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Abstract 

Bridge fires are a major concern and the subject of many studies that use numerical 

models. However, experimental studies are still required to test the validity of these 

numerical models and improve their accuracy. This paper uses temperature results of the 

Valencia bridge fire tests carried out at the Universitat Politècnica de València, in Valencia 

(Spain) to calibrate the fire models that constitute the first step in modeling any bridge fire 

event. The calibration is carried out by both a simplified approach (Heskestad & Hamada’s 

correlation) and advanced numerical models (Computational Fluid Dynamics models built 

with the Fire Dynamics Simulator –FDS- software).  

The Valencia bridge fire tests involved four fire scenarios under a composite bridge with 

Heat Release Rate (HRR) values between 361 and 1352 kW. The results show that applying 

Heskestad & Hamada’s correlation gave good results when used within its limits 

(HRR<0.764 MW) but did not work well beyond them, which means it would be suitable for 

planning reduced scale bridge fire tests but not in the analysis of real bridge fires. On the 

other hand, FDS provides good predictions of the temperatures and can be used to study 

bridge fire responses. This work is therefore an important step forward in the study of bridge 

fires and towards the improvement of the resilience of infrastructure networks vis-à-vis fire 

hazards. It also highlights the problems that can arise in fire tests in the open air, the 

influence of the wind being of critical importance. 

Keywords: numerical modelling, Valencia bridge fire test, composite (steel-concrete) bridge, 

mass loss rate, bridge fire, bridge resilience. 
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Notation 

Afire = Footprint of the fire (m2) 

b = Effective plume radius at the intersection with the ceiling elevation (m) 

cp = specific heat of the air = 1.005 (kJ·kg-1·K-1) 

D = Fire equivalent diameter (m) 

Ei = Temperature in a particular thermocouple in an experimental test (ºC) 

g = Gravitational acceleration = 9.81 (m/s2) 

H = Ceiling height above the burning fuel (m) 

Lf = Flame length (m) 

Lf / H = ratio used to difference between strong and weak plume. 

 = Mass loss rate (kg/min) 

’’ = Mass loss rate per unit area (kg/m2/s) 

Mi = Temperature in a particular thermocouple in the model (ºC) 

Ma = Mach number 

Q = Heat Release Rate (kW) 

Qc = Convective Heat Release Rate (kW) 

r = Radial distance from axis of the fire plume (m) 

s = side of the square pan (m) 

T = Temperature at a particular point (ºC) 

Tp = Temperature at a particular height in the centerline of the plume (ºC) 

T = Ambient temperature = 20 (ºC) 

zb = Vertical coordinate of the fuel top surface inside the pan (m) 

ΔHc= Net heat of combustion (MJ/kg) 

ΔT = Excess gas temperature at a point at a particular distance from the centerline of the 

plume. It is equal to T - T (ºC), T being the temperature at the point considered and T the 

ambient temperature. 

ΔTp= Excess gas temperature in plume at the ceiling level. It is equal to Tp - T (ºC), Tp being 

the temperature on the centerline at the impingement point on the ceiling. 

Δ = bias factor of the model.  

εm = material emissivity 

θ = True value of the temperature (ºC) 

λ = conductivity (W/mºC) 

ρ = density (kg/m3) 

ρ = Gas density at ambient temperature = 1.204 (kg/m3) 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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σE= Experimental standard deviation (due to measurements) 

σM= Model standard deviation (due solely to the model) 

χr = radiative fraction. 

ω0= Relative uncertainty of the measured output quantity 

ωE = Experimental relative standard deviation, σE / θ 

ωM = Model relative standard deviation, σM / [θ ·(1+δ)] 

ωi = Relative uncertainty of the devices that measure the various input parameters that the 

model requires. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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1. Introduction

The harmful consequences of bridge fires (see e.g. Peris-Sayol et al.[1]) have given rise to 

significant research in recent years (see a summary e.g. in Garlock et al. [2] and Quiel et 

al.[3]). This research is based on the use of numerical models to analyze previous fire 

incidents (see e.g. Alos-Moya et al. [4], Gong & Agrawal [5], Godart et al. [6]) as well as the 

study of bridge responses to hypothetical fire scenarios (e.g. Peris-Sayol et al. [7] and Nahid 

et al. [8]). 

The numerical analysis of bridge fires involves: (1) fire models to obtain the gas 

temperatures surrounding the structure, (2) heat transfer models to obtain the temperatures 

on the surface and within the bridge elements and (3) structural models to obtain the 

bridge’s mechanical response. The first step is therefore to model the fire itself, and this has 

been done by different approaches; some researchers have built complex fire models using 

Computational Fluid Dynamics (CFD henceforth) (see e.g. Alos-Moya et al. [4], Peris-Sayol 

et al. [9], Gong and Agrawal [5]), while others have proposed simplified approaches based 

on the use of fire curves (see e.g. Payá-Zaforteza & Garlock [10]) or radiation heat fluxes 

(Quiel et al. [3]). Modeling a fire event is always challenging, since numerical models and 

simplified curves have been widely applied and validated by fires in buildings and tunnels 

(see e.g. Buchanan [11], Albero et al [12], Quiel et al. [13], Rackauskaite et al. [14], 

Maraveas and Vrakas [15], Ji et al. [16]), but, as pointed out by Payá-Zaforteza & Garlock 

[10], bridge fires have specific features and deserve a particular approach. To obtain an 

accurate bridges fire response, the numerical and simplified approaches need to be 

validated by experiments. However, the dimensions of bridge structural elements, the 

magnitude of the fire loads in bridge fires and the difficulties of carrying out open-air fire tests 

make experimental work on bridge fires rather complex and expensive. As a result, this type 

of work, e.g. the Valencia bridge fire tests carried out by Alos-Moya et al. [17], is not often 

undertaken. These tests consisted of reproducing different fire scenarios under a composite 

I-girder bridge built at the Universitat Politècnica de València, in Valencia, Spain. These 

conditions (fire positions and bridge deck structural system) were chosen because a 

previous statistical analysis of bridge fire incidents carried out by Peris-Sayol et al. [1] 

showed that (a) composite I-girder bridges are especially vulnerable to bridge fires and (b) 

the worst possible position for the fire is under the bridge deck.   

Within this general context, the objective of the present study is to calibrate the numerical 

and simplified approaches available to model this type of fire. The Valencia bridge fire tests 

(Alos-Moya et al. [17]) are used to analyze the accuracy of two approaches (jet ceilings and 

Computational Fluid Dynamics) in reproducing the temperatures in the gases around the 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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bridge during the experiments. This analysis enables both the calibration of the models used 

and establishes their application limits. The authors consider that the results obtained are a 

crucial step towards the development of a performance-based approach that can be used to 

improve the resilience of bridge systems against fire hazards. 

The paper is structured as follows: Sections 2 and 3 describe the experimental bridge and 

summarize the features of the fire tests used to validate fire models. The validity is studied of 

both the simplified (jet ceilings, Section 4) and advanced calculation methods (CFDs, 

Section 5) used to predict the results of the fire tests. Section 6 describes an uncertainty 

analysis of the results obtained by advanced calculation methods, and Section 7 

summarizes the main conclusions of the research carried out and points to areas in which 

future work is required. 

2. Case study and methodology

The reduced-scale bridge used in the present study was a simply-supported bridge 

specifically designed by the authors in order to carry out the tests detailed in Alos et al. [17]. 

The bridge had a span of 6.0 m and a vertical clearance of 1.9 m. The structure consisted of 

two IPE-160 steel girders which supported a 0.15 m thick reinforced concrete slab 

connected to the steel girders through 62 shear studs. The S355-JR steel employed for the 

girders showed yield stresses of between 344 and 377 MPa. The concrete slab compressive 

strength was 33 MPa. Bridge elevation, abutment details and deck details are shown in Fig. 

1. Further information on the geometry and the materials used can be found in Alos et al.

[17].Two auxiliary steel frames were placed over the deck to sustain the LVDT’s that 

monitored the deck deflections during the fire tests.  

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 1. Experimental bridge: (a) elevation, (b) deck details. All the dimensions are expressed in 

mm. All the levels (z coordinates) are expressed in m. 

3. Experimental approach

3.1. Fire scenarios 

The Valencia fire tests involved eight fire tests with four different fire scenarios. The fire 

loads were located under the bridge and consisted of different quantities of gasoline poured 

into steel pans of different dimensions. The present study calibrates the fire models using 

results from four tests (tests 2, 4, 7 and 8) out of the eight tests carried out. These four tests 

were chosen because they best characterized the scenarios studied. Tests 1 and 3 were 

discarded for 2 and 4 due to the smaller influence of the wind in the latter. Tests 5 and 6 

were discarded for 7, since the latter was the only one without a protected zone over the fire 

load. Table 1 gives details of the position and magnitude of the fire loads during the tests. 

The volume of gasoline used was obtained by weight and assuming a density of 740 kg/m3 

[18]. Four views of the tests are shown in Fig. 2.     

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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It must be noted that the experimental bridge was not a replica or a reduced scale model of 

a specific bridge. The experimental bridge was designed to reproduce a structural system 

very common in highway bridges and the fire scenarios were defined to enable the study of 

some important aspects that previous studies [1,4, 7, 9, 19] on bridge fires had highlighted, 

such as: (1) the impingement of the flames on the bridge deck, (2) the spread of flames, heat 

and smoke between two adjacent bridge girders, (3) the creation of significant longitudinal 

thermal gradients along the bridge girders and (4) the influence of the fire load position on 

gas and bridge temperatures. 

Table 1. Fire scenarios employed in the validation 

Figure 2. Views of the fire scenarios considered. Images include the power (Heat Release Rate) of 

the fire in each test. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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 3.2. Mass loss rate 

Fig. 3 gives the mass loss rate recorded during the four validation tests. This value is 

important as when it is value is multiplied by the gasoline net heat of combustion (Δhc) (43.7 

MJ/kg) [18] the Heat Release Rate (HRR) of the fire is obtained. The HRR is a key variable 

in characterizing fires in the models used in fire engineering.     

In Fig. 3 the growth zones in each of the tests can be distinguished. The plateau is only 

clearly defined in Fires 1 and 3, in which the fire load is lower. In the stronger fires the higher 

dispersion of the average values shown in Table 1 can be seen, which was calculated 

excluding the growth and decay phases. While in Fire 2 the higher mass loss values can be 

attributed to gusts of wind, the steady growth during Fire 4 is associated with the higher 

radiation from the bridge deck due to the lower distance between deck and pan filled with 

gasoline. This radiation is progressively increased during Fire 4 due higher deflections 

recorded during the test [17]. 

Figure 3. Mass loss rate evolution during the tests 

3.3. Gas temperatures 

Gas temperatures were measured by 23 1.5 mm Type K thermocouples (TCs) with stainless 

steel sheaths arranged in six horizontal thermocouple trees (TCTs) and one vertical TCTs. 

Fig. 4 shows the thermocouple layout. Every horizontal TCT had 3 TCs and the vertical TCT 

had five TCs. Regarding the nomenclature of the TCs in the horizontal TCTs: "G" indicates 

GAS, "S", "C" and "N" mean South Region, Central Region and North Region, respectively 

(see Fig. 4), and the number at the end indicates the section in which the TC is placed. The 

vertical TCT was used to measure temperatures in the plume. Regarding the nomenclature 

of the TCs in the vertical TCT: "V" indicates that the TC belongs to the vertical thermocouple 

tree and the number at the end indicates the order, starting from the TC closest to the pan.     

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Table 2 includes the average values of the gas temperatures in the four zones (North, South 

and Central regions and Fire plume) into which the space surrounding the bridge was 

divided. It also shows the maximum values in two of these regions (Central and Fire Plume), 

which are used in Section 6.3.  

Figure 4. Gas thermocouple distribution. All dimensions are given in m. 

Table 3 includes the time intervals selected to obtain the average values. As can be seen in 

Fig. 3, these values ensure that the averages were obtained in the plateau zones. It should 

be remembered that the thermocouple response to temperature changes in gas is almost 

instantaneous.   

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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South region North region

Aver. T (ºC) Aver. T (ºC) Aver. T (ºC) Max. T (ºC) Aver. T (ºC) Max. T (ºC)

0.5 89 101 112 172 1.73 206 402

1.5 111 135 141 218 1.54 171 387

2.5 154 185 221 398 1.24 236 549

3.5 122 176 200 314 0.99 335 688

4.5 87 108 122 183 0.65 542 827

5.5 81 81 103 150 - - -

South region North region

Aver. T (ºC) Aver. T (ºC) Aver. T (ºC) Max. T (ºC) Aver. T (ºC) Max. T (ºC)

0.5 206 176 222 318 1.73 450 774

1.5 293 230 298 451 1.54 381 749

2.5 446 310 463 711 1.24 405 853

3.5 397 274 411 760 0.99 501 896

4.5 207 187 247 525 0.65 685 883

5.5 174 141 199 365 - - -

South region North region

Aver. T (ºC) Aver. T (ºC) Aver. T (ºC) Max. T (ºC) Aver. T (ºC) Max. T (ºC)

0.5 54 63 76 141 1.95 422 614

1.5 63 67 94 158 1.69 387 564

2.5 83 31 122 190 1.41 462 748

3.5 112 109 162 234 1.13 515 698

4.5 158 153 229 306 0.85 739 866

5.5 315 276 403 568 - - -

South region North region

Aver. T (ºC) Aver. T (ºC) Aver. T (ºC) Max. T (ºC) Aver. T (ºC) Max. T (ºC)

0.5 217 232 295 440 1.89 701 949

1.5 346 362 465 644 1.73 672 905

2.5 559 41 713 955 1.54 766 938

3.5 558 511 712 968 1.44 726 896

4.5 276 289 427 647 1.25 646 909

5.5 241 231 332 537 - - -

x (m)
Central region

z (m)
Fire plume

Fi
re

 4
Fi

re
 2

x (m)
Central region

z (m)
Fire plume

Fi
re

 3
x (m)

Central region
z (m)

Fire plume
Fi

re
 1

x (m)
Central region

z (m)
Fire plume

Table 2. Average temperatures (Ave. T (ºC)) and maximum temperatures (Max. T (ºC)) recorded 

during the tests. Average values were calculating during the intervals defined in Table 3. 

Fire Scenario Initial time (s) Last time (s) Total time (s)

Fire 1 400 1200 800

Fire 2 200 1300 1100

Fire 3 200 2000 1800

Fire 4 700 1300 600

Table 3. Intervals considered to obtain average temperatures 

Further information on the gas temperatures recorded can be found in [17]. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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4. Simplified approach to modeling the Valencia bridge fire tests. Heskestad &
Hamada’s correlation. 

A large number of models are used in the field of fire engineering, including (from low to high 

complexity): 1) nominal curves, 2) equivalent exposure time, 3) parametric fires, 4) localized 

fires, 5) zone models, and 6) CFD models. At the present time there are no nominal curves, 

equivalent exposure time or parametric fire models available specifically for bridge fires, 

although certain authors (Peris-Sayol et al. [19], Quiel et al. [20]) have analyzed the factors 

that play a role in the maximum temperatures reached in the bridge and its surroundings 

during a blaze. The first simplified models that could be used to study bridge fires were thus 

the localized fire and the more specialized ceiling jet models. Their potential for application 

to bridge fires is analyzed below.  

4.1. Ceiling jets 

4.1.1. Theoretical background 

According to Alpert [21], a ceiling jet refers to “the relatively rapid gas flow in a shallow layer 

beneath the ceiling surface that is driven by the buoyancy of the hot combustion products 

from the plume”. The ceiling jet flow emerges from the region of plume impingement on the 

ceiling, moving radially away from the fire. As it does so, the layer grows thicker by 

entraining room air, which cools the gases in the jet and reduces its velocity. Similarly, the 

ceiling also cools down the portion of the jet adjacent to it. Fig. 5 shows a sketch of the 

ceiling jet concept and a photograph of one of the tests on the experimental bridge carried 

out at the Universitat Politècnica de València. 

Figure 5. Ceiling jets with flame impingement: (a) Theoretical scheme, (b) Experimental case. Fig. 7a 

adapted from Eurocode 1 Part 1-2. 

Depending on the Lf/H ratio (see Fig. 5b), where Lf is the flame length and H is the vertical 

distance between the burning fuel and the ceiling, a distinction is made between weak 

plumes (where convection is the dominant mode of heat transfer) and strong plumes (where 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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thermal radiation will be equally or more important than convection) [22]. There is no clear 

boundary between both types of plume, but Alpert’s general theory for weak plumes [21, 23] 

was explicitly obtained for cases in which the flame height is much smaller than the distance 

between the burning fuel and the ceiling, while Heskestad & Hamada’s theory [24] for strong 

plumes was validated for Lf/H ratios ranging from 0.2 to 2.0. In the present study, the flame 

length Lf was obtained using Heskestad’s equation Eq. 1 [25]. 

(1) 

Where: 

Q = Heat Release Rate (kW) 

D = Equivalent diameter (m) obtained assuming that the fire source is a circle with the same 

area as that of the real fire source. For square pans, D is given by Eq. 2: 

(2) 

 where s is the side of the square pan. 

Table 4 shows the application of Eqs. 1 and 2 to the Valencia bridge fire tests analyzed in 

this paper to obtain the flame length and resulting Lf/H ratio. They show that the fire is clearly 

impinging on the concrete slab (Lf/H> 1) in the four scenarios, so that the four tests are 

therefore in the strong plume field. This shows that Hamada and Heskestad’s correlation [24] 

is the best simplified approach to estimating gas temperatures. It should be noted that 

Kowslowski & Motevalli’s correlation [26], obtained specifically for channel configurations 

(i.e. fires confined between two longitudinal elements) for 5.2 kW fires, cannot be applied to 

the Valencia bridge tests because it is only applicable to weak plumes with much lower 

HRRs. 

Fire Pan side, s Diameter, D HRR Flame length, L f Height, H L f /H

Scenario (m) (m) (kW) (m) (m) (m)

Fire1 0.5 0.56 426 2.07 1.85 1.12

Fire2 0.75 0.85 1130 3.05 1.85 1.65

Fire3 0.5 0.56 361 1.9 1.55 1.23

Fire4 0.75 0.85 1352 3.34 1.25 2.67

Table 4. Lf/H ratios from Eq. 1 for the fire scenarios analyzed. 

4.2. Heskestad & Hamada's correlation 

Heskestad & Hamada [24] measured ceiling jet temperatures for Lf/H ratios ranging from 0.3 

to 3.0 for propane burner fires ranging from 12 to 764 kW beneath unconfined ceilings with H 

up to 2.5 m. Their results were employed to obtain the increment of the gas temperature 

below the ceiling from the increments of temperatures in the plume for Lf/H ratios less than 

or equal to about 2. At greater flame-height ratios, significant heat released through the 

ceiling itself appears to be the cause of a lack of agreement [21]. According to the Lf/H 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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values shown in Table 4, the Fire 4 scenario would greatly exceed the application range of 

Heskestad & Hamada's correlation.   

4.2.1. Parameters and limitations 

Eq. 3 proposed by Heskestad & Hamada [24] gives the ratio between the excess gas 

temperature (T) at a particular radial distance r from the plume centerline and the excess 

gas temperature in the plume (Tp) where it meets the ceiling. The equation is applied with 

r/b ranging from 1 to 40, where b is the effective plume radius at the intersection with the 

ceiling, i.e. the radius where the velocity of the impingement plume is one-half the centerline 

value. The expression for b is given by equation Eq. 4. 

(3)  

(4) 

Where cp= 1.005 kJ·kg-1·K-1, r = 1.204 kg/m3, T = 20 ºC , g = 9.81 m/s and Qc (Convective 

Heat Release Rate in kW) and Tp (temperature at the centerline at the impingement point on 

the ceiling expressed in ºC) are given by Eqs. 5 and 6, respectively. 

(5) 

(6) 

where Q is the Heat Release Rate in kW, ΔTp is the excess temperature at the plume 

centerline at the level of the ceiling and is given by Eq. 7 [21, 27] and χr is assumed to be 

equal to 0.35, according to [28]. 

(7)  (valid for r/H ≤ 0.18) 

It must be noted that χr can also be calculated using Eq. 8 proposed by McGrattan et al. [29], 

where  =0.35, k=0.05 m-1 and D is the fire equivalent diameter. The application of Eq. 8 

to the fire scenarios studied in this paper gives a value of r =0.34, which differs from the 

value proposed in [28] by less than 3 %. 

 (8) 

4.2.2. Application to the Valencia bridge fire tests. 

Fig. 5b shows how the radial position from the centerline (r in Eq. 3) has been substituted by 

the longitudinal distance from the fire centerline. It should be noted that although Heskestad 

& Hamada’s correlation [24] was defined for unconfined ceilings (i.e. where the fire is at least 

3H distant from the nearest vertical obstruction [30]), it perfectly fits the experimental results 

for Fires 1 to 3 (where there is barely 1m between both girders). The H values were obtained 

by subtracting the level of the fuel at the beginning of the test (0.2 m for Fires 1, 2 and 3 and 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X
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0.8 m for Fire 4) from the level of the bottom surface of the concrete slab, which is 2.06 m. 

By doing so, H is 1.85 m for Fires 1 and 2, 1.55 for Fire 3 and 1.25 m for Fire 4. 

Fig. 6 shows the gas temperatures throughout the Central region obtained from the 

Heskestad & Hamada model [24], i.e. according to Eqs. 3 to 7. Fig. 6a compares the four fire 

scenarios considered, whereas Fig. 6b only includes the three fire scenarios (Fires 1, 2 and 

3) within the model’s application range (Lf/H ≤ 2). From these figures, it can be stated that:

 Heskestad & Hamada’s model gives a good prediction of the overall shape of

the temperatures along the longitudinal axis of the bridge as well as that of the

peak gas temperatures. The maximum peak temperatures predicted by the

model in the central region in the six sections where thermocouples where

located in the experiments are 333 ºC (section S3 and S4, x=2.5 and 3.5 m) for

Fire 1, 620 ºC (section S3 and S4, x=2.5 and 3.5 m) for Fire 2 and 396 ºC

(section S6, x=5.5 m) for Fire 3. These values are 16.3, 18.5 and 30.4% lower

than those measured in the experiment for Fires 1, 2 and 3, respectively. The

differences observed can be attributed to: the existence of the girders and the

abutments that confine the hotter gases, the influence of variables not included

in the model (e.g. type of fuel) and to the fact that the values of some variables

were taken from previous references (e.g. value of χr). In the particular case of

Fire 3, another factor explains the temperature difference: previous research

(Peris-Sayol et al. [7]) has shown that when the fire is close to the bridge

abutment, the Coandă effect makes the flames adhere to the abutment walls

and reach higher levels, which results in higher gas temperatures near the deck

and further deck heating. This effect can be captured by advanced fire models

(CFDs) but not by simplified methods such as Heskestad & Hamada’s.

 The Heskestad & Hamada correlation can be used for the preliminary design of

future bridge fire tests with HRR between 361 and 1130 kW. Although this

model might underestimate gas temperatures up to 30.4%, it will come fairly

close to the overall shape of the expected gas temperatures throughout the

bridge, as well as that of the peak temperatures.

 The Heskestad & Hamada correlation cannot be used to study real bridge fires,

since these events involve HRRs higher than the limit of application of the

correlation (the HRR for a car is about 5 MW and for a tanker truck is about

100-200 MW according to [31, 32]). However, and since the correlation provides

a good estimation of the overall shape of the temperatures along the bridge, it

has the potential to be used in future, together with additional numerical and

experimental work, to develop a simplified approach to study bridge fires.

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 6. Central region temperatures for (a) all fire scenarios and (b) Fires 1, 2 and 3. Continuous 

lines are experimental values and dashed lines are those of Heskestad & Hamada’s model. 

Experimental temperatures are the maximum recorded temperatures, not average temperatures. 

Fig. 7 shows the scatter between the predicted and measured temperatures along the 

longitudinal axis of the bridge. The scatter in sections x=2.5 m and x=3.5 m ranges between 

-16 to +6 % for Fire 1 and from -12 to -18% for Fire 2. The scatter in sections x=4.5 and 

x=5.5 m ranges from -11 to -30% for Fire 3. These values are acceptable, considering that a 

scatter of 20% is considered as acceptable in much more complex models that use CFDs to 

solve fire engineering problems [28, 33]. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 7. Scatter between the temperatures predicted in the Central region by the Heskestad & 

Hamada model [24] and the maximum recorded temperatures. 

5. Advanced approach. Computational fluid dynamics model.

In this section, the capability of advanced calculation methods (CFD models implemented in 

the software Fire Dynamics Simulator) to predict the results of the Valencia bridge fire tests 

is studied. The Fire Dynamics Simulator (FDS) is a computational fluid dynamics (CFD) fire-

driven fluid flow model [28]. The FDS hydrodynamic model solves numerically a form of the 

Navier-Stokes equations appropriate for low-speed (Mach number Ma < 0.3), thermally-

driven flow, with an emphasis on smoke and heat transport in fires. The core algorithm is an 

explicit predictor-corrector scheme, second order accurate in space and time. Turbulence is 

considered by means of a Large Eddy Simulation (LES) model. The FDS uses a single step, 

mixing-controlled chemical reaction for the combustion model, which uses three lumped 

species (air, fuel and products), the last two being explicitly computed. Radiation Transport 

Radiative heat transfer is included in the model via the solution of the radiation transport 

equation for a gray gas. The equation is solved using the Finite Volume Method (FVM). The 

absorption coefficients of the gas-soot mixtures are computed using the RadCal narrow-

band model. Although the FDS has previously been used for bridge fires (see e.g. FDS 

models in [4, 5, 9]), as far as the authors are aware, it has been validated for the first time in 

the present study for use in bridge fires by the results of a battery of bridge fire experiments. 

Note also that the FDS validation is valid even if the bridge dimensions and the HRR of the 

fire tests are smaller than those of real bridge fires because the experimental bridge and the 

tests were designed to reproduce the specific aspects of bridge fires.  

Building an FDS model [4, 9] requires defining: (1) a control volume with its boundary 

conditions which represents the volume in which the entire analysis will be carried out, (2) a 

mesh or discretization of the control volume, (3) a geometry included in the control volume 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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which is submitted to fire load, (4) material properties (conductivity, density, specific heat 

and emissivity), (5) fire sources, (6) a combustion model, and (7) sensors or elements of the 

model where outputs of the analysis (e.g. temperatures) are recorded. The components of 

the FDS model are described below. 

5.1. Control volume and mesh 

The control volume used in this study is shown in Fig. 8 and includes the bridge as well as 

an additional volume required to properly represent the physics of the problem. It measures 

12.0 m x 12.0 m x 12.0 m along the x, y and z-directions, respectively. The volume has a 

total of 691,000 parallelepiped cells distributed in 8 non-uniform meshes. Most of the cells 

have dimensions of 0.125 m x 0.125 m x 0.100 m along the x, y and z directions, 

respectively. However, y and z dimensions were reduced in some areas to 0.0625 m and 

0.075 m, respectively, to obtain a finer mesh in the elements representing the deck girders 

and the RC slab. 

Figure 8. Eight non-uniform meshes employed for FDS model 

The control volume and mesh sizes were the result of a sensitivity analysis and are a trade-

off between precision and calculation times. As suggested in the FDS6 user guide [28], cell 

aspect ratio has been kept equal or lower than 2 in order not to penalize the efficiency of the 

calculation. Fig. 8 shows how the meshes were distributed along the control volume to 

reduce inaccuracies associated with flame and soot transfer between different meshes. 

Mesh 1 (see Fig. 8a) was defined to include internal flames. Similarly, soot transport was 

mostly limited to Meshes 1 and 2 (see Fig. 8b). Meshes 3 to 8 (see Fig. 8c and Fig. 8d) were 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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added to provide enough distance from the fire source to ensure that the open boundary 

conditions (e.g. room temperature and pressure) did not affect the results. 

5.2. Geometry and materials 

The bridge geometry included in the FDS model is shown in Fig. 9. It can be seen to be 

slightly different from the actual geometry in Fig. 1, due to the cell sizes finally employed. 

However, the FDS model faithfully reproduces the basic geometric parameters (vertical 

height 1.9 m, beam edge 0.15 m, beam centerline separation 1.0 m, and bridge width 2.0 

m). Besides the geometry, each fire scenario also included an inert zone (see Fig. 10) that 

represented the base that supported the fuel pan and the protection of the cable to the 

weighing scale.  

Figure 9. Bridge geometry in FDS6: (a) Elevation and (b) Abutment and deck details. All the 

dimensions expressed in m. 

The FDS model calculates the one-dimensional heat transfer required by the definition 

of the thicknesses and properties of the materials used. Material thicknesses are specified in 

Fig. 10 and their thermal properties are given in Table 5. The FDS backing parameter (used 

to indicate thermal boundary conditions) was set as “Exposed” for the steel planar surfaces 

and “Air Gap” at room temperature for concrete obstructions.     

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 10. FDS model details: (a) Materials and surfaces, (b) Pan dimensions and (c) Inert area. 

Density, r Specific heat, c Conductivity, l Emissivity, e m Absortion

(kg/m3) (kJ/kg⁰C) (W/m⁰C) coefficient

Steel 7850 0.46 45.8 0.95 5·104

Concrete 2280 1.04 1.8 0.9 5·104

Material

Table 5. Material thermal properties. Source: Pyrosim database [34]. 

5.3. Fire Load and combustion model 

The fire load used was defined according the weights recorded by the scale underneath the 

pan filled with gasoline. The FDS model was built for the four fire scenarios studied and 

shown in Fig. 2 and Table 4. Fig. 11 shows: (a) the HRR used as an input in the fire models, 

which was obtained from the mass loss rate per unit area measurements according to Eq. 9, 

and (b) the HRR given by the FDS software during the simulations. 

(9) 

Where: 

Q is the heat release rate of the fire in kW 

Afire is the footprint of the fire in m2. Tables 1 and 4 give side values to obtain these areas 

’’ is the mass loss rate per unit area in kg/m2/s. 

DHc is the heat of combustion in MJ/kg. Gasoline has a 43.7 MJ/kg value [18] 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 11. HRR through time for different fire scenarios: (black) defined as an FDS input and 

(colored) employed by FDS during the simulations. 

FDS defines the fire sources through specific surfaces identified as burners. In the FDS 

simulations of the Valencia bridge fire tests, the burner that represents the fire source is a 

horizontal square surface of either 0.25 m2 (Fires 1 and 3) or 0.5625 m2 (Fires 2 and 4). The 

input heat curve of the release rate per unit area (HRRPUA) was defined by dividing the 

HRR (black curves in Fig. 11) by the corresponding burner surface. The HRR eventually 

used for the FDS is represented in Fig. 11 by colored lines. The average HRR and HRRPUA 

values for each scenario are included in Table 1 and Fig. 14, respectively. The vertical 

burner coordinate (zb) for each scenario is defined in Fig. 12 and represents the level of the 

flames basis. 

Figure 12. FDS modeling. Plan view showing the fire scenarios considered. The surface of the burner 

is represented in red and the steel deck beams in grey. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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The fire load uses the heptane reaction provided by the Pyrosim 2016.1.0425 fuel library [34] 

because it is the closest to the gasoline reaction among those available. The fire load also 

uses the mixture fraction combustion model proposed by McGrattan et al [28, 35], with a 

radiation factor of 0.35. Soot yield was set to 0.037, in accordance with [36]. 

5.4. Sensors 

The FDS model sensors are elements (usually points) that store one or more of the 

simulation variables and enable the output dimensions to be reduced, as they avoid the 

storage of variables that will not be used subsequently. Eighteen 1.5 mm diameter stainless 

steel sheath thermocouples were defined in the models to record temperatures that could be 

compared to the temperatures recorded by the real thermocouples. The FDS model includes 

sensors placed 5 cm below the concrete slab in six sections at x= 0.5, 1.5, 2.5, 3.5, 4.5 y 5.5 

m, respectively (see Fig. 4), coinciding with the thermocouples in the horizontal TCTs (see 

Fig. 4). Five FDS thermocouples were also placed directly above the burner at the position 

of the thermocouples in the vertical TCT (see Fig. 4). 

5.5. Results 

Fig. 13a and Fig. 13b compare the temperatures obtained from the numerical models with 

those obtained experimentally. In Fig. 13a the comparison uses average temperatures 

during the plateau stage of the fire. In these cases, numerical models overestimate the 

experimental temperatures by between 30 and 120% of the experimental values (see Fig. 

13c). This difference can be attributed to the wind present during the experiments, which 

was not allowed for in the numerical models. The wind at times blew the flames away from 

the vertical (see Fig. 14a), thus cooling the gases under and around the deck. 

Fig. 13b compares the maximum experimental gas temperatures (which are obtained with 

no wind) with those predicted by the numerical models. It can be observed that the 

numerical models give a highly accurate prediction of both the peak values and the 

distribution of gas temperatures in the deck’s central region. In this case, the difference 

between the measured and predicted temperatures (plotted in Fig. 13d) varies between -

25% (Fire 2) and +30% (Fire 4). These differences are acceptable in the experimental 

validation of FDS models, as will be explained below (see Section 6.3.2). Figs. 14b and 14c 

compare Fire 4 in the experiment with the FDS’s no-wind predictions and both can be seen 

to be remarkably similar.  

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 13. Comparison between experimental vs. numerical results, considering: average 

experimental values (a) and (c) and maximum experimental values (b) and (d). All numerical values 

are averages. 

Fig. 15 gives the temperatures recorded in the gas through time in the section S4 (see Fig.4) 

in the Central and South regions for Fires 2 and 4. These scenarios were chosen because 

they showed the influence of the wind on the experimental temperature recordings. Similar 

graphs are not provided for the other tests, since the values were similar. Table 6 contains 

the average temperatures given by the FDS numerical models for all the fire scenarios 

considered. These temperatures will be compared with the temperatures recorded during the 

test (see Table 2) in the uncertainty analysis described in Section 6. 

(c) Fire 4 test without wind

t = 2 min

(b) Fire 4 by FDS: no wind

t = 10 min

(a) Fire 4 test with wind

t = 13 min

Figure 14. Different views of Fire 4 (a) Fire 4 test with wind (b) Fire 4 FDS model with no wind and (c) 

Fire 4 test with no wind. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Fig. 15a and Fig. 15b show how the experimental temperatures recorded by the GC4 

thermocouple in the central region (for Fires 2 and 4 respectively) are equal to or lower than 

those predicted by the numerical model. Fig. 15b is especially instructive as it clearly shows 

that the maximum values recorded during the Fire 4 test are very similar to the values 

obtained with the numerical model, which can be attributed to the lesser effect of the wind 

during the test. On the other hand, Fig. 15c and Fig. 15d show the temperatures recorded by 

the GS4 thermocouple in the South region, in which the experimental temperatures are 

higher than the numerical temperatures, due to the wind blowing the flames towards the 

South and allowing the temperature to rise in this region. This confirms that average 

numerical temperatures and maximum experimental temperatures in the absence of wind 

should be used when comparing the experimental and numerical values. FIG. 15
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Figure 15. Time-temperature curves for the S4 deck section: (a) Fire 2 - Central region, (b) Fire 4- 

Central region, (c) Fire 2 - South region and (d) Fire 4 - South region. The location of the section S4 is 

given in Fig. 4a. 

Finally, it is important to note that CFDs in general, and FDS models in particular, are 

complex to build and computationally expensive. For example, a typical simulation done with 

FDS of the fire that affected the I-65 overpass in Birmingham, Alabama, US – a bridge with a 

total length of 88.53 m-  took three days and four hours in a computer cluster (see Alos-

Moya et al. [4] for more details). Therefore, it is important to develop simplified approaches 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X


26 

to model the effects of fires in bridges.  Such approaches could be based, for example, on 

improvements of existing analytical methods (such as the Heskestad and Hamada’s 

correlation) or on the development of fire curves specific for bridges. Any of them will need 

validation through numerical and, if possible, experimental tests, what makes the calibration 

of numerical models such as the one presented in this paper of major importance. 

Aver. T (ºC) x (m) South region North region Central region z (m) Fire plume

0.5 125 125 168 1.73 470

1.5 125 125 198 1.54 520

2.5 161 154 405 1.24 609

3.5 150 148 322 0.99 663

4.5 116 117 182 0.65 799

5.5 124 123 158 - -

0.5 212 210 297 1.73 768

1.5 233 239 389 1.54 722

2.5 342 318 762 1.24 728

3.5 303 287 615 0.99 737

4.5 206 203 319 0.65 746

5.5 200 197 257 - -

0.5 104 103 169 1.95 462

1.5 82 81 191 1.69 366

2.5 93 92 216 1.41 386

3.5 123 121 253 1.13 487

4.5 168 165 334 0.85 755

5.5 241 240 643 - -

0.5 361 336 554 1.89 661

1.5 355 338 736 1.73 979

2.5 514 443 982 1.54 983

3.5 522 454 970 1.44 975

4.5 367 370 729 1.25 791

5.5 396 372 544 - -

Fi
re

 1
Fi

re
 2

Fi
re

 3
Fi

re
 4

Table 6. Average temperatures (Ave. T (ºC)) obtained from the FDS numerical simulation. Average 

values were calculated during the time intervals defined in Table 3. 

6. Uncertainty analysis of the results obtained using CFDs.

Differences appear when the results of a fire test are compared with those of a numerical 

model performed with FDS (or similar). These differences may be due to either 

measurement errors during the test (experimental errors, uE) or to inaccuracies in the 

numerical model (model errors, uM). The former can be attributed to incorrect measurements 

used as inputs in the model (e.g. mass losses and their corresponding HRR’s), uE1, or to 

incorrect experimental output measurements (e.g. gas temperatures), uE2. The latter can be 

attributed to a number of reasons such as the differences between the real and modeled 

geometry, differences between the experimental HRR and the HRR finally employed (as can 

be seen in Fig.13) and the physical assumptions of the model (e.g. radiation factor and soot 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X


27 

yield parameters). Fig. 16 summarizes the sources of error mentioned above and their 

application to the problem studied in this paper.  

Figure 16. Sources of error and uncertainty. 

In the field of fire test validation, the concept of uncertainty is more commonly used than 

the concept of error. Error and uncertainty express different concepts [37]: the term “error” is 

used: 1) to quantify the difference between the result of a measurement and the real value, 

or, 2) to quantify the imperfection of the method and the device used, while the uncertainty of 

the measurement is a non-negative parameter that characterizes the dispersion of the 

values attributed to a measured variable. The following subsections detail how experimental 

and model uncertainties are defined and how these concepts were applied to the Valencia 

bridge fire tests.     

6.1. Experimental uncertainty 

According to McGrattan [33, 38], the experimental uncertainty of a variable that a model is 

trying to predict is measured by k times the experimental relative standard deviation ( ) of 

the analyzed variable (temperature in the present study); k is assumed to be equal to 2 for a 

95% uncertainty interval [33, 38, 39]. 

The experimental relative standard deviation is obtained using Eq. 10: 

(10) 

Where: 

o is the relative standard deviation of the output measurements and represents the 

uncertainty of the device which measures the quantity (temperatures in this case) that the 

model is trying to predict (uE2 defined in Fig. 16). 

The expression represents the uE2 term defined in Fig. 16. In this expression: 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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 pi are factors that represent the power dependences of the individual input

parameters.

 i is the relative standard deviation of the input measurements and represents the

uncertainty of the devices which measure the various input parameters required by

the numerical model (uE1 defined in Fig. 16).

 n represents the number of relevant terms which affect the experimental uncertainty

of the output variable under study. In the present study n is equal to 1, since the HRR

is the only physical input parameter of the numerical model of the fire tests

considered in the uncertainty study.

The most important physical parameters associated with the various quantities measured in 

the fire experiments together with their power dependence (pi) are detailed in [39, 40]. 

6.2. Model uncertainty 

To obtain the model uncertainty the following assumptions must be considered [39, 40]: (1) 

The experimental measurements are unbiased, and their uncertainty is assumed to be 

normally distributed with a constant experimental relative standard deviation, , and (2) the 

model uncertainty is normally distributed about the predicted value multiplied by a bias 

factor, . This bias factor  indicates how, on average, the model over or under-predicts the 

experimental measurements [38, 39]. The model relative standard deviation of the 

temperature distribution is denoted as  and is used to measure the scatter of the 

numerical output values. 

Once the experimental uncertainty has been defined (by calculating the experimental relative 

standard deviation ), and given a set of experimental measurements (Ei), as well as a 

corresponding set of model predictions (Mi), parameters  and , which characterize the 

model uncertainty, are given by Eqs. 11 and 12, respectively [33, 38]. 

(11) 

(12) 

Where  is given by Eq. 13 

(13) 
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 6.3. Application to Valencia bridge fire tests 

6.3.1. Experimental uncertainty 

In the specific case of the Valencia bridge fire tests Eq. 10 becomes Eq. 14. 

(14) 

Where: 

 is the experimental relative standard deviation (σE / ) 

 is obtained as the combination of the uncertainties of the thermocouples and 

datalogger, according to Eq. 15 [41], 

(15) 

 is equal to 2/3 according to [39, 40]. This factor provides the temperature 

uncertainty directly attributable to the uncertainty of the HRR measurements.  

 is the uncertainty associated with HRR measurement. 

Using the values ,  y 

provided by the manufacturers of the devices and by [40], the experimental relative standard 

deviation, , is 10.03%. Thus, adopting a factor k equal to 2, as explained in Section 6.1 for 

a 95% uncertainty interval, the experimental relative uncertainty is 20.06%.  

6.3.2. Model uncertainty 

As explained in Section 6.2, the model uncertainty requires the calculation of  and  from 

the experimental temperature values (Ei) and from the temperatures obtained by the 

numerical models (Mi). 

Fig. 17 gives the dispersion between the maximum experimental temperatures and the 

average temperatures obtained from the numerical models for the four fire scenarios. Fig. 

17a includes the values recorded by the thermocouples in the ceiling jet zone (horizontal 

thermocouple trees in the three regions (South, Central and North) of the bridge deck). It can 

be seen that the numerical model’s values show a bias factor (  of 1.0982 with respect to 

the experimental values. This dispersion of the results is due to the assumptions of the FDS 

model, the uncertainties in the input parameters of the FDS model (e.g. soot yield and 

radiation fraction) and the effect of the wind. The latter variable, even though in theory 

belonging to the experimental uncertainty, could not be separated from the numerical 

uncertainty, simply because both its magnitude and direction keep changing with time. This 

phenomenon will be repeated in any future tests carried out under windy conditions. Fig. 17b 

gives similar data for the vertical thermocouple tree in the fire plume. In this case fewer data 

are used than for the ceiling jet (20 instead of 70).   

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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Figure 17. Scatter between measured and model temperatures for: (a) Ceiling jet and (b) Fire plume 

Tables 7 and 8 compare the parameters used to measure the uncertainty (without and 

with the wind correction given in Section 5.5) with those obtained by McGrattan et al. [33] in 

the FDS validation tests. It should be noted that both the bias factor and the relative 

standard deviation of the models are closer to the parameters of McGrattan et al. [33] when 

maximum experimental temperatures where used. The higher uncertainties obtained in the 

present study can be explained by the influence of wind, a variable absent in the FDS 

validation work presented in [33]. Given these considerations, the authors consider the 

validation of the FDS model carried out is correct. 

Ceiling jet E M d Points

Valencia bridge fire tests

(Averaged temperatures)

Valencia bridge fire tests

(Maximum temperatures)
0.1 0.194 1.098 70

McGrattan et al. [33] 0.07 0.14 1.05 898

0.1 0.237 1.291 70

Table 7:  Uncertainty parameters for ceiling jets. 70 measurements considered. 

Fire plume E M d Points

Valencia bridge fire tests

(Averaged temperatures)

Valencia bridge fire tests

(Maximum temperatures)

McGrattan et al. [33] 0.07 0.16 1.18 107

0.1 0.202 0.915 20

0.1 0.346 1.518 20

Table 8:  Uncertainty parameters for fire plumes. 20 measurements considered. 

https://www.sciencedirect.com/science/article/pii/S096599781830694X
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7. Conclusions and future work

This paper compares the experimental gas temperatures recorded in tests 2, 4, 7 and 8 of 

the Valencia bridge fire tests [17] with the temperatures predicted by both a simplified 

correlation and a computational fluid dynamics model. The comparison between the 

experimental data and the advanced numerical approach was conducted in two steps. 

Firstly, a more visual comparison was included in order to determine where the higher 

differences were taking place. An uncertainty analysis was then carried out to compare 

model uncertainties with other similar tests validated in the FDS validation guide [33]. From 

these analyses, the following conclusions can be drawn: 

 Since the tests were carried out in the open air, they were significantly affected by the

wind, unlike tests performed in furnaces or closed spaces. The wind blew the flames

away from the vertical plane and also affected the ascending column of gases from

the fuel pan under the deck.

 The four fire scenarios were validated with a slightly higher uncertainty than that

obtained by McGrattan et al. [33]. The higher numerical dispersion can be attributed

mainly to the effect of the wind during the tests carried out in the present study. In

order to reduce the uncertainty values, it is recommended that a wind break should

be used in any future studies of this type.

 Both the simplified and the advanced approaches provide good results when used to

predict gas temperatures for the Fires 1, 2 and 3 scenarios if the zero wind velocity

correction justified in Section 5.5 is applied. Temperatures in the Fire 4 scenario can

be accurately predicted by the FDS model, but not by the Heskestad & Hamada

correlation, as the HRR in this scenario is higher than the correlation application

limits.

 Although Heskestad & Hamada’s model was initially defined for unconfined fires, it

can be used for the preliminary design of future bridge fire tests with HRRs between

361 and 1130 kW. Although gas temperatures may be underestimated by up to

30.4%, it will give a good approximation of the overall shape of both peak

temperatures and the expected gas temperatures around the bridge.

 The Heskestad & Hamada correlation cannot be used to study real bridge fires as it

was developed for fires with a maximum HRR of 764 kW, which is much lower than

the HRR of the fire loads involved in real bridge fires. However, given its good

prediction of the overall shape of gas temperatures, it has the potential to be used as

the starting point for a new simplified approach to predict gas temperatures in bridge

fires.

https://www.sciencedirect.com/science/article/pii/S096599781830694X
https://www.sciencedirect.com/science/article/pii/S096599781830694X


32 

This research work has validated the application of CFD models built with the software FDS 

for the study of bridge fires and has corroborated the application limits of a common 

simplified approach for ceiling jets. It is therefore an important step forward in the study of 

the effects of fires in bridges and improving the resilience of infrastructure networks vis-à-vis 

fire hazards. It has also highlighted the problems that could arise in fire tests in the open air, 

especially the influence of the wind. Future experimental work in this area should first 

consider ways of reducing wind to avoid a source of uncertainty. Then specific tests should 

be designed and carried out under wind controlled conditions to study wind influence. Future 

numerical work can be addressed towards the development of simplified approaches to 

model bridge fires based e.g. on improvements of existing analytical methods (such as the 

Heskestad and Hamada’s correlation) or on the development of fire curves specific for 

bridges. Any of these simplified approaches will need validation through numerical and, if 

possible, experimental tests, what makes the work presented in this paper of major 

importance. 
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