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Abstract 

A range of energy improvement measures applied to a typical Mediterranean residential 

building are modelled under various climate-change scenarios. Global Circulation Models 

(CNRM-CM5 and MPI-ESM-LR), under two emission scenarios (RCP4.5 and RCP8.5), downscaled 

by the Spanish Meteorological Agency, are used to generate four temperature projections. 

Energy simulations are obtained with TRNSYS tools in a Mediterranean climate based on 

temperature projections in two periods: 2048-2052 and 2096-2100, with the same time span. 

Various energy measures apply thermal improvements to a conventional residential building 

model that complies with current regulations for this analysis of best practice in passive 

construction solutions. Sequential implementation of eight different energy improvements 

measures are applied to the initial building model: six passives (infiltration, insulation thickness, 

glazing and frame type, window area, shading devices and natural cross ventilation) and two 

active (mechanical ventilation and a heat recovery system) measures. The climatic trends that 
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are predicted show a local scenario with a warming climate and the thermal behaviour of the 

building is shown to differ in each scenario. The demand for indoor heating decreases 

significantly when the outdoor temperature increases, while the demand for cooling and the 

risk of overheating increase considerably in all the scenarios.  The data for the building 

conditions that are projected in this study predict that natural and forced ventilation strategies 

will have the least impact, while increased thermal insulation and reductions in infiltration will 

have a greater effect on global energy demand.

Keywords: Climate change; Energy demand; Buildings; Mediterranean Climate; TRNSYS 

1. Introduction

Climate change and global warming are major concerns in modern-day society. One of the most 

productive international working groups in this area is the Intergovernmental Panel on Climate 

Change (IPCC). In its fifth report, under various CO2 emission scenarios, the IPCC predicted that 

average global surface temperatures by the end of the 21st century (2081-2100) would be within 

a range of 1.1 and 4.8K, in relation to 1986-2005  [1]. Recent studies point to climate change as 

having a major impact on energy demand for both heating and cooling in buildings, because of 

the changes in ambient outdoor conditions [2,3]. Hence, the need to control the energy 

consumption of buildings and their Green House Gas (GHG) emissions as part of their adaptation 

to new climatic conditions through the inclusion of those measures in standards and regulations 

that will guarantee the comfort of users [4].

In general, the effects of climate change on buildings have yet to be considered. Building projects 

incorporate typical meteorological data from the recent past compiled from historical climatic 

data from each site [1]. The normal technical solutions that determine the energy performance 

of a building are hardly ever adapted to the intensity of climatic changes that might be predicted 

or come to pass during the useful life of the building.
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The authors of this paper are therefore convinced that climate change and its effects on the 

energy demand of buildings must be considered from an architectural point of view; a view that 

has likewise found support among numerous governments and international research groups 

[5]. Previous works can therefore be found that have analysed climate change and its influence 

on energy demand in buildings. The initial studies in this area date back to the 1990s [3,4]. One 

of the most closely studied methods [6–18] involves annual variations of climate data when 

assessing the impact of climate change on building models across a variety of climatic regions 

(Köppen-Geiger climate classification) [19]. The quality of these studies depends on future data 

predictions [1] that are determined by combining different global climate models  and emission 

scenarios. There are studies from global or national perspective [9,17]. Isaac & van Vuuren, 

studied residential heating and cooling demand in the context of climate change for the first 

time at a global scale. They found a stabilization of global heating energy demand and a 

considerable increase in global energy demand for cooling up to 2050. All scenarios examined 

by them point to a net decrease in energy demand, but at regional this pattern differs greatly 

[17]. Though most of them data are usually projected at a regional scale and climate files are 

usually prepared in hourly sequences for use with simulation tools. Various authors [10] have 

also analysed climate change issues that affect the functioning of buildings from different 

perspectives, some relevant to the design of the trials in this research. The results are highly 

variable, depending on the projection of climate change, the geographical region, and the 

building typology [7].

In general, the type of analysis preferred by the authors consists of modifying climate data 

considering simulated projections of climate change that combine different variables in the 

study such as geographical areas, building typologies, and both active and passive measures to 

improve energy efficiency. The list in Table 1 shows the impacts of climate change on the 

energy behaviour of buildings over the last decade, based upon a survey of published research, 

but is not intended to be exhaustive. Regional climates, typologies, and other parameters that 

constitute the design criteria of a building will inevitably vary; nonetheless, the conclusions on 
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methods and results overlap, and are simultaneously applicable to the overall issue and 

specific to different projections, climate types, and buildings.

Karimpour et al. [10] concluded that climate change in Australia will reverse the predominance 

in Csb Koppen climates of heating over cooling in residential buildings. In contrast, Wang & Chen 

[7] determined that in USA there would be a general decrease in heating demand and that the 

demand for cooling in the different locations of their study could be mitigated by natural 

measures depending on the regional climate (Dfa, Dfb and Dfc Koppen climates), while in others 

(Am, BWh, Cfa, and Csb Koppen climates) active measures would be necessary to guarantee 

comfort. In their study of four climate change scenarios, Nik & Sasic Kalagasidis [11] concluded 

that in Stockholm heating demand would descend to lower values than in 2011 at the end of the 

study period, while cooling demand would increase in small amounts and overheating would 

have to be mitigated by natural ventilation measures. Wang et al. [12] also presented results 

with increases in cooling demand in Australian cities. They warned that the results of the 

simulations were conditioned by uncertainties inherent in climate models and GHG emission 

scenarios and by new behavioural trends in the adaptation of users to climate change. Zhu et al. 

[13] also pointed to the major impacts of climate change on the energy performance of buildings 

in Shanghai, because of its direct and significant effects on thermal loads and HVAC systems. 

Dodoo & Gustavsson [14] studied strategies for reducing cooling demand in Växjö, concluding 

that overheating will be increasingly important in future scenarios. Rubio-Bellido et al. [6] 

evaluated the effect of climate change in service sector buildings, varying the shape and 

compactness of building plans with the goal of optimizing energy efficiency in Chilean cities. 

They concluded that optimization of the factor ratio (FR) and the window-to-wall ratio (WWR) 

would be insufficient in themselves and that energy demand would increase. Invidiata and Guisi 

[15] investigated comfort conditions and heating and cooling energy demand in two different 

climates in Brazil. It provides a significant reduction in energy consumption combined cooling 

and heating. However, Hooff et al. [18] by means of dynamic simulations estimate that 

necessary cooling energy can be limited to approximately 70% when using sun protection or 
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additional natural ventilation, in a terraced house, in Netherland. Similar study has been done 

by Huang and Hwang [16] in a typical residential building in Taipei proving that a combination 

of passive strategies is necessary to reduce the effects of climate change on the use of cooling 

energy. Finally, we have also taken into consideration Pierangioli et al. [8]. In the Mediterranean 

climate, passive strategies can vary over time, in a medium and long term, according to their 

calculations.

In this paper, the influence of climate change on energy demand in a residential house is 

investigated in a Mediterranean climate. Global Circulation Models (CNRM-CM5 and MPI-ESM-

LR), under two emission scenarios (RCP4.5 and RCP8.5), downscaled and regionalized by the 

Spanish Meteorological Agency, are used to generate four temperature projections. It follows a 

sequenced process in which a total of eight energy improvement measures are modelled: six 

passives (infiltration, insulation thickness, glazing and frame type, window area, shading devices 

and natural cross ventilation). In addition, two active ventilation measures (mechanical 

ventilation and a heat recovery system) are included as a strategy to reach net-zero energy 

building (NZEB) standards in the most extreme climate projections. Based on the outcomes of 

Global Circulation Models, energy simulations obtained by means of TRNSYS tools in each 

climate change scenario are considered.

A further theme of this work concerns energy consumption in buildings over recent decades 

[20]; an issue of global concern reflected in European directives that have been established to 

achieve nearly-zero energy building through reductions in the energy consumption of buildings 

[21]. So, the effects of climate change on a house that complies with current building standards 

in Spain are analysed in the context of improvements introduced to convert the house into a 

low-energy consumption dwelling. The different improvements are proposed to analyse how 

they affect changes in energy demand and to assess their effectiveness over the years.
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Ref. Target Year Typology Location Koppen 
Climate

GCMs 
(Scenarios)

Conversion 
method

Simulation 
tool

[6]
Reduce 
energy 

demand

2020 
2050 
2080

Office building Chilean cities BWk; Cfb 
Csb; ET

HadCM3
(A2a; A2b; A2c) Morphing MS Excel 

Visual basic

[7] Energy 
consumption 2080

Hotel; mall; 
residential; 

hospital
US cities

Am; BWh; 
Cfa; Csb; 

Dfa; Dfb; Dfc

HadCM3
(A1F1; A2; B1) Morphing Energy Plus

[8] Passive 
adaptation

2036-
2065
2066-
2095

Detached 
house
Flat in 

apartment 
block

Office building

Firenze (Italy) Csa COSMO CLM
(RCP8.5) Morphing Design 

Builder

[9]

Energy use 
at sub-

national 
level

2005
2020
2035
2050
2065
2080
2095

50 
representative 
state buildings USA

Bwh, BSh, 
BWk, BSk, 
Csa, Csb, 

Cfa, Cfb, Dfa, 
Dfb, Dfc, 

Dwa, Dwb, 
Dwc, Dsa, 

Dsb, ET

GCAM
USGS CASCaDE

A1, A2

GCAM 
system HDD-CDDs

[10] Passive 
measures 2070 Residential Adelaide; 

Australia Csb
CSIRO

(A1B(90p) 
B1(90p))

Morphing AccuRate

[11] Energy 
demand

1961 
to 

2100
Residential Stockholm 

(Sweden) Dfb

ECHAM5; CCSM3; 
CNRM; HadCM3; 

IPSL
(A1B; A2; B1)

Not 
specified

Simulink 
(Matlab) 

DesignBuilder

[12] Energy 
demand

2050 
2100 Residential Australian 

cities
Aw; BWh; 
Cfa; Cfb

CSIRO
(A1B; A1F1; A1T) Morphing AccuRate

[13]
Regional 

future 
weather

2000 
to 

2089

High-rise office 
building; hotel; 
shopping mall

Shanghai 
(China) Cfa HadGEM2-CC

(S1; S2; S3) Morphing Energy Plus

[14]
Primary 
energy 

demand

2050 
2090

Apartment 
buildings 

blocks

Växjö 
(Sweden) Dbf HadGEM2

(RCP4.5; RCP8.5) Morphing VIP+ StruSoft 
software

[15]

Energy 
demand
Passive 

strategies

2020, 
2050, 
2080

Single-story 
social dwelling

Brasilian 
cities

Csc
Csb
Af

HadCM3
A2 Morphing Energy Plus

[16]

Energy 
demand
Passive 

strategies

2020, 
2050, 
2080

Top floor 
Apartament

Taipei 
(Taiwan) Csc MICO3.2-MED

A2, A1B, B1 Morphing EneryPlus

[17]
Heating and 

cooling 
demand

2000-
2100

Residential 
sector Global scale 26 regions TIMER global 

energy model
not 

applicable HDD-CDDs

[18]

Insigh in th 
energy 

demand for 
cooling and 

effects when 
passive 

strategies

2006 Terraced 
House De Bilt 

(Netherland) Cfa Not applicable

2006
Warmer 

year than 
normal as a 

future 
summer

EnergyPlus

Table 1. Summary of climate-change impacts on building heating and cooling energy demand in 

the literature. This table is based upon a survey of published research but is not intended to be 

exhaustive.
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2. Methodology

2.1. Generation of weather data through the modelling of scenarios

The climate in Valencia according to the Köppen-Geiger classification is Csa (Warm temperate 

climate with dry and hot summers), known as a Mediterranean climate [19]. For the referenced 

location, weather data files were obtained from the Meteonorm® Database exported into TM2 

format. This file was used to model the so-called “Base Scenario”, the data file that contains 

average climatic readings over the period 1961-1990; from which data were extracted on Global 

Horizontal Solar Radiation (GHR, Wh/ sqm), Relative Humidity (RH,%), Dry Bulb Temperature 

(DBT, oC), wind velocity (m/s) and wind direction.

Global Circulation Models (GCM), under two emission scenarios (RCP4.5 and RCP8.5), as 

proposed in the Fifth IPCC Assessment Report (AR5) were used. These models were downscaled 

and regionalized by the Spanish Meteorological Agency (© AEMET), obtaining four temperature 

projections. Temperature series were supplied by the CNRM-CM5 and MPI-ESM-LR models. 

The existence of historical climatic data for the location has allowed to use techniques of analog 

statistical downscaling models (SDMs) relating the large-scale data of global climatic models 

with climatic data at local or regional scale. This method has made it possible to simplify the 

calculations in relation to the use of dynamic regionalization projection procedures [22].

Climate models on a continental scale are based on physical principles and are spatially 

projected to predict future climate trends [12] under different hypotheses or emission 

scenarios. Selecting a GCM model is no easy task, given the variety of those available. Moreover, 

the IPCC is yet to establish a single model when considering the strengths and weaknesses of 

various GCMs. Hence, multiple GCM models were considered:

 CNRM-CM5: this model was used to perform experiments in the framework of the 

Coupled Model Intercomparison Project (CMIP5), Centre National de Recherches 

Météorologiques  [11,12].
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 MPI-ESM-LR, Max-Planck-Institute Earth System Model developed at the Max-Planck 

Institute for Meteorology in Hamburg, Germany, with different resolutions of MPIOM 

(MPI-ESM-LR, -MR); the low-resolution (LR) version of MPI-ESM (MPI-ESM-LR) was used 

over a wide range of CMIP5 simulations to allow for inferences across the whole 

experimental design of CMIP5 [23].

Simulation studies that calculate the trends of the CIMP5 models, individually and jointly have 

been considered for the selection of these global climate models used [24,25]. These studies 

check different values and trend, for the estimation of global warming. Ensemble modelling 

established a warming of 0.64 ° C / century, very close to the value 0.61 ° C / century calculated 

with observation data of GISTEMP and HadCRUT4 for the period 1901-2000 [24].

Analysing these studies, it is verified that the models CNMR-CM5 and MPI-ESM-LR are valid for 

their use in Mediterranean climates and present contrary tendencies in the prediction of 

temperature values for global warming. Also, the first model tends to soften the heating effects 

and the second overestimates it. Together, they represent an average trend of 0.68 ° C / century, 

very close to 0.64 ° C / century, which means the average trend of the 24 models that have been 

compared in these studies.

Considering these characteristics, the selection of global climate models for the realization of 

our study has been focused on earth system models CNMR-CM5 and MPI-ESM-LR, among the 

models that have been the subject of CIMP5 in the process of the Fifth IPCC Evaluation Report 

(AR5).

The IPCC has developed new climate path series – Representative Concentration Pathways 

(RCPs) for the preparation of AR5 [26]. The number after the “RCP” refers to the intensity of 

radiative forcing (cumulative measure of human emissions of GHGs from all sources expressed 

in Watts per square meter in the tropopause due to human activity in 2100) recorded in the 

available literature, i.e. from 2.6 to 8.5 W/ m2 [27], as listed in Table 2. The four selected RCPs 

were considered representative of the literature and included one mitigation scenario leading 
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to a very low forcing level (RCP2.6), two medium stabilization scenarios (RCP4.5/RCP6) and one 

very high baseline emission scenario (RCP8.5) [27]. RCP4.5 is regarded as the most likely scenario 

among researchers [13]. Radiative forcing stabilizes at 4.5 W/m2  with no overshoot after 2100 

as strategies are deployed to reduce greenhouse gases [14]. 

Name Radiative forcing Path shape
RCP8.5 >8.5 W/m2 in 2100 Rising
RCP4.5 ∼4.5 W/ m2 at stabilization after 2100 Stabilization without overshoot

Table 2. Description of Representative Concentration Pathways (RCPs). 

Having selected two emission scenarios, the projections of the climate models were used to 

estimate the energy requirements of a conventional detached house. Typical Meteorological 

Year (TMY) weather files for the location of the city were composed using the weather data from 

1961 to around 1990. The ‘morphing’ approach was employed, in order to obtain future weather 

data files (monthly-mean local ambient temperature, relative humidity and solar radiation). 

Projected changes in the weather data from 1990 to 2100, in relation to two GCMs, were then 

described in Eqs. (1) and (2). The ‘morphing’ approach involves three generic operations: a shift; 

a linear stretch; and the combination of a shift and a stretch. A combination of the shift and the 

stretch may be used for ambient temperature to reflect changes in the daily mean as well as the 

maximum and minimum daily temperatures [12].

 (1)𝑥 = 𝑥0 + ∆𝑥𝑚 + 𝛼𝑚 × (𝑥0 ‒ 〈𝑥0〉
𝑚

)

 (2)𝑥 = 〈𝑥0〉
𝑚

+ ∆𝑥𝑚 + (1 + 𝛼𝑚) × (𝑥0 ‒ 〈𝑥0〉
𝑚

)

where  is the absolute change in the monthly-mean value of the variable for month m, and,  ∆𝑥𝑚

 is the fractional change in the monthly-mean value for month m [28]. 𝛼𝑚

The ‘morphing’ approach is based on the studies of Belcher et al. [28] that constitute the TM2 

files for the Base Scenarios. They were morphed with scenarios CNRM-CM5 and MPI-ESM-LR 

and two RCPs (RCP4.5 and RCP 8.5) to obtain data sets for the in two periods: 2048-2052 and 

2096-2100, with the same time span. Thus, eight future climatic scenarios were in total 
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produced and altogether the database held nine climatic scenarios for the purposes of this 

research. 

2.2. Test Models

A typical model of a detached house is used in this study for the estimation of energy demand. 

The initial model (Model 1) was developed in compliance with Spanish constructive standards 

[29].

Several strategies and models were developed in the process of reducing energy demand. All 

the chosen energy strategies were efficiency measures for optimization of the Base Scenario. A 

historical climate dataset of the zone was used in the optimization of energy gains and losses. In 

addition, all the models were developed in a sequenced process, gradually introducing the 

energy efficiency measure into each model, as shown in (Figure 1).

Figure 1. House models and sequences used in this work.
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The energy efficiency measures under study were classified into eight different models (Figure 

1): both passive measures, such as, infiltration (Model 2), insulation thickness (Model 3), glazing 

and frame type (Model 4), window area (Model 5), shading devices (Model 6) and natural cross 

ventilation (Model 7), and active measures, such as extra mechanical ventilation and heat 

recovery systems (Model 8).

The optimization strategy firstly consisted of reducing heating demand as far as possible using 

the following measures: infiltration, insulation thickness, glazing and frame type, window area, 

and heating recovery control. 

Once the lowest possible heating demand was achieved, the same process was followed for 

cooling demand, studying the implementation of the following measures: shading devices, 

natural cross ventilation and control of extra mechanical ventilation. Hence, the choices at this 

stage lead to as many reductions in cooling demand as possible, with no considerable increases 

in heating demand.

2.2.1. Building Type

The energy demand of a conventional detached house is usually greater than a block of 

apartments. Accordingly, total demand for a single-family house usually doubles the demand of 

a building dwellings and its heating consumption is up to four times higher. So these buildings, 

which represent only 33% of the total number of houses in Spain, determine 46% of 

consumption in the sector, while apartment blocks determine 53% [30]. Currently these types 

of houses are in high demand among people wishing to live in peripheral urbanized areas of a 

city. Hence, the conventional detached house that is considered in this study.
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2.2.2. Location and Climate

The model is located in the city of Valencia (latitude 39.29 N, longitude -0.23 W) on the 

Mediterranean coast of Spain. Its local Mediterranean climate is characterized by dry and hot 

summers and warm and wet winters. Average energy demand of the houses in this region is 

usually lower than the national average [30]. The effects of climate change in in two periods: 

2048-2052 and 2096-2100, with the same time span will be obtained in this warm 

Mediterranean climate (Csa Köppen-Geiger classification) by using different models of a single-

family detached house.

2.2.3 Geometry

The house has a square plan on the ground floor and a rectangular plan on first floor and its 

alignment is North-South (Figure 2). Its total surface area amounts to 101.79 m2: the ground 

floor with the communal space (living room and kitchen) and one room measuring 58.79 m2; 

and the first floor with two (bedrooms) occupying 43 m2. The global area of the different façades 

is 37.93 m2 to the North, 30.23 m2 to the South, 30.84 m2 to the East, and 30.84 m2 to the West. 

The initial model has a total window area of 0.75 m2 to the North, 2.46 m2 to the South, 3.1 m2 

to the East and 0.7 m2 to the West. The window area is considered, in order to reduce energy 

demand. The house has a flat roof of 16.6 m2, a pitched roof of 43 m2 and an under-roof floor 

space of 58.79 m2. Model geometry and orientation were not changed.
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Figure 2. Schematic plan of ground and first floor.

2.2.4 Constructive System

The initial model of the residence (Model 1) and its envelope design complied with Spanish 

constructive standards [29] and was used to assess the optimum building. This model was 

optimized until the Zero Energy Demand was reached in the Base Scenario. Table 3 shows the 

different U-values and infiltrations.

Analyzed models
Envelope Model 1 Model 2 Model 3 Models 4 to 8

Façade 1 1 0.232 0.232
Floor 0.65 0.65 0.185 0.185
Roof 0.65 0.65 0.185 0.185

Window-frame 5.7 5.7 5.7 2.2

U
-v

al
ue

 W
/m

2 K

Window-glass 3.44 3.44 3.44 2.48
Infiltration h-1 7.75 0.6 0.6 0.6

Table 3. Thermal transmittance U-value (W/m2K) and infiltration level (50Pa air changes (1/h)) 

for the building model under consideration.

An element of the building was modified in each model, to analyse a complete range of 

reductions in energy demand. Firstly, the building parameters were modified for an analysis of 

enclosure insulation and, thereby, their U-values. Infiltrations in the form of surface openings to 
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the exterior, and solar protection were also considered. Air leaks were calculated with TRNSFlow 

and several large openings were introduced in the wall. To consider the envelope airtightness in 

the model affected by weather conditions (wind and temperature), it is necessary to define 

leakage openings on the walls. In the model have been calculated the equivalent large opening 

by an equivalent flow through a flat plate orifice [31]. To model that air leakage changes 

depending on the wind speed and direction, a model was introduced in TRNSYS with TRNSFlow. 

The model comprises a heavy construction of ceramic brickwork and concrete that are the most 

commonly used materials in this area. In addition, passive cooling systems such as natural 

ventilation and bypasses in the air-conditioning system were also analysed.

2.2.5 Internal and External Loads and Operation Schedule

Several internal heat gains were considered in the models according to their use. The same 

parameter was used in all models, which implies 24 hours of house activity with different loads. 

The lighting load was 2.25 W/m2 when the solar radiation was lower than 120 W/m2 on a 

horizontal plane. A 12 W refrigerator and a set of kitchen appliances consuming 329 W were 

used throughout the week for 3 hours a day. The bedrooms were also occupied 7 hours a day 

and occupancy of the living room changed at weekends. Maximum occupancy from Monday to 

Friday was considered between 8 pm and 7 am, while 50% occupancy was considered over the 

rest of the day. In contrast, the maximum occupancy at the weekend was considered to be from 

11 pm to 9 am with an occupancy of 25% over the remainder of the day. External heat gains 

depending on the window area were considered throughout the whole year and 0.6 renovations 

per hour were considered as infiltrations. 

2.3. Energy House Model

Firstly, the energy house model was obtained using TRNSYS 17 simulation software [32], through 

its multi-zone option standard model (known as Type 56), to calculate the energy demand. The 
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materials and the window glazing were defined in the Type 56 envelope model. Likewise, the 

necessary characteristics of thermal behaviour in the house were set for performing the analysis; 

limits on comfort temperatures and internal gains (people, equipment or lights) in thermal 

zones, and the shading percentages of window. The indoor temperature of the house was set at 

equal to or above 20° C and equal to or below 26° C throughout the year with heating and cooling 

systems.

TRNFlow, a TRNSYS tool, was implemented in the Type 56 model, in order to define mechanical 

ventilation and natural cross ventilation. The air leaks were also considered in the Type 56 model 

as large openings. There are no constructive standards that refer to air leaks in the model home 

used in this study, for which reason the figure of 7.75 renovations per hour, as in [31], is a logical 

estimate of their value. This procedure was previously commented in [33,34]. Type 34 controls 

the conditions for the shading devices that are also defined. Type 99, which allows the 

modification of datasets as a text file, was used to introduce the weather data. 

The models that used the above-mentioned parameters in this study are described above:

 Model 2: Air leaks are reduced to 0.6 renovations per hour. These values are measures 

of infiltrations at 50Pa pressure difference between the outside and the inside. For 

improved buildings, the value of infiltrations required by the Passivhaus Standard has 

been considered, which limits the certification of the building with a Blower Door test 

result to 50Pa of 0.6 renovations/hour.

 Model 3: The U-value of the envelope is reduced by increasing the insulation thickness. 

The insulation material under consideration is mineral wool with a thermal conductivity 

of 0.04 W/m K, the optimal insulation considered in this location is a thickness of 0.16 

m for walls and a thickness of 0.20 m for roofs and floors. Table 3 shows the relevant 

global U-values. 

 Model 4: covers the window type; glass and frame. The initial model has clear glass 

4/6/4 with a U-value of 3.44 W/m2K that is changed to low emissivity 4/8/4 glass with a 
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U-value of 2.48 W/m2K. Likewise, aluminium window frames with a U-value of 5.7 

W/m2K are switched for Polyvinyl Chloride, PVC, with 5-chamber plastic window profiles 

with a U-value of 2.2 W/ m2K. 

 Model 5. In this model, the window area on the South façade is increased to 6 m2, the 

other facades have the same window area. The areas are summarized in table 4.

 Model 6. Several shading devices are considered on the East, the South, and the West 

façades using external shading that leaves the windows totally shaded. The shading 

factor is used at different periods during the year. In summer, from 1st of June to 31st 

August, the control for the shading devices is implemented from 8 a.m. to 8 p.m. when 

the outdoor temperature is higher than 22 ºC. In spring and autumn from 1st of March 

to 31st May and from 1st September to 31st November the control for the shading devices 

is implemented from 8 a.m. to 8 p.m. when the outdoor temperature is higher than 22 

ºC and indoor temperature higher than 23 ºC.

 Model 7. In this model, a high-efficiency heat-recovery ventilation systems with 75% 

efficiency is considered. The recovery system works in summer and winter. In summer, 

where cooling demand is connected and when the indoor temperature is higher than 

26 ºC, both the doors and the windows are closed, and the indoor temperature is lower 

than the outdoor temperature. In winter, where heating demand is connected and 

when the indoor temperature is lower than 21 ºC, doors and windows will be closed, 

and the indoor temperature is higher than the outdoor temperature. Natural cross 

ventilation is also considered in this model. In this case, windows and doors are opened 

when outdoor temperatures are between 21 ºC and 25 ºC. This model only works in 

spring, summer and autumn. Besides, door and window openings are changed 

depending on the HVAC requirements.

 Model 8. Extra mechanical ventilation is considered in this model. It is activated in 

summer, spring, and autumn when doors and windows are closed, and in summer, from 



ACCEPTED MANUSCRIPT

17

1st of June to 31st August, if outdoor temperature are lower than 25 ºC. In this case 

ventilation airflow (0.8 renovation/h) increases until the value is doubled. In spring and 

autumn, from 1st of March to 31st May, and from 1st September to 31st November, the 

control is activated if the outdoor temperature is lower than 21 ºC, but when cooling 

requirements exist, then the ventilation airflow (0.8 renovation/h) is increased by 1.6 

times its original value.

Model 1 to 5 Model 6 to 8
Atot (m2) Awall (m2) Awindow (m2) Awall (m2) Awindow (m2)

East 30.84 27.74 3.1 27.74 3.1
South 30.23 27.83 2.4 24.23 6.0
West 30.84 30.14 0.7 30.14 0.7
North 37.92 37.17 0.75 37.17 0.75

Table 4. Wall and window areas considered for different models.

3. Results

3.1. Climate variation

Weather data under the scenarios CNRM-CM5 and MPI-ESM-LR were obtained for the location 

after applying morphing procedure, in which two emission scenarios (RCP4.5 and RCP 8.5) were 

considered. Projected changes in the weather data from 1990 were transformed to represent 

the forecasted average climate conditions in two periods: 2048-2052 and 2096-2100, with the 

same time span.

So, eight future scenarios (two GCM x two RCPS x two periods) were compared with the Base 

scenario. For greater clarity, these predictions have been grouped by year (Table 5) and by 

month (Figure 3). The following tendencies can be outlined in relation to these changes. The 

average Dry Bulb Temperature (DBT) increased in all scenarios. However, the highest increases 

are predicted for RCP8.5 in 2096-2100 period: 3.60 °C under the CNRM-CM scenario and 5.33 °C 

under the MPI-ESM-LR scenario, while for RCP4.5 temperatures would increase by 1.56 °C under 

the CNRM-CM scenario and by 2.62 °C under the MPI-ESM-LR scenario. 
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CNRM-CM5 MPI-ESM-LR
Year RCP4.5 RCP 8.5 RCP4.5 RCP 8.5

Base Scenario 16.85 16.85
2048-2052 17.50 18.18 18.72 19.45
2096-2100 18.26 20.29 19.31 22.02

Table 5. Annual average for dry bulb temperature, “Base Scenario”, in two periods: 2048-2052 

and 2096-2100 under scenarios CNRM-CM5 and MPI-ESM-LR and for Representative 

Concentration Pathways RCP4.5 and RCP 8.5.

a) b)

c) d)

Figure 3. Monthly average dry bulb temperature (DBT) for the Base Scenario, in two periods: 

2048-2052 and 2096-2100 under the following scenarios: a) CNRM-CM5 and RCP4.5; b) 

CNRM-CM5 and RCP8.5; c) MPI-ESM-LR and RCP4.5; d) MPI-ESM-LR scenario and RCP8.5. 
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Figure 3 shows monthly average temperatures for different scenarios compared to the Base 

Scenario. In all cases, except for scenario MPI-ESM RCP 8.5 in which the average monthly 

temperature increases in each month: temperatures rise or fall randomly during the first six 

months, although the temperature always rises during the last six. Table 6 shows average 

monthly difference for dry bulb temperature in two periods: 2048-2052 and 2096-2100, with 

the same time span under scenarios CNRM-CM5 and MPI-ESM-LR and for Representative 

Concentration Pathways RCP4.5 and RCP8.5 compared to “Base Scenario”.

2048-2052 2096-2100
CNRM-CM5 MPI-ESM-LR CNRM-CM5 MPI-ESM-LR

Month RCP4.5 RCP 8.5 RCP4.5 RCP 8.5 RCP4.5 RCP 8.5 RCP4.5 RCP 8.5
1 2.04 2.37 2.09 3.10 2.99 4.74 2.98 5.22
2 1.80 2.14 2.65 2.37 0.83 2.32 0.57 2.70
3 0.59 1.27 1.78 2.53 0.89 3.06 2.37 4.25
4 0.19 2.03 2.57 3.44 1.41 3.91 2.99 4.74
5 0.37 1.41 2.67 1.41 1.15 2.16 2.17 4.38
6 0.91 0.41 1.45 2.36 -0.33 3.15 2.56 6.90
7 -0.15 0.28 1.23 3.03 0.61 3.14 2.41 7.05
8 0.18 0.58 1.89 2.56 1.64 4.14 2.53 5.17
9 0.80 1.10 1.69 3.69 2.24 4.23 2.86 6.02

10 -0.67 1.20 1.45 2.16 1.34 2.98 2.03 5.41
11 1.58 2.55 2.49 2.67 3.01 4.59 4.39 6.06
12 2.10 2.48 2.42 3.79 3.00 4.78 3.60 6.03

Table 6. Monthly average difference for dry bulb temperature, in periods 2048-2052 and 2096-

2100 under scenarios CNRM-CM5 and MPI-ESM-LR and for Representative Concentration 

Pathways RCP4.5 and RCP 8.5 compared to “Base Scenario”.

Climate change has been analysed as a function of degree-hours over one year. Figure 4 shows 

the number of heating and cooling degree-hours for a year (also sum of both), using set point 

temperatures (20 and 26 °C) as comfort parameters. The number of heating degree-hours shows 

the heating that is switched on inside the house when the temperature is below 20 °C. In this 

case, the number of heating degree-hours decreases over the year. The number of cooling 
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degree-hours shows a demand for cooling as outdoor temperatures are above 26° C. It is worth 

mentioning that the total number of (heating and cooling) degree-hours is quite similar due to 

the increase in cooling degree-hours that is compensated by a decrease in heating degree-hours.

a) b)
Figure 4. Number of heating (red) and cooling (blue) degree-hours in one year, using set-point 

temperatures (20 oC and 26 oC) for a) 2048-2052 and b) 2096-periods, in accordance with 

scenarios CNRM-CM5 and MPI-ESM-LR and the Representative Concentration Pathways RCP4.5 

and RCP 8.5. 

3.2 Effects on annual energy demand

Figure 5 shows annual energy demand according to the Base Scenario for the models under 

consideration. Energy demand for the Base Scenario and Model 1 means that the building is 

designed in accordance with Spanish regulations [29]. This model has a total annual energy 

demand of 111.31 kWh/m2 year, when 85% of the demand is heating demand; this is 

characteristic of the mild winters and humid summers of Mediterranean climate. The Base 

Scenario applied to Model 8 shows the effect of all the passive measures where the total energy 
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demand is 2.83 kWh/m2·per year: 77% of the energy is cooling demand and only 23% is for 

heating the house. 

3.2.1. Models analysed

It is worth noting that heating demand in the first model under consideration, a building design 

in compliance with Spanish regulations, is much higher than cooling demand. Different passive 

measures have also to be considered (Models 2, 3, 4 and 5), in order to reduce the cooling 

demand. Active measures, the opposite of passive measures, are also proposed (Table 7).

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 MODEL 6 MODEL 7 MODEL 8

Wall 1.00 1.00 0.232 0.232 0.232 0.232 0.232 0.232

Roof 0.65 0.65 0.185 0.185 0.185 0.185 0.185 0.185

Floor 0.65 0.65 0.185 0.185 0.185 0.185 0.185 0.185

Frame 5.70 5.70 5.7 2.2 2.2 2.2 2.2 2.2

U
-v

al
ue

 W
/m

2 K

Window
Glass 3.44 3.44 3.44 2.48 2.48 2.48 2.48 2.48

Air leaks 50Pa 7.50 0.6 0.6 0.6 0.6 0.6 0.6 0.6

North 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

South 2.40 2.40 2.40 2.40 6 6 6 6

East 3.10 3.10 3.10 3.10 3.10 3.1 3.1 3.1

W
in

do
w

 á
re

a 
m

2

West 0.70 0.70 0.70 0.70 0.70 0.7 0.7 0.7

Shading devices no no no no no yes yes yes

Recovery system 75% no no no no no no yes yes

Extra mechanical 
ventilation no no no no no no no yes

Table 7. Parameters used in models analysed in this study.

3.2.2. Passive measures

It is worth noting that heating demand in the first model under consideration, a building design 

in compliance with Spanish regulations, is much higher than cooling demand. Different passive 

measures have also to be considered (Models 2, 3, 4 and 5), in order to reduce the cooling 

demand.
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Figure 5. Annual energy demand for the Base Scenario and different models in a window of 2048 to 
2052 in accordance with the following scenarios: CNRM-CM5 and RCP4.5; CNRM-CM5 and RCP8.5; 
MPI-ESM-LR and RCP4.5; and MPI-ESM-LR and RCP8.5.



ACCEPTED MANUSCRIPT

23

Climate change in 2048-2052 period decreases energy demand for the Model 1 (Figure 5), as the 

total number of hours (heating and cooling) degree-hours is very constant (Figure 4). In addition, 

it can be seen that cooling demand increases and heating demand decreases, which is directly 

related to the increase in cooling degree-hours and the reduction in heating degree-hours.

In Model 2 (Figure 5), an infiltration level of 0.6 ren/h at 50 Pa was established using the standard 

PassiveHaus (PH), a construction standard that aims to reduce energy consumption by 90% 

within dwellings. Compared with the previous model (Table 8), the model 2 reduced energy 

demand by 44% in the Base scenario (Figure 5), by at least 32% in scenario MPI-ESM-LR RCP 8.5 

in 2096-2100 period, and by 42% in scenario CNRM-CM5 RCP4.5 in 2048-2052 period.

2048-2052 2096-2100
CNRM-CM5 MPI-ESM-LR CNRM-CM5 MPI-ESM-LR

Model Base 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5
Model 2 44% 53% 56% 52% 48% 52% 48% 48% 33%
Model 3 69% 73% 73% 71% 64% 69% 66% 66% 52%
Model 4 70% 74% 73% 71% 64% 69% 66% 66% 52%
Model 5 67% 70% 67% 66% 56% 63% 59% 59% 41%
Model 6 80% 82% 80% 82% 72% 78% 75% 75% 61%
Model 7 91% 96% 95% 92% 79% 91% 83% 86% 56%
Model 8 97% 97% 97% 95% 83% 94% 86% 89% 65%
Table 8. Percent energy savings compared to the Base Scenario (in periods 2048-2052 and 2096-

2100) for scenarios CNRM-CM5 and MPI-ESM-LR and for Representative Concentration 

Pathways RCP4.5 and RCP 8.5.

In Model 3 the insulation thickness was changed. Compared with the model previous (model 2), 

this model reduced energy demand by 45% in the Base scenario, by at least 28 % in scenario 

MPI-ESM-LR RCP 8.5 in 2096-2100 period, and by 43 % in scenario CNRM-CM5 RCP4.5 in in 2048-

2052 period (Table 8).

Moreover in Model 4 (Figure 5), the cooling demand is reduced, the heating demand is 

increased, and there is no significant reduction in annual energy demand. Similar results are 
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obtained in model 5, where the cooling demand is reduced, but the heating demand is increased 

and energy demand is increased by 10% compared to model 4 in the Base Scenario (Table 8). 

With regard to model 5, the heating demand (80%) is much higher than the cooling demand 

(Figure 5). Consequently, Models 6 (shading devices) and 7 (natural cross ventilation) were also 

developed, in an attempt to reduce the heating demand.

Model 6 compared with the previous model (model 5), reduces energy demand by 39% in the 

Base Scenario, and there is a reduction of energy demand by at least 34% in accordance with 

scenario MPI-ESM-LR RCP 8.5 in 2096-2100 period, and a reduction of 46% in accordance with 

scenario CNRM-CM5 RCP 8.5 in 2048-2052. (Table 8). Heating demand is quite similar to 

previous model and cooling demand is considerably reduced (50%) (Figure 5). 

3.2.3. Active measures

Active measures, the opposite of passive measures, are also proposed. In comparison with 

model 6, model 7 reduces energy demand in the Base Scenario by 55%, however it is not reduced 

significantly in scenario MPI-ESM-LR RCP 8.5 in 2096-2100 period, and it is reduced by 59% in 

scenario CNRM-CM5 RCP 4.5 in 2096-2100 period (Table 8). In this model, heating demand is 

quite similar to previous model and cooling demand is drastically reduced.

Model 8 uses extra mechanical ventilation with a heat recovery system. Compared with the 

previous model (model 7), model 8 reduces energy demand in the Base Scenario by 72%, and 

there is at least a 19% reduction in scenario MPI-ESM-LR RCP 8.5 in 2096-2100 period, and a 

30% reduction in scenario CNRM-CM5 RCP 4.5 in 2096-2100 period. In this model, both heating 

and cooling demand are reduced and heating demand is drastically reduced (90%).  
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Figure 6. Annual energy demand for the different models in 2096-2100 period, for the Base Scenario 
and for the following scenarios: CNRM-CM5 and RCP4.5; CNRM-CM5 and RCP8.5; MPI-ESM-LR and 
RCP4.5; and MPI-ESM-LR and RCP8.5.
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3.2.4. Summary for all models

In this section, energy savings due to reductions in energy demand compared to model 1 for 

each model are shown. Figure 5 shows energy savings for the 2048-2052 period under four 

scenarios (CNRM-CM5 RCP4.5, CNRM-CM5 RCP8.5, MPI-ESM-LR RCP4.5, and MPI-ESM-LR 

RCP8.5). In model 8, all the measures are implemented and energy savings of at least 80% are 

obtained, regardless of the climate scenario for 2048-2052 period, and even energy savings of 

95% in the following scenarios: CNRM-CM5 and RCP4.5, CNRM-CM5 and RCP8.5, and MPI-ESM-

LR, and RCP4.5. 

Figure 6 shows energy savings for 2096-2100 period under four scenarios (CNRM-CM5 RCP4.5, 

CNRM-CM5 RCP8.5, MPI-ESM-LR RCP4.5, and MPI-ESM-LR RCP8.5). In model 8, all the measures 

are implemented and energy savings of at least 65% are obtained regardless of the climate 

scenario in 2096-2100 period, with reductions in energy demand of 89% in scenario CNRM-CM5. 

Conclusions

With regard to climate change scenarios, different climatic results have been obtained, 

according to the scenario under analysis and the variations in the models. In addition, the 

predicted tendencies in 2048-2052 and 2096-2100 periods have predicted rising temperatures 

in the climate for Valencia. So, eight future scenarios (two GCM x two RCPS x two periods) were 

compared with the Base scenario. The average Dry Bulb Temperature (DBT) increased in all 

scenarios. In all cases, except for some months in scenario CNRM-CM5 and RCP4.5 in which 

average monthly temperature fail, in general temperatures rise randomly during the year. We 

can conclude that modelled temperature in future has fluctuations and we cannot assume a 

constant increment for the whole year.

In this study, the thermal behaviour of a house with different architectural and constructive 

solutions has been analysed under different climate-change scenarios. The initial model (Model 

1) has been explored with a “Base Scenario” taken from TMY2 data. With these values the house 
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has been optimized to obtain the minimum energy demand over one year, to achieve a nearly-

zero energy demand building. The different models led us to compare their performance in 

accordance with the various scenarios under study. The “Model 1” house was developed in 

accordance with current constructive standards in Spain [29], after which the model was 

optimized to achieve a house with a very low energy demand in the “Base Scenario”, under the 

same circumstances as a house that is designed today. Different steps were followed for this 

optimization process: first, reductions in heating demand and then reductions in cooling 

demand. All the measures under analysis were passive, except for the extra mechanical 

ventilation with a fan. 

Eight different models for an enhanced house have been analysed in different scenarios. A 

comparison of the different characteristics of the building under analysis has been completed 

with passive actions in the various climate scenarios. This thorough analysis has characterized 

climate change and its influence on the thermal performance of different buildings in a 

Mediterranean climate. It has contributed to existing knowledge on passive strategies for the 

performance of the building. Our analysis has shown significant changes in the thermal 

performance of the building in future climate scenarios and recent climatic conditions. The 

results have shown that the thermal behaviour of the building differs in each scenario. In all the 

models, when the external temperature increases, the heating demand decreases significantly 

while cooling demand and overheating risks increase considerably in future climate scenarios. 

However, the changes in weather conditions modified global energy demand for all models.

The predicted behaviour of the building was completely different for heating and cooling 

demand. Cooling demand increased in the future scenario while it decreased completely in 

scenario 2096-2100 period for Model 8 when there is a nearly-zero energy demand building. 

The heating demand of Model 5 is zero in the MPI-ESM-LR and CPR8.5 scenarios, when the 

window area is increased. In these scenarios, the natural ventilation of Model 8 fails to function 

properly, because of the high outdoor temperatures.
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Climate change has therefore been shown to have a direct effect on energy demand in homes. 

The datasets of projected climate readings have clearly predicted that natural and forced 

ventilation are the most sensitive to the effects of climate change in these future scenarios. 

Analysed in models 7 and 8, ventilation has the highest effect of all the increases and decreases 

in the models under analysis. Measures affecting natural ventilation will have the lowest effect 

in the future. Specifically, the extra mechanical (fan) ventilation (Model 8) will have almost no 

effect on nearly-zero demand houses.

Each housing model offers different answers in each scenario, although window shades, 

increased thermal insulation, and reductions in infiltration have a greater effect in terms of 

global energy demand. So, if nearly-zero houses are to be obtained in the future scenarios, 

sound construction that reduces infiltration must always be guaranteed. It can also be said that 

good isolation is a guarantee of comfort and less energy consumption. In this sense, the effect 

of sunlight and solar energy, evident in the modifications to window frames and glazing in Model 

4 that had the least effect on global demand, is an essential aspect to analyse for any reduction 

in global energy demand. 
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ACCEPTED MANUSCRIPT

Highlights

1. Temperatures are projected under two Global Circulation Models for 2050 and 2100.

2. Eight energy measures are modelled under Mediterranean climate-change scenarios.

3. Passive and active improvements are modelled in a residential building.

4. Heating energy demand decreases significantly and cooling energy demand increases.

5. Thermal insulation and infiltration have the greatest effect on total energy demand.


