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Chapter 1

Introduction

In software verification, one of the most challenging problems is the automatic verifica-

tion of termination. A program or computation system is said to be terminating whether its

computation does not lead to any infinite computation for any possible input data or function

calls.

From a scientific point of view, termination is an old and classical problem (think of Turing’s

halting problem, for instance). On the other hand, from an end-user point of view, it is also

crucial: many times, the unexpected behavior of an application, usually reported as (a never-

ending) “processing”, or “waiting for an answer” (and also as “abnormal termination”!) usually

corresponds to hidden termination problems coming from bugs in the program.

Furthermore, ensuring termination is often a prerequisite for essential program properties

like correctness. Thus, being able to automatically prove termination of programs is a key

issue in modern software development. Unfortunately, termination is, in general, undecidable,

so that there exists no algorithm that correctly establishes, for all programs whether they are

terminating or not. However, the termination of programs is decidable for some classes of

programs.

Term rewriting (see, e.g., [BN98, Ohl02, Ter03]) is a branch of theorical computer science

which combines elements of logic, universal algebra, automated theorem proving and functional

programming. It is a very powerful method for dealing computationally with equational logic.

Equations lie at the foundation of mathematics and sciences. Equational reasoning is based

on a restricted class of first order logic, where the only predicate symbol is equality. However,

equations are pervasive in many problems. For instance, equations are often used to write

programs as sets of equations, define programing languages interpreters, specify requirement to

derive correct software or express properties and verify that they are fulfilled.
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6 CHAPTER 1. INTRODUCTION

The main difference between term rewriting and equational logic is that, in term rewriting,

equations are used as directed replacements rules, i.e. the left-hand side can be replaced by the

right-hand side, but not vice versa. The basic ideas date back to Axel Thue. Term rewriting

has the computational power of Markov algorithms and Turing machines. This constitutes to

a close model to functional programming. It has applications in algebra (e.g. Boolean algebra,

group theory and ring theory), recursion theory (what is and is not computable with certain sets

of rewriting rules), software engineering (reasoning about equationally defined data types such

as numbers, lists, sets, etc.) and programming languages (specially functional, algebraic, and

logic programming). In general, term rewriting applies in any context where efficient methods

for reasoning with equations are required.

Since term rewriting formalism is Turing-complete, the main idea for proving termination

of a program P is translating into a TRS RP whose termination implies termination of P.

The notions coming from the already quite mature theory of termination of TRSs provide

a basic collection of abstractions, notions, and methods which have been proved useful for

treating termination problems in sophisticated programming languages. For some advanced

programming languages like Haskell [HPW92], Maude [CDEL+07] and Prolog [NM95], recent

papers show that such termination technology may conform an excellent basis (see [GSST06]

for Haskell, [DLMMU08] for Maude, and [SGST07] for Prolog).

1.1 Polynomial constraint solving for termination proofs

Proofs of termination in term rewriting involve solving constraints between terms s and t

coming from (parts of) the rules of the Term Rewriting System. For instance, in the dependency

pairs method [AG00] (which is the basis of most modern termination tools), given a rewrite rule

l→ r of a TRS R, we get dependency pairs L→ S for all subterms s of r which are rooted by a

defined symbol; the notation T for a given term t means that the root symbol f of t is marked

thus becoming F . The dependency pairs associated to R yield a new DP(R) which (together

with R) determines the so-called dependency chains whose finiteness or infiniteness characterize

termination of R.

Basically, we need to impose that l % r for all rules in the TRS R and u = v for all the

dependency pairs u→ v ∈ DP(R). Here, % is a quasi-ordering1 on terms and = is a well-founded

ordering2.

Polynomial interpretations are receiving an increasing attention for generating such or-
1A quasi-ordering % is a reflexive and transitive relation.
2An ordering = is an irreflexive and transitive relation. It is well-founded if there is no infinite sequence

a1 = a2 = · · · = an = · · ·
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derings. In fact, many termination tools (AProVE [GST06], CiME 2.03 [CMMU03], mu-term

[Luc04], TTT [HM07],...) use polynomials as a principal ingredient to achieve termination proofs.

In this setting, symbols f of a signature F are given polynomial functions [f ] satisfying appro-

priate conditions. Constraints s % t and s = t are treated as polynomial constraints Ps,t ≥ 0

and Ps,t > 0, respectively, where Ps,t = [s] − [t] is the polynomial obtained from terms s and t

by interpreting them as polynomials [s] and [t] whose parameters are the variables occurring in

the terms. Contejean et al. have investigated how to mechanize proofs of termination by using

polynomials with non-negative integer coefficients [CMTU06], i.e., [f ] ∈ N[X1, . . . , Xk] for each

k-ary symbol f . In general, polynomials Ps,t ∈ Z[X1, . . . , Xn] contain integer coefficients. Thus,

the corresponding constraints are treated as Diophantine inequalities whose satisfaction is, in

general, undecidable [Mat70].

The use of polynomials with real coefficients in proofs of polynomial termination of rewriting

(no dependency pairs were considered at this time) was proposed by Dershowitz [Der79]. Since

the set of real numbers R furnished with the usual ordering >R is not well-founded, a subterm

property (i.e., [f ](x1, . . . , xi, . . . , xk) >R xi for all k-ary symbols f , arguments i, 1 ≤ i ≤ k, and

x1, . . . , xk ∈ R) is explicitly required to ensure well-foundedness. In fact, polynomial interpreta-

tions with real or just rational coefficients (i.e., [f ] ∈ R[X1, . . . , Xn] or [f ] ∈ Q[X1, . . . , Xn]) and

subsets A of R or Q as interpretation domains have been recently proved strictly more powerful

than polynomial interpretations with integer coefficients in proofs of polynomial termination

of rewriting [Luc06]. Following this work, in this thesis, we introduce several conditions for

determining the necessity of using rational coefficients in polynomials which are eventually used

in termination proofs. In other words, sufficient conditions which state that the termination

proof will fail if one uses natural instead of rational interpretations. Dershowitz noticed that,

according to Tarski [Tar51], the satisfaction of the corresponding polynomial constraints from

polynomial interpretations over the reals then becomes decidable. The termination problem can

be encoded as an instance of the general decision problem for the first-order theory of the real

closed fields investigated by Tarski. This was the main argument of Dershowitz for proposing the

use of polynomials over the reals in proofs of termination. The complexity of Tarski’s decision

algorithm, however, is not elementary recursive; therefore it was considered not so amenable for

inclusion in termination tools.

In practice, polynomial constraints coming from termination problems are solved by using

standard algorithms and techniques coming from Constraint Programming [RVW06]. Despite of

the generality of these constraints, nonlinear constraints seems not to have been studied deeply.

The main problem is to find efficient and suitable methods for dealing with the generated set of

constraints. Up to now, several approaches have been considered for dealing with polynomial

constraints in termination proofs. The main techniques are based on SAT (Boolean Satisfiability

[FGMS+07, FNOG+08]), CSP (Constraint Satisfaction Problem [CMTU06, Luc05, Luc07]), LP

(Linear Programming [Ste94]), and Real Algebraic Geometry [Gie95, Rou91]. Along this thesis,
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we study in depth some of these approaches and we present some advances in each approach.

1.2 Structure of the thesis

Here is an outline of this thesis. In Chapter 2 the most important concepts and setting from

Term Rewriting Systems are reviewed.

In Chapter 3, we describe the basis of proving termination and we study in depth the

process of proving termination by polynomial interpretations. We also discuss how to generate

polynomial (quasi) orderings by means of polynomial interpretations over the natural, and real

numbers and discuss their practical use.

In Chapter 4, we show the limitations of polynomial interpretations over the naturals with

respect to the polynomial interpretations over the rationals. We investigate sufficient conditions

which are amenable for detecting these situations automatically, on the basis of the structure of

the rules in the TRS. This improves the research in [Luc06], where ‘ad-hoc’ TRSs were introduced

to show the limitations of polynomial interpretations over the naturals. These results have been

published in [FNOG+08].

Chapter 5 presents the techniques considered in practice for dealing with polynomial con-

straints coming from termination problems. This chapter is divided in four sections. Section

5.1 focuses on SAT-based techniques, where we propose an efficient SAT encoding for polyno-

mial constraints over {0, 1}. Next, in Section 5.2, we show how to model our problem as a

CSP and, then, we present our contribution to the development of constraint solving algorithms

over small domains of rational numbers. Section 5.3 discusses possible combinations of Linear

Programming and CSP techniques which can be appropriate for their implementation as part

of termination tools. Finally, in Section 5.4, we evaluate the algorithms from Real Algebraic

Geometry, especially quantifier elimination and we propose techniques that could be applied

in termination of Term Rewriting Systems. The results in this Chapter have been partially

published in [LN08, LMNS08].

In Chapter 6, we present MultiSolver, a prototype of symbolic constraint solving system

(see Sections 6.1 and 6.2) and, in Section 6.3, we empirically evaluate the performance of the

algorithms presented in Chapter 5 with state-of-the-art solvers using two types of problems.

Finally, in Chapter 7, we give a summary and the conclusions of this thesis and present

subjects for further research.



Chapter 2

Term Rewriting Systems

In this chapter, we give a description of the notation and setting important in this thesis.

To begin with, we present an introduction to term rewriting. The concepts introduced in this

chapter have been taken from [BN98, Ohl02].

2.1 Terms, substitutions and relation properties

A term rewriting system consists of rules which are used to transform or rewrite terms. So

we first need to formalize the concept of term. Terms are defined over a signature.

Definition 1 (Signature) A signature F is a set of function symbols, where each f ∈ F is

associated with a non-negative integer ar(f), the arity of f (i.e., the number of arguments f can

take). For n ≥ 0, we denote the set of all n-ary elements of F by F (n). The elements of F (0)

are also called symbols.

Terms are string of symbols from an alphabet, consisting of the signature and a set of

variables.

Definition 2 (Term) Let F be a signature and X be a set of variables such that F ∩ X = Ø.

The set T (F ,X ) of all terms defined over F and X is inductively defined as the least set satisfying

the following:

• X ⊆ T (F ,X ).

• If f ∈ F (k) and t1, ..., tk ∈ T (F ,X ), then f(t1, ..., tk) ∈ T (F ,X ).

By this notation it is understood (case k=0) that a symbol c() ∈ F (0) is in T (F ,X ). We call

the term c a constant and we usually write c instead of c().

9
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The terms ti are often called the immediate subterm of the term t = f(t1, . . . , tn) ∈ T (F ,X )

(or the arguments of the function call represented by f(t1, . . . , tn)), and the symbol f is called

the head or root symbol; we often write root(t) = f in this case.

For a term t, Var(t) denotes the set of all variables occurring in t. If Var(t) = Ø, i.e. t

contains no variables, then we say that t is a ground term. We can extend the concept of Var(t)
from terms to sets of terms, if T ⊆ T (F ,X ), then Var(T ) =

⋃
t∈T Var(t). The set of ground

terms is denoted by T (F) instead of T (F ,∅). A term t is linear if each variable appears at

most once in t.

Example 1 Consider the signature F = {minus, 0} where minus is a binary symbol (ar(minus)

= 2) and 0 is a constant. Then, minus(x, 0) is a term and minus(0, 0) is a ground term, whereas

minus and 0(x) are not terms. The term minus(x, x) is not linear.

Definition 3 (Context) Let 2 be a new symbol which does not occur in F ∪ X . A context

C[ ] is a term t ∈ T (F ∪ {2},X ) and can be seen as a term with “holes”, represented by 2, in

it. Particularly, C[ ] denotes a context with a single hole and C[ , . . . , ] stands for a term with

several holes. C[t1, ..., tn] is the result of replacing all occurrences of 2 in C[ , . . . , ] by t1, ..., tn
from left to right.

Definition 4 (Subterm) A term s is a subterm (superterm) of term t, if there exists a context

C[ ] such that s = C[t] (t = C[s]). We usually write s� t (t� s) in order to denote that t is a

subterm (superterm) of s.

Example 2 Consider the following signature F = {minus, quot, 0, s}, where 0 is a constant

symbol, s is an 1-ary symbols, and minus and quot are binary symbols in prefix notation. Let

s(quot(minus(x, y), s(y))) be a term. Then we have the following:

• s(quot(minus(x, y), s(y))) � minus(x, y)

• s(quot(minus(x, y), s(y))) � s(y)

• s(quot(minus(x, y), s(y))) 7 s(quot(x, y))

The structure of a term can be represented as a labeled tree, where the function symbols are

nodes and the arrows point to the arguments of the function (and variables and constants are

represented as leaf nodes). Nodes in a term tree are usually called positions. This terminology is

then transferred to the corresponding term, so that we also speak of positions in terms. By using

a standard numbering of the nodes of the tree by strings of indices, we can refer to positions in

a term. Let us define formally a position.
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Definition 5 (Position) A position p is a string of positive integers p ∈ Pos = {Λ}∪{i.q | i ∈
N+ ∧ q ∈ Pos}, where Λ denotes the empty string (root position).

The length of a position p is denoted by |p|. The set of all positions of a term t is defined

as follows:

Pos(t) =

{Λ} if t ∈ X

{Λ} ∪
⋃

1≤i≤k i.Pos(ti) if t = f(t1, ..., tk)

The concept of position is useful in order to define notions like subterm and replacing

position. We use the following notation related to the concept of position:

• For p ∈ Pos(s), the subterm of s at position p, denoted by s|p, is defined by induction on

the length of p:

t|Λ = t

f(t1, ..., tk)|i.p = ti|p where 1 ≤ i ≤ k

• The depth of a subterm s = t|p of t is the length of the position p: |p|.

• For p ∈ Pos(s), we denote by t[s]p the term that is obtained from s by replacing the

subterm at position p by t, i.e.:

t[s]Λ = s

f(t1, ..., tk)[s]i.p = f(t1, ..., ti[s]p, ..., tk) where 1 ≤ i ≤ k

• The function root : (T (F ,X )− {X})→ F maps a non-variable term t = f(t1, . . . , tn) to

the symbol f at its root position Λ. We then say that f is the root symbol of t.

• PosF (t) denotes the set of position of non-variable symbol of t, that is:

PosF (t) = {p ∈ Pos(t) | root(t|p) ∈ F}

Example 3 Following the signature defined in Example 2 and considering the term

t = s(quot(minus(x, y), s(y))),

the root symbol of t is root(t) = s. The labeled tree representing t is shown at figure 2.1. Then, us-

ing this representation it is easy to find all positions in t, Pos(t) = {Λ, 1, 1.1, 1.2, 1.1.1, 1.1.2, 1.2.1}.
Moreover, there are two occurrences of the variable y in t at the 1.1.2 and 1.2.1 positions.
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Figure 2.1: Positions of term s(quot(minus(x, y), s(y)))

Definition 6 (Substitution) A substitution is a function σ : X → T (F ,X ) such that σ(x) 6= x

for only finitely many xs. The (finite) set of variables that σ does not map to themselves is call

the domain of σ : Dom(σ) = {x ∈ X | σ(x) 6= x}. We denote the set of all substitutions over

T (F ,X ) by Sub(T (F ,X )).

A substitution σ is often represented by the set σ = {x1 7→ t1, ..., xn 7→ tn}, where the

domain variables {x1, ..., xn} ∈ Dom(σ) are linked with the corresponding term (xi 7→ ti).

We denote the empty substitution by the greek symbol ε (i.e., ε(x) = x for all variable x).

The function σ is homomorphically extended to a mapping σ : T (F ,X ) → T (F ,X ), so that

σ(f(t1, ..., tk)) = f(σ(t1), ..., σ(tk)).

Let s, t be T (F ,X ), we say that s matches t, if there exists a substitution σ such that

t = σ(s). The substitution σ is called a matching substitution.

Let s, t be T (F ,X ), we say that s unifies t, if there exists a substitution σ such that

σ(t) = σ(s). We call unifier of t and s to the substitution σ.

Finally, we present several definition concerning properties of relations between terms.

Definition 7 (Monotonicity) Let R be a relation over T (F ,X ). We call R monotonic or

compatible with F-operations, if for all s1, s2 ∈ T (F ,X ), all k > 0, and all f ∈ F (k), s1 R s2

implies

f(t1, ..., ti−1, s1, ti+1, ..., tk) R f(t1, ..., ti−1, s2, ti+1, ..., tk)

for all i, 1 ≤ i ≤ k, and all t1, ..., ti−1, ti+1, ..., tk ∈ T (F ,X ).
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Definition 8 (Stability) Let R be a relation over T (F ,X ). We call R stable or closed under

subtitutions, if for all s1, s2 ∈ T (F ,X ) and all substitutions σ ∈ Sub(T (F ,X )), s1 R s2 implies

σ(s1) R σ(s2).

2.2 Term Rewriting Systems

Term rewriting systems are defined as follows:

Definition 9 (Term rewriting systems) A Term Rewriting System (TRS) is a pair (F , R),

where F is a signature and R is a set R ⊆ T (F ,X ) × T (F ,X ) of rewriting rules. A TRS

R = (F , R) is finite if both sets F and R are finite.

Each rewriting rule l→ r ∈ R has to satisfy the following:

• l /∈ X , i.e., the left hand side of the rule l is not a variable, and

• Var(r) ⊆ Var(l), i.e., all variables in the right hand side (rhs) r of the rule also occur in

the left hand side (lhs) l.

Here we only consider finite term rewriting systems.

For a TRS R, the (term) rewriting relation →R over terms in T (F ,X ) is defined by s→R t
if there is a rewriting rule l→ r in R, a substitution σ, and a context C[ ] such that s = C[σ(l)]

and t = C[σ(r)]. s→R t denotes a rewriting step or reduction step.

A redex (reducible expression) is an instance of the lhs of a rewriting rule. Moreover, it is

said that s rewrites to t by means of contracting a redex σ(l), and that σ(r) is the contractum.

The signature F of a TRS R is divided into two disjoint sets F = D ] C:

• The set of defines symbols D = {root(l) | l→ r ∈ R}, and

• The set of constructor symbols C = F \ D.

Example 4 Consider the following TRS R from [AG00, Example 1]:

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
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Here, D = {minus, quot} is the set of defined symbols, whereas C = {0, s} is the set of

constructor symbols.



Chapter 3

Termination of Term Rewriting

Systems

In this chapter, we describe some methods for proving termination of term rewriting systems.

The concepts introduced in this chapter have been taken from [BN98, Ohl02, CMTU06].

3.1 Termination and orderings

A central notion in termination analysis is that of well-foundedness, which we introduce in the

following definition.

Definition 10 (Well-Founded Relation) Let A be a set. A relation → ⊆ A × A is said

to be well-founded (also noetherian or terminating) if there is no infinite reduction sequence

a0 → a1 → a2 → · · · where a1, a2, . . . are elements of A.

Definition 11 (Quasi-ordering) Let A be a set. A quasi-ordering is a transitive and reflexive

relation � over A.

Definition 12 (Ordering) Let A be a set. A (strict) ordering is a transitive and irreflexive

relation > over A.

Recall that the termination problem is undecidable. Nevertheless, it is often necessary to

prove that a particular system terminates, and it is possible to envisage methods to address this

task. The basic idea for proving termination is to employ a well-founded ordering as shown the

following definition [MN70].

15
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Definition 13 (Termination of TRS) Let R be a finite term rewriting system, and > be a

well-founded (strict) order on T (F ,X ). Then, R is terminating if, for all terms s, t ∈ T (F ,X ),

s→R t implies s > t.

By instead of deciding s > t for the (infinitely many) pairs s, t with s →R t, we would

rather like to check whether l > r for the (finitely many) rules l → r ∈ R. However, in order

to guarantee that this approach is correct, the order > must satisfy some additional properties.

This motivates the definition of reduction orders.

Definition 14 (Rewrite quasi-order) Let F be a signature and X be a (countably infinite)

set of variables. A rewrite quasi-order > on T (F ,X ) is a quasi-ordering � stable and (weakly)

monotonic.

Definition 15 (Rewrite order) Let F be a signature and X be a (countably infinite) set of

variables. A strict order > on T (F ,X ) is called a rewrite order if it is stable and monotonic.

Definition 16 (Reduction Ordering) A reduction order is a well-founded rewrite order.

The name “rewrite order” is motivated by the fact that the relations →∗R and →+
R for a

term rewriting system R are rewrite quasi-orderings and rewrite orderings, respectively.

We say that a relation > is compatible with a rule l → r if l > r holds. Then, by using

reduction orderings one can indeed show termination of term rewriting systems:

Theorem 1 (Termination with reduction orderings) A term rewriting system R termi-

nates if and only if there exists a reduction order > such that satisfies l > r for all l→ r ∈ R.

Given a term rewriting system R, a direct termination proof is a termination proof in which

a concrete reduction ordering which is compatible with the rules of R is given.

3.2 The interpretation method

In order to construct a reduction order on T (F ,X ), we can utilize the interpretation method.

This method does not look directly at the terms over F . Instead it considers their interpretation

in an F-algebra that is equipped with a well-founded order.

Definition 17 (Algebra) Let F be a signature. An F-algebra A = (A,FA) consists of a set

A, called the algebra domain or carrier set, and a set FA of mappings fA : Ak → A for all

f ∈ F (k) that interpret the function symbols f ∈ F .
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In the following, we assume that the carrier of an F-algebra is not empty.

A special algebra is a term algebra T (F ,X ) consisting of the carrier T (F ,X ) and the

operations fT (F ,X )(t1, ..., tk) = f(t1, ..., tk). The ground-term F-algebra is defined analogously.

Given an F-algebra, we assign to every ground term t its interpretation [t]A in A.

Definition 18 (Ground-term interpretation) Let A be an F-algebra. The mapping [·]A
from T (F) to A is defined inductively by [f(t1, ..., tk)]A = fA([t1]A, ..., [tk]A). In particular, if t

is a constant, then [t]A = tA.

If a term t contains variables, then its interpretation [·]A in A depends on the assignment

of values in A to the variables in t.

Definition 19 (Valuation) Let A = (A,FA) be an F-algebra. A mapping α : X → A is value

called an assignment. For every assignment α, a valuation mapping [α]A : T (F ,X ) → A is

defined inductively by

[α]A(t) =

α(t) if t ∈ X

fA([α]A(t1), ..., [α]A(tk)) if t = f(t1, ..., tk)

where f ∈ F and t1, . . . , tn ∈ T (F ,X ).

For ground terms, we would say that a term s is bigger than a term t if the interpretation of

s in A is bigger than the interpretation of t in A. For arbitrary terms (possibly with variables),

the interpretation of a term with variables only makes sense for a given valuation of the variables.

Thus we have the following definition.

Definition 20 (Ordering induced by an algebra) Let F be a signature, A = (A,FA) an

F-algebra, and > a well-founded (strict) ordering on its carrier set A. The binary relation >A

on T (F ,X ) induced by A is defined as follows

s >A t if [α]A(s) > [α]A(t) for all value assignment [α] : α→ A

Stability for the ordering >A on terms is a consequence of the fact that we consider all

possible valuations of the variables in its definition. To satisfy compatibility with function

symbols operations (monotonicity), we must require that all interpretations of function symbols

are monotone.

Definition 21 (Monotone functions) Let R be a valuation on a set A. A function F : An →
A is called monotone (w.r.t. R) if
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a R b ⇒ F (a1, ..., ai−1, a, ai+1, ..., an) R F (a1, ..., ai−1, b, ai+1, ..., an)

for all i, 1 ≤ i ≤ n, and all a, b, a1, ..., ai−1, ai+1, ..., an ∈ A.

Definition 22 (Well-founded F-algebra) Let F be a signature, (A,FA) an F-algebra and

>A a well-founded (strict) ordering on A. Then, a triple (A,FA, >A) is an well-founded (ordered)

F-algebra.

By means of the next theorem, it is possible to use algebras as a tool for proving termination.

Theorem 2 Let F be a signature, and A = (A,FA, >A) an well-founded F-algebra. If the

interpretations fA of all function symbols f ∈ F are monotone w.r.t. >A, then we say that

A is a well-founded monotone F-algebra and the induced ordering >A is a reduction order on

T (F ,X ).

We say that a TRS (F , R) is compatible with a well-founded monotone F-algebra A =

(A,FA, >A) if (F , R) is compatible with the reduction ordering >A induced by A.

Corollary 1 A TRS (F , R) is terminating if it is compatible with a well-founded monotone

F-algebra A.

3.3 Polynomial orderings over the naturals

In this section, we introduce a particular class of reduction orders of the form >A, in which

the carrier set is the set N of natural numbers and function symbols are interpreted as polynomial

functions over the naturals (polynomial interpretations over the naturals).

Polynomial interpretations over the naturals are special well-founded algebras. Lankford

[Lan75, Lan79] first studied them in their final form but the ideas on which the polynomial

interpretation method is based can be tracked back to the work of Manna and Ness [MN70].

The basic idea is to employ algebras based on polynomial interpretations which interpret the

terms as polynomials. Then, the comparison between terms is done according to the Definition

20. In other words, a term s is greater than a term t w.r.t. a polynomial interpretation, if the

polynomial [s] interpreting to s is greater than the polynomial [t] interpreting to t. Recall that

given two polynomials P and Q on variables x1, ..., xn, we say that P > Q over a subset A of

the numerical domain of the variables x1, ..., xn, if ∀x1, ..., xk ∈ A, P (x1, ..., xk) > Q(x1, ..., xk).

Definition 23 (Polynomial Algebra over the naturals) Let F be a signature. A polyno-

mial algebra over the naturals is an F-algebra A = (A,FA) with the carrier set A ⊆ N such that
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for all function symbol f ∈ F (n), the interpretation function [f ] is a polynomial [f ](x1, . . . , xn) ∈
N[x1, . . . , xn] satisfying the algebraicity property: for all a1, ..., an ∈ A, [f ](a1, ..., an) ∈ A.

Given a polynomial algebra, the polynomial [t] associated to the term t ∈ T (F ,X ) is obtained

as follows:

[t] =

x if t = x ∈ X

[f ]([t1], ..., [tk]) if t = f(t1, ..., tk)

Note that x above is used as a syntactic variable x ∈ X and as a numeric variable ranging

on N (or better, as the identity polynomial).

If A = (A,FA, >A) is a monotone polynomial interpretation, then this interpretation is

a monotone (well-founded) algebra and the induced ordering >A is a reduction ordering on

T (F ,X ). Such a reduction ordering >A is called a polynomial ordering. This motivates the

following definition:

Definition 24 (Polynomial Termination) A TRS R is called polynomially terminating if it

is compatible with a polynomial ordering.

Therefore, in order to show (polynomial) termination of a given TRS, one must find mono-

tone polynomials as interpretations of function symbols. The following proposition [Ohl02] states

a sufficient criterion for that:

Proposition 1 Let A = (A,FA, >A) be a ordered polynomial interpretation such that A ⊆ N>0.

Then, A is a monotone polynomial interpretation if and only if every function symbol f ∈ F (n),

n > 0, is interpreted by a polynomial [f ](x1, . . . , xn) ∈ N[x1, . . . , xn] that for every i ∈ {1, ..., n}
contains a monomial m · xk11 . . . xkii . . . x

kn
n with m, ki ∈ N>0.

Example 5 Considering the TRS R containing the following rules:

f(g(x, y))→ g(f(x), f(y))

g(g(x, y), z)→ g(x, g(y, z))

We define a polynomial interpretation A as follows:

The carrier set is N>0 and the interpretation functions are the monotone polynomials

[f ](x) = x2

[g](x, y) = xy + x
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In order to show that R is (polynomially) terminating, one has to prove that l >A r for every

l→ r ∈ R, that is,

f(g(x, y)) >A g(f(x), f(y))

g(g(x, y), z) >A g(x, g(y, z))

These inequalities are indeed satisfied for all x, y, z ∈ N+

[f ]([g](x, y)) = x2y2 + 2x2y + x2 > x2y2 + x2 = [g]([f ](x), [f ](y)))

[g]([g](x, y), z) = xyz + xz + xy + x > xyz + xz + x = [g](x, [g](y, z))

Given a polynomial ordering >A, it would be desirable to have a procedure that for terms

l, r ∈ T (F ,X ) decides whether l >A r holds. Consequently, it would be decidable whether a

finite TRS R is compatible with the ordering >A. However, according to Matjasevich [Mat70],

who proved the undecidability of the satisfaction problem for Diophantine constraints (Hilbert’s

10th Problem), such a decision procedure does not exist.

Another disadvantage of polynomial order is that they cannot show termination of rewriting

systems with “very long” reduction chains [HL89]:

Proposition 2 Assume that termination of the finite term rewriting R can be shown with a

polynomial order. Then there exists a constant c > 0 in R such that for all terms t the length of

every R-derivation sequence starting with t is bounded by 22c|t|.

Thus, terminating term rewriting systems that have reduction chains whose length exceeds

this doubly-exponential bound cannot be shown terminating by means of a polynomial order.

3.4 Polynomial orderings over the reals

In previous sections, we have considered polynomial interpretations over the naturals, but

polynomial interpretations over the reals are also possible. Polynomials over the reals were

proposed by Dershowitz [Der79] as an alternative to Lankford’s polynomials over the naturals

[Lan79]. Dershowitz [Der79] noticed that according to Tarski [Tar51], the satisfaction of polyno-

mial constraints over the reals then becomes decidable. Recall that the satisfaction of polynomial

constraints over the naturals is not decidable. In order to guarantee the well-foundedness of the

induced ordering, which does not follow from that the ordering >R over the reals (because it is

not well-founded), Dershowitz requires a subterm property. i.e., [f ](x1, . . . , xi, . . . , xk) >R xi for

all k-ary symbols f , arguments i, 1 ≤ i ≤ k, and x1, . . . , xk ∈ R.
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In [Luc05], Lucas presented a framework for using polynomial interpretations over the reals

without requiring the subterm property. The idea is to consider the following well-founded

ordering:

Given δ ∈ R>0, ∀x, y ∈ R, x >R,δ y if x− y ≥R δ

Definition 25 (Ordering induced by an algebra) Let F be a signature, A ⊆ R, and A =

(A,FA) be an F-algebra. Given δ ∈ R>0 we define the relation >δ on terms by

t >δ s if for all assignments α : X → A, [α](t)− [α](s) ≥R δ

Given m ∈ R and A ⊆ R, we say that fA : Ak → A is a m-bounded if fA(x1, . . . , xn) ≥ m

for all x1, . . . , xk ∈ A. If there exists an m ∈ R such that fA is m-bounded for all f ∈ F , then

we say that A = (A, fA) is m-bounded. Thus, we have the following:

Theorem 3 Let F be a signature and A ⊆ [m,+∞) for some m ∈ R, and FA be a set of

polynomial functions fA : Ak → A for each k-ary f ∈ F . Then, for every δ > 0, >δ is a

well-founded and stable (strict) ordering on T (F ,X ).

In order to use an ordering >δ (induced by an m-bounded algebra) for proving termination

of rewriting, we have to further ensure that >δ is monotonic. The following proposition provides

a sufficient condition to ensure monotonicity of >δ for an arbitrary δ.

Theorem 4 Let δ > 0, P ∈ R[X1, . . . , Xn] and A = [0,+∞). Then, P is >δ-monotone if
∂P
∂Xi
≥ 1 on A for all 1 ≤ i ≤ n.

The following proposition provides a basis to avoid the explicit specification of δ when

checking compatibility of the ordering with a set of pairs of terms (e.g., the rules of a TRS).

Theorem 5 Let T ⊆ T (F ,X )× T (F ,X ) be a finite set of pairs of terms and A = (A,FA, >δ)
be an ordered F-algebra over the reals. If for each (t, s) ∈ T , there is δt,s ∈ R>0 such that

Pt,s = [t]− [s] is δt,s-bounded in A, then δ = min({δt,s|(t, s) ∈ T}) is positive and t >δ s for all

(t, s) ∈ T .

The results in this section provide a general framework to prove termination by using or-

derings induced by algebras over the reals.
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Example 6 Let us consider the following TRS R coming from a conditional TRS:

f(x) → u1(x, x)

u1(h(y), x) → u2(i(x), x, y)

u2(y, x, y) → g(y)

i(x) → a

u(d) → b

a → u(c)

c → d

Then, we can prove termination of R using the following polynomial interpretation over Q:

[f ](x) = 3x+ 1

[h](x) = x+ 3

u[x] = x+ 1/2

[u1](x, y) = x+ 2y

[i](x) = x+ 3/2

[u2](x, y, z) = x+ y + z + 1

[g](x) = x

[d] = 0

[b] = 0

[a] = 1

[c] = 1/3

Here, we can check that the ordering >δ induced by the polynomial interpretation is mono-

tonic by using the Theorem 4:

∂[f ]
∂x
≥ 3

∂[h]
∂x
≥ 1

∂[u]
∂x
≥ 1

∂[u1]
∂x

≥ 1
∂[u1]
∂y

≥ 2

∂[i]
∂x
≥ 1

∂[u2]
∂x

≥ 1
∂[u2]
∂y

≥ 1
∂[u2]
∂z

≥ 1
∂[g]
∂x
≥ 1

Now, we can obtain the ‘hidden’ δ which is implicitly used for ensuring that the polynomial
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interpretation computed actually proves termination of R. According to Theorem 5 (with α = 0):

δf(x),u1(x,x) = 1

δu1(h(y),x),u2(i(x),x,y) = 3/2

δu2(y,x,y),g(y) = 1

δi(x),a = 1/2

δu(d),b = 1/2

δa,u(c) = 1/6

δc,d = 1/3

Therefore,

δ = min({1, 3/2, 1, 1/2, 1/2, 1/6, 1/3}) = 1/6

3.5 Dependency Pairs termination

The polynomial interpretation method is well-suited for automatically proving termination of

term rewriting systems, because polynomial orderings can be automatically generated in an effi-

cient way. Unfortunately, there are many terminating TRSs which cannot be proved terminating

by using polynomial orderings, i.e., they are not polynomially terminating.

The dependency pairs method proposed by Arts and Giesl [AG00] improves this situation

because this method relaxes the necessary conditions for proving termination. With the de-

pendency pairs method we are able to use polynomials for proving termination of TRSs which

cannot be proved terminating by using polynomial orders.

The main idea of the dependency pairs method is that in an infinite reduction sequence,

some rules are applied infinitely often.

Roughly speaking, the application of this method provides a set of inequalities, each one of

the form s % t or s = t. An essential task in the practical use of this method is finding reduction

pairs (%,=) satisfying all constraint. The notion of reduction pair was introduced by Kusakari

et al. [KNT99].

Definition 26 (Reduction pair) A reduction pair (%,=) consists of a rewrite quasi-order %

and a stable and well-founded partial order = such that satisfies the following conditions of

compatibility:

% ◦ = ⊆ = or = ◦ % ⊆ =
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Note that = need not be monotonic.

Definition 27 (Dependency Pairs) If f(s1, ..., sn) → C[g(t1, ..., tm)] is a rewrite rule of a

TRS R and g is a defined symbol, then F (s1, ..., sn)→ G(t1, ..., tm) is a dependency pair of R.

The set of all dependency pairs of R is called DP(R).

Example 7 Consider the TRS presented in Example 4. Then, we obtain the following depen-

dency pairs:

MINUS(s(x), s(y)) → MINUS(x, y)

QUOT (s(x), s(y)) → QUOT (minus(x, y), s(y))

QUOT (s(x), s(y)) → MINUS(x, y)

To trace the evolution of function calls, we examine special sequences of dependency pairs,

called chains.

Definition 28 (Dependency Pair Chain) Let R be a TRS. A sequence of dependency pairs

s1 → t1, s2 → t2, . . . of R is an R-chain if there exists a substitution σ such that σ(tj) →∗R
σ(sj+1) holds for every two consecutive pairs sj → tj and sj+1 → tj+1 in a sequence. Further-

more, if every σ(tj) is terminating, then the R-chain is said to be minimal.

Example 8 According to the TRS presented in Example 7, there is a chain

MINUS(s(x1), s(y1))→MINUS(x1, y1)

MINUS(s(x2), s(y2))→MINUS(x2, y2)

MINUS(s(x3), s(y3))→MINUS(x3, y3)

because with σ = {x1 7→ s(s(x3)), x2 7→ s(x3), y1 7→ s(s(y3)), y2 7→ s(y3)}, we have

σ(MINUS(x1, y1))→∗R σ(MINUS(s(x2), s(y2))) and

σ(MINUS(x2, y2))→∗R σ(MINUS(s(x3), s(y3))).

The essence of the dependency pairs method is to characterize the termination of TRS as

the absence of infinite dependency pair chains.

Theorem 6 [AG00] A TRS R is terminating if only if there is no infinite R-chain.

According to the previous result, the termination of TRS is ensured by the absence of infinite

R-chains. But, how do we prove it? The following result can be used for automation of the

process.
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Theorem 7 [AG00] A TRS R is terminating if only if there is a reduction pair (%,=) such

that

• l % r for every rule l→ r in R and

• u = v for every dependency pair u→ v in DP(R).

Example 9 According to the TRS R in Example 7, in order to show termination of R it suffices

to find a reduction pair (%,=) satisfying the constraints

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)

quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

MINUS(s(x), s(y)) = MINUS(x, y)

QUOT (s(x), s(y)) = QUOT (minus(x, y), s(y))

QUOT (s(x), s(y)) = MINUS(x, y)

In fact, for finite systems we can do even better. This is because some dependency pairs

cannot occur twice in any chain and hence they need not be taken into account in a proof that

no infinite chain exists. In order to identify these insignificant dependency pairs, the notion of

dependency graph has been introduced by Arts and Giesl [AG00].

Definition 29 (Dependency Graph) Let R be a TRS. The dependency graph of R is the

directed graph whose nodes are the dependency pairs of R and there is an arc from s → t to

u→ v if s→ t, u→ v is a chain.

Example 10 The dependency graph for the system from Example 7 is given in figure 3.1.

Figure 3.1: Dependency Graph from Example 7

If a TRS is finite, then every infinite chain corresponds to a cycle in the dependency graph.

In other words, those dependency pairs not contained in a cycle need not be taken into account
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in a termination proof. It should be pointed out that for finite TRS there is only a finite number

of cycles because the number of dependency pairs is finite.

Definition 30 (Dependency Graph Cycle) A nonempty set P of dependency pairs is called

a cycle if, for any two dependency pairs s→ t, u→ v ∈ P, there is a nonempty path from s→ t

to u→ v and from u→ v to s→ t in the dependency graph that traverses dependency pairs only

from P.

Theorem 8 A TRS R is terminating if only if for each cycle P in the dependency graph of R
there exists no infinite R-chain of dependency pairs from P.

Example 11 According to the dependency graph in Example 10, there are two cycles:

{MINUS(s(x), s(y))→MINUS(x, y)} and

{QUOT (s(x), s(y))→ QUOT (minus(x, y), s(y))}

As a result of the Theorem 8, the dependency pair QUOT (s(x), s(y))→MINUS(x, y) is irrel-

evant.

Similar to Theorem 7, Theorem 8 can be used to obtain a termination criterion that can be

tested automatically.

Theorem 9 Let R be a TRS over a signature F = D ] C. R is terminating if only if for every

cycle P in the dependency graph of R there is a reduction pair (%,=) such that

• l % r for every rule l→ r in R,

• u % v for every dependency pair u→ v in P, and

• u = v for at least one dependency pair u→ v in P.

According to this Theorem, one may use different reduction pairs for different cycles in a

termination proof. This is in contrast to Theorem 7, where one reduction ordering has to satisfy

all the constraints simultaneously. Therefore, this method leads to modularized termination

proofs.

For an automatic approach the usage of dependency graphs is impractical because it is in

general undecidable whether two dependency pairs form a chain. However, in order to obtain a

sound technique for termination proofs, we can safety use any approximation of the dependency

graph that preserves all its cycles. In case we use a rough approximation, we might not be able

to determine all the insignificant dependency pairs that we could find with a more accurate

approximation.
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In order to estimate which dependency pairs may occur consecutively in a chain, the esti-

mated dependency graph has been introduced [AG00]. We consider the following notions:

• Cap(t) results from replacing all subterms of t that have a defined symbol by different

fresh variables, and

• Ren(t) results from replacing all variables in t by different fresh variables.

Then, in order to determine if u → v can follow s → t in a chain, one checks whether

Ren(Cap(t)) unifies with u. The function Ren is needed to rename multiples occurrences of

the same variable x in t since two different occurrences of σ(x) in σ(t) could reduce to different

terms.

Definition 31 (Estimated dependency graph) Let R be a TRS. The estimated dependency

graph of R, denoted by EDG(R), is the directed graph whose nodes are the dependency pairs of

R and there is an arc from s→ t to u→ v if Ren(Cap(t)) and u are unifiable.

Corollary 2 A TRS R is terminating if only if for each cycle P in EDG(R) there is a reduction

pair (%,=) such that

• l % r for all rules l→ r from R,

• u % v for all dependency pairs u→ v from P, and

• u = v for at least one dependency pair u→ v from P.

3.6 Reduction Pairs based on polynomial orderings

In previous sections, we have shown how to transform a termination problem into a set of

inequalities. But, at this point, the question is how to deal with these constraints. The idea is

to adapt the existing termination proving techniques to work on the set of constraints generated

by the dependency pair method. In this section, we show how to adapt polynomial orders.

Definition 32 Let F be a signature, A = (A,FA,%) an ordered F-algebra where % a quasi-

ordering in A,

1. We say that A is weakly monotonic if every algebra operation is weakly monotone in its

arguments. More precisely, for all f ∈ F and a, b ∈ A with a % b we have fA(..., a, ...) %

fA(..., b, ...).
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2. A is call well-founded if � is well-founded. Here, � is the strict part of the quasi-order %:

� = % − -, that is, ∀a, b ∈ A, a � b if a % b ∧ b��%a.

3. The quasi-ordering %A over T (F ,X ) induced by A is t %A u if [α]A(t) % [α]A(u) for all

assignments α : X → A.

4. The strict-ordering =A over T (F ,X ) induced by A is: t =A u if [α]A(t) � [α]A(u) for all

assignments α : X → A.

Note that every polynomial P (x1, ..., xn) with non-negative coefficients is weakly mono-

tonic over non-negative numbers. In other words, if a ≥ b, then P (a1, ..., ai−1, a, ai+1, ..., an) ≥
P (a1, ..., ai−1, b, ai+1, ..., an), for all a, b, a1, ..., ai−1, ai+1, ..., an ∈ [0,+∞) and i ∈ {1, ..., n}.

3.6.1 Polynomials over the naturals

Each polynomial interpretation over the naturals of F together with the natural order ≥ in

N is a well-founded and weakly monotone F-Algebra. According to [CMTU06], the pair (%,=)

induced by this algebra is a reduction pair.

By interpreting rules of R and the dependency pairs of P, and according to the inequalities

presented in Theorem 9, a set of polynomial constraints is obtained. This set of constraints leads

to a constraint solving problem. Hence, the termination problem has been transformed into a

constraint solving problem.

Corollary 3 A TRS R is terminating if for each cycle P in EDG(R), there exists a deduction

pair (≥, >) such that

• [l] ≥ [r] for every rule l→ r from R,

• [u] ≥ [v] for every dependency pair u→ v from P, and

• [u] > [v] for at least one dependency pair u→ v from P.

Example 12 Consider the dependency graph presented in Example 10. According to Theo-

rem 9, to check termination of the cycle MINUS(s(x), s(y)) → MINUS(x, y), the following

inequalities must be oriented by a reduction pair (%,=):

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)

quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

MINUS(s(x), s(y)) = MINUS(x, y)
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These constraints are satisfied by the reduction pair induced by the following polynomial inter-

pretation:

[minus](x, y) = x

[quot](x, y) = x

[s](x) = x+ 1

[0] = 0

[MINUS](x, y) = x

As a remark, for an F-algebra A = (A,FA) such that A = N and FA is a set of polynomials

[f ] with non-negative coefficients, these conditions guarantee that:

1. each induced polynomial fulfils the algebraicity property,

2. the quasi-ordering % on terms induced by the ordering ≥N over the naturals, is stable and

monotonic,

3. the strict ordering = induced by the strict part >N of the ordering over the naturals, is

stable and well-founded, and

4. (%,=) is a reduction pair.

3.6.2 Polynomials over the reals

We are interested in using polynomial interpretations over the real number, since they are

strictly more powerful for proving termination than those over the naturals [FNOG+08, Luc06].

In [Luc05, Luc07], Lucas showed how to obtain reduction pairs based on polynomial orders over

the reals.

Definition 33 Let F be a signature. An ordered F-algebra A = (A,FA,≥A) is a quasi-order

in A is said to be a weak polynomial F-algebra if A ⊆ [0,∞), ≥A is the restriction of ≥R to A,

and FA consists of ≥R-monotone polynomials [f ] ∈ R[X1, . . . , Xn].

Now, given a polynomial algebra A, δ > 0, and terms s, t ∈ T (F ,X ), we write: s >δ t if

[s]− [t]− δ ≥ 0.

At this point, we can use a quasi-ordering ≥ induced by the usual partial ordering ≥R

together with the strict ordering >δ to define reduction pairs.

Theorem 10 Let F be a signature, A = (A,FA,≥A) be a weak polynomial F-algebra, and

δ > 0. Then (≥, >δ) is a reduction pair.
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Similarly to Corollary 3, we obtain a criterion for proving termination using reduction orders

induced by polynomial interpretations over reals.

Corollary 4 A TRS R is terminating if for each cycle P in EDG(R), there exist a deduction

pair (≥, >δ) such that

• [l] ≥ [r] for every rule l→ r from R,

• [u] ≥ [v] for every dependency pair u→ v from P, and

• [u] >δ [v] for at least one dependency pair u→ v from P.

Note that for an ordered F-algebra A = (A,FA,%A) such that δ > 0, A = [0,+∞) ⊆ R and

FA is a set of polynomials [f ] with non-negative coefficients, then these conditions guarantee

that:

1. each induced polynomial fulfils the algebraicity property,

2. the induced quasi-ordering ≥ is stable and monotonic,

3. the strict ordering >δ is stable and well-founded, and

4. (≥, >δ) is a reduction pair.

Therefore, the polynomial contraints over the reals are the same as those for polynomial

with natural coefficients.

3.7 Generating polynomial constraints

In the previous section, we have assumed that polynomial interpretations were given to the

function symbols, so that the constraints obtained form (e.g.) the dependency pairs method are

satisfied. However, it is not obvious how to choose polynomial interpretations. In the following,

we use the approach in [CMTU06, Luc07] to address this problem.

Then polynomial interpretations are considered to solve constraints, each constraint over

terms is transformed into a polynomial constraint by means of the interpretation of each k-

ary f ∈ F in the signature F as a parametric polynomial [f ]. A parametric polynomial is a

polynomial where the coefficients are variables whose values have to be found.

In fact, each one of the polynomials is represented as an instance of a unique parametric

polynomial [f ] with Mf+k variables where k is the arity of f (and it corresponds with the domain
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of the variable Xi which the polynomial takes as a parameter) and Mf is the number of allowed

parametric coefficients C1, ..., CMf
. Therefore, all coefficient in the parametric polynomial [f ] ∈

Z[C1, ..., CMf
, X1, ..., Xk] are 1, and there is no constant coefficients.

In order to have a finite number of such variables, we need to fix a bound on the degree of

the polynomials. Steinbach classified a number of restricted forms of multivariate polynomials

[Ste92]:

Linear Contains polynomials of degree 1 at most:

[f ](x1, ..., xk) = akxk + ...+ a1x1 + a0

Simple Constains polynomials of at most degree 1 in each variables:

[f ](x1, ..., xk) =
∑

ij∈{0,1} ai1,...,ıkx
i1
1 · · · , x

ik
k

Simple-Mixed Contains polynomials whose monomials consist of either a single variables with

degree 2, or of several variables of at most degree 1:

[f ](x1, ..., xk) =
∑

ij∈{0,1} ai1,...,ıkx
i1
1 · · · , x

ik
k +

∑
1≤i≤n bix

2
i

Nowadays termination tools restrict the attention to polynomial interpretations within one

of the previous. The main reason for this is keeping the obtained constraints simple and small,

i.e., the reason is avoiding the huge search space which is associated to symbolic constraints

which are interpreted using polynomials of higher degree. The use of such polynomials lead

to a combinatorial explosion not only in the number of variables which have to be considered

(stemming from the big amount of parametric coefficients which are necessary in this case) but

also in the number of constraints which are generated.

Example 13 Consider the term t = a(b(c(x))). If we interpret symbols a, b, c using linear

(parametric) polynomial interpretation, we obtain the following polynomial

a1b1c1x+ a1b1c0 + a1b0 + a0

containing 4 monomials. On the other hand, if we consider a simple-mixed interpretation for

each function symbol, we obtain a polynomial with 52 monomials.

In general, given an upper bound N for the degree of the polynomials [f ] ∈ D[X1, ..., Xk]

(where D is a suitable domain of coefficients), the maximum number of monomials in the inter-

pretation [f ] of f is Mf =
(N+ar(f)

ar(f)

)
= (N+ar(f))!

ar(f)!N ! .
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The next step is to interpret the term s and t in a constraint s % t or s = t by using

the parametric polynomial interpretations of the symbols. If [s] and [t] are the corresponding

polynomials, a constrain s = t is transformed into a polynomial constraint [s] > [t]. This

constraint can be seen as a polynomial constraint (or positiveness condition) Ps,t > 0 where

Ps,t = [s]− [t] ∈ Z[C1, ..., CMf
, X1, ..., Xk] is a polynomial. Thus, we are faced to the problem of

deciding whether polinomial Ps,t is positive or not (respectively, non-negative when a constraint

s % t is considered and a polynomial constraint Ps,t ≥ 0 is obtained in a similar way). A

constraint P (C1, ..., CM , X1, ..., XK) ≥ 0 can be represented as:

P (C1, ..., CM , X1, ..., Xk) =
∑
r∈NK

Br(C1, ..., CM )Xr ≥ 0

where Xr means Xr1
1 ...X

rK
K and Br ∈ Z[C1, ..., CM ] are polynomials in the parametric coefficients

of the parametric polynomial interpretation of the function symbols. Since each Xi, for 1 ≤ i ≤
K, takes values in a subset of A of non-negative numbers, using the Hong and Jakuš criterion

[HJ98] according to [CMTU06], the constraint is satisfied if the following existencial constraint

can be solved

∃C1, ...,∃CM
∧
r∈NK

Br ≥ 0

Therefore, the problem becomes a problem of resolution of existentially quantified variables over

a domain D of coefficients. Strict constraints are handled in a similar way, but the monomial

representing the constant coefficient (Br such that r = (0, ..., 0)) is required to be positive.

Now, the termination problem has been transformed into a standard constraint solving

problem which can be treated by using standard algorithms and techniques.

Example 14 Consider again the set of constraints presented in Example 12. The following

parametric polynomials interpretations are given to the symbols:

[0] = a0

[s](X) = s1X + s0

[minus](X,Y ) = m1X +m2Y +m0

[quot](X,Y ) = q1X + q2Y + q0

[QUOT](X,Y ) = Q1X +Q2Y +Q0

Then, for instance, the first constraint is translated into the polynomial constraint:

(m1 − 1)x+m2a0 +m0 ≥ 0

According to the approach described in this section, we have to solve the following (conjunc-
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tion of) polynomial constraints:

(1) a0m2 +m0 ≥ 0

(2) m1 − 1 ≥ 0

(3) m1s0 +m2s0 ≥ 0

(4) m1s1 −m1 ≥ 0

(5) m2s1 −m2 ≥ 0

(6) a0q1 + q2s0 + q0 − a0 ≥ 0

(7) q2s1 ≥ 0

(8) q1s0 + q2s0 + q0 −m0q1s1 − q2s0s1 − q0s1 − s0 ≥ 0

(9) q1s1 −m1q1s1 ≥ 0

(10) q2s1 −m2q1s1 − q2s1s1 ≥ 0

(11) Q1s0 −m0Q1 > 0

(12) Q1s1 −m1Q1 ≥ 0

(13) −m2Q1 ≥ 0

Note that the variables which have to be solved here are the coefficients of the parametric poly-

nomials. The previous set of constraints is sound regarding DG-based termination proofs (i.e.,

its satisfaction implies that the cycle is harmless) provided that all such variables/parametric

coefficients take non-negative values.
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Chapter 4

Conditions for selecting rational

polynomial orders

In [Luc06], Lucas proved that polynomial interpretation over the rationals are strictly more

powerful than polynomial interpretation over the naturals. The proof is constructive, i.e., he

synthesized examples showing these deficiencies of polynomial interpretations over naturals.

Continuing his work, in Section 4.1, we introduce several criteria for determining the necessity

of rational coefficients in termination proofs.

The material in this chapter has been published in [FNOG+08].

4.1 Sufficient conditions

In the following, we introduce some simple facts regarding polynomials and related proper-

ties.

Definition 34 (Monotonicity in the i-th argument) A polynomial P ∈ R[X1, . . . , Xn] is

called (R, i)-monotonic w.r.t A ⊆ R if

x R y ⇒ P (x1, . . . , xi−1, x, xi+1, . . . , xn) R P (x1, . . . , xi−1, y, xi+1, . . . , xn)

for i, 1 ≤ i ≤ n, and all x, y, x1, . . . , xi−1, xi+1, . . . , xn ∈ A.

Lemma 1 Let P ∈ R[X1, . . . , Xn] be (≥, i)-monotonic on A ⊆ R. Then, for all x1, . . . , xn, x, y ∈
A, if P (x1, . . . , xi−1, x, . . . , xn) > P (x1, . . . , xi−1, y, . . . , xn), then x > y.

35
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Proof. By contradiction: if x ≤ y, then, by (≥, i)-monotonicity, P (x1, . . . , xi−1, x, . . . , xn) ≤
P (x1, . . . , xi−1, y, . . . , xn) leading to a contradiction. 2

Lemma 2 Let P ∈ R0[X1, . . . , Xn] be a polynomial with nonnegative coefficients. Then, for all

i, 1 ≤ i ≤ n:

1. If there is a linear monomial aixi in P such that ai ≥ 1, then P has the (≥, i)-subterm

property on every A ⊆ R0, i.e., P (x1, . . . , xi−1, x, xi+1 . . . , xn) ≥ x.

2. If there is a linear monomial aixi in P such that ai > 0, then P is (>, i)-monotonic on

every A ⊆ R0.

3. P is (≥, i)-monotonic on every A ⊆ R0.

Definition 35 (Variable visibility) A variable x ∈ X occurring in t ∈ T (F ,X ) is visible by

a polynomial interpretation [·] if [t] contains a monomial in x.

The following proposition is obvious.

Proposition 3 Let F be a signature, s, t ∈ T (F ,X ), and let [·] be a polynomial interpretation

of F such that [s] ≥ [t]. If x ∈ Var(t) is visible in t by [·], then x is also visible in s by [·].

Let Emb(F) be a set of projection rules for a signature F , such that

Emb(F) = {f(x1, . . . , xi, . . . , xn)→ xi | f ∈ F (n), 1 ≤ i ≤ n}

Given a subset E ⊆ Emb(F) and terms s, t ∈ T (F ,X ), we write s�E t if s→∗E t (we write s�E t

if s �E t and s 6= t). We also denote as F(E) the set of symbols with projection rules in E :

F(E) = {root(l) | l→ r ∈ E}.

Proposition 4 Let F be a signature, E ⊆ Emb(F) and let s, t ∈ T (F ,X ) be such that t �E s.

Let (A, [·]) be a linear polynomial interpretation such that A ⊆ R0 and [f ] ∈ R0[X1, . . . , Xn]

for all n-ary symbol f ∈ F . If [s] > [t] on A then there is f ∈ F(E) which is interpreted as

a polynomial [f ](X1, . . . , Xk) containing a monomial aiXi with ai < 1 for some i such that

f(X1, . . . , Xi, . . . , Xk)→ Xi ∈ E.

Proof. First we note that, since [s] > [t] onA, we actually have t�Es. We proceed by contradiction.

Assume that for all f ∈ F(E) and i such that f(X1, . . . , Xi, . . . , Xk)→ Xi ∈ E , [f ](X1, . . . , Xk)

contains no monomial aiXi with ai < 1. Since [f ] is linear, there must be ai ≥ 1 in that case.

Now we prove by induction on the length n of the rewrite sequence t →+
E s (remember that

t�E s) that [t] ≥ [s] on A. If n = 1, then t = t[f(t1, . . . , ti, . . . , tk)]p for some position p ∈ Pos(t)
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and s = t[ti]p due to the application of a projection rule f(X1, . . . , Xi, . . . , Xk) → Xi ∈ E .

By hypothesis and by Lemma 2(1), [f(t1, . . . , ti, . . . , tk)] ≥ [ti] on A. Since [f ] only contains

non-negative coefficients, by a repeated application of Lemma 2(3), we conclude that [t] ≥ [s]

as desired.

On the other hand, if n > 1, we can write the E-rewrite sequence as follows: t→E t′ →+
E s.

By the induction hypothesis, [t′] ≥ [s] and reasoning as in the base case, we have that [t] ≥ [t′].

Again, we conclude that [t] ≥ [s]. This contradicts that [s] > [t]. 2

Given a term t in T (F ,X ) and a position p ∈ Pos(t), the chain of symbols lying on positions

above/on p ∈ Pos(t) is prefix t(Λ) = root(t), prefix t(i.p) = root(t).prefix ti(p). The strict prefix

sprefix is sprefix t(Λ) = Λ, sprefix t(p.i) = prefix t(p). The following proposition shows that, in

some cases, the use of real coefficients which are not integer is necessary in termination proofs.

Theorem 11 Let F be a signature and l, r, s, t ∈ T (F ,X ) be such that t �E s for some E ⊆
Emb(F). Let (A, [·]) be a linear polynomial interpretation such that A ⊆ R0 and [f ] ∈ R0[X1, . . . ,

Xn] for all n-ary symbol f ∈ F . If [s] > [t], [l] ≥ [r] and there is x ∈ Var(r) which is visible

in r by [·] and ∀p ∈ Posx(l),F(E) ⊆ prefixl(p), then there is f ∈ F(E) and i ∈ N such that

f(X1, . . . , Xi, . . . , Xk)→ Xi ∈ E satisfying that [fi](X1, . . . , Xi, . . . , Xk) = a1X1 + · · ·+ ai.Xi +

· · ·+ akXk + a0 and ai ∈ (0, 1).

Proof. By Proposition 4, there is f ∈ F(E) and i ∈ N such that f(X1, . . . , Xi, . . . , Xk)→ Xi ∈ E
and ai ∈ [0, 1). We show that ai 6= 0. Since f ∈ prefixl(p) for all p ∈ Posx(l), we proceed

by contradiction and assume that ai = 0. Then (since [f ] is a linear polynomial), [l] contains

no monomial in x. However, [r] contains a monomial in x. This means that [l]− [r] contains a

negative monomial in x. Thus, we cannot have [l] ≥ [r]. 2

The following corollary is interesting to treat collapsing rules, i.e., rules l → r such that r

is a variable.

Corollary 5 Let F be a signature and l, s, t ∈ T (F ,X ) be such that t�Es for some E ⊆ Emb(F).

Let (A, [·]) be a linear polynomial interpretation such that A ⊆ R0 and [f ] ∈ R0[X1, . . . , Xn] for

all n-ary symbol f ∈ F . If [s] > [t], x ∈ Var(l), [l] ≥ [x], and ∀p ∈ Posx(l),F(E) ⊆ prefixl(p),
then there is f ∈ F(E) and i ∈ N such that f(X1, . . . , Xi, . . . , Xk) → Xi ∈ E satisfying that

[fi](X1, . . . , Xi, . . . , Xk) = a1X1 + · · ·+ ai.Xi + · · ·+ akXk + a0 and ai ∈ (0, 1).

Example 15 In order to illustrate the use of Corollary 5, consider the following TRS from the
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TPDB (secret05-tpa2):

minus(x, 0) → x (4.1)

minus(s(x), s(y)) → minus(x, y) (4.2)

p(s(x)) → x (4.3)

f(s(x), y) → f(p(minus(s(x), y)), p(minus(y, s(x)))) (4.4)

f(x, s(y)) → f(p(minus(x, s(y))), p(minus(s(y), x))) (4.5)

This TRS has eleven dependency pairs, but there are only two minimal cycles in the dependency

graph: {(4.6)} and {(4.7), (4.8)}, where

MINUS(s(x), s(y)) → MINUS(x, y) (4.6)

F (s(x), y) → F (p(minus(s(x), y)), p(minus(y, s(x)))) (4.7)

F (x, s(y)) → F (p(minus(x, s(y))), p(minus(s(y), x))) (4.8)

The dependency pair (4.6) can immediately be removed by the subterm criterion (see [HM04]).

It remains to find a polynomial interpretation such that one of the dependency pairs (4.7) and

(4.8) is oriented strictly and the other dependency pair and the rules {(4.1), (4.2), (4.3)} are

oriented weakly. For both (4.7) and (4.8), the left-hand side is embedded in the right-hand

side. For instance for (4.7), we have F (p(minus(s(x), y)), p(minus(y, s(x)))) →∗E F (s(x), y)

with E = {p(x1)→ x1, minus(x1, x2)→ x1}. So by Corollary 5, the interpretation of p or minus

contains a rational coefficient a in (0, 1). For instance, the following polynomial interpretation

is computed automatically by mu-term for the cycle {(4.7), (4.8)}:

[minus](X1, X2) = X1

[0] = 0

[s](X) = 2X + 2

[p](X) = 1
2X

[f](X1, X2) = 0

[F](X1, X2) = 2X1

Note the coefficient 1
2 in the interpretation of p.

The following result is a simple corollary of Theorem 11.

Corollary 6 Let R be a TRS, let F be a signature, E ⊆ Emb(F), P be a sequence s1 →
t1, . . . , sn → tn of pairs for some n ≥ 1, and let σ be a substitution such that σ(ti)→∗R σ(si+1)

for all i, 1 ≤ i < n and σ(tn) �E σ(s1). Let (A, [·]) be a linear polynomial interpretation such

that A ⊆ R0 and [f ] ∈ R0[X1, . . . , Xk] for all k-ary symbols f ∈ F . If [l] ≥ [r] for all l → r in

R, [s] ≥ [t] for all s → t ∈ P, and [s] > [t] for at least one s → t ∈ P, then there is f ∈ F(E)

which is interpreted as a polynomial [f ](X1, . . . , Xk) containing a monomial aiXi with ai < 1

for some i such that f(X1, . . . , Xi, . . . , Xk)→ Xi ∈ E.
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Proof. According to our assumptions, we have that [si] > [ti] for some i, 1 ≤ i < n. Hence,

[σ(si)] > [σ(ti)]. Since ≥ is stable and monotonic, then [σ(s1)] ≥ [σ(t1)] ≥ · · · ≥ [σ(si)] >

[σ(ti)] ≥ . . . ≥ [σ(sn)] ≥ [σ(tn)] holds, so that [σ(s1)] > [σ(tn)]. By Proposition 4, since

σ(tn)�E σ(s1), there is f ∈ F(E) which is interpreted as a polynomial [f ](X1, . . . , Xk) containing

a monomial aiXi with ai < 1 for some i such that f(X1, . . . , Xi, . . . , Xk)→ Xi ∈ E . 2

Example 16 Consider the following TRS R from the TPDB (SchneiderKamp-TRS-thiemann40),

where random(x) computes a random number between 0 and x:

nonZero(0) → false (4.9)

nonZero(s(x)) → true (4.10)

p(0) → 0 (4.11)

p(s(x)) → x (4.12)

id inc(x) → x (4.13)

id inc(x) → s(x) (4.14)

random(x) → rand(x, 0) (4.15)

rand(x, y) → if(nonZero(x), x, y) (4.16)

if(false, x, y) → y (4.17)

if(true, x, y) → rand(p(x), id inc(y)) (4.18)

Here, there are six dependency pairs, but there are only one minimal cycle C = {(4.19), (4.20)}:

RAND(x, y) → IF (nonZero(x), x, y) (4.19)

IF (true, x, y) → RAND(p(x), id inc(y)) (4.20)

(4.21)

The following variant of such dependency pairs in the cycle

RAND(x, y) → IF (nonZero(x), x, y) (4.22)

IF (true, x′, y′) → RAND(p(x′), id inc(y′)) (4.23)

satisfies the conditions in Corollary 6 for the substitution σ = {x 7→ s(X), y 7→ Y, x′ 7→
s(X), y′ 7→ Y }:

σ(RAND(x, y)) = RAND(s(X), Y )

→ IF (nonZero(s(X)), s(X), Y )

→ IF (true, s(X), Y )

→ RAND(p(s(X)), id inc(Y )) = σ(RAND(p(x′), id inc(y′)))

For every polynomial interpretation [·] which is compatible with C, we have [RAND(s(X), Y )]

> [RAND(p(s(X)), id inc(Y ))]. Since RAND(p(s(X)), id inc(Y ))�ERAND(s(X), Y ) for E =
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{p(x) → x, id inc(x) → x}, either [p](x) or [id inc](x) contain a monomial aix with ai ∈ [0, 1).

In fact, considering the rules defining p and id inc and using now Proposition 5, we further

conclude that either [p](x) or [id inc](x) contain a monomial aix with ai ∈ (0, 1), i.e., [·] cannot

be a polynomial interpretation with non-negative integer coefficients only.

As a final remark, in this example, the substitution σ could be computed by narrowing

nonZero(x) in the first dependency pair (see [AG00, Definition 21]).

Now we end this section with a last result concerning binary symbols.

Theorem 12 Let A ⊆ R0, F be a signature, f ∈ F be a binary symbol, x ∈ Var, and let

s, t ∈ T (F ,X ) be such that x /∈ Var(s) ∪ Var(t). Let [·] be a polynomial interpretation such

that [g] ∈ R0[X1, . . . , Xn] for all n-ary symbol g ∈ F . If [f ] is a linear polynomial [f ](x, y) =

f1x+ f2y + f0 and [f(x, s)] > [f(t, x)] on A (resp. [f(s, x)] > [f(x, t)] on A), then f1 ≥ f2 > 0

(resp. f2 ≥ f1 > 0) and [s] > [t] on A.

Proof. We prove the first case; the second one is analogous. Since f is interpreted as a linear

polynomial [f ](x, y) = f1x + f2y + f0, the inequality [f ](x, [s]) > [f ]([t], x) can be written as

f1x+f2[s]+f0 > f1[t]+f2x+f0. Furthermore, since x /∈ Var(s)∪Var(t), this is equivalent to f1 ≥
f2∧f2[s] > f1[t]. Note that f2[s] > f1[t] implies that f2 6= 0. Hence, f1 ≥ f2 > 0. Now, we prove

that [s] > [t] on A by contradiction. Assume that [s] = P (X1, . . . , Xn), [t] = Q(X1, . . . , Xn)

and there are numbers x1, . . . , xn ∈ A such that P (x1, . . . , xn) ≤ Q(x1, . . . , xn). Then, since

P ≥ 0 on A and f2 ≥ 0, we conclude that f1Q(x1, . . . , xn) ≥ f2Q(x1, . . . , xn) ≥ f2P (x1, . . . , xn),

contradicting that f2[s] > f1[t] on A. 2

Example 17 To illustrate the criterion in Theorem 12, we consider the following TRS from

the TPDB (Zantema-jw05):

f(f(a, x), a)→ f(f(x, f(a, a)), a) (4.24)

This TRS has three dependency pairs:

F (f(a, x), a)→ F (f(x, f(a, a)), a) (4.25)

F (f(a, x), a)→ F (x, f(a, a)) (4.26)

F (f(a, x), a)→ F (a, a) (4.27)

We focus on cycle C = {(4.25)}. We have to find a reduction pair (�, >) which satisfies

that F (f(a, x), a) > F (f(x, f(a, a)), a). Assume that we search for the reduction pair using

a linear polynomial interpretation where only non-negative coefficients are used. By Lemma

1, F (f(a, x), a) > F (f(x, f(a, a)), a) implies that f(a, x) > f(x, f(a, a)). By Proposition 12,

f(a, x) > f(x, f(a, a)) implies that a > f(a, a) and the coefficients f1 and f2 of the first and



4.1. SUFFICIENT CONDITIONS 41

second arguments of the linear polynomial [f ] are positive: f2 ≥ f1 > 0. Note that f(a, a) �E a

for E consisting of either the first projection f(x, y) → x for f or the second one f(x, y) → y.

Thus, by Proposition 4, f1 < 1 and f2 < 1, i.e., f1, f2 ∈ (0, 1).

Furthermore, since [a] > f1[a]+f2[a]+f0 = [a](f1 +f2)+f0 ≥ 0 this means that [a] = a0 > 0

and 0 < f1 + f2 <
a0−f0
a0

= 1 − f0
a0
≤ 1, i.e., 0 < f1 + f2 < 1 and we can say that f1 ∈ (0, 1

2).

For instance, the following polynomial interpretation is computed automatically by mu-term for

solving cycle {(4.25)}:
[f](X1, X2) = 1

4X1 + 1
4X2

[a] = 4

[F](X1, X2) = 4X1
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Chapter 5

Polynomial Constraint Satisfaction

Techniques

Many termination tools (AProVE [GST06], CiME 2.03 [CMMU03], mu-term [Luc04], TTT

[HM07],...) use the dependency pair method together with polynomials as a principal ingredient

to achieve termination proofs. As we have studied in previous chapters, the termination problem

can be transformed into a constraint solving problems which can be handled by using standard

algorithms and techniques. Despite of the generality of the polynomial constraints, nonlinear

constraints seems not to have been studied deeply. Researchers from Constraint Programming

area usually restrict to binary constraints. Consequently, the main problem is to find efficient

and suitable methods for dealing with the generated set of constraints.

In this chapter, we introduce some new advances from different approaches for solving

polynomial constraints. In Section 5.1, we present SAT-based techniques for small domains

of natural numbers. We also introduce CSP-based techniques for finite domains of rational

numbers (see Section 5.2). In Section 5.3, we discuss about Linear programming and Hybrid

techniques. Finally, in Section 5.4, we talk about Computer Algebra techniques.

5.1 SAT-based techniques

In this section, we describe methods for dealing with polynomial constraint from termination

problems by means of SAT-based encodings. In Section 5.1.1, we give a short introduction to

Propositional Logic and Boolean satisfiability. Finally, in Section 5.1.2, we present a SAT-based

solver for polynomial constraints over the domain {0, 1}. The material in this section has been

published in [LN08].

43
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5.1.1 Propositional Logic and SAT

The Boolean satisfiability (SAT) problem is a well-known constraint satisfaction problem

with many applications. The last few years have seen an enormous progress in the performance

of SAT solvers.

Definition 36 (Propositional Logic) Let A be propositional signature, a nonempty set of

symbols called proposition symbols or propositional variables. Then, propositional formulas of

a propositional signature A are formed from propositional variables and the 0-ary connective

{True, False} called truth or boolean values, the unary connective ¬, and the binary connectives

{∧,∨,→,↔}.

An interpretation of a propositional signature A is an assignment α : A 7→ {true, false}
from propositional variables to truth values. The assignment is extended to formulas (semantics

of propositional formulas) as follows:

• α(True) = True and α(False) = False,

• α(¬x) = False, if α(x) = True or α(¬x) = False, if α(x) = True,

and similarly for the other propositional connectives.

Given a propositional formula ϕ, the Boolean satisfiability problem posed on ϕ is to deter-

mine whether there exists an assignment under which ϕ evaluates to True. If this is the case,

we say that the formula ϕ is satisfiable. Modern SAT solvers provide a “black-box” procedure

that can often solve hard structured problems with over a million variables and several millions

constraints.

SAT solving is not only interesting from a scientific point of view, but also from a commercial

point of view. SAT solvers have been used as a target language for many applications related

to theorem proving, verification, artificial intelligence (AI), electronic design automation (EDA)

and even challenging problems from algebra (see [PBG05] for a recent survey). In our research

area, SAT solvers are enjoying an increasing interest as well (see, e.g, [CLS06, FGMS+07, ZM07]).

Boolean Satisfiability and Constraint Programming seem to be two independent research

threads, but they have a lot in common. For an overview of the two areas in a comparative way,

we refer to [BHZ06].

In our setting, the basic idea is to encode the polynomial constraints as a propositional

formula according to the definition of an upper bound for the domain of the coefficients. Most

SAT solvers only take propositional formulas in CNF (Conjunctive Normal Form) as input, i.e.,

one has to convert the encoded formula to CNF. Next we use a state-of-the-art SAT solver to
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Coeff. Range: 1 2 3

# Success 421 431 434

% Success 49,1 49,8 50,2

Time 45.5 s. 91.8 s. 118.6 s.

Table 5.1: AProVE-SAT benchmarks

find an assignment which evaluates the formula to True. Finally, we transform the propositional

assignment into a diophantine assignment.

5.1.2 SAT-solving for polynomial constraints over {0, 1}

In [FGMS+07], Fuhs et al. propose the use of SAT techniques for solving polynomial con-

straints. Fuhs et al.’s (extensive) benchmarks show that, indeed, using D = {0, 1} as the domain

for coefficients in polynomial interpretations is already a very powerful option in comparison to

bigger domains. The information in Table 5.1 has been taken from [FGMS+07]. It corresponds

to the benchmarks performed with the new version of AProVE which implements a SAT-based

solver for polynomial constraints (AProVE-SAT), where 865 examples and three different ranges

for coefficients (corresponding to N1 = {0, 1}, N2 = {0, 1, 2}, and N3 = {0, 1, 2, 3}) were consid-

ered. The termination problems come from the 2006 Termination Problem Data Base (TPDB,

version 3.2)1.

Table 5.1 shows that AProVE-SAT increments the ratio of solved examples in 0, 7% when

using coefficients from N2 instead of N1, but the time for achieving the proofs is duplicated!. So

this suggests that polynomials with coefficients from {0, 1} are sufficient in most examples. Thus,

specifically considering the (small) domain N1 to obtain an efficient solver on this particular

domain still makes sense.

In this section, we develop an easy SAT-based encoding for polynomial orders over the

domain of coefficients N1.

Considering this domain, we can perform a simplification in the polynomial representation:

since for all x ∈ N1 and all n > 0 we have xn = x, when considering the representation

of a polynomial P , we can replace each monomial m = cXα1
1 · · ·Xαn

n in P by the monomial

ρ(m) = cXβ1
1 · · ·X

βn
n where βi = 1 if αi 6= 0 and βi = 0 if αi = 0. Then, we obtain a simpler

representation ρ(P ) of P :
1see http://www.lri.fr/~marche/tpdb/
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ρ(P ) =

8><>:
K if P = K ∈ R
cXβ1

1 · · ·Xβn
n + ρ(Q) if P = cXα1

1 · · ·Xαn
n +Q

and there is i, 1 ≤ i ≤ n, αi > 0

The following result will be used to justify the correctness (and completeness) of this approach

regarding constraint solving over N1.

Proposition 5 Let P ∈ R[X1, . . . , Xn] be a polynomial. For all x1, . . . , xn ∈ N1, P (x1, . . . , xn) =

ρ(P )(x1, . . . , xn).

Proof. By induction on the number N of monomials with variables in P . If N = 0, then P

is a constant monomial which is obviously identic to ρ(P ). If N > 0, let P = cXα1
1 · · ·Xαn

n +Q

where Q consists of all monomials in P but cXα1
1 · · ·Xαn

n . Since xi ∈ N1, we have that xαii = xβii

for βi = 1 if αi 6= 0 and βi = 0 if αi = 0. Thus, for all x1, . . . , xn ∈ N1, cxα1
1 · · ·xαnn =

cxβ1
1 · · ·x

βn
n . By Induction Hypothesis., Q(x1, . . . , xn) = ρ(Q)(x1, . . . , xn). Since P (x1, . . . , xn) =

cxα1
1 · · ·xαnn +Q = cxβ1

1 · · ·x
βn
n + ρ(Q) = ρ(P )(x1, . . . , xn), the conclusion follows. 2

According to this, when solving constraints over N1, we can use ρ(P ) ≥ 0 (or ρ(P ) > 0) instead

of P ≥ 0 (resp. P > 0) without loosing anything.

Example 18 The polynomial constraint

q2s1 −m2q1s1 − q2s1s1 ≥ 0

would be equivalently transformed into

−m2q1s1 ≥ 0

if we are going to solve it over N1.

Along this section, we often use 0 and 1 instead of False and True, respectively, to denote

boolean values. Furthermore, given a finite set {X1, . . . , Xn} of (boolean) variables where some

arbitrary total order is assumed, boolean assignments are represented as sequences (x1, . . . , xn) ∈
{0, 1}n where variable Xi is instantiated by xi for 1 ≤ i ≤ n.

When considering polynomial constraints over N1, the arithmetics on N1 becomes very

close to boolean operations when 0 is interpreted as False and 1 as True, respectively. In

particular, the product of values in N1 corresponds to conjunction. Following this intuition, we

have developed a simple encoding of polynomial constraints as propositional formulas.
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rmMX (K) = K if K is a constant

rmMX (cXα1
1 · · ·Xαn

n + P ) =

(
rmMX (P ) if X ⊆ {X1, . . . , Xn}
cXα1

1 · · ·Xαn
n + rmMX (P ) otherwise

rmVX (K) = K if K is a constant

rmVX (cXα1
1 · · ·Xαn

n + P ) = cXβ1
1 · · ·Xβn

n + rmVX (P )

where, for all i, 1 ≤ i ≤ n, βi =

(
0 if Xi ∈ X and

αi otherwise

Figure 5.1: Definition of rmM and rmV

τ(K ≥ 0) = True, if K ≥ 0

τ(K ≥ 0) = False, if K < 0

τ(K > 0) = True, if K > 0

τ(K > 0) = False, if K ≤ 0

τ(cX1 . . . Xn +Q ≥ 0) =
((∨

1≤i≤n ¬Xi

)
∧ τ(rmM{X1,...,Xn}(Q) ≥ 0)

)
∨((∧

1≤i≤nXi

)
∧ τ(rmV{X1,...,Xn}(Q) + c ≥ 0)

)
τ(cX1 . . . Xn +Q > 0) =

((∨
1≤i≤n ¬Xi

)
∧ τ(rmM{X1,...,Xn}(Q) > 0)

)
∨((∧

1≤i≤nXi

)
∧ τ(rmV{X1,...,Xn}(Q) + c > 0)

)
τ(C ∧ C ′) = τ(C) ∧ τ(C ′)

Figure 5.2: SAT encoding of polynomial constraints over N1

The translation function τ is given in Figure 5.2, where Q is a polynomial, c and K are

numeric constants (with c 6= 0), X is a set of variables, rmMX (P ) removes all monomials in P

which include all variables in X , and rmVX (P ) removes from P all occurrences of variables in

X . The formal definitions are given in Figure 5.1. The following results are used later. Their

proofs are straightforward from the definitions in Figure 5.1.

Lemma 3 Let P ∈ R[X1, . . . , Xn] be a polynomial, such that P = cXα1
1 · · ·Xαn

n +Q for some c ∈
R, αi ∈ N for 1 ≤ i ≤ n, and Q ∈ R[X1, . . . , Xn]. Let X = {Xi | αi > 0} and x1, . . . , xn ∈ N1 be

such that xi = 0 for at least one Xi ∈ X . Then, rmMX (P )(x1, . . . , xn) = rmMX (Q)(x1, . . . , xn) =

Q(x1, . . . , xn).

Lemma 4 Let P ∈ R[X1, . . . , Xn] be a polynomial, such that P = cXα1
1 · · ·Xαn

n + Q for some

c ∈ R, αi ∈ N for 1 ≤ i ≤ n, and Q ∈ R[X1, . . . , Xn]. Let X = {Xi | αi > 0} and x1, . . . , xn ∈ N1

be such that xi = 1 whenever Xi ∈ X . Then, rmVX (Q)(x1, . . . , xn) = Q(x1, . . . , xn).

According to Proposition 5, we also assume that we only have to deal with polynomials consisting

of monomials like cX1 · · ·Xn (i.e., without any power greater than 1).

Example 19 Consider the constraint q1s1−m1q1s1 ≥ 0, which is translated into a propositional
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formula as follows:
τ(q1s1 −m1q1s1 ≥ 0)

= ((¬q1 ∨ ¬s1) ∧ τ(0 ≥ 0)) ∨ ((q1 ∧ s1) ∧ τ(−m1 + 1 ≥ 0))

= ((¬q1 ∨ ¬s1) ∧ True) ∨ ((q1 ∧ s1) ∧ τ(−m1 + 1 ≥ 0))

Since we have:
τ(−m1 + 1 ≥ 0) = (¬m1 ∧ τ(1 ≥ 0)) ∨ (m1 ∧ τ(0 ≥ 0))

= (¬m1 ∧ True) ∨ (m1 ∧ True)
⇔ ¬m1 ∨m1

⇔ True

we conclude:
τ(q1s1 −m1q1s1 ≥ 0)

= ((¬q1 ∨ ¬s1) ∧ True) ∨ ((q1 ∧ s1) ∧ ((¬m1 ∧ True) ∨ (m1 ∧ True)))
⇔ (¬q1 ∨ ¬s1) ∨ (q1 ∧ s1)

⇔ (¬q1 ∨ ¬s1) ∨ ¬ (¬q1 ∨ ¬s1)

⇔ True

The following results establish the correctness and completeness of our technique.

Theorem 13 (Correctness) Let P ∈ R[X1, . . . , Xn] be a polynomial. If τ(ρ(P ) ≥ 0) (resp.

τ(ρ(P ) > 0)) holds for some x1, . . . , xn ∈ N1, then P (x1, . . . , xn) ≥ 0 (resp. P (x1, . . . , xn) > 0).

Proof. We give the proof for the ‘weak’ case; the strict one is analogous. We prove, by

induction on the number N of monomials with variables in ρ(P ), that whenever τ(ρ(P ) ≥ 0)

holds for some x1, . . . , xn ∈ N1, then ρ(P )(x1, . . . , xn) ≥ 0. By Proposition 5, this implies that

P (x1, . . . , xn) ≥ 0.

If N = 0, then ρ(P ) is a constant polynomial ρ(P ) = K ∈ R. Thus, τ(ρ(P ) ≥ 0) is either

True or False depending on the value of K. In particular, if τ(ρ(P ) ≥ 0) holds this means that

K ≥ 0. Hence ρ(P ) = K ≥ 0.

If N > 0, then we can write ρ(P ) = cX1 · · ·Xm + Q for some c ∈ R, 0 < m ≤ n, and Q ∈
R[X1, . . . , Xn]. Let X = {X1, . . . , Xm}. If τ(ρ(P ) ≥ 0) holds for the sequence (x1, . . . , xn) ∈ Nn

1

viewed as a propositional assignment, then we have the following (mutually exclusive) cases:

1.
∨

1≤i≤m ¬Xi holds for the sequence (x1, . . . , xn). Hence, since τ(ρ(P ) ≥ 0) holds, by

definition of τ we know that τ(rmMX (Q) ≥ 0) also holds for (x1, . . . , xn). Since rmMX (Q)

contains at most as many monomials as Q, by the Induction Hypothesis, we know that

rmMX (Q)(x1, . . . , xn) ≥ 0. Since
∨

1≤i≤m ¬Xi holds for the sequence (x1, . . . , xn), by

Lemma 3, rmMX (Q)(x1, . . . , xn) = Q(x1, . . . , xn). Thus, Q(x1, . . . , xn) ≥ 0. Furthermore,

under the considered conditions, we have that cx1 · · ·xn = 0, hence ρ(P )(x1, . . . , xn) =

Q(x1, . . . , xn) and ρ(P )(x1, . . . , xn) ≥ 0.

2.
∧

1≤i≤mXi holds for the sequence (x1, . . . , xn). Hence, we know that τ(rmVX (Q) + c ≥ 0)

also holds for the sequence (x1, . . . , xn) and, by the Induction Hypothesis, we can assume

that rmVX (Q)(x1, . . . , xn) + c ≥ 0. Since all variables in X take value 1 in (x1, . . . , xn), by
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Lemma 4 rmVX (Q)(x1, . . . , xn) = Q(x1, . . . , xn). Therefore, rmVX (Q)(x1, . . . , xn) + c =

Q(x1, . . . , xn) + c ≥ 0. Since, under the considered conditions, ρ(P )(x1, . . . , xn) = c +

Q(x1, . . . , xn), we conclude that ρ(P )(x1, . . . , xn) ≥ 0.

2

Theorem 14 (Completeness) Let P ∈ R[X1, . . . , Xn] be a polynomial and x1, . . . , xn ∈ N1.

If P (x1, . . . , xn) ≥ 0 (resp. P (x1, . . . , xn) > 0), then τ(ρ(P )(X1, . . . , Xn) ≥ 0) (resp. τ(ρ(P )(X1,

. . . , Xn) > 0)) holds for the sequence (x1, . . . , xn) viewed as a truth assignment.

Proof. Again, we give the proof for the ‘weak’ case only. Proposition 5 can be used to start

with ρ(P )(x1, . . . , xn) ≥ 0 instead of P (x1, . . . , xn) ≥ 0. We also proceed by induction on the

number N of monomials with variables in ρ(P ) to prove that that whenever ρ(P )(x1, . . . , xn) ≥ 0

for some x1, . . . , xn ∈ N1, then τ(ρ(P ) ≥ 0) holds.

If N = 0, then ρ(P ) is a constant polynomial ρ(P ) = K ∈ R. Thus, ρ(P ) = K ≥ 0 means

that τ(ρ(P ) ≥ 0) is True as required.

If N > 0, then we write ρ(P ) = cX1 · · ·Xm + Q for some c ∈ R, 0 < m ≤ n, and

Q ∈ R[X1, . . . , Xn]. Let X = {X1, . . . , Xm}. If P (x1, . . . , xn) ≥ 0 for some x1, . . . , xn ∈ N1,

then we consider the following (mutually exclusive) cases:

1.
∨

1≤i≤m ¬Xi holds for the sequence (x1, . . . , xn). Thus, cx1 · · ·xm = 0 and ρ(P )(x1, . . . , xn)

= Q(x1, . . . , xn) ≥ 0. By Lemma 3, Q(x1, . . . , xn) = rmMX (Q)(x1, . . . , xn) ≥ 0. Since

rmMX (Q) does not contain more monomials than Q, by the Induction Hypothesis, τ(rmMX

(Q) ≥ 0) holds for (x1, . . . , xn) and, by definition of τ , τ(ρ(P ) ≥ 0) also holds for

(x1, . . . , xn).

2.
∧

1≤i≤mXi holds for the sequence (x1, . . . , xn). Hence, cx1 · · ·xm = c and ρ(P )(x1, . . . , xn)

= Q(x1, . . . , xn)+c ≥ 0. By Lemma 4, we can write rmVX (Q)(x1, . . . , xn) = Q(x1, . . . , xn).

Therefore, rmVX (Q)(x1, . . . , xn)+c = Q(x1, . . . , xn)+c ≥ 0. By the Induction Hypothesis,

τ(rmVX (Q)+c ≥ 0) holds for the sequence (x1, . . . , xn) and, by definition of τ , τ(ρ(P ) ≥ 0)

also holds for (x1, . . . , xn).

2

Note that the SAT encoding has a worst-case time complexity (and the size of the encoding)

which is exponential in the maximum number of monomials. This is the case when neither the

rmM nor the rmV operations are able to decrease the number of monomials of their respective

arguments. Thus, one invocation of τ on a constraint of the form p ≥ 0 where p consists of n



50 CHAPTER 5. POLYNOMIAL CONSTRAINT SATISFACTION TECHNIQUES

monomials leads to two invocations of τ on arguments whose polynomials have n−1 monomials

each. In the end, the 2n calls of τ(i ≥ 0) for all i ∈ 0, 1, ..., 2n − 1 will be invoked. For instance,

consider the following constraint:

1 ∗ a0 ∗ a1 + 2 ∗ a1 ∗ a2 + 4 ∗ a2 ∗ a3 + ...+ 2n−1 ∗ an−1 ∗ an ≥ 0

Our translation yields a propositional formula whose size is exponential in the number of

monomials

τ(1 ∗ a0 ∗ a1 + 2 ∗ a1 ∗ a2 + 4 ∗ a2 ∗ a3 + ...+ 2n−1 ∗ an−1 ∗ an ≥ 0)

= ((¬a0 ∨ ¬a1) ∧ τ(rmM{a0,a1}(2a1a2 + 4a2a3 + ...+ 2n−1an−1an) ≥ 0))∨
((a1 ∧ a2) ∧ τ(rmV{a0,a1}(2a1a2 + 4a2a3 + ...+ 2n−1an−1an) + 1 ≥ 0))

= ((¬a0 ∨ ¬a1) ∧ τ(2a1a2 + 4a2a3 + ...+ 2n−1an−1an ≥ 0))∨
((a1 ∧ a2) ∧ τ(2a2 + 4a2a3 + ...+ 2n−1an−1an + 1 ≥ 0))

The size of the encoding could be taken as an indicator of the efficiency of the whole

system, but we have to take into account that the SAT problem is an NP-complete problem.

Thus, the performance of the solver depends on the considered heuristics. Moreover, modern

SAT solvers take propositional formulas in CNF format as input. In order to do so, it is possible

to convert any propositional formula into an equivalent CNF using De Morgan’s laws. However,

this transformation leads to an exponential blowup in the size of formula. The conversion of

propositional formulas to CNF becomes feasible with the transformation presented by Tseitin

in [Tse68]. However, such a transformation introduces linearly many new variables, that is, the

search space grows exponentially.

On the other hand, it should be necessary to study whether this worst-case behaviour

occurs in practice. This is not a trivial task, one first should try to predict the structure of the

polynomial constraints coming from termination problems.

5.2 CSP-based techniques

As said before, a termination problem may become a constraint solving problem. Hence, the

natural way to solve this new problem consists on using techniques coming from the contraint

problem community (see, e.g., [RVW06]).

In this section, we start introducing the most fundamental concepts of Constraint Satisfac-

tion Problem. In the remaining, we introduce our contribution to the development of algorithms

based on constraint satisfaction techniques for solving polynomial constraint coming from termi-

nation problems (see Section 5.2.2). The material in this section has been published in [LNS09].
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5.2.1 Constraint Satisfaction Problems

According to [Tsa95], the Constraint Satisfaction Problem (CSP), basically, is a problem

composed of a finite set of variables, each of which is associated with a finite domain, and a set

of constraints that restricts the values that the variables can simultaneously take. Formally, a

CSP P is characterized by a tuple P = (X,D,C) where:

• X is an n-tuple of variables (x1, x2, . . . , xn),

• D is a corresponding n-tuple of domains (D1, D2, . . . , Dn) such that Di is the domain of

xi, i.e., the possible values for the variables xi,

• C is a t-tuple of constraints (C1, C2, . . . , Ct), where Ci is a relation between variables.

The task of the constraint satisfaction problem is to find for each variable, a value from the

domain of the variable satisfying all the constraints. Formally, a solution to a CSP P is an n-tuple

S = (s1, s2, . . . , sn) where si ∈ Di and each Cj from P is satisfied. Sometimes we denote the

assignment of the variable xi ∈ X to the value d ∈ Di by xi 7→ d. In some cases, several possible

solutions exist, then in a given task one may require to find the set of all solutions or just to find

any solution. When the set of solution is empty the CSP is unsatisfiable. Solving CSP is trivial

using a generate-and-test algorithm. However, this approach is inefficient in practice. In order

to improve the performance of CSP solvers, several algorithms have been proposed to reduce

the search space. These algorithms can be classified in two categories: inference and search,

and combination of both. The basic inference techniques for CSP are the consistency algorithms

for constraint propagation. On the other hand, Backtracking [GB65] is the fundamental search

method for CSP.

The Constraint Satisfaction Problem is a simple but powerful framework which captures a

wide range of significant applications in fields as diverses as artificial intelligence, operational

research, scheduling, graph algorithm and computer visions, although new applications appear

every year. Therefore, an important strength of the CSP comes from its flexibility.

5.2.2 Solving polynomial constraints over small domains of rational numbers

In [CMTU06], Contejean et al., following the ideas in the literature of constraint logic pro-

gramming over finite domains (see, e.g., [CD96]) developed an algorithm for solving Diophantine

constraints over finite domains. During several years, the tool box CiME [CMMU03] in which

the algorithm was implemented for the first time, was considered to be the fastest (maybe the

unique) Diophantine solver for termination tools. The algorithm (with minor variants) was in-
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corporated in the earlier versions of termination tools like AProVE [GST06], Polytool [TS07],

TTT [HM07], and mu-term [Luc04].

The CiME algorithm was used in the earlier version of mu-term as an extended Diophantine

solver [Luc04]. CiME is only able to solve Diophantine inequations yielding nonnegative integers

as solutions. As a result of the study of polynomial interpretations over the reals [Luc05],

mu-term dealt with the task of making the use of rational numbers compatible with this

limitation: given a Diophantine constraint e1 ≥ e2 containing one occurrence of p/q in e1

or e2, we obtain an equivalent constraint q · e1 ≥ q · e2. Then, the multiplication of q is

propagated to all coefficients in e1 and e2, thus removing the occurrences of q in the denominator

of any rational coefficient involving it. This simplification process is repeated until no rational

coefficient is present. This process led to the first automatic termination proofs using polynomial

interpretation over the rationals. But, of course, this process leads to introduce new variables,

so that this approach is not very efficient in practice.

Therefore, the main problem when attempting to use polynomial interpretation is that

one needs efficient an suitable methods to find polynomial interpretations over the rationals

automatically. In order to do so, the idea is to develop an algorithm to solve polynomial

contraints over finite subsets of appropriate real numbers, i.e., a constraint solving algorithm

dealing directly with real coefficients and without introducing more complexity.

An algorithm based on this idea was described in [Luc07]. The algorithm takes benefit

from a suitable choice of domains for the coefficients and an appropriate representation of the

polynomial constraints which permit both fast arithmetic and the use a number of techniques

for safely avoiding a complete exploration of the search space. On the basis of this algorithm,

we developed a CSP-based algorithm for solving polynomial constraints over the rational. In

the following, we describe this algorithm.

Finite domains of powers of 2

The domain of the variables is traditionally selected by the user among the natural numbers,

for instance, N1 = {0, 1}, N2 = {0, 1, 2}, etc. The algorithm works for subsets D of rational

numbers (actually powers of 2): D ⊆ Dm = {0} ∪ {±(2i) | i ∈ Z, 0 ≤ |i| ≤ m} for m ∈ N or

square roots of powers of 2: D ⊆ Dm = {0} ∪ {±(2
i
2 ) | i ∈ Z, 0 ≤ |i| ≤ 2m}. We write D+

m if we

restrict the attention to non-negative numbers. In particular, D+
1 = {0, 2−1, 20, 21} = {0, 1

2 , 1, 2}
includes the non-negative coefficients used (by default) in all currently available termination

tools.

Restricting the attention to such kind of domains allows us reducing the costs of polynomial

arithmetics, see [Luc07] for details.
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Representation of polynomial constraints

The algorithm deals with parametric polynomials P under the form P = (V,M,N,K) for

sets of variables V and polynomials M,N ∈ N[X1, . . . , Xn] and K ∈ Z, i.e., we represent P

by considering the variables V appearing in P (which actually correspond to the parametric

coefficients whose rational values will be given as a result of the constraint satisfaction process),

the positive monomials m ∈ M on one side, the negative monomials n ∈ N , and the constant

coefficient K (which can be positive, negative or null): P = M −N +K. Let Pol be the set of

polynomials as above. Constraints are sets C ⊆ Pol × {weak, strict} of pairs (P, cond) where

cond indicates how the (basic) constraint c = (P, cond) compares P to 0: in a weak (P ≥ 0) or

strict (P > 0) way.

Example 20 The constraint a0m2 +m0 ≥ 0 is represented as follows:

(({a0,m2,m0}, {a0m2,m0},∅, 0), weak)

Recall that the variables represent the parametric coefficients of the polynomials which interpret

the symbols in the signature F . Let V ar(P ) ⊆ {X1, . . . , Xn} be the set of variables occurring in

P and V ar(C) =
⋃

(P,cond)∈C V ar(P ) be the set of variables in C. A solution σ of C is a mapping

σ : V ar(C)→ D such that (σ(P ), cond) holds for all (P, cond) ∈ C, i.e., P (σ(X1), . . . , σ(Xm)) ≥
0 (resp. P (σ(X1), . . . , σ(Xm)) > 0) if cond = weak (resp. cond = strict) and V ar(P ) =

{X1, . . . , Xm}.

Constraint propagation

The constraint solving algorithm makes extensive use of partial evaluation of polynomials P

w.r.t. one of its variables for doing constraint propagation. For instance, given P (X1, X2, . . . , Xn)

and d ∈ D, we could need to obtain P1,d(X2, . . . , Xn) = P (d,X2, . . . , Xn). This involves the

partial evaluation of each monomial m = cXα1
1 · · ·Xαn

n in P and the reconfiguration of the

obtained polynomial as a tuple (V,M,N,K).

An important aspect of the algorithm is performing frequent partial checkings of the con-

straints in order to cut the search space. This means that we are often able to conclude the truth

or falsity of a basic constraint c = (P, cond) with variables without instantiating any variable in

P . A (three valued) predicate checkCS performs this task. checkCS(c) returns either true if c

is definitely true, or false if c is definitely false, or ?? otherwise. According to the representation

P = (V,M,N,K), and since we use domains D of non-negative numbers, we have the following

cases:

1. M ≡ 0 ∧K < 0⇒ P 6≥ 0 ∧ P 6> 0.
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2. N ≡ 0 ∧K > 0⇒ P ≥ 0 ∧ P > 0.

3. N ≡ 0 ∧K = 0⇒ P ≥ 0.

4. M ≡ 0 ∧K = 0⇒ P 6> 0.

here M ≡ 0 means that M is identically null.

Example 21 By using rule 3 above we can remove (or definitely replace by True) constraints

such as

a0m2 +m0 ≥ 0

m1s0 +m2s0 ≥ 0

q2s1 ≥ 0

Let β be the maximum element of D. Then, for all x1, . . . , xn ∈ D,

• K −N(β, . . . , β) ≤ P (x1, . . . , xn), and

• P (x1, . . . , xn) ≤M(β, . . . , β) +K

This leads to the following:

1. M(β, . . . , β) +K < 0⇒ P 6≥ 0 ∧ P 6> 0.

2. K −N(β, . . . , β) > 0⇒ P ≥ 0 ∧ P > 0.

3. K −N(β, . . . , β) ≥ 0⇒ P ≥ 0.

4. M(β, . . . , β) +K = 0⇒ P 6> 0.

In particular, if β = 1 = 20, then we can easily computeM(β, . . . , β)+K andK−N(β, . . . , β)+K

by just adding the coefficients of the corresponding monomials, and then adding (or substracting

from) the constant K.

The constraint solving algorithm

We describe the algorithm by means of two mutually recursive functions solveCS and

solveCSvar [Luc07]. The initial call is solveCS(D, [ ], [ ], C), where D is a domain (of co-

efficients) where the variables take values and C is the constraint to be solved.
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solveCSvar(D,V, pSol, {c} ∪ C)

if CDPol = CDfail then ∅

else
⋃

(c,d)∈CDunknown solveCS(D,xi : V, d : pSol, {c} ∪ C(d))

∪
⋃

(c,d)∈CDtrue solveCS(D,xi : V, d : pSol, C(d))

where

(P, cond) = c

(X ∪ {xi}, _, _, _) = P

CDPol = {((pEval(P, i, d), cond), d) | d ∈ D}
CDfail = {(c, _) ∈ CDPol | checkCS(c) = false}
CDtrue = {(c, _) ∈ CDPol | checkCS(c) = true}
CDunknown = {(c, d) ∈ CDPol | checkCS(c) = ??}
C(d) = {pEvalCS(c, xi, d) | c ∈ C}

Figure 5.3: Constraint solving algorithm: solveCSvar

1. solveCS(D,V, pSol, C) performs an initial checking of all basic constraints (P, cond) in the

constraint C by using checkCS. Here, D and C are as above, V is a set of (already visited)

variables which are expected to take values on D, and pSol is a list of partial solutions

to variables in V . If all constraints are true, then a singleton containing a pair (V, pSol)

consisting of the list of previously visited variables V and the list pSol of partial solutions

for these variables is returned. A partial solution is just a list d1, . . . , dk of values which

correspond to the current list of visited variables x1, . . . , xk, i.e., xi 7→ di will be a binding

of the final solution of the constraint. When the final solution is returned, variables x

which were not instantiated receive a binding x 7→ d for an arbitrary d ∈ D (typically

x 7→ 0).

2. solveCSvar(D,V, pSol, C) tries values d ∈ D on a variable xi occurring in a constraint

c = (P, cond) in C. The instantiation of xi with a value d yields a new constraint ci,d =

(Pi,d, cond) consisting of the partial evaluation Pi,d of P with d on the variable xi and

the same condition cond. The constraint ci,d is checked by using checkCS and if the

inconsistency of ci,d is shown, then d is discarded as a possible value for solving c on xi.

Otherwise, the variable xi is recorded as ‘visited’ and the value d which permits to make

progress is registered in the list of tuples which are partial solutions. Also, each constraint

in C−{c} is partially evaluated w.r.t. xi and d as above and a new problem Ci,d is raised.

If ci,d is found true, then the constraint solving process continues with Ci,d. If nothing can

be said about ci,d, then the constraint solving process continues with {ci,d} ∪ Ci,d.
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solveCS(D,V, pSol, C)

if Cfail 6= ∅ then ∅
else if CnoTrue = ∅ then {(V, pSol)}

else solveCSvar(D,V, pSol, C ′)

where

CnoTrue = {c ∈ C | checkCS(c) 6= true}
Cfail = {c ∈ CnoTrue | checkCS(c) = false}
C ′ = {c ∈ CnoTrue | checkCS(c) = ??}

Figure 5.4: Constraint solving algorithm: solveCS

The complete description of the two functions is in Figure 5.8 and 5.4.

Improving the performance using CSP techniques

The algorithm presented in the previous section is considered a non-binary CSP with

non-linear and global constraints. Many of the filtering (such as node-consistency and arc-

consistency) and solving techniques cannot be directly applied to this problem due to the fact

that they are focused to binary CSPs. Although some of these techniques can be extended to

non-binary CSPs, they do not maintain the same level of efficiency.

In this section, we present a CSP algorithm for solving this problem. We have modeled the

problem as a CSP in such a way that each variable maintains its own domain. Here, we present

all filtering techniques and the new algorithm. The new algorithm improves the computational

complexity of the previous version and also maintains a good behavior compared to other well

known state of the art approaches.

The constraints in the CSP model are polynomials with p + 1 monomials with integer

coefficients ki with sign (−1)ni for 1 ≤ i ≤ p consisting of q variables xj for 1 ≤ j ≤ q raised to

integer exponents rij ≥ 0 within the i-th monomial:

i=p∑
i=1

(−1)niki
j=q∏
j=1

x
rij
ij + (−1)n0k0 ≥ 0, ni ∈ {1, 2}, ki ∈ N, i ≥ 0; (5.1)

i=p∑
i=1

(−1)niki
j=q∏
j=1

x
rij
ij + (−1)n0k0 > 0, ni ∈ {1, 2}, ki ∈ N, i ≥ 0; (5.2)
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Without loss of generality, we consider the constraint of type (5.1) and (5.2) as polynomial

representations P ∈ Z[X1, . . . , Xp], where variables X1, . . . , Xp range on D.

We have developed some static and dynamic filtering techniques to prune search space in

the resultant CSP. These techniques are classified as preprocessing techniques carried out before

search and constraint propagation and filtering techniques carried out during search.

• Node-Consistency (NC) The simplest consistency technique is called node consistency.

If the domain D of a variable X contains a value a that does not satisfy a unary constraint

on X (i.e., a constraint occurring an unique variable X), then the instantiation of X to a

will always result in immediate failure. Thus, the node inconsistency can be eliminated by

simply removing those values from the domain D of each variable X whose instantiation

leads to a unsatisfiable constraint.This technique can be directly applied to our problem.

• Arc-Consistency (AC) If the CSP is node-consistent, then unary constraints can be

removed because they all are satisfied. A CSP is arc-consistent if for any pair of constrained

variables xi, xj , and for every value a in Di, there is at least one value b in Dj such that

the assignments xi 7→ a and xj 7→ b satisfy the constraints for xi and xj . Any value in

the domain Di of variable xi that is not arc-consistent can be removed from Di since it

cannot be part of any solution. We apply this technique to filter the domain of many

variables of the problem. Due to our problem is modeled as a non-binary CSP, we must

apply generalized arc-consistency. Thus, a non-binary CSP is Generalized Arc-Consistent

(GAC) if and only if for any variable in a constraint and value that it is assigned, there

exist compatible values for all the other variables in the constraint [Mor88]. However, due

to temporal complexity, we only apply arc consistency to binary constraints and k-ary

constraints once k − 2 variables have been instantiated.

• Constraint Ordering (CO). It is well known that a search algorithm for constraint

satisfaction requires the order in which variables and constraints are to be considered as

well as the order in which the values are assigned to the variable on backtracking. Choosing

the right order of variables, values and constraints can noticeably improve the efficiency of

constraint satisfaction. Many of the heuristics that improve backtracking-based algorithms

are based on variable ordering, value ordering [SF06] and constraint ordering [Sal08], due

to the additivity of the variables, values and constraints.

Due to the nature of the problem, it can be observed that a CSP composed by only

constraints of type (5.1) and with k0 = 0 can be directly solved by assigning value 0

to all variables. Most problems consist of a set of constraint of type (5.1) with k0 = 0

and a single constraint of type (5.2). In this way, this constraint will be studied first.

Furthermore some constraint are tightest than other. These constraints are composed

mainly by negative monomials ni = 1 so that the positive monomials must be composed
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by variables assigned to high values. Thus the constraint ordering is:

i=p∑
i=1

(−1)niki
j=q∏
j=1

x
rij
ij + (−1)n0k0 > 0, ni ∈ {1, 2}, ki ∈ N, i ≥ 0; (5.3)

i=p∑
i=1

−ki
j=q∏
j=1

x
rij
ij + (−1)n0k0 ≥ 0, ni ∈ {1, 2}, ki ∈ N, i ≥ 0; (5.4)

i=p∑
i=1

(−1)niki
j=q∏
j=1

x
rij
ij + (−1)n0k0 ≥ 0, n0 ∈ {1, 2}, ki ∈ N, i ≥ 0; (5.5)

• Variable Ordering (varOrd). We maintain the following variable ordering: choose the

variables which participate in most constraints. This heuristic follows the first-fail principle

which can be explained as “To succeed, try first where you are most likely to fail”. This

heuristic is complementary with the constraint ordering heuristic.

• Value Ordering (valueOrd). Once the decision is made to instantiate a variable, it may

have several values available. Again, the order in which these values are considered can

have substancial impact on the time to find the first solution. Our heuristic classifies the

values of each variable according to the number of positive or negative monomials in which

the variables is involved. Thus, the values of variables that participate in more positive

monomials than negative ones are classified in decreasing order. Similarly, the values of

variables that participate in more negative monomials than positive ones are classified in

increasing order.

We describe our new CSP algorithm by means of four functions preProcess, checking,

solveCS, and solveCSvar. The initial call is preProcess(D,V,C) where D is the domain of

the variables. Now, we briefly describe these functions:

1. preProcess(D,V,C) performs an initial checking (by means of checking, see below) of

all basic constraints (see Figures 5.5 and 5.6). If all constraints are true, then a possible

solution is returned, and each variable x ∈ V receives a binding x 7→ d for an arbitrary

d ∈ Dx. If there are inconsistent constraints in C, then no solution is returned. Otherwise,

a decreasingly ordered list which represents the variable ordering is generated, taking into

account the number of constraints involving each variable (varOrd). The domain of each

variable is also ordered with respect to the number of positive and negative monomials

involving each variable (valueOrd). Finally, filtering techniques such as node-consistency

and arc-consistency are applied in order to reduce the number of elements in the domains.

If a variable x has a single element d in its domain, then x is instantiated with d in the

constraint and x 7→ d becomes a binding of the final solution of the constraint. Variables



5.2. CSP-BASED TECHNIQUES 59

preProcess(D,V,C) =

if Cfail 6= ∅ then ∅
else if CnoTrue = ∅ then {(V, sol)}

else solveCS(D′′, V − Vtrivial, (Vtrivial, {v ∈ Vtrivial | Dv}), C ′′, vOrd)

where

(CnoTrue, Cfail, C ′) = checking(C)

sol = {SelectF irstV alue(D(v)) | v ∈ V }
D′ = Node/Arc− Consistency(D,V,C ′)

vOrd = defineV ariableOrd(D′, V, C ′)

D′′ = defineV alueOrd(D′, V, C ′)

Vtrivial = {v ∈ V : |D′v| = 1}
C ′′ = {pEvalCS(c, v,D′v) | c ∈ C ∧ v ∈ Vtrivial}

Figure 5.5: Constraint solving algorithm: preProcess

checking(C) =

(CnoTrue, Cfail, C ′)

where

CnoTrue = {c ∈ C | checkCS(c) 6= true}
Cfail = {c ∈ CnoTrue | checkCS(c) = false}
C ′ = {c ∈ CnoTrue | checkCS(c) =??}

Figure 5.6: Constraint solving algorithm: checking

whose domain is empty make all constraints containing them inconsistent; thus, no solution

is returned. When the final solution is returned, variables x which were not instantiated

receive a binding x 7→ d for an arbitrary d ∈ Dx (typically x 7→ 0).

2. checking(C) performs a checking of all basic constraints (P, cond) in the constraint C by

using checkCS and returning them partitioned as trivial (definitely true), inconsistent

(definitely false) or ??.

3. solveCS(D,V, (VpSol, pSol), C, vOrd) performs an initial checking of all basic constraints

(see Figures 5.7 and 5.8). If all constraints are true, then a singleton containing a pair

(VpSol, pSol) consisting of the list of previously visited variables VpSol and the list pSol of

partial solutions for these variables is returned. Otherwise, over the non-trivial constraints
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solveCS(D,V, (VpSol, pSol), C, vOrd) =

if Cfail 6= ∅ then ∅
else if CnoTrue = ∅ then {V pSol, pSol}

else solveCSvar(D′, V − Vtrivial, (Vtrivial ∪ VpSol, {Dv | v ∈ Vtrivial} ∪ pSol), C ′′, vOrd)

where

(CnoTrue, Cfail, C ′) = checking(C)

D′ = Node/Arc− Consistency(D,V,C ′)

Vtrivial = {v ∈ V : |D′v| = 1}
C ′′ = {pEvalCS(c, v,D′v) | c ∈ C ′ ∧ v ∈ Vtrivial}

Figure 5.7: Constraint solving algorithm: solveCS

is performed the node-consistency and arc-consistency filtering in order to prune inconsis-

tent values. Then, trivial variables (a single element in its domain) are instantiated again.

A partial solution is just a list d1, . . . , dk of values which correspond to the current list of

visited variables x1, . . . , xk, i.e., each xi 7→ di will be a binding of the final solution of the

constraint.

4. solveCSvar(D,V, (VpSol, pSol), C, vOrd) tries values d ∈ Dxi on a variable xi occurring in

a constraint c = (P, cond) in C. The variable xi is the most involved variable in P with

respect to the initial constraint. The instantiation of xi with all values d ∈ Dxi yields a

new set of constraint CDPol whose elements ci,d = (Pi,d, cond) consisting of the partial

evaluation Pi,d of P with d on the variable xi and the same condition cond. The constraint

ci,d is checked by using checking and if the inconsistency of ci,d is shown, then d is discarded

as a possible value for solving c on xi. Otherwise, the variable xi is removed from V and

xi together with the value d which permits to make progress is registered in the list of

tuples which are partial solutions. Also, each constraint in C − {c} is partially evaluated

w.r.t. xi and d as above and a new problem Ci,d is raised. Then, Ci,d is reordered with

respect to the constraint ordering defined (CO). If ci,d is found true, then the constraint

solving process continues with Ci,d. If nothing can be said about ci,d, then the constraint

solving process continues with {ci,d} ∪ Ci,d.

In Chapter 6, we evaluate empirically these algorithms and we show that the introduction

of standard techniques for modeling and treating constraint solving problems as CSP problems

leads to important improvements in the efficiency.
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solveCSvar(D,V, (VpSol, pSol), {c} ∪ C, vOrd) =

if CDPol = Cfail then ∅

else
⋃

(c,d)∈CD′ solveCS(D,V − xi, (xi ∪ VpSol, d ∪ pSol), CO({c} ∪ C(d)), vOrd)∪⋃
(c,d)∈CDtrue solveCS(D,V − xi, (xi ∪ VpSol, d ∪ pSol), CO(C(d)), vOrd)

where

(P, cond) = c

xi = SelectF irstV ar(P, vOrd)

CDPol = {((pEval(P, i, d), cond), d) | d ∈ Dxi}
(CDnoTrue, CDfail, CD

′) = checking(CDPol)

C(d) = {pEvalCS(c, xi, d) | c ∈ C}
CO(Cs) = ConstraintOrdering(Cs)

Figure 5.8: Constraint solving algorithm: solveCSvar

5.3 Linear Programming and Hybrid Methods

As far as we know, the first implementation of a completely automatic system for proving

termination of TRSs using polynomial interpretations was reported by Steinbach [Ste94]. The

basic idea was to transform the termination problem into a set of linear constraints, which were

solved using linear programming techniques. This section is devoted to the study of methods

based on linear programming for proving termination.

First, in Section 5.3.1 we give a short introduction to Linear programming. Afterwards,

in Section 5.3.2, we describe methods for dealing with polynomial constraint from termination

problems by means of Hybrid methods mixing Linear Programming and CSP solvers. The

material in this section has been published in [LMNS08].

5.3.1 Operational Research and Linear Programming

Operational Research (OR) is an interdisciplinary branch of applied mathematics and formal

science that uses methods such as mathematical modeling, statistics, and algorithms to arrive

at optimal or near optimal solutions to complex problems.

Linear Programming (LP) is a technique for optimization of a linear objective function,

subject to linear equality and inequality constraints. Informally, linear programming deter-

mines the way to achieve the best outcome in a given mathematical model given some list of

requirements represented as linear equations. Formally, linear programming techniques permit
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a direct computation of the whole space of solutions of a constraint solving problem A~x ≥ ~b,
where A ∈ Rm×n is a m× n-matrix of real numbers and ~x and ~b are vectors of n real numbers:

~x,~b ∈ Rn. No inspection of the search space of solutions is required.

A number of economic, industrial, financial, and military systems can be modeled by math-

ematical systems of linear inequalities and equations, so that, linear programming is one of the

most successful disciplines within the field of operational research. The classical tool for solving

the linear programming problem in practice is the class of simplex algorithms proposed and

developed by George Dantzig [Dan63].

The most dramatic new development in operational research during the 1980s was the dis-

covery of the interior-point approach to solving linear programming problems. This discovery

was made in 1984 by Narendra Karmarkar [Kar84]. Although this particular algorithm expe-

rienced only mixed success in competing with the simplex method, the key solution concept

appeared to have a great potential for solving huge linear programming problems beyond the

reach of the simplex method.

Obviously, the key assumption in LP is that all its functions are linear. Although this as-

sumption essentially holds for numerous practical problems, it frequently does not hold. There-

fore, it is often necessary to deal directly with nonlinear programming problems. Unfortunately,

no algorithm that solves every specific problem fitting this format is available. However, sub-

stantial progress has been made for some important special cases by making various assumptions

about these functions. This is the case of Geometric Programming (GP) [BKVH07], where new

developments lead to efficiently and reliable solutions of large-scale (GP) problems.

5.3.2 Linear programming techniques for termination problems

As said before, Steinbach [Ste94] reported the first implementation of a completely automatic

system for proving termination of TRSs using polynomial interpretations. Steinbach proposed

the use of parametric polynomial interpretations (over the reals) where the shape of polynomials

is usually simple (e.g., linear polynomials, but see 3.7) and the coefficients of the polynomials

are variables which range on real numbers which are greater than or equal to 1. The constraints

which are obtained following Steinbach’s method are linear constraints over the reals which are

then solved by the Simplex algorithm. The obtained solutions provide concrete values for the

variable coefficients of the parametric polynomial interpretation which witness termination of

the original TRS.

An appealing aspect of Steinbach’s proposal is the use of standard methods from linear

programming to solve polynomial constraints over real domains. Unfortunately, Steinbach’s

method has a number of drawbacks. In particular, due to the use of Simplex, he needs to
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linearize all inequalities which are obtained during the process. His linearization procedure

[Ste94, Lemma 4.9] leads to an incomplete and rather unpractical algorithm.

Furthermore, his constraints are expected to be solved over a domain D of real numbers

(actually an interval) which are bigger than or equal to 1: D = [µ,+∞) for some µ ≥ 1,which is

quite a strong restriction in modern, dependency-pair-based proofs of termination (see Chapter

4). In Section 4, it is proved that some termination problems require the use of polynomial

interpretations with coefficients c ∈ [0, 1) below 1 if polynomial interpretations are used to

achieve the proof. Thus, Steinbach’s approach could not be used to solve such kind of problems.

In the following section, we discuss possible combinations of Linear Programming (LP)

and Constraint Satisfaction Problems (CSP) techniques which can be appropriate for their

implementation as part of termination tools.

The main idea is considering a constraint C as decomposed into a linear part L and a

nonlinear part D. Then, we can use LP-based techniques to obtain a complete and exact repre-

sentation of the space of solutions of L as a convex polyhedron having a finite representation in

terms of a finite number of tuples of rational numbers (which can be represented and operated

by using standard techniques without introducing lack of precision). Then, we can use CSP-like

techniques to deal with the nonlinear part D of the constraint, hopefully taking advantage of

the explicit representation of the set of solutions for the linear part. These ideas have been

published in [LMNS08].

A complete hybrid constraint solving method

The space of solutions to a linear constraint-solving problem A~x ≥ ~b is a convex polyhedron

P . A convex polyhedron P ⊆ Rn admits a finite representation P = Q+C where Q is a polytope

and C is a polyhedral cone (see, e.g., [Sch86, Corollary 7.1b]). This means that, if P 6= ∅, there

are s points ~p1, . . . , ~ps ∈ Rn and t vectors ~v1, . . . , ~vt ∈ Rn such that P = conv.hull({~p1, . . . , ~ps})+

cone({~v1, . . . , ~vt}). There are algorithms which, given a linear constraint A~x ≥ ~b compute

~p1, . . . , ~ps ∈ Rn and ~v1, . . . , ~vt to obtain a finite representation of the space of solutions P .

Therefore, for all ~x ∈ P , there are s non-negative numbers α1, . . . , αs ≥ 0 such that∑s
i=1 αi = 1 and t non-negative numbers β1, . . . , βt ≥ 0 such that ~x =

∑s
i=1 αi~pi +

∑t
j=1 βj~vj .

Given a constraint-solving problem C = L]D where L consists of (all) linear constraints in

C involving variables x1, . . . , xn, we can obtain the finite representation P = Q∪C of the convex

polyhedron P which represent all solutions to L. Now we can replace the variables x1, . . . , xn

in the nonlinear part D of C by their corresponding expressions xj =
∑s

i=1 αipi,j +
∑s

j=1 βjvi,j .
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In this way, for each constraint P (x1, . . . , xn, xn+1, . . . , xp) ≥ 0 we obtain a new constraint

P ′(A1, . . . , As, B1, . . . , Bt, xn+1, . . . , xp) ≥ 0

for new (fresh) variables A1, . . . , As, B1, . . . , Bt which play the role of αi and βi above. We

obtain a new set D′ of constraints as follows:
D′ = {P ′(A1, . . . , As, B1, . . . , Bt, xn+1, . . . , xp) ≥ 0 | P (x1, . . . , xn, xn+1, . . . , xp) ≥ 0 ∈ D}

∪ {P ′(A1, . . . , As, B1, . . . , Bt, xn+1, . . . , xp) > 0 | P (x1, . . . , xn, xn+1, . . . , xp) > 0 ∈ D}
∪ {A1 + · · ·+As = 1}

where we implicitly assume that A1, . . . , As, B1, . . . , Bt ≥ 0. Note that D′ contains N + 1

constraints if D contains N constraints.

Theorem 15 C has a solution if and only if D′ has a solution.

The main problem with the procedure sketched above is that it can lead to sets D′ containing

more complex constraints than those in D.

Example 22 Consider the set of two constraints:

(1) m1 − 1 ≥ 0

(2) m1s1 −m1 ≥ 0

Constraint (1) is linear and its space of solutions (for the variable m1) can be represented by

α{1} + β{1} for α = 1 and all β ≥ 0. We can use the identity m1 = 1 + B to transform

constraint (2), thus obtaining

(2′) (1 +B)s1 − 1−B = s1 +Bs1 −B − 1 ≥ 0

In the following section we describe an iterative algorithm which proceeds in quite a different

way.

A two-phase constraint-solving procedure

We present a two-phase procedure to solve polynomial constraints over the reals. To this

end, we iteratively apply an LP technique to solve the linear problem and then a CSP solver is

committed to solve the nonlinear part of the problem.

Let us consider C0 the set of constraints. This set is composed by linear constraints LC0 and

nonlinear constraints NLC0. Thus: C0 = LC0 ∪NLC0. Without loss of generality, we consider

that LC0 6= ∅. We represent V arLC0 as the variables involved in LC0 and V arNLC0 as the

variables involved only in NLC0. The pseudo-code of the procedure is presented in Figure 5.9.

The procedure TwoPhaseSolver works as follows:
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TwoPhaseSolver(C0)

i = 0;

SolLC = ∅;

Ci ← RemoveTrivial(Ci);

Fail = False;

while LCi 6= ∅ AND NOT Fail {
k = 0;

SolLCi
← LCSolver(LCi);

Solk = ∅;

while SolLCi
6= ∅ AND Solk = ∅ {

k + +;

Select Solk ∈ SolLCi

SolLCi
← SolLCi

\ {Solk};
Ci+1 ← ConstraintPropagation(Solk, NLCi);

if NOT Inconsistent(Ci+1) then

{ SolLC = SolLC ∪ Solk;

Ci+1 ← RemoveTrivial(Ci+1) }
else Solk = ∅; }

if SolLCi
= ∅ AND Solk = ∅ then Fail = True;

else i+ +; }
if Fail then Sol = ∅
else if SolLC = ∅ OR NLCi = ∅ then Sol← SolLC

else {
SolNLC ← CSPSolver(NLCi);

if SolNLC 6= ∅ then Sol← SolLC ∪ SolNLC ;

else Sol = ∅; }
return Sol;

Figure 5.9: A two-phase constraint-solving procedure

1. The function RemoveTrivial(Ci) eliminates all trivial linear and nonlinear constraints.

2. The function LCSolver(LCi) solves the corresponding linear programming problem; we

can thought of this function as providing a possibly infinite set of solutions to the linear

problem (usually obtained from the extreme points of the hyper-polyhedron which contains

the solutions to the linear problem). The solution generated by the LP technique is a

partial solution to the global problem. Thus, the problem becomes easier, because many

variables have been assigned and now some nonlinear constraints eventually become linear.

3. The algorithm selects the k-th solution obtained by the linear problem which assigns values

to all variables involved in these linear constraints.

4. We use ConstraintPropagation(Solk, NLCi) to propagate the effect of the assigned value

to the remainder nonlinear constraints. If no inconsistency is found, then we take Solk as

a new component of the final solution and continue with a new subset of linear constraints

which is (eventually) obtained from the recently instantiated ones in NLCi.

5. Finally, if all constraints remain nonlinear, then a CSP solver must solve the simplified
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problem composed of nonlinear constraints. If a solution is found then the procedure

builds a complete solution and returns it.

In principle, an infinite number of (boundary) solutions are possible for the linearized prob-

lems. This means that our whole procedure could run forever if the original constraint has no

solution.

Example 23 Let us consider the set of polynomial constraints presented in Example 14: We

first remove the trivial constraints (1), (3) and (7) using RemoveTrivial. Constraint (2) is the

unique linear constraint; it can be solved using Simplex:

(2) m1 − 1 ≥ 0→ m1 = 1

Once m1 is given a value, the constraint (4) becomes linear, so it is solved by using Simplex

again:

(4′) s1 − 1 ≥ 0→ s1 = 1

Once m1 and s1 are assigned, the constraints (5’), (9’), and (12’) become trivial, so they

can be removed by the RemoveTrivial function:

(5′) m2 −m2 ≥ 0

(9′) q1 − q1 ≥ 0

(12′) Q1 −Q1 ≥ 0

Finally, the remaining constraints are nonlinear constraints, so that the CSP solver is com-

mitted to solve the remaining nonlinear problem.

(6) a0q1 + q2s0 + q0 − a0 ≥ 0

(8′) q1s0 + q2s0 −m0q1 − q2s0 − s0 ≥ 0

(10′) −m2q1 ≥ 0

(11) Q1s0 −m0Q1 > 0

(13′) −m2Q1 ≥ 0

The assignments m2 = 0, q1 = 1, Q1 = 1, q2 = 1, s0 = 1,m0 = 0, q0 = 0, a0 = 0 satisfy the

constraints above, and a solution to the global problem is found.

In Chapter 6, we evaluate empirically the performance of a prototype of two-phase-solver

with a CSP solver. The evaluation show that the use of linear programming techniques reduces



5.4. COMPUTER ALGEBRA TECHNIQUES 67

the total time for solving all problems. However, this approach returns inconsistency in some

consistent problems due to the LP technique (Simplex) returns only one partial solution which

does not take part in a global solution.

This situation could be improved if the LP technique could retrieve several solutions, so that

the algorithm could backtrack when an inconsistency over the partial solution is found. But

the improved solver would be incomplete as well, since we have to select a subset of all infinite

solutions provided by the LP technique and we cannot predict a priori which partial solutions

are consistent with the global solution.

5.4 Computer Algebra Techniques

Real Algebraic Geometry [BCR98] investigates the properties of sets of real numbers de-

fined by means of polynomial constraints. The concepts, algorithms and tools coming from this

field (see, e.g., [BPR03]) should be further explored and applied in termination of Term Rewrit-

ing Systems when polynomial orderings are used. So far, these techniques have been hardly

considered, but we believe that they can lead to interesting results even in a theoretical per-

spective. Martin and Shand [MS00] already suggested that Gröbner basis and polynomial ideals

[CLO97, Win96] should be considered as a uniform framework for understanding polynomial

termination proofs. Rouyer’s PhD Thesis has already explored the use of Sturm’s Theorem to

develop an algorithm to decide whether the sign of a given polynomial with integer coefficients

change on a given n-dimensional rectangle [Rou91]. This property is then used in proofs of

polynomial termination of TRSs. Recently, Lucas [Luc07] used Tarski-Seidenberg’s principle to

prove that considering polynomial interpretations with real algebraic coefficients2 suffices for

polynomial based termination proofs.

A promising technique, not considered in proof of termination, is the root classification of

parametric polynomials. In [YX06], Yang and Xia proposed a method of quantifier elimination

for quartics, i.e., polynomial constraints of the form: (∀x > 0)(x4 + ax3 + bx2 + cx + d > 0)

and (∀x > 0)(x4 + ax3 + bx2 + cx + d ≥ 0). Liang, Jeffrey, and Moreno [LJM08] proposed a

new algorithm for the automatic computation of the complete root classification of a parametric

polynomial on an interval. The idea is to collect all possible roots on the interval, together with

the conditions that its coefficients must satisfy for each case. The package implementing this

algorithm will be incorporated in future versions of Maple. These approaches do not completely

fit with our setting, but they should be considered for future developments.

In previous chapters, we have studied that the satisfaction of constraints coming from poly-
2A real number x ∈ R is said to be algebraic if it satisfies an equation xn + an−1x

n−1 + · · ·+ a1x+ a0 = 0, of

finite degree n where ai ∈ Q for 0 ≤ i ≤ n− 1. A non-algebraic real number is said to be transcendental.
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nomial interpretations over the naturals is, in general, undecidable [Mat70]. On the other hand,

considering polynomial constraints over the reals, we obtain a constraint solving problem which

is in the first order theory of real closed fields. Dershowitz [Der79] noticed that, according to

Tarski [Tar51], the satisfaction of such polynomial constraints then becomes decidable. In other

words, the termination problem can be encoded as an instance of the general decision problem

for the first order theory of the reals closed fields investigated by Tarski as well. This was the

main argument of Dershowitz for proposing the use of polynomials over the reals in proofs of

termination. Consequently, instead of using the (efficient but incomplete) Hong and Jakuš crite-

rion, Real Algebraic Geometry provides complete methods (quantifier elimination) for deciding

about the satisfiability of polynomial constraints.

In this section, we only focus on quantifier elimination for sentences in the first-order logic

of real closed fields.

The concepts introduced in this section have been taken from [Win96].

5.4.1 Quantifier elimination for Real Closed Fields

Many interesting problems of real algebraic geometry can be stated as systems of polynomial

equations, inequations, usually with some structure of quantification. Quantifier elimination

provides an approach to solving such problems. This is the case of the polynomial interpretation

method.

The elementary theory of real closed fields (ETRCF) is the first-order theory with the con-

stants 0 and 1, function symbols +, −, ·, predicate symbols =, >, ≥, <, ≤, 6= (elementary

algebra), and an axiom system consisting of the field axioms.

A standard atomic formula is an expression of the form p ∼ 0, where p is a (multivariate)

integral polynomial (the coefficients of these polynomials have to be integers) and∼ is a predicate

symbol in ETRCF. A standard formula is a formula in ETRCF in which the atomic formulas

are all standard atomic formulas. A standard prenex formula is a standard formula in prenex

form, i.e., a sequence of quantifiers followed by a quantifier free standard formula.

The problem of quantifier elimination for real closed fields can be expressed as: for a given

standard prenex formula ϕ, find a standard quantifier-free formula ψ such that ψ is equivalent

to ϕ.

Tarski [Tar51] proposed a quantifier elimination algorithm for transforming any formula of

the theory of real closed fields into an equivalent formula that contains no quantifiers. He also

showed how to decide whether a formula, which does not contain quantifiers and variables, is

true. Also other approaches have been suggested [Sei54, Coh69]. Unfortunately, most of them
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suffer from a high complexity since the decision procedure is not elementary recursive. A real

breakthrough was achieved by Collins with his CAD (Cylindrical Algebraic Decomposition) al-

gorithm [Col75]. A recent work by Basu, Pollack and Roy [BPR96] presents a decision algorithm

which is doubly exponential in the number of variables.

Our aim is to investigate the complexity of Quantifier Elimination in practice, concretely in

proofs of termination of TRSs.

To this end, we use the Computer Algebra System Mathematica [Wol08] for computing cylin-

drical decomposition of a set of inequalities (using the command CylindricalDecomposition).

Example 24 Let us consider the following set of constraints:

(m1 − 1)x+m2y +m0 ≥ 0

(m1s1 −m1)x+ (m2s1 −m2)y + (m1 +m2)s0 ≥ 0

(M1s1 −M1)x+ (m2s1 −m2)y + (M1 +M2)s0 > 0

Note that, the variables x, y are universally quantified, but the coefficients (m0,m1,m2, s0, s1,M1,

M2) are existentially quantified (and precede the universal quantification in the formula). As

said above, if all variables in a formula are quantified, then the equivalent quantifier-free formula

is clearly either true or false. Consequently, we do not explicitly quantify the coefficients in the

example.

Then, we compute the cylindrical decomposition in Mathematica:

> p1 = (m1−1)∗x + m2∗c0 + m0 >= 0

m0 + c0∗m2+ (−1+m1) x >= 0

> p2 = (M1∗ s1 − M1) x + (m2∗ s1 − m2) y + (M1 + M2) s0 > 0

(M1 + M2) ∗ s0 + (−M1 + M1∗ s1 ) x + (−m2 + m2∗ s1 ) y > 0

> p3 = (m1∗ s1 − m1) x + (m2∗ s1 − m2) y + (m1 + m2) s0 >= 0

(m1 + m2) s0 + (−m1 + m1∗ s1 ) x + (−m2 + m2∗ s1 ) y >= 0

> c ineq = M1 >= 0 && M2 >= 0 && m1 >= 0 && m2 >= 0 && m0 >= 0 && s1 >= 0 && s0

>= 0 && c0>= 0

M1 >= 0 && M2 >= 0 && m1 >= 0 && m2 >= 0 && m0 >= 0 && s1 >= 0 && s0 >= 0 && c0

>= 0

> formula = ForAl l [{ x , y } , p1 && p2 && p3 && c ineq ]
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f o r a l l {x , y} (m0 + x(−1 + m1) + c0∗m2 >= 0 && (M1 + M2) s0 + x(−M1 + M1∗ s1 ) + y(−
m2 + m2∗ s1 ) > 0 && (m1 + m2) s0 + x(−m1 + m1∗ s1 ) + y(−m2 + m2∗ s1 ) >= 0 && M1

>= 0 && M2 >= 0 && m1 >= 0 && m2 >= 0 && m0 >= 0 && s1 >= 0 && s0 >= 0 && c0

>= 0)

> var s = {x , y ,M1,M2,m1,m2,m0, s1 , s0 , c0}

{x , y ,M1,M2,m1,m2,m0, s1 , s0 , c0}

> TimeConstrained [ Cy l i nd r i ca lDecompos i t i on [ formula , vars , 100 ] //Timing

(28 .2978 , (M1 = 0 && M2 > 0 && m1 = 1 && m2 >= 0 && m0 >= 0 && s1 = 1 && s0 >

0 && c0 >= 0) | | (M1 > 0 && M2 >= 0 && m1 = 1 && m2 >= 0 && m0 >= 0 && s1 =

1 && s0 > 0 && c0 >= 0)

> FindIns tance [ (M1 = 0 && M2 > 0 && m1 = 1 && m2 >= 0 && m0 >= 0 && s1 = 1 &&

s0 > 0 && c0 >= 0) | | (M1 > 0 && M2 >= 0 && m1 = 1&& m2 >= 0 && m0 >= 0 &&

s1 =1 && s0 > 0 && c0 >= 0) , {M1,M2,m1,m2,m0, s1 , s0 , c0 } , Rea ls ]

{M1 −> 0 ,M2 −> 84 ,m1 −> 1 ,m2 −> 0 ,m0 −> 0 , s1 −> 1 , s0 −> 72 , c0 −> 77}

The computation takes 28 seconds and returns the equivalent formula. A possible valid instan-

tiation is provided as well:

{M1 = 0,M2 = 84,m1 = 1,m2 = 0,m0 = 0, s1 = 1, s0 = 72, c0 = 77}

The variable ordering given as input has an important influence in the algorithm:

> TimeConstrained [ Cy l i nd r i ca lDecompos i t i on [ formula ,{ x , y ,M1,M2,m1,m0, s0 ,m2, c0 , s1

} ] , 5 0 ] / /Timing

{101.523 , Aborted }

> TimeConstrained [ Cy l i nd r i ca lDecompos i t i on [ formula ,{m1, s1 ,M1, c0 ,m2,M2,m0, s0 , x , y

} ] , 50 ]//Timing

{7.91344 ,m1 = 1 && s1 = 1 && ((M1 = 0 && c0 >= 0 && m2 >= 0 && M2 > 0 && m0 >= 0

&& s0 > 0) | | (M1 > 0 && c0 >= 0 && m2 >= 0 && M2 >= 0 && m0 >= 0 && s0 >

0) ) }

The previous example shows that the quantifier elimination algorithm is too costly in prac-

tice, due to its generality. Moreover, it heavily depends on the ordering of the input variables,

and it is not easy to predict a suitable ordering for them. Hence, this leads to considering re-

stricted classes of polynomial interpretations and other simplifications of this general procedure.
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In [BPR03], a whole chapter is devoted to the Existencial Theory of the Reals. The decision

problem for the existencial theory of the reals is to decide the truth or falsity of a sentence

(∃X1) . . . (∃Xn)F (X1, . . . , Xn)

where F (X1, . . . , Xn) is a standard atomic formula. Thus, this method is an special case of

the general decision problem of the theory of the reals.

This special case could be interesting in our setting. It would be put in practice after using

the Hong and Jakuš criterion. But, the main problem is that, since this is a decision problem,

no equivalent constraint is returned. On the other hand, this algorithm is exponential in the

number of variables, so that, it is interesting in our setting and deserves some attention.
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Chapter 6

Evaluation

Over the last years, many algorithms, encodings and new variations of classical algorithms

have been proposed. Often, the only way to get some evidence about their relative power or

usefulness is performing some kind of empirical evaluation. In this chapter, we empirically

evaluate the performance of the solvers presented in the previous chapter. In Section 6.1, we

introduce a tool for solving polynomial constraints using several approaches, such that it will be

used to carry out the experiments (see Section 6.2). Afterwards, in Section 6.3, the results are

analyzed.

6.1 MultiSolver

MultiSolver is a prototype of symbolic constraint solving system developed from the orig-

inal constraint-solving subsystem of the termination tool mu-term. MultiSolver integrates

multiple solvers following several approaches, almost all of them described in Chapter 5.

We have implemented the system in the functional language Haskell [HPW92]. The tool

is presented in two different interfaces: a command line tool and a web interface. The web

interface (see Figure 6.1) has been developed in php, javascript and html, and performs calls

to the command line version of MultiSolver (written in Haskell). MultiSolver is available

here:

http://zenon.dsic.upv.es/multisolver

Moreover, the web interface incorporates a database of constraints from TPDB examples

and a generator of aleatory constraints of a given size (number of variables in the constraints

and number of constraints in the set). The constraint database has been generated by mu-term

considering the dependency pair method with linear interpretations (see Chapter 3).

73
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Figure 6.1: MultiSolver web interface

Nowadays, the command line interface of MultiSolver offers the following options:

$ Mult iSo lver −h

Mult iSo lver [OPTIONS] <FILE>

−v Pr int v e r s i o n

−h Show help

−o FILE Output f i l e

−m SECs Set timeout ( d e f a u l t 60 seconds )

−d DOMAIN Set Domain [ N1 , N2 , . . . , Q1 , Q2 , . . . , [ 0 , 1 , 1 / 2 , . . . ] ]

−e Act ivate expert mode

−t TECHNIQUES Set kinds o f s o l v e r (ALL | CSP | CSP GEN | SAT)

where FILE is a mandatory option which represents the input file in an specific format

described below.

Now we give the details of the options available in MultiSolver:

-v Show the current version of MultiSolver.
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-h Print out the MultiSolver help showed above.

-o FILE By default, the solver output is redirected to the standard output. This option permits

the redirection of the output to the given FILE.

-m SECs The time for searching for a solution (time-out) is limited to 60 seconds by default.

This time-out can be changed using the option -m.

-d DOMAIN Used to specify the list of domains for search (enclosed between brackets). A

single domain is possible. The available domains are the following:

Natural Domain : A natural domain is represented by Ni, where i is the upper natural

number of the domain. For instance, N2 is {0, 1, 2}.

Rational Domain : The notation Qi represents domains of rational numbers based on

powers of two: Qi = {2n|n ∈ Z,−i ≤ n ≤ log2i}∪{0}. For instance, Q1 = {0, 1/2, 1}
and Q2 = {0, 1/2, 1, 2}.

Explicit Domain : User-defined domains can be specified by giving the explicit list

[a1, a2, . . . , an] of its components ai is either a natural or a positive rational number.

For instance, [0, 1/5, 1, 2/3, 2, 6] is a valid domain.

-e Activate the expert mode. In this mode, the system automatically chooses the order of

execution according to the techniques and domains set by the user.

-t TECHNIQUES Used to specify the constraint solving techniques or solvers. The available

techniques are the following:

CSP Only CSP solvers for power of two domains.

CSP GEN Only CSP solvers allowing general domains (not only power of two domains).

SAT Only SAT-based solvers.

ALL All classes of solvers.

6.1.1 Input/Output format of constraints

The input constraint format is defined by means of the following BNF grammar:

<term> := <cte> | <id> | <id> ”ˆ” <cte>

<mon> := <f a c to r> | <f a c to r >”.”<mon>

<signed mon> := <mon> | ”−”<mon>

<poly> := <signed mon> | <signed mon> ”+” <poly>

<po ly ineq> := <poly> <op> <poly>

<op> := ”=” | ”<” | ”<=” | ”>” | ”>=”

<cs> := < po ly ineq> | <po ly in eq > ” ;” <po ly ineq>
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This format permits the use of comments using “{−” and “−}” notation to enclose the text

of the comment.

Example 25 The following is an example of input constraint:

{− Cons t ra in t from AG01/#3.1. t r s −}
c0 . minus2 + minus0 >= 0;

−1 + minus1 >= 0;

minus1 . s0 + minus2 . s0 >= 0;

−1 . minus1 + minus1 . s1 >= 0;

−1 . minus2 + minus2 . s1 >= 0;

−1 . c0 + c0 . quot1 + quot2 . s0 + quot0 >= 0;

quot2 . s1 >= 0;

−1 . minus0 . quot1 . s1 + −1 . quot2 . s0 . s1 + −1 . quot0 . s1 +

quot1 . s0 + quot2 . s0 + quot0 + −1 . s0 >= 0;

−1 . minus1 . quot1 . s1 + quot1 . s1 >= 0;

−1 . minus2 . quot1 . s1 + −1 . quot2 . s1 . s1 + quot2 . s1 >= 0;

−1 . minus0 . Fquot1 + Fquot1 . s0 > 0 ;

−1 . minus1 . Fquot1 + Fquot1 . s1 >= 0;

−1 . minus2 . Fquot1 >= 0

On the other hand, the output generated by MultiSolver corresponds to the following

BNF grammar:

<r e s u l t> := <noSol> | <so l>

<noSol> := ‘ ‘+NO So lu t i on : ’ ’

<so l> := ‘ ‘+SOLUTION:\n’ ’< varValue > ‘ ‘− ’ ’

<varValue> := ‘ ‘+ ’ ’ <id > ‘ ‘=’ ’<value > ‘ ‘\n ’ ’

<value> := <int> | <int > ‘ ‘/ ’ ’< int>

where the character ’ ’ represents an space and ’\n’ represents a new line as usual.

Example 26 Consider the constraint in example 25. The solution returned by MultiSolver

is:

+SOLUTION:

+ quot0=0

+ quot1=2

+ quot2=0

+ s1=2

+ minus2=0

+ minus1=1

+ s0=2

+ Fquot=2

+ minus0=0

+ c0=0

−
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6.1.2 Available constraint solvers

In the current version, the techniques implemented in MultiSolver are presented in the

following list:

• MultiSolver-SAT uses the SAT-based constraint solver described in Section 5.1.2.

• MultiSolver-FD uses the algorithm presented in Section 5.2.2.

• MultiSolver-FD-GEN uses the algorithm presented in Section 5.2.2 together with a

generalized arithmetical treatment of the numeric domains by just using the standard

arithmetic operations (addition, product, power) instead of relying on binary shiftings. The

algorithm can deal with general domains, e.g., the domain N5 which cannot be expressed

as a subset of powers of two.

• MultiSolver-CSP implements improved CSP described in Section 5.2.2.

Some of the solvers presented in Chapter 5 are not available yet. In the near future, we plan

to integrate the following algorithms, which are

• MultiSolver-TPS implements the Two-Phase-Solver procedure described in Section

5.3.2.

• MultiSolver-ApSAT uses an implementation by R. Montagut [Mon08] in Haskell of the

algorithm presented in [FGMS+07].

In order to choose a solver according to the configuration, MultiSolver analyses in which

domains the technique is available and, in case several techniques are available, then the most

efficient is chosen. The following table summarizes the domains and techniques for each solver

arranged according to their efficiency:

Solver Techniques Domains

MultiSolver-SAT SAT {N1}
MultiSolver-CSP CSP {Ni,Qi}*
MultiSolver-FD CSP {Ni,Qi}*
MultiSolver-FD-GEN CSP GEN {Ni,Qi}
* Powers of two domains

Example 27 In order to understand how MultiSolver works, we give several examples of

execution. Firstly, we save the example presented in example 25 to the file “AG01 3.1 00 0.cs”:
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$ ca t AG01 3 .1 00 0 . cs

{− Cons t ra in t from AG01/#3.1. t r s −}
c0 . minus2 + minus0 >= 0;

−1 + minus1 >= 0;

minus1 . s0 + minus2 . s0 >= 0;

−1.minus1 + minus1 . s1 >= 0;

−1.minus2 + minus2 . s1 >= 0;

−1. c0 + c0 . quot1 + quot2 . s0 + quot0 >= 0;

quot2 . s1 >= 0;

−1.minus0 . quot1 . s1 + −1. quot2 . s0 . s1 + −1. quot0 . s1 +

quot1 . s0 + quot2 . s0 + quot0 + −1. s0 >= 0;

−1.minus1 . quot1 . s1 + quot1 . s1 >= 0;

−1.minus2 . quot1 . s1 + −1. quot2 . s1 . s1 + quot2 . s1 >= 0;

−1.minus0 . Fquot1 + Fquot1 . s0 > 0 ;

−1.minus1 . Fquot1 + Fquot1 . s1 >= 0;

−1.minus2 . Fquot1 >= 0

Now, we call MultiSolver with the input constraint and the default options. Note that we have

enabled a “debug mode” to understand how it works internally, so that, the messages beginning

with “DEBUG” are not showed in a normal execution.

$ Mul t i So l v e r AG01 3 .1 00 0 . cs

DEBUG Conf ig : System T ALL Domain DS [N1 ,Q1,N2 ,Q2 ] Expert Fa l s e Timeout 60

DEBUG SAT encoding f o r N1

DEBUG Timeout : 15000000

+SOLUTION:

+ Fquot=1

+ minus2=0

+ s1=1

+ minus1=1

+ minus0=0

+ s0=1

+ quot1=1

+ quot2=0

+ quot0=0

+ c0=1

−

Here, we see that the (current) default option uses the list of domains [N1, Q1, N2, Q2];, there

is no restriction about the class of solver to be used and the timeout is set to 60 seconds. Note

that, in this case, the first solver found a solution; otherwise, the system would have chosen the

next domain (Q1).

Now we show two example where different types of domains are used:

$ Mul t i S o l v e r −t CSP −d N2 AG01 3 .1 00 0 . cs

DEBUG Conf ig : System T CSP Domain D N2 Expert Fa l s e Timeout 60

DEBUG CSP f o r the f i n i t e domain N2
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DEBUG Timeout : 60000000

+SOLUTION:

+ quot1=1

+ s1=1

+ minus2=0

+ minus1=1

+ s0=1

+ Fquot=1

+ minus0=0

+ c0=0

+ quot2=0

+ quot0=0

−

$ Mul t i So l v e r −t CSP −d [1 , 1/2 , 2 , 1/4 , 0 ] AG01 3 .1 00 0 . cs

DEBUG Conf ig : System T CSP Domain D [1 , 1/2 , 2 , 1/4 , 0 ] Expert Fa l s e Timeout 60

DEBUG CSP f o r the f i n i t e domain [1 , 1/2 , 2 , 1/4 , 0 ]

DEBUG Timeout : 60000000

+SOLUTION:

+ quot1=2

+ s1=1

+ minus2=0

+ minus1=1

+ s0=2

+ Fquot=1

+ minus0=1

+ c0=0

+ quot2=0

+ quot0=0

−

Next example shows that MultiSolver warns the user when there is no solver satisfying the

configuration. In the current version there is no SAT-based solver for the domain N2:

$ Mul t i So l v e r −t SAT −d N2 AG01 3 .1 00 0 . cs

Mu l t i S o l v e r : No s o l v e r a v a i l a b l e f o r t h i s c o n f i g u r a t i o n

Example 28 Consider the following constraints which require the use of rational coefficients:

$ ca t AG01 3 .42 00 0 . cs

−1. v1 + v1 . v2 + v0 >= 0;

−1. v1 + v1 . v2 . v4 + v2 . v3 + v0 >= 0;

−1. v0 . v4 + v2 . v3 . v4 + v2 . v3 + v0 + −1. v3 >= 0;

−1. v2 . v4 + v2 . v4 . v4 >= 0;

−1. v1 + v1 . v6 + v5 >= 0;

v1 . v6 . v4 + −1. v1 . v4 + v6 . v3 + v5 + −1. v3 >= 0;

v6 . v3 . v4 + v6 . v3 >= 0;

−1. v6 + v6 . v4 . v4 >= 0;
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−1. v1 . v12 + v1 . v8 + −1. v10 . v11 + −1. v9 + v7 >= 0;

−1. v10 . v8 . v2 . v3 + −1. v10 . v8 . v0 + −1. v12 . v6 . v3 + −1. v10 . v7 + −1. v12 . v5 + −1. v9 +

v8 . v3 + v7 >= 0;

−1. v10 . v8 . v2 . v4 + −1. v12 . v6 . v4 + v8 . v4 >= 0;

−1. v2 . v13 . v3 + −1. v0 . v13 + v13 . v3 > 0 ;

−1. v2 . v13 . v4 + v13 . v4 >= 0

We can use several technique and domains to search for a solution:

$ Mul t i So l v e r −t [SAT,CSP,CSP] −d [N1 ,N2 ,Q1 ] AG01 3 .42 00 0 . cs

DEBUG Conf ig : System [SAT,CSP,CSP] Domain [N1 ,N2 ,Q1 ] Expert Fa l s e Timeout 60

DEBUG SAT encoding f o r N1

DEBUG Timeout : 20000000

DEBUG Resu l t : Jus t Nothing

DEBUG CSP f o r the f i n i t e domain N2

DEBUG Timeout : 40000000

DEBUG Resu l t : Jus t Nothing

DEBUG CSP f o r the f i n i t e domain Q1

DEBUG Timeout : 60000000

+SOLUTION:

+ v9=0

+ v12=0

+ v10=0

+ v6=1

+ v5=0

+ v1=0

+ v4=1

+ v3=1/2

+ v0=0

+ v2=1/2

+ v13=1/2

+ v8=0

+ v11=0

+ v7=0

−

Here, a SAT solver over the domain N1 is executed. But, no solution is found - neither does a

CSP solver over N2. Finally, using a CSP solver over Q1 a solution is reported.

Example 29 In expert mode, the system automatically chooses the order of the techniques and

domains, in case they are specified:

$ Mul t i S o l v e r −e −t [CSP,SAT] −d [Q2,N4 ,N2 , [ 0 , 1 ] ] AG01 3 .42 00 0 . cs

DEBUG Conf ig : System [CSP,SAT] Domain [Q2,N4 ,N2 , [ 0 , 1 ] ] Expert True Timeout 60

DEBUG SAT encoding f o r [ 0 , 1 ]

DEBUG Timeout : 15000000

DEBUG Resu l t : Jus t Nothing

DEBUG CSP f o r the f i n i t e domain N2
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DEBUG Timeout : 30000000

DEBUG Resu l t : Jus t Nothing

DEBUG CSP f o r the f i n i t e domain Q2

DEBUG Timeout : 45000000

+SOLUTION:

+ v9=0

+ v12=0

+ v10=0

+ v6=2

+ v5=0

+ v1=0

+ v4=2

+ v3=2

+ v0=0

+ v2=1/2

+ v13=2

+ v8=0

+ v11=0

+ v7=0

−

Here, the user chooses the domains [Q2, N4, N2, [0, 1]] and the techniques [CSP,SAT], and

the systems search for a solution in this order [[0, 1], N2, Q2, N4], using SAT techniques for the

first domain and CSP techniques for the other ones.

6.2 Benchmarks

In this section, we compare the performance of most solvers presented in Chapter 5. Algo-

rithms and heuristics are often compared by observing their performance on benchmark prob-

lems, or on suites of random instances generated from a simple, uniform distribution. The

advantage of using a benchmark problem is that if it is an interesting problem (to someone),

then information about which algorithm works well on it is also interesting. The drawback is

that if an algorithm beats to any other algorithm on a single benchmark problem, it is hard to

extrapolate from this fact. An advantage of using random problems is that there are many of

them, and researchers can design carefully controlled experiments and report averages and other

statistics. A drawback of random problems is that they may not reflect real life situations.

The empirical evaluation was carried out with both different types of problems: benchmark

problems (see Section 6.2.1) and random problems (see Section 6.2.2).
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6.2.1 Benchmarks problems

Benchmarks problems are divided in two different sets of problems as well. The first database

of problems consists on the 952 examples in the ‘Standard’ TRS subcategory of the 2007 Termi-

nation Competition which are part of the 2007 Termination Problem Data Base (TPDB, version

4.0). This problem database is executed in our Termination tool mu-term and the different

engines are used to solve the polynomial constraints.

On the other hand, as we have explained in previous sections, we have collected all con-

straints generated by mu-term from the 952 termination problems using the dependency pair

method with linear interpretations. This collection of 4196 polynomial constraints are considered

in the seconds approach of benchmarks. The main reason for experimenting with the constraints

as a special case is because the current version of mu-term is not completely prepared for us-

ing external constraint solvers efficiently, which could lead to an incorrect comparison. Using

external solvers directly with the polynomial constraints benchmarks seem to be a better ap-

proach for comparing solvers. We assume that if a solver is “better” than another one when

they are compared over the polynomial constraints, then the solver should be better when they

are compared over the termination problems.

The tools were executed under OS Linux Ubuntu 8.04.1 (kernel 2.6.24), on a Intel Core 2

CPU at 2.13 GHz and 1 GByte of primary memory.

Constraint Problem Benchmarks

For the benchmarks based on constraints, the following solvers have been executed:

• FD uses the constraint solver algorithm presented in Section 5.2.2.

• CSP implements improved CSP described in Section 5.2.2.

• CiME uses an external module implementing the constraint solving algorithm described

in [CMTU06] and implemented as part of CiME v2.03.

• SAT uses the translation of polynomial constraints into propositional formulas described

in Section 5.1.2, and then uses MiniSat1 to obtain a solution.

• ApSAT uses an external module implementing the SAT-based constraint solving algorithm

described in [FGMS+07] and implemented as part of AProVE, and which also uses MiniSat

for solving the generated propositional constraints.
1http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
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FD CSP CiME SAT ApSAT

Time 538.36 206.73 568.19 1083 2676.33

# YES 1792 (42.72%) 1823 (43.46%) 1818 (43.34%) 1830 (43.62%) 1830 (43.62%)

# NO 2260 (53.87%) 2342 (55.83%) 2342 (55.83%) 2363 (56.33%) 2365 (56.38%)

# TOs 142 (3.38%) 29 (0.69%) 34 (0.81%) 0 (0%) 0 (0%)

YES Av.T. 0.05 0.05 0.14 0.31 0.67

NO Av.T. 0.2 0.05 0.13 0.22 0.61

Table 6.1: Different solvers for N1

FD CSP CiME ApSAT

Time 2004.83 1103.46 2338.01 3711.04

# YES 2066 (49.25%) 2148 (51.2%) 2116 (50.44%) 2197 (52.37%)

# NO 1607 (38.31%) 1883 (44.89%) 1515 (36.11%) 1998 (47.63%)

# TOs 521 (12.42%) 163 (3.89%) 563 (13.42%) 0 (0%)

YES Av.T. 0.26 0.09 0.2 0.99

NO Av.T. 0.91 0.48 1.27 0.77

Table 6.2: Different solvers for N2

• ApSAT-Q uses an external module implementing the SAT-based constraint solving al-

gorithm for rational coefficients described in [FNOG+08] and implemented as part of

AProVE, and which also uses MiniSat for solving the propositional constraints.

Tables 6.1, 6.2, and 6.3 summarize the results for N1, N2, and Q1 respectively, where

• ‘Time’ indicates the running time of all finished proofs.

• ‘# YES’ indicates the number of successful proofs (consistent CSP).

• ‘# NO’ indicates the number of unsuccessful proofs (inconsistent CSP).

• ‘# TOs’ indicates the number of unfinished proofs interrupted by the time-out of 30

seconds.

• ‘YES Av. T.’/ ‘NO Av. T.’ indicates the average time of successful/unsuccessful proofs (in

seconds).
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FD CSP ApSAT-Q

Time 1942.11 762.99 1898.4

# YES 1789 (42.65%) 1834 (43.72%) 1835 (43.74%)

# NO 2019 (48.13%) 2282 (54.4%) 2349 (56%)

# TOs 386 (9.2%) 78 (1.86%) 11 (0.26%)

YES Av.T. 0.14 0.1 0.68

NO Av.T. 0.84 0.26 0.28

Table 6.3: Different solvers for Q1

TPS CSP

Time 1472.76 7749.3

#YES 1764 2155

#NO 2412 1853

#TOs 18 186

YES Av.T. 0.19 0.22

NO Av.T. 0.25 0.92

Table 6.4: Evaluation of solvers based on N2

Finally, in [LMNS08], it is compared the performance of a prototype of two-phase-solver

(called TPS) presented in Section 5.3.2 with a CSP solver. Table 6.2.1 presents the results for

the particular domain N2 = {0, 1, 2} (which is the usual one in most termination tools).

Termination Problem Benchmarks

On the other hand, we have compared the behavior of mu-term when the different poly-

nomial constraint solving engines are used to prove termination of programs. This version of

mu-term implements the dependency pairs method with polynomial interpretations. The sub-

term criterion [HM04] is also considered. Each time, a single domain is considered for obtaining

the coefficients of the polynomial interpretations. The following versions of mu-term using the

solvers described above as a back-end have been considered:

• mu-term-FD uses the constraint solving algorithm FD.

• mu-term-SAT uses the SAT-based solver named SAT.

• mu-term-ApSAT uses an external module implementing the SAT-based solver apSAT.
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FD CSP CiME SAT ApSAT

Time 275.01 257.52 451.84 428.18 2199.08

# YES 330 (34.63%) 331 (34.73%) 332 (34.84%) 333 (34.94%) 332 (34.84%)

# ?? 583 (61.18%) 595 (62.43%) 590 (61.91%) 597 (62.64%) 594 (62.33%)

# TOs 23 (2.41%) 10 (1.05%) 14 (1.47%) 6 (0.63%) 10 (1.05%)

YES Av.T. 0.05 0.05 0.11 0.13 0.99

?? Av.T. 0.44 0.41 0.7 0.64 3.15

Table 6.5: MuTerm with different solvers for N1

• mu-term-ApSAT-Q uses an external module implementing the SAT-based solver for ra-

tionals ApSAT-Q.

• mu-term-CiME uses CiME as an external module implementing the solver CiME .

Tables 6.5, 6.6, and 6.7 summarize the results for N1, N2, and Q1 respectively, where

• ‘Time’ indicates the running time of all finished proofs.

• ‘# YES’ indicates the number of successful proofs.

• ‘# ??’ indicates the number of unsuccessful proofs.

• ‘# TOs’ indicates the number of unfinished proofs interrupted by the time-out of 30

seconds.

• ‘YES Av. T.’/ ‘?? Av. T.’ indicate the average time of successful/unsuccessful proofs (in

seconds).

As we said before, the SAT-based solver for natural coefficients (see [FGMS+07]) has been

implemented in Haskell. In [Mon08], it is presented the running time for mu-term using this

implementation (called apSAT-Haskell) and the solver ‘SAT’ as a back-end solver. The results

are shown in Table 6.8.
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FD CSP CiME ApSAT

Time 1049.09 585.91 1124.2 2480.39

# YES 336 (35.26%) 339 (35.57%) 339 (35.57%) 342 (35.89%)

# ?? 529 (55.51%) 559 (58.66%) 554 (58.13%) 582 (61.07%)

# TOs 71 (7.45%) 38 (3.99%) 43 (4.51%) 12 (1.26%)

YES Av.T. 0.1 0.2 0.59 1.09

?? Av.T. 1.92 0.93 1.67 3.62

Table 6.6: MuTerm with different solvers for N2

FD CSP ApSAT-Q

Time 1152.87 501.18 519.85

# YES 340 (35.68%) 347 (36.41%) 347 (36.41%)

# ?? 525 (55.09%) 561 (58.87%) 576 (60.44%)

# TOs 71 (7.45%) 28 (2.94%) 13 (1.36%)

YES Av.T. 0.15 0.09 0.25

?? Av.T. 2.1 0.83 0.75

Table 6.7: MuTerm with different solvers for Q1

6.2.2 Random problems

As we pointed out, benchmark sets are used to test algorithms for specific problems, but in

recent years, there has been a growing interest in the study of the relation among the parameters

that define an instance of CSP in general (i.e., the number of variables, domain size and number

of constraints). In our empirical evaluation, each set of random constraint satisfaction problems

was defined by the 3-tuple < n, c, d >, where n was the number of variables, c the number

of constraints and d the domain size. The problems were randomly generated by means of

polynomial constraint constraint and by modifying these parameters.

In this section, we show two tables which set two of the parameters and varies the other one

in order to evaluate the algorithm performance when this parameter increases. We evaluated

100 test cases for each type of problem and each value of the variable parameter.

In Table 6.9, we present the running time in no-consistent problems, solved with CSP, apSAT

and CiME, respectively, where the number of variables was increased from 3000 to 10000 and the

number of constraints and the domain size were set at 5000 and 3, respectively: < n, 5000, 3 >.

In Tables 6.10, we present the running time in problems, solved with solved with CSP,

apSAT and CiME, respectively, where the number of constraints was increased from 500 to
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SAT apSAT-Haskell

# YES 338 322

# ?? 584 590

# TOs 14 24

Table 6.8: MuTerm with SAT solvers for N1

<3000,5000,3> <7000,5000,3> <10000,5000,3>

CSP apSAT CiME CSP apSAT CiME CSP apSAT CiME

#NO 100 0 65 97 0 25 95 0 0

#TOs 0 100 35 3 100 75 5 100 100

NO Av.T. 2.72 - 28.04 1.61 - 29.41 1.68 - -

Table 6.9: Evaluation of solvers with random and no-consistent problems < n, 5000, 3 >

2000 and the number of variables and the domain size were set at 4000 and 3, respectively:

< 4000, c, 3 >.

6.3 Analysis of benchmarks

In order to analyze the benchmarks presented in previous section, we need to classify the

existing choices according to their suitability. On the basis of our experience in the development

of tools for proving termination, we believe that the following concrete criteria are appropriate

to make this selection:

1. Take the more successful technique, i.e., having the bigger ‘# YES’. This seems to require

few justification.

<4000,500,3> <4000,1000,3> <4000,1500,3>

CSP apSAT CiME CSP apSAT CiME CSP apSAT CiME

#YES 72 73 53 37 0 23 21 0 15

#NO 27 27 27 56 55 56 60 52 62

#TOs 1 0 20 7 45 21 19 48 23

YES Av.T. 2.92 18.94 2.15 8 - 5.08 14.1 - 8.47

NO Av.T. 0.17 2.98 0.48 0.25 8.49 1.43 0.93 18.52 3.01

Table 6.10: Evaluation of solvers with random problems < 4000, c, 3 >
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2. Among equally successful techniques, take the ones which are complete regarding the

implemented technique, i.e., ‘??’ answers actually mean that the considered technique

does not work on the considered problem2.

3. Among the complete techniques, take the ones having the bigger ‘# ??’. Tools for proving

termination do not use a single technique for proving termination. Termination provers

rather proceed stepwise by following some particular sequence of several techniques which

are given ‘partial’ time-outs which are a (small) fraction of the global time-out. This

permits switching to a different technique more often.

4. Among techniques having the same ‘# ??’, take the ones having less average time for ‘??’

answers. This permits a fast switching to a different technique, thus saving time from the

assigned time slot.

According to this and the benchmarks presented in previous section, we conclude the following:

1. The results in Tables 6.1 and 6.5 suggest that the SAT-based solver ‘SAT’ over N1 is the

best way to deal with such kind of constraints when N1 is the domain of coefficients in

practice.

Recall that the size of the encoding for this solver is exponential, whereas the size of the

encoding is polynomial for the ‘apSAT’ encoding. Therefore, it is not clear what encoding

is better. Moreover, Table 6.8 suggests that, in practice, the ‘SAT’ encoding leads to more

efficient and successful proofs.

2. Benchmarks in Tables 6.2 and 6.6 show that ‘ApSAT’ exhibits the best behavior over N2.

3. Benchmarks in Tables 6.3 and 6.7 show that the performance of CSP and ApSAT-Q over

rational coefficients is almost similar, although the SAT-based solver is slightly better.

4. The benchmarks show that the introduction of standard techniques for modeling and

treating constraint solving problems as CSP problems leads to important improvements

in the efficiency of the state-of-the-art solvers implemented as part of current termination

tools.

5. Benchmarks in Tables 6.9 and 6.10 suggest that SAT-based solvers could perform in a

different way when bigger problems are considered. The experiments show that the CSP-

based solvers perform much better than SAT-based ones in these cases. Therefore, this is

one of the most promising aspects of CSP-based algorithms regarding proofs of termination.

Actually, as discussed in Section 3.7, the format of polynomial interpretations which are

used in current termination tools is kept ‘intentionally simple’. Unfortunately, the con-

straints which are obtained from the treatment of programs of real programming languages
2All tools considered here, except CiME and the Two-Phases-Solver algorithms, are complete in this sense.
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tends to reach huge complexity levels even when using standard polynomial interpretations

like simple-mixed ones.

6. Finally, we note that, although Ni ⊂ Nj whenever i < j, the number of successful proofs

with Nj is in general not much bigger than with Ni. This is due to the presence of time-

outs when we consider a bigger search space. This means that first considering the smallest

domains is better than a direct attempt on a bigger but ‘heavier’ domain of coefficients.

Summarizing, we can say that, among the considered techniques, the SAT encoding for con-

strains over N1 is the choice for constraint solving over N1 in practice; otherwise the SAT-based

solvers [FGMS+07, FNOG+08] should be used when domains of natural or rational numbers are

considered, as long as the performance of CSP solvers does not improve even more.

An automatic ‘termination expert’ implementing the corresponding techniques should com-

bine them accordingly starting with N1, then N2, etc.
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Chapter 7

Conclusions

7.1 Summary

Termination of programs is one of the most challenging problems in software verification.

We focus on termination of Term Rewriting Systems (TRSs), given that the quite mature the-

ory of termination of TRSs provides a basic collection of abstractions, notions, and methods

which have been proved useful for treating terminating problems in sophisticated programming

languages. Therefore, the idea is to translate a program P into a TRS R whose termination

implies termination of P.

By using the dependency pairs method with polynomial orderings, we generate a set of

polynomial constraints whose satisfaction implies the termination of the system. Consequently,

a termination problem can be transformed into a constraint solving problem. The search for

efficient methods for solving these constraints is essential for automating termination proofs.

Polynomial interpretations over the natural is the basic technique for defining polynomial or-

derings, although in the last few years, polynomial interpretations over the rational numbers

are receiving an increasing interest. The main reason is that polynomial interpretations over

the rationals are strictly more powerful for proving termination than those over the naturals.

We improve the results in [Luc06] by introducing sufficient conditions which are amenable for

detecting the deficiencies of polynomial interpretations over the naturals automatically, on the

basis of the structure of the rules of the TRS (see Section 4).

Up to now, several approaches have been considered for dealing with polynomial constraints

in termination proofs. The main techniques are based on SAT (Boolean Satisfiability [FGMS+07,

FNOG+08]), CSP (Constraint Satisfaction Problem [CMTU06, Luc05, Luc07]), LP (Linear

Programming [Ste94]), and Real Algebraic Geometry [Gie95, Rou91].

91
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SAT solvers have become very popular in the last few years due to the enormous progress in

their performance. Nowadays, SAT-based encodings are the best way for dealing with polynomial

constraints over both natural and rational coefficients. Since the research on specialized methods

for solving typical small domains of coefficients (such as {0, 1} or {0, 1/2, 1}) is of clear interest

(see Section 5.1), we have presented a SAT-based solver for polynomial constraints over {0, 1}
(see Section 5.1), which is the basic domain for polynomial interpretations over the naturals. In

practice, this encoding seems to lead to more efficient and successful proofs than the encoding

presented in [FGMS+07].

On the other hand, constraint satisfaction is the natural way for dealing with polynomial

constraint. We have described a constraint solving algorithm for finite domains of powers of

two (see Section 5.2.2). We have also shown that the introduction of standard techniques for

modeling and treating constraint solving problems as CSP leads to important improvements in

the efficiency of the state-of-the-art CSP solvers (see Section 5.2.2). Despite of the outstanding

behavior of SAT-based solvers in practice, we have the intuition that SAT encodings are not well-

suited when huge problems (w.r.t. number of variables, constraints, and domain coefficients)

are considered.

The first implementation of a completely automatic system for proving termination of TRSs

using polynomial orders was reported by Steinbach. Steinbach’s idea was to transform the

obtained constraints so that the use of standard methods from linear programming is possible.

Unfortunately, this method has a number of drawbacks, which lead to an incomplete and rather

unpractical algorithm. We are interested in studying possible combinations of LP and CSP

techniques which can be appropriate for their implementation as part of termination tools.

Following this idea, in Section 5.3.2, we have proposed a new hybrid algorithm which leads to a

decrease of the total time for solving problems.

Finally, the concepts and tools from real algebraic geometry have been hardly explored since

they are costly due to generality. During the last years, some interesting techniques have been

developed which should be explored from a theoretical point of view (see Section 5.4).

7.2 Future work

The results presented in this thesis can be extended. In Section 4, the sufficient conditions

for detecting the necessity of rational coefficients in linear polynomial interpretations could

be extended to simple-mixed polynomial interpretations. Indeed it would be interesting to

research on even more general conditions for detecting the necessity of simple-mixed or quadratic

interpretations instead of linear interpretations.

In Section 5.2.2, we improve the efficiency considerably of our CSP algorithm by considering
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filtering techniques. Therefore, one could improve the performance of the CSP algorithm even

more by considering search techniques (such as back-jumping or no-good recording) for reducing

the search space.

On the other hand, when considering the use of constraint solving algorithms for termination

tools, an essential issue is incrementality : constraint solvers in termination tools usually consider

not only one but several different domains of coefficients when trying to solve a given polynomial

(or even symbolic) constraint. Such domains are often related. For instance, mu-term first

tries the domain N1 (using the encoding presented in Section 5.1.2). If the constraint cannot

be solved, then N2 is considered, etc. But N1 ⊆ N2 and this means that, after failing with N1,

part of the search space for N2 is known to be useless in advance. Current constraint solving

algorithms implemented in termination tools like [CMTU06, FGMS+07, FNOG+08, Luc07] do

not take benefit from this fact. A possible way of achieve an incremental algorithm could be

to consider a more sophisticated SAT frameworks like SMT (SAT modulo theories [NOT06]),

which seems to be a natural choice for polynomial constraints.

Beyond Diophantine constraint solving, coefficients for solving polynomial constraints could

be taken from any subset of real algebraic numbers [Luc07]. Therefore, it would be interesting

to study the explicit computation and representation of irrational coefficients for polynomial

interpretations.

In Section 5.3.2, we propose an algorithm for mixing linear programming with constraint

satisfaction solvers. In the CP community several methods for combining LP/CP have been

proposed. Therefore, a natural way of improving our results could be to study the applicability

of these techniques.

Finally, in Section 5.4, we show that the algorithms coming from real algebraic geometric

are generally too costly due to generality. However, these methods deserve of some interest even

if they are studied from a theoretical point of view.
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