
Research Article
Mode-Based versus Activity-Based Search for a Nonredundant
Resolution of the Multimode Resource-Constrained Project
Scheduling Problem

Daniel Morillo, Federico Barber, andMiguel A. Salido

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Correspondence should be addressed to Miguel A. Salido; msalido@dsic.upv.es

Received 7 April 2017; Revised 18 June 2017; Accepted 5 September 2017; Published 11 October 2017

Academic Editor: Jorge Magalhaes-Mendes

Copyright © 2017 Daniel Morillo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper addresses an energy-based extension of the Multimode Resource-Constrained Project Scheduling Problem (MRCPSP)
called MRCPSP-ENERGY. This extension considers the energy consumption as an additional resource that leads to different
execution modes (and durations) of the activities. Consequently, different schedules can be obtained. The objective is to maximize
the efficiency of the project, which takes into account the minimization of both makespan and energy consumption. This is a well-
known NP-hard problem, such that the application of metaheuristic techniques is necessary to address real-size problems in a
reasonable time. This paper shows that the Activity List representation, commonly used in metaheuristics, can lead to obtaining
many redundant solutions, that is, solutions that have different representations but are in fact the same.This is a serious disadvantage
for a search procedure.Wepropose a genetic algorithm (GA) for solving theMRCPSP-ENERGY, trying to avoid redundant solutions
by focusing the search on the execution modes, by using the Mode List representation. The proposed GA is evaluated on different
instances of the PSPLIB-ENERGY library and compared to the results obtained by both exact methods and approximate methods
reported in the literature. This library is an extension of the well-known PSPLIB library, which contains MRCPSP-ENERGY test
cases.

1. Introduction

The energy consumption in the industry sector is growing
by leaps and bounds. Based on the U.S. Energy Information
Administration report, in 2016, the industry sector, includ-
ing manufacturing, consumed approximately a third of the
total delivered energy in the world [1]. The environmental
implications of the industrial process are gaining more and
more importance. Therefore, energy consumption reduction
in resource-allocation projects is a critical aspect in the
industry sector [2]. For this reason, the interest of researchers
is increasingly focused on the development of methodolo-
gies for obtaining energy-sustainable solutions. The energy-
efficiency oriented scheduling is an actual challenge and a
feasible way to save energy in process planning [3].

The Multimode Resource-Constrained Project Schedul-
ing Problem (MRCPSP) is one of themost studied scheduling
problems due to the fact that many problems can be modeled

as variants of it. One extension of this problem, which
incorporates energy consumption in activities, is the so-
called MRCPSP-ENERGY that was proposed by Morillo
Torres et al. [4]. It includes an additional resource, the energy,
that gives rise to different execution modes of activities, and
the objective is to maximize the efficiency of the project. This
efficiency criterion is managed by combining the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
and the energy consumption criteria into a new combined
objective.The objective function of theMRCPSP-ENERGY is
more sensitive than the traditional function of the MRCPSP,
since solutions that generate the same objective function
value for the MRCPSP can generate different values for the
MRCPSP-ENERGY. This is because the traditional function
of the MRCPSP does not distinguish between solutions with
different executionmodes if they do not affect the𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛;
instead, these solutions may lead to different energy con-
sumption in the MRCPSP-ENERGY. This paper addresses
the MRCPSP-ENERGY for two main reasons: (1) the wide

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 4627856, 15 pages
https://doi.org/10.1155/2017/4627856

https://doi.org/10.1155/2017/4627856


2 Mathematical Problems in Engineering

interest of reaching energy-efficient solutions in scheduling
processes and (2) because the impact of redundant solutions
can be deeply analyzed in the presence of a highly sensitive
objective function.

Solving MRCPSP-ENERGY instances has an NP-hard
complexity, and thus exact methods can only find the optimal
solution to small-size instances in a reasonable time. There-
fore, metaheuristic methods have become more important
because they can find near-optimal solutions in a short time.
Most metaheuristic methods use a solution representation
based on the Activity List and apply movement rules based
on order changes in this list of activities to explore the neigh-
borhood of a solution. This paper shows that this commonly
used representation (the Activity List) can produce a large
number of redundant solutions, which has a negative impact
on the search effort. In order to avoid this disadvantage, a new
genetic algorithm (GA) is proposed to solve the MRCPSP-
ENERGY that includes two optimization phases. The first
is an optimization phase over the Mode List, in which the
mutation operator plays themajor role, sincemost of the pop-
ulation undergoes amutation to improve the exploration.The
second is an optimization phase over the Activity List, which
includes an operator ofmutation based onmultiple insertions
to decrease the number of redundant solutions.

In order to perform an assessment, four versions of
the proposed GA are considered: the ML-GA only includes
the optimization phase over the Mode List; the AL-GA
only includes the optimization phase over the Activity
List; the MIX-GA uses the two phases previously men-
tioned, simultaneously; and finally, the TP-GA considers
the two phases separately. In addition, two fitness func-
tions are considered: relative efficiency, in accordance with
the MRCPSP-ENERGY proposal, and a weighted normal-
ized function of the objectives. All algorithms are evalu-
ated by using the PSPLIB-ENERGY library instances. The
PSPLIB-ENERGY library [4] is an extension of the well-
known PSPLIB library proposed by Kolisch and Sprecher
[5] in order to provide MRCPSP-ENERGY instances. The
PSPLIB-ENERGY includes four sets of problems (𝑗30, 𝑗60,
𝑗90, and 𝑗120), which allows evaluating the performance
of search algorithms with different sizes of problems.
In addition, the results obtained by the proposedGAare com-
pared with the results given by IBM CPLEX CP optimizer.
This is a well-known toolbox that uses constraint program-
ming for solving combinatorial optimization problems.

The main contribution is to show that performing the
search through the Mode List is a different way to explore
the solution space, which can achieve as competitive solutions
or even better ones as the search through the Activity List.
Moreover, both search procedures can be combined to
achieve even better solutions.

The paper is organized as follows. Section 2 presents the
problem description. Section 3 describes main methodolo-
gies applied for solving the MRCPSP. Section 4 shows some
examples of redundant solutions of the Activity List-based
representation. In Section 5, the new genetic algorithm is
described, and then Section 6 gives the computational exper-
iments and the result analysis. Section 7 summarizes some
concluding remarks and Section 8 points out some future
work.

2. Problem Description

The MRCPSP-ENERGY [4] is an extension of the well-
known Resource-Constrained Project Scheduling Problem
(RCPSP). In the MRCPSP-ENERGY, the activities have
different execution modes, associated with different energy
consumption levels. Activities also require an amount of
renewable resources for their execution; these are resources
that can be used by any activity and they are renewed every
time the activity that uses them has ended, leaving those
units of resources again available for being used by another
activity. The goal is to maximize the relative efficiency of
the project, which minimizes both the energy consumption
and the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐶max). Formally, the problem can be
described as a project that consists of a set of 𝑛 activities
𝐼 = {0, . . . , 𝑖, . . . , 𝑛}, a set 𝐵 of𝐾𝜌 shared renewable resources
𝐵 = {1, . . . , 𝑏, . . . , 𝐾𝜌}, and an available amount 𝑅𝜌

𝑏
of every

renewable resource. Each activity 𝑖 has𝑀𝑖 execution modes,
where each mode 𝑚 ∈ 𝑀𝑖 requires a nonpreemptive exe-
cution time 𝑑𝑖𝑚, a total of 𝑟𝜌

𝑖𝑏
renewable resources of type

𝑏, and an amount of energy 𝑒𝑖𝑚 for its realization. Activities
are subject to precedence constraints, which indicate that
each activity cannot be started before all its predecessor
activities are completed. The different energy consumption
for each activity gives rise to different execution modes and,
consequently, different execution times.

Figure 1 shows an example of a MRCPSP-ENERGY
instance. It has 11 activities; the first and the last activity are
dummy activities that represent the beginning and the end of
the project.There are 3 renewable resources with amaximum
availability of 4units for each of them.At the top of each node,
the execution time and energy consumption are presented
for each mode, and at the bottom, its resource usage is
presented.The arrows show the precedence relations between
activities.

Let the total energy consumption of a project (CETP) be
the sum of the energy consumption 𝑒𝑖𝑚 for each activity 𝑖
in a schedule. 𝐿𝐵0min is the critical path with the shortest
execution time, 𝑒min is the sum of energy consumption with
lower consumption value, and 𝑃𝑗 is the set of immediate
predecessor activities of an activity 𝑗. Given anupper bound𝑇
for the project𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛, the latest start time (ls𝑖) and earliest
start time (es𝑖) can be calculated by applying the forward
and backward pass method.The binary decision variable 𝜉𝑖𝑚𝑡
takes the value 1 when the activity 𝑖 is executed in mode 𝑚
and starts at time 𝑡, and 0 otherwise.Therefore, theMRCPSP-
ENERGY problem can be formulated as follows:

max 𝜂 (𝐶max,CETP) (1)

Subject to
𝑀𝑖

∑
𝑚=1

ls𝑖
∑
𝑡=es𝑖

𝜉𝑖𝑚𝑡 = 1 ∀𝑖 ∈ 𝐼 (2)

𝑀𝑖

∑
𝑚=1

ls𝑗
∑
𝑡=es𝑗

𝑡 ∗ 𝜉𝑗𝑚𝑡 ≥
𝑀𝑖

∑
𝑚=1

ls𝑖
∑
𝑡=es𝑖

(𝑡 + 𝑑𝑖𝑚) ∗ 𝜉𝑖𝑚𝑡

∀𝑖 ∈ 𝑃𝑗, ∀𝑗 ∈ 𝐼
(3)



Mathematical Problems in Engineering 3

0

0

0, 0, 0

2

(4, 4), (3, 6), (2, 8)

3, 1, 1

10

0

0, 0, 0
5

(3, 3), (2, 4), (1, 5)

4, 0, 1

3

(2, 4), (1, 6), (1, 6)

1, 0, 1

1

(4, 6), (3, 8), (2, 10)

2, 2, 2
4

(2, 2), (1, 3), (1, 3)

2, 2, 2

7

(2, 1), (2, 1), (1, 2)

3, 2, 0

Duration, energy 
consumption 

Resource usage 

Resource 
availability

6

(4, 6), (3, 8), (2, 10)

1, 2, 2

9

(4, 7), (3, 9), (2, 11)

2, 2, 3

8

(2, 6), (1, 8), (1, 8)

1, 1, 0

(dim, eim)

rib : ri1, ri2, ri3

b1 = b2 = b3 = 4

Figure 1: A MRCPSP-ENERGY example.

𝑛

∑
𝑖=0

𝑟𝜌
𝑖𝑏
∗
𝑀𝑖

∑
𝑚=1

min{𝑡−1,ls𝑖}

∑
𝑠=max{𝑡−𝑑𝑖𝑚 ,es𝑖}

𝜉𝑖𝑚𝑠 ≤ 𝑅𝜌𝑏

∀𝑏 ∈ 𝐵, 𝑡 = 0, . . . , 𝑇
(4)

𝜉𝑖𝑚𝑡 ∈ {0, 1} , (5)

where

𝜂 (𝐶max,CETP) = 1
CSR

∗ 1/𝐶max
CETP

. (6)

CSR = 1/𝐿𝐵0min
𝑒min

(7)

Expression (2) ensures that each activity starts only
once. Expression (3) represents the precedence constraints.
Expression (4) ensures that the capacity of resources is
not exceeded. Finally, expression (1) shows the optimization
function where the objective is to maximize the relative
efficiency 𝜂(𝐶max,CETP), which has been defined by expres-
sions (6) and (7). This criterion considers both the energy
consumption and the𝑚𝑎𝑘e𝑠𝑝𝑎𝑛, simultaneously. Overall, the
relative efficiency is interpreted as the efficiency of the project
regarding an upper bound of the project performance (CSR)
(expression (7)).

The MRCPSP-ENERGY is a strongly NP-hard problem,
because this problem is a generalization of the standard
RCPSP which is well known to be NP-hard.

3. Literature Review

Most of the related academic literature is dedicated to the
MRCPSP with both renewable and nonrenewable resources
and less attention has been given to addressing the MRCPSP

with only renewable resources. However, the solution meth-
ods of both problems share many features. The main dif-
ference between them is that when nonrenewable resources
are considered, infeasible solutions can be reached, and
therefore the solution methods often include a penalty func-
tion. Following the academic literature, solution methods
can be classified into two groups: exact approaches and
metaheuristic approaches.

Elmaghraby [6] was the first to consider different execu-
tion modes for activities in the project scheduling problem.
Later, Talbot [7] proposed a branch and bound (B&B) algo-
rithm for solving the MRCPSP. This consisted of two stages.
In the first one, activities, resources, andmodes are organized
based on several established priority rules. In the second
stage, a heuristic based on a priority rule is used to calculate
an upper bound and then a backward B&B is implemented.
Patterson et al. [8] proposed another enumeration scheme-
based procedure; it is a B&B based on the precedence tree
to guide the search in the set of all precedence-feasible
sequences of activities. Speranza and Vercellis [9] proposed
a depth-first B&B, but Hartmann and Sprecher [10] showed
that this algorithm might be unable to find the optimal
solution for instances with two or more renewable resources.

Since then, severalmethods have been proposed based on
the B&B with different variants. Sprecher et al. [11] proposed
a B&B in which an enumeration scheme, called mode-and-
delay alternatives, is used as an extension of the alternative
concept of delay proposed by Christofides et al. [12], which
is also used by Demeulemeester and Herroelen [13] for the
RCPSP. The main differences between this approach and the
traditional B&B are that at each level more than one activity
can be scheduled and that decisions made at previous levels
can be undone at the current level.

More recently, similar but more efficient methods have
been developed; for example, Zhu et al. [14] proposed a



4 Mathematical Problems in Engineering

branch and cut algorithm. Although it was proposed for the
multimodal version of the RCPSP with resources partially
renewable, it can be used for the traditional MRCPSP. In
this approach, the linear relaxation of the linear integer
programming model is used to obtain a lower bound of the
project duration in each node of the search tree. If the search
tree node has a fractional solution, then the algorithm tries
to find cuts, that is, valid inequalities that are violated by
the fractional solution but are satisfied by the feasible integer
solutions represented by that node in the search tree. If no
cuts are found in the node, then the branch is carried out,
creating new nodes in the tree.

However, in spite of the encouraging results obtained
by exact methods, it is important to highlight that exact
algorithms in general are unable to optimally solve problems
with more than 30 activities, thus leaving the metaheuristic
methods as the unique alternative.

Metaheuristic approaches are search algorithms that
include escaping strategies from local optima, with the
aim of exploring and finding a good approximation to a
global optimum. Following the definition stated by Van
Peteghem and Vanhoucke [15], the metaheuristic procedures
for solving the MRCPSP can be classified into schedule and
mode representations, Schedule Generation Schemes (SGS),
metaheuristic algorithms, and local search procedures.

Schedule and Mode Representations. A representation stands
for how to code a complete solution (i.e., the execution
mode and start time of each activity). The coding consists
of one schedule representation and one mode representa-
tion. Kolisch and Hartmann [16] distinguished five different
schedule representations but the Activity List representation
and the Random Key representation are the most used. The
Activity List representation consists of a vector of 𝑛 activities;
the order of these elements indicates the priority of an activity
to be scheduled. A precedence-feasible list is generally used.
The Random Key representation is also a vector with 𝑛
elements but each of them contains a priority value of the
activity in that position. On the other hand, there are mainly
two ways of representing modes: a Mode List and a mode
vector. The difference between them is that the Mode List
represents the execution modes in an ascending order, while
the mode vector does it according to the order of the Activity
List.

Schedule Generation Schemes. In order to decode a schedule
and mode representation in a complete solution, a Schedule
Generation Scheme (SGS) is used. Kolisch and Hartmann
[16] mainly distinguished two SGS: the serial and the parallel
scheme. Both schemes produce feasible solutions. In the
serial scheme, solution building is done through a single
set of eligible activities that is updated at each step. In the
parallel scheme, there are many sets of eligible activities
determined by the span in which resources are available. The
serial scheme produces a set of schedules that always contain
the optimum, while the parallel scheme produces a set of
schedules that may exclude it. In spite of this fact, the parallel
scheme is also used in the literature because it usually builds
more compact solutions than the serial scheme [17].

Metaheuristic Algorithms. There are several metaheuristic
methods for solving the MRCPSP. One of the first ones,
proposed by Kolisch and Drexl [18], consists of a local search
that tries to find a feasible solution and then perform a
single neighborhood search on the set of feasible mode
assignments. Özdamar [19] proposed two versions of GAs:
pure GA and hybrid GA. In the first one, the Activity List
representation and the serial SGS are used. In the second, a
Random Key representation and a parallel SGS are used. The
experimental results show that the hybridGAoutperforms all
other algorithms tested in that research. Later,Hartmann [20]
proposed a GA, which uses a precedence-feasible Activity
List representation and the serial SGS as the decoding rule.
The algorithm includes two local search methods: one was
used to deal with the feasibility problem and the other
was used to improve the schedules. Józefowska et al. [21]
proposed Simulated Annealing (SA) first considering and
later disregarding a penalty function, with the latter being
the alternative with the best results. They also used the
Activity List representation and the serial SGS. Bouleimen
and Lecocq [22] presented another implementation of SA,
where neighbor solutions are generated by using two phases.
In the first, a mode-feasible solution is searched and secondly
it is improved by random shifts of activities. The first Tabu
Search was proposed by Nonobe and Ibaraki [23]. There, the
Activity List representation is implemented and the neighbor
solutions are generated either by a change on the Mode
List or by shifting some activities on the Activity List. The
authors proposed a new solution building procedure, but the
optimal solutions might not be reached by it. In the research
made by Alcaraz et al. [24], a GA with equal schedule and
mode representationwas proposed, but an additional element
was included: the forward/backward gene, which indicates
the direction of serial SGS to generate a schedule. In the
forward direction, the solutions are generated according to
the precedence constraints, and in the backward direction
they are generated by changing the precedence constraints
by successor constraints.The results show that this algorithm
outperforms the SA approach proposed by Józefowska et
al. [21] but does not exceed the GA proposed by Hart-
mann [20]. Alternatively, Zhang et al. [25] proposed particle
swarm optimization (PSO), which uses two particles as a
solution representation. The first particle contains a vector
with priority values for each activity (like the Random Key
representation), and the second particle contains information
about the activity executionmodes. Based on their results, the
PSO achieves competitive results, although the GA proposed
by Hartmann [20] outperforms the PSO. Later, a combina-
torial particle swarm optimization (CPSO) was proposed by
Jarboui et al. [26]. It generates mode-feasible particles (coded
solutions) and then, with a fixed mode assignment, a local
search to improve the sequence associated with each particle
is performed. The authors compared the algorithm perfor-
mance with that of the PSO and SA, with CPSO being the
algorithm with the best results.

More recently, Li and Zhang [27] proposed an ant colony
optimization (ACO) which uses two levels of pheromones:
the first level is used to make the selection of an activity
and insert it into a sequence and the second level is used



Mathematical Problems in Engineering 5

Activity List:

0 2 2 3 2 1 2 1 01 3

10 7 6 1 4 9 8 3 05 2

0 1 2 3 4 5 6 7 8 9 10
Mode List:
Activities:

Figure 2: Example of an Activity List and a Mode List.

to perform the execution mode assignment. They defined
the ACO solution: it is an adaptation of the Activity List
and the Mode List representation to be used in the ACO
procedure. The serial SGS was also adapted to generate a
complete solution. The results show a high performance but
the ACO does not outperform the CPSO. Tseng and Chen
[28] proposed a genetic local search with two phases. In
the first one, an initial population is generated, and the
best solutions are grouped into an elite set. In the second
phase, a deep search is carried out in regions defined by
the elite set. The solutions in this algorithm are encoded
by using the Activity List representation. Lova et al. [29]
developed anhybridGA (MM-HGA),which uses, in addition
to the Activity List representation, two additional genes: for-
ward/backward gene and a serial/parallel gene. The first gene
is related to the decoding direction and the second gene is
related to the decoding algorithm.The authors also proposed
a new normalized fitness function that relates the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
to the units of resources from the excess of nonrenewable
resources. Their results show that MM-HGA outperforms
the other heuristics. Finally, a bipopulation version of GA
was proposed by Van Peteghem and Vanhoucke [30]. The
main difference with other genetic algorithms is the use of
two different populations: one contains schedules only right-
justified and the other contains schedules only left-justified.
They adapted the genetic operators to be used with two
populations and proposed an extended serial SGSwith a local
search for improving the mode execution. This algorithm
uses the Random Key representation. The obtained results
show that this algorithm achieves one of the best solutions
in the literature.

To summarize, there are several proposed metaheuristic
procedures to solve the MRCPSP and, based on the reported
computational experiments, population-based algorithms as
well as hybridmetaheuristics are those which achieve the best
results. For a wide study on these methodologies, we refer the
reader to [31, 32].

Local Search Procedures. The purpose of local search proce-
dures is to iteratively improve the current solution.They often
focus on achieving feasibility or improving the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛.
One of the most relevant local searches is the forward-
backward improvement (FBI) proposed by Tormos and Lova
[33] and adapted to be used in theMRCPSPbyLova et al. [29].
The FBI consists of a backward pass and a forward pass. In
the first one, the activities are listed from the right to the left
and scheduled at the latest feasible time possible.Then, in the
forward pass, the activities are listed from the left to the right
and scheduled at the earliest feasible time possible. In this
way, more compact schedules are often achieved.

4. Redundant Solutions in Activity
List-Based Representations

It can be deduced from the conclusions of the previous
section that the Activity List-based representation has a fun-
damental role in metaheuristic procedures to solve MRCPSP
instances. Formally, theActivity List representation is an array
with 𝑛 elements that represents activities. This list is feasible
with respect to precedence constraints. The position of each
activity in the array represents the priority of the activity to be
scheduled by using an SGS. On the other hand, theMode List
is also an array with 𝑛 elements but the elements represent the
execution mode of the activities in an ascending order; that
is, the element 𝑖 represents the execution mode of the activity
𝑖.

To decode a complete solution, both an Activity List
and a Mode List are needed. The decoding can be carried
out in several ways: by using the serial or the parallel SGS
and the forward or the backward direction. In the back-
ward direction, the predecessor and successor activities are
swapped. In Figure 2, an example of anActivity List represen-
tation and aMode List representation of a feasible solution for
the problem represented in Figure 1 is shown.

Metaheuristic procedures use this representation scheme
for coding the solutions and then applymovement rules to do
the search procedure in the neighborhood. Most procedures
do the search through modifications in the Activity List.
However, it can be easily deduced that different Activity
Lists can obtain equal solutions when they are decoded. For
example, Figure 3 shows two different Activity Lists (Activity
List 1 and Activity List 2) and one Mode List of feasible
solutions for the problem presented in Figure 1. Both Activity
Lists were decoded by using the serial SGS in the forward
direction. Although both Activity Lists are different (see the
underlined activities in Figure 3), the solutions obtained
are exactly the same. It is worth noting that the differences
between the Activity Lists are not just a simple activity swap.
These solutions are named redundant solutions.

Redundancy in solutions can occur at any search pro-
cedure when permutations are generated over the Activity
List. Estimating the number of redundant solutions of the
MRCPSP is not possible without, first, generating, decoding,
and checking all permutations of the Activity List. This is
because redundant solutions depend on the sequence of
scheduled activities and their use of resources at each time
point of each solution. Nevertheless, based on the results of
Section 6, the number of redundant solutions is much larger
than the number of unique solutions. This is one of the first
conclusions of our experiments and it is of relevance to the
efficiency of the search process. There have been important



6 Mathematical Problems in Engineering

t

Activity List 1: (0, 6, 2, 5, 1, 3, 4, 9, 7, 8, 10)
Activity List 2: (0, 6, 2, 5, 8, 3, 1, 4, 9, 7, 10)

2
1

0 1 2 3 4 5 6 7

7

8 9 10 11 12 13 14 15

3 4
56

8

9

Mode List: (0, 1, 2, 1, 1, 1, 2, 3, 1, 2, 0)
Activities: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Figure 3: Example of redundant solutions using the Activity List representation.

Feasible but 

redundant solutionsInfeasible solutions

Solution space of Activity List

Solution space of Mode List

Feasible and
unique solutionsUnique solutions

Figure 4: The solution space related to the Activity List and theMode List representation.

developments in the literature that address these issues. In
particular, Debels et al. [34] proposed a scattered search
algorithm that includes four mechanisms to avoid the gener-
ation of redundant solutions in Random Key representation.
Subsequently, Paraskevopoulos et al. [35] proposed a new
representation of solutions called event list. In their proposal,
first, a real feasible solution is created and then it is coded
into sets of activity events, such as sets of activities that can
be performed at the same time. Both approaches address the
single-mode version of the RCPSP.

On the other hand, only two conditions must be fulfilled
so that any change in the Mode List guarantees a different
solution (a complete schedule), even when the Activity List
remains constant. The first condition is that the duration of
the execution modes of the modified activity is different, and
the second condition is that there are other activities that can
consume the released resources or cannot be executed at that
time due to the lack of them. In fact, if an activity 𝑖 changes its
executionmode, the duration of that activity will also change,
and this will cause the serial or parallel decoding algorithms
to either have or not have available resources at different times
of the scheduling. Furthermore, the successor activities will
also be available at different time points.

The space of solutions for a representation based only on a
list of 𝑛 activities is bounded by the number of permutations
(𝑛!). Similarly, the solution space for a representation based
on a list of 𝑚 execution modes is bounded by the number
of combinations (𝑚𝑛). Of course, the permutation space is
rather larger than the combination space, as the number of
activities increases. Figure 4 shows an illustration about the
solution space of the Activity List representation and the
Mode List representation. In this figure, the solution space
of the Mode List can be seen as the solutions related to the
combination of the execution modes of a list of activities.

Therefore, the problem lies in the fact that the computa-
tional effort of a search based only on permutations of the
Activity List could be wasted on redundant solutions. Taking
into account the fact that most metaheuristics are mainly
focused on the permutations of the Activity List, this paper
proposes an in-depth study of searching over the Mode List,
instead.

5. AMode and Activity List-Based
Genetic Algorithm

In this section, a new genetic algorithm (GA) to solve
MRCPSP-ENERGY that uses two optimization phases, based
on the Activity List and the Mode List, is described. First,
we describe the codification scheme, the fitness function,
the selection criteria, and the replacement process. Then, the
genetic operations of crossover and mutation, related to the
two proposed optimization phases (based on the Activity List
and the Mode List), are detailed.

5.1. Basic Elements of the Genetic Algorithm

Solutions Encoding and Fitness Function. Following the codi-
fication proposed by Lova et al. [29], we used an Activity List
and aMode List plus two genes that are used as codification of
solutions inMRCPSP-ENERGY.The two additional genes are
the SGS gene and the direction gene.The SGS gene represents
themethod to be used to decode the solution: its value will be
0 when a serial scheme is used or 1 when a parallel scheme is
used. The direction gene can be forward or backward (with a
value equal to 0 or 1, resp.).

Regarding the fitness function, two different alterna-
tives to take into account the two objectives (minimizing
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and energy consumption) are considered: first



Mathematical Problems in Engineering 7

maximizing the relative efficiency of the project (expression
(1)), as it was described in Section 2, and second minimizing
normalized convex combination of these two objectives.
Expression (8) shows the definition of the former alternative
where 𝐶max is the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 of a project, CETP is the total
energy consumption of a project, 𝛼 represents the priority
of minimizing the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 assigned by the decision-
maker, and (1 − 𝛼) represents the priority of minimizing
the total energy consumption, also assigned by the decision-
maker.The parameters 𝐿𝐵0min, 𝑇, and 𝑒min were described in
Section 2, and 𝑒max is the sum of energy consumption with
the highest value. Under these criteria, the objective is to
minimize 𝐹(𝐶max,CETP).

𝐹 (𝐶max,CETP) = 𝛼 ∗ 𝐶max − 𝐿𝐵0min
𝑇 − 𝐿𝐵0min

+ (1 − 𝛼)

∗ CETP − 𝑒min
𝑒max − 𝑒min

.
(8)

Initial Population. To generate the initial population, the
Regret Based Biased Random Sampling (RBBRS) with the
latest start time (LST) as a priority rule is applied; this is one
of the best sampling methods to create an initial population
[16, 36]. Each solution is obtained in the following way: at
the beginning, an eligible set (ele) of activities, where all
their predecessors have already been scheduled, is computed.
Afterwards, the probability of selecting each activity 𝑖 of ele
is calculated through RBBRS, and one of them is chosen
(expressions (9) and (10)). Next, a new eligible set of activities
is again computed until no task remains. The values of the
SGS gene, direction gene, and execution mode are randomly
chosen. The 𝑝𝑖 value is called regret value of the activity 𝑖,
which compares the value of the activity priority rule V(𝑖)with
the worst value of the priority rule for all activities in the set
ele. In this case, the worst priority value is the activity with
the maximum LST.

𝑝𝑖 = max
𝑗∈ele

V (𝑗) − V (𝑖) , (9)

where V(𝑖) is a priority rule value to be minimized.

Probability (𝑖) = (𝑝𝑖 + 𝜖)𝛼
∑𝑗∈ele (𝑝𝑗 + 𝜖)𝛼

. (10)

The parameters of expressions (9) and (10) are 𝜖 ≥ 0 and
𝛼 ≥ 0. A value of 𝜖 ̸= 0 allows a positive probability to the
activity with the worst value in the priority rule to be selected.
The 𝛼 parameter determines the selectionmechanism: a large
value makes a deterministic selection and a value of zero
makes a completely random selection.

Population Size. There is not a standard method to estimate
the best population size in this kind of problems, although
it is known that the population should be related to the
complexity and the problem size. Some studies state that
the population size should decrease with the increasing
number of activities [37, 38].However,most authors carry out
computational experiments to estimate these parameters in a
GA.

Because an iteration was defined as a complete solution,
it was found that the population size should also be related
to the number of iterations available. Thus, if the number of
iterations is similar to the population size, there will be very
few generations that can be produced. Based on our experi-
ments, we apply expressions (11) to compute population and
generation number of the proposed GA.

Population = (1𝑛 ∗ iterations) + 15

generations = iterations
population

.
(11)

Selection. Stochastic sampling with replacement is used, on
the basis of the fitness value of the solutions. Therefore, each
individual in the population has a probability of being chosen
according to its fitness value. When an individual is chosen,
a replica of that individual is included in the next selection.

Replacement. Replacement refers to how to create the next
population 𝑃3 from the parent population 𝑃1 and the
offspring population 𝑃2. First, 𝑃1 and 𝑃2 are sorted based on
their fitness value. Then, 𝑃3 is built with 50% of the best 𝑃1
individuals and 50% of the best 𝑃2 individuals.
Local Improvement. Two naive local improvements are used
in the proposed GA.The first one is the well-known forward-
backward improvement (FBI) described in Section 3 and
proposed by Tormos and Lova [33]. It is applied over the
initial population. The second local improvement consists
of reviewing all activities, checking whether they can be
executed with less energy consumption (longer execution
time) without breaking precedence and resource constraints
as long as the𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 remains unchanged. It is applied on
the best final solution found.

5.2. Optimization Phases. As it was pointed out, the pro-
posed GA divides the search process into two optimization
phases, on the Mode List and on the Activity List. The first
optimization phase uses crossover and mutation operators
over the Mode List in order to expand the search. This plays
the most important role in our proposed GA algorithm.
The second optimization phase uses crossover and mutation
operators over the Activity List, and it is done at the end
of the algorithm to intensify the search. Each phase has
specific genetic operators (crossover and mutation), which
are detailed below.

It is important to note that although each optimization
phase focuses on the Activity List or the Mode List, both lists
are needed to decode a solution using an SGS. These lists are
obtained from the initial population.

5.2.1. Genetic Operators for the Optimization over
the Mode List

Crossover. Crossover allows building new solutions from
two selected parents. These solutions must share features
from both parents. We use a two-point crossover operator
only on the Mode List based on the operator proposed by



8 Mathematical Problems in Engineering

Alcaraz et al. [24]. Initially, two random integers 𝑞1 and 𝑞2
with 0 < 𝑞1 < 𝑞2 < 𝑁 are generated. The first genes from 0 to
𝑞1 are taken from parent 1, the next genes from 𝑞1 to 𝑞2 are
taken from parent 2, and the remaining genes are taken from
parent 1 again. The Activity List is randomly inherited only
from one of the two parents.The SGS gene and direction gene
are inherited when they are of the same value in both parents;
otherwise, they are randomly generated.

Mutation.Althoughmutation does not generally have a main
role in genetic operators, it introduces new genetic material,
which encourages the exploration. Particularly, a slight per-
turbation over the Mode List would cause great changes over
the solution. The mutation consists of randomly selecting an
activity and changing its execution mode. The mutation is
applied on each solution (an individual of the population)
rather than on each activity, and thus the probability of
mutation is independent of the number of project activities.
Based on the experimentation performed, the probability
value that obtained the best results was 90%.

5.2.2. Genetic Operators for the Optimization over
the Activity List

Crossover. A modified two-point crossover is used over the
Activity List. Thus, two random integers 𝑞1 and 𝑞2 with 0 <𝑞1 < 𝑞2 < 𝑁 are generated. Thus, the first genes from 0
to 𝑞1 are taken from parent 1, and the next genes from 𝑞1
to 𝑞2 are taken from parent 2. Here, these genes inherited
(𝑞1 to 𝑞2) might not be those that are in the positions 𝑞1
to 𝑞2 of parent 2, such that they must be searched from
the beginning of the Activity List of parent 2, and the first
activities that are not repeated in the child are inherited. In
the same way, the remaining ones (𝑞2 to 𝑁) are taken from
parent 1 again, without repeating genes from both parent
1 and parent 2. The modes of activities are inherited from
their corresponding parents. For SGS and direction genes, the
gene value is inherited when it is the same in both parents;
otherwise, it is randomly generated.

Mutation. A multi-insertion mutation operator based on the
research conducted by Boctor [39] is proposed to minimize
the probability of producing the same solution. It consists
of randomly selecting an activity 𝑖 and then inserting it
in a randomly chosen position. The new position must be
higher than that of its predecessors and lower than that
of its successors. Usually, the mutation is applied on each
activity in a solution with a fixed probability; this implies
that the average number of mutated activities is dependent
on the total number of activities: the more the activities, the
greater the probability of a mutation occurring. In contrast,
our experimental results show that the average number of
mutated activities should be independent of the total number
of project activities. That value was estimated by using the
PSPLIB-ENERGY library; an appropriate number of three
mutated activities per solution was obtained. Similarly, the
probability ofmutation is also fixed per solution, independent
of the total number of activities, and the estimated value of
that probability is 90%.

Finally, the GA’s parameters were fixed through experi-
mentation on the PSPLIB-ENERGY library. The number of
iterations to change from the optimization phase over the
Mode List to the optimization phase over the Activity List
was determined as 2/3 of the total number of iterations. This
value represents the importance of the optimization phase
over the Mode List in relation to the optimization phase over
the Activity List.

Figure 5 shows an example of how the offspring is
generated by using both the Activity List optimization and
the Mode List optimization. In this example, the serial SGS
and the forward direction are used. Schedule (a) is parent 1
(genes with overline) and schedule (b) is parent 2 (underlined
genes), which were used to generate schedules (c) and (d).
Schedule (c) is created by the optimization over the Activity
List. To this end, a two-point crossover was used; the first 5
activities are inherited from parent 1; then, the following 3
activities are sought from the beginning of the Activity List of
parent 2 and are inherited in only those that are not repeated
in the Activity List of the child (activities inherited are 1, 4,
and 7); finally, the 3 remaining activities are inherited again
from parent 1; these are searched from the beginning of the
Activity List of parent 1 and only those that are not repeated
are taken. As can be seen in this figure, despite using a two-
point crossover from different parents, schedule (c) has the
same Activity List as parent 1. The only reason why solutions
are different is because the modes of activities inherited from
parent 2 have different durations to the same activities of
parent 1. Schedule (d) is created by the optimization over the
Mode List; it inherits the Activity List from parent 2 and the
Mode List is created by a two-point crossover, where the fifth
and sixth positions of theMode List are inherited fromparent
2; the remaining activities’ modes are taken from parent 1.
It can be observed that although the Activity List of parent
2 and the Activity List of schedule (d) are exactly the same,
the corresponding solutions are very different, due to the
different Mode Lists. In fact, schedule (d) has the best fitness
value among the four schedules.

Usually, it is assumed that modifications in a Mode List
only affect the execution modes of a preestablished order of
activities in the Activity List. But it is not like that. In fact, that
preestablished order also changes, as shown in Figure 5.

6. Empirical Assessment and Results

The performed empirical assessment of the proposed GA
and the obtained computational results are divided into two
groups: the first group is focused on the impact of the
redundant solutions of the Activity List-based representation
and the second group is focused on the performance assess-
ment of the proposed GA by using the PSPLIB-ENERGY
library.

This PSPLIB-ENERGY library [4] is a set of MRCPSP-
ENERGY instances. It consists of four sets of problems: 𝑗30,
𝑗60, 𝑗90, and 𝑗120. Each of them has 480 instances, except
the last one with 600 instead. Each set has 30, 60, 90, and
120 jobs, respectively. All problems are composed of activities
with three execution modes.



Mathematical Problems in Engineering 9

t

Activity List: (0, 2, 6, 5, 8, 1, 4, 7, 3, 9, 10)

2
1

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

45
6

8 9

Mode List: (0, 2, 2, 1, 3, 2, 3, 3, 3, 2, 0)
Activities: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Energy consumption: 54
Makespan: 12
Fitness: 0.3009

(a) Parent 1
t

0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10 11 12 13 14 15

Activity List: (0, 2, 1, 8, 6, 4, 7, 3, 5, 9, 10)
Mode List: (0, 1, 3, 1, 2, 3, 2, 1, 1, 2, 0)
Activities: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Energy consumption: 50
Makespan: 13
Fitness: 0.2999

(b) Parent 2

t

0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10 11 12 13 14 15

Activity List: (0, 2, 6, 5, 8, 1, 4, 7, 3, 9, 10)
Mode List: (0, 1, 2, 1, 2, 2, 3, 1, 3, 2, 0)
Activities: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Energy consumption: 51
Makespan: 14
Fitness: 0.2731

(c) Activity List offspring
t

0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10 11 12 13 14 15

Energy consumption: 55
Makespan: 11
Fitness: 0.3223

Activity List: (0, 2, 1, 8, 6, 4, 7, 3, 5, 9, 10)
Mode List: (0, 2, 2, 1, 2, 3, 3, 3, 3, 2, 0)
Activities: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(d) Mode List offspring

Figure 5: An example of offspring, by using the optimization phases on the Activity List (offspring (c)) and on the Mode List (offspring (d)).

0 50 100 150 200 250 300 350 400 450 500
Instance

So
lu

tio
ns

Total
Feasible
Unique

107

106

105

104

103

102

101

100

Figure 6: Activity List permutations for the set 𝑗10.

6.1. Impact of Redundant Solutions in the Activity List-Based
Representation. To carry out this evaluation, an exhaustive
search was made through all the permutations of the Activity
List and all the combinations of the Mode List. Due to the
high computational cost of this exhaustive search in problems
withmany activities, a set of 480 instanceswas used, eachwith
10 activities. These instances are based on the set 𝐽30 of the
PSPLIB-ENERGY.

Figures 6 and 7 show (i) the total number of solutions
(total), (ii) the number of feasible solutions including redun-
dant ones (feasible), and (iii) the number of unique solutions
(unique), of all permutations generated by the Activity List
(Figure 6) and the full set of combinations generated by the
Mode List (Figure 7).

In Figure 6, the total number of permutations (10! =
3,628,800) is the same for all instances. Due to the huge

number of permutations, Figure 6 is shown in a logarithmic
scale. As can be seen, the number of redundant solutions is
rather higher than that of the unique ones. Indeed, there are
some instances with only one unique solution.

In Figure 7, the total number of combinations for each
Activity List (310 = 59,049) is the same for all instances, and
all combinations are feasible. There are some instances with
a number of unique solutions different from the number of
feasible solutions. This is because some activities have equal
modes. For instance, in the problem shown in Figure 1, activ-
ity 3 has mode 2, which corresponds to a duration of 1 time
unit and energy consumption of 6. This activity cannot be
executed in a lower time than 1, and thus mode 3 is equal to
mode 2.

Therefore, although the solution space of the Activity
List-based representation is higher than the solution space



10 Mathematical Problems in Engineering

0 50 100 150 200 250 300 350 400 450
Instance

0

10000

20000

30000

40000

50000

60000

70000

So
lu

tio
ns

Total
Feasible
Unique

Figure 7: Mode list combinations for the set 𝑗10.

of the Mode List-based representation, most of its solutions
are redundant, which makes the search unsuccessful. In
contrast, the solution space of the Mode List representation
is composed of feasible and unique solutions. There are only
redundant solutions when there are activities with duplicated
execution modes.

6.2. Assessment of the Proposed Genetic Algorithm. In this
point, we assess the performance of the proposedGAby using
the PSPLIB-ENERGY library. Since this library is based on
the well-known PSPLIB library, instance sets were created
based on two sets of variable parameters. The first set was
used to create the 480 instances of each set: 𝑗30, 𝑗60, and
𝑗90. The second set of parameters was used to create 600
instances for the set 𝑗120. As is usual in the evaluation of
the RCPSP, in this work, the first two instance sets (𝑗30,
𝑗60) will be taken as a reference for small instances, and
the set 𝑗120 will be taken as a reference of large instances.
To the best of our knowledge, Morillo Torres et al. [4] are
the only authors that have reported results for the instances
in this library. Therefore, the proposed GA was compared
with that algorithm (called in this paper Basic-GA). Basic-
GA uses a coding based on the list of activities and modes,
a crossover operator at a single point, and a mutation based
on the insertion of Boctor. When an activity is selected, its
position is changed in the list of activities, as well as its
execution mode.Themain difference between this algorithm
and the proposed GA is that the Basic-GA takes the standard
elements of a genetic algorithm for theMRCPSP, focusing the
genetic operators on modifying the Activity List, leaving the
mutation as the main tool to change the execution modes.

On the other hand, one of the most used stop criteria
in the literature for RCPSP and MRCPSP is the maximum
number of iterations. Kolisch and Hartmann [32] defined an
iteration as a complete scheduling and showed the reason to

use this termination condition as a comparing rule with other
solvingmethods. In this paper, the same stop criteria are used.

The empirical assessment was done considering four vari-
ants of the proposed GA. In this way, objective comparisons
can be made to identify the elements that contribute to the
search. The variants of the proposed algorithm are described
below.

(i) The genetic algorithm based on the optimization
phase over the Activity List (AL-GA): this algorithm
is focused on performing the search by exploring
the permutations of the Activity List by using the
operators described in Section 5.2.2. The mode of
the activities of the population remains constant after
the creation of the initial population. The offspring
inherits the activities with the execution mode of the
corresponding parent.

(ii) The genetic algorithm based on the optimization
phase over the Mode List (ML-GA): the search per-
formed by this algorithm is focused onmodifying the
Mode List of the population (over all combinations)
by using the operators described in Section 5.2.1.
Activity lists of the population remain constant after
the creation of the initial population.

(iii) The genetic algorithm based on the simultaneous
mixing of the optimization phases (MIX-GA): this
algorithmmixes the twooptimization approaches: the
optimization phase over the Mode List and over the
Activity List. In this way, the operators of both phases
are used simultaneously. In this case, neither activity
nor Mode Lists remain constant.

(iv) The genetic algorithm based on the two separate
optimization phases (TP-GA): this algorithm incor-
porates the two optimization phases separately, but



Mathematical Problems in Engineering 11

Table 1: 𝜂 obtained by using the proposed genetic algorithms for
solving MRCPSP-ENERGY library.

𝑗# Algorithm Iterations/𝜂
1000 5000 50,000

𝑗30

TP-GA 0.6397 0.6517 0.6564
ML-GA 0.6381 0.6506 0.6559
AL-GA 0.6345 0.6489 0.6551
MIX-GA 0.6290 0.6398 0.6469
Basic-GA 0.5966 0.6091 0.6293

𝑗60

TP-GA 0.6565 0.6803 0.6919
ML-GA 0.6576 0.6794 0.6907
AL-GA 0.6418 0.6700 0.6890
MIX-GA 0.6498 0.6672 0.6773
Basic-GA 0.6029 0.6182 0.6424

𝑗120

TP-GA 0.5192 0.5382 0.5590
ML-GA 0.5211 0.5397 0.5589
AL-GA 0.5092 0.5237 0.5523
MIX-GA 0.5158 0.5310 0.5477
Basic-GA 0.4760 0.4875 0.5032

with greater emphasis on the search for execution
modes by using 2/3 of the total number of available
iterations in the optimization phase over the Mode
List and in the end 1/3 of the total number of available
iterations in the optimization phase over the Activity
List.

Table 1 shows the average relative efficiency of different
variants of the proposed GA and the Basic-GA to solve three
sets of instances of the PSPLIB-ENERGY for 1000, 5000, and
50,000 iterations. This table is sorted by the 50,000-iteration
column.

As it can be seen from Table 1, the ML-GA outperforms
the AL-GA.Note that the objective is tomaximize the relative
efficiency of the project. It is interesting to remark that, in
the ML-GA, the Activity Lists of all instances have remained
constant once the initial population is created, and then only
the modes have changed. On the other hand, in AL-GA, the
Mode Lists of all instances have remained constant, and only
the Activity Lists weremodified.This indicates that searching
through Mode Lists can achieve high quality solutions, as
compared to searching through Activity Lists.

Due to redundant solutions with different Activity Lists,
an optimal solution can be represented by a Mode List and
several Activity Lists.Thus, by fixing a list and searching over
the other, optimal solutions can be excluded. However, the
proposed TP-GA searches over theMode List and, in the final
phase, over the Activity List.This combined search procedure
achieves better results. In fact, Table 1 shows that the TP-GA
outperforms all other algorithms in respect ofmaximizing the
relative efficiency of the project.

On the other hand, we also compared the proposed
algorithms based on the minimization of the normalized
value of the convex combination for both objectives: the
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and the total energy consumption (expression (8)).

Without losing generality, three different values of 𝛼 are
selected: 0.25, 0.5, and 0.75. Table 2 shows a summary of the
results. The first row shows the alpha value and the second
row shows the iterations number. The first, fifth, and ninth
columns show the algorithm version used. The remaining
columns show the value of the normalized objective function
(𝐹(𝐶max,CETP)).

Based on the results of Table 2, it can be seen that the TP-
GA is still the algorithm that obtains better results on average;
it outperforms the other algorithms in 7 out of 9 experimental
sets. In addition, in the sets 𝑗60 with 𝛼 = 0.25 and 𝑗60 with
𝛼 = 0.5, the differences regarding the first position are 0.09%
and 0.27%, respectively. In addition, it can be observed that
the search by means of the optimization over the Mode List
(ML-GA) can reach solutions similar to those reached by
the search using the optimization over the Activity List (AL-
GA) and outperforms it in some cases. On the other hand,
simultaneously mixing the two phases of search does not
seem appropriate because it obtains worse results on average;
this could be because the mixture can generate too much
diversity in the population, thus slowing the convergence.

Since there are no reported optimal solutions for the test
cases provided in this library, it is useful to obtain results by an
exact approach.Thus, IBM ILOGCPLEXCPoptimizer 12.6.2
was used to solve some instances of the MRCPSP-ENERGY
library. This toolbox uses constraint programming because it
has shown significant results in combinatorial problems such
as scheduling problems.

Since the MRCPSP-ENERGY is an NP-hard problem, it
is for now impossible to determine optimal solutions in a
reasonable time for real-size instances. Therefore, we set a
deadline of 30minutes for solving each problem.We consider
this as a reasonable time to address scheduling problems
with an exact approach. When the deadline is reached, the
best solution is returned. In addition, considering that the
optimal solutions for unimodal RCPSP instances with 60
activities are unknown, trying to find the optimal solutions
for the MRCPSP-ENERGY with 60 activities is actually more
difficult, and we only run the set 𝑗30.

The exact approach has been able to obtain 70% of the
optimal solutions for set 𝑗30, with a maximum time of 30
minutes for each problem. Table 3 shows a summary of such
results. The first column shows the set of instances used.
The second column presents the method used to resolve
the instances. The third column shows the average value of
the objective function (relative efficiency of the project). The
fourth column shows the number of optimal solutions found
and the total number of instances. The fifth column shows
the average execution time for all instances. Finally, the last
column shows the limit of execution time.

The exact approach (CPLEX) reached an average value of
65.97% of relative efficiency of the project with an average
computational time of 601.15 seconds. The proposed GA
reaches an average value of 65.75% of relative efficiency with
an average computational time of 2.51 seconds. Thus, the
difference between the objective function average provided
by CPLEX and that of the proposed GA is 0.3335%, taking
into account the fact that the proposed GA requires 99.58%
less time than CPLEX to achieve these results. As it can be



12 Mathematical Problems in Engineering

Ta
bl
e
2:
N
or
m
al
iz
ed

va
lu
eo

bt
ai
ne
d
by

us
in
g
th
ep

ro
po

se
d
ge
ne
tic

al
go
rit
hm

sf
or

so
lv
in
g
M
RC

PS
P-
EN

ER
G
Y
lib

ra
ry
.

𝛼=
0.2

5
𝛼=

0.5
𝛼=

0.7
5

A
lg
.

Ite
ra
tio

ns
/𝐹

A
lg
.

Ite
ra
tio

ns
/𝐹

A
lg
.

Ite
ra
tio

ns
/𝐹

10
00

50
00

50
,0
00

10
00

50
00

50
,0
00

10
00

50
00

50
,0
00

Se
t𝑗3

0
TP

-G
A

0.
07
28

0.
05
31

0.
05
25

TP
-G

A
0.
118

5
0.
10
44

0.
10
29

TP
-G

A
0.
13
29

0.
12
47

0.
12
25

A
L-
G
A

0.0
907

0.0
550

0.0
525

A
L-
G
A

0.1
282

0.1
059

0.1
031

M
L-
G
A

0.1
335

0.1
254

0.1
227

M
L-
G
A

0.0
781

0.0
542

0.0
529

M
L-
G
A

0.1
207

0.1
055

0.1
034

A
L-
G
A

0.1
364

0.1
260

0.1
230

M
IX
-G

A
0.1

011
0.0

693
0.0

571
M
IX
-G

A
0.1

358
0.1

170
0.1

088
M
IX
-G

A
0.1

417
0.1

329
0.1

281
Se
t𝑗6

0
AL

-G
A

0.1
390

0.0
605

0.
03
31

AL
-G

A
0.1

316
0.0

828
0.
06
51

TP
-G

A
0.1

034
0.
08
66

0.
08
28

TP
-G

A
0.0

965
0.
03
56

0.0
331

TP
-G

A
0.1

064
0.
06
85

0.0
653

A
L-
G
A

0.1
137

0.0
928

0.0
832

M
L-
G
A

0.
09
37

0.0
363

0.0
339

M
L-
G
A

0.
10
37

0.0
693

0.0
664

M
L-
G
A

0.
10
23

0.0
870

0.0
833

M
IX
-G

A
0.1

061
0.0

538
0.0

367
M
IX
-G

A
0.1

142
0.0

819
0.0

705
M
IX
-G

A
0.1

095
0.0

949
0.0

886
Se
t𝑗1

20
TP

-G
A

0.1
599

0.0
551

0.
03
04

TP
-G

A
0.1

442
0.0

78
0.
06
04

TP
-G

A
0.1

239
0.0

981
0.
08
66

M
L-
G
A

0.1
467

0.
04
67

0.0
322

M
L-
G
A

0.
13
61

0.
07
43

0.0
632

M
L-
G
A

0.
12
07

0.
09
60

0.0
878

M
IX
-G

A
0.
14
43

0.0
641

0.0
343

A
L-
G
A

0.1
718

0.1
267

0.0
641

A
L-
G
A

0.1
358

0.1
177

0.0
894

A
L-
G
A

0.2
059

0.1
322

0.0
355

M
IX
-G

A
0.1

380
0.0

885
0.0

669
M
IX
-G

A
0.1

261
0.1

055
0.0

928



Mathematical Problems in Engineering 13

Table 3: Results obtained by using IBM ILOGCPLEXCP optimizer
for solving set 𝑗30 of the MRCPSP-ENERGY library.

Method 𝜂 # optimal Average
time (s)

Deadline
(s)

Set 𝑗30
CPLEX 0.6597 340 (480) 601.15 1800
TP-GA 0.6575 218 (480) 2.51 —

Iteration

0

2000

4000

6000

8000

10000

Re
pe

at
ed

 so
lu

tio
n

j30

j60

j120

103 104 105

Figure 8: The average number of redundant offspring.

seen, the GA achieves a beneficial trade-off between time and
accuracy.

Finally, in order to experimentally assess the impact
of redundant solutions, we calculate the average number
of redundant offspring generated by the genetic operators
in the optimization phase of the Activity List, where both
parents are different from each other. The offspring from
equal parents were not counted. The estimates were worked
out for sets 𝑗30, 𝑗60, and 𝑗120, for 1000, 5000, and 50,000
iterations, respectively. The results are shown in Figure 8. As
expected, the number of redundant solutions is related to the
number of iterations and, to a lesser degree, to the activities
number. From the results, the average number of redundant
solutions that do not contribute with new information to the
GA is at least 15% of the total number of solutions.

7. Conclusions

In this paper, the Multimode Resource-Constrained Project
Scheduling Problem, particularly the MRCPSP-ENERGY,
has been addressed with the aim of showing the importance
of the solution representation in the metaheuristic tech-
niques. Particularly, we analyze the redundant solutions issue
of one of the most important solution representations: the
Activity List.

A new genetic algorithmwith two phases of optimization
(TP-GA) has been proposed, whose main contribution is
to show that there is an undervalued search alternative in
multimode resource scheduling problems. Here, the search
is focused on Mode Lists instead of doing it on Activity
Lists. This proposal is based on the fact that although
genetic operators can modify the Activity List, the resulting

solution (complete scheduling) can be exactly the same, even
if they come from different Activity Lists. Therefore, the
computational effort of a search when it is based only on
changes of the Activity List might be wasted on redundant
solutions. While a change on the Activity List may lead to
the same scheduling, a change on the Mode List always
guarantees a different scheduling as long as activities have a
different execution time and there exist activities that can take
advantage of the availability or lack of resources released by a
change in the execution mode.

The results show that when the objective function is the
relative efficiency, the proposed genetic algorithm achieves
the best results in comparison with the other algorithms
for solving the MRCPSP-ENERGY in all problem sets. With
regard to minimizing the weighted normalized value of both
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and total energy consumption, the proposed GA
also obtained one of the best results; it outperforms the
other algorithms in seven out of nine experimental sets and
in the other cases achieves the second place. The results
also show that the search when modifying only Mode Lists
can achieve the best results compared to the search when
modifying only Activity Lists. In addition, a comparison
of the results between the proposed genetic algorithm and
an exact approach was performed. For this, we used IBM
ILOG CPLEX CP optimizer. Although the exact approach
produces slightly better results, the proposed algorithm uses
99.58% less time. We can conclude that the proposed genetic
algorithm achieves highly efficient results.

Based on these results and the fact that the literature
about scheduling problems with different execution modes
is focused on the optimization of the Activity List, we think
there exists a valuable field of research focused not only on the
optimization of the Activity List, but also on the optimization
of theMode List.The latter optimization process becomes the
most successful search procedure when compared with the
former.

8. Future Work

The paper has focused on the analysis of solution represen-
tations in the MRCPSP-ENERGY which seeks to minimize
both the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and the energy consumption. The next
step would be to consider energy as a nonrenewable resource.
In addition, energy consumption can be generalized to the
use of other nonrenewable resources, such as budget and
fossil fuels. The analysis could be extended to the traditional
MRSPCP, which only considers the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛. Here, the
impact of the search focused on theMode List representation
can be analyzed. Likewise, an analysis on how the existence
of redundant solutions affects other solution representations
could be performed. Finally, a new solution representation
that can take advantage of the search through the Mode List
could be proposed, being independent of an Activity List to
decode a solution, or a combined representation that avoids
redundant solutions.

Disclosure

An earlier version of this work was presented at COPLAS’17
(informal proceedings).



14 Mathematical Problems in Engineering

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper has been partially supported by the Span-
ish Research Projects TIN2013-46511-C2-1-P and TIN2016-
80856-R.

References

[1] Energy Information Administration (EIA), “Monthly Energy
Review - October 2016,” Tech. Rep., Office of Energy Statistics,
2016.

[2] Z. Zhang, R. Tang, T. Peng, L. Tao, and S. Jia, “A method for
minimizing the energy consumption of machining system:
integration of process planning and scheduling,” Journal of
Cleaner Production, vol. 137, pp. 1647–1662, 2016.

[3] G. Mouzon, M. B. Yildirim, and J. Twomey, “Operational meth-
ods for minimization of energy consumption of manufacturing
equipment,” International Journal of Production Research, vol.
45, no. 18-19, pp. 4247–4271, 2007.

[4] D. Morillo Torres, F. Barber, and M. A. Salido, “A new model
and metaheuristic approach for the energy-based resource-
constrained scheduling problem,” Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manu-
facture, pp. 1–13, 2017.

[5] R. Kolisch and A. Sprecher, “PSPLIB—a project scheduling
problem library,” European Journal of Operational Research, vol.
96, no. 1, pp. 205–216, 1997.

[6] S. E. Elmaghraby, Activity Networks: Project Planning and
Control by Network Models, John Wiley & Sons Inc, 1977.

[7] F. B. Talbot, “Resource-constrained project scheduling with
time-resource tradeoffs: the nompreemptive case,”Management
Science, vol. 28, no. 10, pp. 1197–1210, 1982.

[8] J. H. Patterson, R. Slowinski, F. B. Talbot, and J. Weglarz, “An
algorithm for a general class of precedence and resource con-
strained scheduling problems,” Advances in Project Scheduling,
pp. 3–28, 1989.

[9] M.G. Speranza andC.Vercellis, “Hierarchicalmodels formulti-
project planning and scheduling,” European Journal of Opera-
tional Research, vol. 64, no. 2, pp. 312–325, 1993.

[10] S. Hartmann and A. Sprecher, “A note on “hierarchical models
for multi-project planning and scheduling”,” European Journal
of Operational Research, vol. 94, no. 2, pp. 377–383, 1996.

[11] A. Sprecher, S. Hartmann, and A. Drexl, “An exact algorithm
for project scheduling with multiple modes,” OR Spektrum.
Quantitative Approaches in Management, vol. 19, no. 3, pp. 195–
203, 1997.

[12] N. Christofides, R. ’Alvarez-Valdes, and J. M. Tamarit, “Project
scheduling with resource constraints: a branch and bound
approach,”European Journal ofOperational Research, vol. 29, no.
3, pp. 262–273, 1987.

[13] E. Demeulemeester and W. Herroelen, “A branch-and-bound
procedure for the multiple resource-constrained project
scheduling problem,” Management Science, vol. 38, no. 12, pp.
1803–1818, 1992.

[14] G. Zhu, J. F. Bard, and G. Yu, “A branch-and-cut procedure for
the multimode resource-constrained project-scheduling prob-
lem,” INFORMS Journal on Computing, vol. 18, no. 3, pp. 377–
390, 2006.

[15] V. Van Peteghem and M. Vanhoucke, “An experimental
investigation of metaheuristics for the multi-mode resource-
constrained project scheduling problem on new dataset
instances,” European Journal of Operational Research, vol. 235,
no. 1, pp. 62–72, 2014.

[16] R. Kolisch and S. Hartmann, “Heuristic algorithms for the
resource-constrained project scheduling problem: classification
and computational analysis,” in Project Scheduling, vol. 14 of
International Series in Operations Research & Management
Science, pp. 147–178, Springer, 1999.

[17] J.-L. Kim, “Proposed methodology for comparing schedule
generation schemes in construction resource scheduling,” in
Proceedings of the 2009 Winter Simulation Conference, (WSC
’09), pp. 2745–2750, December 2009.

[18] R. Kolisch and A. Drexl, “Local for multi-mode resource-
constrained project,” IIE Transactions (Institute of Industrial
Engineers), vol. 29, no. 11, pp. 987–999, 1997.

[19] L. Özdamar, “A genetic algorithm approach to a general
category project scheduling problem,” IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and Reviews,
vol. 29, no. 1, pp. 44–59, 1999.

[20] S. Hartmann, “Project scheduling with multiple modes: a
genetic algorithm,” Annals of Operations Research, vol. 102, pp.
111–135, 2001.

[21] J. Józefowska,M.Mika, R. Rózycki, G.Waligóra, and J.Weglarz,
“Simulated annealing for multi-mode resource-constrained
project scheduling,” Annals of Operations Research, vol. 102, pp.
137–155, 2001.

[22] K. Bouleimen andH. Lecocq, “A new efficient simulated anneal-
ing algorithm for the resource-constrained project scheduling
problem and its multiple mode version,” European Journal of
Operational Research, vol. 149, no. 2, pp. 268–281, 2003.

[23] K. Nonobe and T. Ibaraki, “Formulation and tabu search algo-
rithm for the resource constrained project scheduling problem,”
in Essays and surveys in metaheuristics (Angra dos Reis, 1999),
vol. 15 of Oper. Res./Comput. Sci. Interfaces Ser., pp. 557–588,
Kluwer Acad. Publ., Boston, MA, USA, 2002.

[24] J. Alcaraz, C. Maroto, and R. Ruiz, “Solving the multi-mode
resource-constrained project scheduling problem with genetic
algorithms,” Journal of the Operational Research Society, vol. 54,
no. 6, pp. 614–626, 2003.

[25] H. Zhang, C.M. Tam, andH. Li, “Multimode project scheduling
based on particle swarm optimization,” Computer-Aided Civil
and Infrastructure Engineering, vol. 21, no. 2, pp. 93–103, 2006.

[26] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial
particle swarm optimization for solving multi-mode resource-
constrained project scheduling problems,”AppliedMathematics
and Computation, vol. 195, no. 1, pp. 299–308, 2008.

[27] H. Li and H. Zhang, “Ant colony optimization-based multi-
mode scheduling under renewable and nonrenewable resource
constraints,” Automation in Construction, vol. 35, pp. 431–438,
2013.

[28] L. Y. Tseng and S. C. Chen, “Two-phase genetic local search
algorithm for the multimode resource-constrained project
scheduling problem,” IEEE Transactions on Evolutionary Com-
putation, vol. 13, no. 4, pp. 848–857, 2009.

[29] A. Lova, P. Tormos, M. Cervantes, and F. Barber, “An efficient
hybrid genetic algorithm for scheduling projects with resource



Mathematical Problems in Engineering 15

constraints and multiple execution modes,” International Jour-
nal of Production Economics, vol. 117, no. 2, pp. 302–316, 2009.

[30] V. Van Peteghem and M. Vanhoucke, “A genetic algorithm for
the preemptive and non-preemptive multi-mode resource-
constrained project scheduling problem,” European Journal of
Operational Research, vol. 201, no. 2, pp. 409–418, 2010.

[31] J. Weglarz, J. Józefowska, M. Mika, and G. Waligóra, “Project
scheduling with finite or infinite number of activity processing
modes—a survey,” European Journal of Operational Research,
vol. 208, no. 3, pp. 177–205, 2011.

[32] R. Kolisch and S. Hartmann, “Experimental investigation
of heuristics for resource-constrained project scheduling: an
update,” European Journal of Operational Research, vol. 174, no.
1, pp. 23–37, 2006.

[33] P. Tormos and A. Lova, “A competitive heuristic solution
technique for resource-constrained project scheduling,” Annals
of Operations Research, vol. 102, pp. 65–81, 2001.

[34] D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke, “A hybrid
scatter search/electromagnetism meta-heuristic for project
scheduling,” European Journal of Operational Research, vol. 169,
no. 2, pp. 638–653, 2006.

[35] D. C. Paraskevopoulos, C. D. Tarantilis, and G. Ioannou,
“Solving project scheduling problems with resource constraints
via an event list-based evolutionary algorithm,” Expert Systems
with Applications, vol. 39, no. 4, pp. 3983–3994, 2012.

[36] A. Drexl, “Scheduling of project networks by job assignment,”
Management Science, vol. 37, no. 12, pp. 1590–1602, 1991.

[37] D. Debels and M. Vanhoucke, “A decomposition-based genetic
algorithm for the resource-constrained project-scheduling
problem,”Operations Research, vol. 55, no. 3, pp. 457–469, 2007.

[38] M. Cervantes, A. Lova, P. Tormos, and F. Barber, “A dynamic
population steady-state genetic algorithm for the resource-
constrained project scheduling problem,” in New Frontiers in
Applied Artificial Telligence, L. Thanh Nguyen, A. Borzemski,
Grzech., and., and M. Ali, Eds., vol. volume, 502, pp. 611–620,
Springer, Berlin, Germany, 2008.

[39] F. F. Boctor, “Resource-constrained project scheduling by sim-
ulated annealing,” International Journal of Production Research,
vol. 34, no. 8, pp. 2335–2351, 1996.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


