/σi

a = σ
prop
a γiBT where γi =

(σi
a)−1ai(B−1)T. Note that the M + 1 dimensional proposal is generated using

a one-dimensional proposal density. Hence we need a slightly more general
version of the Metropolis-Hastings algorithm reviewed in [19] and in [16].
The Metropolis-Hastings ratio becomes

f (y|aprop,β)p(aprop |σ2,prop
a )p(σ2,prop

a )qΣ(σ
2,i
a |σ2,prop

a )

f (y|ai,β)p(ai|σ2,i
a )p(σ2,i

a )qΣ(σ
2,prop
a |σ2,i

a )

(
σ

prop
a

σi
a

)M

(11)

where (σprop
a /σi

a)M is the Jacobian of the transformation

g(σ2,i
a , a

i, σ
2,prop
a ) = (σ2,prop

a , (σprop
a /σi

a)ai, σ2,i
a ),

see Section 4 in [19] or Section 11.7 in [16] for details. Note that (11) coincides
with (10) since (σprop

a )M p(aprop|σ2,prop
a ) = (σi

a)M p(ai|σ2,i
a ). A more general per-

spective is given in Appendix A.
If one restricts attention to a χ−2 prior and the case without reparameteriza-

tion of the genetic effects, then the full conditional

p(σ2
a|y, a) ∝ p(a|σ2

a)p(σ2
a) (12)

becomes χ−2 too. Hence a Gibbs update might be used in which case we
sample the new value directly from the full conditional. Note, however,
that in cases of a of high dimension M, the full conditional (12) becomes
highly concentrated around the maximum likelihood estimate aA−1aT/M =

arg maxσ2
a

p(a|σ2
a) given a. Hence, a and σ2

a are strongly correlated a posteri-
ori and it is our experience that it is advantageous to use instead the approach
with reparameterized random effects/joint update of (a, σ2

a).
In our data examples we could apply a 3–5 times larger proposal standard

deviation in qΣ when used in combination with (10) while maintaining the
same acceptance rates as for the case without reparameterization (9). More
discussion on joint updates of random effects and variance parameters can be
found in [10].

2.6. Comparison of samplers in terms of Monte Carlo error
and computational cost

Given an MCMC sample (a1, θ1),(a2, θ2), . . . , (an, θn) from the posterior
distribution of (a, θ), θ = (β, σ2

a), and some function h(a, θ), the posterior
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expectation

E[h(a, θ)|y] =
∫

h(a, θ)p(a, θ|y)da dθ

is estimated by the average h̄n =
∑n

i=1 h(ai, θi)/n. The Monte Carlo variance
of h̄n is given by Vasymp/n, where

Vasymp = lim
n→∞Var

√
nh̄n = Var[h(a, θ)|y]

⎛⎜⎜⎜⎜⎜⎝1 + 2
∞∑

m=1

ρm

⎞⎟⎟⎟⎟⎟⎠
is the so-called asymptotic variance given in terms of the posterior variance
Var[h(a, θ)|y] and the Markov chain lag-m autocorrelations

ρm = Corr[h(ak, θk), h(ak+m, θk+m)].

To attain a given Monte Carlo variance of size V , we need a sample size of
nV = Vasymp/V and if the cost of generating one sample is c then the total cost
becomes cnV = cτVar[h(a, θ)|y]/V where τ = 1 + 2

∑∞
m=1 ρm is the integrated

autocorrelation. Thus cτ is an appropriate performance measure for an MCMC
algorithm. The so-called effective sample size is given by n/τ. The integrated
autocorrelation can be estimated as suggested e.g. in [5].

Note that the ratio τ2/τ1 of integrated autocorrelations for two MCMC sam-
plers is equal to the ratio n2/n1 of numbers of iterations n2 and n1 required to
obtain the same MCMC variance V with the two samplers.

3. A MODEL WITH GENETICALLY STRUCTURED VARIANCE
HETEROGENEITY

We now discuss the methods of the previous sections within the context
of the [15] model for genetically structured variance heterogeneity. For ease
of presentation systematic and environmental effects are omitted. Let a∗ de-
note random effects affecting the residual variance of y. Given a and a∗, the
components yi of y are independent N(μ + azT

i , exp(μ∗ + a∗zT
i )) where zi is

an incidence vector with components equal to zero or one. Hence the same
type of linear model is applied for the mean and the log residual variance of yi
where the mean depends on a and the log residual variance on a∗. The joint
distribution of a and a∗ is zero mean normal with covariance matrix G ⊗ A
where

G =
[
σ2

a ρσaσa∗

ρσaσa∗ σ2
a∗

]
.

The correlation between the two types of random effects is given by ρ, and σ2
a

and σ2
a∗ are the variances for the genetic random effects.
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3.1. Reparameterizations

Various reparameterization strategies are possible for this model. Let UG

denote the upper triangular Cholesky factor of G (i.e. G = UG
TUG), (a, a∗) =

(γ,γ∗)UG ⊗ BT where (γ,γ∗) is a standard normal vector and B is defined in
Section 2.2. Langevin-Hastings updates for the vector of a priori uncorrelated
random effects (γ,γ∗) are used in [9,12,17]. An alternative reparameterization
is based on (a, a∗) = (a, αa + u) where α = ρσa∗/σa and u = a∗ − E[a∗|a].
Then u is N(0, σ2

a∗(1 − ρ2)A) and a priori independent of a. Hence one might
update a and u in turn hoping that these quantities are only weakly correlated
a posteriori. Note that it is not guaranteed that the Hessian matrix with respect
to u is positive definite.

3.2. Normal approximations

Let Σ = diag(σ2
i ) and R = diag(ri) denote diagonal matrices where σ2

i =

exp(μ∗ + a∗zT
i ) is the conditional variance given a∗ for the ith observation and

ri = (yi − μ − azT
i ) is the ith residual. The precision matrix in the normal

approximation of the posterior for (a, a∗) is then

[
ZΣ−1ZT + A−1g11 ZΣ−1WT + A−1g12

WΣ−1ZT + A−1g12 1
2 WΣ−1WT + A−1g22

]
(13)

where W = ZR and gi j are the entries of G−1. Due to the factor 1/2 in the
lower right block, this matrix cannot be recognized as the covariance matrix
of a conditional normal distribution and there is in fact no guarantee that it is
positive definite. This is further illustrated in the toy example in Section 3.3
which shows that the joint posterior of (a, a∗) can be far from multivariate
normal. In Section 4 we use the normal approximation in turn for a and a∗
separately. In this case the covariance matrices are given by the diagonal blocks
in (13).

3.3. Toy example

We illustrate the various reparameterization strategies in the very simple
case where y = (−2.62,−2.42) consists of two observations, and a and a∗ are
one-dimensional. Figure 1 shows the posterior densities of (a, a∗), (γ,γ∗) and
(a, u) in the case where μ = 0, μ∗ = −1, σ2

a = 1, σ2
a∗ = 0.25, and ρ = 0.75.

The plots demonstrate for the given parameter settings that (a, a∗) are highly
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Figure 1. Posterior densities for (a, a∗) (left), (γ,γ∗) (middle), and (a, u) (right). Note
that the modal value of the posterior density is subtracted in all three plots and that
contour curves are omitted for very low values of the posterior densities.
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Figure 2. Illustration of random walk and Langevin-Hastings for (γ,γ∗) with h = 0.4.
In both plots, the bold dot represents a current state ai and 75% of the proposals fall
within the circle. In the right plot the proposal mean is given by the current value plus
h d

da log p(ai|y)/2 indicated by the arrow.

correlated a posteriori and that the joint posterior distribution of (a, a∗) is not
well approximated by a normal distribution. The transformed random effects γ
and γ∗ seem approximately uncorrelated but have different posterior variances.
As expected, a and u are less correlated a posteriori than a and a∗ but the joint
distribution is far from normal.

The plots in Figure 2 illustrate the random walk and Langevin-Hastings pro-
posals. The Langevin-Hastings proposal mean lies in a region of higher poste-
rior density than the current value. This means that proposals in a rather large
region around the proposal mean have a good chance of being accepted. Fig-
ure 3 shows that the normal approximation is poor for the joint posterior of
(a, a∗) while it works well for the conditional posteriors of a|y, a∗ and a∗|y, a
separately.
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Figure 3. Illustration of normal approximation (dashed contours) evaluated at the
mode for the joint posterior (solid contours) of (a, a∗) (left) and for the conditional
distributions of a|a∗, y (solid curve) and a∗|a, y (dashed curve).

4. EXAMPLES

In this section we compare the performance of Langevin-Hastings and nor-
mal approximation MCMC algorithms applied to three data sets which have
been previously analyzed in [9, 12, 17]. The first data set originates from a
selection experiment for pig litter size and contains 10 060 litter size records
from 4149 sows. The pedigree file includes 6437 individuals. The second data
set contains 2996 litter sizes from a divergent selection experiment for rabbit
uterine capacity with 1161 individuals in the pedigree. The third and largest
data set consists of weights for each of 22 033 adult snails and the pedigree
file includes 22 454 individuals. For all three datasets we consider the model
from Section 3 extended with systematic and environmental effects and im-
pose prior distributions on the unknown location and variance parameters. The
posterior means of the genetic covariance parameters are given in the last three
columns of Table II. The genetic correlation parameter ρ is negative for the pig
and rabbit litter size data while it is positive for the snail weights. More details
on the data, priors, and posterior results can be found in [9, 12, 17].

The first algorithm LH is the one employed in [9,12,17] where reparameter-
ized random effects (γ,γ∗) are considered and the components of the posterior
distribution are updated in turn using Langevin-Hastings updates for (γ,γ∗)
and either Langevin-Hastings or random walk updates for the other compo-
nents (for the positive variance parameters we apply the random walk up-
dates to the log variances). The second algorithm NX is as LH except that the
Langevin-Hastings update for (γ,γ∗) is replaced with normal approximation
updates for a and a∗ separately. Following Section 2.5, for NX we use a joint
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Table I. Ratios of integrated autocorrelations (LH/NX) for quadratic forms and two
genetic random effects using LH and NX.

Data aA−1aT aA−1a∗T a∗A−1a∗T a1 a∗1
Rabbits 54 59 61 105 106

Pigs 315 359 280 873 673

Snails 317 393 166 465 253

Table II. Column 2–4: ratios of integrated autocorrelations (LH/NX) for genetic vari-
ance parameters using LH and NX. Column c contains the ratios of computing times
(NX/LH) for one MCMC iteration. Last three columns contain posterior means of the
genetic covariance parameters.

Data σ2
a σ2

a∗ ρ c E[σ2
a|y] E[σ2

a∗ |y] E[ρ|y]

Rabbits 102 81 117 20 0.82 0.16 –0.74

Pigs 129 190 278 100 1.62 0.10 –0.62

Snails 328 158 401 35 1.71 0.29 0.81

update of the genetic random effects and the variance parameters in order to
obtain an update that is equivalent to the update of the variance parameters for
the LH algorithm. The normal approximation updates are implemented using
GMRFLib. The proposal variances for the Langevin-Hastings and random walk
updates are chosen according to the rules of thumb mentioned in Section 2.1.

Table I shows ratios of integrated autocorrelations τ obtained using respec-
tively LH and NX. The integrated autocorrelations are evaluated for quadratic
forms involving a and a∗ and the first two components of a and a∗. Consider-
ing e.g. the random effect a1 for the pigs data, the integrated autocorrelation is
873 times larger for LH than for NX. This means that 873 times more iterations
are needed with LH to obtain the same precision as for the NX algorithm (see
Sect. 2.6 for details concerning integrated autocorrelation and MCMC preci-
sion). Columns 2–4 in Table II show ratios of integrated autocorrelations for
the genetic covariance parameters using respectively LH and NX. Regarding
integrated autocorrelation, NX clearly outperforms LH.

To evaluate the performance of the algorithms, computing time c must be
taken into account. Column 5 in Table II shows that the computing time for one
MCMC iteration is between 20 to 100 times higher for the NX algorithm than
for the LH algorithm. The ratios of the products cτ for respectively LH and NX
are between 3–6 for the rabbits, 1–9 for the pigs, and 5–13 for the snails de-
pending on the parameters considered. Hence, NX is superior for all datasets.
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For the data set of snail weights with high-dimensional a∗, the acceptance
rate for the normal approximation updates of a∗ is quite small – around 5% –
while larger acceptance rates 50% and 30% are obtained for the smaller rabbits
and pig data sets. If the MCMC algorithm is initialized in values far from
the posterior mode, the acceptance probability for the normal approximation
update of a∗ may be very small in which case a large burn-in is needed.

The long computing times for NX and the large integrated autocorrelations
for LH suggest considering an algorithm where one alternates between nor-
mal approximation and Langevin-Hastings updates. More specifically we ob-
tain an algorithm NXLH by replacing the normal approximation update by a
Langevin-Hastings update in every second iteration. The Langevin-Hastings
update is obtained via a Langevin-Hastings update for the transformed genetic
effects as described in the end of Section 2.2. We considered NXLH for the
rabbits data and compared with NX, the computing cost is roughly halved
while the integrated autocorrelations only slightly increase. The ratios of cτ
for LH and NXLH are between 4 and 9 so that NXLH in fact works better than
both NX and LH. This algorithm may also be advantageous in cases where NX
requires a long burn-in.

We also tried out normal approximations for the (a, u) reparameterization
but this did not offer any improvement.

5. DISCUSSION

Normal approximation proposal distributions are intuitively appealing and
provide smaller integrated autocorrelations than Langevin-Hastings updates in
the examples in Section 4. A distinct advantage of the normal approximation
updates is moreover that they do not require user tuning of proposal variances.
The computing time for the normal approximation updates is high but sensi-
tive to the choice of implementation. The normal approximation updates used
in Section 4 are implemented using general routines in GMRFLib based on nu-
merical methods for sparse matrices. This approach very much reduces the
programming effort but one loses the computational advantages offered by the
specific structure of the genetic correlation matrix. For the rabbit data, [9] re-
duces the computing cost of the NX algorithm by a factor of three using the
approach described in Section 2.4 where samples from the normal approxima-
tion are obtained using the García-Cortés and Sorensen [4] algorithm and the
Henderson factorization.
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Finally, using a mixture of Langevin-Hastings and normal approximation
updates may work even better than pure Langevin-Hastings or normal approx-
imation algorithms since the use of Langevin-Hastings saves computing time
while the normal approximation maintains small integrated autocorrelations.
This option is also helpful in cases where a pure normal approximation algo-
rithm requires a long burn-in.
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APPENDIX A: REPARAMETERIZATION AND REVERSIBILITY

Let X denote a random vector with density f and let X̃ = g(X) where
g is a one-to-one mapping with inverse g−1. Then X̃ has density f̃ (x̃) =
f (x)/|g′(x)| where x = g−1(x̃). Suppose we generate a Metropolis-Hastings
chain X1,X2, . . . in order to sample f . The key point of the Metropolis-
Hastings update is reversibility, i.e. (Xi,Xi+1) has the same distribution as
(Xi+1,Xi) provided Xi is distributed according to f . Moreover, if Xi is dis-
tributed according to f then X̃i = g(Xi) is distributed according to f̃ . Hence,
if we apply a Metropolis-Hastings update to X̃i and obtain X̃i+1, then we
have reversibility for the pair (X̃i, X̃i+1). Thus, if we backtransform to ob-
tain Xi+1 = g−1(X̃i+1) then we also have reversibility for (Xi,Xi+1). To sum-
marize, given Xi, we can either update Xi directly or instead transform, up-
date X̃i, and backtransform. Suppose we update X̃i using a proposal X̃prop

generated from a proposal density q̃. This is then in fact equivalent to up-
dating Xi using the proposal Xprop = g−1(X̃prop) with the proposal density
q(xprop |x) = |g′(xprop)|q̃(x̃prop |x̃).


