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Abstract

In this paper we give a quasi-metric version of Caristi’s fixed point
theorem by using mw-distances. Our theorem generalizes a recent
result obtained by Karapinar and Romaguera in [7].
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1 Introduction and preliminaries

In 1976, Caristi [3] stated the following result which is one of the most
important generalizations of the Banach contraction principle.

Theorem A. (Caristi fixed point theorem) Let T be a self mapping of
a complete metric space (X,d). If there exists a lower semicontinuous
function ¢ : X — RT such that

d(z,Tz) < p(z) — p(Tx), (1)
for all x € X, then T has a fized point.

It is well known that this theorem is equivalent to Ekeland variational
principle ([5]) which is nowadays an important tool in nonlinear analysis.
Due to its application, Caristi’s fixed point theorem has been investigated,
extended, generalized and improved in several directions. Very recently, in
[7] Karapinar and Romaguera proved, among other interesting results, the
following quasi-metric generalization of Theorem A.
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Theorem B. ((1)— (2) in Theorem 2 of [7]) Let T be a self mapping
of a right K -sequentially complete quasi-metric space (X, d). If there exists
a proper bounded below and nearly lower semicontinuous for 74, p : X —
RU{oo} such that d(Tx,x)+¢(Tx) < p(x), for all x € X, then there exists
z € X such that p(Tz) = ¢(z) and d(Tz,z) = 0.

On the other hand, in [6] Kada et al. introduced the notion of w-distance
on a metric space (X, d) as follows.

A function ¢ : X x X — R* is a w-distance on (X, d) if it satisfies the
following conditions:

(W1) q(z,y) < qlx,2) + q(z,y), for all z,y, 2 € X;
(W2) g(z,-): X — R" is lower semicontinuous for 74 for all x € X;

(W3) for each € > 0 there exists 6 > 0 such that if ¢(z,y) < d and g(z,2) < §
then d(y, z) < e.

Clearly the metric d is a w-distance on (X, d).
In Theorem 2 of [6], the authors obtained the following generalization of
Theorem A by using w-distances.

Theorem C. Let T be a self mapping of a complete metric space (X,d)
and let q a w—distance on (X,d). If there exists a lower semicontinuous
function ¢ : X — RT such that

for all x € X, then T has a fized point.

Later on, Park in [10] extended the notion of w-distance to quasi-metric
spaces and this concept has been used in some directions in order to obtain
fixed point results on complete quasi-metric spaces ([2], [8], [9])-

Since a quasi-metric d is not in general a w-distance on the quasi-metric
space (X,d), in [1] we introduced the notion of mw-distance which gener-
alizes the concept of quasi-metric and we obtained fixed point theorems for
generalized contractions with respect to mw-distances on complete quasi-
metric spaces.

Definition 1. (Definition 3 of [1]) An mw-distance on a quasi-metric space
(X, d) is a function q: X x X — R satisfying the following conditions:
(W1) q(z,y) < q(z,2) + q(z,y) for all z,y,2 € X;

(W2) q(z,-) : X — RT is lower semicontinuous on (X,74-1) for allz € X;
(mW3) for each € > 0 there exists § > 0 such that if q(y,x) < § and
q(z,z) <6 then d(y,z) < e.

Note that the concepts of w-distance and mw-distance are independent
(see examples of [1]) both in quasi-metric spaces and metric spaces.



In this paper we prove a quasi-metric version of Caristi’s fixed point the-
orem by using mw-distances which generalizes Theorem B. We also obtain a
generalization of Theorem A similar to Theorem C but using mw-distances
instead of w-distances.

We start by recalling several notions and properties of the theory of
quasi-metric spaces. Our basic reference is [4].

A quasi-metric on a set X is a function d : X x X — RT such that
for all z,y,2z € X: (i) d(z,y) = d(y,x) = 0 if and only if z = y; (ii)
d(z,y) < d(z,z)+d(z,v).

A quasi-metric space is a pair (X,d) such that X is a set and d is a
quasi-metric on X.

Each quasi-metric d on a set X induces a Ty topology 74 on X which
has as a base the family of open balls {By(z,e) : = € X,e > 0}, where
Bi(z,e) ={y € X : d(z,y) < e} for all z € X and € > 0.

If d is a quasi-metric on X then 74 is a T} topology if and only if d(z,y) =
0 implies x = y.

Given a quasi-metric d on X, the function d~' defined by d~!(z,y) =
d(y,z) for all z,y € X, is also a quasi-metric on X, called conjugate quasi-
metric, and the function d* defined by d*(x,y) = max{d(z,y),d(y,x)} for
all z,y € X, is a metric on X.

There exist several different notions of Cauchy sequence and quasi-metric
completeness in the literature (see e.g. [4]). Here we will consider the
following ones.

A sequence (z,)nen in a quasi-metric (X, d) is said to be left (right)
K-Cauchy if for each ¢ > 0 there exists ng € N such that d(z,,zn) < €
whenever ng <n <m (ng <m <n).

A quasi-metric space (X, d) is d~!-complete if every left K-Cauchy se-
quence (zp)nen in (X, d) converges with respect to the topology 74-1, i.e.,
there exists z € X such that d(z,,z) — 0.

Note that our notion of d~!-completeness of (X,d) coincides with the
usual notion of right K-sequential completeness of (X,d1).

2 The results

The following lemma is necessary to prove our main result (Theorem 1 be-
low).

Lemma 1. Let (X,d) be a quasi-metric space, ¢ an mw—distance on (X, d)
and (Zn)nen a sequence in X. If for each € > 0 there exists ng € N such that
q(xpn, ) < € whenever ng < n < m, then (Ton)nen and (T2n—1)nen are left
K-Cauchy sequences in (X, d).



Proof. Let ¢ > 0. By (mW3), there exists § > 0 such that if ¢(y,z) < ¢ and
q(z,z) <6 then d(y, z) < e.
By hypothesis, there exists ng such that q(zy,z;,) < § whenever ng <
n < m. Then, q(z2n, x2nt1) < § and q(z2n41, T2m) < 0 whenever ng < n <
m. Consequently, d(zay,, 2m) < € whenever ng < n < m.
In a similar way it is proved that (z2,—1)nen is a left K-Cauchy sequence.
[

Recall that if X is a (nonemptyset) set, a function f: X — R U {oco} is
said to be proper if there exists x € X such that f(x) < oo.

In [7], the authors introduced the notion of nearly lower semicontinuity
which is a generalization of the concept of lower semicontinuity. A proper
function f : X — R U {oo} is nearly semicontinuous on the quasi-metric
space (X, d) if whenever (x,)nen is a sequence of distinct points of X that
T4 converges to some x € X then f(z) < liminf,, o f(zn).

Theorem 1. Let T be a self mapping of a d~'-complete quasi-metric space
(X,d) and let q be an mw—distance on (X,d). If there exists a proper
bounded below and nearly lower semicontinuous function for t,-1, p: X —
RU{oo} such that q(x,Tx)+ o(Tx) < (), for all x € X, then there exists
z € X such that o(T'z) = p(z) and q(z,Tz) = 0.

Proof. For each x € X let

S(x) ={y € X : q(z,y) + p(y) < ¢(v)}.

Since Tz € S(x), we have that S(x) # () for all x € X. Let

i(x) = inf{p(y) 1y € S(z)}.

Let z1 € X such that ¢(x1) < oo. There exists 3 € S(x1) such that
o(x2) < i(x1) + 1. Following this process we obtain a sequence (z,)nen in
X such that

ZTnt1 € S(zn),

(,D(In+1) < 0,
and )

P(@nt1) < i(wn) + n

for all n € N. Since q(zpn, Tnt1) +¢(Tnt1) < @(z5), the sequence (o(xy,))nen
is non-increasing. So, lim,, ;o @(zy) exists. Put | = lim,, o0 ().

Now we prove that (z2p)nen is a left K-Cauchy sequence in (X, d).
If m > n, then

m—1 m—1
G(n, @m) <D (@i, wign) < Z(w(%) —p(zit1)) = @(xn) — ¢(xm)



Since (¢(zn))nen is a Cauchy sequence, given £ > 0 there exists ng € N
such that if ng < n < m then ¢(x,) — p(z;) < €. Therefore q(xy, zp,) <
¢ whenever nyg < n < m. From Lemma 1, (z2,)nen is a left K-Cauchy
sequence.

Without loss of generality, we distinguish the following two cases.

Case 1. The sequence (x2,)nen is eventually constant. Then there exists
ng € N such that z3, = x9,, for all n > ng. Since

1 1 .
o(x2n42) — o < p(xom+1) — o < i(zan) < ©(Tant1) < ©(x2n),

then )
©(T2ny) — o = i(T2ny) < ©(T2no),

for all n > ng. Taking limits, we obtain that i(x2,,) = @(z2n,). Since
Txon, € S(Tan,), then i(zan,) < @(Txon,) < ©(Tany), S0 ©(TTap,) =
©(Tan,) and q(zan,, TTan,) = 0.

Case 2. x9, # Toy, for all n,m € N with n # m. Since (X,d) is d~1-
complete there exists z € X such that (x2,) converges to z in (X, 74-1).

Next we show that z € S(za,) for all n € N.

Let n € N and let ¢ > 0. Since g(x2,,-) is a lower semicontinuous
function on (X, 7;-1) and ¢ is a nearly lower semicontinuous function on
(X, 74-1), there exists mg > n such that if m > mg then

q<$2n7 Z) - q<$2na me) <e
and
©(2) — p(zam) < €.
Then

q(T2n, 2) < q(Tan, T2m) + € < P(T20) — P(T2m) + € < P(T20) — p(2) + 2¢.

Therefore
q(z2n, 2) + ¢(2) < p(22n),

ie., z € S(x2y,) for all n € N.

Since 0 < q(xan, 2) < p(zan) — ¢(2), we have that ¢(z) < ¢(x2,), for all
n e N. So p(z) <L

Since ¢(z) > i(xap), for all n € N, and [ = lim,, i(x,) because
(Tnt1) < i(2n)+2 < @(2p41)+ 2, we obtain that ¢(z) > 1. Hence I = ¢(2).

On the other hand,

(20, Tz) < q(w2n, 2)+4(2, T2) < p(r2n) =p(2)+0(2) =p(T2) = o(220) —p(T).

Therefore, Tz € S(xay,) for all n € N.
By using a similar argument to the one given above we obtain that
I = ¢(Tz). Hence p(z) = ¢(Tz) and, consequently, ¢(z,Tz) = 0.
O



Since every quasi-metric d on X is an mw—distance on (X, d), we obtain
the following corollary.

Corollary 1. Let T be a self mapping of a d~'-complete quasi-metric space
(X, d). If there exists a proper bounded below and nearly lower semicontinu-
ous function for 41, ¢ : X — RU{oo} such that d(z,Tx) + p(Tz) < p(z),
for all x € X, then there exists z € X such that p(Tz) = ¢(z) and
d(z,Tz)=0.

This corollary is equivalent to Theorem B because a quasi-metric space
(X, d) is right K-sequentially complete if and only if (X, d~!) is d—complete.
Theorem B can be obtained directly from Theorem 1 taking ¢ = d~ .

On the other hand, since the class of the nearly lower semicontinuos
functions on a metric space (X,d) coincides with the class of the lower
semicontinuous functions on (X, d), we obtain a generalization of Caristi’s
fixed point theorem in the same direction as Theorem B.

Corollary 2. Let T be a self mapping of a complete metric space (X,d) and
let ¢ be an mw—distance on (X,d). If there exists a proper bounded below
and lower semicontinuous function ¢ : X — RU {oo} such that q(x,Tx) +
o(Tz) < p(x), for allx € X, then T has a fized point.

Proof. By Theorem 1, there exists z € X such that ¢(Tz) = ¢(z) and
q(z,Tz) = 0. Now we are going to prove that z = T'z.

Given € > 0 there exists 6 > 0 such that if ¢(y,z) < ¢ and ¢(x,z) <6
then d(y, z) < e. Since ¢(xn,2) < @(x,) — ¢(2), for all n € N and [ = ¢(z),
there exists ng € N such that ¢(x,,z) < ¢ for all n > ng. Since ¢(z,Tz) =0 <
d, we have that d(z,,Tz) < ¢ for all n > ng. Therefore (z,),en converges
to T'z. Consequently Tz = z.

0

Remark 1. As mentioned above Caristi’s fixed point theorem for met-
ric spaces is a generalization of the Banach contraction principle. This is
because if T is a contractive self mapping of a metric space (X,d), then
¢(z) = 1=d(z,Tz), where r is the contractivity constant, is a lower semi-
continuous function on X and d(x,Tz)+¢(Tz) < ¢(x). This is not the case
in the quasi-metric framework. In fact, the Banach contraction principle
is not fulfilled if the complete metric space is replaced by a d~'-complete
quasi-metric space. For instance, if X = {1/n : n € N} and d is the quasi-
metric on X given by d(z,z) = 0 and d(x,y) = x if x # y then (X,d) is
d~!-complete and the self mapping of X given by Tz = z/2 is contractive
but it has not fixed point. Note that 71" is not a Caristi type mapping be-
cause if that was the case, by Corollary 1, there exists z € X such that
d(z,Tz) = 0 and then T has a fixed point since (X, 74) is a T} topological
space.



Remark 2. As was expected, in Theorem 1 the condition ¢(x,Tx) +
o(Tz) < p(x), for all z € X, can not be replaced by the condition ¢(Tz, z)+
o(Tz) < ¢(x), for all x € X. Indeed, if X = {1/n : n € N}, d is the quasi-
metric on X given by d(z,y) =y—zifz <yand d(z,y) =1ifx >y, qg=4d
and @ is a function on X given by ¢(x) = x, the self mapping of X given
by Tx = x/2, satisfies that

o(Tz,2) +o(Tz) = 5 + 5 = o)

and nevertheless Tz # z for every z € X.

Finally, we give a characterization of d~!-completeness in terms of the
quasi-metric version of Caristi’s fixed point theorem given in Theorem 1.
For this purpose, we give the following definition.

Definition 2. Let T' a self mapping of the quasi-metric space (X,d). We
say that T is (q,¢)-Caristi if q is an mw—distance on (X,d) and ¢ : X —
RU{o0} is a proper bounded below and nearly lower semicontinuous function
for 74-1 such that q(x,Tx) + o(Tx) < ¢(x), for all x € X.

The following example shows that if ¢ is an mw—distance on the quasi-
metric space (X, d) and ¢ : X — R U {00} is a proper bounded below and
nearly lower semicontinuous function for 7;-1, then there exist (g, ¢)-Caristi
self mappings of X which are not (d, ¢)-Caristi.

Example 1. Let X = N and let d be the quasi-metric on X given by
d(z,z) = 0 and d(z,y) = = for all z,y € X. Clearly, 14 is the discrete
topology on X and 174-1 = 14. Let q be the mw-distance on (X, d) given by
q(1,1) = 0 and q(z,y) = 1/2 otherwise. Define T : X — X asT1 =1 and
Tx =x—1 for all x > 1. If we consider the function ¢ : X — R given by
o(x) = x, then ¢ is nearly lower semicontinuous for T4-1, q(1,T1) =0 =
©(1) —(T1) and if x > 1, then

q(z,Tx) =1/2 <1=g(x) — p(Tx).

Therefore T is (q,¢)-Caristi. Nevertheless T is not (d,y)-Caristi because
d(z,Tz) > o(x) — p(Tx), for all x > 1.

Theorem 2. Let (X, d) be a quasi-metric space. Then (X, d) is d~'-complete
if and only for every (q,¢)-Caristi self mapping T of X exists z € X such
that p(z) = p(Tz) and q(z,Tz) = 0.

Proof. From Theorem 1 we have the direct. For the converse, we suppose
that X is not d~!'-complete. Then (X,d!) is not right K-sequentially
complete. By (2)—(1) of Theorem 2 of [7], there exist a self mapping T
of X and a proper bounded below and nearly lower semicontinuous function
for 75-1, ¢ : X — R U {oo} such that d~!(Txz,z) + ¢(Tz) < ¢(z), for all



x € X and ¢(Tz) # ¢(z) for all z € X. Therefore T is a (d, p)—Caristi
self mapping of X such that for all z € X, p(Tz2) # ¢(z) and this is a

contradiction.
O
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