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Universitat Politècnica de València,
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Abstract

In this paper we give a quasi-metric version of Caristi’s fixed point
theorem by using mw-distances. Our theorem generalizes a recent
result obtained by Karapinar and Romaguera in [7].
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1 Introduction and preliminaries

In 1976, Caristi [3] stated the following result which is one of the most
important generalizations of the Banach contraction principle.

Theorem A. (Caristi fixed point theorem) Let T be a self mapping of
a complete metric space (X, d). If there exists a lower semicontinuous
function ϕ : X → R+ such that

d(x, Tx) ≤ ϕ(x)− ϕ(Tx), (1)

for all x ∈ X, then T has a fixed point.

It is well known that this theorem is equivalent to Ekeland variational
principle ([5]) which is nowadays an important tool in nonlinear analysis.
Due to its application, Caristi’s fixed point theorem has been investigated,
extended, generalized and improved in several directions. Very recently, in
[7] Karapinar and Romaguera proved, among other interesting results, the
following quasi-metric generalization of Theorem A.

∗The authors acknowledge the support of the Ministry of Economy and Competitive-
ness of Spain, Grant MTM2012-37894-C02-01
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Theorem B. ((1)→ (2) in Theorem 2 of [7]) Let T be a self mapping
of a right K-sequentially complete quasi-metric space (X, d). If there exists
a proper bounded below and nearly lower semicontinuous for τd, ϕ : X →
R∪{∞} such that d(Tx, x)+ϕ(Tx) ≤ ϕ(x), for all x ∈ X, then there exists
z ∈ X such that ϕ(Tz) = ϕ(z) and d(Tz, z) = 0.

On the other hand, in [6] Kada et al. introduced the notion of w-distance
on a metric space (X, d) as follows.

A function q : X ×X → R+ is a w-distance on (X, d) if it satisfies the
following conditions:

(W1) q(x, y) ≤ q(x, z) + q(z, y), for all x, y, z ∈ X;

(W2) q(x, ·) : X → R+ is lower semicontinuous for τd for all x ∈ X;

(W3) for each ε > 0 there exists δ > 0 such that if q(x, y) ≤ δ and q(x, z) ≤ δ
then d(y, z) ≤ ε.

Clearly the metric d is a w-distance on (X, d).
In Theorem 2 of [6], the authors obtained the following generalization of

Theorem A by using w-distances.

Theorem C. Let T be a self mapping of a complete metric space (X, d)
and let q a w−distance on (X, d). If there exists a lower semicontinuous
function ϕ : X → R+ such that

q(x, Tx) ≤ ϕ(x)− ϕ(Tx),

for all x ∈ X, then T has a fixed point.

Later on, Park in [10] extended the notion of w-distance to quasi-metric
spaces and this concept has been used in some directions in order to obtain
fixed point results on complete quasi-metric spaces ([2], [8], [9]).

Since a quasi-metric d is not in general a w-distance on the quasi-metric
space (X, d), in [1] we introduced the notion of mw-distance which gener-
alizes the concept of quasi-metric and we obtained fixed point theorems for
generalized contractions with respect to mw-distances on complete quasi-
metric spaces.

Definition 1. (Definition 3 of [1]) An mw-distance on a quasi-metric space
(X, d) is a function q : X ×X → R+ satisfying the following conditions:
(W1) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X;
(W2) q(x, ·) : X → R+ is lower semicontinuous on (X, τd−1) for all x ∈ X;
(mW3) for each ε > 0 there exists δ > 0 such that if q(y, x) ≤ δ and
q(x, z) ≤ δ then d(y, z) ≤ ε.

Note that the concepts of w-distance and mw-distance are independent
(see examples of [1]) both in quasi-metric spaces and metric spaces.
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In this paper we prove a quasi-metric version of Caristi’s fixed point the-
orem by using mw-distances which generalizes Theorem B. We also obtain a
generalization of Theorem A similar to Theorem C but using mw-distances
instead of w-distances.

We start by recalling several notions and properties of the theory of
quasi-metric spaces. Our basic reference is [4].

A quasi-metric on a set X is a function d : X × X → R+ such that
for all x, y, z ∈ X: (i) d(x, y) = d(y, x) = 0 if and only if x = y; (ii)
d(x, y) ≤ d(x, z) + d(z, y).

A quasi-metric space is a pair (X, d) such that X is a set and d is a
quasi-metric on X.

Each quasi-metric d on a set X induces a T0 topology τd on X which
has as a base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where
Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.

If d is a quasi-metric on X then τd is a T1 topology if and only if d(x, y) =
0 implies x = y.

Given a quasi-metric d on X, the function d−1 defined by d−1(x, y) =
d(y, x) for all x, y ∈ X, is also a quasi-metric on X, called conjugate quasi-
metric, and the function ds defined by ds(x, y) = max{d(x, y), d(y, x)} for
all x, y ∈ X, is a metric on X.

There exist several different notions of Cauchy sequence and quasi-metric
completeness in the literature (see e.g. [4]). Here we will consider the
following ones.

A sequence (xn)n∈N in a quasi-metric (X, d) is said to be left (right)
K-Cauchy if for each ε > 0 there exists n0 ∈ N such that d(xn, xm) ≤ ε
whenever n0 ≤ n ≤ m (n0 ≤ m ≤ n).

A quasi-metric space (X, d) is d−1-complete if every left K-Cauchy se-
quence (xn)n∈N in (X, d) converges with respect to the topology τd−1 , i.e.,
there exists z ∈ X such that d(xn, z)→ 0.

Note that our notion of d−1-completeness of (X, d) coincides with the
usual notion of right K-sequential completeness of (X, d−1).

2 The results

The following lemma is necessary to prove our main result (Theorem 1 be-
low).

Lemma 1. Let (X, d) be a quasi-metric space, q an mw−distance on (X, d)
and (xn)n∈N a sequence in X. If for each ε > 0 there exists n0 ∈ N such that
q(xn, xm) ≤ ε whenever n0 ≤ n < m, then (x2n)n∈N and (x2n−1)n∈N are left
K-Cauchy sequences in (X, d).
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Proof. Let ε > 0. By (mW3), there exists δ > 0 such that if q(y, x) ≤ δ and
q(x, z) ≤ δ then d(y, z) ≤ ε.

By hypothesis, there exists n0 such that q(xn, xm) ≤ δ whenever n0 ≤
n < m. Then, q(x2n, x2n+1) ≤ δ and q(x2n+1, x2m) ≤ δ whenever n0 ≤ n <
m. Consequently, d(x2n, x2m) ≤ ε whenever n0 ≤ n ≤ m.

In a similar way it is proved that (x2n−1)n∈N is a left K-Cauchy sequence.

Recall that if X is a (nonemptyset) set, a function f : X → R ∪ {∞} is
said to be proper if there exists x ∈ X such that f(x) <∞.

In [7], the authors introduced the notion of nearly lower semicontinuity
which is a generalization of the concept of lower semicontinuity. A proper
function f : X → R ∪ {∞} is nearly semicontinuous on the quasi-metric
space (X, d) if whenever (xn)n∈N is a sequence of distinct points of X that
τd converges to some x ∈ X then f(x) ≤ lim infn→∞ f(xn).

Theorem 1. Let T be a self mapping of a d−1-complete quasi-metric space
(X, d) and let q be an mw−distance on (X, d). If there exists a proper
bounded below and nearly lower semicontinuous function for τd−1 , ϕ : X →
R∪{∞} such that q(x, Tx) +ϕ(Tx) ≤ ϕ(x), for all x ∈ X, then there exists
z ∈ X such that ϕ(Tz) = ϕ(z) and q(z, Tz) = 0.

Proof. For each x ∈ X let

S(x) = {y ∈ X : q(x, y) + ϕ(y) ≤ ϕ(x)}.

Since Tx ∈ S(x), we have that S(x) 6= ∅ for all x ∈ X. Let

i(x) = inf{ϕ(y) : y ∈ S(x)}.

Let x1 ∈ X such that ϕ(x1) < ∞. There exists x2 ∈ S(x1) such that
ϕ(x2) ≤ i(x1) + 1. Following this process we obtain a sequence (xn)n∈N in
X such that

xn+1 ∈ S(xn),

ϕ(xn+1) <∞,

and

ϕ(xn+1) ≤ i(xn) +
1

n

for all n ∈ N. Since q(xn, xn+1)+ϕ(xn+1) ≤ ϕ(xn), the sequence (ϕ(xn))n∈N
is non-increasing. So, limn→∞ ϕ(xn) exists. Put l = limn→∞ ϕ(xn).

Now we prove that (x2n)n∈N is a left K-Cauchy sequence in (X, d).
If m > n, then

q(xn, xm) ≤
m−1∑
i=n

q(xi, xi+1) ≤
m−1∑
i=n

(ϕ(xi)− ϕ(xi+1)) = ϕ(xn)− ϕ(xm)
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Since (ϕ(xn))n∈N is a Cauchy sequence, given ε > 0 there exists n0 ∈ N
such that if n0 ≤ n ≤ m then ϕ(xn) − ϕ(xm) < ε. Therefore q(xn, xm) ≤
ε whenever n0 ≤ n < m. From Lemma 1, (x2n)n∈N is a left K-Cauchy
sequence.

Without loss of generality, we distinguish the following two cases.

Case 1. The sequence (x2n)n∈N is eventually constant. Then there exists
n0 ∈ N such that x2n = x2n0 for all n ≥ n0. Since

ϕ(x2n+2)−
1

2n
≤ ϕ(x2n+1)−

1

2n
≤ i(x2n) ≤ ϕ(x2n+1) ≤ ϕ(x2n),

then

ϕ(x2n0)− 1

2n
≤ i(x2n0) ≤ ϕ(x2n0),

for all n ≥ n0. Taking limits, we obtain that i(x2n0) = ϕ(x2n0). Since
Tx2n0 ∈ S(x2n0), then i(x2n0) ≤ ϕ(Tx2n0) ≤ ϕ(x2n0), so ϕ(Tx2n0) =
ϕ(x2n0) and q(x2n0 , Tx2n0) = 0.

Case 2. x2n 6= x2m for all n,m ∈ N with n 6= m. Since (X, d) is d−1-
complete there exists z ∈ X such that (x2n) converges to z in (X, τd−1).

Next we show that z ∈ S(x2n) for all n ∈ N.
Let n ∈ N and let ε > 0. Since q(x2n, ·) is a lower semicontinuous

function on (X, τd−1) and ϕ is a nearly lower semicontinuous function on
(X, τd−1), there exists m0 > n such that if m ≥ m0 then

q(x2n, z)− q(x2n, x2m) < ε

and
ϕ(z)− ϕ(x2m) < ε.

Then

q(x2n, z) < q(x2n, x2m) + ε ≤ ϕ(x2n)− ϕ(x2m) + ε < ϕ(x2n)− ϕ(z) + 2ε.

Therefore
q(x2n, z) + ϕ(z) ≤ ϕ(x2n),

i.e., z ∈ S(x2n) for all n ∈ N.
Since 0 ≤ q(x2n, z) ≤ ϕ(x2n)−ϕ(z), we have that ϕ(z) ≤ ϕ(x2n), for all

n ∈ N. So ϕ(z) ≤ l.
Since ϕ(z) ≥ i(x2n), for all n ∈ N, and l = limn→∞ i(xn) because

ϕ(xn+1) ≤ i(xn)+ 1
n ≤ ϕ(xn+1)+ 1

n , we obtain that ϕ(z) ≥ l. Hence l = ϕ(z).
On the other hand,

q(x2n, T z) ≤ q(x2n, z)+q(z, Tz) ≤ ϕ(x2n)−ϕ(z)+ϕ(z)−ϕ(Tz) = ϕ(x2n)−ϕ(Tz).

Therefore, Tz ∈ S(x2n) for all n ∈ N.
By using a similar argument to the one given above we obtain that

l = ϕ(Tz). Hence ϕ(z) = ϕ(Tz) and, consequently, q(z, Tz) = 0.
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Since every quasi-metric d on X is an mw−distance on (X, d), we obtain
the following corollary.

Corollary 1. Let T be a self mapping of a d−1-complete quasi-metric space
(X, d). If there exists a proper bounded below and nearly lower semicontinu-
ous function for τd−1 , ϕ : X → R∪{∞} such that d(x, Tx) +ϕ(Tx) ≤ ϕ(x),
for all x ∈ X, then there exists z ∈ X such that ϕ(Tz) = ϕ(z) and
d(z, Tz) = 0.

This corollary is equivalent to Theorem B because a quasi-metric space
(X, d) is right K-sequentially complete if and only if (X, d−1) is d−complete.
Theorem B can be obtained directly from Theorem 1 taking q = d−1.

On the other hand, since the class of the nearly lower semicontinuos
functions on a metric space (X, d) coincides with the class of the lower
semicontinuous functions on (X, d), we obtain a generalization of Caristi’s
fixed point theorem in the same direction as Theorem B.

Corollary 2. Let T be a self mapping of a complete metric space (X, d) and
let q be an mw−distance on (X, d). If there exists a proper bounded below
and lower semicontinuous function ϕ : X → R ∪ {∞} such that q(x, Tx) +
ϕ(Tx) ≤ ϕ(x), for all x ∈ X, then T has a fixed point.

Proof. By Theorem 1, there exists z ∈ X such that ϕ(Tz) = ϕ(z) and
q(z, Tz) = 0. Now we are going to prove that z = Tz.

Given ε > 0 there exists δ > 0 such that if q(y, x) ≤ δ and q(x, z) ≤ δ
then d(y, z) ≤ ε. Since q(xn, z) ≤ ϕ(xn)− ϕ(z), for all n ∈ N and l = ϕ(z),
there exists n0 ∈ N such that q(xn, z) ≤ δ for all n ≥ n0. Since q(z, Tz) = 0 <
δ, we have that d(xn, T z) < ε for all n ≥ n0. Therefore (xn)n∈N converges
to Tz. Consequently Tz = z.

Remark 1. As mentioned above Caristi’s fixed point theorem for met-
ric spaces is a generalization of the Banach contraction principle. This is
because if T is a contractive self mapping of a metric space (X, d), then
ϕ(x) = 1

1−rd(x, Tx), where r is the contractivity constant, is a lower semi-
continuous function on X and d(x, Tx)+ϕ(Tx) ≤ ϕ(x). This is not the case
in the quasi-metric framework. In fact, the Banach contraction principle
is not fulfilled if the complete metric space is replaced by a d−1-complete
quasi-metric space. For instance, if X = {1/n : n ∈ N} and d is the quasi-
metric on X given by d(x, x) = 0 and d(x, y) = x if x 6= y then (X, d) is
d−1-complete and the self mapping of X given by Tx = x/2 is contractive
but it has not fixed point. Note that T is not a Caristi type mapping be-
cause if that was the case, by Corollary 1, there exists z ∈ X such that
d(z, Tz) = 0 and then T has a fixed point since (X, τd) is a T1 topological
space.
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Remark 2. As was expected, in Theorem 1 the condition q(x, Tx) +
ϕ(Tx) ≤ ϕ(x), for all x ∈ X, can not be replaced by the condition q(Tx, x)+
ϕ(Tx) ≤ ϕ(x), for all x ∈ X. Indeed, if X = {1/n : n ∈ N}, d is the quasi-
metric on X given by d(x, y) = y−x if x ≤ y and d(x, y) = 1 if x > y, q = d
and ϕ is a function on X given by ϕ(x) = x, the self mapping of X given
by Tx = x/2, satisfies that

q(Tx, x) + ϕ(Tx) =
x

2
+
x

2
= ϕ(x)

and nevertheless Tz 6= z for every z ∈ X.

Finally, we give a characterization of d−1-completeness in terms of the
quasi-metric version of Caristi’s fixed point theorem given in Theorem 1.
For this purpose, we give the following definition.

Definition 2. Let T a self mapping of the quasi-metric space (X, d). We
say that T is (q, ϕ)-Caristi if q is an mw−distance on (X, d) and ϕ : X →
R∪{∞} is a proper bounded below and nearly lower semicontinuous function
for τd−1 such that q(x, Tx) + ϕ(Tx) ≤ ϕ(x), for all x ∈ X.

The following example shows that if q is an mw−distance on the quasi-
metric space (X, d) and ϕ : X → R ∪ {∞} is a proper bounded below and
nearly lower semicontinuous function for τd−1 , then there exist (q, ϕ)-Caristi
self mappings of X which are not (d, ϕ)-Caristi.

Example 1. Let X = N and let d be the quasi-metric on X given by
d(x, x) = 0 and d(x, y) = x for all x, y ∈ X. Clearly, τd is the discrete
topology on X and τd−1 = τd. Let q be the mw-distance on (X, d) given by
q(1, 1) = 0 and q(x, y) = 1/2 otherwise. Define T : X → X as T1 = 1 and
Tx = x − 1 for all x > 1. If we consider the function ϕ : X → R given by
ϕ(x) = x, then ϕ is nearly lower semicontinuous for τd−1 , q(1, T1) = 0 =
ϕ(1)− ϕ(T1) and if x > 1, then

q(x, Tx) = 1/2 < 1 = ϕ(x)− ϕ(Tx).

Therefore T is (q, ϕ)-Caristi. Nevertheless T is not (d, ϕ)-Caristi because
d(x, Tx) > ϕ(x)− ϕ(Tx), for all x > 1.

Theorem 2. Let (X, d) be a quasi-metric space. Then (X, d) is d−1-complete
if and only for every (q, ϕ)-Caristi self mapping T of X exists z ∈ X such
that ϕ(z) = ϕ(Tz) and q(z, Tz) = 0.

Proof. From Theorem 1 we have the direct. For the converse, we suppose
that X is not d−1-complete. Then (X, d−1) is not right K-sequentially
complete. By (2)→(1) of Theorem 2 of [7], there exist a self mapping T
of X and a proper bounded below and nearly lower semicontinuous function
for τd−1 , ϕ : X → R ∪ {∞} such that d−1(Tx, x) + ϕ(Tx) ≤ ϕ(x), for all

7



x ∈ X and ϕ(Tz) 6= ϕ(z) for all z ∈ X. Therefore T is a (d, ϕ)−Caristi
self mapping of X such that for all z ∈ X, ϕ(Tz) 6= ϕ(z) and this is a
contradiction.
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