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Chapter 1

Preliminaries

1.1 Introduction

The purpose of this work is study the off-line recognition of printed mathe-
matical expressions. Every year a lot of technical papers that contain many
information are published, and the mathematical expressions are an impor-
tant part of them. Furthermore, the tactile interfaces are being incorporated
more and more to the new devices, which allow us to use a pen as a com-
puter input. For that reason, it is very interesting to be able to process all
this information automatically.

Automatic recognition of mathematical expressions requires to solve many
issues, and it is a hard task because it is necessary to jointly perform seg-
mentation, symbol recognition and structural analysis. In this work, we
study several methods to deal with the recognition of mathematical sym-
bols and the use of formal grammars to model the structure of mathematical
expressions.

Document Image Analysis [25] is an area of great interest in the pattern
analysis research community because it comprises several pattern recogni-
tion problems. The digitization process of scientific documents requires to
perform specific layout analysis [26, 17] and recognition processes for each
region of interest. These regions can contain text, images or mathematical
expressions among others. In this case, mathematical expression recognition
is necessary to properly handle this type of information.

Tactile or pen-based interfaces are becoming more common lately, and
as a result, development of applications that can work with this kind of
input is increasing. This way of obtaining the data produces more different
representations of mathematical expressions than when they are obtained
from scanned documents. Depending on the source and how the data is
obtained, a mathematical expression can be on-line/off-line processed and/or
printed/handwritten processed. Each mode has its own properties and issues
that are described in sections 1.2.1 and 1.2.2.

5
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Mathematical expression recognition has been studied since many years
ago [7, 5], but it is only until recently that this problem has attracted more
attention from the research community [24, 4]. Lately, new devices provide
several ways to introduce information to computer systems, as tactile or
pen-based interfaces. Hence, interest in developing applications that work
with this type of input has been growing significantly during last years.
Consequently, on-line handwritten mathematical expression recognition is
the most researched mode [9, 35, 11, 34]. However, the off-line case has been
less explored [23, 28], but it is a very interesting issue for many applications,
as document recognition or information retrieval, among others.

Mathematical expression recognition is a difficult task, which in turn in-
volves three main problems to solve [11]: segmentation, symbol recognition
and structural analysis. There are some works that deal with the segmen-
tation problem directly [19, 32], whereas other works handle this problem
integrated with other stages of the whole problem [23]. The mathematical
symbol recognition is tackled as a classification task, and several methods
have been described in the literature, like SVM [18] or distance-based classi-
fiers [30]. Finally, the structural analysis step is very a challenging issue in
the mathematical expression recognition problem. Several approaches have
been considered to solve this problem, such as using formal grammars [7],
tree transformation [36], Hidden Markov Models [13] or computing the min-
imum spanning tree [29].

Generally, the mathematical expression recognition problem is tackled by
systems that deal with all the steps integrated. In this way, the structural
analysis stage makes the decisions to process the input expression success-
fully, using the structural information to correctly solve the segmentation
and symbol recognition tasks.

1.2 Handling Mathematical Expressions

Recognition of mathematical expression is an easy task for human beings,
but to recognize mathematical expressions by a computer is not a trivial task.
Currently, when the user wants to enter some mathematical information
to the computer, he usually needs to know a professional editor that can
understand a specific syntax.

Thus, LATEX is a document preparation system that provides a powerful
way for writing mathematical expressions by using a special syntax. It is the
de facto standard for the communication and publication of scientific docu-
ments. LATEX is a complete high-quality typesetting system which includes
features for the production of technical documents. The LATEX syntax is
simple and powerful. For example, the following code:

x^2 + \sum_{i=0}^n \beta_i = \sqrt{ \pi + \frac{x}{n} }
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produces the expression

x2 +
n∑
i=0

βi =

√
π +

x

n
.

But the natural way for human beings of producing or reading scientific
documents that include mathematical expressions is writing or reading di-
rectly the image of the expression. In this way recognition of mathematical
expressions becomes a very interesting problem that requires an adequate
solution. Given the different ways in which humans produce reading docu-
ments, mathematical expression recognition can be considered from different
point of views. In the following sections we summarize these point of views.

1.2.1 Printed versus Handwritten

As in text recognition, the samples could be printed or handwritten. Obvi-
ously, printed expressions are more regular and constrained than the hand-
written approach. For that reason, the printed recognition problem is con-
sidered to be easier than the handwritten case (see Figure 1.1). This is
because different people have different handwriting styles, in addition to the
variability characteristic of the human skills.

Figure 1.1: Example of expression in printed and handwritten mode.

1.2.2 On-line versus Off-line

A mathematical expression could be represented in several ways. As in many
other fields like text recognition, mathematical expression recognition can
be divided into two different problems [22]:
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• Off-line: it involves the automatic recognition of a mathematical ex-
pression given as an image. The samples does not contain any time
information (Figure 1.2 up).

• On-line: it involves the automatic recognition of a mathematical ex-
pression given as a sequence of points that describes a path in the
space (Figure 1.2 down).

The on-line approach is usually related with the handwriting case, be-
cause this type of information is easily obtained using tactile interfaces. In
addition, it is possible to obtain an off-line sample from an on-line sample,
but there is not satisfactory solutions to perform the opposite transforma-
tion. This difference in the data representations produces that the methods
used to solve the mathematical recognition problem are different. This is
most noticeable in the segmentation and symbol recognition process, because
the nature of the input is significantly different, while structural analysis is
conceptually more similar.

Figure 1.2: Example of expression in off-line and on-line mode.

1.3 Problem Statement for this Master Thesis

In this work we will focus on off-line recognition of printed mathematical
expression. This problem has been studied in few works [36, 28, 23], and
the current results, specially structural results, suggest that there is room
for improvements.
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In addition to the recognition problem itself, an adequate solution of this
problem will be useful for innovative applications like:

• To search documents that have a given expression

• To help to the speech transcriptions/recognition of recorded lectures
that include slide images by providing a vocabulary

In order to tackle the problem of recognition of printed mathematical ex-
pression, in this work we will use formal grammars to represent the structural
relations among the mathematical symbols. As in most pattern recognition
scenarios, we have to solve two main problems: the automatic learning of
the models and the recognition problem through an interpretation process.
In this work we will focus specifically in the interpretation process, and we
propose the learning process for future work.

Context free models will be used for the interpretation process. These
models are considered appropriate to represent the two-dimensional struc-
tural constraints that are present in mathematical expressions. In the fol-
lowing sections we will review some notation and some classical algorithms
related to those that we will introduce through this work.

1.4 Grammars

Formal grammars are used in this work to model mathematical expressions.
A formal grammar can be defined as a tuple

G = (N,T, P, S)

where

• N: Finite set of nonterminal symbols.

• T: Finite set of terminal symbols (N ∩ T = ∅).

• P: Set of derivation rules α → β with α ∈ V ∗NV ∗ and β ∈ V ∗, such
that V = N ∪ T .

• S: Starting symbol (S ∈ N).

Given a sequence of symbols and a grammar G, we define the derivation
process as

µαδ
∗⇒ µβδ iff ∃(α→ β) ∈ P ; µ, δ ∈ V ∗.

A formal grammar is a precise definition of a formal language, which in
turn is a set of strings over some alphabet T . The formal language generated
by a grammar G is the set

L(G) = {x ∈ T ∗ |S ∗⇒ x}
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Formal grammars can be classified in four groups of progressively re-
stricted grammars, which is known as Chomsky Hierarchy. The grammars
less restricted are more powerful and expressive. However, the computa-
tional complexity of the algorithms that handle each type of grammar is
lower when working with more constrained grammars. In this work we are
interested in context-free grammars, because they are expressive enough to
model mathematical expressions and they are also computational tractable.
The production rules of this type of grammars are restricted to take the
form α→ β with α ∈ N and β ∈ (N ∪ T )∗.

Context-Free Grammars (CFG) are often defined in Chomsky Normal
Form (CNF), which means that the production rules are of the form A→ BC
or A→ t, where A,B ∈ N and t ∈ T . Every grammar in CNF is context-free,
and conversely, every CFG can be transformed into an equivalent one which
is in CNF.

A Stochastic Context-Free Grammar (SCFG) is a CFG in which each pro-
duction rule is augmented with a probability. So, every rule ri has associated
a probability Pr(ri) = Pr(A→ α) ∈ ]0, 1], and the following constraint must
be accomplished: ∑

∀αj

Pr(A→ αj) = 1.

In other words, the probability of all the rules having the same left-hand
nonterminal must sum one.

The probability of a derivation dx for a given string x produced by a
grammar G is the product of the probabilities of the applied derivation
rules

PrG(x, dx) =
∏
ri∈dx

Pr(ri).

The Cocke-Younger-Kasami (CYK) algorithm [1] determines whether a
string can be generated by a given CFG and, if so, how it can be generated.
The CYK algorithm is a dynamic programming algorithm that builds increas-
ing size problems from combinations of lower size subproblems (bottom-up
parsing). The classical version of the CYK algorithm just checks if a given
string is generated by a grammar. A stochastic version of the CYK algo-
rithm (see Figure 1.3) computes the probability of most probable derivation
by storing the probabilities of the partial parsed subproblems, and it allows
us to compute:

P̂ rG(x) = max
∀dx

PrG(x, dx).

It is important to note that the time complexity of CYK algorithm is O(n3)
where n is the size of the string to be parsed.

This stochastic version of the CYK algorithm is presented because in
order to deal with the mathematical expression recognition problem, a two-
dimensional (2D) extension of this algorithm is needed. This 2D extension
of the CYK algorithm is explained in section 1.5.
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Input: G = (N,T, P, S), Gs = (G,Pr) in CNF and x = x1x2 . . . xn ∈ T ∗

Output: P̂ rG(x) (if x 6∈ L(G) then P̂ rG(x) = 0.0)

Method
for all i, j, A do

t[i, j, A] = 0.0

for all i = 0 . . . n− 1 do
for all (A→ xi) ∈ P do

t[i, i+ 1, A] := Pr(A→ xi)

for all j = 2 . . . n do
for all i = 0 . . . n− j do

for all i = 0 . . . n− j do
for all (A→ BC) ∈ P do

prob := t[i, i+ k,B] · t[i+ k, k + j, C] · Pr(A→ BC)
if prob > t[i, i+ j, A] then t[i, i+ j, A] := prob

return t[0, n, S]
End method

Figure 1.3: CYK algorithm for Stochastic CFG

1.5 Two-dimensional Extension of CF Parsing

SCFG are a powerful formalism of syntactic pattern recognition that has been
extensively used for string patterns. However, it is possible to lightly modify
this formalism so that grammars can model 2D problems. In this work, we
are interested in modeling mathematical expressions using SCFG. For this
reason, a 2D extension is introduced in a similar way as in [35].

There are mainly two differences from a SCFG. First, in the 2D case, ter-
minal and nonterminal symbols describe regions instead of symbols. This
means that terminal and nonterminal symbols of the grammar contain some
features like 2D coordinates, and others. Second, the production rules have
an additional parameter that describes the spatial relation among the sym-
bols. Formally, a 2D SCFG is a standard SCFG in which the production rules
are as follows:

A
spr−−→ α

where A ∈ N ; α ∈ (N ∩T )∗ and spr denotes the spatial relation that models
the rule. Common spatial relations for mathematical expression recognition
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are: horizontal, vertical, inside, subscript and superscript. The probability
of a rule is:

Pr(A
spr−−→ α) = Pr(α |A, spr).

Finally, this models can be represented in CNF (see 1.4) and the rules are as
follows:

A→ t

A
spr−−→ BC

A,B,C ∈ N, t ∈ T.

The terminal productions do not contain the spatial relation because there
is no spatial relation with only one symbol. Their probabilities are

Pr(A→ t) = Pr(t |A)

Pr(A
spr−−→ BC) = Pr(B,C |A, spr).

In conclusion, the SCFG 2D extension is achieved by adding a spatial
relation model in the binary production rules. Moreover, the symbols of
the grammar contains attributes to provide 2D information needed at the
process of providing a parse tree.

In order to illustrate the SCFG 2D extension we present a simple grammar
Gexp that models addition and subtraction of integer fractions:

G = (N,T, P, S); Gexp = (G,Pr, spr)

N = {Exp,OpExp,OvNum,Num,Over,Op}
T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, hline,+,−}
S = Exp

spr = {horizontal, vertical}

where the production rules P are

Exp
horizontal−−−−−−→ Exp OpExp

Exp
vertical−−−−−−→ Num OvNum

OvNum
vertical−−−−−−→ Over Num

OpExp
horizontal−−−−−−→ Op Exp

Num
horizontal−−−−−−→ Num Num

Num −−−−−−→ [0,1,2,3,4,5,6,7,8,9]
Over −−−−−−→ [hline]
Op −−−−−−→ [+,-]
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and Pr is a probability distribution that properly models the terminals
recognition and spatial relations among regions (Sections 2.3 and 3.3 explain
how probabilities are computed, and a complete example is presented in
Section 3.4). For example, the expression

1

2
+

10

3

is generated by the previous grammar as is represented in the following
derivation tree

Exp

Exp

Num

1

OvNum

Over

hline

Num

2

OpExp

Op

+

Exp

Num

Num

1

Num

0

OvNum

Over

hline

Num

3
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Chapter 2

Recognition Steps

Usually the problem of mathematical expression recognition is divided into
three steps: segmentation, symbol recognition and structural analysis. In
this chapter we present which methods are studied in this work to solve
these major subproblems independently.

2.1 Segmentation

Given a binary image which contains the representation of a mathematical
expression, the first step is to segment this image into groups. The goal is
that each of these groups form exactly one symbol.

In this work, the method chosen to solve the segmentation problem is
to compute the connected components of the input image. It can be easily
carried out by considering the black pixels to be 8-connected. In other words,
pixels are neighbors to every pixel that touches one of their edges or corners.
Figure 2.1 shows an example of the 8-connected components computed for
a mathematical expression image.

Figure 2.1: 8-connected components of an binary image.

There are many mathematical symbols which are composed by more
than one connected component, but this problem will be tackled in other
stages of the expression recognition process and it will be explained later.

15
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2.2 Symbol Recognition

After the segmentation step, we have a list of regions that can contain a
mathematical symbol. In order to make a decision, a mathematical symbol
classifier is needed. In this work we tried several techniques to solve this
problem.

Recognition of typeset mathematical symbols is a difficult problem due to
several reasons: first, there is a large number of different symbols; second, the
number of font-types can be different in the same mathematical expression
(e.g., roman, italic, and calligraphic); and third, symbols can be of different
size in the same expression. Several techniques have been proposed for
the off-line recognition of printed mathematical symbols and a good review
can be seen in [10]. A combination of classifiers was proposed in [10] that
achieved very good results for a large database. However, a comparison
of several techniques on the same database would be interesting. In this
work we compared several classification techniques for recognition of printed
mathematical symbols that proved to be very efficient for other classification
tasks.

In pattern recognition, the representation of the problem is important to
the classifier performance. In this case, given a region of an image that could
contain a mathematical symbol, it was normalized to a fixed size of n×m.
After that, a vector of n ·m components was formed by concatenating the
rows of the normalized region, and this vector was the representation used
for each symbol in the classification task.

The HMM models has a difference in the representation of the symbols.
The HMM expects a sequence of vectors as input, for that reason the image
was transformed into a sequence of fixed-dimension feature vectors. In other
words, the image was adequately normalized to a fixed size rows, keeping
the aspect ratio, and then a sequence of vectors was obtained.

2.2.1 Nearest Neighbor

The k-Nearest-Neighbor (k-NN) rule is a very popular pattern classification
rule that provides good results when the number of prototypes is large. This
is a usual classification technique that has also been tested for mathematical
symbols classification [9]. This classifier doesn’t need to be trained, because
only it is necessary to have available a set of labeled samples. Given the
vector representation of a mathematical symbol, each sample is interpreted
as a point in a high-dimensional space. Therefore, given a test sample, the
distance is computed to all the prototypes of the labeled set. Then, the k-
NN classifier uses the k nearest prototypes to the test sample to determine
its class, which is the most voted.
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2.2.2 Support Vector Machines

Support vector machine (SVM) is a maximum margin classifier that has
demonstrated to be a powerful formalism for recognition tasks. In this work
we used the multi-class SVM described in [8]. This technique has been pre-
viously used for mathematical symbol recognition with successful results.

For the SVM classification, we used the SVMmulticlass software with default
options1. In experiments reported in [18] on mathematical symbol classifi-
cation with the INFTY corpus, a linear kernel obtained better classification
results than a Gaussian kernel and a cubic polynomial kernel. Therefore, a
linear kernel function was just used.

2.2.3 Weighted Nearest Neighbor

The Weighted Nearest Neighbor (WNN) technique is an improvement of the
classical 1-NN [20]. A discriminative technique is used to learn a weighted
distance by using the 1-NN rule with a training set. A distance weighting
scheme is proposed which can independently emphasize prototypes and/or
features. Several alternatives are considered in [20]: using a different weight
for each prototype, using a different weight for each class and characteris-
tic, or using a combination of the previous alternatives. In this work, we
used the last alternative previously mentioned, that is, a different weight for
each prototype combined with a different weight for each class and feature.
The reason for this was that in a training set there are samples more rep-
resentative than others, and also in symbol representation the importance
of each pixel is different. Consequently, it is reasonable to weight both the
prototypes and the features for each class.

2.2.4 Hidden Markov Models

Hidden Markov Models (HMM) have been widely used for mathematical sym-
bol classification in on-line mathematical expression recognition [9]. However
their use in off-line recognition remains unexplored. In recent years, HMM

has been successfully used for off-line handwritten text recognition [31]. In
this work, we explore the technique described in [31] applied to printed
mathematical symbol recognition.

We have slightly adapted those techniques for printed mathematical sym-
bol recognition. Given the novelty of this approach for this recognition task,
we explain it in more detail (see [31] for additional details). In the prepro-
cessing stage, noise reduction is carried out in the symbol image and then,
it is adequately normalized to a fixed size row, keeping the aspect ratio (see
Figure 2.2.a). The image is transformed into a sequence of fixed-dimension
feature vectors as follows: the image is divided into a grid of small square

1http://svmlight.joachims.org/svm_multiclass.html

http://svmlight.joachims.org/svm_multiclass.html
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cells, sized a small fraction of the image height. Each cell is characterized
by the following features: normalized grey level (see Figure 2.2.b), horizon-

0.6 0.40.7

0.4 0.60.3

a)
b)

e)

c)

d)

Figure 2.2: Feature extraction for HMM recognition.

tal grey-level derivative (c) and vertical grey-level derivative (d). To obtain
smoothed values of these features, feature extraction is extended to a 5× 5
cell window centered at the current cell and weighted by a two-dimensional
Gaussian function in b) and a unidimensional Gaussian function in c) and
d). The derivatives are computed by least squares fitting a linear function.
Columns of cells are processed from left to right and a feature vector is built
for each column by stacking the features computed in its constituent cells.
Figure 2.2.e shows a graphical representation of the obtained values.

Finally, each symbol is represented by a sequence of feature vectors,
which are used to train a HMM for each class, and at the classification stage
one sample is labeled to the class of the HMM with higher probability.

2.3 Structural Analysis

Structural analysis is a challenging task in the recognition of mathematical
expressions. From the segmentation and symbol recognition steps, the prob-
lem is to determine the relations among these symbols in order to build a
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complete structure. This structure represents the mathematical expression
recognized.

Such as we commented in Section 1.1 several approaches have been tried
to solve the structural analysis problem [7, 36, 13, 29]. In this work we
used SCFG to model the mathematical expressions structure and the CYK

algorithm to parse the input sample to obtain the most probable derivation.
The 2D extension of SCFG was explained in Section 1.5, but algorithm must
be modified to work with this type of formal grammars. Given the SCFG in
CNF, the probabilities are formally defined as

Pr(A→ t) = Pr(t |A)

Pr(A
spr−−→ BC) = Pr(B,C |A, spr).

In a similar way as in [35], we determine these probabilities using probability
functions. On the one hand, the Pr(t |A) probability is obtained from the
mathematical symbol classifier as the probability that region t belongs to
class c such that c ∈ (A → c). On the other hand, the Pr(B,C |A, spr)
probability models the spatial relation spr between B and C regions, so the
probability is computed as

Pr(B,C |A, spr) = Pr(B)Pr(C)Pr(B,C | spr)

where Pr(B) and Pr(C) are obtained from the CYK parsing table and
Pr(B,C | spr) represents the probability that regions B and C are spatially
arranged according to spr (more details in Section 3.3.2). The modified al-
gorithm is shown in Figure 2.3. This algorithm has two special operations
that are defined below. Given two regions c1 and c2, the ⊕ operator com-
putes the smallest rectangle containing both regions, and the ] operator is
defined as follows.

Let S be a set of elements (Ai, regi, probi), such that Ai is a nonterminal
symbol, regi is a region in the image, and probi is its probability, and let x
be a new element (B, reg′, prob′). The operation S ] x is defined as:

if ∃y = (A, reg, prob) ∈ S such that A = B and reg = reg′ {
if prob > prob′ then discard(x)
else replace y with x

}
else S = S ∪ x

The idea is that each region of the mathematical expression can be parsed
in several ways, but the probability is maximized.

Looking at the 2D CYK algorithm, the first remarkable difference is that
the parsing table is indexed by only one value. On the standard CYK parsing
the two indexes explain the positions that define some substring. In the 2D
case, there is a table level for each subproblem size, and these levels contains
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Input: Gs = (N,T, P, S, Pr) in CNF and x = {x1, x2, . . . , xn} ∈ T ∗

Output: P̂ rG(x) (if x 6∈ L(G) then P̂ rG(x) = 0.0)

Method
for all i = 0 . . . n− 1 do

for all (A→ xi) ∈ P do
if Pr(A→ xi) > 0.0 then t[1] := t[1] ∪ (A, xi, P r(A→ xi))

for all j = 2 . . . n do
for all a = 1 . . . n− 1 do

for all c1 ∈ t[a] do
for all c2 ∈ t[n− a] do

for all (A
spr−−→ BC) ∈ P do

prob := Pr(c1 |B) · Pr(c2 |C) · Pr(c1, c2 | spr)
if prob > 0.0 then t[j] := t[j] ] (A, c1 ⊕ c2, prob)

return t[0, n, S]
End method

Figure 2.3: CYK Algorithm for 2D SCFG.

a set of elements which contains their two-dimensional space information.
For that reason, at the initialization loop the built subproblems are added
at t[1] level, that is to say that they cover one input symbol. After that,
the parsing process continues by building new subproblems of increasing
size, where the spatial relation model contributes to the probability of each
possibility.

Finally, the time complexity of the algorithm is O(n4|P |) whereas the
time complexity of the classical CYK is O(n3|P |). This is because there are
four loops over the n regions (j, a, c1 and c2 variables), and an additional
loop for the production rules P . However, in section 3.3.1 this complexity
is discussed and reduced.
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Developed System

This chapter describes the system developed for parsing mathematical ex-
pressions. This system uses a two-dimensional Stochastic Context-Free Gram-
mar (SCFG) to model spatial relations between symbols. The parsing is
carried out with the CYK algorithm that was described in previous sections.

3.1 Mathematical Expressions Grammar

In order to carry out the parsing of the mathematical expressions, a 2D SCFG

grammar is needed. In this work we did not study the automatic learning of
a model from a data set. Thus, this grammar was defined manually trying
to cover a wide range of expressions. The LATEX syntax is very permissive,
so a slightly constrained grammar was used. We tried to model all the
mathematical expressions that appeared in the data sets that we used in
the experiments. The grammar parsed most of mathematical expressions,
but there were cases that were not modeled, for example left subscripts
or superscripts (21a) or matrices. Figure 3.1 shows the binary rules of the
2D grammar that we defined, where production rules are equiprobable and
an extra field was added to each rule to obtain a formatted output. This
information is represented at the last column of each production rule and it
is explained below. For example, the binary rule

OverExp
Vertical−−−−−−−−−→ Over Exp "$2"

represents that a OverExp region can be obtained by the combination of two
regions Over and Exp where their spatial relation implies that the former
is above the second.

Terminal production rules are not shown in Figure 3.1, because there
are a large number of terminals. The nonterminals Exp, Auxh, Auxs, Let,
Over, BigOp, OpUn, OpBin, OverSym, UnderSym, LeftPar, RightPar and
Sqrt, have terminal production rules. For example, the OpUn nonterminal
has associated the productions of the symbols ∃, ∀, −, ¬, + and ±, which
represents unary operators.

21
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Exp
Horizontal−−−−−−−−−→ Exp Auxh "$1 $2"

Exp
Horizontal−−−−−−−−−→ Auxh Exp "$1 $2"

Exp
Horizontal−−−−−−−−−→ Auxh Auxh "$1 $2"

Exp
SuperScript−−−−−−−−−→ Exp Auxs "{$1}^{$2}"

Exp
SubScript−−−−−−−−−→ Exp Auxs "{$1}_{$2}"

Exp
SubScript−−−−−−−−−→ BigOp Exp "$1_{$2}"

Exp
Horizontal−−−−−−−−−→ Exp Exp "$1 $2"

Exp
Horizontal−−−−−−−−−→ OpUn Exp "$1$2"

Exp
Horizontal−−−−−−−−−→ Exp OBExp "$1 $2"

OBExp
Horizontal−−−−−−−−−→ OpBin Exp "$1 $2"

Exp
SuperScript−−−−−−−−−→ Exp Exp "{$1}^{$2}"

Exp
SubScript−−−−−−−−−→ Exp Exp "{$1}_{$2}"

Exp
Vertical−−−−−−−−−→ Exp OverExp "\frac{$1}{$2}"

OverExp
Vertical−−−−−−−−−→ Over Exp "$2"

Exp
VerticalStrict−−−−−−−−−→ OverSym Exp "$1{$2}"

Exp
VerticalStrict−−−−−−−−−→ Exp UnderSym "$2{$1}"

Exp
Horizontal−−−−−−−−−→ LeftPar RPExp "$1 $2"

RPExp
Horizontal−−−−−−−−−→ Exp RightPar "$1 $2"

Exp
Horizontal−−−−−−−−−→ Exp SSExp "{$1}$2"

Exp
Horizontal−−−−−−−−−→ BigOp SSExp "$1$2"

SSExp
SupSubScript−−−−−−−−−→ Exp Exp "_{$2}^{$1}"

SSExp
SupSubScript−−−−−−−−−→ Auxs Exp "_{$2}^{$1}"

SSExp
SupSubScript−−−−−−−−−→ Exp Auxs "_{$2}^{$1}"

SSExp
SupSubScript−−−−−−−−−→ Auxs Auxs "_{$2}^{$1}"

Exp
Vertical−−−−−−−−−→ Exp BigOpExp "$2^{$1}"

BigOpExp
Vertical−−−−−−−−−→ BigOp Exp "$1_{$2}"

Exp
Horizontal−−−−−−−−−→ BigOpExp Exp "$1 $2"

Exp
Inside−−−−−−−−−→ Sqrt Exp "\sqrt{$2}"

Exp
Horizontal−−−−−−−−−→ Exp Func "$1 $2"

Exp
Horizontal−−−−−−−−−→ Func Exp "$1 $2"

Func
Horizontal−−−−−−−−−→ Let 2Let "{$1$2}"

Func
Horizontal−−−−−−−−−→ 2Let 2Let "{$1$2}"

2Let
Horizontal−−−−−−−−−→ Let Let "$1$2"

Exp
Vertical−−−−−−−−−→ Func Exp "$1_{$2}"

Figure 3.1: Mathematical expressions 2D grammar.



3.2. CYK TABLE INITIALIZATION 23

3.2 CYK Table Initialization

First, we explain the initialization step in the CYK algorithm as it was in-
troduced in Section 1.4 and Section 2.3.

3.2.1 Segmentation and Symbol Recognition

Given an image of a mathematical expression, first, the connected compo-
nents are calculated as described in Section 2.1. As a result, a set of image
regions is obtained. For all of these components, a mathematical symbol
classifier is used to determine the class of each one. This task could be car-
ried out by any of the classifiers explained in Section 2.2. In our case the
Nearest Neighbor (NN) was chosen, because it is simple an it achieved good
results as we explain in the experiments.

One mathematical symbol can belong to multiple classes due to several
kind of misclassification. For example, the + symbol can be interpreted as a
binary operator (1+2), unary operator (+b) or a standard symbol (Σ+). The
− symbol can be interpreted as a minus symbol, as an overline, or as the bar
of a fraction, among other. For that reason, the symbol recognition process
classifies each terminal in several nonterminals that represent its possible
interpretations. Thus, the symbol + is stored in the CYK table with its
probability for each nonterminal OpUn, OpBin and Auxs. Generally, each
region is classified in all terminal symbols and each nonterminal symbol
associated to the corresponding rule is added to the parsing table. Finally,
the parsing process will decide the most probable interpretation taking into
account the expression structure.

The NN classifier computes the Euclidean distance between vectors, but
in the CYK algorithm probabilities are needed. Formally, given an image x,
let p̂c be the nearest prototype of class c from a labeled set, and let d(x, p̂c)
be the distance between them. The probability of x to belong to the class c
can be obtained as

p(x | c) ∝ e−d2(x,p̂c)

So, the probability was proportional to this expression. In the implementa-
tion the final expression used as

p(x | c) = e−d
2(x,p̂c)/F = (e−d

2(x,p̂c))
1
F

due to scaling problems, where F is a positive integer number.
Finally, the pseudocode for the segmentation and symbol recognition

that initializes the CYK table is shown in Figure 3.2. This code shows how
each region is labeled in several classes. We used a threshold to avoid ex-
ploring improbable hypothesis. This was done in order to limit the search
space, but in this way we could not guarantee that the optimal solution was
achieved.
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for all connected components C of image X do {
for all nonterminals A of terminal productions (A→ t) do {

(class, prob) =NN(C,A) //Symbol Classifier
if ( prob > threshold ) then
t[1] := t[1] ∪ (Aclass, C, prob)

}
}

Figure 3.2: Segmentation and mathematical symbol classification to initial-
ize the CYK algorithm table.

3.2.2 Multiple Connected Components Detection

It is very common to deal with expressions where some of their symbols are
composed of more than one connected component. There are three possible
reasons (see examples in Figure 3.3):

• By definition: Some symbols (=, i, j, ;) are composed of more than one
connected component, so it is necessary to correctly detect them.

• By noise: Working with real images often means to deal with noise,
and these extra pixels are detected as components.

• By degradation: Another problem when working with real images is
that they could be degraded, and some symbols could be split on
several connected components.

Figure 3.3: Examples of symbols formed by multiple connected components.

A possible way to treat this problem is by merging closer connected
components and to get a class and probability from the mathematical symbol
classifier. But this introduces a problem, because the probability obtained
Pr(t |A) is representing a subproblem of size two. However, the probability
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of building new subproblems using binary production rules of the grammar
is the product of three probabilities

Pr(c1 |B) · Pr(c2 |C) · Pr(c1, c2 | spr)

as shown in Section 2.3. Consequently, it was necessary to scale the proba-
bility in order to not to favor this type of constructions.

Figure 3.4 shows the multiple connected components detection pseu-
docode. It works in a similar way to the symbol recognition step, with only
a few differences. First, several combinations of closer connected compo-
nents are tried. Second, the probability obtained from the symbol classifier
is scaled to solve the unbalanced probability problem. Finally, the proba-
ble combinations are added to the CYK algorithm table as subproblems of
size two. In this work we did not considered symbols of more than two
connected components. This is because it was necessary to integrate them
into the model, otherwise the probabilities were of different nature than the
obtained by the CYK algorithm and it tended to provide bad results. We
will study this problem in future work.

for all connected components C of image X do {
for all connected components D closer to C do {

region = D ⊕ C
for all nonterminals A of terminal productions (A→ t) do {

(class, prob) =NN(region,A) //Symbol Classifier
if ( prob > threshold ) then
t[2] := t[2] ∪ (Aclass, region, scale(prob) )

}
}

}

Figure 3.4: Multiple connected components detection in the CYK algorithm.

In conclusion, for symbols that were possible composed by multiple con-
nected components, those caused by noise were tackled with image filters in
a previous step. On the other hand, degraded and naturally split symbols
were detected as explained above, but the system could not detect properly
the symbols divided in more than two connected components.

3.3 CYK Recursive Steps

At this point, the CYK table parsing is initialized as explained in the previous
section. Now the CYK algorithm starts building new subproblems using the
SCFG described. The 2D CYK was explained in Section 2.3, but there are
some practical issues that must be solved.
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On the standard CYK algorithm, it is well known which cells (dynamic
programming subproblems) are the predecessors of a certain (i, j) cell, be-
cause the one-dimensional space is well constrained. Dealing in this way
with 2D images could lead us to algorithms with high time complexity, and
therefore this relation is relaxed.

Moreover, the probability of a new problem from other two subproblems
c1, c2 of minor size and a binary rule (A

spr−−→ BC) is computed as

Pr(c1 |B) · Pr(c2 |C) · Pr(c1, c2 | spr).

The probabilities Pr(c |A) are obtained from the CYK parsing table, but
the spatial relation probabilities Pr(c1, c2 | spr) must be defined (see Sec-
tion 3.3.2). The final algorithm implemented is shown in Figure 3.5, where
all practical issues are presented. In this algorithm, the subset operation is
explained in the following and other notation details are explained later.

3.3.1 Building Subproblems

When building a subproblem of size d, the naive solution is to try all the
(a, b) size pairs such that a+ b = d. In other words, for each subproblem of
size a combine it with all the subproblems of size b and let the probability
spatial distribution and the CYK parsing to get the best parsing. Using this
approach, the cost of the algorithm is O(n4|P |).

But given a subproblem, and a spatial relation, there is a specific area
where the related subproblems are distributed, and it is not necessary to
check all the combinations (see Figure 3.6). This is very intuitive, but it is
necessary to use some data structure to efficiently obtain the subproblems
closer to a given area. The developed system sorts the subproblems of the
same size according to their starting horizontal coordinate. This is because
mathematical expressions grows in this axis, and after the regions are sorted
the system is able to find a point in O(log n) through a binary search. In [23]
this task is performed using feature points and orthogonal range searching,
achieving the same computational complexity.

Given a region and a spatial relation, we do not want to apply the pro-
duction rules to subproblems that we know they are improbable. Figure 3.6
shows two cases where given a region (overline and µi), an area of inter-
est is defined (dotted square). For example, given the region that contains
the µi expression and the spatial relation horizontal, the system only would
apply the horizontal production rules with the subproblems which overlap
the dotted area. The overline symbol over the C is other example of space
search for a vertical production.

In Section 2.3 the time complexity of the 2D CYK algorithm was dis-
cussed, and we saw that the naive solution had a O(n4|P |) cost. But us-
ing the data structure explained and performing the partial sort with a
O(n log n) algorithm, the time complexity is reduced to O(|P |n3 log n). This
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//Initialization
symbol recognition(x, t[1])
multiple components(x, t[2])

//Recursive steps
for all j = 2 . . . n do { //n segmented regions

for all a = 1 . . . n− 1 do {
for all c1 ∈ t[a] do {

zh = subset( t[n− a], c1 , horizontal)
zv = subset( t[n− a], c1 , vertical)
zi = subset( t[n− a], c1 , inside)
for all c2 ∈ zh do {

for all (A
spr−−→ BC) ∈ P such that

spr ∈ {Horizontal,SuperScript,SubScript,SupSubScript} do {
prob := Pr(c1 |B) · Pr(c2 |C) · Pr(c1, c2 | spr)
if prob > 0.0 then t[j] := t[j] ] (A, c1 ⊕ c2, prob)

}
}
for all c2 ∈ zv do {

for all (A
spr−−→ BC) ∈ P such that

spr = {Vertical,VerticalStrict} do {
prob := Pr(c1 |B) · Pr(c2 |C) · Pr(c1, c2 | spr)
if prob > 0.0 then t[j] := t[j] ] (A, c1 ⊕ c2, prob)

}
}
for all c2 ∈ zi do {

for all (A
spr−−→ BC) ∈ P such that spr = {Inside} do {

prob := Pr(c1 |B) · Pr(c2 |C) · Pr(c1, c2 | spr)
if prob > 0.0 then t[j] := t[j] ] (A, c1 ⊕ c2, prob)

}
}

}
}
sort(t[j])

}

//Parsing output
TEXoutput( t )

Figure 3.5: Pseudocode of the implemented CYK 2D parsing algorithm.
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Figure 3.6: Example of searching area for a particular region and spatial
relation.

is because the sort is performed only once when a level of a given size is com-
pletely built, and the binary search is done for every subproblem of a certain
size in O(log n) (see Figure 3.5). The spatial complexity of the algorithm is
O(n2|N |) because there are n sets with at most n elements, and each one
can store several nonterminal symbols |N |.

3.3.2 Spatial Relations

There are several spatial relations defined between regions and modeling
them properly is a very important point to achieve good results in math-
ematical expression recognition. Along the parsing process, many regions
are combined to form bigger regions, and the features used to describe them
were the bounding box coordinates. Using these values, some functions were
manually defined to model each spatial relation and to compute the proba-
bility Pr(c1, c2 | spr) used in the parsing algorithm (Figure 3.5). The main
issues that these functions took into account are detailed below:

• Horizontal: The horizontal distance (left) and the difference between
the vertical centers (right).

R1 R2 R1 R2

• Superscript: The horizontal distance (left) and difference between
the bottom left corner of R2 and the point at height(R1) ·u (u ∈ [0, 1])
of the top right corner of R1 (right).



3.3. CYK RECURSIVE STEPS 29

R1 R2
R2

R1
u

• Subscript: The horizontal distance (left) and difference between the
top left corner of R2 and the point at height(R1) · u (u ∈ [0, 1]) of the
bottom right corner of R1 (right).

R1 R2 R2
R1

u

• SupSubScript: The vertical distance (left) and the difference be-
tween the left horizontal coordinates of both regions (right).

R1

R2

R1

R2

• Vertical: The vertical distance (left) and the difference between the
horizontal centers (right).

R1

R2

R1

R2

• VerticalStrict: The vertical distance (left) and the difference between
the horizontal coordinates of both regions (right).
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R1

R2

R1

R2

• Inside: The area of overlap (left) and the difference between the bot-
tom right corners (right).

R1
R2

R1
R2

3.3.3 Parsing Output

Once the parsing is performed, the structure of the mathematical expression
can be obtained by traversing the derivation tree that covers the expression
with the higher probability. This parsing could be presented in different
ways, as a tree, MathML or LATEX, for example. In this work the LATEX
output was chosen, but it would be easy to get other kind of output.

In Section 3.1 the mathematical expressions grammar was defined. There
is an extra field that is used to obtain the LATEX output. The process that
produces the desired format output from the most probable derivation tree
is just a recursive procedure from the root to the leafs. When a node is
achieved, the string defined at the grammar is printed handling the child
indicator ($1 or $2 , left and right child respectively). Finally, when a leaf
node is reached the LATEX representation of the symbol is printed as defined
in the terminal productions files.

When the parsing process is not successful the mathematical expression
is not fully recognized. But it is interesting to provide and output in spite
of the expression is not absolutely correct (see Figure 3.7). In that case, the
system looks for the most probable subproblem of greater size that covers
the starting symbol of the grammar. In the experiments we describe how
this output was used to evaluate the recognition system.
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Input Output

Figure 3.7: Example of partial output of the system.

3.4 Example

In order to illustrate the algorithm, we present an example using the simple
grammar defined in Section 1.5 that models addition and subtraction of
integer fractions.

Given the input expression

the segmentation step obtains 8 regions, which enumerated from left to
right, and top to bottom are: 1, 1, 0, +, \frac, \frac, 2 3. Using this order
to identify the regions and with the mathematical symbol classifier results,
the level of size one of the table is initialized. Each region is labeled with its
nonterminal and label that is decided by the symbol recognition module and
this information is added to t[1] of the parsing table. After that, the multiple
connected component detection module adds to subproblems of size two the
region R23 = R2⊕R3. This region of size two contains the 10 subexpression
as a number 8

t[2] := {(Num(8), R23, 0.3952}

although it is not a good choice.

Once the table is initialized, the recursion begins until it completes sub-
problems of size 8 (all the input regions). The following table shows the
hypothesis explored by the algorithm and how the grammar models this
type of expressions.
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t[1] := {(Num(1), R1, 0.92), (Num(1), R2, 0.89),
(Num(0), R3, 0.94),(Op(+), R4, 0.97),
(Over(hline), R5, 0.81),(Over(hline), R6, 0.90),
(Num(2), R7, 0.84),(Num(3), R8, 0.87)}

t[2] := {(Num(8), R23, 0.39)1,(Num(10), R23, 0.76)2,
(OvNum(2), R57, 0.62), (OvNum(3), R68, 0.71)}
Note: Element1 is replaced by Element2 due to ] operation

t[3] := {(Exp(12), R157 = R1 ⊕R57, 0.53),
(Exp(13 ), R268 = R2 ⊕R68, 0.37)1,
(Exp( 0

3 ), R368 = R3 ⊕R68, 0.40)2}
Note: Element1 is replaced by Element2 due to ] operation

t[4] := {(Exp(103 ), R2368 = R23 ⊕R68, 0.48),
(OpExp(+ 0

3 ), R3468 = R4 ⊕R368, 0.35)}

t[5] := {(OpExp(+10
3 ), R23468 = R4 ⊕R2368, 0.41)}

t[6] := ∅

t[7] := {(Exp(12+ 0
3 ), R1345678 = R157⊕R3468, 0.16)}

t[8] := {(Exp(12 + 10
3 ), R157 ⊕R23468, 0.19)}

Finally, the most probable hypothesis that parses the complete expres-
sion is the element

(Exp(
1

2
+

10

3
), R157 ⊕R23468 , 0.19)
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Experiments

Now we describe the experiments that we carried out to test the developed
system. First, we describe the datasets that we used. Then, we describe the
comprehensive symbol classification experiments that were done. Prelimi-
nary experiments on mathematical expressions are described at the end of
this section.

4.1 Corpora

Performance evaluation of mathematical recognition systems often involves
providing test data and comparing the algorithm output with the expected
output. Furthermore, many classifiers needs groundtruthed data in order
to train the models. There is a lack of standard datasets for mathematical
expression recognition and many authors define their own datasets. Using
standard datasets allows the experiments to be reproduced, to provide com-
parable results and it avoids the creation of corpus tuned to a particular
system. For that reason, standard datasets are needed.

4.1.1 UW-III

The UW-III database [21] is a set of document images from different fields
that includes 25 journal document pages containing mathematical formulae.
Some of the images come from blurred photocopies. Each image has an-
notated the zones where the mathematical expressions are located, but the
symbols are not isolated. The zones that are annotated are not embedded in
the text. For this work, we isolated and classified the mathematical symbols
manually1 in order to have them available for the symbol recognition prob-
lem. The complete database had 2, 233 symbols. From this set, we removed
touching symbols and those symbols that appeared less than four times. In
this way the total number of symbols was 2, 076.

1Available at http://www.dsic.upv.es/~jandreu/UW-III-MS.tgz
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4.1.2 INFTY

The InftyCDB-1 database [27] is a set of document images that comprises
articles on pure mathematics. The database can be used both for math-
ematical symbol recognition and for mathematical expression recognition.
Each symbol is manually annotated with its bounding box and with its
class tag. Furthermore each one contains some information related to the
mathematical expression it belongs to, like the expression coordinates or its
LATEX representation. Thereby, using this information it is easy to retrieve
the desired information. The INFTY dataset has 21K mathematical expres-
sions, which in turn contains 157K mathematical symbols of 212 classes.
This information is annotated from 476 pages of text. Given the large size
of this database, for the mathematical symbol classification task, we limited
the maximum amount of training and test data. We composed four training
sets of increasing size (5K, 10K, 20K, 50K) and one test set (5K). These
training and test data sets were chosen at random but keeping the actual
distribution of symbols of the original data set. The total number of classes
for the experiments was 183.

4.2 Mathematical Symbols Recognition

The classification techniques that have been described in Section 2.2 were
tested with the data sets that have been presented in section 4.1. For the k-
NN classification technique, we used several values of k. We did not used any
technique of prototype removing. We used the Euclidean distance between
two images taking into account the difference between each pixel. We divided
initially the set of prototypes into three classes based on the aspect ratio,
and in this way the number of comparisons was reduced to a large extent.
If we did not divide the set of prototypes according to the aspect ratio, the
classification error rate remained the same. Then, the mathematical symbol
images in each one of these three classes were adequately normalized. Each
new prototype to be classified was just compared with the prototypes of one
of these three classes depending on the aspect ratio.

For the HMM classification technique, we tested different number of Gaus-
sian distributions per state, but the best results were obtained with 8 Gaus-
sian distributions. Therefore, we only report results for this number of
Gaussian distributions. We used left-to-right models with different number
of states in each model, depending on the average width of the symbols of
each class. The number of states ranged from 1 (vertical bar) to 15 (trigono-
metric, logarithm functions or square tail). The HTK toolkit2 was used for
these experiments. If we used the same number of states for all HMM, then
the classification results were clearly worst.

2http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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The SVM and WNN classifiers are used as explained in 2.2 and the ex-
periments performed are just for tuning parameters.

For the UW-III data set, we used 25% for test and 75% for training.
The test set and the training set were composed at random. Given that the
UW-III data set was very small, we repeated this process 100 times. Column
≥ 4 in Table 4.1 shows the obtained average error rate for this experiments.
Note that we only considered the classes that had at least 4 prototypes per
class.

Table 4.1: Average classification error rate for the UW-III data set.

≥ 4 ≥ 8 ≥ 16

1-NN 6.34±0.08 5.44±0.08 5.05±0.07

3-NN 8.27±0.09 6.71±0.07 5.70±0.08

5-NN 9.60±0.08 7.78±0.07 6.57±0.09

WNN 5.88±0.07 5.23±0.08 5.02±0.09

SVM 4.85±0.05 4.27±0.04 4.24±0.05

HMM-8 12.19±0.08 10.24±0.08 9.42±0.10

We can see that the best results were obtained by the SVM technique.
Note also that the classification error with the k-NN rule increased as k
increased. The reason for this was that as k increased, there was not enough
“similar” prototypes to chose in classes with few prototypes; or in other
words, this technique is very sensitive to low displacements in the bounding
box. We tested this hypothesis by removing the classes that had less than
8 prototypes per class (column ≥ 8 in Table 4.1), and 16 prototypes per
class (column ≥ 16 in Table 4.1). Thus, we can see in column ≥ 4 that the
difference between row 1-NN and row 5-NN was 3.26, while this difference
was 1.52 in column ≥ 16, which confirmed our hypothesis (experiments with
INFTY data set also confirmed this hypothesis). We also observed that the
WNN classification technique was very competitive.

The worst results were obtained with HMM, maybe due to low amount
of training data. Thus, we observed that the difference between this classi-
fication technique and the other techniques decreased as more samples were
available for training.

Table 4.2 shows the results with the INFTY data set. In all cases the
results clearly improved as the size of the training set increased. The best
result were obtained with SVM, but WNN obtained analogous competitive
results. Note also that with a large amount of prototypes (column 50K in
Table 4.2), the k-NN classification rule obtained similar values for different
values of k. The worst results in this experiment were also obtained by
HMM.
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Table 4.2: Classification error rate for the INFTY data set.

5K 10K 20K 50K

1-NN 6.3 4.5 4.3 3.3

3-NN 7.0 5.0 4.3 3.2

5-NN 7.9 5.5 4.4 3.5

WNN 4.8 3.5 3.4 2.8

SVM 4.5 3.4 3.0 2.6

HMM-8 8.1 7.6 7.4 7.3

In the four classification techniques, approximately 50% of the errors
involved overline, minus, fractional line, underline, and hyphen symbols.
These symbols are equal in all cases, and they should be distinguished by
structural methods.

4.3 Mathematical Expression Recognition

Given an annotated corpus of mathematical expressions, it is difficult to
perform an experiment of mathematical expressions recognition and obtain
quantitative results. Usually, research works on this field use small datasets
and then the results are analyzed manually [23, 11] or the evaluation method
is not well explained. In this work, we wanted to experiment with a large
number of expressions of the INFTY corpus and we wanted to obtain quan-
titative results that allowed us to compare with ground truth data.

4.3.1 Evaluation

There are several metrics defined on the literature [16] but it is difficult to use
a good metric to measure structural errors, specially on complex expressions.
Some of the used measures are focused in specific parts of the mathematical
expression, like the symbols [28, 3], operators [6] or baselines [36]. Other
metrics are centered on the placement of the expression regions [36] or the
time required to complete the recognition process [14]. Finally, there are
some global performance metrics like computing the minimal cost to trans-
form a tree into another one [33]. As we described in Section 3.3.3, the
output of the system developed in this work is a LATEX expression. Un-
fortunately, a mathematical expression can be expressed in several ways in
LATEX, and this ambiguity is a problem in order to perform a matching to
the ground truth expression. In this work, we used a evaluation measure
based on the images which represents a general quantitative method to ex-
plain the quality of a mathematical expression recognition comparing the
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system output with the ground truth data.
When the obtained expression is represented as an image this problem

can be alleviated. For that reason, the idea is not to perform a matching
with the LATEX, MathML or tree representation, but to compare the resulting
images generated by these representations. A little symbol or structural
error could affect over all the expression arrangement, so a direct difference
is not a good solution. However, computing a warping between the images
is a way to model our intuitive idea. The dynamic time warping (DTW) is a
well-known algorithm which performs this task efficiently in one dimension,
but images are 2D data. Two-dimensional DTW is discussed in [12] and
several models of lower computational complexity are presented. Due to the
efficiency and the good results achieved, we use the image distortion model
(IDM) algorithm to perform the warping between images.

The IDM algorithm in Figure 4.1 allows us to compute a distance be-
tween binary images. The input to the algorithm are two images (test and
reference), and two parameters w and c. The IDM distance is computed
from the test image to the reference image and it is normalized by the image
dimensions. There are two parameters to be tuned. First, the size of the
c× c context window, and second, the warp range w. These parameters are

Input: Test Image A (I × J), Reference Image B (X × Y ), w , c
Output: Normalized IDM(w,c) distance from A to B

Method
for i = 1 to I do {

for j = 1 to J do {
i′ =

⌊
iXI
⌋

, j′ =
⌊
j YJ
⌋

, L =
⌊
c
2

⌋
S1 = x ∈ {1, . . . , X} ∩ {i′ − w, . . . , i′ + w}
S2 = y ∈ {1, . . . , Y } ∩ {j′ − w, . . . , j′ + w}

s = s+ min
x∈S1
y∈S2

L∑
m=−L

L∑
n=−L

||A(i+ n, j +m)−B(x+ n, y +m)||

}
}
return s/(I · J · c2)

End method

Figure 4.1: IDM(w,c) algorithm for binary images.

related with the resolution of the images obtained. Now we explain how
these two parameters were manually tuned for this work.
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The L2P3 software was used to generate a PNG image from a LATEX
math expression. This tool has a parameter to select the resolution in dpi.
Once the resolution was fixed, some synthetic expressions were prepared
with increasing structural errors. Given a expression, common structural
errors were manually added to make them representative. These errors were
spatial relations misrecognition, or multiple connected components wrong
interpretations. In this way, the IDM(w,c) was computed for several w, c
values and as a result some plots were generated. Finally, the IDM(4,9) was
selected as the metric to evaluate the performance of the classifier over the
INFTY test set, because plots showed a good performance. Figure 4.2 shows
the behavior of this measure. The average over some synthetic expressions
showed that the more errors there are, the more distance is obtained (which
was the desired behavior). We leave for future work a comprehensive study
of these parameters.
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Figure 4.2: Behavior of the IDM(4,9) measure for increasing structural errors
(average over 3 synthetic expressions).

4.3.2 INFTY Experiment

The INFTY corpus contains 21K annotated mathematical expressions where
each symbol is described with many useful information. In order to perform

3http://redsymbol.net/software/l2p/

http://redsymbol.net/software/l2p/
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an experiment, we defined a training set and a test set. First of all, due to
the large size of this dataset, we just selected those mathematical expressions
that had at most a given number of symbols in the expression. The per-
centage of expressions in the corpus which only contained one mathematical
symbol was 25.03% of the expressions, and these expressions did not con-
tain any structural information, so they were discarded. Furthermore, the
largest expression of the dataset had 108 symbols. We chose only the ex-
pressions with less than 33, which in fact represented 95% of the expressions
in the database with more than one symbol (15K mathematical expressions
approximately). Each symbol had several information attributes, and one of
them was the quality of the representation, which could be: normal, touched,
separate or touch and sep. In addition, as explained in Section 3.2.2, sym-
bols with more than one connected component were not properly recognized,
like 5 or ∼=. For that reason, expressions that contained this kind of symbols
were discarded. Finally, 3, 000 expressions were randomly selected as a test
set. The train set was formed by more than 14K remaining expressions.
This final step was done guaranteeing that all the symbols of the test set
appeared in the training set.

As explained in Section 3, the mathematical symbol classifier used was
the Nearest Neighbor (NN), due to its simplicity and performance. More-
over, the grammars used in the CYK algorithm did not need training samples,
so the defined training set was only used to extract the mathematical sym-
bols that were used as prototypes of the NN classifier.

Finally, the experiment was carried out once the system was ready to
recognize mathematical expressions and an annotated test set was defined.
Some results are presented using the proposed evaluation method.

The IDM(4,9) measure is 0.0 when the expression is successfully recog-
nized. The number of expressions for which we obtained a perfect recognition
result was 23.23%.

Furthermore, the developed system indicates when a recognition output
does not covers all the symbols of the expression (partial output). Only
3.8% of test expressions were not fully recognized.

Ultimately, some statistics from the whole test set were extracted. The
mean of the IDM(4,9) measure obtained over the 3, 000 test samples was
0.033532 and the standard deviation was equal to 0.027704. Finally, Fig-
ure 4.3 shows the IDM(4,9) value of the test set.

Although the percentage of perfect recognitions was 23.23%, some of
other test samples were also successfully recognized, but there were light
representation differences due to the LATEX annotation freedom. For exam-
ple, several expressions of the INFTY corpus were annotated using italic font,
so the IDM distance was greater than zero in these cases (example: abc , abc).
Other possible representation difference was the placement of some type of
subscripts, as in the expressions

∑
x and

∑
x

. We made some decisions in
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Figure 4.3: Percentage of samples with IDM(4,9) measure less than or equal
to a given threshold.

order to avoid this type of differences, but in the test set there were some
expressions with this evaluation ambiguity.

To our knowledge, this is the first time that the IDM measure is used
to evaluate a mathematical expression recognition system. For that reason,
there are some behaviors that should be studied, as is the case of the in-
fluence of the size of the expression in this distance. On the one hand, a
small expression with only two symbols and one error gets a high IDM value,
because half of the image is misrecognize. On the other hand, a large math-
ematical expression with many symbols and several errors gets a low IDM

value because these errors are only a small part of the image.

The system developed is the beginning of a future PhD study about rec-
ognizing mathematical expressions using SCFG, so these IDM results acts as a
baseline for future improvements. Some examples of expressions successfully
recognized are shown in Figure 4.4. One of the problems of the recognizer
is that the bounding box coordinates are not enough to correctly model the
spatial relations among regions. For example, the expression
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is wrongly recognized as

due to the subscript/superscript problem recognition. Other problem is the
recognition of multiple connected component symbols. This can be seen in
the expression

which is recognized as

where one of the i symbols is not properly recognized. In the next chapter
this problems will be discussed.
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Figure 4.4: Example of expressions successfully recognized.



Chapter 5

Future Work

The system presented in this work is the beginning of a research about
recognition of mathematical expressions using SCFG. Although a consider-
able work has been carried out, there a lot of issues to study. It should be
interesting to try other symbol classifiers in the system, and many major
objectives are proposed below.

5.1 Grammar Learning

In this work, the formalism used to model 2D stochastic context-free gram-
mars only considers posterior probabilities in the production rules. However,
in SCFG usually every rule has a fixed probability. A very interesting objec-
tive is to use the inside-outside algorithm to learn the probabilities of the
production rules of the SCFG from a annotated corpus.

5.2 Multiple Connected Components and Noise

The developed system represents a starting point for a future research, and
some issues deserve future comprehensive research. Major problems are to
deal with noise, and to deal with multiple connected components recognition.

Currently, the system assumes that the images do not present (to much)
noise, and an image filter is applied before a mathematical expression is
provided to the recognizer. The multiple connected components detection
method is explained in Section 3.2.2, and it works fine recognizing mathe-
matical symbols which are split in two connected components. But it is not
enough to correctly recognize many cases. For example, one symbol could
be split into 3, 4 or 5 connected components due to image degradation.
Therefore, a better way to deal with these problems must be researched.

43
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5.3 Spatial Relations

In Section 3.3.2 are explained the probability distributions used to model
the spatial relations among regions of a mathematical expressions. But these
models are very simple. It is necessary to employ more features that could
help to obtain better models. For example, the baseline information of a
region should contribute substantially in the performance of the system. In
summary, the bounding box coordinates aren’t enough to correctly deter-
mine the spatial relations between regions, so more features are needed.

The spatial distributions used are manually defined. So, despite adding
new features, it should be very interesting to be able to automatically learn
the parameters of these distributions.

5.4 Reducing Complexity

Currently, the cost of parsing one mathematical expression is O(|P |n3 log n).
When the number of symbols of the expression is large, this complexity
could be very expensive. For that reason, it is necessary to reduce this
computational cost.

On the one hand, using thresholds to discard hypothesis improves the
computational time of the algorithm, but it could deteriorate the quality of
the parsing process. However, it would be very interesting to employ A∗

parsing techniques because it improves the time cost of the system keeping
the parsing quality.

On the other hand, it would be interesting to try algorithmic improve-
ments. It could be possible to improve the working of the data structures
used, specially that involved in Section 3.3.1. Furthermore, techniques like
divide and conquer could be used to split a mathematical expression and
then perform parallel parsings of lower dimension.

5.5 Handwritten and On-line

The presented work tackles the recognition problem of off-line printed math-
ematical expressions, but the techniques, models and algorithms used can
be adapted to deal with other modalities. The idea is to be able to rec-
ognize handwritten and on-line expressions, too. These cases have several
differences with the present work and so, many other problems that should
be considered. The HMM mathematical symbol recognition is a new method
used that could be more interesting to classify handwritten mathematical
symbols.
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