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Lagrangian relaxation of the Generic Materials and Operations 

Planning model 

Rius-Sorolla G1, Maheut J, Coronado-Hernández JR, Garcia-Sabater JP 

Abstract. The supply chain management requires increasingly proposals for the production programming planning 

that brings together its special singularities. Solving coexisting products and alternative processes or by-products 

must be allowed by the mathematical programming models. The Generic Materials and Operations Planning 

(GMOP) formulation allows operating with different materials and process lists. The paper presents a procedure to 

solve the versatile GMOP model by the Lagrange Relaxation. The subgradient update method of the lagrangian 

multiplier is compared with a linear update method. Obtaining lower bound faster compared to the linear method is 

allowed by the subgradient method, but the linear method provides better solutions after certain iterations.  
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1. Introduction 

In the age of digital transformation, Supply Chains become increasingly complex, requiring more 

versatile and powerful mathematical programming models. At the same time, this situation forces us to 

work on the simplification of these models to facilitate their resolution in feasible time without losing 

their capacity of representation (Kong & Rönnqvist, 2014). 

A global view of the Supply Chain includes supplier selection, location selection, product, process and 

transport (Stadtler & Kilger, 2008). It can be found with the Generic Materials and Operations Planning 

(GMOP) formulation (Garcia-Sabater, Maheut, & Marin-Garcia, 2013). A stroke modelling allows 

managing jointly the bill of material (BOM) and the bill of process (BOP). It allows the representation of 

a parallel process model, alternative packaging management, the decomposition of products and other 

possibilities inherent to stroke use. It is more versatile than the Gozinto structure (Maheut, 2013). 

Therefore, it is a MLCLSP (Multi-level, capacitated, lot-sizing problem) where the product structure and 

the process are incorporated. 

Regarding its flexibility as a methodology, we must emphasize that it allows to detail alternative 

processes, the product location with packaging or the packaging type used (Maheut, Garcia-Sabater, & 

Mula, 2012). It allows to evaluate alternative production, product structures (Coronado-Hernández, 

Simancas-Mateus, Avila-Martinez, & Garcia-Sabater, 2017; Maheut, 2013), co-products (Coronado-

Hernández, 2016; Vidal-Carreras, Garcia-Sabater, & Coronado-Hernandez, 2012) or alternative resources 

(Coronado-Hernández, Garcia-Sabater, Maheut, & Garcia-Sabater, 2010). But, as far as we have found, a 

Lagrangian relaxation has not been applied in order to be able to solve GMOP problems. In other 

equivalent models, Lagrangian relaxation has been used satisfactorily (Attanasio, Ghiani, Grandinetti, & 

Guerriero, 2006; Jeong & Yim, 2009; Kong & Rönnqvist, 2014; Lau, Zhao, Ge, & Lee, 2011; Lu, Lau, & 

Yiu, 2012; Pukkala, Heinonen, & Kurttila, 2009; Walther, Schmid, & Spengler, 2008). 

As Kelly & Zyngier (2008) proposed decomposition as a natural way of dealing with large problems. The 

idea behind decomposition is to break the overall problem into a number of smaller sub-problems, which 

are easier to solve, and coordinate these sub-problems through a master problem (Kong & Rönnqvist, 

2014). And, a well studied method of decomposition is through the lagrangian multiplier, Lagrangian 
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Relaxation (LR) (Fisher, 1985). Some recent analysis of the reduction of calculation time with the 

decomposition can be found in the literature (Harb et al., 2015; Quddus, Ibne Hossain, Mohammad, 

Jaradat, & Roni, 2017; Sokoler et al., 2014) but the analysis of the behavior of the multipliers is missing, 

as a factor of coordination of the decentralized elements. 

The main contribution of our work is to present the Lagrangian relaxation application methodology in the 

GMOP modeling method and a comparative analysis of two proposals for the recalculation of the 

Lagrangian multiplier updater gradient, such as the subgradient (Fisher, 1985) and the Conejo et al. 

(2006) proposal. 

The rest of the paper is structured as follows: first, a short description of Lagragian Relaxation is 

introduced; second, the Subgradient Method and a linear update method for the GMOP are presented, 

third, experimental results are given and finally, the paper ends with a conclusion and future works. 

2. Lagrangian Relaxation. 

The Lagrange multiplier method is used in many different complex mathematical problems, since it can 

transform them into simpler problems by eliminating some “difficult" constraints. Fisher (2004) identifies 

Lorie-Savage's work on budgets as the first work, published for the first time in 1949 (Lorie & Savage, 

1955). Goffin (1977) suggests that the main idea of the Lagrange relaxation method was from Agmon 

(1954). Further work on the Lagrange multiplier and its mathematical properties can be found (Barker, 

1945; Gould, 1945). Galvao et al. (2011) propose that the first use of the Lagrange relaxation ideas should 

be assigned to Bilde & Krarup (1967). At the same time, equivalent works on the subgradient and its 

convergence can be found in the Russian literature of the time (Polyak, 1969).  

But the turning point occurred in 1970 when Held & Karp (1970; 1971) successfully applied the 

Lagrange multiplier with the subgradient (SM) algorithm to update the Lagrange multiplier in the 

resolution of the travelling salesman problem. They narrowed the search trees to a minuscule level. Later 

in 1974, Held et al. (1974) presented the computational performance of the subgradient method and the 

cases of theoretical convergence; starting from the assumptions or conditions, the gradients “𝑠𝑗" should 

tend to zero and the sum of all the gradients tend to infinity in successive iterations as Equation (1). 

Therefore, in the convexity assumptions and the Equation (1) conditions, the maximum solution of the 

successive solutions of the relaxed primal problem “ZD(uj)" as Equation (7) for each value of the 

lagrange multiplier "uj" (in minimization problems) as Equation (10) provides the solution to the main 

problem “Z” as Equation (3). And in the cases of non-convexity problems, the different solutions of the 

relaxed primal problem provide lower bounds (or upper bounds on maximization problems) to the primal 

function target value. This difference is called duality gap (Conejo et al., 2006) as defined on Equation 

(13).  

𝑠𝑗 → 0 and ∑ 𝑠𝑗 → ∞ 
𝑞
j=0  then 𝑍𝐷(𝑢𝑗) → 𝑍𝐷 ≤ Z  (1) 

 

In 1974, Geoffrion (1974) established the name of “Lagrangean2 Relaxation” (LR) to the method. The LR 

has been successfully applied to different difficult problems like Scheduling, General IP, Locations, 

Generalized assignments, Travelling salesman, etc, extensive review can be found in Fisher (2004) work.  
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Other extensions of the gradient methodology have been developed (Dimitri P Bertsekas, 1975; Wolfe, 

1974) as the Conjugate Subgradient Optimization (Goffin, 1977), where memory is added to the 

algorithm, as a filter or a smoothing, Equation (2). Thus, 𝑔𝑗 is the gradient proposed by the subgradient 

method. Therefore, when we choose β equal to zero value, we have the subgradient method (Boyd, 

Mutapcic, Xiao, & Mutapcic, 2008).  

𝑠𝑗 = (1 − 𝛽)𝑔𝑗 + 𝛽𝑠𝑗−1 ;  0 ≤ 𝛽 ≤ 1  (2) 

Other lines of work suggest modifying the gradient direction, within the SM, to avoid the oscillation 

problems of the method. Proposals such as Camerini (1975) or Bertsekas (2000), who propose the 

Stochastic Subgradient Method, that achieves better computational results than SM. 

In general, the Lagrange multiplier can be updated by the methods of SM, Cutting Plane (Sáez, 2000), 

Bundle (Gaudioso, Giallombardo, & Miglionico, 2009), Trust Region (Conejo et al., 2006), Adaptive 

Gradient Algorithm (Duchi, Hazan, & Singer, 2011), Accelerated Gradient (Giselsson, Doan, Keviczky, 

Schutter, & Rantzer, 2013), Improved Subgradient Level Algorithm (Mao, Pan, Pang, & Chai, 2014), etc. 

For example, the Bundle method can give better direction than SM but requires more computational effort 

(Zhao, Luh, & Wang, 1999). Or, for example, Surrogate Relaxation updates the multiplier only with the 

calculation of part of the function (Chang, 2008; Fisher, Lageweg, Lenstra, & Kan, 1983). Or the 

Incremental Subgradient method (Narciso & Lorena, 1999) as a mixture between Surrogate and 

subgradient to avoid oscillations on the first iterations of the subgradient method. The Modified Surrogate 

Subgradient Method (Zhao et al., 1999) improves the Surrogate Relaxation direction. However, SM is the 

easiest to implement. 

Other research uses the Lagrange multiplier to relax constraints and separate the model into independent 

sub-problems. These sub-problems can be solved independently. We have the Dantzig-Wolfe (1960) 

decomposition, or the Benders (1962) decomposition. Benders proposes to dualize the function and then 

relax the constraints to generate separable sub-problems, where a centralized problem must add the 

solutions of each sub-problem with the constraints and function that cannot be decomposed. Dantzig-

Wolfe method uses the Lagrange multiplier to coordinate by raising prices for shared resources when sub-

problems request more resources. And Benders method requests the prices proposed by sub-problems to 

reduce or increase shared resources. The Lagrangian Decomposition (LD), on the other hand, proposes to 

duplicate a set of variables and relax the constraints that correlate these duplications. Therefore, LD 

allows to divide the problems with the connection variables duplication (Lidestam & Rönnqvist, 2011). 

The problems divided by LD allow parallel computing (Jeet & Kutanoglu, 2007). Guignard et al (1987) 

demonstrated that LD creates better bounds than LR.  

Other research lines propose, for non-differential and non-convex problems, to provide convex properties 

by implementing quadratic terms when the Lagrange multiplier is updated. The Aumented Lagrangian 

"convexifies" the problems (D. P. Bertsekas, 1979). In 1977, Goffin (1977) reviewing the convergence of 

SM for some non-differential problems recommended a second order function. In general, the Augmented 

Lagragian Relaxation is slower but provides viable solutions compared to the LR, which normally 

requires meta-heuristics to obtain a viable solution to the main function (Beltran & Heredia, 2002). 

Boudin et al. (2005) recommend starting with LR to set a good limit and then an Augmented Lagrangian 

Relaxation to get a valid solution for the main function. However, to find precise solutions, high weights 

are required in the quadratic function and it requires longer computing times (Tosserams, Etman, 

Papalambros, & Rooda, 2006). Another alternative is to linearize or decompose the Augmented 

Lagrangian Relaxation in order to be able to separate the sub-problems (Li & Ierapetritou, 2012). An 

Accelerated Distributed Augmented Lagrangian method (Fu & Diabat, 2015) has also been proposed. 



The LR allows to be an initial method that can be combined with other methods, for example the Branch 

and Cut (Karuppiah & Grossmann, 2008; Nishi, Hiranaka, & Inuiguchi, 2010) or the Branch and Bound 

where the LR accelerates the process (Kuno & Utsunomiya, 2000).  

The SM has several disadvantages. First, generally, solutions to the primal function are not generated, at 

least feasible solutions close to the optimal solution. The relaxed function solutions are generally not 

valid in the main function, since the relaxed condition usually fails (Sherali & Choi, 1996). The reason is 

that marginal changes in Lagrange multipliers can lead to different integer values and then changes in the 

objective functions of sub-problems (Gunnerud & Foss, 2010). On the other hand, there are procedures 

that with small modifications of the Lagrange multipliers allow us to find valid solutions to the main 

function (Barahona & Anbil, 2000; Conejo et al., 2006). Secondly, usually at the beginning, there is a 

zigzagging and later a slow convergence, more noticeable with high values of 𝜎𝑘, Equation (11). Thirdly, 

convergence depends on the values of 𝜎𝑘 (Boyd et al., 2008). Finally, a valid initial solution is necessary, 

so a heuristic has to be used to obtain the initial value. But SM has the advantage that its mathematical 

formulation allows us to control convergence all the times, and has the goodness of the solution found 

(Araúzo, Del-Olmo-Martínez, Laviós, & De-Benito-Martín, 2015). In addition, it is simple and works on 

most problems (Pukkala et al., 2009). 

Also, despite the time elapsed since the first works with the Lagrange multiplier, it is still used in 

different research lines, growing day by day. Some recent works that we can find are a LR for a lot size 

problem (Zhang, Jiang, & Pan, 2012), un Augmented Lagrangian Relaxation for a cluster coordination 

problem (Qu et al., 2015), an LR with a localization problem (Diabat, Battaïa, & Nazzal, 2015) or LD in a 

planning problem in a supply chain (Lidestam & Rönnqvist, 2011), but we have not been able to find a 

case applying SM to the GMOP formulation in a peer reviewed work. 

For a general integer function, called primal, with the constraints as Equations (4) to(6), we have , 

Equation (3). 

𝑍 = min ∑ ∑ Cikxik

n

k=1

m

i=1

 (3) 

𝑠. 𝑡. ∑ 𝐴𝑖𝑥𝑖𝑘

𝑚

𝑖=1

≤ 𝑏𝑘; k = 1, . . , 𝑛 (4) 

∑ 𝐵𝑘𝑥𝑖𝑘

𝑛

𝑘=1

≤ 𝑐𝑖; 𝑖 = 1, . . , 𝑚 (5) 

𝑥𝑖𝑘 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (6) 

Where the constraints Equation (4) are the complicated condition. Then, if this constraint is removed we 

should have an easier problem to solve (Lemaréchal, 2001). So, we can transfer the constraint to the 

objective function with a penalty of its non-compliance, such that it penalizes the breach of the 

aforementioned eliminated constraint (Fisher, 1985). It is also interpreted as the cost that the objective 

function will pay for non-compliance with the constraint. Therefore, we will have the function LR 

Equation (7), called dual, which will give us a lower limit to the main function Equation (3) and its 

greater value will be on Equation (8). 



𝑍𝐷(𝑢𝑗)  = min ∑ ∑ Cikxik

m

i=1

+ ∑ uk
j

(∑ 𝐴𝑖𝑥𝑖𝑘

𝑚

𝑖=1

− 𝑏𝑘)

n

k=1

n

k=1

  (7) 

𝑍𝐷 = max
𝑗

𝑍𝐷(𝑢𝑗)  =  max
𝑗

min ∑ ∑ Cikxik

m

i=1

+ ∑ uk
j

(∑ 𝐴𝑖𝑥𝑖𝑘

𝑚

𝑖=1

− 𝑏𝑘)

n

k=1

n

k=1

 (8) 

uk
j

≥ 0; ∀𝑘, 𝑗  (9) 

The new function on Equation (8) holds the constraints, Equations (5), (6) and adds the constraint 

Equation (9) for the multiplier. The vector uj is the Lagrange multipliers for the k constraints we have 

relaxed, where j is the number of iterations we will perform on the Lagrange multiplier. The Lagrange 

multipliers will be updated with the SM algorithm Equation (10), where hk is the non-fulfilment of each 

constraint k. uk
j
 is greater than or equal to zero, Equation (9). Therefore, a negative term is added to the 

main function which includes the non-compliance of the removed constraint. 

𝑢𝑘
𝑗+1

= max{0, 𝑢𝑘
𝑗

+ 𝑠𝑗hk} = max {0, 𝑢𝑘
𝑗

+ 𝑠𝑗 (∑ 𝐴𝑖𝑥𝑖𝑘

𝑚

𝑖=1

− 𝑏𝑘)} ∀ 𝑘 (10) 

The process starts with 𝑢𝑘
0 = 0 ∀𝑘  that allows calculating the first value of the relaxed function 𝑍𝐷(u0). 

Being sj the gradient of the SM, Equation (11). 

𝑠𝑗 =
𝜎𝑗(𝑍∗ − 𝑍𝐷(uj))

∑ ‖(∑ 𝐴𝑖𝑥𝑖𝑘
𝑚
𝑖=1 − 𝑏𝑘)‖

2𝑛
𝑘=1

 (11) 

Where 𝜎𝑗 is a scalar that must satisfy 0 < 𝜎𝑗 ≤ 2 ∀𝑗. 𝑍∗ is the minimum value we have of the principal 

function (3) and 𝑍𝐷(𝑢𝑗) is the value of the relaxed function, Equation (7), for a given multiplier vector uj. 

Held et al. (1974) recommended as a general rule, but not always, to establish σj = 2 for 2p iterations, 

where p is a quantification of the size of the problem, and then successively reduce by half 𝜎𝑗 and the 

number of iterations, until the number of iterations reaches a threshold. Then, 𝜎𝑗 is reduced by half each 

iteration time until 𝑠𝑗 reaches a small value as stop criterion. Held et al. (1974) commented that this 

protocol does not fulfil the second condition of Equation (1) ∑ 𝑠𝑗 → ∞ 
𝑞
𝑗=0  and that almost never 

converges to the optimum, but generates good limits to the main function. Guignard (2003) says that the 

convergence of the SM is unpredictable and for some problems converge quickly, with enough reliability, 

whereas in other problems it has an erratic behaviour. 

Boyd et al (2008) studied different effects of the σj between 0.05, 0.01, 0.005 and reported that for higher 

values, the method has a faster convergence but greater initial oscillations and converges to a greater dual 

gap, Equation (12), than with smaller factors. They also point out the good results with 1/j as multiplier 

refresher method. 

GAP =
‖Zd−Z∗‖

Z∗       (12) 

Conejo et al. (2006) propose the updated gradient method Equation (13) as a proposal that fulfils 

Equation (1). 



𝑠𝑗 =
1

𝑎 + 𝑏𝑗
𝑤ℎ𝑒𝑟𝑒 𝑎 and 𝑏 𝑎𝑟𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠  (13) 

And give as values to the parameters a=1 and b=0.1 

Fisher (2004) collects as an alternative algorithm for the SM, to start with 𝜎0 = 2 and halve 𝜎j as long as 

𝑍𝐷(𝑢𝑗) has not been able to improve the lower limit on a fixed number of iterations. This rule also does 

not guarantee to satisfy the requirements of Equation (1) but it is said that it works well empirically. 

Therefore, to apply the SM we have to answer some previous questions. First we have to select the 

difficult constraints. Secondly, we have to define a feasible first solution to the main function Z*, 

knowing that Held et al. (1974) observed that the final result did not seem to depend on this value, but 

Boyd et al. (2008) states that to reduce the initial uncertainty by a factor of 103, at least 106 iterations were 

required. Thirdly, we have to select update rules for σj. Finally, we have to set the stopping criteria, such 

as the number of iterations, the minimum dual gap and the smallest step size for the constant σj which 

implies small variations in the Lagrange multipliers. 

 

3. The Lagrangian Relaxation approach to solve GMOP  

The GMOP formulation is a representation of the problem of batch size, multi-level, multi-sub-process 

and multi-post-process, multi-structure, multi-period, with limited capacity (Garcia-Sabater et al., 2013). 

It overcomes the limitation of the Gozinto structure with the use of Strokes (Coronado-Hernández et al., 

2010; Maheut, 2013; Vidal-Carreras et al., 2012). And since lot size problems with limited capacity have 

been proved to be NP-Hard even for the case of a single product (Bitran & Yanasse, 1982), the GMOP 

model is an NP-Hard problem. In large-scale problems, it is computationally difficult to obtain an optimal 

or near-optimal solution in a reasonable computational time. 

The list of indexes, parameters and variables can be seen in Table 1. The main function is a balance 

between inventory maintenance costs, penalties for delays in service, batch preparation and the 

production, as shown in Equation (14). It has the constraints Equations (15) - (18). The constraint of 

Equation (15) is the stock equilibrium and connects the logistic part (stocks, delays and demand) with 

production (consumption of components and creation of new products). The constraint of Equation (16) 

defines the capacity limitation of resources. The constraint of Equation (17) establishes the batch 

preparation requirement when manufactured in period t with a stroke k. Finally, the set of constraints 

Equation (18) establishes the requirements for variables. 

Table 1 The indexes, parameters and variables used in GMOP. 

Index  

i Index set of products (includes products, packaging and site) 

𝑡 Index set of planning periods 

𝑟 Index set of resources 

𝑘 Index set of strokes 

Parameters  

𝐷𝑖,𝑡 Demand of product i for period t 

𝐻𝑖,𝑡 Cost of storing a unit of product i in period t 

𝐶𝑂𝑘,𝑡 Cost of stroke k in period t 

𝐶𝑆𝑘,𝑡 Cost of the setup of stroke k in period t 

𝐶𝐵𝑖,𝑡 Cost of purchasing product i in period t 

𝑆𝑂𝑖,𝑘 Number of units i that generates a stroke k 

𝑆𝐼𝑖,𝑘 Number of units i that stroke k consumes 



𝐿𝑇𝑘 Lead time of stroke k 

𝐾𝐴𝑃𝑟,𝑡 Capacity availability of resource r in period t (in time units) 

M A sufficiently large number 

𝑇𝑂𝑘,𝑟 Capacity of the resource r required for performing one unit of stroke k(in time 

units) 

𝑇𝑆𝑘,𝑟 Capacity required of resource r for setup of stroke k (in time units) 

𝜎𝑚 Constant used to calculate Lagrangian multiplier 

Variables  

𝑧𝑘,𝑡 Amount of strokes k to be performed in period t 

𝛿𝑘,𝑡 =1 if stroke k is performed in period t (0 otherwise) 

𝑤𝑖,𝑡 Purchase quantity for product i in period t 

𝑥𝑘,𝑡 Stock level of product i on hand at the end of period t 

𝑢𝑟,𝑡
𝑗   Lagrangian multipliers 

 

𝑍𝑃: 𝑚𝑖𝑛 ∑ ∑(𝐻𝑖,𝑡𝑥𝑖,𝑡) +
𝑖𝑡

∑ ∑(𝐶𝑆𝑘,𝑡𝛿𝑘,𝑡 + 𝐶𝑂𝑘,𝑡𝑧𝑘,𝑡) +
𝑘𝑡

∑ ∑(𝐶𝐵𝑖,𝑡𝑤𝑖,𝑡)

𝑖𝑡

 (14) 

𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1 − 𝐷𝑖,𝑡 + 𝑤𝑖,𝑡 − ∑(𝑆𝐼𝑖,𝑘𝑧𝑘,𝑡)

𝑘

+ ∑(𝑆𝑂𝑖,𝑘𝑧𝑘,𝑡−𝐿𝑇𝑘
)

𝑘

, ∀𝑖, 𝑡 (15) 

∑(𝑇𝑆𝑘,𝑟𝛿𝑘,𝑡)

𝑘

+ ∑(𝑇𝑂𝑘,𝑟𝑧𝑘,𝑡)

𝑘

≤ 𝐾𝐴𝑃𝑟  ∀𝑟, 𝑡 (16) 

𝑧𝑘,𝑡 − 𝑀𝛿𝑘,𝑡 ≤ 0, ∀𝑘, 𝑡 (17) 

𝑥𝑖,𝑡 ≥ 0; 𝑤𝑖,𝑡 ≥ 0, ∀𝑖, 𝑡; 𝑧𝑘,𝑡 ∈ ℤ+;  𝛿𝑘,𝑡 ∈ {0,1} ∀𝑘, 𝑡 (18) 

Now, we have to select the relaxation constraint that allow us to generate a simpler model as the Lagrange 

Relaxation 

The inventory balance Equation (15) can decompose the problem into sub-problems, some related to 

production and others to logistics management. The relaxation of the capacity limitation Equation (16) 

simplifies the problem by decoupling each resource and period, so that the different products do not have 

the joint constraint of sharing the resource, allowing us to see the problem as a set of sub-mono-product, 

mono-resource or mono-locality problems, therefore no more NP-hard if we follow Gupta & Maranas 

(1999) conclusion on their equivalent problem. The relaxation of constraint Equation (17) will disconnect 

the preparation requirement, so the preparation cost will not be taken into account when optimizing the 

function. The function will recommend the production requested by the demand without delay or storage. 

The relaxation of the constraint of Equation (18) would avoid the constraint of integers. 

Gupta & Maranas (1999) argue that the limits obtained with the relaxation of available capacity 

constraints are better, closer to the optimum, than the relaxation of the other constraints in a McDonald 

and Karimi (1997) medium-term production planning model. 

Therefore, the RL of the constraint of the available capacity of each resource Equation (16) of the GMOP 

problem Equation (14) is applied in formulation of Equation (17). 



𝑍𝑑: max
𝑢

𝑚𝑖𝑛 ∑ ∑(𝐻𝑖,𝑡𝑥𝑖,𝑡) +

𝑖𝑡

∑ ∑(𝐶𝑆𝑘,𝑡𝛿𝑘,𝑡 + 𝐶𝑂𝑘,𝑡𝑧𝑘,𝑡) +

𝑘𝑡

∑ ∑(𝐶𝐵𝑖,𝑡𝑤𝑖,𝑡)

𝑖𝑡

+ ∑ ∑ 𝑢𝑟,𝑡
𝑗

[∑(𝑇𝑆𝑘,𝑟𝛿𝑘,𝑡)

𝑘

+ ∑(𝑇𝑂𝑘,𝑟𝑧𝑘,𝑡)

𝑘

− 𝐾𝐴𝑃𝑟,𝑡]

𝑡𝑟

 

(17) 

The updating of the Lagrange multiplier vector uj
r,t is done with the positive value of Equation (18). And 

sj is the gradient in each jth interaction and hrt
j

 is the non-compliance of each relaxed constraint Equation 

(16) of each period and resource Equation (19). 

𝑢𝑟,𝑡
𝑘+1 = 𝑢𝑟,𝑡

𝑗
+ 𝑠𝑗hrt

j
 (18) 

hrt
j

= h(𝑢𝑟,𝑡
𝑗

) = [∑(𝑇𝑆𝑘,𝑟𝛿𝑘,𝑡) + ∑(𝑇𝑂𝑘,𝑟𝑧𝑘,𝑡) − 𝐾𝐴𝑃𝑟,𝑡

𝑘𝑘

]

𝑗

 ∀𝑟, 𝑡 (19) 

The term sj, the gradient, from Equation (18) is calculated by Equation (20) SM or Equation (13) (Conejo 

et al., 2006). Equation (20) is the slope function where it increases with the difference between the value 

of the best known solution of Equation (14) and the last value of the relaxed function of Equation (17), 

and divided by the square of non-compliance of all relaxed constraints and it is multiplied by the factor 

𝜎𝑚  Equation (21).  

𝑠𝑗 =
𝜎𝑚 (𝑍∗ − 𝑍𝑑(𝑢𝑟,𝑡

𝑗−1
))

∑ [∑ (𝑇𝑆𝑘,𝑟𝛿𝑘,𝑡)𝑘 + ∑ (𝑇𝑂𝑘,𝑟𝑧𝑘,𝑡)𝑘 − 𝐾𝐴𝑃𝑟,𝑡]r,t
2 (20) 

0 ≤ 𝜎𝑚 ≤ 2, ∀𝑚 (21) 

In our case, we will start the parameter 𝜎𝑚  with the value of 2 and if after 10 iterations the result is not 

improved on Equation (17), we update the value of 𝜎𝑚 to half of it.  

4 Numerical experiments  

In order to evaluate the two methods, we have been implemented the algorithms in a C# programme that 

recollects random data generated in an EXCEL® sheet and calls to the Gurobi Optimizer 7.0® all this on 

a virtual machine with 16 cores. The results are sent back to the calculation sheet to compare between the 

optimal problem solution obtained by Gurobi® and the solution with the LR. We have randomly 

generated ten data sets to test both algorithms, Table 2 shows the parameter values which were used to 

generate test data and Table 3 lists the parameter values used for the Lagrangian procedures. 

Table 2 Selected range of values for parameters in the test problems. 

Parameters Value 

𝑖 1-7 

𝑡 1-10 

𝑟 1-5 

𝑘 1-10 

𝐷𝑖,𝑡 Random uniform from [100,1.000] 

ℎ𝑖,𝑡 Random uniform from [10,20] 

𝐶𝑂𝑘,𝑡 Random uniform from [5,8] 

𝐶𝑆𝑘,𝑡 Random uniform from [5,10] 



𝐶𝐵𝑖,𝑡 Random uniform from [10,20] 

𝑆𝑂𝑖,𝑘 Random uniform from [35,50] 

𝑆𝐼𝑖,𝑘 Random uniform from [4,8] 

𝐿𝑇𝑘 Random uniform from [1,2] 

𝐾𝐴𝑃𝑟,𝑡 Random uniform from [400,500] 

M 100.000 

𝑇𝑂𝑘,𝑟 Random uniform from [2,5] 

𝑇𝑆𝑘,𝑟 Random uniform from [5,10] 

Table 3 Parameters for the Lagrangian relaxation procedure. 

Parameters Value 

Maximum iteration count 1.000 

𝜎𝑚 (SM) Initial value of 2. 

Maximum number of iterations before halving is 𝜎𝑚 (SM) 10 

Initial Primal value (SM) 300.000 

Initial multiplier value (SM) 0 

𝑎 (Conejo et al. 2006) 1 

𝑏 (Conejo et al. 2006) 0.1 

 

In order to evaluate the quality of the algorithms we used four criteria.  

- The iteration required to narrow the gap, Equation (12), to less than 1% on both method, named as 

“It1%(SM)” and “It1%(Conejo)”. 

- The iteration when there is the maximum difference between each method gaps, named as “ItMax”. 

- The iteration when the Conejo et al. (2006) method has lower gap than the SM method, named as 

“ItConejo”. 

- Following Zhang et al. (2012) the distances between the upper bound (UB) and the optimal solution 

(OP) proposed by Gurobi®, being at least 24% faster than with the Lagrangian relaxation used, as UGAP 

and the distances between the lower bound (LB) and the optimal solution (OP), as LGAP. The distances 

are calculated as Equation (22) and we record the value at the iterations 10, 50, 100, 500, 1000.  

UGAP =
2(UB − OP)

(UB + OP)
 ; LGAP =

2(OP − LB)

(OP + LB)
  (22) 

The results can be viewed in Table 4 and Table 5. 

 Table 4 Performance of the Lagrangian relaxation procedures. 
Instance It1%(SM) It1%(Conejo) ItMax. ItConejo 

1 12 372 27 972 

2 17 232 43 247 

3 6 569 170 718 

4 - - 48 111 

5 - - 82 - 

6 - 999 83 102 

7 11 687 18 - 

8 - - 79 431 

9 2 354 4 944 



10 - - 26 155 

It1%(SM)Iteration with SM to 1% gap, It1%(Conejo) Iteration with Conejo et al. (2006) to 1% gap, ItMax iteration with maximum gap 

difference between methods, ItConejo iteration when Conejo et al. (2006) method has lower gap that the SM method 

Table 5 UGAP and LGAP of instances. 

Instance UGAP10 UGAP50 UGAP100 UGAP500 UGAP1000 LGAP10 LGAP50 LGAP100 LGAP500 LGAP1000 

1SM 0,58% 0,41% 0,41% 0,41% 0,41% 0,44% 0,21% 0,17% 0,14% 0,14% 

1 Conejo 6,90% 3,07% 3,07% 0,45% 0,41% 6,43% 6,43% 4,58% 0,33% 0,13% 

2 SM 27,53% 0,47% 0,47% 0,47% 0,47% 0,57% 0,30% 0,25% 0,10% 0,10% 

2 Conejo 6,34% 5,52% 5,17% 0,47% 0,47% 6,73% 6,73% 1,10% 0,10% 0,10% 

3 SM 0,03% 0,03% 0,03% 0,03% 0,03% 0,13% 0,11% 0,09% 0,03% 0,02% 

3 Conejo 1,33% 1,33% 1,33% 0,70% 0,03% 1,21% 1,21% 1,21% 0,43% 0,02% 

4 SM 22,35% 6,51% 6,51% 6,51% 6,51% 4,39% 0,35% 0,23% 0,19% 0,19% 

4 Conejo 8,11% 8,11% 7,04% 4,54% 4,54% 5,32% 5,32% 2,34% 0,68% 0,26% 

5 SM 3,32% 1,69% 1,69% 1,69% 1,69% 0,54% 0,21% 0,14% 0,07% 0,07% 

5 Conejo 3,32% 3,32% 3,32% 2,02% 1,69% 9,54% 9,54% 3,10% 0,56% 0,17% 

6 SM 2,38% 2,38% 2,38% 2,38% 2,38% 0,30% 0,15% 0,13% 0,12% 0,12% 

6 Conejo 2,38% 2,38% 1,70% 1,16% 0,82% 6,83% 6,83% 2,27% 0,30% 0,20% 

7 SM 0,65% 0,28% 0,28% 0,21% 0,21% 0,36% 0,15% 0,14% 0,12% 0,12% 

7 Conejo 6,32% 4,12% 3,10% 0,82% 0,29% 10,31% 10,31% 10,31% 0,32% 0,16% 

8 SM 11,88% 3,93% 3,93% 3,93% 3,93% 0,81% 0,23% 0,17% 0,15% 0,15% 

8 Conejo 7,87% 7,67% 5,41% 1,05% 1,05% 22,62% 22,62% 12,84% 0,34% 0,19% 

9 SM 0,14% 0,14% 0,14% 0,14% 0,14% 0,13% 0,08% 0,07% 0,06% 0,06% 

9 Conejo 1,36% 0,91% 0,91% 0,14% 0,14% 0,77% 0,77% 0,77% 0,11% 0,06% 

10 SM 5,43% 5,43% 5,43% 5,43% 5,43% 0,35% 0,12% 0,11% 0,10% 0,10% 

10 Conejo 5,43% 3,86% 3,86% 3,86% 3,86% 11,49% 11,49% 11,49% 0,40% 0,16% 

AvgSM 7,43% 2,13% 2,13% 2,12% 2,12% 0,80% 0,19% 0,15% 0,11% 0,11% 

AvgConejo 4,94% 4,03% 3,49% 1,52% 1,33% 8,12% 8,12% 5,00% 0,36% 0,14% 

UGAP10 Upper bound gap at iteration 10, LGAP10 Lower bound gap at iteration 10, 1 Conejo test one with Conejo et al. (2006) method, 

1 SM test one with subgradient method (Fisher, 1985) 

What has been found from Table 4 is that less iteration to reduce the gap below 1% is required by the SM 

compared to the Conejo et al. (2006) method (Conejo method), but after several iterations the Conejo 

method is able to improve the gap obtained by the SM method. 

Table 5 shows that the SM method can reduce the UGAP after the 50th iteration but no further 

improvement during the following iterations with the SM method. On the other hand, the UGAP with the 

Conejo method is reduced progressively by each iteration and can improve the SM method around the 

500th iterations. Also, Table 5 shows that the LGAP is reduced drastically with the SM method before the 

50th iteration and the Conejo method takes longer iterations to reduce de gap and can’t improve the SM 

method on the 1000th iteration on average. Since all the values are positive, it is confirmed that the 

optimal solution (OP) proposed by Gurobi®, without applying the Lagrange decomposition, has not been 

improved by the lower and upper bound obtained in the different iterations. 

Figure 1 shows the test 1 with the SM method and its Lagrangian multiplier values on figure 2. We also 

can observe the fast update of the lower bound (dual) and the only three steps that update the upper 

bound. On figure 2, we observe that the Lagrangian multipliers get stable at the end of the figure. 

Figure 3 shows the test 1 with the Conejo method and figure 4 its Lagrangian multiplier values. In this 

case we observe the oscillation of the lower bound and its best value at 58th iteration. Also, that the upper 

bound has been improved even when the lower bound has not been improved. Therefore, that the upper 



bound or the solution of the primal function has been improved more frequently with the Conejo et al. 

(2006) method. Also, the fast gap reduction can be confirmed with the SM method with the figure 5 and 

the improvement of the Conejo et al. (2006) method at high iterations. 

Fig. 1 Results of the Dual/Primal GMOP with SM.  

 

Fig. 2 Evolution of Lagrangian multiplier vector values with the SM. 

 

Fig. 3 Results of the Dual/Primal GMOP with Conejo method.  
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Fig. 4 Evolution of Lagrangian multipliers values with Conejo method . 

 

Fig. 5 Convergence comparison between SM and Conejo method. 

 

4 Conclusion and future work. 

In this paper, the procedures have been presented to implement the lagrangian relaxation to the Generic 

Materials and Operations Planning formulation and some numerical experiments with the lagrangian 

multiplier update with the subgradient method and Conejo et al. (2006) method. The literature has 

demonstrated that there are different proposals to update the Lagrangian multiplier with no unique better 

method. The subgradient method has shown, with the numerical experiments, its rapid gap reduction with 

little iteration and it can generate good lower bound on less that 10 iterations bellow 1% on average. The 

Conejo et al. (2006) method shows a slower convergence, but can improve the SM method on longer 

iteration. Thus, Conejo et al. (2006) method shows better generation of valid solution to the main 

function, specially on high number of iterations, on average for 500 iterations. And Conejo method 

approach the lower bound generation by subgradient method after 1.000 iterations. 

On the other hand, it should be noted that the method of updating the lagrange multiplier of the 

subgradient tends to stabilize the Lagrange multipliers as opposed to the oscillations presented by the 

method proposed by Conejo et al. (2006). This property can be applied as a coordination mechanism to 

align the objectives, since the subgradient provides stable values for the shared resources capacity. 

GMOP's Lagrangian relaxation will allow managers to solve complex industry modeling with the 

versatility of the GMOP formulation. In addition, since Lagrange relaxation is one of the tools frequently 
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used as a coordination mechanism in distributed decisions, it allows aligning models with different 

objectives but shares a restriction. 

Future research should be done with higher complexity problems and real industrial cases to evaluate both 

processes. Also, it opens the investigation to other heuristics to update the Lagrangian multipliers as the 

augmented methods or relaxing a duplicated variable in order to apply a Lagrangian Decomposition or the 

Dantzig-Wolfe method (1960) or the Benders cuts (1962) or heuristics to improve the upper bound results 

to the GMOP models. In addition, the evaluation of these methods can be performed in relation to the 

calculation time in comparison with the commercial solvers, with respect to different problems sizes. 
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