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Abstract 

Understanding the thermal behaviour of lignin is crucial in order to realise its valorisation 

as an engineering polymer. Two hardwood lignins, organosolv (OSL) and chemically 

modified kraft lignin (ML) have been chosen to represent important classes of  renewable 

and abundant raw material.  The relationship between ionic mobility and viscosity in OSL 

and ML have been studied. The rheological results have been interpreted in terms of the 

competitive processes of thermal plasticisation and stiffening through crosslinking. Results 

show that with OSL crosslinking proceeds relatively rapidly, and this is consistent with its 

more reactive structure. Higher molecular weight (Mw) influenced the melt stability as 

cross-linking kinetics were reduced and this was attributed to the reduction of chain ends 

available for cross-linking reactions. Scanning calorimetry has shown that both materials 

are glassy and pass through the glass transition between 100 °C and 115 °C, with the higher 

molecular weight modified material having the slightly higher Tg. Both lignins show 

pronounced maxima in the Gramm-Schmidt plots for methane or methanol around 400°C. 

However, a significant difference between the materials is observed with the detection of a 

strong carbonyl peak in the evolution products of the ML, this is attributed to scission of 

the hydroxypropyl substituent present in the ML structure. The differences in the 

degradation processes are further reflected in the dielectric properties of the partially 

degraded materials where loss maxima occur at different temperatures, and show different 

degrees of frequency dependence. An important observation is the difference in 

conductivity, where higher values for OSL are attributed to cross-linking between adjacent 

benzene rings, whereas with the ML lower conductivity is associated with intrinsically less 

conductive intermolecular linkages. These results demonstrate that the thermal 



decomposition of the two lignins, follow significantly different paths at the molecular level. 

With the more reactive OSL it appears to be the case that there is a greater tendency to form 

direct ring to ring crosslinks and this is very significant for the properties of the intended 

end product. 

Keywords: Lignin; crosslinking; dielectric relaxation spectroscopy; rheology;carbon fibre 

1. Introduction  

The depletion of petroleum resources and their environmental impact has driven an 

increased interest in biobased materials 
1, 2

. An abundant and renewable alternative is found 

in lignocellulosic biomass, hard and soft wood, straw corncob and other products from 

agriculture and forestry. Lignin along with cellulose is one of the most prevalent 

components of lignocellulosic biomass. Lignin is amorphous and the only aromatic 

biopolymer present in the cell wall of pith, roots, fruit, buds and bark. Currently, it is a non-

valorised waste of the paper industry, and its degradation generates furans and dioxins 

which consume dioxygen 
3-5

. The synthesis of lignin is carried out by the enzyme-initiated 

dehydrogenative random polymerisation of coniferyl alcohol, sinapyl alcohol and p-

coumaryl alcohol 
6, 7

. The polymerisation of these molecules generates a cross-linked and 

highly heterogeneous aromatic polymer whose chemical and physical properties are 

determined by syringyl (S), guaicyl (G), and p-hydroxyphenyl content, molecular weight, 

degree of branching, and purity 
8
. It is known that its extraction method, for e.g. 

kraft/organosolv, influences these parameters 
9
. Kraft lignin is obtained from the paper and 

pulp industry, the process involves the mixing of wood raw materials and liquor with 

sodium hydroxide and sodium sulphide at 150–180 ºC 
6
. Organosolv lignin (OSL) is 



produced through extraction from wood chips utilising organic solvents such as alcohols, 

ketones, and glycols under mildly acidic conditions 
6, 10

. Soda lignin is obtained from a 

soda pulping process 
10

.  

Lignin degradation can generate high value-added products such as: acetic acid, 

methanol, charcoal or other phenolic compounds 
11

. Lignin is known to be an excellent 

additive for improving flame retardancy in polymeric materials, usually as a char-former 

present with phosphorus-based, Lewis acidic species such as ammonium and melamine 

phosphates or phytic acid 
12-14

 ; it can also provide antioxidant protection 
15

.  

Carbon fibres are currently being deployed in structural applications due to their 

excellent physical properties such as: high stiffness and tensile strength, low thermal 

expansion and density, heat tolerance and reagent resistance 
16

. The vast majority of carbon 

fibres are produced using wet and solution spun polyacrylonitrile (PAN), a costly 

production process with a large environmental footprint. Other researchers have studied 

lignin as a precursor fibre for carbon fibre, however, the mechanical properties obtained for 

carbon fibres based on lignin were shown to be brittle 
17

. However, it has been claimed that 

improvements can be obtained through the optimisation of chemical reactions during the 

stabilization and carbonization processes 
18

 and the optimisation of thermal behaviour 

during each processing step 
19

. 

For these reasons this work is focused on the study of the thermal behaviour of two 

different hardwood lignins, organosolv (OSL) and chemically modified kraft lignin (ML) 

(In general softwood lignin do not display thermoplastic and sometimes chemical 

modifications are required to increase the fusibility of lignin
20

). The samples were 

characterized by rheology, broadband dielectric relaxation spectroscopy (DRS), Fourier 



transform infrared (FTIR), differential scanning calorimetry (DSC) and thermogravimetric 

analysis coupled with FTIR (TGA-FTIR) providing a comprehensive explanation of the 

thermal transitions occurring during the processing of lignin carbon fibre precursors. The 

potential of dielectric impedance spectroscopy in monitoring the progress of 

structure/property relationships in lignin is demonstrated through correlations between 

dielectric and chemo-rheological phenomena. 

 

2. Experimental  

2.1 Materials 

Organosolv Lignin (Mw=3952 g/mol and PDI=4.69) (OSL) and hydroxypropyl 

modified lignin (Mw=11357 g/mol and PDI=4.58) (ML) were supplied by Tecnaro (Ilsfeld, 

Germany). The structure of lignins used in this study is shown in Figure 1. 

 

 

Figure 1. Simplified molecular structure of lignin used in this study. 



2.2 Characterisation  

Differential Scanning Calorimetry (DSC) 

The glass transition temperature (Tg) of the two lignins were determined using 

Differential Scanning Calorimetry measurements (DSC 6, Perkin Elmer, USA) under a 

nitrogen flow at 60mL/min. The powder samples were compressed into 2 mm thick disks 

and dried in a vacuum oven for 24 hours at 60 
o
C. 15 ± 1 mg of sample were introduced in 

a sealed aluminium pan and heated to 150 
o
C at 10 

o
C/min to remove thermal history 

20
, 

cooled to 30 
o
C at 20

o
C/min and reheated to 150 

o
C at a heating rate of 20 

o
C/min as 

described in (LISPERGUER et al. 2009). Tg was determined from the second heating curve.  

Thermal Gravimetric Analysis (TGA) 

The thermal stability of the lignins in air were characterised using a SETARAM TG-

DTA 1600 (Setaram Instrumentation, France), using alumina crucibles. The samples were 

heated from 30 
o
C at a heating rate of 10 

o
C/min up to different temperatures (180 º and 200 

o
C). The temperature was held for one hour before cooling.  

Fourier-transform infrared spectroscopy (FTIR) 

Structural analysis of the samples before and after thermal treatment at three different 

temperatures (160 º, 180 º and 200 
o
C) for one hour was carried out using Fourier 

Transformed InfraRed (FTIR) transmission spectroscopy (Perkin Elmer Spectrum 100 

FTIR Spectrometer, USA) in the ATR mode in the range of 4000-650 cm
-1

 with a 2 cm
-1

 

resolution. Each spectrum was taken with 10 repetitions.  

 

https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy


Thermal Gravimetric-Fourier transform infrared spectroscopy (TGA-FTIR) 

Lignin samples were dried in vacuum oven at 80 °C for at least 8 hours before the 

analysis. Experiments were performed using TA Instruments SDT 2960 simultaneous 

DTA/TGA apparatus using a platinum pan under nitrogen flow (100 mL/min). The heating 

rate was set at 10 ºC/min and experiments were heated from room temperature to 1200 ºC. 

Exhaust gases from the TGA Instrument were collected inside a heated gas line (T=180 ºC) 

connected to a Thermo-Fischer Nicolet iS10 FTIR instrument. The collection of the series 

started at 50 ºC and FTIR spectra were recorded in absorbance units. To ensure an inert 

atmosphere, a similar ramp was performed without samples before every analysis. 3D 

graphs (absorbance, wavenumbers and time), FTIR spectra at temperatures of interest and 

concentrations of the identified substances water (3850 cm
-1

), methane (3016 cm
-1

), carbon 

dioxide (2360 cm
-1

), carbon monoxide (2175 cm
-1

), a carbonyl species (possibility acetone 

at 1738 cm
-1

) and methanol (1032 cm
-1

) and as functions of temperature (i.e. as Gram-

Schmidt plots) were reported. The identification of gaseous compounds was realised 

through OMNICTM FTIR software. 

UV-Difference Spectrophotometry  

The number of phenolic groups was determined using the UV-Difference 

Spectrophotometry method before and after thermal treatment at 180 
o
C for one hour. The 

lignins were dissolved in ethylene glycol at a concentration of 10.0 g/L. They were then 

diluted in ultra-pure water to a concentration of 5.0 g/L. A buffer solution of pH=6 was 

prepared from phosphate salts, HPO4
2-

 and H2PO4
-
 (Sigma Aldrich). An alkaline solution of 



0.2 M NaOH was prepared. 100 µL of each sample was diluted in 10.0 mL of each solution 

i.e. pH=6 and 0.2 M NaOH, to a final lignin concentration c = 0.05 g/L.  

UV/Vis spectra were collected using Perkin Elmer Lambda 950 nm UV-Vis-NIR 

spectrophotometer, between 200 and 400 nm with a 0.5 nm interval and a speed of 133.4 

nm/min. The quartz cuvette used has a path l = 1 cm. A pH=6 for each sample was used as 

a reference and the absorbance spectra for the super alkaline (A2) was measured against it. 

The difference of absorption ΔA was measured at 300 nm and 360 nm. The concentration of 

phenolic hydroxyl groups was determined using the following formula (Zakis 1994; 

Gartner 1999) 
21,

 
22

.  

𝑇𝑜𝑡𝑎𝑙 𝑂𝐻𝑝ℎ =  
0.250∆𝐴300 nm+0.107∆𝐴360 nm

𝑙𝑐
       (1) 

Rheology 

The rheological measurements were carried out in a Discovery Hybrid Rheometer 

(DHR-2) from TA Instruments using a parallel geometry with disposable aluminium plates 

(25 mm diameter plate). The experiments were carried out in isothermal mode for 3600 s at 

three different temperatures (160 º, 180 º and 200 ºC) using a shear rate of 10 rad/s. The 

lignin powder was placed between the plates. Then, the sample was heated until the desired 

experimental temperature leaving a gap of 1 mm between plates.  

The cross-linking kinetics were analysed using chrono-rheological data according to the 

following equations 
19

: 

ktt   ln)(ln          (2) 



RT

E

e






           (3) 

RT

Ek

ekk



           (4) 

where k is the temperature dependent reaction rate constant, k∞ is the equilibrium rate 

constant, η∞ is the viscosity at infinite shear rate,  is steady viscosity value at the onset of 

viscosity rise, ΔEη and ΔEk are the activation energies associated with the temperature 

dependence of the steady viscosity and the rate constant, respectively.  

 

Dielectric Relaxation Spectroscopy (DRS) 

Dielectric experiments were performed in a liquid parallel plate sample cell (BDS1308). 

The electrode gap was adjusted by silica spacers. The measurements were carried out in the 

temperature range from 90 º to 230 ºC (at steps of 5 ºC) and a frequency window of 4.910
-

2
 to 110

6
 Hz using a Novocontrol BDS system comprising a frequency response analyser 

(Solartron Schlumberger FRA 1260) and a broad-band dielectric converter with an active 

sample head. The measurement error was shown to be less than ±3%.  

Some authors have reported the interesting use of dielectric properties to monitor the 

progress of reactions in different polymeric systems 
23-26

. The dielectric response of a 

substance is commonly presented as complex permittivity (*), which can be given by  

     * , , ,T T j T                (5) 



where ε′ (, T) represent the real part, generally known as dielectric constant (a measure of 

the ability of the material to store electrical energy), ε (, T) represent the imaginary part, 

also called the dielectric loss factor (a measure how the energy is dissipated or lost), ω=2πf 

is the angular frequency and j (j
2
=-1) is the imaginary unit. The ratio of loss factor to the 

dielectric constant, called the tangent loss (tan δ=/) enabling, among others, to estimate 

the material's ability to convert electromagnetic energy into heat at a specific temperature 

and frequency 
27

. In this vein, lignin derivatives are considered to be low loss dielectric 

materials which mean they do not absorb microwave energy well 
28-30

.  

In order to characterize the conductive behavior, the obtained dielectric data are 

represented in terms of dielectric constants such as: (i) dielectric modulus M*(ω)=1/*(ω), 

and complex conductivity parameters σ*(ω). *(ω) and σ*(ω) which are related to each 

other by σ*(ω) = σ′(ω) + jσ″(ω) = iωε0ε*(ω), where ε0=8.85·10
−12

 F·m
−1

 is the vacuum 

permittivity. So, the real and imaginary parts of σ*(ω) are given, respectively, by σ′(ω) = 

σ′ac(ω) = ωε0ε″(ω) and σ″(ω) = ωε0ε′(ω). In general, the ac conductivity, σ′(ω), at a 

constant temperature can be represented by σ(ω)= σdc + Aω
s
, where σdc is the independent 

frequency conductivity or dc conductivity (at ω0) and the A and s parameters are 

constants dependent on temperature. 

3. Results and discussion  

According to DSC results, both lignins, OSL and ML, display thermoplastic behaviour 

with a Tg of 100 º and 115 ºC respectively, as shown in Figure 2. The absence of melting 

point indicates the amorphous nature of OSL and ML. The difference in Tg values is 



attributed to the molecular weight and the associated differences in molecular 

entanglements between the polymer chains of each kind of lignin.  
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Figure 2. DSC curves of lignin samples (OSL and ML).  

As would be expected the modified lignin, with its higher molecular weight, shows the 

higher Tg value. The rather diffuse nature of the transition is, in both cases, a function of the 

high degree of polydispersity. There is no evidence of secondary sub-Tg relaxations in 

either of the plots, although such events must be possible in the modified lignin through 

crankshaft rotation of the hydroxypropyl arms. 
31

 It is possible that such events occur below 

the start temperature of the experiment.  

Thermochemical behaviour: Coupled TGA-FTIR analysis showed that both lignins 

exhibited a release of water, carbon dioxide and carbon monoxide as the temperature rises 

above 200 ºC, equivalent to a heating time of 20 min (Figures S2(a) and (b)), and evolution 

of carbon dioxide continues throughout the entire run rising to maximum levels above 1100 

ºC. These trends are seen more clearly as Gram-Schmidt plots in Figures 3(a) and (b). 



 

Figure 3. Gram-Schmidt plots of (a) OSL and (b) ML for water (black), carbon monoxide 

(red) and carbon dioxide (blue). 

 

Figure 4. Gram-Schmidt plots of (a) OSL and (b) ML for methane (black), methanol (red) 

and carbonyl group (blue). 

Methane and methanol were also detected for both lignins with maxima occurring in the 

350-400 ºC range as shown in Figures 4(a) and (b). In the case of OSL, the release of both 

methane and methanol started at ~200 °C, with respective maxima at 400 °C for methanol 

and at 435°C for methane. While evolution of methanol completed by about 480 °C, 

methane exhibited another evolution peak at ~ 550 °C decaying gradually until ~700 °C. 

ML, showed more intense emissions of both methane and methanol than OSL, maximising 



again at ~ 400
o
C, with only methane showing a higher temperature peak as a shoulder at ~ 

550
o
C. The carbonyl peak evolution in Figure 4(b), is considered to be associated with 

acetone, presumably a result of scission of the hydroxypropyl substituent present in lignin 

ML (see Figure 1). 

The isothermal thermograms under nitrogen of OSL and ML at 180 ºC and 200 ºC after 

water loss are shown in Figure 5. ML showed higher thermal stability at both temperatures 

compared to OSL. The modified lignin, ML, lost 0.43 and 0.59 % of its weight at 180 º and 

200 ºC, respectively, while OSL lost 0.88 and 1.7 % at 180 º and 200 ºC, respectively after 

1 hour.  

According to the TGA-FTIR data the weight lost associated with the isothermal 

treatment at 180 º and 200 ºC for both lignins can be attributed partly to the release of 

carbon dioxide since this is the major gas formed as the temperature rises above the latter 

(see Figure 3). However, for the case of OSL the weight lost at 200 ºC treatment can also 

be attributed to the release of methanol since its evolution begins just below this 

temperature (see Figure 4(a)). 
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Figure 5. Weight loss as a function the time at 180 ºC for OSL(a) and ML(b) and at 200 ºC 

for OSL (c) and ML(d).  

Figure 6 (a) shows complete ATR mode FTIR spectra of both lignins as received and in 

Figures 6(b) and (c) respectively after heat treatment at 160 
o
, 180 º and 200 ºC for 1 hour 

over the range 1400-1200 cm
-1

. Both spectra in Figure 6(a) present typical features for 

lignin. At 1595, 1510 and 1420 cm
−1

 appear resonances bands caused by the aromatic 

skeletal vibrations, principally the aromatic C–H in plane and out-of-plane as well as the 

C–H deformation combined with aromatic ring vibration at 1455 cm
−1

 for both lignins 

showing that the hydroxypropyl modification of ML did not affect the phenyl structure. 

The aromatic overtone bands, diagnostic of the type of substitution, are similar with both 

lignins before heat treatment confirming the skeletal similarity. The spectral differences lie 

almost entirely in the aliphatic region with the methyl and ethyl ratios influencing the sub-

3000cm
-1 

peaks and 1000 cm
-1

 to 1500 cm
-1

 region.   

The broad resonance with a maximum at 3400 cm
-1

 is attributed to the stretching of O–H 

groups in phenolic and aliphatic structures. Phenolic hydroxyl groups resonate weakly at 

1370 cm
-1

 
31

, although the effect is more marked for OSL than ML (see Figures 6 (b) and 



(c)), which corroborates the results obtained in UV-Difference analysis summarized in 

Table1 and the results observed in 
13

C-NMR analysis shown in Figure S4. The C–H 

stretch frequencies typical of methyl and methylene groups are present in both spectra with 

characteristic vibrations at 2930 cm
-1

. 

Table 1. Phenolic hydroxyl contents in OSL and ML lignins determined via UV-Difference 

Method (The samples heat treated at 200 ºC were not analysed as the solids would not 

dissolve in ethylene glycol). 

 
OSL as 

received 

OSL at 

180 ºC 

OSL at 

200 ºC 

ML as 

received 

ML at 

180 ºC 

ML at 

200 ºC 

OHPh 

(mmol/g) 

2.4 3.4 - 0.33 0.35 - 

 

Finally, the presence of conjugated aldehydes and carboxylic acids is shown by a 

resonance below 1700 cm
-1

 (see Figure 6 (a)). Bands at 1330–1328 cm
−1

 and at 1270–1262 

cm
−1

 represent C–O stretching in the Syringyl (S) and Guaiacyl (G) rings, respectively. The 

characteristic vibrations for G are strong in ML (1262 cm
-1

 for G ring stretch, C–H in plane 

deformation at 1138 cm
-1

 and C–H out-of-plane vibrations at 857 cm
-1

). In OSL are present 

the typical resonances of C–O stretching of S units, at 1326 cm
-1

 and C–H in plane 

deformation at 1112 cm
-1

. In addition, ML shows a more intense band centred at 1020 cm
−1

 

that is attributed to the C–O deformation of secondary alcohols due to the hydroxypropyl 

modification.  
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Figure 6. FT-IR spectra of (a) the as received lignins, (b) OSL after heat treatment and (c) 

ML after heat treatment. (b) and (c) were normalised against the transmittance of the 

aromatic skeleton vibration at 1514 cm
-1

 (b) and 1509 cm
-1

 (c) as described in 
19

. [Isotherm: 

a: 160 ºC, b: 180 ºC and c: 200ºC] 

The heat treated sample spectra were analysed semi-quantitatively 
19

. The aromatic 

skeleton vibration at 1515 cm
-1

 was considered unchanged during the heat treatment, it was 

therefore used to normalise the signals of all the samples, as can be observed in Figures 

6(b) and (c). However, according to the FTIR results, the chemical composition influences 

the intensity and energy of the ether bond absorption band, but also the transmittance ratio 

between the bands associated with the phenolic OH and ether bond (Figures 6(b) and (c)). 

The absorption maxima of the ether bond band shifted to lower energy wavenumbers when 

degradation temperature increased. Thus, ether bond absorption maxima of both OSL and 

ML samples, observed at 1213 cm
−1 

and 1220 cm
−1

, were shifted to 1211 cm
 −1

 and 1217 

cm
 −1

 by increasing the temperature to 180º or 200ºC. These shifts can be linked to 

crosslinking and structural modification with increasing temperature 
31

 and this correlates 

with the rheological findings summarized below. The FTIR for both lignins and the UV 



Difference method results in Table 1 for OSL show that at 180 
o
C, the amount of ether 

linkage decreases as the phenolic hydroxyl group content increases which suggests the 

degradation of ether groups into phenolic hydroxyl groups as previously reported 
19

 and 

was evidenced in the TGA-FTIR analysis here. However, the phenomenon is reversed at 

200 
o
C, as cross-linking is thermally favourable at higher temperatures in these systems. In 

addition, this change is greater in OSL indicating that this lignin favours thermally induced 

crosslinking reactions. 
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Figure 7. Viscosity as function of the time at 160 º [a], 180 º [b] and 200 ºC [c] of OSL and 

ML. Arrows mark the temperature increase direction.  



 

To quantify the flow behaviour of the samples (OSL and ML), changes in the steady 

shear viscosity, , were measured as a function of time at three selected temperatures (160 

º, 180 º and 200 ºC) (see Figure 7). Both systems were characterised by an increase in the 

steady shear viscosity during the heating time, and such behaviour is common to this 

generic group 
19

. In analysing these results there are two factors to be considered: first the 

increased molecular mobility consequent upon the higher molecular energy, and secondly 

the tendency of the components to undergo intra and inter-molecular rearrangement thereby 

changing the distribution of molecular sizes and molecular polarity through hydrogen bond 

change 
19,32

. Within the time scale of the experiment the dominant effect with the modified 

lignin is that of temperature induced viscosity reduction with a smaller viscosity increase 

contribution from molecular rearrangement, whereas with the OSL material viscosity 

increase through crosslinking is clearly the dominant effect. These viscosity observations 

are fully consistent with the isothermal thermogravimetric curves, shown as Figure 5, 

where the OSL is losing mass at approximately twice the rate of the ML.  

The time dependence of the viscosity was analysed using the isothermal viscosity data 

shown in Figure 7. Table 2 shows the values of k∞, η∞ ΔEη/R and ΔEk/R fit parameters for 

both lignins. The activation energy for the rate constant (ΔEk/R) and for the thermal 

reactions (ΔEη/R) are higher for ML lignin. This different behaviour derives from their 

different molecular structure is considered to arise from the greater molecular mass of the 

ML material and the added complexity of the crosslinking reactions, which must involve 

additional steps when compared with the OSL material. 

 



Table 2. The fit kinetics parameters of lignin samples analysed. 

Lignin ΔEk/R(K) ΔEη/R(K) k∞, s
-1

 η∞ (Pa∙s) 

OSL -1464.0 2615.0 4.8 1.01∙10
-5

 

ML -2315.8 3584.6 174.1 1.64∙10
-6

 

 

Figure 8 shows the time dependence of the storage (G) and loss modulus (G) of both 

lignins at the three different temperatures. For the case of OSL the loss modulus is higher 

than the storage modulus at 160 º and 180 ºC during the whole experiment indicating that 

the sample is behaving principally as a fluid material. In order to appreciate the combined 

effect of time and temperature on the stiffness of the OSL sample, we have plotted in the 

inset of Figure 8a the temperature dependence of the storage modulus for t = 0s and t = 

3600s. At short times G slightly decreases between 160 ºC and 200 ºC, whereas a long 

times G increases significantly indicating that the material becomes stiffer. However, there 

is a crossover at 2700 s when the temperature of the experiment was 200 ºC probably due 

to the onset of cross-linking as discussed in the rheology section. New inter-unit linkages 

are created when the OSL sample reaches sufficient internal molecular mobility. However, 

for the case of ML there is a crossover at 1500 s indicating that OSL has a slower onset 

point for cross-linking reactions to initiate. This is attributed to the higher degree of 

branching in ML which allows the faster onset of cross-linking when compared to OSL, 

according to the molecular weight values and DSC analysis. Isothermal TGA results 

(Figure 5), show a relatively low weight losses for both lignins, indicating that probably, 

the changes in the rheological behaviour are primarily generated by polymerizations and 

de-polymerization reactions in lignin polymer chains.  



At all temperatures both lignins behave predominantly as fluids with the loss modulus 

exceeding the storage modulus, although at the higher temperatures the stiffening effect of 

the crosslinking reactions is becoming more apparent. The overall mechanical stiffness of 

the ML material is apparent at all three temperatures and is explained through molecular 

mass causing hindrance to motion. These dynamic mechanical results correlate well with 

the viscosity observations previously described. In both cases ML lignin shows greater 

thermal stability at the lower temperature and a slower rate of property change as 

temperature of observation is increased. In the inset of Figure 8b by increasing the 

temperature between 160ºC to 180ºC a reduction of G is observed over long time periods, 

whereas a clear increase between 180º and 200ºC is produced. This may reflect the multi-

step degradation and crosslinking process of this material. The thermogravimetric results, 

presented as Figure 5, provide further support for this interpretation where it is observed 

that over the temperature range considered the weight loss of the ML lignin is consistently 

lower than that of the OSL material. 
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Figure 8. Storage and loss modulus as a function of the time at 1:160 º, 2:180 º and 3: 200 

ºC for (a) OSL and (b) ML. Inset: Temperature dependence of the storage modulus at lower 

and higher times. 



The dielectric properties of both lignin samples were determined from 90 ºC to 230 ºC 

(step 5ºC) at forty-seven different frequencies between 10
-2

 Hz and 10
6
 Hz. In order to 

describe the general temperature dependence tendencies of the dielectric properties, as an 

example, results are shown for 10
5
Hz in Figure 9.  
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Figure 9. Temperature dependence of dielectric permittivity (full symbols) and loss tangent 

(open symbols) for OSL (square) and ML (circle) at a frequency of 10
5
Hz.  

 

The values of dielectric constant () and loss tangent (tan =/) for both samples 

(OSL and ML) displayed a similar profile, and is in close agreement with other biomass 

materials 
30, 33, 34

. The absolute values of dielectric constant and tan  are different for the 

two lignins, reflecting the differences in polarizability and these differences are maintained 

as temperature is increased. Both dielectric variables present higher values for OSL than for 

ML. Dielectric constant spectra show an event shortly after heating begins, related in both 



cases to loss of water. Then, the dielectric constant reduces upon moisture removal. This 

suggests that the dielectric constant is directly related to the presence of free and/or bound 

water. The dielectric constant varies between 2 and 4.2 for the OSL sample and between 

0.14 and 0.32 for the ML sample. As the dielectric constant depends strongly on the 

molecular structure (e.g. flexibility, functionality) of the sample, the lower values obtained 

for ML can be related to (i) the lower primary hydroxyls content as a result of the lignin 

modification and (ii) the lower strength of solid-water interactions in this lignin. On the 

other hand, the reduction of the dielectric permittivity values as temperature increases can 

be attributed to the release of surface and weakly bound water molecules from the sample. 

This causes a gradual decrease in dipole movement or change in its orientation. The 

polymer chains become restricted in movement, which results in a decrease in the dielectric 

constant. In this sense, it is important to highlight that the lignin-water hydrogen bonds are 

broken more easily when compared to lignin-lignin hydrogen bonds. 
31,35

 On the other 

hand, the decrease of dielectric properties between 180 ºC to 230 ºC can be assigned to the 

partial decomposition of lignin and/or formation of new inter-unit linkages produced when 

lignin reaches sufficient internal mobility. Thus, at high temperature, lignin segments have 

a sufficient degree of freedom to allow cross-linking reactions to take place. 
31

 As a result, 

these new inter-chain linkages increase the rigidity of lignin, through a reduction in chain 

mobility. These microstructural changes are directly related to the increase of viscosity at 

macroscopic scale as detailed above and shown in our IR, UV and TGA results. On the 

other hand, for the ML sample, the tangent loss exhibits lower values (tan  < 0.04) over 

the whole range of frequencies, which is indicative of electrical insulating properties. The 

static Tg results, from DSC, show that the glass transition temperature occurs at 100 ºC 



approx. (OL) and 115º C approx. (ML) but an equivalent event is not apparent in the loss 

tangent plots as a consequence of the strong conductivity contribution to the loss 

permittivity (as a result, tan ). At higher temperatures and lower frequencies, above the 

glass transition temperature, the dielectric spectra are dominated by conductive processes. 

These are related to the extrinsic migrating charges (e.g. ionic impurities remaining from 

synthesis steps) and intrinsic migrating charges (e.g. proton transfers along hydrogen 

bonds) 
27

. While it is expected that extrinsic migrating charge contributions decrease as a 

result of an increase in viscosity, the intrinsic migrating charges may follow a more 

complex pattern. That is why as viscosity increases, the overall conductivity can follow 

different behaviours depending on which mechanism (extrinsic or intrinsic) is dominant in 

the dielectric response
23, 27

 
37-39

.  

The  data were accordingly transformed into M* to analyse the conductivity process 

for both lignin samples. In Figure 10 the frequency dependence of the dielectric loss 

modulus, M (M=/( 2+ 2)) at the three chosen temperatures (160 º, 180 º and 200 ºC) 

are plotted. In view of the Tg established by DSC, the absorption present in these spectra are 

related to the conductive process. For both lignin samples, the higher the temperature, the 

greater intensity of the maximum. However, with respect to the frequency/temperature 

dependence of the loss modulus, significant differences between both samples are 

observed, as a consequence of the initial structural differences and of the possible 

redistribution of bonds, as well as formation of new interunit linkages favoured by 

changing the temperature and time conditions. So, whereas the maximum loss modulus 

peak shows a shift towards higher frequencies (lower times), as usual, for the OSL sample, 

the frequency of the maximum does not change significantly for the ML sample. This result 



confirms again that a different structural change is produced in both samples as the 

temperature increases. On the other hand, as the temperature increases, a broader 

distribution of the peak associated with the conductive process is observed, indicating a 

greater heterogeneity. 
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Figure 10. Frequency dependence of the loss modulus at 160 ºC (square), 180 ºC (circle) 

and 200 ºC (triangle) for both OSL and ML lignin samples. Arrows mark the temperature 

increase direction.   

 

Also, to analyse the conductivity properties of the lignin samples it is useful to express 

the experimental measurements using the complex conductivity, related to the permittivity 

as , where e0 (8.854 pFm-1
) is the dielectric permittivity of the empty 

space. Figure 11 shows a double logarithmic plot of the frequency dependence of the real 

component of the complex conductivity, σ′()= σ′ac(), measured at 160 ºC, 180 ºC and 

   * *
0i e    



200 ºC, for both OSL and ML lignin samples. According to our results, the incorporation of 

additional hydroxypropyl units in the molecular chain in ML has disrupted ionic 

conductivity compared to OSL. This behaviour could be related to the higher initial cross-

linking degree of the native ML material, which would hinder the charge motion. 

Additionally, the structural changes taking place in the lignin samples promote opposite 

tendencies in the temperature dependence of conductivity. Whereas, the conductivity 

increases with the temperature for the OSL sample, a reduction with temperature is 

observed for the ML sample. In order to clarify the observed trends, in the inset of Figure 

11 we have plotted the frequency dependence of the imaginary part of the impedance taking 

into account the relationship between both dielectric constants:    * *
0 0C Z       . 

Thus, for the OSL sample, the imaginary impedance peak (Zmax) shifts to higher frequency 

and lower impedance by increasing temperature. This trend means that by increasing 

temperature the resistivity of the system decreases. However, for the ML sample, the 

imaginary impedance peak shifts to lower frequency and higher impedance, consequently 

the conductivity decreases. What is the mechanism that causes the opposite trends in 

conductivity? The answer possibly lies in the fact that intrinsic conductivity, relates to the 

inherent chemical characteristic of the material, which depends on the availability of proton 

transfers along hydrogen bonds. So, in the case of OSL, the chemical change produced, 

when temperature increases, promotes the cross-linking between adjacent benzene rings 

with the consequent rise in conductivity. On the other hand, the changes shown for ML 

samples may be associated with the formation of less conductive species, thereby inhibiting 

charge transport (see Figure 12). This decrease in conductivity accompanied by an 

decrease in viscosity has also been observed in other reactive systems 
40

. These opposite 



tendencies, for both analyzed samples, were consistent with the time dependence of the 

viscosity and shear modulus for long times (low frequencies). 
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Figure 11. Frequency dependence of the conductivity at 160 ºC (square), 180 ºC (circle) 

and 200 ºC (triangle) for both OLS and ML lignin samples. Inset: frequency dependence of 

the imaginary part of the impedance. Arrows mark the temperature increase direction. 

 

Figure 12. Scheme of the proposed linkage in ML lignin.  

 



Figure 13 shows the temperature dependence of the dc conductivity, evaluated from the 

plateau value of the isotherms (see Figure 11). At least two regions are evidenced in this 

figure. In the lower temperature region, it is observed that the temperature dependence of 

dc conductivity for both samples is similar. At about 120 ºC, a significant change in the 

slope is observed for both samples. For ML, even a positive slope is observed for 

temperatures higher than 175 ºC. The activation energy for conduction, for both regions, 

was obtained using the Arrhenius relationship (ln dc=A- Ea/RT). At low temperature, near 

the glass transition temperature, the slope of the linear least- squares- fit of the conductivity 

data (Figure 13) provides us the following values for the apparent activation energy, Ea, for 

both lignins: 180.959.09 for OSL and 156.0713.95 kJ/mol for ML. At higher 

temperatures the activation energy evaluated from the slope of the plot was as the same 

magnitude order as those summarized in Table 2. The conductive activation energy 

decreases with increasing temperature as a consequence of the chemical changes during 

processing. 
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Figure 13. Temperature dependence of dc conductivity for both OLS and ML lignin 

samples.  



 

The transport properties such as conductivity and shear viscosity are crucial properties 

for the practical use of the materials. For this reason, several correlations between measured 

conductivity and other processing parameters, such as viscosity have been established. 
41-45

 

To facilitate the interpretation of results, in Figure 14, the temperature dependence of the 

ac and dc (inset) conductivity and the complex viscosity are plotted. This figure shows 

clearly the correlation between the decreasing conductivity and the increasing viscosity. 

This tendency is related to the decrease in the ability of charge to diffuse through an 

increasing viscous medium, according to the Stokes-Einstein equation. On the other hand, 

the conductivity is directly proportional to the diffusion coefficient of the mobile species 

through the Nernst-Einstein equation. Therefore, both conductivity and viscosity are 

inversely related. For both samples, up to 160ºC, the ac conductivity increases sigmoidally 

with increasing temperature, noting again the possible existence of two different conduction 

mechanisms. Thus, for OSL sample, the conductivity rises markedly with increasing 

temperature and the temperature dependence of the complex viscosity follows the opposite 

trend to the ac conductivity, showing a minimum and maximum, respectively, at 190ºC 

approx. However, for the ML sample, a nearly temperature independent conductivity in the 

initial mixture from 160ºC is a result of the commensurate effect of temperature on intrinsic 

conductivity (which probably decreases with increasing temperature as the hydrogen-

bonding intensity does) and extrinsic conductivity (which increases with increasing 

temperature). Furthermore for this modified lignin sample, the conduction process is 

decoupled from that of viscous flow. Thus, the conductivity reaches the higher value at 

170ºC approx., whereas the minimum of the complex viscosity is at 210ºC approx. This 



result suggests that both temperature and time play a significant role in the crosslinking 

processes.  

Taking into account that the principal contribution to the intrinsic conductivity in the 

systems studied is presumably from the hydrogen bonds between hydroxyl groups, and this 

contribution depends on the extent that those are blocked. The coupling/decoupling 

between conductivity and viscosity response by increasing temperature, shown for the 

OSL/ML samples, presents a new route for tailoring the macroscopic properties of these 

materials. 

Thus, the viscosity changes of analyzed samples are essentially due to the competing 

effects of thermodynamic and kinetic factors. Increasing the temperature, the molecular 

mobility is raised and the viscosity decreases as expected. Increasing the exposure time at 

high temperatures, for OSL sample, the molecular mobility is reduced as a consequence of 

the crosslinking process, which leads to an increase of the viscosity, whereas for ML 

sample, a reduction of viscosity was observed. In the case of ML the effect of reaction 

temperature is the most critical factor, whereas for OSL the effect of the reaction time 

factor appears to be dominant. This result is in agreement with the kinetic parameters 

summarized in Table 2. 
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Figure 14. Temperature dependence of the complex viscosity (open symbols) and ac 

conductivity full symbols for OSL (square) and ML (circle) samples. The values of the 

steady shear viscosity for t=0 (, ) and t=3600s (, ) for OSL and ML, respectively, 

are plotted also. Inset: Temperature dependence of dc (full symbols) and 1/*(open 

symbols). 

 

Conclusions 

The two lignins examined in this study, organosolv (OSL) and chemically modifies kraft 

lignin (ML), represent important classes of a potentially useful and abundant raw material 

and the analysis and comparison has concentrated on their utility as a starting polymer for 

the production of carbon fibre. For this application thermal characterisation and 

understanding of the thermo- mechanical degradation behaviour are critical.  



Scanning calorimetry has shown that both materials are glassy and pass through the glass 

transition between 100 °C and 115 °C, with the higher molecular weight modified material 

having the slightly higher Tg. Low temperature isothermal stability, measured at180 °C and 

200°C, of the modified lignin (ML) is greater than that of the organosolv (OSL) and this is 

consistent with the relative starting structures. At these lower temperatures (near Tg) the 

contribution of absorbed water has to be considered and dielectric relaxation results do 

suggest a continuing loss of moisture from the ML material at temperatures up to 110°C. 

The initial structural differences between the two lignins are very apparent in the dielectric 

constants, with the much higher dielectric constant values of the OSL reflecting the ready 

polarizability of the phenolic hydroxyl. 

The rheological results, generated through low temperature isothermal heating, have been 

interpreted in terms of the competitive processes of thermal plasticization and stiffening 

through crosslinking. The results show that with OSL crosslinking proceeds relatively 

rapidly, and again this is consistent with the more reactive structure, as demonstrated by the 

previously mentioned thermogravimetry results. Activation energies, for flow and for 

reaction, calculated by application of Arrhenius type relationships give values similar to 

those obtained by previous workers and their relative magnitudes are consistent with the 

higher reactivity of the OSL. 

The thermomechanical results further demonstrate for both materials, through rate of 

stiffness change, the progressive conversion of predominantly fluid systems to crosslinked 

solids, with the OSL again showing a much greater temperature sensitivity. At lower 

temperatures the ML material is consistently thermo-mechanically more stable. In both 

cases slight increases in phenolic hydroxyl concentrations occur on initial heating, though 



this effect is small with the ML material and so this is thought to reflect the first stages of 

the crosslinking reaction. Importantly the spectral characterisation of the partially degraded 

materials suggests that there are differences in the detail of the crosslinking processes.  

Continued heating, to temperatures up to 1200°C, shows that both lignins release water, 

carbon dioxide, carbon monoxide, methane and methanol as temperatures rise, with both 

lignins showing pronounced maxima in the Gramm-Schmidt plots for methane or methanol 

around 400°C. However, a significant difference between the materials is observed with the 

detection of a strong carbonyl peak in the evolution products of the ML, with acetone not 

detected as a degradation product of organosolv lignin. This is considered to be associated 

with acetone evolution, arising from of scission of the hydroxypropyl substituent present in 

the ML structure. Other detail differences in the spectra of the degrading material have 

been related to the changes in the respective skeletal structures and again the differences in 

volatile degradation products confirm that there are important differences in the underlying 

reaction mechanisms. 

The differences in the degradation processes are further reflected in the dielectric properties 

of the partially degraded materials where loss maxima occur at different temperatures, and 

show different degrees of frequency dependence. A significant observation here is the 

difference in conductivity, where the higher values observed with the OSL is thought to 

arise from cross-linking between adjacent benzene rings, whereas with the modified lignin 

lower conductivity is associated with intrinsically less conductive intermolecular linkages. 

This is consistent with the aforementioned spectroscopy results. 



Taken overall it is considered that the results demonstrate that the thermal decomposition of 

the two lignins, although superficially similar, follow significantly different paths at the 

molecular level. In both cases, on heating, there is competition between thermodynamic 

and kinetic factors, as fluidity initially increases facilitating reaction, but spectroscopy and 

thermo-mechanical and thermo-electric analysis show that the reactions follow different 

paths and lead to structurally different products. With the more reactive OSL it appears to 

be the case that there is a greater tendency to form direct ring to ring crosslinks and this is 

very significant for the properties of the intended end product. 
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