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Prologue

Abstract

Program slicing is a well-known technique in imperative programming for

extracting those statements of a program that may affect a given program

point. This thesis introduces new slicing techniques for concurrent languages.

These languages are CSP and Petri Nets.

The Communicating Sequential Processes (CSP) language allows us to spec-

ify complex systems with multiple interacting processes. The study and

transformation of such systems often implies different analyses (e.g., dead-

lock analysis, reliability analysis, refinement checking, etc.) Here, a static

slicing based technique to slice CSP specifications is described. Given a par-

ticular event in a CSP specification, our technique allows us to know what

parts of the specification must necessarily be executed before this event, and

what parts of the specification could be executed before it in some execu-

tion. This technique can be very useful to debug, understand, maintain

and reuse specifications; but also as a preprocessing stage of other analyses

and/or transformations in order to reduce the complexity of the CSP spec-

ification. Our technique is based on a new data structure which extends

the synchronized CFG. We show that this new data structure improves the

synchronized CFG by taking into account the context in which processes are

called and, thus, makes the slicing process more precise. Furthermore, we

3



4

give a detailed explanation of the implementation of the technique. This im-

plementation helps us to show that the theoretical work is giving successful

results.

The other language, Petri nets, provides a means for modelling and verifying

the behavior of concurrent systems. In this context, computing a net slice

can be seen as a graph reachability problem. In this thesis, we propose two

slicing techniques for Petri nets that can be useful to reduce the size of the

considered net, thereby simplifying subsequent analysis and debugging tasks

by standard Petri net techniques.
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Chapter 1

Introduction

In this thesis are presented some slicing techniques for two concurrent lan-

guages: CSP and Petri Nets. This introductory chapter explains the mo-

tivation for this work and gives a preliminary idea of what will be seen in

the main chapters of the thesis. First, we will see what exactly means the

concept of program slicing and after, in two separate sections, its application

to CSP and Petri Nets, respectively.

Program slicing is a well-known technique to extract the part of a program

which is related to some point of interest known as slicing criterion. It was

first proposed as a debugging technique [Wei79] to allow a better understand-

ing of the portion of code which revealed an error. In particular, Weiser’s

proposal was aimed at using program slicing for isolating the program sta-

ments that may contain a bug, so that finding this bug becomes simpler for

the programmer. In general, slicing extracts the statements that may affect

some point of interest, referred to as slicing criterion. Nowadays, it has been

successfully applied to a wide variety of software engineering tasks, such as

program understanding, debugging, testing, specialization, etc.

Program slicing is also a method for decomposing programs by analyzing

their data and control flow. Roughly speaking, a program slice consists of
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8 CHAPTER 1. INTRODUCTION

(1)  read(n) ;
(2)  i := 1 ;
(3)  sum := 0 ;
(4)  product := 1 ;
(5)  while i <= n do

begin
(6)        sum := sum + i ;
(7)        product := product * i ;
(8)        i := i + 1 ;

end ;
(9)  write (sum) ;
(10) write (product) ;

(a) Example program.

read(n) ;
i := 1 ;

product := 1 ;
while i <= n do

begin

product := product * i ;
i := i + 1 ;

end ;

write (product) ;

(b) Program slice w.r.t. (10,product).

Figure 1.1: Sub-figures 1.1(a) and 1.1(b) show an example of program slicing.

those parts of a program which are (potentially) related with the values

computed at some slicing criterion. Program slices are usually computed

from a Program Dependence Graph (PDG) [FOW87] that makes explicit

both the data and control dependencies for each operation in a program.

Program dependencies can be traversed backwards or forwards (from the

slicing criterion), which is known as backward or forward slicing, respectively.

Additionally, slices can be dynamic or static. A slice is said to be static if the

input of the program is unknown (this is the case of Weiser’s approach). On

the other hand, it is said to be dynamic if a particular input for the program

is provided, i.e., a particular computation is considered. A survey on slicing

can be found, e.g., in [Tip95, BG96].

Let us illustrate this technique with an example taken from [Tip95]. Fig-

ure 1.1(a) shows a simple program which requests a positive integer number

n and computes the sum and the product of the first n positive integer num-

bers. Figure 1.1(b) shows a slice of this program w.r.t. the slicing criterion

(10,product), i.e., variable product in line 10. As can be seen in the figure,

all the computations that do not contribute to the final value of the variable

product have been removed from the slice.

Here, we apply program slicing to two well-known languages that provide



1.1. SLICING CSP 9

a means for modelling and verifying the behavior of concurrent systems. The

first one is the Communicating Sequential Processes (CSP) [Hoa83] language,

a formal language member of the family of mathematical theories of concur-

rency known as process algebras. The second one used is Petri Nets, one

of several mathematical modeling languages for the description of discrete

distributed systems. The rest of the chapter gives a brief introduction to the

slicing techniques designed for both of this languages.

1.1 Slicing CSP

The Communicating Sequential Processes (CSP) [Hoa83] language allows us

to specify complex systems with multiple interacting processes. The study

and transformation of such systems often implies different analyses (e.g.,

deadlock analysis [LS95], reliability analysis [KSS95], refinement checking

[RGGHJS95], etc.). Other aspects of CSP also lead to undecidability: which

face undecidable problems due to the nondeterministic execution order of

parallel and interleaved processes.

In Chapter 3 we introduce a static analysis technique for CSP which is

based on program slicing. Our technique allows us to extract the part of a

CSP specification which is related to a given event (referred to as the slicing

criterion) in the specification. This technique can be very useful to debug,

understand, maintain and reuse specifications; but also as a preprocessing

stage of other analyses and/or transformations in order to reduce the com-

plexity of the CSP specification.

In particular, given an event in a specification, our technique allows us

to extract those parts of the specification which must be executed before the

specified event (thus they are an implicit precondition); and those parts of

the specification which could, and could not, be executed before it.
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Example 1.1.1 Consider the following specification1 with three processes

(STUDENT, PARENT and COLLEGE) executed in parallel and synchronized on

common events. Process STUDENT represents the three-year academic courses

of a student; process PARENT represents the parent of the student who gives

her a present when she passes a course; and process COLLEGE represents the

college who gives a prize to those students which finish without any fail.

MAIN = (STUDENT || PARENT) || COLLEGE

STUDENT = year1 → (pass → YEAR2 ¤ fail → STUDENT)

YEAR2 = year2 → (pass → YEAR3 ¤ fail → YEAR2)

YEAR3 = year3 → (pass → graduate → STOP ¤ fail → YEAR3)

PARENT = pass → present → pass → present → pass →

present → STOP

COLLEGE = fail → STOP ¤ pass → C1

C1 = fail → STOP ¤ pass → C2

C2 = fail → STOP ¤ pass → prize → STOP

In this specification, we are interested in determining what parts of the

specification must be executed before the student fails in the second year,

hence, we mark event fail of process YEAR2 (thus the slicing criterion is

(YEAR2, fail)). Our slicing technique automatically extracts the slice com-

posed by the black parts. We can additionally be interested in knowing which

1We refer those readers non familiarized with CSP syntax to Section 2.1 where we

provide a brief introduction to CSP.
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parts could be executed before the same event. In this case, our technique

adds to the slice the underscored parts because they could be executed (in

some executions) before the marked event. Note that, in both cases, the slice

produced could be made executable by replacing the removed parts by “STOP”

or by “→ STOP” if the removed expression has a prefix.

It should be clear that computing the minimum slice of an arbitrary CSP

specification is a non-decidable problem. Consider for instance the following

CSP specification:

MAIN = P u Q

P = X ; Q

Q = a → STOP

X = Infinite Process

together with the slicing criterion (Q, a). Determining whether X does not

belong to the slice implies determining that X is an infinite process which is

known to be an undecidable problem [Wei84].

We explain our static slicing technique for CSP in Chapter 3. Here, we

give a previous overview of this chapter through the following points:

• We define two new static analyses for CSP and propose algorithms for

their implementation. Despite their clear usefulness we have not found

these static analyses in the literature.

• We define the context-sensitive synchronized control flow graph and

show its advantages over its predecessors. This is a new data structure

able to represent all computations taking into account the context of
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process calls; and it is particularly interesting for slicing languages with

explicit synchronization.

• We have implemented our technique in a prototype integrated in ProB

[LB08, BL05, LF08]. Preliminary results are very encouraging.

1.2 Slicing Petri Nets

A Petri net [Mur89, Pet81] is a graphic, mathematical tool used to model

and verify the behavior of systems that are concurrent, asynchronous, dis-

tributed, parallel, non-deterministic and/or stochastic. As a graphic tool,

they provide a visual understanding of the system and the mathematical

tool facilitates its formal analysis. State space methods are the most popu-

lar approach to automatic verification of concurrent systems. In their basic

form, these methods explore the transition system associated with the con-

current system. The transition system is a graph, known as the reachability

graph, that represents the system’s reachable states as nodes: there is an

arc from one state s to another s′, whenever the system can evolve from s

to s′. In the worst case, state space methods have to explore all the nodes

and transitions in the transition system. This makes the method useless in

practice, even though it is simple in concept, due to the state-explosion prob-

lem that occurs when a Petri net is applied to nontrivial real problems. The

technique is costly even in bounded nets with a finite number of states since,

in the worst case, the reachable states are multiplied beyond any primitive

recursive function. For this reason, various approaches have been proposed

to minimize the number of system states to be studied in a reachability graph

[Rau90].

Program slicing has a great potential here since it allows us to syn-

tactically reduce a model in such a way that the reduced model is com-

posed only of those parts that may influence the slicing criterion. Since it
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was originally defined by Weiser, program slicing has been applied to dif-

ferent formalisms which are not strictly programming languages, like at-

tribute grammars [SH96], hierarchical state machines [HW97], Z and CSP-

OZ specifications [CR94, Brü04, BW05], etc. Unfortunately, very little work

has been carried out on slicing for Petri nets (some notable exceptions are

[CW86, LCKK00, Rak07, Rak08]). For instance, Chang and Wang [CW86]

present a static slicing algorithm for Petri nets that slices out all sets of

paths, known as concurrence sets, so that all paths within the same set

should be executed concurrently. In [LCKK00], a static slicing technique for

Petri nets is proposed in order to divide enormous P/T nets into manage-

able modules so that the divided model can be analyzed by a compositional

reachability analysis technique. A Petri net model is partitioned into con-

current units (Petri net slices) using minimal invariants. In order to preserve

all the information in the original model, uncovered places should be added

into minimally-connectable concurrent units since minimal invariants may

not cover all the places. Finally, in [Rak07, Rak08], Rakow presents another

static slicing technique to reduce the Petri net size and, thus, lessen the prob-

lem of state explosion that occurs in the model checking [CGP00] of Petri

nets [BH05]. From the best of our knowledge, there is no previous proposal

for dynamic slicing of Petri nets. This is surprising because considering an

initial marking and/or a particular sequence of transition firings would allow

us to further reduce the size of the slices and focus on a particular use of the

considered Petri net.

In Chapter 4, we explore two different alternatives for dynamic slicing of

Petri nets. Firstly, we present a slicing technique that extends the slicing

criterion in [Rak07, Rak08] in order to also consider an initial marking. We

show that this information can be very useful when analyzing Petri nets and,

moreover, it allows us to significantly reduce the size of the computed slice.

Furthermore, we show that our algorithm is, in the worst case, as precise
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as Rakow’s algorithm. This can still be seen as a lightweight approach to

slicing since its cost is bounded by the number of transitions in the Petri

net. Then, we present a second approach that further reduces the size of the

computed slice by only considering a particular execution—here, a sequence

of transition firings. Clearly, in this case the computed slice is only useful to

analyze the considered firing sequence. We illustrate both techniques with

examples.



Chapter 2

Preliminaries

In order to keep the thesis self-contained, in this chapter we introduce sep-

arably some basic notions of CSP and Petri Nets. Here we introduce some

notations and concepts and provide a precise terminology that will be used

in the rest of the thesis.

2.1 Communicating Sequential Processes

Figure 2.1 summarizes the syntax constructions used in our CSP specifica-

tions. A specification is a finite collection of definitions. The left-hand side

of each definition is the name of a different process, which is defined in the

right-hand side by means of an expression that can be a call to another

process or a combination of the following operators:

Prefixing. It specifies that event a must happen before expression π.

Internal choice. The system chooses (e.g., nondeterministically) to execute

one of the two expressions.

External choice. It is identic to internal choice but the choice comes from

outside the system (e.g., the user).

15
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S ::= D1 . . . Dm (entire specification) Domains

D ::= P = π (definition of a process) P, Q,R . . . (processes)

π ::= Q (process call) a, b, c . . . (events)

| a → π (prefixing)

| π1 u π2 (internal choice)

| π1 ¤ π2 (external choice)

| π1 ||| π2 (interleaving)

| π1 ||{an} π2 (synchronized parallelism) where an = a1, . . . , an

| π1 ; π2 (sequential composition)

| SKIP (skip)

| STOP (stop)

Figure 2.1: Syntax of CSP specifications

Interleaving. Both expressions are executed in parallel and independently.

Synchronized parallelism. Both expressions are executed in parallel with

a set of synchronized events. In absence of synchronizations both ex-

pressions can execute in any order. Whenever a synchronized event

ai, 1 ≤ i ≤ n, happens in one of the expressions it must also happen in

the other at the same time. Whenever the set of synchronized events

is not specified, it is assumed that expressions are synchronized in all

common events.

Sequential composition. It specifies a sequence of two processes. When

the first finishes, the second starts.

Skip. It finishes the current process. It allows us to continue the next se-

quential process.

Stop. It finishes the current process; but it does not allow the next sequential
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process to continue.

Note, to simplify the presentation we do not yet treat process parameters,

nor input and output of data values on channels.

We define the following notation for a given CSP specification S: Proc(S)

and Event(S) are, respectively, the sets of all (possible repeated) process calls

and events appearing in S. Similarly, Proc(P ) and Event(P ) with P ∈ S,

are, respectively, the sets of all (possible repeated) processes and events in P .

In addition, we define choices(A)(parallel(A)), where A is a set of processes,

events and operators; as the subset of operators that are either an internal

choice or an external choice (an interleaving or a synchronized parallelism).

We use a1 →∗ an to denote a feasible (sub)execution which leads from

a1 to an; and we say that b ∈ (a1 →∗ an) iff b = ai, 1 ≤ i ≤ n. In the

following, unless we state the contrary, we will assume that programs start

the computation from a distinguished process MAIN.

We need to define the notion of specification position which, roughly

speaking, is a label that identifies a part of the specification. Formally,

Definition 2.1.1 (Position and Specification Position)

Positions are represented by a sequence of natural numbers, where Λ denotes

the empty sequence (i.e., the root position). They are used to address subex-

pressions of an expression viewed as a tree:

π|Λ = π for all process π

(π1 op π2)|1.w = π1|w for all operator op ∈ {→,u, ¤, |||, ||, ; }
(π1 op π2)|2.w = π2|w for all operator op ∈ {→,u, ¤, |||, ||, ; }

Given a specification S, we let Pos(S) denote the set of all specification posi-

tions in S. A specification position is a pair (P, w) ∈ Pos(S) that addresses

the subexpression π|w in the right-hand side of the definition, P = π, of

process P in S.
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Example 2.1.2 In the following specification each term has been labelled

(in grey color) with its associated specification position so that all labels are

unique.

MAIN =

(P(Main,1.1)||{b}(Main,1)Q(Main,1.2));(Main,Λ)(P(Main,2.1)||{a}(Main,2)R(Main,2.2))

P = a(P,1)→(P,Λ)b(P,2.1)→(P,2)SKIP(P,2.2)

Q = b(Q,1)→(Q,Λ)c(Q,2.1)→(Q,2)SKIP(Q,2.2)

R = d(R,1)→(R,Λ)a(R,2.1)→(R,2)SKIP(R,2.2)

We often use indistinguishably an expression and its specification position

(e.g., (Q, c) and (Q, 2.1)) when it is clear from the context.

2.2 Petri Nets

A Petri net [Mur89, Pet81] is a directed bipartite graph, whose two essential

elements are called places (represented by circles) and transitions (repre-

sented by bars or rectangles). The edges of the graph form the arcs, which

are labelled with a positive integer known as weight. Arcs run from places

to transitions and vice versa. The state of the system modeled by the net

is represented by assigning non-negative integers to places. This is known

as a marking, and is shown graphically by adding small black circles to the

places, known as tokens. The dynamic behavior of the system is simulated

by changes in the markings of a Petri net, a process which is carried out by

the firing of the transitions. The basic concepts of Petri nets are summarized

as follows:

Definition 2.2.1 (Petri Net) A Petri net [Mur89, Pet81] is a tuple N =

(P, T, F ), where:
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• P is a set of places.

• T is a set of transitions, such that P ∩ T = ∅ and P ∪ T 6= ∅.

• F is the flow relation that assigns weights to arcs: F : P×T ∪ T×P →
N.

The marking M of a Petri net is defined over the set of places P . For each

place p ∈ P we let M(p) denote the number of tokens contained in p.

A marked Petri net Σ is a pair (N ,M) where N is a Petri net and M is

a marking. We denote by M0 the initial marking of the net.

In the following, given a marking M and a set of places P , we denote by

M |P the restriction of M over P , i.e., M |P (p) = M(p) for all p ∈ P and M |P
is undefined otherwise.

Definition 2.2.2 (Covering [Pet81]) Given a Petri net N = (P, T, F ), we

say that a marking M ′ covers a marking M if M ′ ≥ M , i.e., M ′(p) ≥ M(p)

for each p ∈ P .

Given a Petri net N = (P, T, F ), we say that a place p ∈ P is an input

(resp. output) place of a transition t ∈ T iff there is an input (resp. output)

arc from p to t (resp. from t to p). Given a transition t ∈ T , we denote by •t

and t• the set of all input and output places of t, respectively. Analogously,

given a place p ∈ P , we denote •p and p• the set of all input and output

transitions of p, respectively.

Definition 2.2.3 (Enabled Transitions) Let Σ = (N ,M) be a marked Petri

net, with N = (P, T, F ). We say that a transition t ∈ T is enabled in M , in

symbols M
t−→, iff for each input place p ∈ P of t, we have M(p) ≥ F (p, t).

A transition may only be fired if it is enabled.
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The firing of an enabled transition t in a marking M eliminates F (p, t)

tokens from each input place p ∈ •t and adds F (t, p′) tokens to each output

place p′ ∈ t•, producing a new marking M ′, in symbols M
t−→ M ′.

We say that a marking Mn is reachable from an initial marking M0 if there

exists a firing sequence σ = t1t2 . . . tn such that M0
t1−→ M1

t2−→ . . .
tn−→ Mn.

In this case, we say that Mn is reachable from M0 through σ, in symbols

M0
σ−→ Mn. This notion includes the empty sequence ε; we have M

ε−→ M

for any marking M . We say that a firing sequence is initial if it starts from

an initial marking.

The set of all possible markings which are reachable from an initial mark-

ing M0 in a marked Petri net Σ = (N ,M0) is denoted by R(N ,M0) (or simply

by R(M0) when N is clear from the context).

The following notion of subnet will be particularly relevant in the context

of slicing (roughly speaking, we will identify a slice with a subnet). Let

P ′×T ′ ∪ T ′×P ′ ⊆ P×T ∪ T×P , we say that a flow relation F ′ : P ′×T ′ ∪ T ′×
P ′ → N is a restriction of another flow relation F : P ×T ∪ T ×P → N over

P ′ and T ′, in symbols F |(P ′,T ′), if F ′ is defined as follows: F ′(x, y) = F (x, y)

if (x, y) ∈ P ′ × T ′ ∪ T ′ × P ′ and F ′ is not defined otherwise.

Definition 2.2.4 (Subnet [DE95]) A subnet N ′ = (P ′, T ′, F ′) of a Petri net

N = (P, T, F ) is a Petri net such that P ′ ⊆ P , T ′ ⊆ T and F ′ is a restriction

of F over P ′ and T ′, i.e., F ′ = F |(P ′,T ′).



Chapter 3

Slicing CSP

This chapter presents a static analysis technique based on program slicing

for CSP specifications. Given a particular event in a CSP specification, our

technique allows us to know what parts of the specification must necessarily

be executed before this event, and what parts of the specification could be

executed before it in some execution. Our technique is based on a new data

structure which extends the Synchronized Control Flow Graph (SCFG). We

show that this new data structure improves the SCFG by taking into account

the context in which processes are called and, thus, makes the slicing process

more precise. We called this new data structure Context-Sensitive Synchro-

nized Control Flow Graph (CSCFG). This chapter also describes SOC (Slicer

for CSP Specifications), the tool implemented to perform this analysis. Given

a CSP specification, SOC generates its associated CSCFG and produces from

it two different kinds of slices; which correspond to two different static analy-

ses. We present the tool’s architecture, its main applications and the results

obtained from experiments conducted in order to measure the performance

of the tool.

Part of the material of this chapter has been presented in the 18th Inter-

national Symposium on Logic-Based Program Synthesis and Transformation

(LOPSTR’08), held in Valencia (Spain) in 2008 [LLOST08, LLOST08b] and

21
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some parts will be present in ACM SIGPLAN 2009 Workshop on Partial

Evaluation and Program Manipulation (PEPM’09), that will be held cele-

brated in Savannah (Georgia,USA) in 2009 [LLOST09].

3.1 Context-Sensitive Synchronized Control

Flow Graphs

As it is usual in static analysis, we need a data structure able to finitely rep-

resent the (often infinite) computations of our specifications. Unfortunately,

we cannot use the standard Control Flow Graph (CFG) [Tip95], neither the

Interprocedural Control Flow Graph (ICFG) [HRS98] because they cannot

represent multiple threads and, thus, they can only be used with sequential

programs. In fact, for CSP specifications, being able to represent multi-

ple threads is a necessary but not a sufficient condition. For instance, the

threaded Control Flow Graph (tCFG) [Kri98, Kri03] can represent multiple

threads through the use of the so called “start thread” and “end thread”

nodes; but it does not handle synchronizations between threads. Callahan

and Sublok introduced a data structure [CS88], the Synchronized Control

Flow Graph (SCFG), which explicitly represents synchronizations between

threads with a special edge for synchronization flows.

For convenience, the following definition adapts the original definition of

SCFG for CSP; and, at the same time, it slightly extends it with the “start

thread” and “end thread” notation from tCFGs.

Definition 3.1.1 (Synchronized Control Flow Graph) Given a CSP specifi-

cation S, its Synchronized Control Flow Graph is a directed graph, SCFG =

(N,Ec, Es) where:

• nodes N = Pos(S) ∪ Start(S);

• and Start(S) = {“start P”, “end P” | P ∈ P roc(S)}.
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Edges are divided into two groups:

• control-flow edges (Ec)

• and synchronization edges (Es).

Es is a set of two-way edges (denoted with e) representing the possible syn-

chronization of two (event) nodes. Ec is a set of one-way edges (denoted with

7→) such that, given two nodes n, n′ ∈ N , n 7→ n′ ∈ Ec iff one of the following

is true:

• n = P ∧ n′ = “start P” with P ∈ Proc(S)

• n = “start P” ∧ n′ = first((P, Λ)) with P ∈ Proc(S)

• n ∈ {u, ¤, |||, ||} ∧ n′ ∈ {first(n.1), f irst(n.2)}

• n ∈ {→, ; } ∧ n′ = first(n.2)

• n = n′.1 ∧ n′ =→

• n ∈ last(n′.1) ∧ n′ = ;

• n ∈ last((P, Λ)) ∧ n′ = “end P” with P ∈ Proc(S)

where

first(n) =





n.1 if n =→
first(n.1) if n = ;

n otherwise
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last(n) =





{n} if n = SKIP

∅ if n = STOP ∨
(n ∈ {|||, ||} ∧
(last(n.1) = ∅ ∨ last(n.2) = ∅))

last(n.2) if n ∈ {→, ; }
last(n.1) ∪ last(n.2) if n ∈ {u,¤} ∨

(n ∈ {|||, ||} ∧
last(n.1) 6= ∅ ∧ last(n.2) 6= ∅)

{“end P”} if n = P

The SCFG can be used for slicing CSP specifications as it is described in

the following example.

Example 3.1.2 Consider the specification of Example 2.1.2 and its associ-

ated SCFG shown in Fig. 3.1 (left); for the sake of clarity we show the term

represented by each specification position. If we select the node labelled c

and traverse the SCFG backwards in order to identify the nodes on which c

depends, we get the whole graph except nodes end MAIN, end R and SKIP at

process R.

This example is twofold: on the one hand, it shows that the SCFG could be

used for static slicing of CSP specifications. On the other hand, it shows that

it is still too imprecise as to be used in practice. The cause of this imprecision

is that the SCFG is context-insensitive because it connects all the calls to

the same process with a unique set of nodes. This causes the SCFG to mix

different executions of a process with possible different synchronizations, and,

thus, slicing lacks precision. For instance, in Example 2.1.2 process P is called

twice in different contexts. It is first executed in parallel with Q producing

the synchronization of their b events. Then, it is executed in parallel with
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Figure 3.1: SCFG (left) and CSCFG (right) of the program in Example 2.1.2

R producing the synchronization of their a events. This makes the complete

process R be part of the slice, which is suboptimal because process R is always

executed after Q.

To the best of our knowledge, there do not exist other graph represen-

tations which face this problem. In the rest of this section, we propose a

new version of the SCFG, the context-sensitive synchronized control flow

graph (CSCFG) which is context-sensitive because it takes into account the

different contexts on which a process can be executed.

Contrarily to the SCFG, inside a CSCFG the same specification position

can appear multiple times. Hence, we now use labelled graphs, with nodes

labelled by specification positions. Therefore, we use l(n) to refer to the label

of node n. We also need to define the context of a node in the graph.

Definition 3.1.3 (Context) A path between two nodes n1 and m is a se-

quence l(n1), . . . , l(nk) such that nk 7→ m and for all 0 < i < k we have
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ni 7→ ni+1 . The path is loop-free if for all i 6= j we have ni 6= nj.

Given a labelled graph G = (N, Ec) and a node n ∈ N , the context of n,

Con(n) = {m | l(m) = “start P”, P ∈ Proc(S) and exists a loop-free path

π = m 7→∗ n with “end P” 6∈ π}.

Intuitively speaking, the context of a node represents the set of processes

in which a particular node is being executed. If we focus on a node n ∈
Proc(S) we can use the context to identify loops.

Definition 3.1.4 (Context-Sensitive Synchronized Control Flow Graph) Given

a CSP specification S, a Context-Sensitive Synchronized Control Flow Graph

CSCFG = (N,Ec, El, Es) is a SCFG graph, except in two aspects:

1. There is a special set of loop edges (El) denoted with Ã. (n1 Ã n2) ∈
El iff l(n1) = P ∈ Proc(S), l(n2) = “start P” and n2 ∈ Con(n1), and

2. Two nodes can have the same label. Every node in Start(S) has one

and only one incoming edge in Ec. Every process call node has one and

only one outgoing edge which belongs to either Ec or El.

For slicing purposes, the CSCFG is interesting because we can use the

edges to determine if a node must be executed or not before another node,

thanks to the following properties:

• if n 7→ n′ ∈ Ec then n must be executed before n′ in all executions.

• if n Ã n′ ∈ El then n′ must be executed before n in all executions.

• if n e n′ ∈ Es then, in all executions, if n is executed there must be

some n′′ which is executed at the same time than n with n e n′′ ∈ Es.

The key difference between the SCFG and the CSCFG is that the latter

unfolds every process call node except those that belong to a loop. This

is very convenient for slicing because every process call which is executed
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in a different context is unfolded, thus, slicing does not mix computations.

Moreover, it allows to deal with recursion and, at the same time, it prevents

from infinite unfolding of process calls; because loop edges prevent from

infinite unfolding. One important characteristic of the CSCFG is that loops

are unfolded once, and thus all the specification positions inside the loops

are in the graph and can be collected by slicing algorithms. For slicing

purposes, this representation also ensures that every possibly executed part

of the specification belongs to the CSCFG because only loops (i.e., repeated

nodes) are missing.

The CSCFG provides a different representation for each context in which

a procedure call is made. This can be seen in Fig. 3.1 (right) where process

P appears twice to account for the two contexts in which it is called. In

particular, in the CSCFG we have a fresh node to represent each different

process call, and two nodes point to the same process if and only if they are

the same call (they are labelled with the same specification position) and

they belong to the same loop. This property ensures that the CSCFG is

finite.

Lemma 3.1.5 (Finiteness) Given a specification S, its associated CSCFG

is finite.

Proof 3.1.6 We show first that there do not exist infinite unfolding in a

CSCFG. Firstly, the same start process node only appears twice in the same

control loop-free path if it belongs to a process which is called from different

process calls (i.e., with different specification positions) as it is ensured by

the first condition of Definition 3.1.4. Therefore, the number of repeated

nodes in the same control loop-free path is limited by the number of different

process calls appearing in the program. However, the number of terms in

the specification is finite and thus there is a finite number of different process

calls. Moreover, every process call has only one outgoing edge as it is ensured
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Figure 3.2: SCFG and CSCFG representing an infinite computation

by the second condition of Definition 3.1.4. Therefore, the number of paths

is finite and the size of every path of the CSCFG is limited.

Example 3.1.7 This example makes clear the difference between the SCFG

and the CSCFG, consider the specification in Fig. 3.2. While the SCFG

only uses one representation for the process P (there is only one start P),

the CSCFG uses four different representations because P could be executed in

four different contexts. Note that due to the infinite loops, some parts of the

graph are not reachable from start MAIN; i.e., there is not possible control

flow to end MAIN. However, it does not hold in the SCFG.



3.2. STATIC SLICING OF CSP SPECIFICATIONS 29

3.2 Static Slicing of CSP Specifications

We want to perform two kinds of analyses. Given an event or a process in

the specification, we want, on the one hand, to determine what parts of the

specification MUST be executed before (MEB) it; and, on the other hand,

we want to determine what parts of the specification COULD be executed

before (CEB) it.

We can now formally define our notion of slicing criterion.

Definition 3.2.1 (Slicing Criterion) Given a specification S, a slicing cri-

terion is a specification position (P,w) ∈ Proc(S) ∪ Event(S).

Clearly, the slicing criterion points to a set of nodes in the CSCFG, be-

cause the same event or process can happen in different contexts and, thus, it

is represented in the CSCFG with different nodes. As an example, consider

the slicing criterion (P, a) for the specification in Example 2.1.2, and observe

in its CSCFG in Fig. 3.1 (right) that two different nodes are pointed out by

the slicing criterion.

This means that a slicing criterion C = (P, w) is used to produce a slice

with respect to all possible executions of w. We use function nodes(C) to

refer to all the nodes in the CSCFG pointed out by the slicing criterion C.

Given a slicing criterion (P,w), we use the CSCFG to calculate MEB.

In principle, one could think that a simple backwards traversal of the graph

from nodes(C) would produce a correct slice. Nevertheless, this would pro-

duce a rather imprecise slice because this would include pieces of code which

cannot be executed but they refer to the slicing criterion (e.g., dead code).

The union of paths from MAIN to nodes(C) is neither a solution because it

would be too imprecise by including in the slice parts of code which are ex-

ecuted before the slicing criterion only in some executions. For instance, in

the process (b→a→STOP)¤(c→a→STOP), c belongs to one of the paths to

a, but it must be executed before a or not depending on the choice. The
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intersection of paths is neither a solution as it can be seen in the process

a→((b→SKIP)||(c→SKIP));d where b must be executed before d, but it

does not belong to all the paths from MAIN to d.

Before we introduce an algorithm to compute MEB we need to formally

define the notion of MEB slice.

Definition 3.2.2 (MEB Slice) Given a specification S with an associated

CSCFG G = (N, Ec, El, Es), and a slicing criterion C for S; a MEB slice of

S with respect to C is a subgraph of G, MEB(S, C) = (N ′, E ′
c, E

′
l, E

′
s) with

N ′ ⊆ N , E ′
c ⊆ Ec, E ′

l ⊆ El and E ′
s ⊆ Es, where N ′ = {n|n ∈ N and

∀ X = (MAIN →∗ m), m ∈ nodes(C) . n ∈ X}, E ′
c = {(n,m)|n 7→ m ∈ Ec

and n,m ∈ N ′}, E ′
l = {(n,m)|n Ã m ∈ El and n,m ∈ N ′} and E ′

s =

{(n,m)|n e m ∈ Es and n,m ∈ N ′}.

Algorithm 3.2.3 can be used to compute the MEB analysis. It basically

computes for each node in nodes(C) a set containing the part of the spec-

ification which must be executed before it. Then, it returns MEB as the

intersection of all these sets. Each set is computed with an iterative process

that takes a node and (i) it follows backwards all the control-flow edges. (ii)

Those nodes that could not be executed before it are added to a black list

(i.e., they are discarded because they belong to a non-executed choice). And

(iii) synchronizations are followed in order to reach new nodes that must be

executed before it.

The algorithm always terminates. We can ensure this due to the invariant

pending ∩Meb = ∅ which is always true at the end of the loop (8). Then,

because Meb increases in every iteration (5) and the size of N is finite,

pending will eventually become empty and the loop will terminate.
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Algorithm 3.2.3

Input:

• A CSCFG (N, Ec, El, Es) of a specification S

• and a slicing criterion C

Output:

• A CSCFG’s subgraph

Function buildMeb(n) :=

(1) pending := {n′ | (n′ 7→ o) ∈ Ec} where o ∈ {n} ∪ {o′ | o′ e n}
(2) Meb := pending ∪ {o | o ∈ N and MAIN 7→∗ o 7→∗ m, m ∈ pending}
(3) blacklist := {p | p ∈ N\Meb and o 7→∗ p, with o ∈ choices(Meb)}
(4) pending := {q | q ∈ N\(blacklist ∪Meb)

and q e r ∨ (q Ã r and r 67→∗ n) with r ∈ Meb}
(5) while ∃ m ∈ pending do

(6) Meb := Meb ∪ {m} ∪ {o | o ∈ N and MAIN 7→∗ o 7→∗ m}
(7) sync := {q | q ∈ N\(blacklist ∪Meb)

and q e r ∨ (q Ã r and r 67→∗ n) with r ∈ Meb}
(8) pending := (pending\Meb) ∪ sync

(9) return Meb

Return: MEB(S, C) = (N ′ = ∩
n∈nodes(C)

buildMeb(n),

E ′
c = {(n,m)|n 7→ m ∈ Ec and n,m ∈ N ′},

E ′
l = {(n,m)|n Ã m ∈ El and n,m ∈ N ′},

E ′
s = {(n,m)|n e m ∈ Es and n,m ∈ N ′}).

The CEB analysis computes the set of nodes in the CSCFG that could be

executed before a given node n. This means that all those nodes that must

be executed before n are included, but also those nodes that are executed
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before n in some executions, and they are not in other executions (e.g., due

to non synchronized parallelism). Formally,

Definition 3.2.4 (CEB Slice) Given a specification S with an associated

CSCFG G = (N,Ec, El, Es), and a slicing criterion C for S; a CEB slice

of S with respect to C is a subgraph of G, CEB(S, C) = (N ′, E ′
c, E

′
l, E

′
s) with

N ′ ⊆ N , E ′
c ⊆ Ec, E ′

l ⊆ El and E ′
s ⊆ Es, where N ′ = {n|n ∈ N and ∃ MAIN

→∗ n →∗ m with m ∈ nodes(C)}, E ′
c = {(n,m)|n 7→ m ∈ Ec and n,m ∈ N ′},

E ′
l = {(n,m)|n Ã m ∈ El and n,m ∈ N ′}, E ′

s = {(n,m)|n e m ∈ Es and

n,m ∈ N ′}.

Therefore, MEB(S, C) ⊆ CEB(S, C). The graph CEB(S, C) can be

computed with Algorithm 3.2.5 which, roughly, traverses the CSCFG for-

wards following all the paths that could be executed in parallel to nodes in

MEB(S, C).

Algorithm 3.2.5

Input:

• A CSCFG (N, Ec, El, Es) of a specification S

• and a slicing criterion C

Output:

• A CSCFG’s subgraph

Initialization:

Ceb := {m | m ∈ N1 and MEB(S, C) = (N1, Ec1, El1, Es1)}
loopnodes := {n | n1 7→+ n 7→∗ n2 Ã n3 and (n e n′) 6∈ Es

with n′ 6∈ Ceb, n1 ∈ choices(Ceb) and n3 ∈ Ceb}
Ceb := Ceb ∪ loopnodes

pending := {m | m 6∈ (Ceb ∪ nodes(C)) and (m′ 7→ m) ∈ Ec,
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with m′ ∈ Ceb\choices(Ceb)}
∪ {p1 | p 7→ p1 ∈ Ec and p 7→ p2 ∈ Ec and p1 6= p2,

with p ∈ parallel(loopnodes) and p2 ∈ loopnodes}

Repeat

(1) if ∃ m ∈ pending | (m e m′) 6∈ Es or

((m e m′) ∈ Es and m′ ∈ Ceb)

(2) then pending := pending\{m}
(3) Ceb := Ceb ∪ {m}
(4) pending := pending ∪ {m′′ | (m 7→ m′′) ∈ Ec and m′′ 6∈ Ceb}
(5) else if ∃ m ∈ pending and ∀ (m e m′) ∈ Es . m′ ∈ pending

(6) then candidate := {m′ | (m e m′) ∈ Es}
(7) Ceb := Ceb ∪ {m} ∪ candidate

(8) pending := (pending\Ceb) ∪ {n | n 6∈ Ceb and m 7→ n}
∪ {o | o 6∈ Ceb and m′ 7→ o, with m′ ∈ candidate}

Until a fix point is reached

Return: CEB(S, C) = (N ′ = Ceb,

E ′
c = {(n,m)|n 7→ m ∈ Ec and n,m ∈ N ′},

E ′
l = {(n,m)|n Ã m ∈ El and n,m ∈ N ′},

E ′
s = {(n,m)|n e m ∈ Es and n,m ∈ N ′}).

The algorithms presented can extract a slice from any specification formed

with the syntax of Fig 2.1. However, note that only two operators have a spe-

cial treatment in the algorithms: choices (because they introduce alternative

computations) and synchronized parallelisms (because they introduce syn-

chronizations). Other operators such as prefixing, interleaving or sequential

composition can be treated similarly.
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Figure 3.3: Graphical user interface of ProB

3.3 Implementation

We have implemented the MEB and CEB analyses and the algorithm to

build the CSCFG for ProB. ProB [LB08] is an animator for the B-Method

which also supports other languages such as CSP [BL05, LF08]. ProB has

been implemented SICStus Prolog [13] and it is publicly available at:

http://www.stups.uni-duesseldorf.de/ProB.

It uses Tcl/Tk for the Graphical User Interface (a Java version is also

available) and dot/dotty from the Graphviz package. In Figure 3.3 we show

the graphical user interface of ProB. The menu bar contains the various

commands to access the features of ProB. It includes the File menu, with a

submenu Recent Files to quickly access the files previously opened in ProB.

Notice the two couples of commands Open/Save and Reopen/Save and Re-

open, the latter reopening the currently opened file and reinitialising com-

pletely the state of the animation and the model checking processes. The

About menu provides help on the tool, including a command to check if an
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update is available on the ProB website. By default, ProB starts with a lim-

ited set of commands in the Beginner mode. The Normal mode gives access

to more features and can be set in the menu Preferences → User Mode.

Under the menu bar, the main window contains four panes:

• In the top pane, the specification of the machine is displayed with

syntax highlight, and can also be edited by typing directly in this pane;

• At the bottom, the animation window is composed of three panes which

display, at the current point during the animation:

– The current state of the machine (State Properties), listing the

current values of the machine variables;

– The enabled operations (Enabled Operations), listing the oper-

ations whose preconditions and guards are true in this state;

– The history of operations that leaded to this state (History).

The animation facilities of ProB allow users to gain confidence in their spec-

ifications. These features are user-friendly as the user does not have to guess

the right values for the operation arguments or choice variables, and she uses

the mouse to operate the animation. At each point during the animation pro-

cess, several useful commands displaying various information on the machine

are available in the Analyse menu.

The implementation of our slicer has three main modules. The first mod-

ule implements the construction of the CSCFG. Nodes and control and loop

edges are built following the algorithm of Definition 3.1.4. For synchroniza-

tion edges we use an algorithm based on the approach by Naumovich et al.

[NA98]. For efficiency reasons, the implementation of the CSCFG does some

simplifications which reduces the size of the graph. For instance, “start” and

“end” nodes are not present in the graph.
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Figure 3.4: Compacted version of the CSCFG in Fig. 3.1

Another simplification to reduce the size of the graph is the graph com-

pactation which joins together all the nodes defining a sequential path (i.e.,

without nodes with more than one output edge). For instance, the graph of

Fig. 3.4 is the compacted version of the CSCFG in Fig. 3.1 (right). Here,

e.g., node 6 accounts for the sequence of nodes P → start P. The com-

pacted version is a very convenient representation because the reduced data

structure speeds up the graph traversal process. This is made in the second

module.

The third module performs the MEB and CEB analyses by implementing

Algorithm 3.2.3 and Algorithm 3.2.5. Finally, a module allows the tool to

communicate with the ProB interface in order to get the slicing criterion and

show the highlighted code.

We have integrated our tool into the graphical user interface of ProB.

This allows us to use features such as text coloring in order to highlight the

final slices. Figure 3.5 shows a screenshot of the tool showing a slice of a

CSP specification.

In the following sections we give an detailed description of the tool. In

Section 3.3.1 we show the applications of this tool and an example of use. In

Section 3.3.2 we describe the architecture of SOC. In Section 3.3.3 we show

how is used the tool by means of an example. Finally, in Section 3.3.4 we show

a summary of some experiments which show the speedup and performance



3.3. IMPLEMENTATION 37

Figure 3.5: Slice of a CSP specification produced by SOC

of our tool.

3.3.1 SOC in Practice

In this section, we describe the purpose of our tool and how it can be used to

extract slices from CSP specifications. Let us consider the following example

to show the usefulness of the technique.

Example 3.3.1 Consider the CSP specification of Figure 3.5. It is repre-

senting the case of example 1.1.1. Our slicing technique automatically ex-

tracts the slice composed by the highlighted parts. This is what we have called

MEB analysis. Therefore, SOC is a powerful tool for program comprehen-

sion. Note, for instance, that in order to fail in the second year, the student

has necessarily passed the first year. But, the parent could or could not give a

present to his son (indeed if he passed the first year) because this specification

does not force the parent to give a present to his son until he has passed the
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second year. This is not so obvious from the specification, and SOC can help

to understand the real meaning of the specification.

We can additionally be interested in knowing what parts could be exe-

cuted before the same event. This is what we have called CEB analysis. In

this case, our technique adds to the slice the underscored parts because they

could be executed (in some executions) before the marked event. This can be

useful, e.g., for debugging. If the slicing criterion is an event that executed

incorrectly (i.e., it should not happen in the execution), then the slice pro-

duced contains all the parts of the specification which could produce the wrong

behavior.

A third application of our tool is program specialization. SOC is able to

extract executable slices with a program transformation applied to the gener-

ated slices. The specialized specification contains all the necessary parts of

the original specification whose execution leads to the slicing criterion (and

then, the specialized specification finishes).

Note that, in the slices produced by both analyses in Figure 3.5, the slice

produced could be made executable by replacing the removed parts by “STOP”

or by “→ STOP” if the removed expression has a prefix.

As described in the previous example, the slicing process is completely

automatic. Once the user has loaded a CSP specification, she can select

(with the mouse) the event or process call she is interested in. Obviously,

this simple action is enough to define a slicing criterion because the tool

can automatically determine the process and the source position of interest.

Then, the tool internally generates an internal data structure which repre-

sents all possible computations, and uses the MEB and CEB algorithms to

construct the slices. The result is shown to the user by highlighting the part

of the specification that must (respectively could) be executed before the

specified event.

There is another application of SOC which was our original aim when
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we developed this tool. ProB is able to perform different static analyses over

CSP specifications. However, due to the complexity of the specifications and

to the parallel and non-deterministic execution of processes, these analyses

usually become too costly as to be used with real programs. SOC can be

used as a preprocessing stage of these analyses in order to reduce the size of

the specification and, thus, the size of the data structures used in, and the

complexity of, the static analyses.

3.3.2 Architecture

SOC has been implemented in Prolog and it has been integrated in ProB.

Therefore, SOC can take advantage of ProB’s graphical features to show

slices to the user. In order to be able to color parts of the code, it has been

necessary to implement the source code positions detection; in such a way

that ProB can color every subexpression which is sliced by SOC. Apart from

the interface module for the communication with ProB, SOC has three main

modules which we describe in the following:

Graph Generation

The first task of the slicer is to build a CSCFG. The module which generates

the CSCFG from the source program is the only module which is ProB

dependent. This means that SOC could be used in other systems by only

changing the graph generation module.

Graph Compactation

The original definition of the CSCFG is inaccurate from an implementation

point of view. Therefore, we have implemented a module which reduces the

size of the CSCFG by removing unnecessary nodes and by joining together
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Figure 3.6: Slicer’s Architecture

those nodes that form paths that the slicing algorithms must traverse in all

cases. This compactation not only reduces the size of the stored CSCFG,

but it also speeds up the slicing process due to the reduced number of nodes

to be processed.

Slicing Module

This is the main module of the tool. It is further composed of two submodules

which implement the algorithms to perform the MEB and CEB analyses on

the compacted CSCFGs. Depending on the analysis selected by the user this

module extracts a subgraph from the compacted CSCFG using either MEB

or CEB. Then, it extracts from the subgraph the part of the source code

which forms the slice. If the user has selected to produce an executable slice,

then the slice is transformed to become executable (it mainly fills gaps in

the produced slice in order to respect the syntax of the language). The final

result is then returned to ProB in such a way that ProB can either highlight
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Figure 3.7: Selecting the slicing criterion

the final slice or save a new CSP executable specification in a file.

Figure 3.6 summarizes the internal architecture of SOC. Note that both

the graph compactation module and the slicing module take a CSCFG as

input, and hence, they are independent of ProB.

3.3.3 Using the slicer

Let us consider the example 3.3.1 to show how SOC can be used to extract

slices from CSP specifications. The user has two possibilities: to edit the

specification directly in the top pane or to load it from a file (if it exists as a

previously edited file). Once the program is loaded, the user can slice it with

a process which is fully automatic. After this, the user has to select what will

be the slicing criterion using the mouse. In our example, the slicing criterion

is event fail of process YEAR2, as we can see in Figure 3.7.

Then, she selects command Highlight Slice from Analyse→ Slicing

menu. The tool internally generates the CSCFG of the specification (saved in
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a file .dot) and uses the MEB and CEB algorithms to construct the slices. The

result is shown to the user by highlighting the part of the specification that

must (respectively could) be executed before the specified event. Figure 3.5

shows a screenshot of ProB showing a slice of our CSP specification example

w.r.t. the slicing criterion (YEAR2,fail). We can observe highlighted in

green the MEB slice and underlined the CEB slice which coincide with the

expected results.

Finally, the user can view the generated CSCFG opening the correspond-

ing .dot file. In Figure 3.8 is shown the CSCFG generated when Analyse →
Slicing is selected. The nodes of the MEB slice are darker.

3.3.4 Benchmarking the slicer

In order to measure the performance and the slicing capabilities of our tool,

we conducted some experiments over a subset of the examples listed in

http://www.dsic.upv.es/~jsilva/soc/examples.

The benchmarks selected for the experiments are the following:

• ATM.csp. This specification represents an Automated Teller Machine.

The slicing criterion is (Menu,getmoney), i.e., we are interested in de-

termining what parts of the specification must be executed before the

menu option getmoney is chosen in the ATM.

• RobotControlling.csp. This example describes a game in which four

robots move in a maze. The slicing criterion is (Referee,winner2),

i.e., we want to know what parts of the system could be executed before

the second robot becomes the winner.

• Buses.csp. This example describes a bus service with two buses run-

ning in parallel. The slicing criterion is (BUS37, pay90), i.e., we are

interested in determining what could and could not happen before the

user payed at bus 37.
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Figure 3.8: CSCFG of Example 3.3.1



44 CHAPTER 3. SLICING CSP

• Prize.csp. This is the specification of Example 3.3.1. The slicing

criterion is (YEAR2,fail), i.e., we are interested in determining what

parts of the specification must be executed before the student fails in

the second year.

• Phils.csp. This is a simple version of the dining philosophers problem.

In this example, the slicing criterion is (PHIL221,DropFork2), i.e., we

want to know what happened before the second philosopher dropped

the second fork.

• TrafficLights.csp. This specification defines two cars driving in

parallel on different streets. The first car can only circulate in two

streets. The second car can only circulate in a third street. Each

street has one traffic light for cars controlling. The slicing criterion is

(STREET3,park), i.e., we are interested in determining what parts of

the specification must be executed before the second car parks on the

third street.

• Processors.csp. This example describes a system that, once con-

nected, receives data from two machines. The slicing criterion is

(MACH1,datreq) to know what parts of the example must be executed

before the first machine requests data.

• ComplexSynchronization.csp. This specification defines five routers

working in parallel. Router i can only send messages to router i+1.

Each router can send a broadcast message to all routers. The slicing

criterion is (Process3,keep), i.e., we want to know what parts of the

system could be executed before router 3 keeps a message.

• Computers.csp. This benchmark describes a system in which a user

can surf internet and download files. The computer can control if files

are infected by virus. The slicing criterion is (USER,consult file),
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Table 3.1: Benchmark time results

benchmark CSCFG MEB CEB Total

ATM.csp 1239 ms. 7083 ms. 438 ms. 8760 ms.

RobotControlling.csp 586 ms. 923 ms. 2175 ms. 3684 ms.

Buses.csp 11 ms. 17 ms. 2 ms. 30 ms.

Prize.csp 23 ms. 116 ms. 17 ms. 156 ms.

Phils.csp 39 ms. 11 ms. 152 ms. 202 ms.

TrafficLights.csp 245 ms. 115 ms. 631 ms. 991 ms.

Processors.csp 7 ms. 7 ms. 7 ms. 21 ms.

ComplexSynchronization.csp 1365 ms. 98107 ms. 250 ms. 99722 ms.

Computers.csp 40 ms. 426 ms. 11 ms. 477 ms.

Highways.csp 4555 ms. 92 ms. 40 ms. 4687 ms.

i.e., we are interested in determining what parts of the specification

must be executed before the user consults a file.

• Highways.csp. This specification describes a net of spanish highways.

The slicing criterion is (HW6,Toledo), i.e., we want to determine what

cities must be traversed in order to reach Toledo from the starting

point.

For each benchmark, Table 3.1 summarizes the time spent to generate the

compacted CSCFG (this includes the generation plus the compactation phases),

to produce the MEB and CEB slices, and the total time. Table 3.2 summa-

rizes the size, in nodes, of the graphs participating in the slicing process:

Column Ori CSCFG shows the size of the CSCFG of the original program.

Column Com CSCFG shows the size of the compacted CSCFG. Last column

shows the percentage of the original program that represents the compacted

version. Table 3.3, which follows the previous one, summarizes the size of the

graphs when they are reduced by the slicing process: Columns MEB Slice
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Table 3.2: Benchmark size graphs results

benchmark Ori CSCFG Com CSCFG (%)

ATM.csp 163 nodes 110 nodes 67.48 %

RobotControlling.csp 339 nodes 123 nodes 36.28 %

Buses.csp 36 nodes 24 nodes 66.67 %

Prize.csp 70 nodes 49 nodes 70.0 %

Phils.csp 181 nodes 57 nodes 31.49 %

TrafficLights.csp 197 nodes 112 nodes 56.85 %

Processors.csp 30 nodes 15 nodes 50.0 %

ComplexSynchronization.csp 179 nodes 122 nodes 68.16 %

Computers.csp 53 nodes 34 nodes 64.15 %

Highways.csp 103 nodes 60 nodes 58.25 %

and CEB Slice show respectively the size of the MEB and CEB slices. Fi-

nally, column (%) shows the difference in size between the MEB and CEB

slices. Clearly, CEB slices are always equal or greater than their MEB coun-

terparts.

The CSCFG compactation technique has not been published. We have

implemented it in our tool and the experiments show that the size of the

original specification is substantially reduced using this technique. The size

of both MEB and CEB slices obviously depends on the slicing criterion se-

lected. This table compares both slices with respect to the same criterion

and, therefore, gives an idea of the difference between them.

All the information related to the experiments, the source code of the

benchmarks, the slicing criteria used, the source code of the tool and other

material can be found at:

http://www.dsic.upv.es/~jsilva/soc.
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Table 3.3: Benchmark size slice results

benchmark MEB Slice CEB Slice (%)

ATM.csp 48 nodes 61 nodes 27.08 %

RobotControlling.csp 36 nodes 109 nodes 202.78 %

Buses.csp 11 nodes 11 nodes 0.0 %

Prize.csp 17 nodes 18 nodes 5.88 %

Phils.csp 7 nodes 44 nodes 528.57 %

TrafficLights.csp 17 nodes 72 nodes 323.53 %

Processors.csp 8 nodes 9 nodes 12.5 %

ComplexSynchronization.csp 100 nodes 116 nodes 16.0 %

Computers.csp 28 nodes 28 nodes 0.0 %

Highways.csp 14 nodes 20 nodes 42.85 %
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Chapter 4

Slicing Petri Nets

In the context of Petri nets, computing a net slice can be seen as a graph

reachability problem. In this chapter, we propose two slicing techniques for

Petri nets that can be useful to reduce the size of the considered net, thereby

simplifying subsequent analysis and debugging tasks by standard Petri net

techniques.

Part of the material of this chapter has been presented in the 2nd Work-

shop on Reachability Problems (RP 2008) held in Liverpool (UK) in 2008

[LOSTV08].

4.1 Dynamic Slicing of Petri Nets

In this section, we introduce our first approach to dynamic slicing of Petri

nets. We say that our slicing technique is dynamic since an initial mark-

ing is taken into account (in contrast to previous approaches, e.g., [CW86,

LCKK00, Rak07, Rak08]).

Using an initial marking can be useful, e.g., in debugging. Consider for

instance that the user is analyzing a particular trace for a marked Petri net

(using a simulation tool [Dat], which we assume correct), so that an erroneous

state is reached. Here, by erroneous state, we mean a marking in which some

49
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places have an incorrect number of tokens. In this case, we are interested in

extracting the set of places and transitions (more formally, a subnet) that

may erroneously contribute tokens to the places of interest, so that the user

can more easily locate the bug.

Therefore, our first notion of slicing criterion is formalized as follows:

Definition 4.1.1 (Slicing Criterion) Let N = (P, T, F ) be a Petri net. A

slicing criterion for N is a pair 〈M0, Q〉 where M0 is an initial marking for

N and Q ⊆ P is a set of places.

Roughly speaking, given a slicing criterion 〈M0, Q〉 for a Petri net N , we

are interested in extracting a subnet with those places and transitions of N
which can contribute to change the marking of Q in any execution starting

in M0.

Our notion of dynamic slice is defined as follows. In the following, we say

that σ′ is a subsequence of a firing sequence σ w.r.t. a set of transitions T if

σ′ contains all transitions of σ that belong to T and in the same order.

Definition 4.1.2 (Slice) Let N = (P, T, F ) be a Petri net and let 〈M0, Q〉
be a slicing criterion for N . Given a Petri net N ′ = (P ′, T ′, F ′), we say that

N ′ is a slice of N w.r.t. 〈M0, Q〉 if the following conditions hold:

• the Petri net N ′ is a subnet of N and

• for each firing sequence σ = t1 . . . tn, for N , with M0
t1−→ . . .

tn−1−→
Mn−1

tn−→ Mn such that Mn−1(p) < Mn(p) for some p ∈ Q, there exists

a firing sequence σ′ for (N ′,M ′
0), with M ′

0 = M0|P ′, such that

– σ′ is a subsequence of σ w.r.t. T ′,

– M ′
0

σ′−→ M ′
m, m ≤ n, and

– M ′
m covers Mn|P ′ (i.e., M ′

m ≥ Mn|P ′).
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Intuitively speaking, a Petri net N ′ is a slice of another Petri net N if

N ′ is a subnet of N (i.e., no additional places nor transitions are added) and

the behaviour of N is preserved in N ′ for the restricted sets of places and

transitions. In order to formalize this second condition, we require that, for

all firing sequences σ = t1 . . . tn that may move tokens to the places of the

slicing criterion, i.e.,

M0
t1−→ . . .

tn−1−→ Mn−1
tn−→ Mn and Mn−1(p) < Mn(p), p ∈ Q

the restriction of this firing sequence can also be performed on the slice N ′,

i.e.,

M ′
0

σ′−→ M ′
m and M ′

m ≥ Mn

Trivially, given a Petri net N , the complete net N is always a correct slice

w.r.t. any slicing criterion. The challenge then is to produce a slice as small

as possible.

Algorithm 4.1.3 Let N = (P, T, F ) be a Petri net and let 〈M0, Q〉 be a

slicing criterion for N . First, we compute a backward slice similar to that

of [Rak07]. This is obtained from b sliceN (Q, { }), where function b sliceN

is defined as follows:

b sliceN (W,Wdone) =





{ } if W = { }
T ∪ •T ∪ b sliceN (W \W ′

done,W
′
done)

if W 6= { }, where T = •p,

and W ′
done = Wdone ∪ {p}

for some p ∈ P

Now, we compute a forward slice from

f sliceN ({p ∈ P | M0(p) > 0}, { }, {t ∈ T | M0
t−→})
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where function f sliceN is defined as follows:

f sliceN (W,R, V ) =





W ∪R if V = { }
f sliceN (W ∪ V •, R ∪ V, V ′)

if V 6= { },
where V ′ = {t ∈ T \(R ∪ V ) | •t ⊆ W ∪ V •}

Then, the dynamic slice is finally obtained from the intersection of the

backward and forward slices. Formally, let

P ′ ∪ T ′ = b sliceN (Q, { }) ∩
f sliceN ({p ∈ P | M0(p) > 0}, { }, {t ∈ T | M0

t−→})

with P ′ ⊆ P and T ′ ⊆ T , the computed slice is

N ′ = (P ′, T ′, F |(P ′,T ′))

Algorithm 4.1.3 describes our method to extract a dynamic slice from a

Petri net. Intuitively speaking, Algorithm 4.1.3 constructs the slice of a Petri

net (P, T, F ) for a set of places Q ⊆ P as follows. The key idea is to capture

a possible token flow relevant for places in Q. For this purpose,

• we first compute the possible paths which lead to the slicing criterion,

• then we also compute the paths that may be followed by the tokens of

the initial marking.

This can be done by taking into account that (i) the marking of a place p

depends on its input and output transitions, (ii) a transition may only be

fired if it is enabled, and (iii) the enabling of a transition depends on the

marking of its input places. The algorithm is divided in three steps:



4.1. DYNAMIC SLICING OF PETRI NETS 53

• The first step is a backward slicing method (which is similar to the basic

slicing algorithm of [Rak07]) that obtains a slice N1 = (P1, T1, F1) de-

fined as the subnet of N that includes all input places of all transitions

connected to any place p in P1, starting with Q ⊆ P1.

– The core of this method is the auxiliary function b sliceN , which

is initially called with the set of places Q of the slicing criterion

together with an empty set of places.

– For a particular non-empty set of places W and a particular place

p ∈ W , function b sliceN returns the transitions T in •p and the

input places of these transitions •T . Then, function b sliceN moves

backwards adding the place p to the set Wdone and removing from

W the updated set Wdone until the set W becomes empty.

• The second step is a forward slicing method that obtains a slice N2 =

(P2, T2, F2) defined as the subnet of N that includes all transitions

initially enabled in M0 as well as those transitions connected as output

transitions of places in P2, starting with p ∈ P such that M0(p) > 0.

– We define an auxiliary function f sliceN , which is initially called

with the places that are marked at M0, an empty set of transitions

and the enabled transitions in M0.

– For a particular set of places W , a particular set of transitions R

and a particular non-empty set of transitions V , function f sliceN

moves forwards adding the places in V • to W , adding the transi-

tions in V to R and replacing the set of transitions V by a new

set V ′ in which are included the transitions that are not in R∪ V

and whose input places are in W ∪ V •.

– Finally, when V is empty, function f sliceN returns the accumu-

lated set of places and transitions W ∪R.
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• Finally, the third step obtains the slice N ′ = (P ′, T ′, F ′) defined as

the subnet of N where P ′ is the intersection of P1 and P2, T ′ is the

intersection of T1 and T2, and F ′ is the restriction of F over P ′ and T ′,

i.e., the intersection of backward and forward slices.

The following result states the completeness of our algorithm for comput-

ing Petri net slices. The proof of this result follows easily by induction on

the length of the firing sequences considered in Definition 4.1.2.

Theorem 4.1.4 (Correctness) Let N be a Petri net and 〈M0, Q〉 be a slicing

criterion for N . The dynamic slice N ′ computed in Algorithm 4.1.3 is a

correct slice according to Definition 4.1.2.

We will now show the usefulness of the technique with a simple example.

Example 4.1.5 Consider the Petri net N of Fig. 4.1(a) where the user

wants to produce a slice w.r.t. the slicing criterion 〈M0, {p5, p7, p8}〉. Fig-

ure 4.1(b) shows the slice N1 obtained in the first part of Algorithm 4.1.3. Fig-

ure 4.1(c) shows the slice N2 obtained in the second part of Algorithm 4.1.3.

The subnet shown in Fig. 4.1(d) is the final result of Algorithm 4.1.3 (the

intersection of N1 and N2). This slice contains all the places and transitions

of the original Petri net which can transmit tokens to the slicing criterion.

Clearly, using an initial marking allows us to produce smaller slices. Sur-

prisingly, previous approaches completely ignored the marking of the net, and

thus their slices are often rather big. For instance, the slice of Fig. 4.1(b) is

a subset of the slice produced by Rakow’s algorithm [Rak07] (this algorithm

would also include transitions t4, t6 and t7). Clearly, this slice contains parts

of the Petri net that cannot be reached with the given initial marking (e.g.,

transition t1 which could never be fired because place p2 is empty). Rakow’s

algorithm computes all the parts of the Petri net which could transmit tokens

to the slicing criterion and, thus, the associated slicing criterion is just 〈Q〉,
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Figure 4.1: Example of an application of Algorithm 4.1.3
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where Q ⊆ P is a set of places. In contrast, we compute all the parts of the

Petri net which could transmit tokens to the slicing criterion from the initial

marking. Therefore, our technique is essentially a generalization of Rakow’s

technique because the slice produced with Rakow’s algorithm w.r.t. 〈Q〉 is

the same as the slice produced w.r.t. 〈M0, Q〉 if M0(p) > 0 for all p ∈ P and

all t ∈ T are enabled transitions at M0.

Our slicing technique is more general than Rakow’s technique but, at

the same time, it keeps its simplicity and efficiency because we still use

the Petri net structure to produce the slice. Therefore, our first approach

can be considered lightweight because its cost is bounded by the number of

transitions T of the original Petri net; namely, the cost of our algorithm is

O(2T ).

4.2 Extracting Slices from Traces

In this section, we present an alternative approach to dynamic slicing that

generally produces smaller slices by also considering a particular firing se-

quence.

In principle, Algorithm 4.1.3 should consider all possible executions of the

Petri net starting from the initial marking. This approach can be useful in

some contexts but it is too imprecise for debugging when a particular simu-

lation has been performed. Therefore, in our second approach, we refine the

notion of slicing criterion so as to also include the firing sequence that rep-

resents the erroneous simulation. By exploting this additional information,

the new slicing algorithm will usually produce smaller slices. Formally,

Definition 4.2.1 (Slicing Criterion) Let N = (P, T, F ) be a Petri net. A

slicing criterion for N is a triple 〈M0, σ,Q〉 where M0 is a marking for N ,

σ is an initial firing sequence (i.e., starting from M0) and Q ⊆ P is a set of

places.
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Roughly speaking, given a slicing criterion 〈M0, σ,Q〉 for a Petri net, we

are interested in extracting a subnet with those places and transitions which

are necessary to move tokens to the places in Q.

Our notion of dynamic slice is defined as follows:

Definition 4.2.2 (Dynamic Slice) Let N = (P, T, F ) be a Petri net. Let

〈M0, σ,Q〉 be a slicing criterion for N , with σ = t1t2 . . . tn. Given a Petri

net N ′ = (P ′, T ′, F ′), we say that N ′ is a slice of N w.r.t. 〈M0, σ,Q〉 if the

following conditions hold:

• the Petri net N ′ is a subnet of N ,

• the set of places Q appears in P ′ (i.e., Q ⊆ P ′), and

• there exists a firing sequence σ′ for (N ′,M ′
0), with M ′

0 = M0|P ′, such

that

– σ′ is a subsequence of σ w.r.t. T ′,

– M ′
0

σ′−→ M ′
m, m ≤ n, and

– M ′
m covers Mn|P ′ (i.e., M ′

m ≥ Mn|P ′).

Trivially, given a marked Petri net (N ,M0), the complete net N is always

a correct slice w.r.t. any slicing criterion. The challenge then is to produce a

slice as small as possible.

Algorithm 4.2.3 Let N = (P, T, F ) be a Petri net and let 〈M0, σ,Q〉 be a

slicing criterion for N , with σ = t1t2 . . . tn. Then, we compute a dynamic

slice N ′ of N w.r.t. 〈M0, σ,Q〉 as follows:

• We have N ′ = (P ′, T ′, F ′), where M0
t1−→ M1

t2−→ . . .
tn−→ Mn,

P ′ ∪ T ′ = slice(Mn, σ,Q), P ′ ⊆ P , T ′ ⊆ T , and F ′ = F |(P ′,T ′).
Auxiliary function slice is defined as follows:
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slice(Mi, σ,W ) =





W

if i = 0

slice(Mi−1, σ,W )

if ∀p ∈ W. Mi−1(p) ≥ Mi(p), i > 0

{ti} ∪ slice(Mi−1, σ,W ∪ •ti)

if ∃p ∈ W. Mi−1(p) < Mi(p), i > 0

• The initial marking M ′
0 is the restriction of M0 over P ′, i.e., M ′

0 =

M0|P ′.

Intuitively speaking, given a slicing criterion 〈M0, σ,Q〉, the slicing algo-

rithm proceeds as follows:

• The core of the algorithm lies in the auxiliary function slice, which

is initially called with the marking Mn which is reachable from M0

through σ, together with the firing sequence σ and the set of places Q

of the slicing criterion.

• For a particular marking Mi, i > 0, a firing sequence σ and a set of

places W , function slice just moves “backwards” when no place in W

increased its tokens by the considered firing.

• Otherwise, the fired transition ti increased the number of tokens of some

place in W . In this case, function slice already returns this transition

ti and, moreover, it moves backwards also adding the places in •ti to

the previous set W .

• Finally, when the initial marking is reached, function slice returns the

accumulated set of places (which includes the initial places in Q).

We will now show the utility of the technique with a simple example.
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(c) Slice of N w.r.t.

〈M0, σ, {p5, p7, p8}〉

Figure 4.2: Example of an application of Algorithm 4.2.3

Example 4.2.4 Consider the Petri net N of Example 4.1.5 shown in Fig.

4.1(a), together with the firing sequence σ shown in Fig. 4.2(b). The firing

sequence σ = t5t2t3t0t2t3 corresponds to the branch of the reachability graph

shown in Fig. 4.2(a) that goes from the root to the node M45. Then, the user

can define the slicing criterion 〈M0, σ, {p5, p7, p8}〉 for N ; where M0 is the

initial marking for N defined in Fig 4.1(a).

Clearly, this slicing criterion focus on a particular execution and thus the

slice produced is more precise than the one produced by Algorithm 4.1.3. In
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this case, the slice of N w.r.t. 〈M0, σ, {p5, p7, p8}〉 is the Petri net shown in

Fig. 4.2(c).

The following result states the completeness of our algorithm for comput-

ing Petri net slices.

Theorem 4.2.5 (Correctness) Let N = (P, T, F ) be a Petri net and let

〈M0, σ,Q〉 be a slicing criterion for N . The dynamic slice N ′ computed in

Algorithm 4.2.3 is a correct slice according to Definition 4.2.2.

Proof. We prove the claim by induction on the number n of transitions in

σ.

If n = 0, then slice(M0, σ,Q) =
⋃

p∈Q slice(M0, σ, {p}) = Q and the claim

follows trivially for N ′ = (Q, {}, {}) and M ′
0 = M0|Q.

If n > 0, then we distinguish two cases:

• If Mn−1(p) ≥ Mn(p) for all p ∈ Q, then slice(Mn, σ,Q) = slice(Mn−1, σ,Q)

and the claim follows by induction.

• Otherwise, there exists some p ∈ Q with Mn−1(p) < Mn(p) and,

therefore, slice(Mn, σ,Q) = {tn} ∪ slice(Mn−1, σ,Q ∪ •tn). Let N ′ =

(P ′, T ′, F ′), F ′ = F |(P ′,T ′), and M ′
0 = M0|P ′ . Now, we prove that N ′ is

a slice of N w.r.t. 〈M0, σ,Q〉:

– Trivially, N ′ is a subnet of N , M ′
0 is a restriction of M0 and

Q ⊆ P ′.

– Let N ′′ be the slice of N w.r.t. 〈M0, σn−1, Q ∪ •tn〉, with σn−1 =

M0
t1−→ M1

t2−→ . . . Mn−1 and N ′′ = (P ′′, T ′′, F ′′).

By the inductive hypothesis, there exists a firing sequence σ′′ for

(N ′′,M ′′
0 ), with M ′′

0 = M0|P ′′ , such that

∗ σ′′ is a subsequence of σn−1 w.r.t. T ′′,

∗ M ′′
0

σ′′−→ M ′′
k , k ≤ n− 1, and
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∗ M ′′
k covers Mn−1 (i.e., M ′′

k ≥ Mn−1).

Now, we consider a firing sequence σ′ for (N ′,M ′
0) that mimicks

σ′′ (which is safe since P ′′ = P ′ and T ′′ ⊆ T ′) and then adds one

more firing depending on whether tn ∈ T ′ or not. If σ′ = σ′′ then

the claim follows by induction. Otherwise, it follows trivially by

the inductive hypothesis and the fact that M ′′
k covers Mn.
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Chapter 5

Conclusions

This thesis has presented new slicing techniques for two different languages,

CSP and Petri Nets. Both languages provide a means for modelling the be-

havior of concurrent systems. This made these slice techniques very useful to

reduce the size of some specifications in order to help program understanding,

debugging,etc.

As for CSP we define two new static analyses that can be applied to

languages with explicit synchronizations such as CSP. In particular, we in-

troduce a method to slice CSP specifications, in such a way that, given a CSP

specification and a slicing criterion we produce a slice that (i) is a subset of

the specification (i.e., it is produced by deleting some parts of the original

specification); (ii) contains all the parts of the specification which must be

executed (in any execution) before the slicing criterion (MEB analysis); and

(iii) can also produce an augmented slice which also contains those parts of

the specification that could be executed before the slicing criterion (CEB

analysis).

We have presented two algorithms to compute the MEB and CEB anal-

yses which are based on a new data structure, the CSCFG, that has shown

to be more precise than the previously used SCFG. The advantage of the

CSCFG is that it cares about contexts, and it is able to distinguish between

63
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different contexts in which a process is called.

We have built a prototype which implements all the data structures and

algorithms defined in chapter 3; and we have integrated it into the system

ProB. Preliminary experiments has demonstrated the usefulness of the tech-

nique.

As for future work, we are interested in adapt these analyses to full CSP,

with communication between events, processes with parameters, etc. Other

interesting works may rely on using CSCFGs for slice other languages similar

to CSP. Finally, we plan to improve the algorithm that calculates synchro-

nizations of CSCFG, in order to reduce their number, reducing by this way

the size of the slices.

As for Petri Nets we have introduced two different techniques for dynamic

slicing of Petri nets. To the best of our knowledge, this is the first approach

to dynamic slicing for Petri nets. The first approach takes into account the

Petri net and an initial marking, but produces a slice w.r.t. any possibly

firing sequence. The second approach further reduces the computed slice by

fixing a particular firing sequence. In general, our slices are smaller than

previous (static) approaches where no initial marking nor firing sequence

were considered.

As for future work, we plan to carry on an experimental evaluation of our

slicing techniques in order to test its viability in practice. We also find it use-

ful to extend our slicing technique to other kind of Petri nets (e.g., coloured

Petri nets [Jen97] and marked-controlled reconfigurable nets [LO04]).
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[Brü04] I. Brückner. Slicing CSP-OZ Specifications. In P. Pettersson

and W. Yi, editors, Proc. of the 16th Nordic Workshop on

Programming Theory, number 2004-041 in Technical Reports

of the Department of Information Technology, pages 71–73.

Uppsala University, Sweden, 2004.

[BW05] I. Brückner and H. Wehrheim. Slicing Object-Z Specifications

for Verification. In Proc. of the 4th Int’l Conf. of B and Z

Users (ZB 2005), pages 414–433. Springer LNCS 3455, 2005.

[CW86] C.K. Chang and H. Wang. A Slicing Algorithm of Concur-

rency Modeling Based on Petri Nets. In Proc. of the Int’l

65



66 BIBLIOGRAPHY

Conf. on Parallel Processing (ICPP’86), pages 789–792. IEEE

Computer Society Press, 1986.

[CR94] J. Chang and D. Richardson. Static and dynamic specification

slicing. In Proc. of the Fourth Irvine Software Symposium.

Irvine, CA, 1994.

[CS88] D. Callahan and J. Sublok. Static analysis of low-level syn-

chronization. In In proceedings of the 1988 ACM SIGPLAN

and SIGOPS workshop on Parallel and distributed debugging

(PADD’88), pages 100–111, New York, NY, USA, 1988. ACM.

[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.

The MIT Press: Cambridge, MA, 2000.

[Dat] Petri Nets Tool Database. Available at

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

tools/db.html.

[DE95] J. Desel and J. Esparza. Free choice Petri nets. Cambridge

University Press, New York, NY, USA, 1995.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program

Dependence Graph and Its Use in Optimization. ACM Trans-

actions on Programming Languages and Systems, 9(3):319–

349, 1987.

[HRS98] M.J. Harrold, G. Rothermel, and S. Sinha. Computation of in-

terprocedural control dependence. In International Symposium

on Software Testing and Analysis, pages 11–20, 1998.

[Hoa83] C. A. R. Hoare. Communicating sequential processes. Com-

mun. ACM, 26(1):100–106, 1983.



BIBLIOGRAPHY 67

[HW97] M.P.E. Heimdahl and M.W. Whalen. Reduction and Slicing of

Hierarchical State Machines. In M. Jazayeri and H. Schauer,

editors, Proc. of the 6th European Software Engineering Con-

ference (ESEC/FSE’97), pages 450–467. Springer LNCS 1301,

1997.

[Jen97] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis

Methods and Practical Use. Volume 1: Basic Concepts, 1992.

Volume 2: Analysis Methods, 1994. Volume 3: Practical Use,

1997. Monographs in Theoretical Computer Science, Springer-

Verlag.

[KSS95] K. M. Kavi, F. T. Sheldon, and B. Shirazi. Reliability analysis

of CSP specifications using petri nets and markov processes.

In Proc. 28th Annual Hawaii Int. Conf. on System Sciences;:

Software Technology, 3-6 January 1995, Wailea, HI, volume 2,

pages 516–524, 1995.

[Kri98] J. Krinke. Static slicing of threaded programs. In Workshop on

Program Analysis For Software Tools and Engineering, pages

35–42, 1998.

[Kri03] J. Krinke. Context-sensitive slicing of concurrent programs. In

Proc. FSE/ESEC, pages 178–187, 2003.

[LS95] P. Ladkin and B. Simons. Static deadlock analysis for csp-type

communications, 1995.

[LCKK00] W.J. Lee, S.D. Cha, Y.R. Kwon, and H.N. Kim. A Slicing-

based Approach to Enhance Petri Net Reachability Analysis.

Journal of Research and Practice in Information Technology,

32(2):131–143, 2000.



68 BIBLIOGRAPHY

[LB08] M. Leuschel and M. J. Butler. ProB: an automated analysis

toolset for the B method. STTT, 10(2):185–203, 2008.

[LF08] Michael Leuschel and Marc Fontaine. Probing the depths of

CSP-M: A new FDR-compliant validation tool. In Proceedings

ICFEM 2008, pages 278–297. LNCS. Springer LNCS, 2008.

[LLOST08] M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit.

Static Slicing of CSP Specifications. Proc. of the 18th Inter-

national Symposium on Logic-Based Program Synthesis and

Transformation (LOPSTR’08), pages 141–150, 2008.

[LLOST08b] M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit.

The MEB and CEB Static Analysis for CSP Specifications.

Logic-Based Program Synthesis and Transformation (revised

and selected papers from LOPSTR 2008). Springer LNCS. To

appear.

[LLOST09] M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit.

SOC: a Slicer for CSP Specifications. Proc. of the ACM SIG-

PLAN 2009 Workshop on Partial Evaluation and Program Ma-

nipulation (PEPM’09). To appear.

[LO04] M. Llorens and J. Oliver. Introducing Structural Dynamic

Changes in Petri Nets: Marked-Controlled Reconfigurable

Nets. In Farn Wang, editor, Proc. of the 2nd Int’l Conf. on Au-

tomated Technology for Verification and Analysis (ATVA’04),

pages 310–323. Springer LNCS 3299, 2004.

[LOSTV08] M. Llorens and J. Oliver and J. Silva and S. Tamarit and G. Vi-

dal. Dynamic Slicing Techniques for Petri Nets. Proc. of the

2nd Workshop on Reachability Problems (RP 2008), To appear

in Electronic Notes in Theoretical Computer Science.



BIBLIOGRAPHY 69

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications.

Proc. of the IEEE, 77(4):541–580, 1989.

[NA98] G. Naumovich and G.S. Avrunin. A conservative data flow

algorithm for detecting all pairs of statements that may happen

in parallel. SIGSOFT Softw. Eng. Notes, 23(6):24–34, 1998.

[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

[Rak07] A. Rakow. Slicing Petri Nets. Technical report, Department für

Informatik, Carl von Ossietzky Universität, Oldenburg, 2007.

[Rak08] A. Rakow. Slicing Petri Nets with an Application to Workflow

Verification. In Proc. of the 34th Conf. on Current Trends in

Theory and Practice of Computer Science (SOFSEM 2008),

pages 436–447. Springer LNCS 4910, 2008.

[Rau90] M. Rauhamaa. A Comparative Study of Methods for Efficient

Reachability Analysis. Licentiate’s thesis, Helsinki University

of Technology, Department of Computer Science and Engineer-

ing, Digital Systems Laboratory, 1990.

[RGGHJS95] A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R.

Hulance, D. M. Jackson, and J. B. Scattergood. Hierarchi-

cal Compression for Model-Checking CSP or How to Check

1020 Dining Philosophers for Deadlock. In First International

Workshop Tools and Algorithms for Construction and Analysis

of Systems (TACAS ’95).

[SH96] A.M. Sloane and J. Holdsworth. Beyond traditional program

slicing. In Proc. of the Int’l Symp. on Software Testing and

Analysis, pages 180–186, San Diego, CA, 1996. ACM Press.



70 BIBLIOGRAPHY

[Tip95] F. Tip. A Survey of Program Slicing Techniques. Journal of

Programming Languages, 3:121–189, 1995.

[Wei79] M. Weiser. Program Slices: Formal, Psychological, and

Practical Investigations of an Automatic Program Abstraction

Method. PhD thesis, The University of Michigan, 1979.

[Wei84] M.D. Weiser. Program Slicing. IEEE Transactions on Software

Engineering, 10(4):352–357, 1984.


