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COMPUTATIONAL METHODS FOR

RANDOM DIFFERENTIAL EQUATIONS:

PROBABILITY DENSITY FUNCTION

AND ESTIMATION OF THE PARAMETERS

AUTHOR

JULIA CALATAYUD GREGORI

ADVISER

PhD JUAN CARLOS CORTÉS LÓPEZ
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Abstract

Mathematical models based on deterministic differential equations do not take
into account the inherent uncertainty of the physical phenomenon (in a wide
sense) under study. In addition, inaccuracies in the collected data often arise
due to errors in the measurements. It thus becomes necessary to treat the input
parameters of the model as random quantities, in the form of random variables
or stochastic processes. This gives rise to the study of random ordinary and
partial differential equations.

The computation of the probability density function of the stochastic solution
is important for uncertainty quantification of the model output. Although such
computation is a difficult objective in general, certain stochastic expansions for
the model coefficients allow faithful representations for the stochastic solution,
which permits approximating its density function. In this regard, Karhunen-
Loève and generalized polynomial chaos expansions become powerful tools for
the density approximation. Also, methods based on discretizations from finite
difference numerical schemes permit approximating the stochastic solution,
therefore its probability density function.

The main part of this dissertation aims at approximating the probability den-
sity function of important mathematical models with uncertainties in their
formulation. Specifically, in this thesis we study, in the stochastic sense, the
following models that arise in different scientific areas: in Physics, the model
for the damped pendulum; in Biology and Epidemiology, the models for logistic
growth and Bertalanffy, as well as epidemiological models; and in Thermody-
namics, the heat partial differential equation. We rely on Karhunen-Loève and
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generalized polynomial chaos expansions and on finite difference schemes for
the density approximation of the solution.

These techniques are only applicable when we have a forward model in which
the input parameters have certain probability distributions already set. When
the model coefficients are estimated from collected data, we have an inverse
problem. The Bayesian inference approach allows estimating the probability
distribution of the model parameters from their prior probability distribution
and the likelihood of the data. Uncertainty quantification for the model output
is then carried out using the posterior predictive distribution.

In this regard, the last part of the thesis shows the estimation of the distri-
butions of the model parameters from experimental data on bacteria growth.
To do so, a hybrid method that combines Bayesian parameter estimation and
generalized polynomial chaos expansions is used.

Keywords: random ordinary and partial differential equation, uncertainty
quantification, probability density function, spectral expansions, Bayesian in-
verse problem.

Mathematics Subject Classification 2010: 34F05, 35R60, 60H10, 60H15,
60H35, 62F15.
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Resum

Els models matemàtics basats en equacions diferencials deterministes no tenen
en compte la incertesa inherent al fenomen f́ısic (en un sentit ampli) sota es-
tudi. A més a més, sovint es produeixen inexactituds en les dades recollides
a causa d’errors de mesurament. Es fa aix́ı necessari tractar els paràmetres
d’entrada del model com a quantitats aleatòries, en forma de variables aleatòries
o processos estocàstics. Açò dóna lloc a l’estudi de les equacions diferencials
aleatòries.

El càlcul de la funció de densitat de probabilitat de la solució estocàstica és
important per a quantificar la incertesa de la sortida del model. Tot i que,
en general, aquest càlcul és un objectiu dif́ıcil d’assolir, certes expansions es-
tocàstiques dels coeficients del model donen lloc a representacions fidels de la
solució estocàstica, el que permet aproximar la seua funció de densitat. En
aquest sentit, les expansions de Karhunen-Loève i de caos polinomial general-
itzat esdevenen eines per a l’esmentada aproximació de la densitat. A més a
més, els mètodes basats en discretitzacions mitjançant esquemes numèrics de
diferències finites permeten aproximar la solució estocàstica, per tant la seua
funció de densitat de probabilitat.

La part principal d’aquesta dissertació té com a objectiu aproximar la funció
de densitat de probabilitat d’importants models matemàtics amb incerteses
en la seua formulació. Concretament, en aquesta memòria s’estudien, en
un sentit estocàstic, els següents models que apareixen en diferents àrees
cient́ıfiques: en F́ısica, el model del pèndol amortit; en Biologia i Epidemi-
ologia, els models de creixement loǵıstic i de Bertalanffy, aix́ı com models de
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tipus epidemiològic; i en Termodinàmica, l’equació en derivades parcials de la
calor. Per a l’aproximació de la densitat de la solució, ens basem en expan-
sions de Karhunen-Loève i de caos polinomial generalitzat i en esquemes de
diferències finites.

Aquestes tècniques només són aplicables quan tenim un model cap avant en
què els paràmetres d’entrada tenen ja determinades distribucions de probabi-
litat. Quan els coeficients del model s’estimen a partir de les dades recollides,
tenim un problema invers. L’enfocament de la inferència Bayesiana permet
estimar la distribució de probabilitat dels paràmetres del model a partir de
la seua distribució de probabilitat prèvia i la versemblança de les dades. La
quantificació de la incertesa per a la resposta del model es fa mitjançant la
distribució predictiva a posteriori.

En aquest sentit, l’última part de la tesi mostra l’estimació de les distribucions
dels paràmetres del model a partir de dades experimentals sobre el creixement
de bacteris. Per a fer-ho, s’utilitza un mètode h́ıbrid que combina l’estimació
de paràmetres Bayesiana i els desenvolupaments de caos polinomial generalit-
zat.

Paraules clau: equació diferencial aleatòria, quantificació de la incertesa,
funció de densitat de probabilitat, expansions espectrals, problema invers
Bayesià.

Classificació temàtica de matemàtiques 2010: 34F05, 35R60, 60H10,
60H15, 60H35, 62F15.
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Resumen

Los modelos matemáticos basados en ecuaciones diferenciales deterministas no
tienen en cuenta la incertidumbre inherente del fenómeno f́ısico (en un sentido
amplio) bajo estudio. Además, a menudo se producen inexactitudes en los
datos recopilados debido a errores en las mediciones. Por lo tanto, es necesario
tratar los parámetros de entrada del modelo como cantidades aleatorias, en
forma de variables aleatorias o procesos estocásticos. Esto da lugar al estudio
de las ecuaciones diferenciales aleatorias.

El cálculo de la función de densidad de probabilidad de la solución estocástica
es importante en la cuantificación de la incertidumbre de la respuesta del mod-
elo. Aunque dicho cálculo es un objetivo dif́ıcil en general, ciertas expansiones
estocásticas para los coeficientes del modelo dan lugar a representaciones fieles
de la solución estocástica, lo que permite aproximar su función de densidad.
En este sentido, las expansiones de Karhunen-Loève y de caos polinomial gen-
eralizado constituyen herramientas para dicha aproximación de la densidad.
Además, los métodos basados en discretizaciones de esquemas numéricos de
diferencias finitas permiten aproximar la solución estocástica, por lo tanto, su
función de densidad de probabilidad.

La parte principal de esta disertación tiene como objetivo aproximar la función
de densidad de probabilidad de modelos matemáticos importantes con incer-
tidumbre en su formulación. Concretamente, en esta memoria se estudian,
en un sentido estocástico, los siguientes modelos que aparecen en diferentes
áreas cient́ıficas: en F́ısica, el modelo del péndulo amortiguado; en Bioloǵıa y
Epidemioloǵıa, los modelos de crecimiento loǵıstico y de Bertalanffy, aśı como
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modelos de tipo epidemiológico; y en Termodinámica, la ecuación en derivadas
parciales del calor. Utilizamos expansiones de Karhunen-Loève y de caos poli-
nomial generalizado y esquemas de diferencias finitas para la aproximación de
la densidad de la solución.

Estas técnicas solo son aplicables cuando tenemos un modelo directo en el que
los parámetros de entrada ya tienen determinadas distribuciones de probabi-
lidad establecidas. Cuando los coeficientes del modelo se estiman a partir de
los datos recopilados, tenemos un problema inverso. El enfoque de inferencia
Bayesiana permite estimar la distribución de probabilidad de los parámetros
del modelo a partir de su distribución de probabilidad previa y la verosimili-
tud de los datos. La cuantificación de la incertidumbre para la respuesta del
modelo se lleva a cabo utilizando la distribución predictiva a posteriori.

En este sentido, la última parte de la tesis muestra la estimación de las dis-
tribuciones de los parámetros del modelo a partir de datos experimentales
sobre el crecimiento de bacterias. Para hacerlo, se utiliza un método h́ıbrido
que combina la estimación de parámetros Bayesianos y los desarrollos de caos
polinomial generalizado.

Palabras clave: ecuación diferencial aleatoria, cuantificación de la incer-
tidumbre, función de densidad de probabilidad, expansiones espectrales, pro-
blema inverso Bayesiano.

Clasificación temática de matemáticas 2010: 34F05, 35R60, 60H10,
60H15, 60H35, 62F15.
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Chapter 1

Introduction

Mathematical models based on random differential and difference equations
consider input parameters as random variables or stochastic processes [104,
125, 129]. The aim of this kind of models is at capturing the uncertainty often
met in the analysis of complex phenomena. This randomness comes from
errors in measurements or estimations, a lack of information, or ignorance of
the phenomenon under analysis.

The primary goal of uncertainty quantification consists in understanding the
main probabilistic features of the model output, by computing its statistical
moments (mainly the mean and the variance), confidence intervals, etc. [124].
The most well-known method to approach this problem is Monte Carlo sim-
ulation [60]. It is easy to implement and effective, but may be computa-
tionally expensive. A quite latest alternative is based on generalized poly-
nomial chaos (gPC) expansions and the stochastic Galerkin projection tech-
nique [24, 33, 35, 46, 90, 117, 126, 138, 142, 143, 144]. The stochastic solution
is approximated as a linear combination of orthogonal polynomials with re-
spect to the distributions of the input coefficients. This expansion usually
converges at algebraic/exponential rate (spectral convergence) in the mean
square sense [21, 121, 142].

Apart from computing the mean and the variance, a major goal in dealing with
stochastic models is to calculate the set of (first) probability density functions
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of the solution process at each time instant [125, p. 35]. By means of the
probability density function, all the statistical moments and confidence inter-
vals corresponding to the solution process can be determined, provided they
exist [125, Ch. 2–3]. When dealing with stochastic problems with a closed-
form solution, the Random Variable Transformation (RVT) technique has been
widely used to calculate the density function of the solution, see [23, 29, 52]
in the setting of random differential equations, [23, 53, 72, 73, 74, 146] in
the context of random partial differential equations, and [44] for random dif-
ference equations. When no explicit form of the solution is available or it
is given via infinite analytic expressions (such as random power series, ran-
dom eigenfunctions expansions, etc.), one usually constructs a sequence of ap-
proximating processes, whose exact density functions (computed via the RVT
technique) form a sequence of approximating density functions that converge
rapidly. This methodology has been carried out via numerical methods [57],
Karhunen-Loève expansions [17, 19] (see [89] for the theory on these expan-
sions), polynomial expansions [14], or random power series [17, 45], and it has
supposed an improvement compared with Monte Carlo simulation and Kernel
density estimations in terms of rate of convergence and accuracy.

In this dissertation, we aim at approximating the probability density function
of the stochastic solution to certain mathematical models with uncertainties
(damped pendulum, logistic growth, Bertalanffy, heat, etc.). We will rely on
spectral expansions based on Karhunen-Loève and gPC developments, and on
numerical schemes based on finite differences.

These techniques are applicable when we have a forward model in which the
input parameters have certain probability distributions already set. But in
general, to determine the distribution of the model parameters, experimental
data needs to be used. The process of adjusting the coefficients in virtue of col-
lected data is called an inverse problem. The Bayesian approach for parameter
estimation allows making statistical inference from prior probabilistic informa-
tion of the parameters and the likelihood associated to the data. The output
of the Bayesian inference is a posterior probability distribution for each of the
parameters, which permits quantifying uncertainty via the posterior predictive
distribution.

The last part of this dissertation addresses the problem of estimating the equa-
tion parameters in mathematical models on bacteria growth, using a hybrid
method that combines Bayesian inference and gPC expansions.

This thesis is organized in different chapters as follows:
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In Chapters 2–7 the main goal is to approximate the probability density func-
tion for different random models based on ordinary and partial differential
equations. We start in Chapter 2 with a linear differential equation model for
the damped pendulum, where the damping ratio, the natural frequency, the
initial position and velocity are random variables, and the harmonic excitation
is a stochastic process. In Chapter 3 we address the nonlinear differential equa-
tion for logistic growth, where the diffusion coefficient is a stochastic process
and the initial condition is a random variable. Chapter 4 studies Bertalanffy
model for the growth of organisms, where the coefficients of anabolism and
catabolism are considered as stochastic processes. These three chapters use
Karhunen-Loève expansions for the stochastic data. In Chapter 5 we com-
bine gPC expansions and the RVT method for the density approximation in
stochastic problems, with applications to epidemic models having one random
input parameter. In Chapters 6 and 7 we move to random partial differ-
ential equations: for the heat partial differential equation with uncertainties
on a bounded domain, we perform density approximations using Karhunen-
Loève expansions for the stochastic coefficients and finite difference numerical
schemes, respectively. Chapter 8 aims at adjusting model coefficients from
experimental data on bacteria growth, by combining Bayesian parameter es-
timation and gPC expansions. The last chapter, Chapter 9, draws the main
conclusions of the thesis.
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Chapter 2

The damped pendulum
random differential equation:

stochastic analysis via the
computation of the

probability density function

This chapter deals with the damped pendulum random differential
equation: Ẍ(t) + 2ω0ξẊ(t) + ω2

0X(t) = Y (t), t ∈ [0, T ], with initial condi-

tions X(0) = X0 and Ẋ(0) = X1. The forcing term Y (t) is a stochastic
process and X0 and X1 are random variables in a common underlying
complete probability space (Ω,F ,P). The term X(t) is a stochastic process
that solves the random differential equation in both the sample path and in
the Lp senses. To understand the probabilistic behavior of X(t), we need
its joint finite-dimensional distributions. We establish mild conditions un-
der which X(t) is an absolutely continuous random variable, for each t,
and we find its probability density function fX(t)(x). Thus, we obtain the
first finite-dimensional distributions. In practice, we deal with two types
of forcing term: Y (t) is a Gaussian process, which occurs with the damped
pendulum stochastic differential equation of Itô type; and Y (t) can be ap-
proximated by a sequence {YN(t)}∞N=1 in L2([0, T ]×Ω), which occurs with
Karhunen-Loève expansions and some random power series. Finally, we
provide numerical examples in which we choose specific random variables
X0 and X1 and a specific stochastic process Y (t), and then, we find the
probability density function of X(t).

5



Chapter 2.

2.1 Introduction and motivation

The study of the damped pendulum differential equation with uncertainties
has been tackled using different approaches, namely, the random and the Itô
approaches, [124, pp. 96–97], [6]. In the former case, uncertainty is manifested
in coefficients, initial/boundary conditions and/or forcing term via random
variables and/or functions whose sample behavior is regular (e.g., continu-
ous). This approach leads to the so-called Random Differential Equations
(RDEs). While in the latter case, uncertainty is forced through an irregular
stochastic process such as a Wiener process or Brownian motion. In this case,
Stochastic Differential Equations (SDEs) are formulated. SDEs are typically
written in terms of stochastic differentials, but they are interpreted as Itô
stochastic integrals. Nevertheless, if the integrand of the involved Itô integral
is deterministic, SDEs can be treated as RDEs too. This is the case when
the forcing term is just the White noise stochastic process. This particular
situation will be studied later. Throughout our contribution RDEs will be
considered only.

On the one hand, in [125, p. 161] the author analyzes the damped pendu-
lum RDE when the forcing term is nonwhite and assuming that it is mean
square continuous and wide-sense stationary with zero mean and having a
given correlation function. On the other hand, recently in [71] the authors
have provided an efficient computational method, based upon generalized hat
basis functions, for solving stochastic Itô differential equations written in their
integral equivalent form. In [71], a nice analysis of the stochastic pendulum
problem is included. In both papers, a key objective is the computation of
reliable approximations for the mean and the variance of the solution stochas-
tic process. In [94], the author deals with the study of an oscillator subject
to a random multiplicative noise with a spectral density (or power-spectrum)
that decays as a power law at high frequencies. Although the computation
of the first two statistical moments (mean and variance) of the solution is an
important goal, in general, a more ambitious target is the computation of the
exact or approximate probability distribution of the solution stochastic pro-
cess to RDEs. In particular, a major challenge is to determine the probability
density function of the solution, since from it one can obtain a full charac-
terization of all one-dimensional statistical moments of the solution (hence
including, just as particular cases, the mean and the variance). We point
out that the computation of the probability density function of the solution
stochastic process of some random ordinary and partial differential equations
describing relevant problems in Physics and Engineering has been achieved,
[53, 118, 55, 54, 72, 73, 74, 59, 146].
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2.1 Introduction and motivation

In this chapter, we deal with the computation of the probability density func-
tion of the random initial value problem

Ẍ(t) + 2ω0ξẊ(t) + ω2
0X(t) = Y (t), t ∈ [0, T ],

X(0) = X0,

Ẋ(0) = X1,

(2.1)

under mild conditions on the random input data X0, X1 and Y (t). Here,
T > 0, w0 6= 0, ξ 6= 0 and ξ2 < 1 (underdamped case) are constant [125,
Example 7.2]. We are assuming an underlying complete probability space
(Ω,F ,P), where Ω is the sample space, F is a σ-algebra of events and P is a
probability measure. The outcomes (i.e., the elements of Ω) will be generically
denoted by ω. The initial position X0 and the initial velocity X1 are random
variables and the source/forcing term Y (t) is a stochastic process. The term
X(t) is a stochastic process that solves (2.1) in some probabilistic sense, see
Theorem 2.2. When we want to make the dependence on ω ∈ Ω explicit, we
will write X0(ω), X1(ω), Y (t, ω) and X(t, ω).

Notation 2.1 In this chapter, we will work with Lebesgue spaces. Given a
measure space (S,A, µ), where S is an abstract set, A is the σ-algebra and µ
is the measure, we will use the notation Lp(S), 1 ≤ p <∞, for the real-valued
p-integrable measurable mappings in the Lebesgue sense: f : S → R such that
‖f‖Lp(S) := (

∫
S
|f |p dµ)1/p < ∞. When p = ∞, the norm in L∞(S) is given

by ‖f‖L∞(S) = inf{sup{|f(x)| : x ∈ S\N} : µ(N) = 0} (this norm is the so-
called “essential supremum”). In this chapter, we will work with the particular
cases of S being a real interval I with the real Lebesgue measure dµ = dx,
S being a sample space Ω0 with a probability measure µ = Q (we write
dµ = dQ = Q(dx), where x ∈ Ω0 is the variable of integration), and S being a
product space I × Ω0 with the product measure dµ = dx × dQ. Notice that,
in the latter case, the p-norm of a measurable map f : I ×Ω0 → R is given by
‖f‖Lp(I×Ω0) = (E[

∫
I
|f(x)|p dx])1/p, where E stands for the expectation operator

with respect to the probability Q. The important case p = 2 corresponds to
the so-called mean square stochastic convergence that will be explicitly used
in this chapter. The shorten notation a.e. and a.s. will stand for “almost
every” or “almost everywhere”, and “almost surely”, respectively.

One way to find a formal solution to (2.1) is by acting as in the determin-
istic case. The second-order linear differential equation is equivalent to the
following first-order system of linear differential equations:(

Ẋ(t)

Ẍ(t)

)
=

(
0 1
−ω2

0 −2ω0ξ

)(
X(t)

Ẋ(t)

)
+

(
0

Y (t)

)
. (2.2)
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Using the theory on deterministic first-order systems of linear differential equa-
tions, one obtains that a formal solution to (2.1) is given by

X(t) =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0

+
e−ω0ξt sin(ω1t)

ω1

X1 +

∫ t

0

h(t− s)Y (s) ds, (2.3)

where

ω1 = ω0

√
1− ξ2 6= 0, h(t) =

1

ω1

e−ξω0t sin(ω1t). (2.4)

The goal of this contribution is to provide a comprehensive stochastic analysis
of the random initial value problem (2.1) via the exact or approximate com-
putation of the probability density function of its solution stochastic process
(2.3)–(2.4). Furthermore, for the sake of completeness, we first establish the
following theorem where we show that the stochastic process (2.3)–(2.4) is a
rigorous solution to (2.1) in the two main probabilistic senses usually consid-
ered in dealing with RDEs, namely the sample path sense and the Lp sense
(see for instance [125, Appendix A] and [125, Ch. 5–8], respectively).

Theorem 2.2 The following hold:

• Sample path solution: Suppose that the integral
∫ t

0
h(t − s)Y (s) ds in

(2.3) is interpreted as a Lebesgue integral for each ω ∈ Ω fixed (this is
sometimes referred to as SP integral, see [129, Def. A–1]). If Y has
sample paths in L1([0, T ]), then X is the unique process with C1([0, T ])
sample paths, having absolutely continuous derivatives, that solve (2.1)
for a.e. t ∈ [0, T ]. If Y has continuous sample paths, then X is the unique
process with C2([0, T ]) sample paths that solve (2.1) for every t ∈ [0, T ].

• Lp-solution: Suppose that the integral
∫ t

0
h(t − s)Y (s) ds in (2.3) is in-

terpreted as an Lp-Riemann integral (see [125, p. 100]). If Y is Lp-
continuous and X0, X1 ∈ Lp(Ω), then X is the unique Lp-solution [125,
p. 118].

Proof. The first part is a consequence of the theory on deterministic differen-
tial equations (see Carathéodory theory in [68, pp. 28–30]). The second part
follows from [125, Th. 7.1.1].

�
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2.2 Probability density function of the solution stochastic process

We will address the following important cases regarding the random nature
of the forcing term Y (t): (1) it is Gaussian, and in particular, a White noise
stochastic process; (2) it can be represented via a Karhunen-Loève expansion,
and (3) it can be represented via a mean square random power series.

This chapter is organized as follows. In Section 2.2, we first establish a key
lemma that will be extensively used throughout the chapter. This result allows
us to give useful expressions for the probability density function, fX(t)(x), of
the solution stochastic process X(t) given by (2.3)–(2.4) in terms of the ex-
pectation operator or explicitly. In Subsection 2.2.1, these expressions are also
obtained in the significant case that the forcing term Y (t) is Gaussian. This
particular analysis includes the case in which Y (t) is the White noise stochas-
tic process that involves an Itô type SDE. Subsection 2.2.2 addresses the study
of the RDE (2.1) in the case that the forcing term can be approximated by
a stochastic process in L2([0, T ] × Ω). After providing general results in this
setting, the analysis is divided into two important cases: (i) Y (t) is expressed
via a Karhunen-Loève expansion (see Subsubsection 2.2.2) and (ii) Y (t) is
expressed via a mean square random power series (see Subsubsection 2.2.2).
Section 2.3 is devoted to illustrating our findings by means of a wide range of
numerical examples. Finally, conclusions are drawn in Section 2.4.

2.2 Probability density function of the solution stochastic
process

Our main goal in this chapter is to establish conditions under which the solu-
tion stochastic process X(t) given by (2.3)–(2.4) is an absolutely continuous
random variable for each t ∈ [0, T ], and then to compute its probability density
function, fX(t)(x). Physically, the existence and computation of the probabil-
ity density function of X(t) means that the probability for the response to lie
in a certain set A at time t can be calculated as P(X(t) ∈ A) =

∫
A
fX(t)(x) dx.

This allows computing the main statistical properties of the response process
X(t), say the mean, variance, or any specific moment.

For that purpose, we need the following key lemma.

Lemma 2.3 [8, pp. 266–267] Let Z1 and Z2 be two independent real random
variables defined in a common complete probability space (Ω,F ,P). Suppose
that Z1 is absolutely continuous. Then Z1 + Z2 is absolutely continuous and
has density function fZ1+Z2

(u) = E[fZ1
(u− Z2)].
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In what follows, we will impose conditions on the initial position X0 and the
initial velocity X1, see H0H0H0 and H1H1H1, so that X(t) is an absolutely continuous
random variable, for each t. As we shall see in the subsequent development,
Lemma 2.3 will play a key role to obtain the probability density function of
X(t), fX(t)(x).

Fix t ∈ [0, T ]. We will assume one of the following two hypotheses:

H0H0H0: X0 is absolutely continuous, ξ sin(ω1t)√
1−ξ2

+ cos(ω1t) 6= 0, X0 and (X1, Y ) are

independent 1.

H1H1H1: X1 is absolutely continuous, sin(ω1t) 6= 0, X1 and (X0, Y ) are indepen-
dent.

Assume H0H0H0. Then, using the Random Variable Transformation technique [89,
Lemma 4.12],

Z1 =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0

is absolutely continuous, with density function given by

fZ1(z) = fX0

 z
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣ .
Taking into account expression (2.3) and applying Lemma 2.3 with Z2 =
e−ω0ξt sin(ω1t)

ω1
X1 +

∫ t
0
h(t− s)Y (s) ds, X(t) is absolutely continuous and

fX(t)(x)

= E

fX0

x− e−ω0ξt sin(ω1t)
ω1

X1 −
∫ t

0
h(t− s)Y (s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)


 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣ .
(2.5)

Assume H1H1H1. Proceeding as before, but now applying Lemma 2.3 with Z1 =
e−ω0ξt sin(ω1t)

ω1
X1 and Z2 = ( ξe

−ω0ξt sin(ω1t)√
1−ξ2

+e−ω0ξt cos(ω1t))X0+
∫ t

0
h(t−s)Y (s) ds,

1X0 and (X1, Y ) independent means that, for any points t1, . . . , tm ∈ [0, T ], m ≥ 1, the random
variable X0 and the random vector (X1, Y (t1), . . . , Y (tm)) are independent.
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2.2 Probability density function of the solution stochastic process

X(t) is absolutely continuous with density function

fX(t)(x)

= E

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

∫ t
0
h(t− s)Y (s) ds

e−ω0ξt sin(ω1t)

ω1




· 1
e−ω0ξt| sin(ω1t)|

|ω1|

. (2.6)

Summarizing, the following result has been established:

Proposition 2.4 The following statements hold:

• Assume H0H0H0, then the probability density function of the solution stochas-
tic process (2.3)–(2.4) to the random initial value problem (2.1) is given
by (2.5).

• Assume H1H1H1, then the probability density function of the solution stochas-
tic process (2.3)–(2.4) to the random initial value problem (2.1) is given
by (2.6).

In practice, the problem is to know the probability law of I(t) =
∫ t

0
h(t −

s)Y (s) ds. If we know the law PI(t) = P ◦ I(t)−1 of I(t), then (2.5) becomes

fX(t)(x) =
1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
R2

fX0

 x− e−ω0ξt sin(ω1t)

ω1
x1 − y

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

P(X1,I(t))(dx1,dy),

and (2.6) becomes

fX(t)(x)

=
1

e−ω0ξt| sin(ω1t)|
|ω1|

∫
R2

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 − y

e−ω0ξt sin(ω1t)

ω1


·P(X0,I(t))(dx0, dy).

11



Chapter 2.

As a consequence, both expressions for the probability density function fX(t)(x)
can be computed. In fact, one does not need to compute those integrals an-
alytically, since by sampling from X0, X1 and I(t), we can approximate the
expectations in (2.5) and (2.6) as accurate as desired by the Law of Large
Numbers (Monte Carlo simulation).

Our objective in the following subsections is to analyze important cases in
which (2.5) and (2.6) can be computed, or at least approximated, in prac-
tice. More specifically, the subsequent analysis will be split into two cases,
depending on the random nature of Y (t). First, in Subsection 2.2.1, we will
deal with Y (t) being a Gaussian stochastic process. This case will include
the damped pendulum stochastic differential equation of Itô type in Subsub-
section 2.2.1. Second, in Subsection 2.2.2, we will deal with a forcing term
Y (t) that can be approximated in L2([0, T ]×Ω). This second case will include
two significant situations: Y (t) is expressed as a Karhunen-Loève expansion,
in Subsubsection 2.2.2, and Y (t) is expressed as a random power series, in
Subsubsection 2.2.2.

2.2.1 Gaussian forcing term

Suppose that Y (t) is a Gaussian stochastic process. Then the process I(t) =

{
∫ t

0
h(t − s)Y (s) ds : t ∈ [0, T ]} is Gaussian. Indeed, if the integral is inter-

preted as a Lebesgue integral for each fixed ω ∈ Ω, then this fact follows from
[16, Lemma 2.3]; if the integral is an Lp-Riemann integral, p ≥ 2, then the
Gaussianity follows from [125, Th. 4.6.4]. Moreover, its mean and variance
are given by

E[I(t)] =

∫ t

0

h(t− s)E[Y (s)] ds =: µI(t) (2.7)

and

V[I(t)] =

∫ t

0

∫ t

0

h(t− s1)h(t− s2)Cov[Y (s1), Y (s2)] ds1 ds2 =: σI(t)
2, (2.8)

respectively. Thus, I(t) ∼ Normal(µI(t), σI(t)
2). From this, if H0H0H0 holds and,

moreover, the random variable X1 and the stochastic process Y are inde-
pendent (which implies the independence of X1 and I(t), i.e., P(X1,I(t)) =

12



2.2 Probability density function of the solution stochastic process

PX1
× PI(t)), we can compute (2.5) as

fX(t)(x) =
1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
R

∫
R
fX0

 x− e−ω0ξt sin(ω1t)
ω1

x1 − y
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

 fNormal(µI (t),σI (t)2)(y) dy PX1(dx1).

(2.9)

If H1H1H1 holds and, moreover, the random variable X0 and the stochastic process
Y are independent, (2.6) is written as

fX(t)(x)

=
1

e−ω0ξt| sin(ω1t)|
|ω1|

∫
R

∫
R
fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 − y

e−ω0ξt sin(ω1t)

ω1


·fNormal(µI(t),σI(t)2)(y) dy PX0

(dx0). (2.10)

On the other hand, bearing in mind expressions (2.3)–(2.4) and Lemma 2.3, if
I(t) ∼ Normal(µI(t), σI(t)

2) and Y is independent of (X0, X1), but H0H0H0 and H1H1H1

do not hold, then X(t) remains being absolutely continuous. By Lemma 2.3

with Z1 = I(t) and Z2 = ( ξe
−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t))X0 + e−ω0ξt sin(ω1t)

ω1
X1,

the probability density function of X(t) can be expressed as

fX(t)(x)

= E

[
fNormal(µI (t),σI (t)2)

(
x−

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+e−ω0ξt cos(ω1t)

)
X0−

e−ω0ξt sin(ω1t)

ω1
X1

)]

=

∫
R2

fNormal(µI (t),σI (t)2)

(
x−

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+e−ω0ξt cos(ω1t)

)
x0 −

e−ω0ξt sin(ω1t)

ω1
x1

)
·P(X0,X1)(dx0, dx1). (2.11)

Observe that, in order to derive expression (2.11), we have not needed that
X0 and X1 be absolutely continuous random variables, respectively. This fact
is a consequence of the key Lemma 2.3.

Below, we summarize the results previously established in the important case
that the forcing term Y = Y (t) is a Gaussian stochastic process:

13
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Proposition 2.5 Let us consider the random initial value problem (2.1), where
Y = Y (t) is a Gaussian stochastic process. The following statements hold:

• Assume H0H0H0 and that X1 and Y are independent, then the probability
density function of the solution stochastic process (2.3)–(2.4) is given by
(2.9).

• Assume H1H1H1 and that X0 and Y are independent, then the probability
density function of the solution stochastic process (2.3)–(2.4) is given by
(2.10).

• Assume that Y and (X0, X1) are independent, then the probability density
function of the solution stochastic process (2.3)–(2.4) is given by (2.11).

Damped pendulum stochastic differential equation of Itô type

Let the forcing term Y (t) be a White noise process: Y is a Gaussian pro-
cess, E[Y (t)] = 0 and E[Y (t)Y (s)] = δ0(t − s). In this case, using formu-

las (2.7) and (2.8), µI(t) = 0 and σI(t)
2 =

∫ t
0
h(s)2 ds, therefore I(t) ∼

Normal(0,
∫ t

0
h(s)2 ds). Thus, if Y is independent of (X0, X1) and (X0, X1)

has any probability distribution, then the density function of the solution
stochastic process X(t) is given by (2.11). For the sake of completeness, we
state this result in the following corollary:

Corollary 2.6 Let us consider the random initial value problem (2.1), where
Y = Y (t) is a White noise stochastic process. Assume that Y and (X0, X1) are
independent. Then, the probability density function of the solution stochastic
process (2.3)–(2.4) is given by (2.11).

Notice that, if Y (t) is a White noise process, then the random differential
equation problem (2.1) becomes a stochastic differential equation of Itô type:
if we denote

Z(t) =

(
X(t)

Ẋ(t)

)
, Z0 =

(
X0

X1

)
, A =

(
0 1
−ω2

0 −2ω0ξ

)
, b =

(
0
1

)
,

and Y (t) = Ḃ(t), where B is a standard Brownian motion [89, Def. 5.11], then,
from (2.2), we obtain the following stochastic differential equation of Itô type:{

dZ(t) = AZ(t) dt+ bdB(t), t ∈ [0, T ],

Z(0) = Z0.

14



2.2 Probability density function of the solution stochastic process

The solution stochastic process X(t) of (2.1) corresponds to the first compo-
nent of Z(t):

X(t) =

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0 +

e−ω0ξt sin(ω1t)

ω1
X1 +

∫ t

0

h(t− s) dB(s),

where the integral is understood in the Itô sense.

2.2.2 Forcing term that can be approximated in L2([0, T ]× Ω)

In this subsection, we assume that Y ∈ L2([0, T ]× Ω) and that there exists a
sequence {YN}∞N=1 of stochastic processes in L2([0, T ]×Ω) that converges to Y
in the topology of L2([0, T ]×Ω). This occurs, as we will see, with Karhunen-
Loève expansions and some random power series. The first case will be studied
in Subsubsection 2.2.2, whereas the second case will be analyzed in Subsubsec-
tion 2.2.2. Before considering these two important cases, in this subsection we
will establish general results in order to determine computable expressions for
the probability density function of the solution stochastic process (2.3)–(2.4)
to the random initial value problem (2.1) (see Theorem 2.7 and Theorem 2.9
later).

From the truncation YN of the forcing term Y , we consider a truncation of the
solution stochastic process (2.3):

XN (t)=

(
ξe−ω0ξt sin(ω1t)√

1− ξ2
+ e−ω0ξt cos(ω1t)

)
X0 +

e−ω0ξt sin(ω1t)

ω1
X1 +

∫ t

0

h(t−s)YN (s) ds,

(2.12)

where the integral is understood in the Lebesgue sense. Notice that XN(t)→
X(t) as N →∞ in L2(Ω), for each t ∈ [0, T ]. Indeed, since YN → Y as N →∞
in L2([0, T ] × Ω) and h is bounded on [0, T ] (see definition of h in (2.4)), we
have that h(t− s)YN(s)→ h(t− s)Y (s) as N →∞ in L2([0, t]× Ω, ds× dP),
for each t ∈ [0, T ], so by Cauchy-Schwarz inequality,

E[|XN(t)−X(t)|2] = E

[∣∣∣∣∫ t

0

h(t− s)(YN(s)− Y (s)) ds

∣∣∣∣2
]

≤ T‖h‖2L∞([0,T ])‖YN − Y ‖2L2([0,T ]×Ω)

N→∞−→ 0. (2.13)

This shows that XN(t)→ X(t) as N →∞ in L2(Ω), for each t ∈ [0, T ]. This is
important, as the main statistical information of X(t), say the expectation and
variance, can be approximated by using the following key properties of mean
square convergence: limN→∞ E[XN(t)] = E[X(t)] and limN→∞ V[XN(t)] =
V[X(t)] (see [125, Th. 4.2.1, Th. 4.3.1]).

15



Chapter 2.

We will assume that H0H0H0 entails that X0 is independent of (X1, Y1, . . . , YN) for
all N ≥ 1 (analogously, H1H1H1 implies that X1 is independent of (X0, Y1, . . . , YN)
for all N ≥ 1). Later on, in the particular cases of Karhunen-Loève expansions
and random power series, we will prove this assumption in Remark 2.10 and
Remark 2.14, respectively.

Under H0H0H0, XN(t) is absolutely continuous with density function given by

fXN (t)(x) = E

fX0

x− e−ω0ξt sin(ω1t)

ω1
X1 −

∫ t
0
h(t− s)YN(s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)




· 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣ . (2.14)

Under H1H1H1, XN(t) is absolutely continuous with density function given by

fXN (t)(x)

= E

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

∫ t
0
h(t− s)YN(s) ds

e−ω0ξt sin(ω1t)

ω1




· 1
e−ω0ξt| sin(ω1t)|

|ω1|

. (2.15)

Theorem 2.7 The following statements for the probability density function,
fX(t)(x), of the solution stochastic process (2.3)–(2.4) to the random initial
value problem (2.1) hold:

• Assume H0H0H0. If fX0
is continuous on R and fX0

(x) ≤ a+ bx2, for certain
a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x)
and fX(t)(x) defined by (2.14) and (2.5), respectively.

• Assume H1H1H1. If fX1
is continuous on R and fX1

(x) ≤ a+ bx2, for certain
a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x)
and fX(t)(x) defined by (2.15) and (2.6), respectively.

Proof. We will prove the first part, as the second one is analogous. Thus, let
us assume H0H0H0, fX0

continuous on R and fX0
(x) ≤ a+ bx2.
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2.2 Probability density function of the solution stochastic process

Let

UN =
x− e−ω0ξt sin(ω1t)

ω1
X1 −

∫ t
0
h(t− s)YN(s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)
(2.16)

and

U =
x− e−ω0ξt sin(ω1t)

ω1
X1 −

∫ t
0
h(t− s)Y (s) ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)
. (2.17)

Since YN → Y as N → ∞ in L2([0, T ] × Ω), and by (2.13), we derive that
UN → U as N →∞ in L2(Ω).
By (2.14), to conclude that limN→∞ fXN (t)(x) = fX(t)(x), it suffices to show
fX0

(UN)→ fX0
(U) as N →∞ in L1(Ω) (because convergence in L1(Ω) implies

convergence of expectations). This will follow if we show that, for every sub-
sequence {UNk}∞k=1 of {UN}∞N=1, there exists another subsequence {UNkl}

∞
l=1

such that fX0
(UNkl )→ fX0

(U) as l →∞ in L1(Ω) 2. Thus, fix a subsequence

{UNk}∞k=1. Since UNk → U as k → ∞ in L2(Ω), by [11, Th. 4.9] there ex-
ists a subsequence {UNkl}

∞
l=1 and a random variable V ∈ L2(Ω) such that

UNkl (ω) → U(ω) as l → ∞ a.s. and |UNkl (ω)| ≤ V (ω) a.s., for all l ≥ 1.
As fX0

is continuous on R, fX0
(UNkl (ω)) → fX0

(U(ω)) as l → ∞ a.s. Now,

fX0
(UNkl (ω)) ≤ a+ bUNkl (ω)2 ≤ a+ bV (ω)2 ∈ L1(Ω). By the Dominated Con-

vergence Theorem [113, result 11.32, p. 321], fX0
(UNkl ) → fX0

(U) as l → ∞
in L1(Ω), as wanted.

�

Remark 2.8 The conditions fXi, i = 0, 1, continuous on R and fXi(x) ≤
a+ bx2, are the usual hypotheses imposed so that the Nemytskii operator V 7→
fXi(V ), is continuous from L2(Ω) to L1(Ω), [1, pp. 15–17], [134, pp. 154–163].
Essentially, these hypotheses are mathematical restrictions on the probabilistic
features of the initial position and/or initial velocity that permit proving that
the density functions of the truncations XN(t) tend to the density function of
X(t) as N →∞.

From a practical standpoint, most of the probability density functions, like
Beta (with shape parameters α, β ≥ 1), Gaussian, Gamma (with shape pa-
rameter α ≥ 1 and rate parameter β > 0), etc., are bounded, so it is enough to

2Let {an}∞n=1 be a sequence and a be an element in a topological space. If for every subsequence
{ank}∞k=1, there exists a subsequence {ankl }

∞
l=1 such that ankl

→ a as l → ∞, then an → a as

n → ∞. Indeed, if an does not tend to a, there exists a neighbourhood A of a and a subsequence
{ank}∞k=1 such that ank /∈ A, for all k ≥ 1. By hypothesis, there is a subsequence {ankl }

∞
l=1 that

converges to a. But this contradicts the fact ankl
/∈ A, for each l ≥ 1.
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take the constant a > 0 big enough in order that the condition fXi(x) ≤ a+bx2,
for i = 0 or i = 1, holds. Nevertheless, in order to further enlarge the class
of random variables for which our theoretical findings can be applied, below
we generalize Theorem 2.7 by assuming that the probability density functions
are almost everywhere continuous rather than continuous. Recall that a real
function is said to be almost everywhere continuous if it is continuous except
on a set of Lebesgue measure zero. For example, the uniform, exponential,
truncated Gaussian, etc. distributions possess almost everywhere continuous
density functions.

In Section 2.3, the application of both Theorem 2.7 and Theorem 2.9 will be
illustrated.

Theorem 2.9 The following statements for the probability density function,
fX(t)(x), of the solution stochastic process (2.3)–(2.4) to the random initial
value problem (2.1) hold:

• Assume H0H0H0. Suppose that fX0
is a.e. continuous on R and fX0

(x) ≤
a + bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H1H1H1 holds,
then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x) and
fX(x) defined by (2.14) and (2.5), respectively.

• Assume H1H1H1. Suppose that fX1
is a.e. continuous on R and fX1

(x) ≤
a + bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds,
then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being fXN (t)(x) and
fX(x) defined by (2.15) and (2.6), respectively.

Proof. We show the first part, as the second one is analogous. As in the proof
of Theorem 2.7, consider UN and U defined by (2.16) and (2.17), respectively.
Recall that UN → U as N →∞ in L2(Ω). Since H1H1H1 holds, by Lemma 2.3 U is
absolutely continuous. This, together with the fact that fX0

is a.e. continuous,
implies that the probability that U belongs to the discontinuity set of fX0

is 0. Thereby, by the Continuous Mapping Theorem [135, p. 7, Th. 2.3],
fX0

(UNkl (ω))→ fX0
(U(ω)) a.s., as l→∞. Therefore, the proof from Theorem

2.7 works.
�
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2.2 Probability density function of the solution stochastic process

Forcing term expressed as a Karhunen-Loève expansion

Let Y ∈ L2([0, T ]× Ω). Consider its covariance integral operator

C : L2([0, T ])→ L2([0, T ]), Cf(t) =

∫ T

0

Cov[Y (t), Y (s)]f(s) ds. (2.18)

This operator is linear, compact, self-adjoint and nonnegative-definite [89,
Th. 1.68, Lemma 1.72, Lemma 1.77]. Let J ∈ N ∪ {∞} be the dimension
of the image of C. By Hilbert-Schmidt Theorem [89, Th. 1.73], the nonzero
eigenvalues of C, repeated according to their multiplicity, form a sequence
{νj}Jj=1 (we will not assume any particular ordering of the sequence of nonzero
eigenvalues). Moreover, the sequence {φj}∞j=1 of eigenfunctions of C is an
orthonormal basis of L2([0, T ]). Here, φj is associated to νj, and if j > J , then
φj is associated to 0.

By Karhunen-Loève Theorem [89, Th. 5.28], the process Y = {Y (t) : t ∈
[0, T ]} can be expressed as

Y (t) = µY (t) +
J∑
j=1

√
νjφj(t)ξj, (2.19)

where µY (t) = E[Y (t)] and {ξj}Jj=1 is a sequence of random variables with zero
expectation, unit variance and pairwise uncorrelated. These random variables
{ξj}Jj=1 have a closed expression:

ξj =
1
√
νj

∫ T

0

(Y (s)− µY (s))φj(s) ds, j = 1, . . . , J. (2.20)

Moreover, if Y = {Y (t) : t ∈ [0, T ]} is a Gaussian process, then {ξj}Jj=1 are
independent and Gaussian. If J =∞, the series (2.19) converges in L2([0, T ]×
Ω).

Notice that

I(t) =

∫ t

0

h(t− s)Y (s) ds

=

∫ t

0

h(t− s)µY (s) ds+
J∑
j=1

√
νj

(∫ t

0

h(t− s)φj(s) ds

)
ξj, (2.21)

where, if J =∞, the series is understood in L2([0, T ]× Ω).
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Remark 2.10 If H0H0H0 holds, then the random inputs X0 and Y are indepen-
dent, i.e., X0 and (Y (t1), . . . , Y (tm)) are independent, for each t1, . . . , tm ∈
[0, T ], m ≥ 1. By (2.20), X0 and (ξ1, . . . , ξJ) are independent. Indeed, as it is
proved in [16, Lemma 2.3],

ξj ∈
{

1
√
νj

m∑
k=1

λk(Y (tk)− µY (tk))φj(tk) : λk ∈ R, tk ∈ [0, 1], m ≥ 1

}L2(Ω)

(the overline stands for the closure). Since X0 is independent to each sum

1
√
νj

m∑
k=1

λk(Y (tk)− µY (tk))φj(tk),

we derive that (ξ1, . . . , ξJ) is a limit in L2(Ω;RJ) of random vectors that are
independent to X0, which implies the independence of X0 and (ξ1, . . . , ξJ).

An analogous result is satisfied if H1H1H1 holds, instead of H0H0H0. This concludes the
remark.

Suppose that J <∞. Assume thatH0H0H0 holds, that we know the probability law
of the random vector (ξ1, . . . , ξJ) and that X1 and (ξ1, . . . , ξJ) are independent.
Then (2.5) becomes

fX(t)(x) =
1∣∣∣∣ ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
RJ

∫
R
fX0

x− e−ω0ξt sin(ω1t)
ω1

x1 −
∫ t
0 h(t− s)µY (s) ds−

∑J
j=1
√
νj

(∫ t
0 h(t− s)φj(s) ds

)
ξj

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)


·PX1

(dx1)P(ξ1,...,ξJ )(dξ1, . . . , dξJ ). (2.22)

If H1H1H1 holds, and X0 and (ξ1, . . . , ξJ) are independent, then (2.6) becomes

fX(t)(x) =
1

e−ω0ξt| sin(ω1t)|
|ω1|

·
∫
RJ+1

fX1

x−
(
ξe−ω0ξtsin(ω1t)√

1−ξ2
+e−ω0ξtcos(ω1t)

)
x0−

∫ t
0
h(t− s)µY (s)ds−

∑J
j=1

√
νj
(∫ t

0
h(t− s)φj(s)ds

)
ξj

e−ω0ξt sin(ω1t)
ω1


·PX0

(dx0) P(ξ1,...,ξJ )(dξ1, . . . , dξJ ). (2.23)

Therefore, both densities are computable in practice.

If J =∞, for each N ≥ 1 we may define the truncations

YN(t) = µY (t) +
N∑
j=1

√
νjφj(t)ξj. (2.24)
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2.2 Probability density function of the solution stochastic process

Thus, we have a sequence {YN}∞N=1 that converges to Y in L2([0, T ] × Ω),
according to Karhunen-Loève Theorem [89, Th. 5.28]. By what we have just
seen, the density function of the truncation XN given by (2.12) is computable,
as in (2.22) and (2.23) by taking J = N . If the assumptions of Theorem 2.7 or
Theorem 2.9 hold, then we can approximate fX(t) by using limN→∞ fXN (t)(x) =
fX(t)(x).

In fact, a more general result than Theorem 2.9 can be established in this
setting:

Theorem 2.11 The following statements for the probability density function,
fX(t)(x), of the solution stochastic process (2.3)–(2.4) to the random initial
value problem (2.1) hold:

• Assume H0H0H0. Suppose that fX0
is a.e. continuous on R and fX0

(x) ≤ a+
bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H1H1H1 holds or some
ξj is absolutely continuous, independent of (X1, ξ1, . . . , ξj−1, ξj+1, . . .) and

with
∫ t

0
h(t − s)φj(s) ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all

x ∈ R, being fXN (t)(x) and fX(x) defined by (2.14) and (2.5), respectively.

• Assume H1H1H1. Suppose that fX1
is a.e. continuous on R and fX1

(x) ≤ a+
bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds or some
ξj is absolutely continuous, independent of (X0, ξ1, . . . , ξj−1, ξj+1, . . .) and

with
∫ t

0
h(t − s)φj(s) ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all

x ∈ R, being fXN (t)(x) and fX(x) defined by (2.15) and (2.6), respectively.

Proof. We prove the first part, as the second one is analogous. As in the proof
of Theorem 2.7, consider UN and U defined by (2.16) and (2.17), respectively,
where YN is defined by (2.24). If some ξj is absolutely continuous, independent

of (X1, ξ1, . . . , ξj−1, ξj+1, . . .) and with
∫ t

0
h(t − s)φj(s) ds 6= 0, by Lemma 2.3

U is absolutely continuous. Thereby, the proof of Theorem 2.9 is applicable.
�

To provide a full analysis, it is interesting to observe that, in this setting of
Karhunen-Loève expansions, sometimes H0H0H0 and H1H1H1 do not need to be satis-
fied (so both X0 and X1 may not be absolutely continuous). Consider the
hypothesis

H2H2H2: ξ1 is absolutely continuous,
∫ t

0
h(t − s)φ1(s) ds 6= 0, ξ1 and the vector

(X0, X1, ξ2, . . . , ξj) are independent, for each j, 2 ≤ j ≤ J 3(if ξ1 does

3If J <∞, this independence is reduced to ξ1 and (X0, X1, ξ2, . . . , ξJ ) be independent.
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not satisfy H2H2H2 but another ξj instead, j 6= 1, then we may reorder the
eigenvalues and eigenfunctions so that ξ1 becomes ξj).

The random variable

Z1 =
√
ν1

(∫ t

0

h(t− s)φ1(s) ds

)
ξ1

is absolutely continuous, with density function

fZ1
(z) = fξ1

 z
√
ν1

(∫ t
0
h(t− s)φ1(s) ds

)
 1
√
ν1

∣∣∣∫ t0 h(t− s)φ1(s) ds
∣∣∣ ,

as a consequence of the Random Variable Transformation technique. By (2.3),
(2.21) and Lemma 2.3, the solution X(t) is absolutely continuous, with density
function given by

fX(t)(x) =
1

√
ν1

∣∣∣∫ t0 h(t− s)φ1(s) ds
∣∣∣

·E
[
fξ1

(z − ( ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

)
X0 − e−ω0ξt sin(ω1t)

ω1
X1

√
ν1

(∫ t
0
h(t− s)φ1(s) ds

)
+
−
∫ t

0
h(t− s)µY (s) ds−

∑J
j=2

√
νj
(∫ t

0
h(t− s)φj(s) ds

)
ξj

√
ν1

(∫ t
0
h(t− s)φ1(s) ds

) )]
. (2.25)

If J < ∞, we may compute this explicitly. Otherwise, if J = ∞, we need to
consider the truncation XN(t) given by (2.12), where YN is defined in (2.24).
With analogous proofs to those of Theorem 2.7 and Theorem 2.9, one arrives
at the following results:

Theorem 2.12 Assume H2H2H2. If fξ1 is continuous on R and fξ1(x) ≤ a+ bx2,
for certain a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, where
fXN (t) is given by (2.25) with J = N and fX(t)(x) is given by (2.25) with
J =∞.

Theorem 2.13 Assume H2H2H2. Suppose that fξ1 is a.e. continuous on R and
fξ1(x) ≤ a+ bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds
or H1H1H1 holds or some other ξj (j 6= 1) satisfies H2H2H2, then limN→∞ fXN (t)(x) =
fX(t)(x) for all x ∈ R, where fXN (t) is given by (2.25) with J = N and fX(t)(x)
is given by (2.25) with J =∞.
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2.2 Probability density function of the solution stochastic process

Forcing term expressed as a random power series

Sometimes, one may work with a forcing term Y (t) that is an analytic stochas-
tic process in the mean square sense [125, p. 99]: Y (t) =

∑∞
n=0 Ynt

n, where
the sum converges in L2(Ω), for each t ∈ [0, T ]. We will assume, in addition,
that the convergence of the series holds in L2([0, T ] × Ω). Thus, if we de-

fine the partial sums {YN(t) =
∑N

n=0 Ynt
n}∞N=0, then they converge to Y in

L2([0, T ]× Ω).

Remark 2.14 If H0H0H0 holds, then X0 and Y are independent. Let us see that
X0 and (Y0, . . . , YN) are independent, for 0 ≤ N <∞.

We have Yn = Y (n)(0)/n!, where Y (n) is the n-th mean square derivative of
Y (t) [125, Ch. 4]. Thus, if we prove that X0 and

(Y (t01), . . . , Y (t0m0
), Y ′(t11), . . . , Y ′(t1m1

), . . . , Y (N)(tN1 ), . . . , Y (N)(tNmN ))

are independent, t01, . . . , t
0
m0
, t11, . . . , t

1
m1
, . . . , tN1 , . . . , t

N
mN
∈ [0, T ], m0, . . . ,mN≥

1, then X0 and (Y0, . . . , YN) will be independent, as wanted.

We prove this assertion by induction on N ≥ 0. For N = 0, we already know
that X0 and (Y (t01), . . . , Y (t0m0

)) are independent for each t01, . . . , t
0
m0
∈ [0, T ],

m0 ≥ 1, because of the independence of X0 and Y . We assume the assertion
true for N − 1 and we prove it for N . Write

(Y (t01), . . . , Y (t0m0
), . . . , Y (N−1)(tN−1

1 ), . . . , Y (N−1)(tN−1
mN−1

), Y (N)(tN1 ), . . . , Y (N)(tNmN ))

= lim
h→0

(
Y (t01), . . . , Y (t0m0

), . . . , Y (N−1)(tN−1
1 ), . . . , Y (N−1)(tN−1

mN−1
),

Y (N−1)(tN1 + h)− Y (N−1)(tN1 )

h
, . . . ,

Y (N−1)(tNmN + h)− Y (N−1)(tNmN )

h

)
,

where the limit is understood in L2(Ω;Rm0+m1+...+mN ). By induction, X0 is
independent of each random vector(

Y (t01), . . . , Y (t0m0
), . . . , Y (N−1)(tN−1

1 ), . . . , Y (N−1)(tN−1
mN−1

),

Y (N−1)(tN1 + h)− Y (N−1)(tN1 )

h
, . . . ,

Y (N−1)(tNmN + h)− Y (N−1)(tNmN )

h

)
.

This implies that X0 and

(Y (t01), . . . , Y (t0m0
), Y ′(t11), . . . , Y ′(t1m1

), . . . , Y (N)(tN1 ), . . . , Y (N)(tNmN ))

are independent, as wanted.
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An analogous result is satisfied if H1H1H1 holds, instead of H0H0H0. This concludes the
remark.

If H0H0H0 holds, we know the probability law of the random vector (Y0, . . . , YN),
and X1 and (Y0, . . . , YN) are independent, then the density function of XN(t)
is computable: (2.14) becomes

fXN (t)(x) = E

fX0

x− e−ω0ξt sin(ω1t)
ω1

X1 −
∑N
n=0 Yn

∫ t
0
h(t− s)sn ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)




· 1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣
=

1∣∣∣∣ ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)

∣∣∣∣
·
∫
RN+1

∫
R
fX0

x− e−ω0ξt sin(ω1t)
ω1

x1 −
∑N
n=0 yn

∫ t
0
h(t− s)sn ds

ξe−ω0ξt sin(ω1t)√
1−ξ2

+ e−ω0ξt cos(ω1t)


·PX1(dx1)P(Y0,...,YN )(dy0, . . . , dyN ).

If H1H1H1 holds, and X0 and (Y0, . . . , YN) are independent, (2.15) becomes

fXN (t)(x)

= E

fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 −

∑N
n=0 Yn

∫ t
0
h(t− s)sn ds

e−ω0ξt sin(ω1t)
ω1




· 1
e−ω0ξt| sin(ω1t)|

|ω1|

=
1

e−ω0ξt| sin(ω1t)|
|ω1|

·
∫
RN+1

∫
R
fX1

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
x0 −

∑N
n=0 yn

∫ t
0
h(t− s)sn ds

e−ω0ξt sin(ω1t)
ω1


·PX0(dx0)P(Y0,...,YN )(dy0, . . . , dyN ).

If the assumptions of Theorem 2.7 or Theorem 2.9 hold, then we can approx-
imate fX(t) by using limN→∞ fXN (t)(x) = fX(t)(x).

In fact, a more general result than Theorem 2.9 can be proved in this setting:
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2.2 Probability density function of the solution stochastic process

Theorem 2.15 The following statements hold:

• Assume H0H0H0. Suppose that fX0
is a.e. continuous on R and fX0

(x) ≤ a+
bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H1H1H1 holds or some
Yn is absolutely continuous, independent of (X1, Y0, . . . , Yn−1, Yn+1, . . .)

and with
∫ t

0
h(t − s)sn ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all

x ∈ R, being fXN (t)(x) and fX(x) defined by (2.14) and (2.5), respectively.

• Assume H1H1H1. Suppose that fX1
is a.e. continuous on R and fX1

(x) ≤ a+
bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds or some
Yn is absolutely continuous, independent of (X0, Y0, . . . , Yn−1, Yn+1, . . .)

and with
∫ t

0
h(t − s)sn ds 6= 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all

x ∈ R, being fXN (t)(x) and fX(x) defined by (2.15) and (2.6), respectively.

Proof. Analogous to Theorem 2.11.
�

If H0H0H0 and H1H1H1 do not hold, we can consider the hypothesis

H3H3H3: There is an n0 ≥ 0 such that Yn0
is absolutely continuous,

∫ t
0
h(t −

s)sn0 ds 6= 0, Yn0
and (X0, X1, Y0, . . . , Yn0−1, Yn0+1, . . . , YN) are indepen-

dent, for each N ≥ 0.

In such a case, the random variable Z1 = Yn0

∫ t
0
h(t − s)sn0 ds is absolutely

continuous, with density function

fZ1
(z) = fYn0

(
z∫ t

0
h(t− s)sn0 ds

)
1∣∣∣∫ t0 h(t− s)sn0 ds

∣∣∣ .
By Lemma 2.3, for N ≥ n0,

fXN (t)(x) =
1∣∣∣∫ t0 h(t− s)sn0 ds

∣∣∣
·E
[
fYn0

(x−( ξe−ω0ξtsin(ω1t)√
1−ξ2

+e−ω0ξtcos(ω1t)

)
X0− e−ω0ξtsin(ω1t)

ω1
X1−

∑N
n 6=n0

Yn
∫ t
0h(t− s)s

nds∫ t
0h(t− s)sn0ds

)]
.

(2.26)

With analogous proofs to those of Theorem 2.7 and Theorem 2.9, one arrives
at the following results:

Theorem 2.16 Assume H3H3H3. If fYn0
is continuous on R and fYn0

(x) ≤ a+bx2,
for certain a, b > 0, then limN→∞ fXN (t)(x) = fX(t)(x) for all x ∈ R, being
fXN (t)(x) given by (2.26) and fX(t)(x) given by (2.26) with N =∞.
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Theorem 2.17 Assume H3H3H3. Suppose that fYn0
is a.e. continuous on R and

fYn0
(x) ≤ a+ bx2 for a.e. x ∈ R, for certain a, b > 0. If, in addition, H0H0H0 holds

or H1H1H1 holds or some other Yn, n 6= n0, satisfies H3H3H3, then limN→∞ fXN (t)(x) =
fX(t)(x) for all x ∈ R, being fXN (t)(x) given by (2.26) and fX(t)(x) given by
(2.26) with N =∞.

Remark 2.18 HypothesesH0H0H0, H1H1H1, H2H2H2 andH3H3H3 are not necessary to have X(t)
absolutely continuous. Indeed, by [140], there exists a singular continuous
measure λ such that λ ∗ λ is absolutely continuous (here ∗ stands for the
convolution operator). Fix t̄ ∈ [0, T ] such that

ξ sin(ω1t̄)√
1− ξ2

+ cos(ω1t̄) 6= 0, sin(ω1t̄) 6= 0.

Take a pair of independent random variables X0 and X1 such that(
ξe−ω0ξt̄ sin(ω1t̄)√

1− ξ2
+ e−ω0ξt̄ cos(ω1t̄)

)
X0 ∼ λ,

e−ω0ξt̄ sin(ω1t̄)

ω1

X1 ∼ λ.

Let Y = 0. Then the solution stochastic process X(t̄) has distribution λ ∗ λ,
which is absolutely continuous. However, H0H0H0 and H1H1H1 do not hold, because X0

and X1 are not absolutely continuous, respectively. Thus, we have a patho-
logical example. In these cases, at least to our knowledge, it is not possible to
know the probability density function of the solution stochastic process.

2.3 Applications

In this section, we showcase the proposed approach on several examples where
we apply our theoretical findings to particular random problems (2.1). The
examples will cover a wide variety of situations which are of mathematical and
physical interest. The main objective will be to test the methodology reported
in this chapter.

For the sake of clarity, throughout Examples 2.21–2.25 we will fix the constants
in (2.1): we choose the upper time T = 1, the damping ratio ξ = 1/2 and the
natural frequency ω0 = π/2. Then, according to (2.4), ω1 = ω0

√
1− ξ2 =

π
√

3/4. Notice that, as ω1 ∈ (0, π/2), we have sin(ω1t) > 0 and cos(ω1t) > 0,
for t ∈ (0, 1] = (0, T ]. Then

ξ sin(ω1t)√
1− ξ2

+ cos(ω1t) > 0

on [0, 1] and h(t) > 0 on (0, 1]. We will work with independent X0, X1 and Y .
Physically, the initial position, the initial velocity and the harmonic excitation
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2.3 Applications

are independent. On the other hand, to ensure the inequality f(x) ≤ a+ bx2

for a specific density f , we will take f bounded. Notice that this boundedness
restriction covers any possible situation in practice, as a random variable with
an unbounded density function may be truncated to achieve the boundedness
condition but maintaining its main probabilistic features [77]. Moreover, trun-
cation does not affect almost everywhere continuity of the density, which has
been a very important hypothesis in some of the previous theorems.

Finally, to obtain/plot density functions given by an expectation expression
((2.5), (2.6), (2.11), (2.14), etc.), we will use Monte Carlo simulation.

Example 2.19 In this example we determine the probability density function
of the response of a pendulum differential equation model to earthquake type
random disturbances. Reference [9] justifies the use of equation (2.1) to model
the response. Soong [125, Example 7.3] provides a summary of the results
obtained in [9] and focuses on the mathematical properties of the random
differential equation model, by computing the expectation and covariances,
but not the probability density function. Reference [64] is a continuation of the
investigation from [9]. On our part, our method to find the probability density
function of the response will consist in a direct application of Lemma 2.3.

In [9, 64], [125, Example 7.3], a simple structure approximating a linear one-
story building is considered. The goal is to analyze the response of this struc-
ture to an earthquake type random disturbance with ground acceleration

Y (t) =
n∑
j=1

taje
−αjt cos(wjt+ θj), t ≥ 0.

It is assumed that aj, αj and wj are constant, while θ1, . . . , θn are indepen-
dent random variables with Uniform(0, 2π) distribution. The term Y (t) has
this particular form because it takes the usual appearance of earthquake ac-
celerogram records when n is sufficiently large. Horizontal displacement of the
roof of the structure is assumed due to ground motion. Let X(t) be the relative
horizontal displacement of the roof with respect to the ground (see [125] for
further detailed physical justification). We assume that the roof is at rest at

t = 0: X(0) = X0 = 0 and Ẋ(0) = X1 = 0. By [9], the relative displacement
of the roof, X(t), is governed by the pendulum differential equation

Ẍ(t) + 2ω0ξẊ(t) + ω2
0X(t) = −Y (t).

The solution of this model is given by

X(t) = −
∫ t

0

h(t− s)Y (s) ds,
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where the impulse response h is given by (2.4).

In order to find the probability density function of X(t), we rewrite Y (t) as
follows:

Y (t) = ta1e−α1t (cos(w1t) cos(θ1)− sin(w1t) sin(θ1))+
n∑
j=2

taje
−αjt cos(wjt+θj).

Then X(t) can be written as X(t) = Z1 + Z2, where

Z1 =

(
−
∫ t

0

h(t− s)sa1e−α1s cos(w1s) ds

)
cos(θ1)

+

(∫ t

0

h(t− s)sa1e−α1s sin(w1s) ds

)
sin(θ1),

Z2 = −
n∑
j=2

∫ t

0

h(t− s)saje−αjs cos(wjs+ θj) ds.

Since θ1, . . . , θn are independent, for each fixed t ≥ 0 the random variables Z1

and Z2 are also independent, and Z1 is absolutely continuous, whose density
function fZ1

can be obtained numerically by using that it is a transformation
of θ1. By Lemma 2.3, the response X(t) is absolutely continuous and its
density function is given by fX(t)(x) = E[fZ1

(x − Z2)]. This expectation can
be approximated by means of Monte Carlo simulation.

In order to obtain a graphical representation of the probability density function
of X(t), let us fix the following values for the constants: ω0 = 20, ξ = 0.05,
n = 20, αi = 0.333, ai = 0.5 and wi = 15, for i = 1, . . . , 20. In Figure 2.1, we
plot fX(t)(x) for t = 0.1.

Example 2.20 White noise processes are of great interest in random vibra-
tions. The probabilistic characteristics of dynamical systems with white noise
inputs have been examined [81, 98, 32]. In this example, we consider the re-
sponse of a mass-spring linear oscillator to a white noise random excitation,
with governing equation Ẍ(t) + ω2

0X(t) = Y (t), see [125, Example 7.1]. This
is a particular case of (2.1) with damping ratio ξ = 0. The source term Y (t) is
the formal derivative of a Brownian motion process, therefore the initial value
problem (2.1) takes the form of a stochastic differential equation of Itô type.
It is assumed that X0, X1 and Y are independent.

As discussed in Subsection 2.2.1, the probability density function of the re-
sponse X(t) is expressed by (2.11), being µI(t) = 0 and σI(t)

2 =
∫ t

0
h(s)2 ds,

where the impulse response h is given by (2.4).
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Figure 2.1: Density function fX(t)(x) for t = 0.1 in Example 2.19.

For the numerical experiment, let us fix the frequency ω0 = 1, the initial posi-
tion X0 = 0 and the initial velocity X1 ∼ Triangular(−0.1, 0.1). In Figure 2.2,
we depict the density function of X(t) at t = 0.8.
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Figure 2.2: Density function fX(t)(x) for t = 0.8 in Example 2.20.

Example 2.21 Consider model (2.1) with fixed initial position X0 = −1,
initial velocity X1 ∼ Poisson(5) and forcing term Y (t) = A ∼ Exponential(4),
for all t ∈ [0, 1] (Y (t) is a constant random variable as a function of t, i.e.,
a steady-state random excitation). These random variables are assumed to
be independent. Using expression (2.26) with N = n0 = 0 and Y0 = A, and

taking into account that
∫ t

0
h(t − s)sn0 ds =

∫ t
0
h(t − s) ds > 0, we deduce

that the probability density function of the response stochastic process X(t)
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is given by

fX(t)(x)

=
1∣∣∣∫ t0 h(t− s) ds

∣∣∣E
fA

x−
(
ξe−ω0ξt sin(ω1t)√

1−ξ2
+ e−ω0ξt cos(ω1t)

)
X0 − e−ω0ξt sin(ω1t)

ω1
X1∫ t

0
h(t− s) ds


 ,

for t ∈ (0, 1]. In Figure 2.3, we show the graph of fX(0.2)(x), for−1.5 ≤ x ≤ 1.5.
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Figure 2.3: Density function fX(0.2)(x) in Example 2.21.

Example 2.22 Let us consider model (2.1) with initial position X0 having
a Cantor distribution [66] and no initial motion, X1 = 0. Recall that the
Cantor distribution is defined by having as cumulative distribution function
the Cantor staircase function. The Cantor distribution can be seen in the
following way:

X0 = 2
∞∑
k=1

Ak
3k
,

where A1, A2, . . . are independent random variables with Bernoulli(0.5) dis-
tribution and the series converges a.s. Notice that X0 is not an absolutely
continuous random variable, hence hypothesis H0H0H0 does not hold. We take the
forcing term Y (t) as a standard Brownian motion on [0, 1] [89, Def. 5.11]. It
is assumed that X0, X1 and Y are independent.

Using formulas (2.7) and (2.8) and taking into account that E[Y (t)] = 0
and that Cov[Y (t), Y (s)] = min{t, s}, we compute µI(t) = 0 and σI(t)

2 =∫ t
0

∫ t
0
h(t− s1)h(t− s2) min{s1, s2} ds1 ds2.
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2.3 Applications

According to Proposition 2.5, we have that the response X(t) is absolutely
continuous, with density function given by (2.11). In Figure 2.4, we have
plotted the graph of fX(0.1)(x) and fX(0.8)(x). For t = 0.1, we observe a big
influence of the initial condition X0. For t = 0.8, the influence of X0 seems to
be dispelled, since fX(0.8)(x) is smoother.
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Figure 2.4: First: Density function fX(0.1)(x). Second: Density function fX(0.8)(x). Both
in the context of Example 2.22 and interpreting the Brownian motion Y (t) = B(t) as a
Gaussian stochastic process.

We may also see the Brownian motion as a Karhunen-Loève expansion [89,
Exercise 5.12]:

Y (t) =
∞∑
j=1

√
2(

j − 1
2

)
π

sin

(
t

(
j − 1

2

)
π

)
ξj,

where {ξj}∞j=1 is a sequence of independent random variables with Normal(0, 1)
distribution. The series converges in L2([0, 1]× Ω).
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By Theorem 2.12, the density function of XN(t) (given by (2.25) with J = N)
converges pointwise to fX(t)(x), for t ∈ (0, 1] (given by (2.25) with J =∞). In
Figure 2.5, we have plotted the graph of fX15(0.1)(x) and fX15(0.8)(x) (N = 15).
Notice that these densities approximate accurately the exact densities from
Figure 2.4, as Theorem 2.12 states.
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Figure 2.5: First: Density function fX15(0.1)(x). Second: Density function fX15(0.8)(x).
Both in the context of Example 2.22 and interpreting the Brownian motion Y (t) = B(t) via
its Karhunen-Loève expansion.

Example 2.23 Consider (2.1), X0 ∼ Exponential(3), X1 ∼ Binomial(7, 0.31)
and

Y (t) =
∞∑
j=1

√
2

jπ
sin(tjπ)ξj.

The series is understood in L2([0, 1] × Ω) and {ξj}∞j=1 is a sequence of in-

dependent random variables with Uniform(−
√

3,
√

3) distribution. This is a
Karhunen-Loève expansion. It is assumed that X0, X1 and Y are independent.
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Since φ1(t) = sin(tπ) > 0 on 0 < t < 1 and h(t) > 0 on 0 < t ≤ 1, then∫ t
0
h(t − s)φ1(s) ds > 0, for t ∈ (0, 1]. As a consequence, hypotheses H0H0H0 and

H2H2H2 hold. By Theorem 2.11 or Theorem 2.13, limN→∞ fXN (t)(x) = fX(t)(x), for
t ∈ (0, 1] and x ∈ R.

In Figure 2.6 we have plotted fXN (0.5)(x) for N = 1, 2, 3, 4, 5, 6. We observe
convergence, since a small or nearly no variation of the density functions is
noticed at different values of truncation order N . This convergence agrees
with Theorem 2.11 and Theorem 2.13.

Example 2.24 Consider (2.1) with X0 ∼ Gamma(2, 1), X1 ∼ Beta(1/2, 1/2)
and

Y (t) =
∞∑
j=1

√
2

jπ
sin(tjπ)ξj,

where the series is understood in L2([0, 1] × Ω) and {ξj}∞j=1 is a sequence
of independent random variables with Uniform{−1, 1} distribution (discrete
distribution with P(ξj = −1) = P(ξj = 1) = 1/2). This is a Karhunen-Loève
expansion. It is assumed that X0, X1 and Y are independent.

By Theorem 2.7, limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ [0, 1] and x ∈ R. In
Figure 2.7 we plot fXN (0.5)(x) for N = 1, 2, 3, 4, 5, 6. Convergence seems to
be achieved, since nearly no variation of the density functions is noticed at
different values of truncation order N . This fact agrees with Theorem 2.7.

Example 2.25 Consider (2.1) with X0 ∼ Negative Binomial(7, 0.31) and X1

absolutely continuous with density function given by fX1
(x) =

√
2/(π(1+x4)),

x ∈ R. Take

Y (t) =
∞∑
n=1

An
n
tn,

for t ∈ [0, 1], where A1, A2, . . . are independent random variables, Poisson(5)
distributed. Notice that the sum is well-defined in L2([0, 1]× Ω): indeed,∥∥∥∥Ann tn

∥∥∥∥
L2([0,1]×Ω)

=
C

n
√

2n+ 1
,

where C is the 2-norm of a Poisson(5) random variable, therefore
∞∑
n=1

∥∥∥∥Ann tn
∥∥∥∥

L2([0,1]×Ω)

<∞.

It is assumed that X0, X1, A1, A2, . . . are independent.
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Figure 2.6: Density function fXN (0.5)(x) for N = 1 (up left), N = 2 (up right), N = 3
(center left), N = 4 (center right), N = 5 (down left) and N = 6 (down right) in Example
2.23.
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Figure 2.7: Density function fXN (0.5)(x) for N = 1 (up left), N = 2 (up right), N = 3
(center left), N = 4 (center right), N = 5 (down left) and N = 6 (down right) in Example
2.24.
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By Theorem 2.7, limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ (0, 1] and x ∈ R. In
Figure 2.8, we plot fXN (0.3)(x) for N = 1, 2, 3, 4, 5, 6. We observe convergence,
since virtually the same density functions are plotted at different values of
truncation order N .
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Figure 2.8: Density function fXN (0.3)(x) for N = 1 (up left), N = 2 (up right), N = 3
(center left), N = 4 (center right), N = 5 (down left) and N = 6 (down right) in Example
2.25.
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2.4 Conclusions

2.4 Conclusions

In this chapter we have provided a comprehensive probabilistic analysis of the
damped pendulum differential equation in the case that the initial conditions
(position, X0, and velocity, X1) are random variables and the forcing term,
Y (t), is a stochastic process. To the best of our knowledge, a major difference
of our contribution with respect to the ones available in the existing literature
is that we have provided exact or approximate expressions for the probability
density function of the solution stochastic process of this important problem
in Physics. Our achievement contrasts with other studies, where the goal is
merely to construct exact or approximate expressions for the mean and the
variance of the solution process. We think that a strong point of our contri-
bution is the wide range of scenarios studied with respect to the forcing term
Y (t) as well as the generality of our analysis. In particular, the important
cases where Y (t) is Gaussian (including the White noise process) or Y (t) can
be represented via Karhunen-Loève expansion or via a mean square convergent
random power series have been fully addressed. Furthermore, the study has
included a detailed discussion with regard to the hypotheses assumed on the
input data (X0, X1, Y (t)) to establish our findings. The generality of such hy-
potheses in practical situations has been illustrated throughout a wide variety
of numerical examples. The analysis performed throughout this chapter may
be very useful in dealing with other random differential equations in future
contributions.
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Chapter 3

Approximation of the density
function of random

non-autonomous logistic-type
differential equations

In this chapter, we address the problem of approximating the probabil-
ity density function of the following random logistic differential equation:
P ′(t, ω) = A(t, ω)(1− P (t, ω))P (t, ω), t ∈ [t0, T ], P (t0, ω) = P0(ω), where
ω is any outcome in the sample space Ω. In the recent contribution [Cortés
JC, et al. Commun Nonlinear Sci Numer Simulat 2019; 72: 121–138], the
authors imposed conditions on the diffusion coefficient A(t) and on the ini-
tial condition P0 to approximate the density function f1(p, t) of P (t): A(t)
is expressed as a Karhunen-Loève expansion with absolutely continuous
random coefficients that have certain growth and are independent of the
absolutely continuous random variable P0, and the density of P0, fP0

, is
Lipschitz on (0, 1). In this chapter, we tackle the problem in a different
manner, by using probability tools that allow the hypotheses to be less re-
strictive. We only suppose that A(t) is expanded on L2([t0, T ] × Ω), so
that we include other expansions such as random power series. We only
require absolute continuity for P0, so that A(t) may be discrete or singular,
due to a modified version of the random variable transformation technique.
For fP0

, only almost everywhere continuity and boundedness on (0, 1) are
needed. We construct an approximating sequence {fN1 (p, t)}∞N=1 of density
functions in terms of expectations that tends to f1(p, t) pointwise. Numer-
ical examples illustrate our theoretical results.
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3.1 Introduction and motivation

In the recent paper [42], the authors studied the random non-autonomous
logistic differential equation problem on a real interval [t0, T ]:{

P ′(t, ω) = A(t, ω)(1− P (t, ω))P (t, ω), t ∈ [t0, T ],

P (t0, ω) = P0(ω).
(3.1)

In this setting, we are assuming an underlying complete probability space
(Ω,F ,P), where Ω is the sample space that consists of outcomes ω (which
might usually be omitted in evaluations), F ⊆ 2Ω is the σ-algebra of events,
and P is the probability measure. The initial condition P0 is a random variable
and the diffusion coefficient A(t) is a stochastic process. In principle, these
random data may take any probability distribution. The solution P (t) to (3.1)
is also a stochastic process, whose sample paths solve the deterministic version
of (3.1). General random differential equation problems have been profusely
studied in several contributions, see for example [125, 129, 6, 104].

This initial value problem (3.1) corresponds to Verhulst model [136, 102],
which extends Malthusian growth model by means of a carrying capacity when
there is lack of nutrients and competition between species as time passes. The
initial condition P0 and the solution P (t) represent proportions in (0, 1) of a
given population (the carrying capacity due to resources constrains is therefore
1), thus their supports are restricted to (0, 1). The diffusion coefficient A(t) is
the reproduction parameter, with support that may take values on the whole
R (although for growth modeling the reproductive parameter is positive). The
outcome ω ∈ Ω takes into account the variability in the population growth due
to complex factors (environmental, genetic, etc.), error measurements, lack of
information, etc. whose nature may be modeled as random. Some studies on
the logistic differential equation with uncertainties may be found in [40, 88].

In dealing with random differential equation problems, a major goal is the
computation of the (first) probability density function [125]. In our case, the
probability density function of P (t), denoted as f1(p, t), is characterized by the
relation P[P (t) ∈ B] =

∫
B f1(p, t) dp, where B ⊆ R is any Borel set. If the den-

sity function exists, we say that the random variable is absolutely continuous.
This function allows computing all statistical moments of P (t), in particular,
the expectation E and the variance V, and also confidence intervals. Thus, the
probability density function allows quantifying the uncertainty associated to
the response process P (t).

In the autonomous case (when A(t) does not depend on t, so it is just a random
variable), the computation of the probability density function f1(p, t) has been
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addressed in [52, 51], as an application of the random variable transformation
technique.

Only recently, in [42] the authors studied the non-autonomous case (3.1). The
authors established conditions under which the probability density function
of P (t) can be approximated, in the spirit of other previous contributions
such as [43, 12, 19]. In [42], the diffusion coefficient A(t) is written as a
Karhunen-Loève expansion [89]: A(t, ω) = µA(t) +

∑∞
j=1

√
νjφj(t)ξj(ω), where

µA(t) = E[A(t)], {νj}∞j=1 and {φj(t)}∞j=1 are the set of eigenvalues and eigen-
functions associated to the covariance integral operator of A(t), and {ξj}∞j=1

is a sequence of uncorrelated random variables with zero expectation and unit
variance. This process is truncated as AN(t, ω) = µA(t)+

∑N
j=1

√
νjφj(t)ξj(ω),

which gives rise to a truncation of the solution stochastic process P (t), say
PN(t). The probability density function of PN(t), fN1 (p, t), is computed via
the random variable transformation technique [42, Th. 1], by assuming abso-
lute continuity of P0, ξ1, ξ2, . . . and statistical independence. The convergence
of fN1 (p, t) to f1(p, t) is established by imposing a Lipschitz condition on the
density function of P0, fP0

, on (0, 1), and certain growth condition on A(t):

for each t, there exists Ct > 0 such that E[exp(2
∫ t
t0
AN(s) ds)] ≤ Ct, for all

N ≥ 1. This growth condition is satisfied if A(t) is a Gaussian process, or
if ξ1, ξ2, . . . have support in a common bounded interval, see [20, pp. 29–31],
although for a Gaussian stochastic process A(t) the exact probability density
function of P (t) is already known, so the applicability of [42] is restricted.

In this chapter, we tackle the approximation to f1(p, t) analogously to our
recent contribution [17]. We consider a general sequence {AN(t)}∞N=1 that
approximates A(t) in the Hilbert space L2([t0, T ] × Ω) (mean square approx-
imation/expansion of A(t)). This includes Karhunen-Loève expansions, cer-
tain random power series [125, p. 99], etc. We do not assume anything else
on AN(t) (no absolute continuity, no growth condition...). For each approxi-
mating process AN(t), we construct an approximating process PN(t) for the
solution stochastic process P (t). By supposing absolute continuity only for P0

and via a modified version of the random variable transformation technique,
we are able to compute the probability density function of PN(t), fN1 (p, t),
which is expressed in terms of an expectation. By using probability theory
tools, the convergence of fN1 (p, t) to f1(p, t) is established by only requiring
fP0

to be almost everywhere (a.e.) continuous and bounded on (0, 1) (which
is milder than being Lipschitz).

After the theoretical discussion of the chapter, we will perform numerical
examples that highlight the improvement of our results compared with [42].
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3.2 Main results

If P0(ω) ∈ (0, 1) almost surely (a.s.) and A(t) has a.s. integrable sample paths
on [t0, T ], then the sample path solution to (3.1) is given by

P (t, ω) =
1

1 + e
∫ t
t0
−A(s,ω) ds

(
−1 + 1

P0(ω)

) , (3.2)

for almost every ω ∈ Ω, and every t ∈ [t0, T ]. Notice that P (t, ω) ∈ (0, 1). Our
goal is to compute its (first) probability density function f1(p, t).

For convenience of notation, we denote K(t) =
∫ t
t0
A(s) ds and Z(t) = e−K(t) >

0, t ∈ [t0, T ].

Proposition 3.1 If P0 is absolutely continuous with density function fP0
, and

A(t) is any stochastic process independent of P0, then P (t) is absolutely con-
tinuous for each t ∈ [t0, T ], with density function given by

f1(p, t) = E
[
fP0

(
Z(t)p

1 + p(−1 + Z(t))

)
Z(t)

(1 + p(−1 + Z(t)))2

]
. (3.3)

Proof. Notice that, since A and P0 are independent, then Z and P0 are also
independent. If we denote by PZ(t) = P ◦ Z(t)−1 the probability law of Z(t),
t ∈ [t0, T ], and B ⊆ R is any Borel set then

P[P (t) ∈ B] =

∫
R
P[P (t) ∈ B|Z(t) = z]PZ(t)(dz)

=

∫
R
P
[

1

1 + Z(t)(−1 + 1/P0)
∈ B

∣∣∣∣Z(t) = z

]
PZ(t)(dz)

=

∫
R
P
[

1

1 + z(−1 + 1/P0)
∈ B

]
PZ(t)(dz),

where in the last equality we have used the independence between Z(t) and
P0. Note that

P
[

1

1 + z(−1 + 1/P0)
∈ B

]
=

∫
B
f 1

1+z(−1+1/P0)
(b) db,

where f1/(1+z(−1+1/P0)) is the density function of 1/(1 + z(−1 + 1/P0)). By the
random variable transformation technique,

f 1
1+z(−1+1/P0)

(b) = fP0

(
zb

1 + b(−1 + z)

)
z

(1 + b(−1 + z))2
.
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Notice that the absolute value in the Jacobian term z
(1+b(−1+z))2 is omitted

because Z(t) > 0 a.s. As a consequence,

P[P (t) ∈ B] =

∫
R

∫
B
fP0

(
zb

1 + b(−1 + z)

)
z

(1 + b(−1 + z))2
dbPZ(t)(dz)

=

∫
B

∫
R
fP0

(
zb

1 + b(−1 + z)

)
z

(1 + b(−1 + z))2
PZ(t)(dz) db

=

∫
B
E
[
fP0

(
Z(t)b

1 + b(−1 + Z(t))

)
Z(t)

(1 + b(−1 + Z(t)))2

]
db, (3.4)

where in the second equality we have utilized Fubini’s theorem, which is justi-
fied by the non-negativity of the integrand, and in the third equality we have
used the definition of expectation. Finally, realize that (3.4) tells us that P (t)
is absolutely continuous, for each t ∈ [t0, T ], with density function given by
(3.3).

�

Suppose that A(t) can be expanded in the Lebesgue space L2([t0, T ] × Ω),
as a limit of a sequence of stochastic processes {AN(t)}∞N=1. This includes
Karhunen-Loève expansions: A(t, ω) = µA(t) +

∑∞
j=1

√
νjφj(t)ξj(ω); certain

random power series: A(t, ω) =
∑∞

j=0 Yj(ω)tj; etc. In such a case, the ex-
pectation from (3.3) cannot be explicitly computed, in general. To intuitively
approximate (3.3), one may truncate A(t) by using AN(t). This gives rise to
an approximating stochastic process PN(t) of the solution P (t) given by (3.2),
defined as

PN(t, ω) =
1

1 + e
∫ t
t0
−AN (s,ω) ds

(
−1 + 1

P0(ω)

) .
Note that PN(t, ω) ∈ (0, 1). In practice, as AN may depend only on a finite
number of random variables, the density function of PN(t) may be explicitly
computed by using the following Proposition 3.2, which is completely analo-
gous to Proposition 3.1. For example, in the case of Karhunen-Loève expan-
sions, AN(t, ω) = µA(t) +

∑N
j=1

√
νjφj(t)ξj(ω); in the case of random power

series, AN(t, ω) =
∑N

j=0 Yj(ω)tj; etc., so that AN(t) only depends on finitely
many random variables.
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For convenience of notation, we denote KN(t) =
∫ t
t0
AN(s) ds and ZN(t) =

e−KN (t) > 0, t ∈ [t0, T ]. The following fact will be essential later on:

‖KN(t)−K(t)‖L2(Ω) =

(
E

[(∫ t

t0

(AN(s)−A(s)) ds

)2
]) 1

2

≤
√
T − t0‖AN −A‖L2([t0,T ]×Ω)

N→∞−→ 0, (3.5)

for each t ∈ [t0, T ], as a consequence of the well-known Cauchy-Schwarz in-
equality [125, p. 19].

Proposition 3.2 If P0 is absolutely continuous with density function fP0
, and

AN(t) is independent of P0, then PN(t) is absolutely continuous for each t ∈
[t0, T ], with density function given by

fN1 (p, t) = E
[
fP0

(
ZN(t)p

1 + p(−1 + ZN(t))

)
ZN(t)

(1 + p(−1 + ZN(t)))2

]
. (3.6)

In what follows, we demonstrate the convergence

lim
N→∞

fN1 (p, t) = f1(p, t)

for each p ∈ (0, 1) and t ∈ [t0, T ] (recall that, for p /∈ (0, 1), we have fN1 (p, t) =
f1(p, t) = 0).

Theorem 3.3 Suppose that P0 is an absolute continuous random variable
with density function fP0

, which is continuous and bounded on (0, 1). Let
{AN(t)}∞N=1 be any sequence of stochastic processes, independent of P0, that
tends to A(t) in L2([t0, T ] × Ω). Then limN→∞ f

N
1 (p, t) = f1(p, t) for each

p ∈ (0, 1) and t ∈ [t0, T ].

Proof. As we want expression (3.6) to tend to (3.3) as N →∞, it suffices to
prove that

fP0

(
ZN(t)p

1 + p(−1 + ZN(t))

)
ZN(t)

(1 + p(−1 + ZN(t)))2

N→∞−→ fP0

(
Z(t)p

1 + p(−1 + Z(t))

)
Z(t)

(1 + p(−1 + Z(t)))2
, (3.7)

in L1(Ω), see [125, Th. 4.2.1]. In the notation of [42, p. 128], let the functions

g(z) =
e−z

(1 + p(−1 + e−z))2
, h(z) =

e−zp

1 + p(−1 + e−z)
, z ∈ R.
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Then (3.7) may be rewritten as

fP0
(h(KN(t))) g(KN(t))

N→∞−→ fP0
(h(K(t))) g(K(t)) in L1(Ω).

By Cauchy-Schwarz inequality [125, p. 19], it suffices to establish the following
limits:

fP0
(h(KN(t)))

N→∞−→ fP0
(h(K(t))) in L2(Ω), (3.8)

g(KN(t))
N→∞−→ g(K(t)) in L2(Ω). (3.9)

As it was proved in [42, p. 128], by using the deterministic mean value theorem,
|g(z1)− g(z2)| ≤ Cg|z1− z2| and |h(z1)−h(z2)| ≤ Ch|z1− z2|, for all z1, z2 ∈ R,
for certain constants Cg, Ch > 0. Then

‖g(KN(t))− g(K(t))‖L2(Ω) ≤ Cg‖KN(t)−K(t)‖L2(Ω)
N→∞−→ 0,

‖h(KN(t))− h(K(t))‖L2(Ω) ≤ Ch‖KN(t)−K(t)‖L2(Ω)
N→∞−→ 0,

as a consequence of (3.5). Thus, by the latter relation, (3.9) is proved. On the
other hand, (3.8) is a consequence of the dominated convergence theorem [113,
result 11.32, p. 321]. Indeed, (3.8) is equivalent to proving that, for each sub-
sequence {h(KNm(t))}∞m=1, there exists another subsequence {h(KNml

(t))}∞l=1

such that liml→∞ fP0
(h(KNml

(t))) = fP0
(h(K(t))) in L2(Ω), see [17, Th. 2.5].

Fix a subsequence {h(KNm(t))}∞m=1. As it converges to h(K(t)) in L2(Ω), by
[11, Th. 4.9] there exists a subsequence {h(KNml

(t))}∞l=1 that converges a.s.
to h(K(t)). Since fP0

is continuous on (0, 1) and h(KNml
(t)), h(K(t)) ∈ (0, 1),

for all l ≥ 1, we derive that liml→∞ fP0
(h(KNml

(t))) = fP0
(h(K(t))) a.s. As

|fP0
(h(KNml

(t)))| ≤ ‖fP0
‖L∞(0,1) a.s., for each l ≥ 1, by the dominated con-

vergence theorem we conclude that liml→∞ fP0
(h(KNml

(t))) = fP0
(h(K(t))) in

L2(Ω). Thus, (3.8) has been proved, and we are done.
�

In the following theorem, we allow a.e. continuity on (0, 1) for fP0
. This is

important, as we enlarge the applicability of our theoretical results to initial
conditions P0 such that fP0

has a jump discontinuity in (0, 1) (for instance, the
uniform distribution, a truncated distribution with endpoint in (0, 1), etc.).

Theorem 3.4 Suppose that P0 is an absolute continuous random variable with
density function fP0

, which is a.e. continuous and bounded on (0, 1). Let
{AN(t)}∞N=1 be any sequence of stochastic processes, independent of P0, that

tends to A(t) in L2([t0, T ]× Ω). Suppose that
∫ t
t0
A(t) ds is absolutely contin-

uous for each t ∈ [t0, T ]. Then limN→∞ f
N
1 (p, t) = f1(p, t) for each p ∈ (0, 1)

and t ∈ [t0, T ].
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Proof. The proof is completely analogous to Theorem 3.3, see [17, Th. 2.7]
for the original idea. The only step that needs to be justified is the limit
liml→∞ fP0

(h(KNml
(t))) = fP0

(h(K(t))) a.s. Since
∫ t
t0
A(t) ds is absolutely

continuous, then h(K(t)) is absolutely continuous, so P[h(K(t)) ∈ DfP0
] = 0,

where DfP0
is the null set of discontinuities of fP0

. By the continuous map-
ping theorem [135, p. 7, Th. 2.3], the convergence liml→∞ fP0

(h(KNml
(t))) =

fP0
(h(K(t))) a.s. is justified.

�

Notice that Theorem 3.3 and Theorem 3.4 extend [42], as [42] assumes that all
data are absolutely continuous, the expansion of A(t) is of Karhunen-Loève-
type with certain growth, and fP0

is Lipschitz on (0, 1) (which is a stronger
assumption than continuity and boundedness on (0, 1), see [20, p. 10]).

Notice also that the hypothesis of absolute continuity for
∫ t
t0
A(t) ds in The-

orem 3.4 is easily satisfied in the case of Karhunen-Loève expansions and
random power series. If A(t, ω) = µA(t) +

∑∞
j=1

√
νjφj(t)ξj(ω) or A(t, ω) =∑∞

j=0 Yj(ω)tj, then it suffices that one of the ξj’s or one of the Yj’s is abso-
lutely continuous and independent of the rest of random coefficients, by [17,
Lemma 2.1].

It is easy to prove that PN(t) → P (t) as N → ∞ in L2(Ω), for each t ∈
[t0, T ] (see Proposition 3.5), so that the expectation and the variance of P (t)
may be approximated as follows: E[P (t)] = limN→∞ E[PN(t)] and V[P (t)] =
limN→∞ V[PN(t)], where both statistics expectation E[PN(t)] =

∫
R pf

N
1 (p, t) dp

and variance V[PN(t)] = E[PN(t)2]− (E[PN(t)])2, E[PN(t)2] =
∫
R p

2fN1 (p, t) dp
can be computed with fN1 (p, t). This is a key property of mean square con-
vergence, see [125, Th. 4.2.1, Th. 4.3.1].

Proposition 3.5 We have that limN→∞ PN(t) = P (t) in L2(Ω), for each t ∈
[t0, T ].

Proof. It suffices to prove that, for each subsequence {PNm(t)}∞m=1, there
exists another subsequence {PNml (t)}

∞
l=1 such that liml→∞ PNml (t) = P (t) in

L2(Ω), for each t ∈ [t0, T ]. This is due to a property of convergence already
used in Theorem 3.3 and [17, Th. 2.5]. Fix a subsequence {PNm(t)}∞m=1. We
know that limm→∞KNm(t) = K(t) in L2(Ω), by (3.5). By [11, Th. 4.9], there
exists a subsequence {KNml

(t)}∞l=1 that converges to K(t) a.s. This implies
that {PNml (t)}

∞
l=1 converges to P (t) a.s. Since |PNml (t)| < 1 a.s., for each l ≥ 1,

by the dominated convergence theorem we derive that liml→∞ PNml (t) = P (t)

in L2(Ω). This concludes the proof.
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�

3.3 Numerical examples

In this section we illustrate our theoretical findings with four numerical exam-
ples in which we approximate the probability density function of P (t), f1(p, t),
as well as its expectation and variance, E[P (t)] and V[P (t)], by means of the
approximating density functions fN1 (p, t).

The computations are performed in the software MathematicaR©, version 11.2.

Example 3.6 deals with a type of problem (3.1) that satisfies the hypotheses
of our theorems and also [42], so that our methodology and [42] provide the
same conclusions. Example 3.7 does not satisfy assumption H4 from [42],
but our theorems are applicable, so that we enlarge the applicability of [42].
Example 3.8 deals with discrete distributed random data, which can be done
due to our modification of the random variable transformation technique from
Proposition 3.1 and Proposition 3.2, in contrast with [42]. Finally, Example 3.9
deals with a diffusion coefficient expressed as a random power series, thus
showing that we are not restricted to Karhunen-Loève expansions as in [42].

Example 3.6 Consider (3.1) on [t0, T ] = [0, 1], with P0 having a truncated
Exponential(5) distribution on [0, 1], and A(t) expressed as a Karhunen-Loève
expansion written as

A(t) =
∞∑
j=1

√
2

jπ
sin(tjπ)ξj, (3.10)

where each ξi is expressed as ξi = Xi − Yi, i ≥ 1, where X1, Y1, X2, Y2, . . .
are independent random variables distributed as Exponential(

√
2), and inde-

pendent of P0 too. Notice that ξ1, ξ2, . . . are independent, with E[ξi] = 0
and V[ξi] = 1, so that the Karhunen-Loève expansion of A(t) is written ap-

propriately. We consider the truncations AN(t) =
∑N

j=1

√
2

jπ
sin(tjπ)ξj, which

converge in L2([0, 1]× Ω) to A(t) as N →∞.

Our Theorem 3.3 is applicable. Notice also that the assumptions of [42] hold,
as we are dealing with a diffusion coefficient A(t) expressed as a Karhunen-
Loève expansion with absolutely continuous random coefficients ξ1, ξ2, . . ., fP0

is Lipschitz on (0, 1), and H4 from [42, p. 129] holds. Indeed, by the in-
dependence and by the expression of the moment-generating function of an
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Exponential distribution, ϕ(·), we have:

E[e2KN (t)]=E[e2
∫ t

0
AN (s)ds]=E[e

∑N
j=1

2
√

2
jπ

∫ t
0

sin(sjπ)ds ξj ]=E[e
∑N
j=1

2
√

2

j2π2 (1−cos(tjπ))ξj ]

=
N∏
j=1

E[e
2
√

2

j2π2 (1−cos(tjπ))ξj ] ≤
N∏
j=1

E[e
4
√

2

j2π2 (Xj+Yj)] =

(
N∏
j=1

ϕExp(
√

2)

(
4
√

2

j2π2

))2

=

(
N∏
j=1

√
2

√
2− 4

√
2

j2π2

)2

=

(
N∏
j=1

(
1− 4

j2π2

))−2

≤ C,

for all N ≥ 1, for certain C > 0, since
∏∞
j=1(1 − 4

j2π2 ) converges because∑∞
j=1

4
j2π2 <∞. Thereby, the methodology from [42] is also applicable.

In Figure 3.1, we plot fN1 (p, t) for orders of truncation N = 1, 2, 3 and for
t = 0.2 and t = 0.6, with the built-in function NExpectation. We observe that
the theoretical convergence agrees with the numerical results depicted. We also
observe fast convergence to f1(p, t). These computations are completed with
approximations for the expectation and the variance of P (t) in Table 3.1.
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Figure 3.1: Plot of fN1 (p, t) for orders of truncation N = 1, 2, 3 and for t = 0.2 and t = 0.6,
in Example 3.6.
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t = 0.2 t = 0.6
E[P1(t)] 0.193236 0.194135
E[P2(t)] 0.193252 0.194245
E[P3(t)] 0.193264 0.194245
V[P1(t)] 0.0331839 0.0338054
V[P2(t)] 0.0331950 0.0338811
V[P3(t)] 0.0332029 0.0338813

Table 3.1: Approximations E[PN (t)] and V[PN (t)] for N = 1, 2, 3 and t = 0.2, t = 0.6, in
Example 3.6.

Example 3.7 In this example we address (3.1) on [t0, T ] = [0, 1], where
P0 ∼ Beta(5, 4) and A(t) is expressed as the Karhunen-Loève expansion (3.10),
where ξj = Xj/

√
3, being X1, X2, . . . random variables with Student’s t-

distribution with 3 degrees of freedom. It is assumed that P0, X1, X2, . . . are
statistically independent. Notice that E[ξj] = 0 and V[ξj] = 1, so that we have
a proper Karhunen-Loève expansion for A(t).

If we denote by AN(t) the N -th partial sum of the Karhunen-Loève series,
it is easy to check that hypothesis H4 from [42] does not hold, because it is
well-known that the Student’s t-distribution does not possess a well-defined
moment-generating function. Nonetheless, our new Theorem 3.3 is applica-
ble, as it does not rely on any growth condition for the random coefficients
ξ1, ξ2, . . ..

Let us perform some numerical experiments. In Figure 3.2, we plot the graph
of fN1 (p, t) for orders N = 1, 2, 3 at t = 0.2 and t = 0.6. With fN1 (p, t), we
have computed E[PN(t)] and V[PN(t)] in Table 3.2. The numerical results show
fast convergence to the target density function f1(p, t), which corroborates our
theoretical conclusions.

Example 3.8 We deal with (3.1) on [t0, T ] = [0, 1], with P0 that follows a
truncated Exponential(3) distribution on [0, 1], and with A(t) expressed by
(3.10), where each ξj follows a discrete uniform distribution on the set {−1, 1}
(that is, P[ξj = −1] = P[ξj = 1] = 1/2). We assume independence between
P0, ξ1, ξ2, . . ..

In this case, as we have discrete random data, the methodology from [42] is
not applicable. However, our Theorem 3.3 can certainly be used.
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Figure 3.2: Plot of fN1 (p, t) for orders of truncation N = 1, 2, 3 and for t = 0.2 and t = 0.6,
in Example 3.7.

t = 0.2 t = 0.6
E[P1(t)] 0.555548 0.555242
E[P2(t)] 0.555542 0.555201
E[P3(t)] 0.555538 0.555180
V[P1(t)] 0.0247219 0.0259793
V[P2(t)] 0.0247469 0.0261431
V[P3(t)] 0.0247647 0.0262821

Table 3.2: Approximations E[PN (t)] and V[PN (t)] for N = 1, 2, 3 and t = 0.2, t = 0.6, in
Example 3.7.
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3.3 Numerical examples

In Figure 3.3, we show graphical representations of fN1 (p, t) for orders of trun-
cation N = 1, 2, 3 and for t = 0.2 and t = 0.6. Table 3.3 presents the ap-
proximations for E[P (t)] and V[P (t)]. The computational results support the
theoretical convergence.
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Figure 3.3: Plot of fN1 (p, t) for orders of truncation N = 1, 2, 3 and for t = 0.2 and t = 0.6,
in Example 3.8.

t = 0.2 t = 0.6
E[P1(t)] 0.280953 0.281662
E[P2(t)] 0.280966 0.281747
E[P3(t)] 0.280975 0.281748
V[P1(t)] 0.0559840 0.0566202
V[P2(t)] 0.0559953 0.0566972
V[P3(t)] 0.0560034 0.0566974

Table 3.3: Approximations E[PN (t)] and V[PN (t)] for N = 1, 2, 3 and t = 0.2, t = 0.6, in
Example 3.8.

Example 3.9 We consider (3.1) on [t0, T ] = [0, 1], P0 having a Normal(2, 1)
distribution truncated on [0.1, 0.7], and with A(t) expressed as a random power
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series on L2([0, 1]× Ω):

A(t) =
∞∑
j=1

Yj
j3
tj,

where Y1, Y2, . . . are independent random variables with a Triangular distri-
bution on [2, 3]. We also suppose that P0 is independent of Y1, Y2, . . .. The

partial sums AN(t) =
∑N

j=1
Yj
j3
tj form the approximating sequence to A(t) in

L2([0, 1]× Ω).

This example cannot be addressed with [42]. Our Theorem 3.4 is indeed
applicable, as fP0

is a.e. continuous on (0, 1) (it only has two discontinuities
on (0, 1), at p = 0.1 and p = 0.7) and bounded. Figure 3.4 and Table 3.4
present the numerical results.
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Figure 3.4: Plot of fN1 (p, t) for orders of truncation N = 1, 2, 3 and for t = 0.2 and t = 0.6,
in Example 3.9.
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t = 0.2 t = 0.6
E[P1(t)] 0.457686 0.545446
E[P2(t)] 0.457869 0.550332
E[P3(t)] 0.457877 0.550981
V[P1(t)] 0.0287887 0.0305547
V[P2(t)] 0.0287955 0.0305514
V[P3(t)] 0.0287958 0.0305504

Table 3.4: Approximations E[PN (t)] and V[PN (t)] for N = 1, 2, 3 and t = 0.2, t = 0.6, in
Example 3.9.

3.4 Conclusions

In this chapter, we have provided a comprehensive stochastic analysis of the
random non-autonomous logistic differential equation. The diffusion coeffi-
cient A(t) has been assumed to be a stochastic process and the initial condi-
tion P0 has been taken as a random variable. The solution P (t) thus becomes
a stochastic process. The main goal has consisted in approximating the prob-
ability density function f1(p, t) of P (t). We have fully extended the results
of the recent contribution [42], which is the first one in dealing with the non-
autonomous case of this important equation for growth modeling. The idea of
our approach, which could be used for other random differential equations as
we did in [17], could be summarized as follows: (i) by assuming absolute con-
tinuity only for the initial condition P0, we have proved that P (t) is absolutely
continuous with density function f1(p, t) expressed in terms of an expectation,
via a generalization of the random variable transformation technique to our
particular setting; (ii) when A(t) is expanded or approximated in terms of
a sequence of stochastic processes {AN(t)}∞N=1 in L2([t0, T ] × Ω) (such as in
Karhunen-Loève expansions, random power series, etc.), we have constructed
a truncation PN(t) of P (t), whose density function fN1 (p, t) is computable;
(iii) finally, we have proved that limN→∞ f

N
1 (p, t) = f1(p, t) pointwise by us-

ing powerful tools such as Cauchy-Schwarz inequality, dominated convergence
theorem, continuous mapping theorem, etc., under the mild assumptions of
a.e. continuity and boundedness of fP0

. The numerical examples show that
our theoretical discussion is widely applicable in practice and generalizes [42].
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Chapter 4

Mathematical methods for
the randomized

non-autonomous Bertalanffy
model

In this chapter, the goal is to analyze the randomized non-autonomous
Bertalanffy model: x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω)x(t, ω)

2
3 , x(t0, ω) =

x0(ω), where a(t, ω) and b(t, ω) are stochastic processes and x0(ω) is a
random variable, all of them defined in an underlying complete probability
space. Under some assumptions on a, b and x0, it is obtained a solu-
tion stochastic process, x(t, ω), both in the sample path and in the mean
square senses. By using the Random Variable Transformation technique
and Karhunen-Loève expansions, we construct a sequence of probability
density functions that, under certain conditions, converges pointwise or
uniformly to the density function of x(t, ω), fx(t)(x). This permits approx-
imating the expectation and the variance of x(t, ω). In the end, numerical
experiments are carried out to put in practice our theoretical findings.
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4.1 Introduction and motivation

Bertalanffy model [7] is a biological ordinary differential equation model that
describes the relationship between the metabolism and the growth of an or-
ganism. The metabolism is divided into anabolism (synthesis) and catabolism
(destruction). The model assumes that the body weight W (t), at the time
instant t, of an animal is the result of the counteraction of the processes of
anabolism and catabolism:

W ′(t) = ηWm(t)− κW n(t),

where η and κ are the constants of anabolism and catabolism, respectively,
proportional to some power of the body weight at the time t. This model
follows the law of allometry: the rate of change of weight depends on the
constants of anabolism and catabolism via a power of the weight.

The surface rule states that the dependence of anabolism on body weight takes
the power m = 2/3 [139, 4] (however, other exponents have been suggested,
see [111]). Bertalanffy justified, by using physiological facts and mathematical
considerations, that the rate of catabolism should have the power n = 1.
Bertalanffy model thus becomes

W ′(t) = ηW
2
3 (t)− κW (t).

In this chapter, we want to perform a mathematical study of the randomized
non-autonomous Bertalanffy model:{

x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω)x(t, ω)
2
3 , t ∈ [t0, T ], ω ∈ Ω,

x(t0, ω) = x0(ω), ω ∈ Ω.
(4.1)

In this setting, we are considering an underlying complete probability space
(Ω,F ,P). The set Ω contains the outcomes, that will be denoted generically
by ω, the set F is the σ-algebra of events and P is the probability measure.
In (4.1), we are also considering the stochastic processes

a = {a(t, ω) : t ∈ [t0, T ], ω ∈ Ω}, b = {b(t, ω) : t ∈ [t0, T ], ω ∈ Ω}
and the random variable x0(ω), all of them defined in the probability space
(Ω,F ,P). The solution to the stochastic system, x(t, ω), becomes a stochastic
process.

The mathematical term that encompasses equations such as (4.1) is random
differential equation (RDE). The random autonomous Bertalanffy model has
been studied, with applications to fish weight growth modeling, in [28]. The
recent paper [20], that has become the main reference for this chapter, has
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studied the random non-autonomous inhomogeneous linear differential equa-
tion, by focusing on approximating the probability density function of the
solution stochastic process. Its main contribution has been using Karhunen-
Loève expansions [89, Ch. 5] to construct the approximating sequence of den-
sity functions. Other mathematical studies of the Bertalanffy model, in the
sense of stochastic differential equations (SDEs) of Itô type [106], have been
carried out in [120, 110]. In SDEs of Itô type, the uncertainty is introduced
in the deterministic differential equation by means of stochastic perturbations
driven by the white noise process.

The goal of this chapter is to perform a mathematical study of the random
non-autonomous Bertalanffy model (4.1). It is proved that, under certain
conditions, there is a solution stochastic process in the sample path and the
mean square senses. This is done by relating the random non-autonomous
Bertalanffy model to the random non-autonomous linear differential equation
from [20], via the usual change of variables performed in Bernoulli differential
equations. The Random Variable Transformation technique permits relating
the probability density functions of the solution processes to the random non-
autonomous Bertalanffy model and the random non-autonomous linear differ-
ential equation. The Karhunen-Loève expansions of the coefficient stochastic
processes in the RDE (4.1) allow us to obtain an approximating sequence of
probability density functions for the density fx(t)(x) of the solution process
x(t, ω). A numerical and computational treatment of the theoretical results
obtained will be performed in the end.

4.2 Solving the random non-autonomous Bertalanffy model

There are different ways of interpreting the random differential equation (4.1).
One way, which uses strongly the deterministic theory on differential equa-
tions, is the sample path interpretation [129, p. 2, SP problem], [114, p. 440]:
fixed ω ∈ Ω, the random problem (4.1) becomes a deterministic problem, so
one looks for stochastic processes x(t, ω) with absolutely continuous sample
paths that solve (4.1). Another way consists in using Lp(Ω) random calculus
(see [125, Ch. 4] and [89, Section 5.5] for an introduction). We will study
solutions to (4.1) in the mean square sense, according to the definition in [125,
p. 118] or [129, p. 3, Lp problem].

Consider the stochastic process

x(t, ω) =

(
x0(ω)

1
3 e

1
3

∫ t
t0
a(s,ω) ds

+
1

3

∫ t

t0

b(s, ω)e
1
3

∫ t
s
a(r,ω) dr ds

)3

. (4.2)
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This stochastic process comes from randomizing the deterministic solution to
the deterministic non-autonomous Bertalanffy model. The integrals in (4.2)
are considered in the Lebesgue sense, for each ω ∈ Ω fixed (sample path
Lebesgue integral), or in the mean square sense.

4.2.1 Solution stochastic process with absolutely continuous
sample paths

By the classical theory on deterministic differential equations [68, p. 28–30],
the following theorem holds:

Theorem 4.1 (Sample path solution to the Bertalanffy model)
Suppose that a(·, ω), b(·, ω) ∈ L1([t0, T ]), for a.e. ω ∈ Ω. Then the stochastic
process x(t, ω) given by (4.2) satisfies that, for a.e. ω ∈ Ω, x(·, ω) is absolutely
continuous on [t0, T ] and satisfies (4.1) for a.e. t ∈ [t0, T ].

If a(·, ω) and b(·, ω) are continuous on [t0, T ], then x(·, ω) is in C1([t0, T ]) and
satisfies (4.1) for all t ∈ [t0, T ].

4.2.2 Solution stochastic process in the mean square sense

Consider the random linear differential equation

{
y′(t, ω) = 1

3
a(t, ω)y(t, ω) + 1

3
b(t, ω), t ∈ [t0, T ], ω ∈ Ω,

y(t0, ω) = x0(ω)
1
3 , ω ∈ Ω.

(4.3)

Notice that, if a stochastic process y(t, ω) is a solution to (4.3) in the L6(Ω)
sense, then the stochastic process defined as x(t, ω) = y(t, ω)3 is a solution to
(4.1) in the L2(Ω) sense. Indeed, if y(t, ω) is differentiable in the L6(Ω) sense,
then x(t, ω) is differentiable in the L2(Ω) sense, by [137, Lemma 3.14], and by
the product rule, x(t, ω) solves (4.1) in the L2(Ω) sense.

Let y(t, ω) be a stochastic process solution to (4.3) in the L6(Ω) sense. By
[114, Th. 8–20] and [129, Th. 3(a)], there exists a stochastic process ϕ(t, ω)
measurable on [t0, T ] × Ω, equivalent to y(t, ω) (meaning that ϕ(t, ·) = y(t, ·)
a.s., for all t ∈ [t0, T ]), such that ϕ(·, ω) is absolutely continuous on [t0, T ] and
solves (4.3) in the sample path sense, for each ω ∈ Ω. By [20, Th. 1.3], up to
equivalence,

y(t, ω) = x0(ω)
1
3 e

1
3

∫ t
t0
a(s,ω) ds

+
1

3

∫ t

t0

b(s, ω)e
1
3

∫ t
s
a(r,ω) dr ds (4.4)
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4.2 Solving the random non-autonomous Bertalanffy model

Thus, (4.4) is the unique candidate, up to equivalence, that solves (4.3) in
the L6(Ω) sense. We are going to show that, under some conditions on the
stochastic processes a(t, ω) and b(t, ω), the stochastic process y(t, ω) given by
(4.4) is indeed a solution to (4.3) in the L6(Ω) sense. From this fact, (4.2) will
solve the random Bertalanffy model (4.1) in the mean square sense.

Theorem 4.2 (Mean square solution to the Bertalanffy model)
Suppose that:

(i) x0, a and b are independent.

(ii) x0 ∈ L4(Ω), and a and b are L12(Ω) continuous.

(iii) There exist r > 12 and δ > 0 such that

sup
s,s∗∈[−δ,δ]

E
[
er
∫ t+s∗
x+s

a(u) du
]
<∞,

for each t0 ≤ x ≤ t ≤ T .

Then the stochastic process y(t, ω) defined by (4.4) (with mean square Riemann
integrals) is differentiable in the L6(Ω) sense and satisfies the random problem
(4.3). As a consequence, the stochastic process x(t, ω) defined by (4.2) is
differentiable in the mean square sense and satisfies the random Bertalanffy
model (4.1).

Proof. The proof is straightforward from [39]. Denote y0(ω) = x0(ω)
1
3 , which

belongs to L12(Ω). We apply the theory from [39, Section 3] adapted to L6(Ω)
calculus.

�

Example 4.3 (Applications of Theorem 4.2) Let us see some examples
of processes a(t, ω) for which the hypotheses of Theorem 4.2 fulfill.

• Let [t0, T ] = [0, 1] and a(t, ω) be a standard Brownian motion on [0, 1]
[89, p. 185–186]. We have a(t+ h, ω)− a(t, ω) ∼ Normal(0, h), so

‖a(t+ h, ω)− a(t, ω)‖L12(Ω) = ‖
√
hZ‖L12(Ω) =

√
h ‖Z‖L12(Ω)

h→0−→ 0,

being Z ∼ Normal(0, 1). This shows that a(t, ω) is continuous in the
L12(Ω) sense. Another way of checking the L12(Ω)-continuity of the
Brownian motion uses [137, Lemma 3.11]: a(t, ω) is continuous in the
L12(Ω) sense if and only if the function E[a(t1, ω) · · · a(t12, ω)] defined on
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R12 is continuous on the diagonal (t, . . . , t) ∈ [t0, T ]12. This is clear by
[125, p. 28].

On the other hand, since a(t, ω) is a Gaussian process, its mean square
integral is normally distributed [125, Th. 4.6.4]. Bearing in mind the
moment generating function of a normal distribution,

E
[
er
∫ t+s∗
x+s

a(u,ω) du
]
<∞.

• If a(t, ω) is a standard Brownian bridge on [0, 1], [89, p. 193–195], the
same holds, as a(t, ω) is a Gaussian process with stationary increments.

• An example of a non-Gaussian process is given by a(t, ω) = t U(ω), t ∈
[t0, T ], being U any bounded random variable. Indeed, a(t, ω) is L12(Ω)-
continuous, since

‖a(t+ h, ω)− a(t, ω)‖L12(Ω) = |h|‖U‖L12(Ω)
h→0−→ 0.

On the other hand,

E
[
er
∫ t+s∗
x+s

a(u,ω) du
]
≤E

[
er‖U‖L∞(Ω)

∫ t+s∗
x+s

u du
]

=er‖U‖L∞(Ω)
(t+s∗)2−(x+s)2

2 <∞,

so the hypotheses of Theorem 4.2 hold for a(t, ω).

4.3 Obtaining the probability density function of the solution
stochastic process

The aim of this section is to approximate the probability density function of
the solution stochastic process to the random Bertalanffy model, x(t, ω) given
by (4.2). To achieve this goal, we will use existing results on the random linear
differential equation from [20], together with a version of the Random Vari-
able Transformation technique and the Karhunen-Loève expansions of both
processes a(t, ω) and b(t, ω) from (4.1).

Lemma 4.4 (Random Variable Transformation method) ([83, p. 115]).
Let X be an absolutely continuous random variable with density fX and with
support DX contained in an open set D ⊆ R. Let g : D → R be such that
D = ∪ni=1Di and gi = g|Di is injective and C1(Di) with non-vanishing deriva-
tive. Then the random variable Y = g(X) is absolutely continuous, with den-
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4.3 Obtaining the probability density function of the solution stochastic process

sity function given by

fY (y) =


∑

i: y∈g(Di)

fX(g−1
i (y))

∣∣∣∣dg−1
i (y)

dy

∣∣∣∣ , y ∈ g(D),

0, y /∈ g(D).

Lemma 4.5 (Karhunen-Loève Theorem) ([89, Th. 5.28]). Consider a
stochastic process {X(t, ω) : t ∈ T , ω ∈ Ω} in L2(T × Ω). Then

X(t, ω) = µ(t) +
∞∑
j=1

√
νj φj(t)ξj(ω), (4.5)

where the sum converges in L2(T × Ω), µ(t) = E[X(t)], {φj}∞j=1 is an or-
thonormal basis of L2(T ), {(νj, φj)}∞j=1 is the set of pairs of (nonnegative)
eigenvalues and eigenvectors of the operator

C : L2(T )→ L2(T ), Cf(t) =

∫
T
Cov[X(t), X(s)]f(s) ds, (4.6)

and {ξj}∞j=1 is a sequence of random variables with zero expectation, unit vari-
ance and pairwise uncorrelated. In (4.6), Cov[·, ·] stands for the covariance
operator. Moreover, if {X(t) : t ∈ T } is a Gaussian process, then {ξj}∞j=1 are
independent and Gaussian.

4.3.1 Main results

Let a(t, ω) and b(t, ω) be stochastic processes in L2([t0, T ] × Ω). According
to Lemma 4.5, we can expand both a(t, ω) and b(t, ω) via a Karhunen-Loève
expansion:

a(t, ω) = µa(t) +
∞∑
j=1

√
νj φj(t)ξj(ω), b(t, ω) = µb(t) +

∞∑
j=1

√
γj ψj(t)ηj(ω),

(4.7)
respectively. The summation symbol in both expansions will be always written
up to ∞, although it could be possible that their corresponding covariance
integral operators C have only a finite number of nonzero eigenvalues, so that
the summation symbol finishes at an index J <∞. As the more complex case
arises when the sum arrives at infinity, we will always write the Karhunen-
Loève expansions of a(t, ω) and b(t, ω) up to infinity.

Notice that, from a, b ∈ L2([t0, T ] × Ω), we have a(·, ω), b(·, ω) ∈ L1([t0, T ]),
therefore the process x(t, ω) has absolutely continuous sample paths and solves
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the random Bertalanffy model (4.1), by Theorem 4.1. Under the stricter as-
sumptions of Theorem 4.2, the process x(t, ω) will be a mean square solution
too.

For convenience, let us consider the truncation of the Karhunen-Loève expan-
sions (4.7) of the stochastic processes a and b of common order N

aN(t, ω) = µa(t) +
N∑
j=1

√
νj φj(t)ξj(ω), bN(t, ω) = µb(t) +

N∑
j=1

√
γj ψj(t)ηj(ω).

This gives a truncation of the solution stochastic process x(t, ω) given by (4.2):

xN(t, ω) =

(
x0(ω)

1
3 e

1
3

∫ t
t0
aN (s,ω) ds

+
1

3

∫ t

t0

bN(s, ω)e
1
3

∫ t
s
aN (r,ω) dr ds

)3

, (4.8)

We also obtain a truncation of the solution stochastic process y(t, ω) to the
random linear differential equation, given by (4.4):

yN(t, ω) = x0(ω)
1
3 e

1
3

∫ t
t0
aN (s,ω) ds

+
1

3

∫ t

t0

bN(s, ω)e
1
3

∫ t
s
aN (r,ω) dr ds. (4.9)

The relation between both truncations (4.8) and (4.9) is that xN(t, ω) =
yN(t, ω)3.

We denote, exactly as in [20], the following vectors in bold letters, ξξξN =
(ξ1, . . . , ξN) and ηηηM = (η1, . . . , ηM), understanding this as a random vector or
as a deterministic real vector, depending on the context. Denote

Ka(t, ξξξN) =

∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s)ξj

)
ds,

Sb(s,ηηηN) = µb(s) +
N∑
i=1

√
γi ψi(s)ηi.

Suppose that x0 and (ξ1, . . . , ξN , η1, . . . , ηN) are absolutely continuous and
independent, for each N ≥ 1.

Let y0(ω) = x0(ω)1/3 be the initial condition of the random linear differen-
tial equation (4.3). By Lemma 4.4 applied with the transformation mapping
g(x) = x1/3 on D = R\{0}, with domain partition D = D1 ∪ D2, being
D1 = (0,∞) and D2 = (−∞, 0), we have y0(ω) is absolutely continuous, with
density function

fy0
(y) = fx0

(y3)3y2, (4.10)

for y ∈ R.
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4.3 Obtaining the probability density function of the solution stochastic process

By using the version of the Random Variable Transformation technique of [20,
Lemma 2.1], in [20, Expression (10)] it was obtained the probability density
function of yN(t, ω):

fyN (t)(y) =

∫
R2N

fy0

(
y e−

1
3
Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN )e−
1
3
Ka(s,ξξξN ) ds

)
×e−

1
3
Ka(t,ξξξN )fξξξN ,ηηηN (ξξξN , ηηηN ) dξξξN dηηηN

= E
[
fy0

(
y e−

1
3
Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN )e−
1
3
Ka(s,ξξξN ) ds

)
e−

1
3
Ka(t,ξξξN )

]
= E

[
fx0

({
y e−

1
3
Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN )e−
1
3
Ka(s,ξξξN ) ds

}3
)

×3

{
y e−

1
3
Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN )e−
1
3
Ka(s,ξξξN ) ds

}2

e−
1
3
Ka(t,ξξξN )

]
,

for y ∈ R.

Since xN(t, ω) = yN(t, ω)3, by Lemma 4.4 with the transformation mapping
g(x) = x3 on D = R\{0}, with domain partition D = D1 ∪ D2, being D1 =
(0,∞) and D2 = (−∞, 0), we have that xN(t, ω) is an absolutely continuous
random variable for each t ∈ [t0, T ], with density function

fxN (t)(x) = fyN (t)

(
x

1
3

) 1

3x
2
3

(4.11)

=
1

x
2
3

E
[
fx0

({
x

1
3 e−

1
3Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN)e−
1
3Ka(s,ξξξN ) ds

}3
)

×
{
x

1
3 e−

1
3Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN)e−
1
3Ka(s,ξξξN ) ds

}2

e−
1
3Ka(t,ξξξN )

]
,

(4.12)

for 0 6= x ∈ R. Density functions are defined up to sets of Lebesgue measure
0, so the fact that fxN (t)(x) is not defined at x = 0 is not any problem.

Under some assumptions, for instance, by taking into account [20, Th. 2.9,
Th. 2.12], the random variable y(t, ω) is absolutely continuous for each t ∈
[t0, T ], with density function

fy(t)(y) = lim
N→∞

fyN (t)(y), (4.13)

for all y ∈ R. Bearing in mind that x(t, ω) = y(t, ω)3, by Lemma 4.4 with
the transformation mapping g(x) = x3 on D = R\{0}, we get that x(t, ω) is
an absolutely continuous random variable, for each t ∈ [t0, T ], with density
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function

fx(t)(x) = fy(t)

(
x

1
3

) 1

3x
2
3

, (4.14)

for 0 6= x ∈ R. By combining (4.11), (4.13) and (4.14),

fx(t)(x) = fy(t)

(
x

1
3

) 1

3x
2
3

= lim
N→∞

fyN (t)

(
x

1
3

) 1

3x
2
3

= lim
N→∞

fxN (t)(x),

for all 0 6= x ∈ R.

The goal is to find out under which conditions on the stochastic processes
a(t, ω) and b(t, ω) and on the random variable x0(ω) from (4.1), the solution
stochastic process x(t, ω) given by (4.2) is an absolutely continuous random
variable, for each t ∈ [t0, T ], with density function satisfying

fx(t)(x) = lim
N→∞

fxN (t)(x), (4.15)

for each 0 6= x ∈ R. For this purpose, we will use results on the random linear
differential equation (4.3) [20, Th. 2.9, Th. 2.12], that establish under which
conditions the limit (4.13) is justified.

Theorem 4.6 Assume the following four hypotheses:

H1 : a, b ∈ L2([t0, T ]× Ω);

H2 : x0 and (ξ1, . . . , ξN , η1, . . . , ηN) are absolutely continuous and

independent, N ≥ 1;

H3 : the density function of x0, fx0
, is continuous on R and

fx0
(x) ≤ C

|x| 23
, for x 6= 0;

H4 : ‖e− 1
3Ka(t,ξξξN )‖L2(Ω) ≤ C, for all N ≥ 1 and t ∈ [t0, T ].

Then, for all 0 6= x ∈ R and t ∈ [t0, T ], the sequence {fxN (t)(x)}∞N=1 given by
(4.12) converges to the density fx(t)(x) of the solution process x(t, ω) given by
(4.2).

Proof. Since y0(ω) = x0(ω)1/3, by hypothesis H2 y0 and (ξ1, . . . , ξN , η1, . . . , ηN)
are absolutely continuous and independent, for N ≥ 1. By (4.10) and hypoth-
esis H3, fy0

(y) is continuous on R and

fy0
(y) ≤ C

|y3| 23
3y2 = 3C,
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4.3 Obtaining the probability density function of the solution stochastic process

for y 6= 0, therefore bounded. The hypotheses of [20, Th. 2.9] are fulfilled for
(4.3), therefore y(t, ω) is an absolutely continuous random variable for each
t ∈ [t0, T ], with density function satisfying (4.13). Then, x(t, ω) is absolutely
continuous and verifies (4.15).

�

Theorem 4.7 Assume that

H1 : a, b ∈ L2([t0, T ]× Ω);

H2 : x0, η1, (ξ1, . . . , ξN , η2, . . . , ηN) are absolutely continuous and

independent, N ≥ 1;

H3 : the density function of η1, fη1
, is continuous and bounded on R;

H4 : ξ1, ξ2, . . . have compact support in [−A,A] (A > 0), ψ1 > 0 on (t0, T ).

Then, for each 0 6= x ∈ R and t ∈ (t0, T ], the sequence {fxN (t)(x)}∞N=1 given
by (4.12) converges to the density fx(t)(x) of the solution process x(t, ω) given
by (4.2).

Proof. By [20, Th. 2.12], y(t, ω) is an absolutely continuous random variable
for each t ∈ [t0, T ], with density function satisfying (4.13). Then, x(t, ω) is
absolutely continuous and verifies the desired limit (4.15).

�

By using the following lemma, we will establish a theorem similar to Theo-
rem 4.6, but which substitutes the continuity hypothesis in H3 by a.e. continu-
ity. This is important, as in H3 we will allow densities with some discontinuities
in R, such as the uniform distribution, exponential distribution, etc.

Lemma 4.8 Let U and V be two independent random variables. If U is ab-
solutely continuous, then U + V is absolutely continuous.

Proof. For any Borel set A, by the convolution formula [8, p. 266] we have
P(U + V ∈ A) =

∫
R P(U ∈ A− v)PV (dv), where PV = P ◦ V −1 is the law of V .

If A is null, then A− v is null, so P(U ∈ A− v) = 0. Thus, if A is null, then
P(U + V ∈ A) = 0. By the Radon-Nikodym Theorem [147, Ch. 14], U + V
has a density.

�
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Theorem 4.9 Assume the following five hypotheses:

H1 : a, b ∈ L2([t0, T ]× Ω);

H2 : x0, ξ1, . . . , ξN , η1, . . . , ηN are absolutely continuous and

independent, N ≥ 1;

H3 : the density function of x0, fx0
, is a.e. continuous on R and

fx0
(x) ≤ C

|x| 23
, for a.e. x 6= 0;

H4 : ‖e− 1
3Ka(t,ξξξN )‖L2(Ω) ≤ C, for all N ≥ 1 and t ∈ [t0, T ];

H5 : ψ1(t) 6= 0 for all t ∈ (t0, T ).

Then, for all 0 6= x ∈ R and t ∈ [t0, T ], the sequence {fxN (t)(x)}∞N=1 given by
(4.12) converges to the density fx(t)(x) of the solution process x(t, ω) given by
(4.2).

Proof. The proof is analogous to Theorem 4.6, but with a slight modification.
We analyze the proof of [20, Th. 2.9]. In the notation of [20, Th. 2.9], xY −Z
is absolutely continuous, by Lemma 4.8, H2 and H5. Then the probability
that xY − Z belongs to the discontinuity set of fx0

is 0. Recalling that in
[20, Th. 2.9] one has xYN(ω) − ZN(ω) → xY (ω) − Z(ω) a.s. as N → ∞, by
the Continuous Mapping Theorem [135, p. 7, Th. 2.3] it follows |f0(xYN(ω)−
ZN(ω))− f0(xY (ω)− Z(ω))|2 → 0 a.s. as N →∞. With this fact, the proof
of [20, Th. 2.9] is applicable, as we did in Theorem 4.6.

�

Finally, we can establish results on uniform convergence of {fxN (t)(x)}∞N=1, as
a consequence of [20, Th. 2.4, Th. 2.7].

Theorem 4.10 Assume the following four hypotheses:

H1 : a, b ∈ L2([t0, T ]× Ω);

H2 : x0 and (ξ1, . . . , ξN , η1, . . . , ηN) are absolutely continuous and

independent, N ≥ 1;

H3 : the function fx0
(x3)x2 is Lipschitz on R;

H4 : there exist 2 ≤ p ≤ ∞ and 4 ≤ q ≤ ∞ such that 1/p+ 2/q = 1/2,

‖µb‖Lp(t0,T ) +
∞∑
j=1

√
γj ‖ψj‖Lp(t0,T )‖ηj‖Lp(Ω) <∞ and

‖e− 1
3Ka(t,ξξξN )‖Lq(Ω) ≤ C, for all N ≥ 1 and t ∈ [t0, T ].
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4.3 Obtaining the probability density function of the solution stochastic process

Then the sequence {fxN (t)(x)}∞N=1 given by (4.12) converges in L∞(J × [t0, T ])
for every bounded set J ⊆ R\[−δ, δ], for every δ > 0, to the density fx(t)(x) of
the solution process x(t, ω) given by (4.2).

Proof. By (4.10), fy0
is Lipschitz on R. As a consequence of [20, Th. 2.4],

the limit (4.13) holds in L∞(J × [t0, T ]). Then,

‖fxN (t)(x)− fx(t)(x)‖L∞(J×[t0,T ]) =

∥∥∥∥(fyN (t)(x
1
3 )− fy(t)(x

1
3 )
) 1

3x
2
3

∥∥∥∥
L∞(J×[t0,T ])

≤ 1

3δ
2
3

‖fyN (t)(x
1
3 )− fy(t)(x

1
3 )‖L∞(J×[t0,T ])

N→∞−→ 0. (4.16)

This concludes the proof of the theorem.
�

Theorem 4.11 Assume that

H1 : a, b ∈ L2([t0, T ]× Ω), x0 ∈ L
2
3 (Ω);

H2 : x0, η1, (ξ1, . . . , ξN , η2, . . . , ηN) are absolutely continuous and

independent, N ≥ 1;

H3 : the density function of η1, fη1
, is Lipschitz on R;

H4 : ξ1, ξ2, . . . have compact support in [−A,A] (A > 0), ψ1 > 0 on (t0, T ).

Then, for each fixed t ∈ (t0, T ], the sequence {fxN (t)(x)}∞N=1 given by (4.12)
converges in L∞(J) for every bounded set J ⊆ R\[−δ, δ], for every δ > 0, to
the density fx(t)(x) of the solution process x(t, ω) given by (4.2).

Proof. Since y0(ω) = x0(ω)1/3, E[y2
0] = E[x

2/3
0 ] <∞ by hypothesis H1. Then,

y0 ∈ L2(Ω) and therefore hypothesis H1 of [20, Th. 2.7] holds. In fact, the
four hypotheses of [20, Th. 2.7] are fulfilled. Hence, fixed t ∈ (t0, T ], the limit
in (4.13) holds in L∞(J), then (4.16) follows and we are done.

�

4.3.2 Comments on the hypotheses of the theorems

We comment on some examples where the hypotheses of the theorems previ-
ously established hold. We point out that these comments will be very useful
later in the examples exhibited in Section 4.4.

(c1) In [20, pp. 29–30], it was proved that, if a(t, ω) is Gaussian or if ξ1, ξ2, . . .
have a common compact support, then given any c ∈ R, there is a con-
stant C > 0 such that the inequality E[ecKa(t,ξξξN )] ≤ C holds for all N ≥ 1
and t ∈ [t0, T ].
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(c2) The continuity on R is satisfied, for instance, by the density function of
the distributions Normal(µ, σ2), µ ∈ R and σ2 > 0; Beta(α, β), α > 1
and β > 1; Gamma(α, β), α > 1 and β > 0. The a.e. continuity from
Theorem 4.9 is satisfied in more cases: Beta(α, β), α ≥ 1 and β ≥ 1;
Uniform(α, β), α < β; Gamma(α, β), α ≥ 1 and β > 0 (in particular,
Exponential(β)); truncated normal distribution; etc.

(c3) In hypothesis H3 of Theorem 4.6, the hypotheses fx0
continuous on R and

fx0
(x) ≤ C/|x|2/3 are independent, merely because there are unbounded

continuous density functions.

(c4) Hypothesis H4 of Theorem 4.10 is satisfied, for example, when b(t, ω) is
a standard Brownian motion or a Brownian bridge, as it was seen in [20,
pp. 30–31] with p = 3.

4.3.3 Approximation of the expectation and variance of the
solution stochastic process

We have seen that, under some assumptions, (4.15) holds. We would like to
derive conditions under which the expectation and variance of x(t, ω) can be
approximated:

E[xN(t, ω)] =

∫
R
xfxN (t)(x) dx

N→∞−→
∫
R
xfx(t)(x) dx = E[x(t, ω)] (4.17)

and

V[xN (t, ω)] =

∫
R
x2fxN (t)(x) dx− E[xN (t, ω)]2

N→∞−→
∫
R
x2fx(t)(x) dx− E[x(t, ω)]2

= V[x(t, ω)]. (4.18)

From [20, p. 13], yN(t, ω)→ y(t, ω) a.s., therefore xN(t, ω)→ x(t, ω) a.s. This
implies that xN(t, ω)→ x(t, ω) in probability. By [8, p. 338 Corollary] or [137,
Th. 2.4], if we check that

sup
N≥1

E[|xN(t, ω)|2+ε] <∞ (4.19)

for some ε > 0, then (4.17), (4.18) and x(t, ω) ∈ L2(Ω) will follow.

In what follows, we will use a consequence of Jensen’s inequality [8, p. 80]: if
a1, . . . , am ≥ 0 and p ≥ 1, then (a1 + . . . + am)p ≤ mp−1(ap1 + . . . + apm). For
ease of notation, we will denote by Cε any positive constant only depending
on ε.
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4.3 Obtaining the probability density function of the solution stochastic process

By the triangular, Jensen’s and Hölder’s inequalities,

E[|xN (t)|2+ε] = E

[∣∣∣∣x 1
3
0 e

1
3
Ka(t,ξξξN ) +

1

3

∫ t

t0

Sb(s,ηηηN )e
1
3

(Ka(t,ξξξN )−Ka(s,ξξξN )) ds

∣∣∣∣3(2+ε)
]

≤ Cε

(
E

[∣∣∣∣x 1
3
0 e

1
3
Ka(t,ξξξN )

∣∣∣∣3(2+ε)
]

+ E

[∣∣∣∣13
∫ t

t0

Sb(s,ηηηN )e
1
3

(Ka(t,ξξξN )−Ka(s,ξξξN )) ds

∣∣∣∣3(2+ε)
])

≤ Cε
(
E
[
|x0|2+ε e(2+ε)Ka(t,ξξξN )

]
+ E

[∫ t

t0

|Sb(s,ηηηN )|3(2+ε)e(2+ε)(Ka(t,ξξξN )−Ka(s,ξξξN )) ds

])
.

(4.20)

If ξ1, ξ2, . . . have compact support in a common interval, then there is a con-
stant Cε > 0 such that e(2+ε)Ka(t,ξξξN ) ≤ Cε, for all N ≥ 1 and t ∈ [t0, T ]. This
is a consequence of [20, p. 30]. In this case, from (4.20),

E[|xN(t)|2+ε] ≤ Cε
(
E
[
|x0|2+ε

]
+ E

[∫ t

t0

|Sb(s,ηηηN)|3(2+ε) ds

])
.

Thus, it suffices to have ‖x0‖L2+ε(Ω) <∞ and

‖µb‖L3(2+ε)([t0,T ]) +
∞∑
i=1

√
γi‖ψi‖L3(2+ε)([t0,T ])‖ηi‖L3(2+ε)(Ω) <∞,

to ensure that (4.19) holds.

Otherwise, if ξ1, ξ2, . . . do not have compact support in a common interval,
one continues from (4.20) by applying Hölder’s inequality with exponents r1 =
1 + δ > 1 and r2 = (1 + δ)/δ:

E[|xN(t)|2+ε] ≤ Cε
(
E
[
|x0|(2+ε)(1+δ)

] 1
1+δ

E
[
e(2+ε)r2Ka(t,ξξξN )

] 1
r2

+

∫ t

t0

E
[
|Sb(s,ηηηN)|3(2+ε)(1+δ)

] 1
1+δ

E
[
e(2+ε)r2(Ka(t,ξξξN )−Ka(s,ξξξN ))

] 1
r2

ds

)
.

If a(t, ω) is a Gaussian process, then, by the first paragraph of Subsection 4.3.2
and Hölder’s inequality,

E[|xN(t)|2+ε] ≤ Cε,δ
(
E
[
|x0|(2+ε)(1+δ)

] 1
1+δ

+

∫ t

t0

E
[
|Sb(s,ηηηN)|3(2+ε)(1+δ)

] 1
1+δ

ds

)

≤ Cε,δ

(
E
[
|x0|(2+ε)(1+δ)

] 1
1+δ

+

(∫ t

t0

E
[
|Sb(s,ηηηN)|3(2+ε)(1+δ)

]
ds

) 1
1+δ

)
.
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Thereby, if ‖x0‖L2+s(Ω) <∞ and

‖µb‖L6+s([t0,T ]) +
∞∑
i=1

√
γi‖ψi‖L6+s([t0,T ])‖ηi‖L6+s(Ω) <∞,

(4.19) holds.

Summarizing, the following theorem has been established:

Theorem 4.12 If a(t, ω) is a Gaussian process or ξ1, ξ2, . . . have a common
compact support, if ‖x0‖L2+s(Ω) <∞ and if

‖µb‖L6+s([t0,T ]) +
∞∑
i=1

√
γi‖ψi‖L6+s([t0,T ])‖ηi‖L6+s(Ω) <∞ (4.21)

for some s > 0, then x(t, ω) ∈ L2(Ω) and xN(t, ω) tends in L2(Ω) to x(t, ω), for
each t ∈ [t0, T ]. As a consequence, E[xN(t, ω)]→ E[x(t, ω)] and V[xN(t, ω)]→
V[x(t, ω)] as N →∞, for each t ∈ [t0, T ].

4.4 Numerical examples

In this section we show examples where the theoretical findings of this chapter
are illustrated. We choose specific stochastic processes a(t, ω) and b(t, ω) (via
their Karhunen-Loève expansions) and an initial condition x0(ω) in the ran-
dom Bertalanffy model (4.1), and then we compute the approximating density
function fxN (t)(x) given by (4.12) for different values of N ≥ 1. We also check
that it converges to a function, which will be fx(t)(x), as an application of
Theorems 4.6, 4.7, 4.9, 4.10 or 4.11. We alert the reader that comments (c1)–
(c4) listed in Subsection 4.3.2 will be extensively used throughout this section
to check that the hypotheses of the involved theorems hold within the context
of each example.

To compute fxN (t)(x), we have used the software MathematicaR©. We have pro-
gramed a Monte Carlo procedure to compute the expectation in (4.12): fixed
N ≥ 1, we obtainM realizations of each random variable ξ1, . . . , ξN , η1, . . . , ηN :

realizations of ξ1: ξ
(1)
1 , . . . , ξ

(M)
1 ,

· · ·
realizations of ηN : η

(1)
N , . . . , η

(M)
N .
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We denote ξξξ
(i)
N = (ξ

(i)
1 , . . . , ξ

(i)
N ) and ηηη

(i)
N = (η

(i)
1 , . . . , η

(i)
N ), i = 1, . . . ,M . Then

fxN (t)(x) ≈ 1

x
2
3

· 1

M

M∑
i=1

[
fx0

({
x

1
3 e−

1
3
Ka(t,ξξξ

(i)
N

) − 1

3

∫ t

t0

Sb(s,ηηη
(i)
N )e−

1
3
Ka(s,ξξξ

(i)
N

) ds

}3
)

×
{
x

1
3 e−

1
3
Ka(t,ξξξ

(i)
N

) − 1

3

∫ t

t0

Sb(s,ηηη
(i)
N )e−

1
3
Ka(s,ξξξ

(i)
N

) ds

}2

e−
1
3
Ka(t,ξξξ

(i)
N

)

]
, (4.22)

with convergence as M →∞, by the Law of Large Numbers. We take M large
enough in such a way that expression (4.22) coincides for orders of truncation
M and M ′ > M (convergence in (4.22)).

We perform three examples in what follows. In the first example, both pro-
cesses a(t, ω) and b(t, ω) are Gaussian. In the second and third examples, the
processes involved may not be Gaussian.

Example 4.13 Let

a(t, ω) =
∞∑
j=1

√
2(

j − 1
2

)
π

sin

(
t

(
j − 1

2

)
π

)
ξj(ω),

where ξ1, ξ2, . . . are independent and Normal(0, 1) random variables, be a stan-
dard Brownian motion on [t0, T ] = [0, 1] [89, Exercise 5.12]. Let

b(t, ω) =
∞∑
i=1

√
2

iπ
sin (tiπ) ηi(ω),

where ξ1, ξ2, . . . , η1, η2, . . . are independent and Normal(0, 1) distributed ran-
dom variables, be a standard Brownian bridge on [0, 1] [89, Example 5.30]. The
sums defining a(t, ω) and b(t, ω) converge in L2([0, 1]×Ω). Let x0 ∼ Beta(4, 6).
It is assumed x0, ξ1, ξ2, . . . and η1, η2, . . . to be independent.

Since a(·, ω) and b(·, ω) are continuous on [0, 1], by Theorem 4.1, the stochastic
process x(t, ω) given by (4.2) has C1([t0, T ]) sample paths that satisfy the ran-
dom Bertalanffy model (4.1). Moreover, by Theorem 4.2 and the subsequent
Example 4.3, x(t, ω) is a solution to the random Bertalanffy model (4.1) in
the mean square sense.

The hypotheses of Theorem 4.6 and Theorem 4.10 are satisfied. Indeed, fx0
is

continuous on R by (c2) and fx0
(x) ≤ C/|x|2/3 holds because fx0

is continuous
with compact support, therefore H3 of Theorem 4.6 fulfills. Hypothesis H4
of Theorem 4.6 is satisfied because a(t, ω) is Gaussian and (c1). Regarding
Theorem 4.10, hypothesis H3 holds, since g(x) := fx0

(x3)x2 = 504x11(1 −
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x3)5
1(0,1)(x) is differentiable on R, with g′(x) = 504x10(1− x3)4(11(1− x3)−

15x3)1(0,1)(x) bounded on R. Moreover, H4 is fulfilled by (c1) applied to a(t, ω)
and (c4) applied to b(t, ω).

Hence, the sequence {fxN (t)(x)} converges in L∞(J× [t0, T ]) for every bounded
set J ⊆ R\[−δ, δ], for every δ > 0, to the density fx(t)(x) of the solution process
x(t, ω).

The assumptions of Theorem 4.12 are fulfilled. Indeed, by taking s = 1 in
(4.21),

‖µb‖L7([0,1]) +
∞∑
i=1

√
γi‖ψi‖L7([0,1])‖ηi‖L7(Ω) = M7

∞∑
i=1

√
2

iπ

(∫ 1

0

| sin (tiπ) |7 dt

) 1
7

= M7

∞∑
i=1

1

iπ

2 14
√

2 7

√
1
i

7
√

35π
<∞, (4.23)

whereM7 = ‖Z‖L7(Ω), being Z ∼ Normal(0, 1). Hence, E[xN(t, ω)]→ E[x(t, ω)]
and V[xN(t, ω)]→ V[x(t, ω)] as N →∞.

In Figure 4.1, we observe the graph of fxN (0.5)(x), x ∈ R, for N = 1, 2, 3, 4, 5, 6.
The theoretical convergence of the sequence {fxN (0.5)(x)}∞N=1 agrees with the
numerical results of Figure 4.1. In Table 4.1, we have presented the expectation
and variance for N = 1, 2, 3, 4, 5, 6, by using the formulas E[xN(0.5, ω)] =∫
R xfxN (0.5)(x) dx and V[xN(0.5, ω)] =

∫
R x

2fxN (0.5)(x) dx− E[xN(0.5, ω)]2.

N 1 2 3 4 5 6
E[xN(0.5, ω)] 0.4109 0.4139 0.4145 0.4145 0.4146 0.4146
V[xN(0.5, ω)] 0.0345 0.0391 0.0396 0.0396 0.0397 0.0397

Table 4.1: E[xN (0.5, ω)] and V[xN (0.5, ω)] for N = 1, 2, 3, 4, 5, 6. Example 4.13.

Example 4.14 We work on [t0, T ] = [0, 1]. Let

a(t, ω) =
∞∑
j=1

√
2

j3
sin(tjπ)ξj(ω), (4.24)

where ξ1, ξ2, . . . are independent with distribution Uniform(−
√

3,
√

3). The
sum in (4.24) converges in L2([0, 1]×Ω): given M < N , by using Pythagoras’s

72



4.4 Numerical examples

-1.0 -0.5 0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

f(x)

N=1

N=2

N=3

N=4

N=5

N=6

Figure 4.1: Density fxN (0.5)(x) for N = 1, 2, 3, 4, 5, 6. Example 4.13.

Theorem, we have∥∥∥∥∥
N∑

j=M+1

√
2

j3
sin(tjπ)ξj(ω)

∥∥∥∥∥
2

L2([0,1]×Ω)

=
N∑

j=M+1

2

j6
,

and since
∑∞

j=1 2/j6 < ∞, the sequence {
∑N

j=1(
√

2/j3) sin(tjπ)ξj(ω)}∞N=1 of

partial sums is Cauchy in L2([0, 1]× Ω), therefore convergent.

Let

b(t, ω) =
∞∑
i=1

√
2

i4 + 6
sin(tiπ)ηi(ω), (4.25)

where η1, η2, . . . ∼ Normal(0, 1) are independent. The sum defining b(t, ω) in
(4.25) exists in L2([0, 1]× Ω), reasoning as in (4.24).

Let x0 follow an Exponential(2) distribution. It is assumed x0, ξ1, ξ2, . . . and
η1, η2, . . . to be independent.

By Theorem 4.1, the process x(t, ω) given by (4.2) has absolutely continuous
sample paths that solve the random Bertalanffy model (4.1). In fact, a(t, ω)
and b(t, ω) have continuous sample paths. To prove the continuity for a(t, ω),
we bound √

2

j3
| sin(tjπ)ξj(ω)| ≤

√
6

j3
,
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with
∑∞

j=1 1/j3 <∞, and by using Weierstrass M-test for uniform convergence
of series [113, Th. 7.10], we deduce that the series in (4.24) converges uniformly
on [0, 1], so a(t, ω) has continuous sample paths. To prove the continuity for
b(t, ω), one has to work a bit more, since ηi is not bounded. Notice that

P(|ηi| ≥ i) = 2

∫ ∞
i

1√
2π

e−
x2

2 dx ≤ 2√
2π

∫ ∞
i

x

i
e−

x2

2 dx =
2√
2π i

e−
i2

2 ≤ e−
i2

2 ,

therefore
∑∞

i=1 P(|ηi| ≥ i) ≤
∑∞

i=1 e−
i2

2 < ∞. By Borel-Cantelli lemma [8,
Th. 4.3], for a.e. ω ∈ Ω, there exists an i0(ω) ≥ 1 such that, for all i ≥ i0(ω),
|ηi(ω)| ≤ i. Thus, for all i ≥ i0(ω),

√
2

i4 + 6
| sin(tiπ)ηi(ω)| ≤

√
2 i

i4 + 6
.

Since
∑∞

i=1 i/(i
4 + 6) < ∞, by Weierstrass M-test for uniform convergence of

series, we derive that the series defining b(t, ω) in (4.25) converges uniformly
on [0, 1], therefore b(t, ω) has continuous sample paths. As a consequence,
by Theorem 4.1, x(t, ω) has C1([0, 1]) sample paths that solve the random
Bertalanffy model (4.1).

The process x(t, ω) is a mean square solution to the random Bertalanffy model
(4.1), as the hypotheses of Theorem 4.2 are accomplished. Indeed, a(t, ω) is
continuous in the L12(Ω) sense, since

‖a(t+ h, ω)− a(t, ω)‖L12(Ω) ≤
√

3
∞∑
j=1

√
2

j3
| sin((t+ h)jπ)− sin(tjπ)| h→0−→ 0,

where we have used the fact that |ξj(ω)| ≤
√

3 and, for the last limit, the
Dominated Convergence Theorem [113, result 11.32, p. 321] applied to the
last series. On the other hand,∣∣∣∣∫ t

0

a(s, ω) ds

∣∣∣∣ ≤ ∫ t

0

|a(s, ω)|ds ≤
∞∑
j=1

√
2

j3

√
3 <∞,

so the third hypothesis of Theorem 4.2 holds. The other process, b(t, ω), is
L12(Ω)-continuous:

‖b(t+ h, ω)− b(t, ω)‖L12(Ω) ≤M12

∞∑
i=1

√
2

i4 + 6
| sin((t+ h)jπ)− sin(tjπ)| h→0−→ 0,

where M12 = ‖Z‖L12(Ω), being Z ∼ Normal(0, 1). For the limit, the Domi-
nated Convergence Theorem has been applied again. Thus, the hypotheses of
Theorem 4.2 hold, as stated, and the process x(t, ω) is a mean square solution.
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Theorem 4.7 and Theorem 4.11 are applicable. Indeed, hypothesis H3 of Theo-
rem 4.7 is satisfied, because fη1

is the density function of a normal distribution,
which is continuous and bounded. Assumption H4 of Theorem 4.7 is accom-
plished, because the density function of a Uniform(−

√
3,
√

3) distribution has
compact support and ψ1(t) =

√
2 sin(tπ) > 0 on (0, 1). Concerning Theo-

rem 4.11, H3 holds because the density function of a normal distribution is
Lipschitz and H4 is the same as in Theorem 4.7.

Therefore, for each t ∈ (t0, T ], the sequence {fxN (t)(x)} converges in L∞(J)
for every bounded set J ⊆ R\[−δ, δ], for every δ > 0, to the density fx(t)(x) of
the solution process x(t, ω).

The assumptions of Theorem 4.12 are fulfilled, by doing similar computa-
tions to the ones in (4.23). As a consequence, E[xN(t, ω)] → E[x(t, ω)] and
V[xN(t, ω)]→ V[x(t, ω)] as N →∞.

In Figure 4.2 we show the graph of fxN (0.3)(x) for N = 1, 2, 3, 4, 5, 6. In Ta-
ble 4.2, we approximate the mean and variance of x(t, ω), with orders of trun-
cation N = 1, 2, 3, 4, 5, 6. The numerical results agree with our theoretical
findings.
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Figure 4.2: Density fxN (0.3)(x) for N = 1, 2, 3, 4, 5, 6. Example 4.14.
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N 1 2 3 4 5 6
E[xN(0.3, ω)] 0.5071 0.5078 0.5076 0.5076 0.5076 0.5076
V[xN(0.3, ω)] 0.2754 0.2769 0.2768 0.2768 0.2768 0.2768

Table 4.2: E[xN (0.3, ω)] and V[xN (0.3, ω)] for N = 1, 2, 3, 4, 5, 6. Example 4.14.

Example 4.15 We work on [t0, T ] = [0, 1]. Let

a(t, ω) =
∞∑
j=1

√
2

j
sin(tjπ)ξj(ω),

where ξ1, ξ2, . . . are independent with distribution Uniform(−
√

3,
√

3). Let

b(t, ω) =
∞∑
i=1

√
2

i
3
2

sin(tiπ)ηi(ω),

where η1, η2, . . . are independent having distribution Uniform(−
√

3,
√

3). Let
the initial condition be x0 ∼ Uniform(−

√
3,
√

3). It is assumed x0, ξ1, ξ2, . . .
and η1, η2, . . . to be independent. As in Example 4.14, both series converge in
L2([0, 1]× Ω), as a consequence of Pythagoras’s Theorem.

The process x(t, ω) has absolutely continuous sample paths that solve the
random Bertalanffy model, by Theorem 4.1.

Let us see that the hypotheses of Theorem 4.9 are satisfied. The density
function fx0

is a.e. continuous (see (c2)). The inequality fx0
(x) ≤ C/|x|2/3

holds because x0 has compact support, so H3 is satisfied. Hypotheses H4 is
a consequence of (c1). Finally, H5 holds because ψ1(s) = sin(sπ) > 0 for
s ∈ (0, 1). Thus, by Theorem 4.9, the sequence {fxN (t)(x)}∞N=1 converges
pointwise to fx(t)(x).

The hypotheses of Theorem 4.12 are fulfilled, by doing similar computations
to the ones in (4.23). Hence, E[xN(t, ω)] → E[x(t, ω)] and V[xN(t, ω)] →
V[x(t, ω)] as N →∞.

In Figure 4.3, we observe that the sequence {fxN (0.3)(x)}∞N=1 seems to converge,
for N = 1, 2, 3, 4, 5, 6. In Table 4.3, we approximate the expectation and
variance of x(t, ω).
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Figure 4.3: Density fxN (0.3)(x) for N = 1, 2, 3, 4, 5, 6. Example 4.15.

N 1 2 3 4 5 6
E[xN(0.3, ω)] 0.0014 0.0001 0.0001 0.0002 0.0002 0.0002
V[xN(0.3, ω)] 1.1240 1.1914 1.2213 1.2298 1.2299 1.2300

Table 4.3: E[xN (0.3, ω)] and V[xN (0.3, ω)] for N = 1, 2, 3, 4, 5, 6. Example 4.15.
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4.5 Conclusions

In this chapter, we have analyzed the random non-autonomous Bertalanffy
model: x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω)x(t, ω)

2
3 , t ∈ [t0, T ], with initial con-

dition x(t0, ω) = x0(ω). The coefficients are stochastic processes a(t, ω) and
b(t, ω) and the initial condition is a random variable x0(ω) in an underly-
ing complete probability space. Via the usual change of variables for solving
deterministic Bernoulli differential equations, we have related the random non-
autonomous Bertalanffy model with a random non-autonomous linear differ-
ential equation, and thus we have obtained a formal solution stochastic process
x(t, ω). Theorem 4.1 says when x(t, ω) has absolutely continuous sample paths
that solve the random Bertalanffy model a.e. Theorem 4.2 gives conditions on
the moments of a and b under which x(t, ω) is a mean square solution. By us-
ing existing results on the random non-autonomous linear differential equation,
the Random Variable Transformation technique and Karhunen-Loève expan-
sions, we have constructed a sequence of density functions that, under certain
assumptions, converge pointwise (Theorems 4.6, 4.7 and 4.9) and uniformly
(Theorems 4.10 and 4.11) to the density function of x(t, ω), fx(t)(x). Results
on the approximation of the expectation and the variance of x(t, ω) have been
achieved. Finally, these theoretical findings have been treated numerically in
the computer.

Acknowledgements

This work has been supported by the Spanish Ministerio de Economı́a y Com-
petitividad grant MTM2017–89664–P. I am grateful to the Department of
Differential Equations and Numerical Analysis of the University of Sevilla
(Spain), for hosting me during a research stay.

The main results of this chapter have been submitted for publication. This
chapter is a national collaboration with the researcher Tomás Caraballo Ga-
rrido (Departamento de Ecuaciones Diferenciales y Análisis Numérico, Uni-
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Combining polynomial chaos
expansions and the random

variable transformation
technique to approximate the
density function of stochastic

problems.

In this chapter, we deal with computational uncertainty quantifica-
tion for stochastic models with one random input parameter. The goal of
the chapter is twofold: First, to approximate the set of probability den-
sity functions of the solution stochastic process, and second, to show the
capability of our theoretical findings to deal with some important epidemi-
ological models. The approximations are constructed in terms of a poly-
nomial evaluated at the random input parameter, by means of generalized
polynomial chaos expansions and the stochastic Galerkin projection tech-
nique. The probability density function of the aforementioned univariate
polynomial is computed via the random variable transformation method,
by taking into account the domains where the polynomial is strictly mono-
tone. The algebraic/exponential convergence of the Galerkin projections
gives rapid convergence of these density functions. The examples are based
on fundamental epidemiological models formulated via linear and nonlin-
ear differential and difference equations, where one of the input parameters
is assumed to be a random variable.
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5.1 Introduction

In the recent contribution [46], RVT and gPC techniques have been success-
fully combined to study random differential equations. That study focused
on the computation of the mean and the variance of the solution stochastic
process for random differential equations. In the present chapter, we combine
both techniques to go further and to compute reliable approximations to the
probability density function of stochastic models. Furthermore, we point out
that the proposed method possesses rapid convergence and is able to reach its
goal even in the case that no closed-form solution to the stochastic problem is
available. This is a distinctive feature of our approach since, as it has been pre-
viously indicated, the application of the RVT technique to determine the prob-
ability density function of stochastic models usually requires knowing a closed-
form expression of the solution, see for instance [29, 52, 23, 53, 72, 73, 74, 146].
All these features of our approach will be illustrated through several epidemio-
logical models. At this point it is important to underscore that in the context
of epidemiological modeling, knowledge of the probability density function is
crucial, since from it, apart from computing predictions (via the mean) and
confidence intervals (via the mean and the standard deviation), one can also
compute the probability that the proportion of infected individuals lies in a
certain interval of interest for health authorities [29, 30, 80] (prevention and
control of plagues, identify seasonal patterns of infection, etc.).

Hereinafter, we will work with stochastic models with only one random input
parameter. The reason for this restriction is that there is a version of the
RVT technique for non-injective transformation mappings on R with many
applications in general, but not on Rs, s > 1. The RVT method will allow us
to compute the exact density function of the Galerkin projections (which are
polynomials, usually non-injective), and by taking limits we will approximate
the density function of the response process. Since the Galerkin projections
converge at algebraic/exponential rate to the solution process, it is expected
to have rapid convergence of the sequence of approximating density functions.

From a modeling standpoint, the variability of each parameter (input) pro-
duces a variability in the results (output) of the model. However, the effects
of the variabilities of the parameters are of different magnitude and can be
estimated by using a sensitivity analysis method such as gPC-based Sobol’s
indices [117, 49, 130, 34]. These indices explain the influence of each random
parameter on the response process, by performing a variance-based sensitivity
analysis. The variance of the output is a sum of contributions of each input
variable and combinations of them. Indeed, the variance of the output is the
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squared-sum of the Galerkin coefficients, so the contribution of the main effect
of a parameter is the normalized squared-sum of the coefficients corresponding
to basis polynomial functions evaluated only at the aforesaid parameter. By
computing Sobol’s indices, it is assumed that the parameter that leads to a
larger variance of the output has the largest effect on the model prediction. If
one is dealing with epidemic models, the parameter with highest gPC-based
Sobol’s index is the most important to address and control the epidemic, and
the other parameters may be taken to be deterministic. Therefore the fact of
introducing randomness into only one input parameter may be justified.

The structure of the chapter is the following. In Section 5.2, we will specify
the type of stochastic problems under study, we will show the necessary basics
of gPC expansions and the RVT technique, and we will combine both meth-
ods to approximate the probability density function of the solution stochastic
process. In Section 5.3, we will illustrate the theoretical development with
several particular examples of continuous and discrete stochastic models in an
epidemiological and social setting. Finally, Section 5.4 will draw conclusions.

5.2 Method

We consider an initial value differential equation problem with one degree of
uncertainty: {

y′(t) = F (y(t), t), t ∈ I,
y(t0) = ζ,

(5.1)

or {
y′(t) = F (y(t), t, ζ), t ∈ I,
y(t0) = y0,

(5.2)

where I ⊆ R is an interval, t0 ∈ I, F is a deterministic function, and ζ is the
random input parameter, which can be the initial condition (case (5.1)), or
can appear in the differential equation expression (case (5.2), with the initial
condition y0 being deterministic). The random variable ζ is assumed to be
absolutely continuous (we denote its density function by fζ(ζ)) with centered
absolute moments of any order. At this point, it is important to point out that
the largest part of random variables that are used in practice, specially in epi-
demiological modeling, such as Beta, Gaussian, Gamma, Uniform, Triangular,
etc., satisfy these hypotheses. In this setting, we are assuming an underlying
complete probability space (Ω,F ,P), where Ω is the sample space consisting of
outcomes ω ∈ Ω, F is the σ-algebra of events and P is the probability measure.
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The solution y(t) to (5.1) or (5.2) is a stochastic process. We will assume that
such a solution exists and is unique, in some stochastic sense (sample path
sense, mean square sense, etc., see [125, 129]). Our goal is to compute the
probability density function of y(t), fy(t)(y), at each time instant t ∈ I. The
density function allows performing uncertainty quantification for y(t), since
all the statistical moments and confidence intervals can be derived from it
[125] (Chapter 2–3).

Other alternative stochastic systems to (5.1) and (5.2) are possible as well:
random partial differential equations, random difference equations, etc., with
one degree of uncertainty. For such stochastic systems, the techniques exposed
here work analogously.

5.2.1 gPC Expansions

Given the random input parameter ζ, consider its associated canonical ba-
sis Cp = {1, ζ, ζ2, . . . , ζp}, for each degree p ≥ 1. By using a Gram-Schmidt
procedure, we orthonormalize this basis in the Hilbert space of random vari-
ables with well-defined variance, (L2(Ω), 〈, 〉), where the inner product is de-
fined as 〈X,Y 〉 = E[XY ] for X,Y ∈ L2(Ω), being E the expectation operator
with respect to the probability measure P. Let Ξp = {φ0(ζ), φ1(ζ), . . . , φp(ζ)}
be the orthonormal basis of Cp, p ≥ 1, where φ0 = 1. For example, if ζ ∼
Normal(0, 1), then Ξp is the set of Hermite polynomials; if ζ ∼ Uniform(−1, 1),
then Ξp is formed by Legendre polynomials, etc. [142, 143]. Notice that, with
this approach, we are not restricted to distributions from the Askey scheme
[142, Ch. 3], as already remarked in [33, 46]. This point has great interest in
practice, since most of the random variables constructed to model real phe-
nomena do not fit the standard distributions, and therefore we are enlarging
the applicability of the classical gPC method.

If Z is a random variable in L2(Ω) written as a function of ζ, Z = r(ζ), then the

gPC expansion of Z is Z =
∑∞

i=0 Ẑiφi(ζ), where the sum is considered in L2(Ω)

and the Fourier coefficients Ẑi are given by Ẑi = E[r(ζ)φi(ζ)]. Actually, to

ensure that Z =
∑∞

i=0 Ẑiφi(ζ), we need that the moment problem is uniquely
solvable for ζ, see [58, Th. 3.3]. This condition is not so restrictive, as any
random variable with finite moment-generating function in a neighborhood of
the origin has a uniquely solvable moment problem [58, Th. 3.4].

If we take the solution stochastic process y(t), then we may formally write
y(t) =

∑∞
i=0 ŷi(t)φi(ζ) in L2(Ω), where ŷi(t) = E[y(t)φi(ζ)]. The Fourier

coefficients ŷi(t) cannot be explicitly computed, as y(t) is unknown. We use
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the stochastic Galerkin projection technique [33, 46, 142, 143]: We seek a
solution of the form ỹp(t) =

∑p
i=0 ỹ

p
i (t)φi(ζ), i.e., we impose

p∑
i=0

d

dt
ỹpi (t)φi(ζ) = F

(
p∑
i=0

ỹpi (t)φi(ζ), t

)
.

The deterministic functions ỹpi (t) are calculated in two steps: first, we multiply
the previous equation by φk(ζ), and we take the expectation operator and use
the orthonormality of Ξp:

d

dt
ỹpk(t) =

〈
F

(
p∑
i=0

ỹpi (t)φi(ζ), t

)
, φk(ζ)

〉
, k = 0, . . . , p;

and secondly, we solve a deterministic system of differential equations via stan-
dard numerical techniques. Formally, limp→∞ ỹ

p(t) = y(t) in L2(Ω). Some gen-
eral results justify this assertion, see [21, 121]. Moreover, algebraic/exponential
convergence usually holds (spectral convergence).

The stochastic Galerkin projection technique and gPC expansions have been
profusely used in the literature for uncertainty quantification, see for exam-
ple [24, 35, 90, 117, 126, 138, 144].

We will show how to compute exactly the probability density function of ỹp(t),
which will be used as an approximation for fy(t).

5.2.2 RVT Technique

The RVT technique has been successfully applied to study significant random
ordinary differential equations [23, 29, 52], random partial differential equa-
tions [23, 53, 72, 73, 74, 146] and random recursive equations [44], that appear
in different areas such as Epidemiology, Physics, Engineering, etc. In this
chapter, we will use the following version of the RVT technique:

Theorem 5.1 [83, p. 115] Let X be an absolutely continuous random variable
with density fX and with support DX contained in an open set D ⊆ R. Let g :
D → R be such that D = ∪̇1≤i≤nDi and gi = g|Di is injective and C1(Di) with
non-vanishing derivative. Then the random variable Y = g(X) is absolutely
continuous, with density function given by

fY (y) =


∑

i: y∈g(Di)

fX(g−1
i (y))

∣∣∣∣dg−1
i (y)

dy

∣∣∣∣ , y ∈ g(D),

0, y /∈ g(D).

(5.3)
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Although there is a version of this theorem for Rs, s > 1, its applicability in
our context will be reduced to R. For example, when working with transfor-
mation mappings g given by polynomials (this will be the case of the Galerkin
projections), in dimension one we can find the regions D1, . . . , Dn by equating
the derivative g′ to 0; however, polynomials on Rs, s > 1, is a different matter,
as the regions D1, . . . , Dn may be impossible to find or even not exist. This
fact motivates that in this first step of our research we consider the case s = 1,
which has specific interest.

5.2.3 Combining gPC and RVT Technique to Approximate the
Density Function

Fixed t ∈ I and p ≥ 1, the Galerkin projection ỹp(t) =
∑p

i=0 ỹ
p
i (t)φi(ζ) is an

explicit transformation of the random variable ζ, let us call it g(ζ). Since g(ζ)
is a polynomial, by solving numerically g′(ζ) = 0 we can determine the sets
D1, . . . , Dn where g is strictly monotone and find g(Di). At each ξ ∈ g(Di),
by finding numerically the unique root ζ ∈ Di such that ξ = g(ζ), we compute
the inverse of gi = g|Di , hi(ξ) := g−1

i (ξ). By the RVT technique,

fỹp(t)(ξ) = fg(ζ)(ξ) =
∑

i: 1≤i≤n
ξ∈g(Di)

fζ(hi(ξ))|h′i(ξ)|.

Since hi(ξ) has been computed numerically for each ξ, we do not have h′i
explicitly. We compute h′i as

h′i(ξ) =
1

g′(hi(ξ))
, ξ ∈ g(Di),

instead. Thus,

fỹp(t)(ξ) = fg(ζ)(ξ) =
∑

i: 1≤i≤n
ξ∈g(Di)

fζ(hi(ξ))
1

|g′(hi(ξ))|
.

Notice that the RVT technique has permitted us to obtain the exact expression
for the probability density function of the Galerkin projection ỹp(t). This exact
expression is a distinctive feature of the RVT technique comparing with other
stochastic methods (for example, gPC expansions plus Monte Carlo simulation
for the Galerkin projections).
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Since limp→∞ ỹ
p(t) = y(t) in L2(Ω) at algebraic/exponential rate, we expect

to have
lim
p→∞

fỹp(t)(ξ) = fy(t)(ξ) (5.4)

with rapid convergence. This procedure works as a computational method
to approximate fy(t)(ξ). To the best of our knowledge, there are no avail-
able theoretical results that guarantee that (5.4) holds, but only mean square
convergence of the Galerkin projections ỹp(t), instead.

In principle, we know nothing about the type of convergence of the sequence
{fỹp(t)}∞p=1 to the true density fy(t). The numerical experiments that we will
carry out in the forthcoming section, see Example 5.2 for instance, show that
uniform convergence may not be expected, as fy(t) might be discontinuous but
fỹp(t) continuous. Hence, in general, one may expect convergence of {fỹp(t)}∞p=1

in some Lebesgue space.

Assume that {fỹp(t)}∞p=1 is Cauchy in L1(R). By the completeness of the
Lebesgue spaces, there is a function f∗t ∈ L1(R) such that limp→∞ fỹp(t) = f∗t
in L1(R), for each t ∈ I. Then the limit function f∗t is a density function
for y(t). Indeed, notice that f∗t is a density function, because f∗t ≥ 0 al-
most everywhere and

∫
R f
∗
t (y) dy = limp→∞

∫
R fỹp(t)(y) dy = 1. Let w(t)

be a stochastic process such that w(t) ∼ f∗t . We have that ỹp(t) → w(t)

in law as p → ∞, since limp→∞ P(ỹp(t) ≤ ξ) = limp→∞
∫ ξ
−∞ fỹp(t)(y) dy =∫ ξ

−∞ f
∗
t (y) dy = P(w(t) ≤ ξ). On the other hand, since ỹp(t) → y(t) in L2(Ω),

in particular in law, as p → ∞, we conclude that y(t) and w(t) are equal in
distribution, therefore y(t) is absolutely continuous and fy(t) = f∗t . Thus, if
the sequence {fỹp(t)}∞p=1 is Cauchy, then the limit function must be fy(t).

In practice, we have to be careful with the order of truncation p chosen, since
if p is too large, numerical errors may arise, see [21, 121, 62]. This is a
disadvantage of gPC expansions. There may be an order of truncation p0 such
that, for any p ≥ p0, the results obtained make no sense, therefore the density
function may not be computed as accurately as wanted. See the forthcoming
Example 5.4.
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5.3 Numerical Experiments

In this section, we deal with particular continuous and discrete stochastic
models that play an important role in Epidemiology. By using the previous
ideas, we will approximate the probability density function of the solution
stochastic process to some epidemiological models at different time instants. In
the field of Epidemiology, the computation of the probability density function
is a primary goal, as the expected number or confidence intervals for infective
(predictions), or any other information of interest for health authorities, can
be derived from it.

The computations have been carried out in the software MathematicaR©. To
compute the roots of g′(ζ) = 0 and ξ = g(ζ), the built-in function NSolve has
been utilized. The solution to deterministic systems of differential equations
has been solved by means of the standard NDSolve routine, with automatic
method, step size, etc.

When dealing with real data, we will compute deterministic estimates for
the model parameters with a least squares fitting procedure (FindFit built-
in function). Then we will introduce a small perturbation into one of the
parameters (with mean value being the deterministic estimate calculated) and
we will apply the methodology previously exposed. Introducing only a small
amount of randomness into the model from deterministic estimates allows a
more faithful representation of the time evolution of the population, see for
example [33, Example 5], [13, 24, 117, 126, 127]. In this article, as we are
interested in testing our methodology on approximating the density function
of the model output, but not in estimating probability distributions for the
input parameters, we do not deal with inverse parameter estimation, see, for
example, references [143] (pp. 95–99), [96, 97], related with Bayesian inference
and gPC expansions.

In the examples, we will see that it suffices to take a small order p of basis to
get accurate approximations of the probability density function. The optimal
p is that from which the subsequent probability density functions constructed
for larger orders than p are virtually the same. In previous contributions
dealing with approximations of the mean and variance statistics in the setting
of continuous and discrete epidemic models (SIS, SIR, etc. models), see [35,
24], it was shown numerically that, although for p = 1 the approximations are
not good, for p = 2 and p = 3 very similar results are produced.

In Example 5.2, the approximations of the probability density functions con-
structed by combining gPC expansions and the RVT technique will be com-
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pared with the exact density function. For Example 5.3, Example 5.4, and
Example 5.5, we will compare our approximations against a Kernel den-
sity estimation from Monte Carlo simulations sampled from the stochastic
problem directly, with the built-in function SmoothKernelDistribution of
MathematicaR©. We will check that Kernel density estimations do not approx-
imate well when the sought density function is not smooth (see the documen-
tation on the built-in function SmoothKernelDistribution, or the theoretical
reference [119]), while our method substantiated on the RVT technique is cer-
tainly able to identify discontinuities and peaks, i.e., the exact shape of the
target density function. Moreover, gPC-based methods converge much faster
than Monte Carlo simulation, even when there is only one random input coef-
ficient, see the discussions from previous contributions [33, 142, 143]. Indeed,
Monte Carlo simulation converges relatively slow (for example, the mean value
converges at rate 1/

√
m, where m is the number of realizations), whereas gPC

expansions converge at spectral rate.

When no explicit form of the solution is available, representations of it via
infinite expansions (gPC expansions, random power series, Karhunen-Loève
expansions, etc.) or discretizations from numerical methods are usually re-
quired. By truncating these infinite expansions or from the discretizations,
one constructs a sequence of approximating processes, whose exact density
functions (computed via the RVT technique) form a sequence of approximat-
ing density functions that converge rapidly [17, 19, 45, 57]. In terms of rapidity
and accuracy, this sort of approximations are preferable to Monte Carlo sim-
ulation and Kernel density estimations.

In Remark 5.6 from Example 5.5, we will show how gPC-based Sobol’s indices
(see Section 5.1) may be used to determine the parameter whose variability
has the most important effects and therefore justify the fact of introducing
uncertainty into one input parameter only, in the context of a social model for
addictive behavior.

Example 5.2 In this example, we consider the simplest continuous epidemi-
ological model to describe the growth of a population of bacteria with no
limitation of resources and no antibiotics (predators). The model has demon-
strated to be still useful to describe this population growth in presence of
competitors during the initial stage. Proposed by Thomas Malthus in 1798 in
his essay [95], this model is considered as the first law of population dynamics
and is usually referred to as exponential, first-order kinetics, or Malthusian
model [10, Ch. 1], [102]. With the aim of illustrating the main ideas exhibited
in the previous section, next we deal with the following particular case of the
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Malthusian model which has been addressed in [142, pp. 69–70], [143, p. 10]:{
y′(t) = ζy(t),

y(0) = 3,

where ζ ∼ Beta(2, 1). This initial value problem may correspond to a bacteria
with initial population 3 million of individuals and whose relative instanta-
neous growth rate fluctuates randomly in the unit interval. For this stochastic
model, the solution stochastic process is well-known: y(t) = 3eζt. By means
of the RVT technique, the exact probability density function of y(t) can be
calculated:

fy(t)(y) = fζ

(
1

t
log
(y

3

)) 1

y|t|
, y > 0, t 6= 0.

Figure 5.1 plots fy(t) for t = 0.5 and t = 1.
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Figure 5.1: Exact graph of fy(t)(y) for t = 0.5 (first) and t = 1 (second) in Example 5.2.

Let us test our methodology. We use our computational method to approxi-
mate the probability density function of y(t) at the times t = 0.5 and t = 1. In
Figure 5.2 we show the corresponding results. We observe that, as the order
of basis p increases, the sequence of density functions fỹp(t)(ξ) of the Galerkin
projections ỹp(t) tends to fy(t)(ξ). Based on observation of Figure 5.2, this
convergence seems to hold in Lq(R), 1 ≤ q <∞, but not uniformly on R, since
fỹp(t)(ξ) seems continuous for p > 1. Table 5.1 shows the L1(R) error for each
order p:

‖fy(t) − fỹp(t)‖L1(R) =

∫
R

∣∣fy(t)(ξ)− fỹp(t)(ξ)
∣∣ dξ.
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This integral has been calculated in MathematicaR© with the NIntegrate rou-
tine. Observe that the error decreases to 0 very fast (exponentially), although
convergence deteriorates when time t increases.
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Figure 5.2: Approximation of fy(t)(y) via generalized polynomial chaos (gPC) and random
variable transformation (RVT) for t = 0.5 (first plot) and t = 1 (second plot) in Example 5.2.
Observe the rapid convergence to the exact density function fy(t)(y) as p grows.

Example 5.3 In this example, we deal with a stochastic model applied to real
laboratory data of bacteria growth [127]. We consider a species of bacteria
from a laboratory experiment: Rhodobacter capsulatus (R. capsulatus). Direct
cell counts were made every two or three days until a stationary phase was
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t = 0.5 t = 1
p = 1 0.0776146 1.81093
p = 2 0.00599041 0.0304913
p = 3 0.000230145 0.00181233
p = 4 7.06091 · 10−6 0.000109031
p = 5 1.71501 · 10−7 5.29540 · 10−6

p = 6 1.00343 · 10−8 2.15623 · 10−7

Table 5.1: Error ‖fy(t) − fỹp(t)‖L1(R) for t = 0.5 and t = 1, and p = 1, 2, 3, 4, 5, 6, in
Example 5.2. Note the rapid convergence (exponential) to the exact density function fy(t)

as p increases.

achieved. For more information regarding the experiment, we refer the reader
to [127].

Table 5.2 shows the population sizes of R. capsulatus under infrared lightning
conditions in different mediums. The number of cells/mL has been rescaled
by dividing by 106. Figure 5.3 plots the cell counts from Table 5.2.

Time (days) Population (cells/mL, scale 106)
0 0.583
2 0.635
4 1.08
7 3.20
9 5.23
11 5.28
14 5.30

Table 5.2: Bacteria population sizes of R. capsulatus [127], Example 5.3.

In [127], the authors used the Malthusian model to describe the bacteria
growth at the first 9 days (before the stationary phase), while a logistic equa-
tion model was applied up to day 14. In this example, we suppose that the
growth rate y′(t) is not proportional to the total number of individuals y(t),
but to the total number of interactions, y(t)2, via a parameter r. Moreover,
we take into account the competition for the limited resources with a carrying
capacity K > 0 (limit population under no death assumption), and also the
beginning of the bacteria decline phase via a death parameter δ > 0. The
parameters r, K, and δ are assumed to be deterministic, while the initial
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Figure 5.3: Population size of Rhodobacter capsulatus in Example 5.3.

condition ζ is taken as a random variable:{
y′(t) = ry(t)2

(
1− y(t)

K

)
− δy(t),

y(0) = ζ.
(5.5)

This equation (5.5) corresponds to the simplified Fitzhugh-Nagumo model [36,
p. 2].

A least squares fitting gives the deterministic estimates r̂ = 0.439310, ζ̂ =
0.557972, K̂ = 5.60822, and δ̂ = 0.126042, with a very small residual squared
error (smaller than the exponential growth model and the logistic equation
presented in [127]). To randomize the initial condition ζ, we consider a distri-

bution centered at ζ̂: ζ ∼ Uniform(0.497972, 0.617972). The introduction of
randomness into the initial condition requires the search of suitable techniques
to perform uncertainty quantification. Via gPC expansions and the stochas-
tic Galerkin projection technique with order of basis p = 4 (this is enough
to achieve convergence), pointwise estimates via E[y(t)], and a confidence in-
terval with the rule E[y(t)] ±

√
V[y(t)], can be constructed, see Figure 5.4.

Observe that the actual data belong to the confidence interval and that the
solid line reflects properly the growth of the bacteria population. Notice also
that the confidence interval is wider in the middle of the growth phase, while
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smaller uncertainty seems to occur near the initial condition and the carrying
capacity.

○ ○

○

○

○ ○ ○

2 4 6 8 10 12 14
time

1

2

3

4

5

population

Figure 5.4: Model for the R. capsulatus population with p = 4 in Example 5.3. The circles
represent the actual population size, the solid line shows the estimates via E[y(t)], and the
dashed lines reflect the confidence interval.

By using our previous exposition on the combination of the RVT method and
gPC expansions, we are even able to determine the probability density func-
tion of y(t). In Figure 5.5, we plot the approximations for p = 1, 2, 3, 4. The
similarity of the approximating density functions shows that convergence has
been achieved. Our results have been compared with a Kernel density esti-
mation with the built-in function SmoothKernelDistribution. The densities
constructed via gPC expansions show that, possibly, the limit density function
fy(t)(y) has two jump discontinuities, therefore the Kernel density estimation
does not approximate well those discontinuities and draws tails.

Table 5.3 shows consecutive differences for orders of truncation p and p + 1,
p = 1, 2, 3:

‖fỹp+1(t) − fỹp(t)‖L1(R) =

∫
R

∣∣fỹp+1(t)(ξ)− fỹp(t)(ξ)
∣∣ dξ.

Notice that the error decreases to 0 very fast.

Example 5.4 We deal with uncertainty quantification for the following dis-
crete stochastic system [21] (Section 4):{

y(m+ 1) = ζy(m)(100− y(m)),

y(0) = 3,
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Figure 5.5: Approximation of fy(t)(y) via gPC and RVT for t = 4 in Example 5.3. Com-
parison with a Kernel density estimation.

t = 4
p = 1 – p = 2 0.202513
p = 2 – p = 3 0.0105528
p = 3 – p = 4 3.52486 · 10−7

Table 5.3: Consecutive difference ‖fỹp+1(t) − fỹp(t)‖L1(R) for t = 4, and p = 1, 2, 3, in
Example 5.3. Notice the rapid convergence of the consecutive differences to 0 as p grows.
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where ζ ∼ Triangular(0.02, 0.03). In the epidemiological context, if z(m) and
y(m) denote, respectively, the number of susceptible and infected individuals
in a population of one hundred individuals at the period m = 0, 1, 2, . . . (e.g.,
months), the above discrete system describes the dynamics for the number
of infected individuals over the time (in months). The parameter ξ can be
interpreted as the contagious rate at which a susceptible becomes infected.
More precisely, by considering that the product defining the right-hand side
of the difference equation gives the number of encounters between susceptible
individuals (z(m) = 100 − y(m)) and infected individuals (y(m)), then the
parameter ξ can be interpreted as the probability that such encounters be
successful (i.e., the disease spreading). Since the value of this probability
depends upon complex factors such as immunity of each individual of the
population, weather, etc., whose nature is unpredictable, it is more realistic
to treat ξ as random variable instead of being a deterministic number. As
previously indicated and for illustrative purposes only, we will assume that
ξ lies in the interval [0.02, 0.03] according to a triangular distribution. As a
consequence, at each time step m, the solution y(m) is a random variable.
The Galerkin projection takes the form ỹp(m) =

∑p
i=0 ỹ

p
i (m)φi(ζ), where the

deterministic coefficients ỹpi (m) satisfy a difference equation.

The stochastic Galerkin projection technique has not been applied to discrete
models with the same emphasis as with continuous models. In our recent con-
tributions [24, 21], the applications of gPC to discrete dynamical systems have
been analyzed. For a large time m, the explicit expression of y(m) cannot be
obtained or is too complex, so the application of the transformation method is
inviable. Thus, one needs appropriate methods to perform uncertainty quan-
tification for y(m). We think that the combination of the RVT technique and
gPC expansions is a good approach to try uncertainty quantification for y(m).
The computation of the probability density function of y(m) is a step beyond
the numerical experiment performed in [21, Section 4], as [21] only considered
the approximation of the expectation and variance statistics.

We approximate the probability density function fy(m)(y) at m = 30. In
Figure 5.6, we show the results. From p ≥ 5, catastrophic numerical er-
rors invalidate the results. Thus, we are restricted to p ≤ 4, and we can-
not approximate the density function as accurately as desired. This illus-
trates the main drawback of our computational method. Our results have
been compared with a Kernel density estimation with the built-in function
SmoothKernelDistribution. Notice that, since the sought density function
fy(m) seems not smooth (there may be three peaks because of the triangular
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Year 1995 1997 2001 2003 2006 2011 2014
j 0 2 6 8 11 16 19
Sj 0.5298 0.5514 0.5783 0.6244 0.6467 0.6863 0.6957

Table 5.4: Percentage of nonsmokers Spanish men aged over 16 years old during the period
1995–2014. Source [103].

form), the Kernel density estimation might not approximate well fy(m) near
the peaks.

50 60 70 80
y
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0.12

f(y)

Kernel density estimation 3,000,000 realizations

Approximation p=1

Approximation p=2

Approximation p=3

Approximation p=4

Figure 5.6: Approximation of fy(m)(y) via gPC and RVT for m = 30 in Example 5.4.
Comparison with a Kernel density estimation. From p ≥ 5, catastrophic numerical errors
invalidate the results, so we are restricted to p ≤ 4.

Example 5.5 In this example, we deal with a social model for the addictive
behavior of smoking. We use the data from our recent contribution [24] (Ta-
ble 1), with original source the National Spanish Health Survey [103]. In Ta-
ble 5.4, we show the percentage of nonsmokers Spanish men aged over 16 years
old during the period 1995–2014, denoted by Sj, j ∈ {0, 2, 6, 8, 11, 16, 19}.

As in [24], we use a discrete SIS model:

S(m+ 1) = S(m)− bS(m)I(m) + aI(m),

I(m+ 1) = I(m) + bS(m)I(m)− aI(m).

SIS-type models are useful to describe the spread of diseases (smoking) whose
infection does not confer immunity [30, 102, 67]. In the model formulation, a
is the proportion of infective (smokers) that leave this compartment (people
giving up tobacco), and b is the proportion of contacts between susceptible and
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infective (non-smokers and smokers) that give rise to a new infected individ-
ual (smoker). We are assuming homogeneous mixing, i.e., all individuals are
equally likely to contact any other individual. We are also supposing a con-
stant total population N = S(m) + I(m). Since our data reflects percentages,
we take N = 1.

From I(m) = N −S(m), we can get rid of the second equation and work with
the first one:

S(m+ 1) = aN + (1− bN − a)S(m) + bS(m)2.

In our usual notation, y(m) = S(m). By using a least squares fitting pro-
cedure, the best deterministic estimates for a and b are â = 0.0378749 and
b̂ = 0.0225118. We introduce randomness into a, with probability distri-
bution Normal(0.0378749, 0.000025). The infection parameter b is constant:
b = 0.0225118.

By using a gPC approach with p = 5, we approximate the expectation and
variance of susceptible individuals y(m). Figure 5.7 plots the results. We
observe that the proposed SIS model captures the uncertainty of the smoking
habit.

○

○

○

○

○

○
○
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time

0.55

0.60

0.65

0.70

percentage

Figure 5.7: Model for the percentage of nonsmokers Spanish men aged over 16 years old
during the period 1995–2014 in Example 5.5. The circles represent the actual data, the solid
line shows the estimates via E[y(m)], and the dashed lines reflect the confidence interval.

By combining the RVT technique and gPC expansions, we can go a step further
and compute the probability density function of y(m) at times m = 15 and
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m = 18, see Figure 5.8. With orders of basis p = 5, the results agree with a
Kernel density estimation with the function SmoothKernelDistribution. In
this case, since the density function of y(m) seems smooth (with no peaks),
the Kernel density estimation is correct.
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Approximation p=5

Kernel density 1,000,000 realizations
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y
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Approximation p=5

Kernel density 1,000,000 realizations

Figure 5.8: Approximation of fy(m)(y) via gPC and RVT for m = 15 (first plot) and
m = 18 (second plot) in Example 5.5. Observe the rapid convergence to the exact density
function fy(m)(y). The results agree with a Kernel density estimation.

Remark 5.6 As we commented, by using a least squares fitting procedure,
the best deterministic estimates for a and b are â = 0.0378749 and b̂ =
0.0225118. In order to take into account the inherent uncertainty associ-
ated to the modeling, we introduce randomness into both parameters: We set
a ∼ Normal(0.0378749, 0.000025) and b ∼ Uniform(0.0175118, 0.0275118). We
perform a stochastic Galerkin projection technique with order p = 5 for both
canonical bases. We plot the output of the model in Figure 5.9.
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Figure 5.9: Model for the percentage of nonsmokers Spanish men aged over 16 years
old during the period 1995–2014 in Remark 5.6 of Example 5.5, with two random input
parameters. The circles represent the actual data, the solid line shows the estimates via
E[y(m)], and the dashed lines reflect the confidence interval.

Notice that the outputs from Figures 5.7 and 5.9 are very similar, indicating
that parameter a may have the main effect on the model predictions. Indeed,
let us check this fact via the gPC-based Sobol’s indices. Figure 5.10 depicts
the Sobol’s indices for a and b. Observe that the main effect on the output
variance is due to parameter a. Thus, the methodology of considering b =
b̂ constant and putting randomness into a only, as done in Example 5.5 to
compute probability density functions via the RVT technique, is justified.
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Figure 5.10: Influence of the parameters a and b in the nonsmokers model prediction,
Remark 5.6 from Example 5.5.
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5.4 Conclusions

From an epidemic point of view, people giving up tobacco (parameter a) is the
main reason of the augment of nonsmokers from years 1995 to 2014. Hence,
the best policy to address the smoking epidemic is to accomplish strategies
that help smokers to give up this addictive behavior.

5.4 Conclusions

In this chapter we have approximated the probability density function for
differential and difference equations with one random input parameter, by
combining the transformation method and generalized polynomial chaos ex-
pansions. The method consists in computing the exact density function of the
stochastic Galerkin projections, via the RVT technique, for a sufficiently large
order of truncation. The optimal order of truncation is that from which the
subsequent probability density functions of the Galerkin projections are vir-
tually the same. The sequence of these approximating density functions con-
verges rapidly due to the spectral mean square convergence of the Galerkin
projections. Several numerical examples, dealing with both continuous and
discrete random dynamical systems in the setting of epidemiological model-
ing, have illustrated the theoretical ideas. Our approach is restricted to one
random input coefficient, since the transformation method for non-injective
maps only works on dimension one. Moreover, from a modeling standpoint,
one may include uncertainty only into the parameter with largest gPC-based
Sobol’s index. If we are dealing with an epidemic model, this parameter is the
most important to address, control and prevent the epidemic.

To the best of our knowledge, this chapter is the first contribution in which
the RVT technique has been combined with gPC expansions to determine the
probability density function of stochastic models and go beyond the computa-
tion of the expectation and variance, which has been the usual goal in previous
contributions dealing with gPC expansions. Moreover, our novelty also relies
on applying our methodology to epidemiological models based on continuous
and discrete stochastic systems. Being able to quantify the uncertainty asso-
ciated to epidemics is essential to find the optimal prevention policies.

Part of future research may be devoted to a deeper mathematical analysis of
conditions under which the approximating density functions indeed converge
pointwise or in some Lebesgue space, so that our computational method would
be justified mathematically.
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Chapter 6

Uncertainty quantification for
random parabolic equations

via the approximation of the
probability density function

This chapter deals with the randomized heat equation defined on a gen-
eral bounded interval [L1, L2] and with non-homogeneous Dirichlet bound-
ary conditions. The solution is a stochastic process that can be related, via
changes of variable, with the solution stochastic process of the random heat
equation defined on [0, 1] with homogeneous Dirichlet boundary conditions.
Results in the existing literature establish conditions under which the prob-
ability density function of the solution process to the random heat equation
on [0, 1] with homogeneous boundary conditions can be approximated. Via
the changes of variable and the Random Variable Transformation tech-
nique, we set mild conditions under which the probability density function
of the solution process to the random heat equation on a general bounded
interval [L1, L2] and with non-homogeneous boundary conditions can be
approximated uniformly or pointwise. Furthermore, we provide sufficient
conditions in order that the expectation and the variance of the solution
stochastic process can be computed from the proposed approximations of the
probability density function. Numerical examples are performed in the case
that the initial condition process has a certain Karhunen-Loève expansion,
being Gaussian and non-Gaussian.
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6.1 Introduction and motivation

It is well-known that the heat equation plays a key role to describe mathemat-
ically diffusion processes. Due to heterogeneity and impurities in materials
and errors in the temperature measurements, many authors have proposed
to treat the diffusion coefficient, initial and/or boundary conditions in the
heat equation as random variables and/or stochastic processes rather than
deterministic constants and functions, respectively. This approach leads to
stochastic and random heat equation formulation [124, pp. 96–97]. In the
former case, the stochastic heat differential equation is forced by an irregular
stochastic process such as a White Noise process [70, Ch. 4]. These kind of
equations are typically written in terms of stochastic differentials and inter-
preted as Itô or Stratonovich integrals. Special stochastic calculus is usually
applied to obtain exact or approximate solutions to this class of differential
equations [70, 82, 106].

In [145], a new stochastic analysis for steady and transient one-dimensional
heat conduction problem based on the homogenization approach is proposed.
Thermal conductivity is assumed to be a random field depending on a finite
number random variables. Both mean and variance of stochastic solutions are
obtained analytically for the field consisting of independent identically dis-
tributed random variables. In [37], the stochastic temperature field is analyzed
by considering the annular disc to be multi-layered with spatially constant ma-
terial properties and spatially constant but random heat transfer coefficients
in each layer. A type of integral transform method together with a perturba-
tion technique are employed in order to obtain the analytical solutions for the
statistics (mean and variance) of the temperature. Another fruitful approach
to deal with different formulations of the random heat equation is the Mean
Square Calculus [125, Ch. 4]. In [26], an analytic-numerical mean square solu-
tion of the random diffusion model in an infinite medium is constructed by ap-
plying the random exponential Fourier integral transform. A complementary
analysis, based on random trigonometric Fourier integral transforms, to solve
random partial differential heat problems with non-homogeneous boundary
value conditions has been presented in [27]. In these two latter contributions,
reliable approximations for the mean and the variance of the solution stochas-
tic process are provided. Likewise asymptotic-preserving methods for random
hyperbolic, transport equations and radiative heat transfer equations with ran-
dom inputs and diffusive scalings have been recently studied using generalized
polynomial chaos based stochastic Galerkin method [75, 76]. The probabilistic
information to the solution stochastic process of the random heat equation in
all the aforementioned contributions focus on first statistical moments like the
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mean and the variance functions. Nevertheless, a more ambitious target is
to determine exact or reliable approximations of the first probability density
function of the solution stochastic process, since from it all one-dimensional
statistical moments can be obtained, if they exist. In particular, the mean
and the variance can be straightforwardly derived via integration of the first
probability density function [125, Ch. 3]. In the context of random partial dif-
ferential equations, some recent contributions addressing this significant prob-
lem include, for example, [53, 72, 73, 146] (see also references therein). From
a general standpoint, this chapter is aimed to contribute further the study of
methods to determine rigorous approximations of the first probability density
function of random partial differential equations focusing on the random heat
equation. It is important to point out that the subsequent analysis is based
upon our previous contribution [16].

In [16], we have studied the randomized heat equation on the spatial domain
[0, 1] with homogeneous boundary conditions and assuming that the diffu-
sion coefficient is a positive random variable and that the initial condition is
a stochastic process. In a first step, the solution stochastic process of that
stochastic problem was rigorously constructed using two different approaches,
namely, the Sample Calculus [125, Appendix I] and the Mean Square Calculus
[125, Ch. 4]. The second, and main step, consisted of constructing approxi-
mations of the probability density function of the solution by combining the
Random Variable Transformation technique and the Karhunen-Loève expan-
sion. Several results providing sufficient conditions to guarantee the pointwise
and uniform convergence of these approximations were established. The aim of
this contribution is to extend the study to the case where boundary conditions
are random variables and assuming that the problem is stated on an arbitrary
interval, say [L1, L2]. Since this extension depends heavily on some results
established in [16], for the sake of completeness down below we summarize
them.

6.2 Preliminaries

6.2.1 Preliminaries on the randomized heat equation on [0, 1] with
homogeneous Dirichlet boundary conditions

Reference [16] provides the necessary results on the approximation of the prob-
ability density function of the randomized heat equation on the spatial domain
[0, 1] with homogeneous boundary conditions. The main goal of this contribu-
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tion is to extend these results to the randomized heat equation on a general
interval [L1, L2] with random boundary conditions.

The heat equation on the spatial domain [0, 1] with homogeneous Dirichlet
boundary conditions has the form vt = β2vxx, 0 < x < 1, t > 0,

v(0, t) = v(1, t) = 0, t ≥ 0,
v(x, 0) = ψ(x), 0 ≤ x ≤ 1.

(6.1)

We consider (6.1) in a random setting. Let (Ω,F ,P) be a complete probability
space, where Ω is the sample space, which consists of outcomes that will be
denoted by ω, F is a σ-algebra of events and P is the probability measure. The
diffusion coefficient is considered as a positive random variable β2(ω) and the
initial condition is a stochastic process ψ = {ψ(x)(ω) : x ∈ [0, 1], ω ∈ Ω} in
the underlying probability space (Ω,F ,P). The solution becomes a stochastic
process, expressed as the formal random series

v(x, t)(ω) =
∞∑
n=1

An(ω) e−n
2π2β2(ω)t sin(nπx), (6.2)

where the random Fourier coefficient

An(ω) = 2

∫ 1

0

ψ(y)(ω) sin(nπy) dy (6.3)

is understood as a Lebesgue integral for each ω ∈ Ω (this is sometimes referred
to as SP integral, see [129, Def. A–1]). The following result establishes in
which sense and under which assumptions the stochastic process (6.2)–(6.3) is
a rigorous solution to the randomized PDE problem (6.1) [16, Th. 1.3].

Theorem 6.1 The following statements hold:

i) a.s. (almost surely) solution: Suppose that ψ ∈ L2([0, 1]× Ω). Then the
random series that defines (6.2)–(6.3) converges a.s. for all x ∈ [0, 1]
and t > 0. Moreover, vt(x, t)(ω) = β2(ω) vxx(x, t)(ω) a.s. for x ∈ (0, 1)
and t > 0, where the derivatives are understood in the classical sense;
v(0, t)(ω) = v(1, t)(ω) = 0 a.s. for t ≥ 0; and v(x, 0)(ω) = ψ(x)(ω) a.s.
for a.e. (almost everywhere) x ∈ [0, 1].

ii) L2 solution: Suppose that ψ ∈ L2([0, 1] × Ω) and 0 < a ≤ β2(ω) ≤ b,
a.e. ω ∈ Ω, for certain a, b ∈ R. Then the random series that defines
(6.2)–(6.3) converges in L2(Ω) for all x ∈ [0, 1] and t > 0. Moreover,
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vt(x, t)(ω) = β2(ω) vxx(x, t)(ω) a.s. for x ∈ (0, 1) and t > 0, where
the derivatives are understood in the mean square sense (see Subsection
6.2.2 later); v(0, t)(ω) = v(1, t)(ω) = 0 a.s. for t ≥ 0; and v(x, 0)(ω) =
ψ(x)(ω) a.s. for a.e. x ∈ [0, 1].

The main goal of [16] consisted of approximating the probability density func-
tion of the stochastic process v(x, t)(ω) given in (6.2)–(6.3), for 0 < x < 1 and
t > 0. For that purpose, the truncation

vN(x, t)(ω) =
N∑
n=1

An(ω) e−n
2π2β2(ω)t sin(nπx) (6.4)

was used. By applying the Random Variable Transformation technique, see
[89, Lemma 4.12], the density of the truncation vN(x, t)(ω) was computed
and proved the following result [16, Th. 2.8], which provides conditions under
which the density function of the solution stochastic process v(x, t)(ω) from
(6.2)–(6.3) can be approximated. Hereinafter, the notation fX stands for the
probability density function of the random variable X.

Theorem 6.2 Let {ψ(x) : 0 ≤ x ≤ 1} be a process in L2([0, 1]×Ω). Suppose
that β2, A1 and (A2, . . . , AN) are independent and absolutely continuous, for
N ≥ 2. Suppose that the probability density function fA1

is Lipschitz on R.

Assume that
∑∞

n=m ‖e−(n2−2)π2β2t‖L1(Ω) < ∞, for certain m ∈ N. Then the
density of vN(x, t)(ω),

fvN (x,t)(v) =

∫
RN
fA1

(
eπ

2β2t

sin(πx)

{
v −

N∑
n=2

ane−n
2π2β2t sin(nπx)

})

·f(A2,...,AN )(a2, . . . , aN)fβ2(β2)
eπ

2β2t

sin(πx)
da2 · · · daN dβ2, (6.5)

converges in L∞(R) to a density of the random variable v(x, t)(ω) given in
(6.2)–(6.3), for 0 < x < 1 and t > 0.

Moreover, from the proofs in [16, Th. 2.7, Th. 2.8], one has the following rate
of convergence for {fvN (x,t)(v)}∞N=1 under the assumptions of Theorem 6.2:

|fvN (x,t)(v)− fv(x,t)(v)| ≤
2‖ψ‖L2([0,1]×Ω)L

sin2(πx)

∞∑
n=N+1

‖e−(n2−2)π2β2t‖L1(Ω), (6.6)

where L is the Lipschitz constant of fA1
.
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Another result that could have been added to [16] is presented in what follows.
It substitutes the Lipschitz hypothesis by the weaker assumption of a.e. conti-
nuity and essential boundedness. The hypothesis

∑∞
n=m ‖e−(n2−2)π2β2t‖L1(Ω) <

∞ is substituted by E[eπ
2β2t] <∞. Then one proves pointwise convergence of

the sequence (6.5), so the uniform convergence on R and the rate of conver-
gence (6.6) are lost.

Remark 6.3 Let X and Y be two independent random variables. If X is
absolutely continuous, then X + Y is absolutely continuous. Indeed, for any
Borel set A, by the convolution formula [8, p. 266] we have P(X + Y ∈ A) =∫
R P(X ∈ A− y)PY (dy), where PY = P ◦Y −1 is the law of Y . If A is null, then
A− y is null, so P(X ∈ A− y) = 0. Thus, if A is null, then P(X+Y ∈ A) = 0.
By the Radon-Nikodym Theorem [147, Ch. 14], X + Y has a density.

Theorem 6.4 Let {ψ(x) : 0 ≤ x ≤ 1} be a process in L2([0, 1]×Ω). Suppose
that β2, A1 and (A2, . . . , AN) are independent and absolutely continuous, for
N ≥ 2. Suppose that the probability density function fA1

is a.e. continuous

on R and ‖fA1
‖L∞(R) < ∞. Assume that E[eπ

2β2t] < ∞. Then the density of
vN(x, t)(ω) given by (6.5),

fvN (x,t)(v) =

∫
RN
fA1

(
eπ

2β2t

sin(πx)

{
v −

N∑
n=2

ane−n
2π2β2t sin(nπx)

})

·f(A2,...,AN )(a2, . . . , aN)fβ2(β2)
eπ

2β2t

sin(πx)
da2 · · · daN dβ2,

converges pointwise to a density of the random variable v(x, t)(ω) given in
(6.2)–(6.3), for all 0 < x < 1 and t > 0.

Proof. Fix 0 < x < 1, t > 0 and v ∈ R. From (6.5), notice that

fvN (x,t)(v) = E

[
fA1

(
eπ

2β2t

sin(πx)

{
v −

N∑
n=2

Ane−n
2π2β2t sin(nπx)

})
eπ

2β2t

sin(πx)

]
.

Define the random variables

ZN(ω) :=
eπ

2β2(ω)t

sin(πx)

{
v −

N∑
n=2

An(ω)e−n
2π2β2(ω)t sin(nπx)

}
, Y (ω) :=

eπ
2β2(ω)t

sin(πx)
.

By Theorem 6.1 i), we know that

lim
N→∞

ZN(ω) =
eπ

2β2(ω)t

sin(πx)

{
v −

∞∑
n=2

An(ω)e−n
2π2β2(ω)t sin(nπx)

}
=: Z(ω),
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for a.e. ω ∈ Ω.
By Remark 6.3, Z is absolutely continuous. Thus, since fA1

is a.e. continuous,
the probability that Z belongs to the discontinuity set of fA1

is 0. By the
Continuous Mapping Theorem [135, p. 7, Th. 2.3],

lim
N→∞

fA1
(ZN(ω))Y (ω) = fA1

(Z(ω))Y (ω),

for a.e. ω ∈ Ω. Moreover, |fA1
(ZN(ω))Y (ω)| ≤ ‖fA1

‖L∞(Ω)|Y (ω)|, being

Y ∈ L1(Ω) by the assumption E[eπ
2β2t] <∞. By the Dominated Convergence

Theorem [113, result 11.32, p. 321],

lim
N→∞

fvN (x,t)(v) = E[fA1
(Z)Y ] =: gx,t(v).

To conclude, we need to show that gx,t is a density of the random variable
v(x, t)(ω) given by (6.2)–(6.3). This is done in a similar way to the last part
of the proof of Theorem 2.4 in [16]. We know that, for each 0 < x < 1 and
t > 0, vN(x, t)(ω) → v(x, t)(ω) as N → ∞ a.s., which implies convergence
in law: FvN (x,t)(v) → Fv(x,t)(v) as N → ∞, for all v ∈ R which is a point of
continuity of Fv(x,t). Here, F refers to the distribution function. Since fvN (x,t)

is the density of vN(x, t), FvN (x,t)(v) = FvN (x,t)(v0) +
∫ v
v0
fvN (x,t)(w) dw. If v

and v0 are points of continuity of Fv(x,t), taking limits when N → ∞ we get
Fv(x,t)(v) = Fv(x,t)(v0) +

∫ v
v0
gx,t(w) dw. This is justified by the Dominated

Convergence Theorem, as

|fvN (x,t)(w)| ≤ E[|fA1
(ZN)||Y |] ≤ ‖fA1

‖L∞(R)E[Y ] ∈ L1([v0, v], dw). (6.7)

As the points of discontinuity of Fv(x,t) are countable and Fv(x,t) is right-
continuous, we obtain Fv(x,t)(v) = Fv(x,t)(v0) +

∫ v
v0
gx,t(w) dw, for all v0 and

v in R. Thus, gx,t = fv(x,t) is a density for v(x, t), as wanted.
�

Our main objective will be to extend both Theorem 6.2 and the new Theo-
rem 6.4 to the solution of the randomized heat equation on an interval [L1, L2]
with random boundary conditions.

6.2.2 Preliminaries on the L1(Ω) and L2(Ω) calculus

In this section, we summarize the main results related to the so-called Lp(Ω)
random calculus that will be required throughout our subsequent development.
To read an exposition on L2(Ω) calculus, see [125, Ch. 4] and [89, Ch. 5]. In
[137] the authors combined L2(Ω) and L4(Ω) calculus, usually termed mean
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square and mean fourth random calculus, to solve random differential equa-
tions.

With a similar proof to [137, Lemma 3.14], we have the following two results:

Proposition 6.5 Let X = {X(t)(ω) : t ∈ I, ω ∈ Ω} and Y = {Y (t)(ω) : t ∈
I, ω ∈ Ω} be two stochastic processes. Suppose that they are continuous at
t0 ∈ I in the L2(Ω) sense. Then XY = {X(t)(ω)Y (t)(ω) : t ∈ I, ω ∈ Ω} is
continuous at t0 in the L1(Ω) sense.

Proposition 6.6 Let X = {X(t)(ω) : t ∈ I, ω ∈ Ω} and Y = {Y (t)(ω) : t ∈
I, ω ∈ Ω} be two stochastic processes. Suppose that they are differentiable at
t0 ∈ I in the L2(Ω) sense. Then XY = {X(t)(ω)Y (t)(ω) : t ∈ I, ω ∈ Ω}
is differentiable at t0 in the L1(Ω) sense, with (XY )′(t0) = X ′(t0)Y (t0) +
X(t0)Y ′(t0).

Another useful result is the following, see [125, p. 97]:

Proposition 6.7 Let {Xn}∞n=1 be a sequence of random variables that con-
verges in L1(Ω) to the random variable X. Then limn→∞ E[Xn] = E[X].
As a consequence, if X = {X(t)(ω) : t ∈ I, ω ∈ ω} is a stochastic pro-
cess that is differentiable in the L1(Ω) sense at t0 ∈ I, then there exists
d
dt
E[X(t0)] = E[X ′(t0)].

A similar result but in terms of continuity holds:

Proposition 6.8 If X = {X(t)(ω) : t ∈ I, ω ∈ ω} is a stochastic process
that is continuous in the L1(Ω) sense at t0 ∈ I, then E[X(t)] is continuous at
t0. On the other hand, if X is continuous in the L2(Ω) sense at t0 ∈ I, then
‖X(t)‖L2(Ω) is continuous at t0.

6.3 Solution to the randomized heat equation with
non-homogeneous Dirichlet boundary conditions

Consider the general form of the heat equation,
ut = α2uxx, L1 < x < L2, t > 0,

u(L1, t) = A, u(L2, t) = B, t ≥ 0,

u(x, 0) = φ(x), L1 ≤ x ≤ L2.

(6.8)
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This is a generalization of the PDE problem (6.1) studied in [16]. Given a
complete probability space (Ω,F ,P), we will consider the diffusion coefficient
α2(ω) and the boundary conditions A(ω) and B(ω) as random variables, and
the initial condition as a stochastic process φ = {φ(x)(ω) : x ∈ [L1, L2], ω ∈
Ω} in the underlying probability space. The solution u can be expressed as

u(x, t)(ω) = v

(
x− L1

L2 − L1

, t

)
(ω) +

x− L1

L2 − L1

B(ω) +
L2 − x
L2 − L1

A(ω), (6.9)

where x ∈ [L1, L2] and t ≥ 0, and v(y, t)(ω) is the solution stochastic process
of (6.1) given by (6.2)–(6.3) with random diffusion coefficient

β2(ω) =
α2(ω)

(L2 − L1)2
(6.10)

and random initial condition

ψ(y)(ω) = ϕ(L1 + y(L2 − L1))(ω),

ϕ(x)(ω) = φ(x)(ω)− x− L1

L2 − L1

B(ω)− L2 − x
L2 − L1

A(ω), (6.11)

for y ∈ [0, 1]. We want to study in which sense the stochastic process u(x, t)(ω)
given by (6.9) is a rigorous solution to the randomized heat equation (6.8).
Next Theorem 6.9 generalizes Theorem 6.1. Moreover, uniqueness is proved,
which is a novelty compared with [16].

Theorem 6.9 The following statements hold:

i) a.s. solution: Suppose that φ ∈ L2([L1, L2]×Ω) and A,B ∈ L2(Ω). Then
ut(x, t)(ω) = α2(ω)uxx(x, t)(ω) a.s. for x ∈ (L1, L2) and t > 0, where
the derivatives are understood in the classical sense; u(L1, t)(ω) = A(ω)
and u(L2, t)(ω) = B(ω) a.s. for t ≥ 0; and u(x, 0)(ω) = φ(x)(ω) a.s.
for a.e. x ∈ [L1, L2]. Moreover, the process u(x, t)(ω) satisfying these
conditions is unique.

ii) L2 solution: Suppose that φ ∈ L2([L1, L2] × Ω), A,B ∈ L2(Ω) and
0 < a ≤ α2(ω) ≤ b, a.e. ω ∈ Ω, for certain a, b ∈ R. Then ut(x, t)(ω) =
α2(ω)uxx(x, t)(ω) a.s. for x ∈ (L1, L2) and t > 0, where the deriva-
tives are understood in the mean square sense; u(L1, t)(ω) = A(ω) and
u(L2, t)(ω) = B(ω) a.s. for t ≥ 0; and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e.
x ∈ [L1, L2]. Moreover, the process u(x, t)(ω) satisfying these conditions
is unique.

109



Chapter 6.

Proof. We prove both statements:
i) a.s. solution: By (6.11) and the triangular inequality,

‖ψ‖L2([0,1]×Ω) =

(
E
[∫ 1

0

ψ(y)2 dy

]) 1
2

=

(
E
[∫ 1

0

ϕ(L1 + y(L2 − L1))2 dy

]) 1
2

=
1√

L2 − L1

(
E
[∫ L2

L1

ϕ(x)2 dx

]) 1
2

=
1√

L2 − L1

‖ϕ‖L2([L1,L2]×Ω)

≤ 1√
L2 − L1

(
‖φ‖L2([L1,L2]×Ω) +

x− L1

L2 − L1
‖B‖L2([L1,L2]×Ω) +

L2 − x
L2 − L1

‖A‖L2([L1,L2]×Ω)

)
=

1√
L2 − L1

‖φ‖L2([L1,L2]×Ω) +
x− L1

L2 − L1
‖B‖L2(Ω) +

L2 − x
L2 − L1

‖A‖L2(Ω) <∞. (6.12)

Then ψ ∈ L2([0, 1]× Ω). By Theorem 6.1, vt(x, t)(ω) = β2(ω) vxx(x, t)(ω) a.s.
for x ∈ (0, 1) and t > 0, where the derivatives are understood in the classical
sense; v(0, t)(ω) = v(1, t)(ω) = 0 a.s. for t ≥ 0; and v(x, 0)(ω) = ψ(x)(ω) a.s.
for a.e. x ∈ [0, 1]. Then u is an almost sure solution. Uniqueness follows from
the so-called energy method [115, pp. 30–31] applied to each sample path.
ii) L2 solution: the result follows as a consequence of Theorem 6.1. To show
uniqueness, we try to adapt the energy method [115, pp. 30–31] to this setting.
We prove the following: if u is C2,1((L1, L2) × (0,∞)) in the sense of L2(Ω),
with continuous partial derivatives on [L1, L2]× [0,∞) in the sense of L2(Ω),
ut = α2uxx on (L1, L2) × (0,∞), u(L1, t) = u(L2, t) = 0 a.s. on [0,∞) and
u(x, 0) = 0 a.s. at a.e. x ∈ [L1, L2], then u(x, t) = 0 a.s. for all x ∈ [L1, L2]
and t ≥ 0. From this fact, uniqueness will follow.

Let I(t) =
∫ L2

L1
E[u(x, t)2] dx. Fixed t ≥ 0, as a consequence of the conti-

nuity of u(·, t) in the L2(Ω) sense and Proposition 6.8, the real map x ∈
[L1, L2] 7→ E[u(x, t)2] is continuous and I(t) is well-defined. Fixed x, as
u(x, ·) is differentiable in the L2(Ω) sense, by Proposition 6.6 and Proposi-
tion 6.7 we have ∂

∂t
E[u(x, t)2] = E[ ∂

∂t
(u(x, t)2)] = 2E[u(x, t)ut(x, t)], where the

partial derivative ∂
∂t

inside the expectation operator must be understood on

the L1(Ω) sense. Then, using Cauchy-Schwarz inequality, | ∂
∂t
E[u(x, t)2]| ≤

2E[|u(x, t)||ut(x, t)|] ≤ 2‖u(x, t)‖L2(Ω)‖ut(x, t)‖L2(Ω). As both u(x, t), ut(x, t)
are continuous on [L1, L2]× [0,∞) in the L2(Ω) sense, by Proposition 6.8 both
‖u(x, t)‖L2(Ω) and ‖ut(x, t)‖L2(Ω) are continuous on [L1, L2] × [0,∞) in the
classical sense. Fix t0 > 0 and δ > 0 small. Then there is a constant C > 0
such that ‖u(x, t)‖L2(Ω) ≤ C and ‖ut(x, t)‖L2(Ω) ≤ C for all x ∈ [L1, L2] and
t ∈ [t0 − δ, t0 + δ], by continuity in the classical sense. Thus, | ∂

∂t
E[u(x, t)2]| ≤

2C2 ∈ L1([L1, L2], dx), for all x ∈ [L1, L2] and t ∈ [t0− δ, t0 + δ]. This permits

110



6.3 Solution to the randomized heat equation with non-homogeneous Dirichlet boundary conditions

differentiating under the Lebesgue integral sign at t0 [2, Th. 10.39]:

I ′(t0) =
∂

∂t

(∫ L2

L1

E
[
u(x, t)2

]
dx

) ∣∣∣∣
t=t0

=

∫ L2

L1

∂

∂t

(
E
[
u(x, t)2

]) ∣∣
t=t0

dx

= 2

∫ L2

L1

E[u(x, t0)ut(x, t0)] dx.

Now we use the arbitrariness of t0 and the fact that u solves the heat equation:

I ′(t) = 2

∫ L2

L1

E[u(x, t)ut(x, t)] dx = 2

∫ L2

L1

E[α2u(x, t)uxx(x, t)] dx.

As u(·, t) and ux(·, t) are differentiable in the L2(Ω) sense, by Proposition
6.6 the product u(·, t)ux(·, t) is differentiable in L1(Ω), (u(x, t)ux(x, t))x =
u(x, t)uxx(x, t) + ux(x, t)

2. Since α2 is bounded above, α2u(·, t)ux(·, t) is dif-
ferentiable in the L1(Ω) sense, having derivative

(α2u(x, t)ux(x, t))x = α2u(x, t)uxx(x, t) + α2ux(x, t)
2.

Thereby,

I ′(t) = 2

∫ L2

L1

E[(α2u(x, t)ux(x, t))x] dx− 2

∫ L2

L1

E[α2ux(x, t)
2] dx.

By Proposition 6.7, Barrow’s rule and the boundary conditions, the first inte-
gral is 0:∫ L2

L1

E[(α2u(x, t)ux(x, t))x]dx =

∫ L2

L1

∂

∂x
E[α2u(x, t)ux(x, t)] dx

= E[α2u(L2, t)ux(L2, t)]− E[α2u(L1, t)ux(L1, t)] = 0.

Barrow’s rule is justified as follows: we have, by previous computations,

∂xE[α2u(x, t)ux(x, t)] = E[(α2u(x, t)ux(x, t))x]

= E[α2u(x, t)uxx(x, t)] + E[α2ux(x, t)
2].

By Proposition 6.5 and the boundedness of α2, both α2u(·, t)uxx(·, t) and
α2ux(·, t)2 are continuous in the L1(Ω) sense. So by Proposition 6.8, both
E[α2u(·, t)uxx(·, t)] and E[α2ux(·, t)2] are continuous. Then ∂xE[α2u(·, t)ux(·, t)]
is continuous on [L1, L2] and Barrow’s rule is applicable.

It follows I ′(t) = −2
∫ L2

L1
E[α2ux(x, t)

2] dx ≤ 0. This tells us that I(t) is de-

creasing on [0,∞), which implies I(t) ≤ I(0) =
∫ L2

L1
E[u(x, 0)2] dx = 0. Hence,

I(t) = 0. As E[u(·, t)2] is continuous, because u(·, t) is continuous in the L2(Ω)
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sense and Proposition 6.8, we derive that E[u(x, t)2] = 0 for all x ∈ [L1, L2]
and t ≥ 0. Then u(x, t) = 0 a.s., for every x ∈ [L1, L2] and t ≥ 0. This
concludes the proof.

�

6.4 Approximation of the probability density function of the
solution stochastic process

The main goal of this chapter is to approximate the probability density func-
tion of the solution stochastic process u(x, t)(ω) given by (6.9), which solves
the random heat equation (6.8). We will use Theorem 6.2, Theorem 6.4 and
the Random Variable Transformation technique [89, Lemma 4.12].

Assume that v(y, t)(ω), A(ω) and B(ω) are absolutely continuous and inde-
pendent random variables. Applying the Random Variable Transformation
technique,

f x−L1
L2−L1

B(b) = fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

, f L2−x
L2−L1

A(a) = fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
.

(6.13)
It is well-known, see [8, p. 267], [107, p. 372], that the probability density func-
tion of a sum of two independent and absolutely continuous random variables
is given by the convolution of their probability density functions. Thereby,
from (6.13),

fu(x,t)(u) =

∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u− b− a)f x−L1

L2−L1
B

(b)f L2−x
L2−L1

A
(a) dadb

=

∫
R2

f
v
(
x−L1
L2−L1

,t
)(u− b− a)fB

(
L2 − L1

x− L1
b

)
L2 − L1

x− L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb.

Define a new truncation from (6.9)

uN(x, t)(ω) = vN

(
x− L1

L2 − L1

, t

)
(ω) +

x− L1

L2 − L1

B(ω) +
L2 − x
L2 − L1

A(ω), (6.14)

where x ∈ [L1, L2] and t ≥ 0 and vN is the truncation (6.4). If vN(y, t)(ω),
A(ω) and B(ω) are absolutely continuous and independent random variables,

fuN (x,t)(u) =

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u− b− a)f x−L1

L2−L1
B

(b)f L2−x
L2−L1

A
(a) dadb

=

∫
R2

f
vN

(
x−L1
L2−L1

,t
)(u− b− a)fB

(
L2 − L1

x− L1
b

)
L2 − L1

x− L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb.

(6.15)
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Intuitively, we should be able to set conditions under which the convergence
limN→∞ fuN (x,t)(u) = fu(x,t)(u) holds, as an application of Theorem 6.2 or of
Theorem 6.4. This fact is formalized in the following two theorems.

Theorem 6.10 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be
a process in L2([L1, L2] × Ω). Let the random boundary conditions A and B
belong to L2(Ω). Suppose that α2, A1, (A2, . . . , AN), A and B are independent
and absolutely continuous, for N ≥ 2 (recall that An is defined in (6.3) as the
random Fourier coefficient of ψ, where ψ is defined from φ in relation (6.11)).
Suppose that the probability density function fA1

is Lipschitz on R. Assume

that
∑∞

n=m ‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) < ∞, for certain m ∈ N. Then the
sequence

fuN (x,t)(u) =

∫
R

∫
R
fvN( x−L1

L2−L1
,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

·fA
(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db,

where fvN is the density defined by (6.5), converges in L∞(R) to the density
fu(x,t)(u) of the solution stochastic process u(x, t)(ω) to the randomized heat
equation (6.8), for L1 < x < L2 and t > 0.

Proof. Since φ ∈ L2([L1, L2]×Ω) and by (6.12), ψ ∈ L2([0, 1]×Ω). By hypoth-
esis, we also have that β2 = α2/(L2 −L1)2, A1 and (A2, . . . , AN) are indepen-

dent and absolutely continuous, for N ≥ 2, and
∑∞

n=m ‖e−(n2−2)π2β2t‖L1(Ω) <
∞. Thus, the hypotheses of Theorem 6.2 hold.
Since α2, A1, (A2, . . . , AN), A and B are independent, from (6.2) we derive
that v(y, t), A and B are independent. Indeed, from the independence of
β2 = α2/(L2 − L1)2, A1, (A2, . . . , AN), A and B, one has independence of
(β2, A1, . . . , AN), A and B. Fixed 0 < y < 1 and t > 0, the random variable
vN(y, t)(ω) can be written as g(β2(ω), A1(ω), . . . , AN(ω)), for a Borel mea-
surable map g : Rn+1 → R. Then vN(y, t), A and B are independent. By
Theorem 6.1 i), vN(y, t) → v(y, t) a.s. as N → ∞. Then (vN(y, t), A,B) →
(v(y, t), A,B) a.s. as N → ∞. Denote by ϕ̂ the characteristic function. By
Lévy’s Continuity Theorem [141, Ch. 18] and the independence, for v, a, b ∈ R,
we have these equalities: ϕ̂(v(y,t),A,B)(v, a, b) = limN→∞ ϕ̂(vN (y,t),A,B)(v, a, b) =
limN→∞ ϕ̂vN (y,t)(v)ϕ̂A(a)ϕ̂B(b) = ϕ̂v(y,t)(v)ϕ̂A(a)ϕ̂B(b). By [3, Th. 2.1], v(y, t),
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A and B are independent. As a consequence,

fuN (x,t)(u) =

∫
R

∫
R
fvN( x−L1

L2−L1
,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

·fA
(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb

and

fu(x,t)(u) =

∫
R

∫
R
fv( x−L1

L2−L1
,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

·fA
(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb.

We have the following estimates:

|fu(x,t)(u)− fuN (x,t)(u)|

=

∣∣∣∣ ∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u− b− a)fB

(
L2 − L1

x− L1
b

)
L2 − L1

x− L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb

−
∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u− b− a)fB

(
L2 − L1

x− L1
b

)
L2 − L1

x− L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb

∣∣∣∣
≤ (L2 − L1)2

(x− L1)(L2 − x)

∫
R

∫
R
fB

(
L2 − L1

x− L1
b

)
fA

(
L2 − L1

L2 − x
a

)
·
∣∣∣∣fv( x−L1

L2−L1
,t
)(u− b− a)− f

vN

(
x−L1
L2−L1

,t
)(u− b− a)

∣∣∣∣ dadb.

By (6.6), ∣∣∣fv( x−L1
L2−L1

,t)(u− b− a)− fvN( x−L1
L2−L1

,t)(u− b− a)
∣∣∣

≤
2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1

L2−L1

) ∞∑
n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω),
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where L is the Lipschitz constant of fA1
. Then,

|fuN (x,t)(u)− fu(x,t)(u)|

≤ (L2 − L1)2

(x− L1)(L2 − x)

2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1

L2−L1

) (
∞∑

n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω)

)

·
∫
R

∫
R
fB

(
L2 − L1

x− L1

b

)
fA

(
L2 − L1

L2 − x
a

)
dadb

=
(L2 − L1)2

(x− L1)(L2 − x)

2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1

L2−L1

) (
∞∑

n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω)

)

·
(∫

R
fB

(
L2 − L1

x− L1

b

)
db

)(∫
R
fA

(
L2 − L1

L2 − x
a

)
da

)
= ‖fA‖L1(R)‖fB‖L1(R)

2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1

L2−L1

) ∞∑
n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω).

(6.16)

As
∑∞

n=m ‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) <∞, we conclude that

lim
N→∞

fuN (x,t)(u) = fu(x,t)(u)

in L∞(R), with convergence rate given by (6.16).
�

Theorem 6.11 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be
a process in L2([L1, L2] × Ω). Let the random boundary conditions A and B
belong to L2(Ω). Suppose that α2, A1, (A2, . . . , AN), A and B are independent
and absolutely continuous, for N ≥ 2 (recall that An is defined in (6.3) as the
random Fourier coefficient of ψ, where ψ is defined from φ in relation (6.11)).
Suppose that the probability density function fA1

is a.e. continuous on R and

‖fA1
‖L∞(R) <∞. Assume that E[eπ

2α2t/(L2−L1)2

] <∞. Then the sequence

fuN (x,t)(u) =

∫
R

∫
R
fvN( x−L1

L2−L1
,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

·fA
(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db,

where fvN is the density defined by (6.5), converges pointwise to the density
fu(x,t)(u) of the solution stochastic process u(x, t)(ω) to the randomized heat
equation (6.8), for L1 < x < L2 and t > 0.
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Proof. From φ ∈ L2([L1, L2] × Ω) and (6.12), it follows ψ ∈ L2([0, 1] × Ω).
By hypothesis, we also have that β2 = α2/(L2 − L1)2, A1 and (A2, . . . , AN)

are independent and absolutely continuous, for N ≥ 2, and E[eπ
2β2t] < ∞.

Thereby, the hypotheses of Theorem 6.4 are fulfilled.
Since α2, A1, (A2, . . . , AN), A and B are independent, as we did in the proof
of Theorem 6.10 we deduce that vN(y, t), A and B are independent, and that
v(y, t), A and B are independent. Hence,

fuN (x,t)(u) =

∫
R

∫
R
fvN( x−L1

L2−L1
,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

·fA
(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb

and

fu(x,t)(u) =

∫
R

∫
R
fv( x−L1

L2−L1
,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

·fA
(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
dadb.

By Theorem 6.4,

lim
N→∞

fvN( x−L1
L2−L1

,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x

= fv( x−L1
L2−L1

,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
,

for every u, a, b ∈ R, L1 < x < L2 and t > 0. By (6.7),∣∣∣∣fvN( x−L1
L2−L1

,t)(u− b− a)fB

(
L2 − L1

x− L1

b

)
L2 − L1

x− L1

fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x

∣∣∣∣
≤ ‖fA1

‖L∞(R)

E[eπ
2β2t]

sin
(
π x−L1

L2−L1

) (L2 − L1)2

(x− L1)(L2 − x)
fB

(
L2 − L1

x− L1

b

)
fA

(
L2 − L1

L2 − x
a

)
∈ L1(R2, da db),

so by the Dominated Convergence Theorem, limN→∞ fuN (x,t)(u) = fu(x,t)(u)
follows.

�

Theorem 6.10 and Theorem 6.11 may be adapted to the case in which A
and B are deterministic. By applying the Random Variable Transformation
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technique in (6.9) and (6.14),

fu(x,t)(u) = fv( x−L1
L2−L1

,t)

(
u− x− L1

L2 − L1

B − L2 − x
L2 − L1

A

)
and

fuN (x,t)(u) = fvN( x−L1
L2−L1

,t)

(
u− x− L1

L2 − L1

B − L2 − x
L2 − L1

A

)
. (6.17)

One arrives at the following two theorems, which are proved similarly but
easier than Theorem 6.10 and Theorem 6.11, respectively.

Theorem 6.12 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be
a process in L2([L1, L2] × Ω). Suppose that α2, A1 and (A2, . . . , AN) are in-
dependent and absolutely continuous, for N ≥ 2 (recall that An is defined in
(6.3) as the random Fourier coefficient of ψ, where ψ is defined from φ in
relation (6.11)). Suppose that the probability density function fA1

is Lipschitz

on R and that
∑∞

n=m ‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) < ∞, for certain m ∈ N.
Then the sequence defined by (6.17) where fvN is the density defined by (6.5),
converges in L∞(R) to the density fu(x,t)(u) of the solution stochastic process
u(x, t)(ω) to the randomized heat equation (6.8) with deterministic boundary
conditions A and B, for L1 < x < L2 and t > 0.

Theorem 6.13 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be a
process in L2([L1, L2]×Ω). Suppose that α2, A1 and (A2, . . . , AN) are indepen-
dent and absolutely continuous, for N ≥ 2 (recall that An is defined in (6.3)
as the random Fourier coefficient of ψ, where ψ is defined from φ in relation
(6.11)). Suppose that the probability density function fA1

is a.e. continuous

on R and ‖fA1
‖L∞(R) < ∞. Assume that E[eπ

2α2t/(L2−L1)2

] < ∞. Then the
sequence defined by (6.17) where fvN is the density defined by (6.5), converges
pointwise to the density fu(x,t)(u) of the solution stochastic process u(x, t)(ω)
to the randomized heat equation (6.8) with deterministic boundary conditions
A and B, for L1 < x < L2 and t > 0.

6.5 Approximation of the expectation and variance of the
solution stochastic process

By Theorem 6.1 ii), if ψ ∈ L2([0, 1]×Ω) (this holds if φ ∈ L2([L1, L2]×Ω) and
A,B ∈ L2(Ω), by (6.12)) and 0 < a ≤ β2(ω) ≤ b a.s., then vN(y, t) → v(y, t)
in L2(Ω) as N →∞.
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In fact, looking at the proof of [16, Th. 1.3], we can be more precise: in that
proof, it was shown that ‖An‖L2(Ω) ≤ C, for all n. If we assume that β2 and

An are independent, for each n, and that
∑∞

n=1 ‖e−n
2π2β2t‖L2(Ω) <∞, then

∞∑
n=1

‖Ane−n
2π2β2t sin(nπy)‖L2(Ω) ≤

∞∑
n=1

‖An‖L2(Ω)‖e−n
2π2β2t‖L2(Ω)

≤ C
∞∑
n=1

‖e−n
2π2β2t‖L2(Ω) <∞,

which implies that vN(y, t)→ v(y, t) in L2(Ω) as N →∞. By (6.9) and (6.14),
this is equivalent to uN(x, t)→ u(x, t) in L2(Ω) as N →∞.

We already know that, if vN(y, t)(ω), A(ω) and B(ω) are absolutely continuous
and independent random variables, then uN(x, t)(ω) has a density function
fuN (x,t)(u) given by (6.15). On the other hand, if A and B are deterministic,
assuming that vN(y, t)(ω) is absolutely continuous one has that uN(x, t)(ω)
has a density function fuN (x,t)(u) expressed by (6.17). Thus,

E[uN(x, t)] =

∫
R
u fuN (x,t)(u) du (6.18)

and

V[uN(x, t)] =

∫
R
u2 fuN (x,t)(u) du− (E[uN(x, t)])

2
. (6.19)

We summarize these ideas in the following theorem and remark, where the
random or deterministic nature of the parameters A and B is distinguished,
respectively, for the sake of completeness in the statement of our findings:

Theorem 6.14 If φ ∈ L2([L1, L2]×Ω), A,B ∈ L2(Ω), α2, (A1, . . . , AN), A,B

are absolutely continuous and independent,
∑∞

n=1 ‖e−n
2π2α2t/(L2−L1)2‖L2(Ω) <

∞, then u(x, t) ∈ L2(Ω),

E[uN(x, t)] =

∫
R
u fuN (x,t)(u) du

N→∞−→ E[u(x, t)],

V[uN(x, t)] =

∫
R
u2 fuN (x,t)(u) du− (E[uN(x, t)])

2 N→∞−→ V[u(x, t)],

for each L1 < x < L2 and t > 0.

Remark 6.15 Theorem 6.14 holds in the case that A and B are deterministic
values.
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6.6 Applications

The first question that arises is to which random diffusion coefficients, random
boundary conditions and random initial conditions our results can be applied.

We begin by studying hypothesis

∞∑
n=m

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω) <∞, (6.20)

for t > 0. It is clear that if α2 is bounded below, meaning that α2(ω) ≥ a > 0
for a.e. ω ∈ Ω, then (6.20) holds. This covers all cases in practice, as we may
truncate α2, [84]. Notice, however, that the condition α2(ω) ≥ a > 0 is not
necessary to have (6.20). For example, if α2 ∼ Uniform(0, b), b > 0, then we
know that its moment generating function is given by

E[eλα
2

] =
eλb − 1

λb
, (6.21)

therefore

∞∑
n=m

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω) =
∞∑
n=m

e−(n2−2)π2bt/(L2−L1)2 − 1

−(n2 − 2)π2bt/(L2 − L1)2

≤
∞∑
n=m

1

(n2 − 2)π2bt/(L2 − L1)2
<∞.

Another distribution for which (6.20) holds, this time not upper-bounded, is
α2 ∼ Gamma(r, s), being r > 1/2 the shape and s > 0 the rate. Its moment

generating function is given by E[eλα
2

] = 1/
(
1− λ

s

)r
, for λ < s. Then

∞∑
n=m

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω) =
∞∑
n=m

1

[(1 + (n2 − 2)π2t/(s(L2 − L1)2)]r
<∞.

(6.22)

Notice that, if 0 < r ≤ 1/2, then
∑∞

n=m ‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) = ∞.
This shows that hypothesis (6.20) might not hold.

Concerning hypothesis

E[eπ
2α2t/(L2−L1)2

] <∞, (6.23)

for t > 0, just take any distribution with finite moment generating function
for t > 0. For instance, Uniform(0, b) with moment generating function (6.21),

Normal(µ, σ2) with moment generating function at λ given by eµλ+1/2σ2λ2

, etc.
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The gamma distribution may be used to highlight the fact that, fixed t > 0, hy-
potheses (6.20) and (6.23) are independent. Suppose that α2 ∼ Gamma(r, s),
being r > 0 the shape and s > 0 the rate. Then (6.20) is accomplished if and
only if r > 1/2 and s > 0 (see (6.22)), whereas (6.23) fulfills if and only if
r > 0 and π2t/(L2 − L1)2 < s.

The most difficult step is to compute fA1
and f(A2,...,AN ) in (6.5). We are

going to see that the density function of An(ω) = 2
∫ 1

0
ψ(y)(ω) sin(nπy) dy can

be computed when the initial condition process φ has a certain expression
concerning the Karhunen-Loève expansion [89, Th. 5.28]. Take ψ defined in
(6.11). As ψ ∈ L2([0, 1] × Ω), for each fixed ω ∈ Ω the real function ψ(·)(ω)
belongs to L2([0, 1]). We can expand ψ(·)(ω) as a Fourier series on [0, 1] with
the orthonormal basis {

√
2 sin(jπy)}∞j=1. Hence,

ψ(y)(ω) =
∞∑
j=1

cj(ω)
√

2 sin(jπy), (6.24)

where the series is taken in L2([0, 1]) for each ω ∈ Ω, and where cj(ω) are the
random variables corresponding to the Fourier coefficients of ψ(·)(ω). This
expression (6.24) corresponds to the Karhunen-Loève expansion of the process
ψ. We will restrict to processes for which the random Fourier coefficients
{cj}∞j=1 are independent and absolutely continuous random variables. Thus,
we write

ψ(y)(ω) =
∞∑
j=1

√
νj
√

2 sin(jπy)ξj(ω), (6.25)

where the series converges in L2([0, 1] × Ω), {νj}∞j=1 are nonnegative real
numbers satisfying

∑∞
j=1 νj < ∞ and {ξj}∞j=1 are absolutely continuous ran-

dom variables with zero expectation, unit variance and independent (cj(ω) =√
νjξj(ω), so that ξj standardizes cj(ω)). Notice that the sum is well-defined

in L2([0, 1] × Ω), because for two indexes N > M we have, by Pythagoras’s
Theorem in L2([0, 1]× Ω),∥∥∥∥∥

N∑
j=M+1

√
νj
√

2 sin(jπx) ξj

∥∥∥∥∥
2

L2([0,1]×Ω)

=
N∑

j=M+1

νj ‖
√

2 sin(jπx)‖2L2([0,1])‖ξj‖2L2(Ω)

=
N∑

j=M+1

νj
N,M→∞−→ 0. (6.26)
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We can compute explicitly the random Fourier coefficients An:

An(ω) = 2

∫ 1

0

ψ(y)(ω) sin(nπy) dy

= 2
∞∑
j=1

√
νj
√

2

∫ 1

0

sin(jπy) sin(nπy) dy ξj(ω)

=
√

2
√
νn ξn(ω). (6.27)

The key fact in this computation is that the eigenfunctions of the Sturm-
Liouville problem associated to (6.1) are precisely {

√
2 sin(jπy)}∞j=1. From

(6.27) and our assumptions on {ξj}∞j=1, we derive that A1, A2, . . . are indepen-
dent and absolutely continuous random variables. Using the Random Variable
Transformation technique,

fAn(a) =
1√
2νn

fξn

(
a√
2νn

)
.

If fξ1 is Lipschitz (respectively a.e. continuous and essentially bounded) on R,
then fA1

is Lipschitz (respectively a.e. continuous and essentially bounded)
on R too, and all the hypotheses of Theorem 6.10 (respectively Theorem 6.11)
are fulfilled.

The Lipschitz condition on R is satisfied by the probability density function
of some named distributions:

• Normal(µ, σ2), µ ∈ R and σ2 > 0.

• Beta(a, b), a, b ≥ 2.

• Gamma(a, b), a ≥ 2 and b > 0.

In general, any density with bounded derivative on R satisfies the Lipschitz
condition on R, by the Mean Value Theorem. By contrast, some non-Lipschitz
density functions are the uniform distribution, the exponential distribution,
etc. or any other density with a jump discontinuity at some point of R. How-
ever, non-Lipschitz density functions may be regularized at the point of dis-
continuity so that the Lipschitz assumption is fulfilled and, moreover, the
probabilistic behavior of the regularized density function is the same in prac-
tice as the original non-Lipschitz density.

The a.e. continuity and essential boundedness is satisfied by the probability
density function of more distributions:
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• Normal(µ, σ2), µ ∈ R and σ2 > 0.

• Beta(a, b), a, b ≥ 1.

• Uniform(a, b), a < b.

• Gamma(a, b), a ≥ 1 and b > 0. In particular, Exponential(λ), λ > 0.

• Truncated normal distribution.

We will do examples for initial conditions φ such that the corresponding ψ
is written as (6.25), being ξ1, ξ2, . . . independent and absolutely continuous
random variables, with zero expectation and unit variance, fξ1 Lipschitz on R
and

∑∞
j=1 νj < ∞. In the examples, we will combine A and B deterministic

and absolutely continuous random variables, with ψ being a Gaussian and
non-Gaussian process. Hence, all the examples suppose an improvement of
[16].

The densities fuN (x,t)(u) that approximate fu(x,t)(u) will be computed numer-
ically in an (almost) exact manner, using the software MathematicaR©, con-
cretely, its built-in function NIntegrate. In this way, we will be able to study
the exact difference between two consecutive orders of truncation N and N+1.

Example 6.16 (ψ Gaussian, A and B deterministic) Let

ψ(y)(ω) =
∞∑
j=1

√
2

πj
sin(jπy)ξj(ω)

be a standard Brownian bridge on [0, 1], see [89, Example 5.30], being ξ1, ξ2, . . .
independent and Normal(0, 1) random variables. By (6.11), φ is a Brownian
bridge on [L1, L2] that takes the values A and B at the boundary. We choose
L1 = 0 and L2 = 6, A = −3 and B = 3. The diffusion coefficient is α2 ∼
Uniform(1, 2). Theorem 6.12 applies in this case.

In Figure 6.1, three plots of the path described by φ(x) for three different
outcomes ω are shown.

In Figure 6.2, we approximate the probability density function of the solution
stochastic process u(x, t)(ω) at x = 5 and t = 0.2, using (6.17), for N =
1, 2, 3, 4. Convergence seems to be achieved forN = 3 andN = 4. In Table 6.1,
the infinity norm of the difference of two consecutive orders of approximation
N and N+1, for N = 1, 2, 3, is computed. We can see that the errors decrease
to 0 as N grows, which agrees with our theoretical findings. In Table 6.2,
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Figure 6.1: Paths of the initial condition φ(x) for three different outcomes ω. Example 6.16.

using Theorem 6.14 together with Remark 6.15, the expectation and variance
of u(x, t)(ω) have been approximated, for different orders of truncation.

N ‖fuN (5,0.2) − fuN+1(5,0.2)‖L∞(R)

1 0.330855
2 0.0622449
3 0.00820879

Table 6.1: Difference of two consecutive orders of approximation N and N + 1 given by
(6.17), for N = 1, 2, 3. Example 6.16.

N 1 2 3 4
E[uN(5, 0.2)] 2 2 2 2
V[uN(5, 0.2)] 0.0429981 0.0628341 0.0681679 0.0689422

Table 6.2: Approximations of E[u(5, 0.2)] and V[u(5, 0.2)] for N = 1, 2, 3, 4 constructed by
(6.18) and (6.19), respectively, being fuN (x,t) given by (6.17). Example 6.16.
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Figure 6.2: Approximation (6.17) for N = 1, 2, 3, 4 at (x, t) = (5, 0.2). Example 6.16.

Example 6.17 (ψ non-Gaussian, A and B deterministic) Let

ψ(y)(ω) =
∞∑
j=1

√
2

j
3
2

√
1 + log j

sin(jπy)ξj(ω),

where ξ1, ξ2, . . . are independent and identically distributed random variables
with density function

fξ1(ξ) =

√
2

π(1 + ξ4)
, −∞ < ξ <∞.

It is easy to check that this is indeed a density function, with zero expecta-
tion and unit variance. Thereby, ψ is a non-Gaussian stochastic process on
[0, 1] (if it were Gaussian, then ξ1, ξ2, . . . would be normally distributed, see
[89, Th. 5.28]). The sum defining ψ is well-defined in L2([0, 1] × Ω), because∑∞

j=1 1/(j3(1+log j)) <∞ (see (6.26)). By (6.11), we can simulate the sample
paths of φ(x) on [L1, L2]. The data chosen are L1 = −8, L2 = 2π+ 1, A = −1
and B = 2. The distribution for α2 is Uniform(1, 2). Theorem 6.12 guarantees
the convergence of the approximating sequence (6.17).

In Figure 6.3, three plots of the path described by φ(x) for three different
outcomes ω are presented.
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Figure 6.3: Paths of the initial condition φ(x) for three different outcomes ω. Example 6.17.

In Figure 6.4, we approximate the probability density function of the solu-
tion stochastic process u(x, t)(ω) at x = 1 and t = 0.1, using (6.17), for
N = 1, 2, 3, 4. In order to assess convergence analytically, in Table 6.3, the
maximum of the difference of two consecutive orders of approximation N and
N + 1 given by (6.17), for N = 1, 2, 3, is computed. The errors decrease to
0 as N grows, which goes in the direction of our theoretical results. In Ta-
ble 6.4, the expectation and variance of u(x, t)(ω) have been approximated,
using Theorem 6.14 and Remark 6.15 together with expressions (6.18) and
(6.19), respectively.

N ‖fuN (1,0.1) − fuN+1(1,0.1)‖L∞(R)

1 0.00631990
2 0.00214919
3 0.00128318

Table 6.3: Difference of two consecutive orders of approximation N and N + 1 given by
(6.17), for N = 1, 2, 3. Example 6.17.
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Figure 6.4: Approximation (6.17) for N = 1, 2, 3, 4 at (x, t) = (1, 0.1). Example 6.17.

N 1 2 3 4
E[uN(1, 0.1)] 1.54545 1.54497 1.54495 1.54494
V[uN(1, 0.1)] 1.51182 1.55304 1.56661 1.57496

Table 6.4: Approximations of E[u(1, 0.1)] and V[u(1, 0.1)] for N = 1, 2, 3, 4 constructed by
(6.18) and (6.19), respectively, being fuN (x,t) given by (6.17). Example 6.17.
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Example 6.18 (ψ Gaussian, A and B random) Let

ψ(y)(ω) =
∞∑
j=1

√
2

πj
sin(jπy)ξj(ω)

be a standard Brownian bridge on [0, 1], as in Example 6.16. The data chosen
are L1 = 0, L2 = 6 and α2 ∼ Uniform(1, 2), as in Example 6.16, but now the
boundary conditions A and B are random: A follows a triangular distribution
with ends −5 and −2 and mode −3, whereas B is an exponentially distributed
random variable with mean 2 and truncated to [3, 5]. The modes of A and
B coincide with the deterministic boundary conditions in Example 6.16, so
similar results for the density function could occur.

In Figure 6.5, three plots of the path described by φ(x) for three different
outcomes ω are presented.
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ϕ(x)

1 2 3 4 5 6
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4
ϕ(x)

1 2 3 4 5 6
x

-3

-2

-1

1

2

3

4

ϕ(x)

Figure 6.5: Paths of the initial condition φ(x) for three different outcomes ω. Example 6.18.

In Figure 6.6, we approximate the probability density function of the solution
stochastic process u(x, t)(ω) at x = 5 and t = 0.2, using (6.15), for N =
1, 2, 3, 4. Compare the plots with those of Example 6.16, where the boundary
conditions were deterministic with constant value the mode of A and B. In
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Table 6.5, the errors are analyzed. In Table 6.6, both E[u(x, t)] and V[u(x, t)]
are approximated, according to Theorem 6.14.
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Figure 6.6: Approximation (6.15) for N = 1, 2, 3, 4 at (x, t) = (5, 0.2). Example 6.18.

N ‖fuN (5,0.2) − fuN+1(5,0.2)‖L∞(R)

1 0.0390501
2 0.00870084
3 0.00119532

Table 6.5: Difference of two consecutive orders of approximation N and N + 1 given by
(6.15), for N = 1, 2, 3. Example 6.18.

N 1 2 3 4
E[uN(5, 0.2)] 2.64115 2.64115 2.64115 2.64115
V[uN(5, 0.2)] 0.274152 0.293988 0.299323 0.300101

Table 6.6: Approximations of E[u(5, 0.2)] and V[u(5, 0.2)] for N = 1, 2, 3, 4 constructed by
(6.18) and (6.19), respectively, being fuN (x,t) given by (6.15). Example 6.18.

Example 6.19 (ψ non-Gaussian, A and B random) Let

ψ(y)(ω) =
∞∑
j=1

√
2

j
3
2

√
1 + log j

sin(jπy)ξj(ω),
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be the same process as in Example 6.17. The interval where the heat equation
is defined has endpoints L1 = −8 and L2 = 2π+1, and α2 ∼ Uniform(1, 2), as
in Example 6.17. But now the boundary conditions A and B are random (with
no constant values for the modes of A and B): A ∼ Uniform(−1.5,−0.5) and
B ∼ Normal(2, 1). Notice that E[A] and E[B] are the deterministic bound-
ary conditions of Example 6.17, so the approximated density functions may
resemble those from Example 6.17.

In Figure 6.7, three plots of the path described by φ(x) for three different
outcomes ω are presented.
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Figure 6.7: Paths of the initial condition φ(x) for three different outcomes ω. Example 6.19.

In Figure 6.8, we approximate the probability density function of the solu-
tion stochastic process u(x, t)(ω) at x = 1 and t = 0.1, using (6.15), for
N = 1, 2, 3, 4. These plots are very similar to those from Example 6.17. This
occurs because the expectation of our random boundary conditions A and B is
equal to the deterministic boundary conditions of Example 6.17. In Table 6.7,
we present the errors between two consecutive orders of approximation. The
expectation and variance of the solution process u(x, t)(ω) have been approx-
imated in Table 6.8, based on Theorem 6.14.
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Figure 6.8: Approximation (6.15) for N = 1, 2, 3, 4 at (x, t) = (1, 0.1). Example 6.19.

N ‖fuN (1,0.1) − fuN+1(1,0.1)‖L∞(R)

1 0.00303628
2 0.00111420
3 0.000685738

Table 6.7: Difference of two consecutive orders of approximation N and N + 1 given by
(6.15), for N = 1, 2, 3. Example 6.19.

N 1 2 3 4
E[uN(1, 0.1)] 0.766541 0.766546 0.766548 0.766545
V[uN(1, 0.1)] 1.86628 1.90366 1.91720 1.92552

Table 6.8: Approximations of E[u(1, 0.1)] and V[u(1, 0.1)] for N = 1, 2, 3, 4 constructed by
(6.18) and (6.19), respectively, being fuN (x,t) given by (6.15). Example 6.19.
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6.7 Conclusions

In this chapter we have determined approximations of the probability density
function of the solution stochastic process to the randomized heat equation
defined on a general bounded interval [L1, L2] with non-homogeneous Dirichlet
boundary conditions. We have reviewed results in the existing literature that
establish conditions under which the probability density of the solution pro-
cess to the random heat equation defined on [0, 1] with homogeneous Dirichlet
boundary conditions can be approximated. By relating the solutions of the
heat equation with homogeneous and non-homogeneous boundary conditions,
and using the Random Variable Transformation technique, we have been able
to set hypotheses on the random diffusion coefficient, on the random boundary
conditions and on the initial condition process, so that the probability density
function of the solution can be approximated uniformly or pointwise (Theo-
rem 6.10, Theorem 6.11, Theorem 6.12 and Theorem 6.13). We have obtained
results on the approximation of the expectation and variance of the solution
(Theorem 6.14 and Remark 6.15).

Our theoretical findings have been applied to particular random heat equa-
tion problems on [L1, L2] with non-homogeneous boundary conditions. We
have dealt with random diffusion coefficients, with deterministic and random
boundary conditions, and with initial condition processes having a certain
Karhunen-Loève expansion, which may be Gaussian or may not. It has been
evinced numerically that the convergence to the density function of the solu-
tion is achieved quickly.
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Chapter 7

Probability density function
approximation to the random
heat PDE solution via a finite

difference scheme

We study the random heat partial differential equation on a bounded
domain assuming that the diffusion coefficient and the Dirichlet boundary
conditions are random variables, and the initial condition is a stochas-
tic process. Under general conditions, this stochastic system possesses
a unique solution stochastic process in the almost sure and mean square
senses. To quantify the uncertainty for this solution process, the com-
putation of the probability density function is a major goal. By using a
finite difference scheme, we approximate the solution stochastic process at
each point by a sequence of random variables, whose probability density
functions are computable, i.e., we construct a sequence of approximating
density functions. We show numerical examples that demonstrate the ap-
plicability of our approach and fast convergence.
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7.1 Introduction and motivation

Heat transfer modeling using partial differential equations has been extensively
studied in the literature for many years, and it is currently an active field un-
der research [63, 116]. Information such as the diffusion coefficient, the initial
distribution of temperature, etc., appears in the mathematical formulation of
this class of problems. In practice, this key information needs to be established
via measurements, which often involve uncertainties from measurement errors,
material impurities, etc. These facts have motivated the mathematical model-
ing of heat transfer by using random partial differential equations. This kind
of differential equations are those in which input data (initial and boundary
conditions, forcing term and coefficients) are conveniently treated as random
variables and stochastic processes. As a consequence, the solution of a random
partial differential equation is not a classical function but a stochastic process.

A powerful approach to deal with random partial differential equations is the
so-called Lp-random calculus, and in particular, the mean square random cal-
culus corresponding to p = 2, [125]. Convergence in L2-random calculus is
usually referred to as mean square (hereafter m.s.) convergence, [125, Ch. 4].
This approach has two key properties. The first one is the formal represen-
tation of the solution stochastic process, which coincides with the one of the
deterministic case, i.e., when the random inputs are deterministic quantities.
This permits retaining both the physical interpretation and the deterministic
results via the random solution. The second one is a distinctive property of
m.s. convergence regarding to other types of stochastic convergences (almost
surely, hereafter a.s., in probability, and in distribution), which is crucial to
compute reliable approximations of the mean and the variance of the solution
stochastic process u(x, t) (see [125, Th. 4.3.1]). If uM(x, t) is a sequence of
random variables which is m.s. convergent to u(x, t) as M → ∞ for (x, t)

fixed, i.e., uM(x, t)
m.s.−−−−→
M→∞

u(x, t), then

E[uM(x, t)] −−−−→
M→∞

E[u(x, t)] and V[uM(x, t)] −−−−→
M→∞

V[u(x, t)].

In the context of heat transfer modeling via random partial differential equa-
tions, most of the contributions have focused on the construction of approxi-
mations of the solution stochastic process, and in the computation of its mean
and variance as well. The calculation of these statistical moments is per-
formed by taking advantage of the aforementioned key property of the m.s.
convergence. Often, the methods and techniques that have been proposed to
deal with random heat equations, are extensions of their deterministic coun-
terpart. Further, some works are based upon analytical techniques [26, 47]
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while others rely on numerical methods [41, 48]. Thus, the heat equation on
a bounded domain is studied by using random Fourier series, and assuming
that the diffusion coefficient is a random variable, the initial condition is a
stochastic process, and the boundary conditions are assumed to be null [47].
In another study, the analysis is performed on an unbounded domain, and it is
assumed that the initial condition is given by a stochastic process [26]. Here,
the key mathematical tool to conduct the study is the random Fourier integral
transform. It has been also proposed a m.s. convergent numerical scheme to
approximate the solution of random heat equation whose diffusion coefficient
is a spatial-dependent stochastic process. The initial condition is described
by a deterministic function and the boundary conditions are null [48]. These
results were extended for a general class of random diffusion equations [41]. As
it has been indicated, in all those works approximations of the mean and the
variance/standard deviation functions of the solution stochastic process are
given. The computation of exact or approximate probability density function
to random partial differential equations has been tackled in few contributions,
since the majority of the studies are addressed to construct approximations of
the mean and the variance of the solution stochastic process. Some exceptions
include [57, 118, 122], for example.

In the present work, we will deal with the following heat partial differential
equation on the spatial domain [0, 1]:

ut = αuxx, x ∈ (0, 1), t ∈ (0, T ),

u(0, t) = A, u(1, t) = B, t ∈ [0, T ],

u(x, 0) = φ(x), x ∈ [0, 1].

(7.1)

For the sake of completeness, we recall that in a deterministic setting, the
diffusion coefficient α > 0, and the boundary conditionsA andB are constants,
and the initial condition φ(x) is a deterministic function. Then, its solution is
a bivariate function u(x, t). Sufficient conditions for the existence of a smooth
classical solution u(x, t) are given from Theorem 3.1 in ref. [16].

Proposition 7.1 ([16, Th. 3.1]) If φ is continuous on [0, 1], piecewise C1 on
[0, 1], φ(0) = A and φ(1) = B, then u(x, t) is continuous on [0, 1]× [0,∞), is
of class C2,1 on (0, 1)× (0,∞) and is a classical solution of (7.1).

Moreover, under the conditions of Proposition 7.1, the solution to (7.1) is given
by

u(x, t) = v(x, t) + xB + (1− x)A,
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where

v(x, t) =
∞∑
k=1

Ake
−k2π2αt sin(kπx),

Ak = 2

∫ 1

0

ψ(y) sin(kπy) dy, ψ(y) = φ(y)− yB − (1− y)A.

This solution results from applying the classical method of separation of vari-
ables to (7.1) with homogeneous boundary conditions (case A = B = 0), and
then doing a change of variables to adapt to the case A 6= 0 or B 6= 0.

Motivated by the arguments exhibited at the beginning of this section, here-
inafter we will consider the randomization of the above heat diffusion problem
(7.1). We then assume that the values of the input data depend on an experi-
ment ω. The set of all experiments, called sample space and denoted by Ω, is
equipped with a σ-algebra of events F , and a probability measure P to form a
complete probability space (Ω,F ,P). The diffusion coefficient α = α(ω) and
the boundary conditions A = A(ω) and B = B(ω) are random variables, and
the initial condition φ(x) = φ(x)(ω) is assumed to be a stochastic process,
being all of them defined in the probability space (Ω,F ,P). The term u is a
stochastic process u(x, t) = u(x, t)(ω) that solves the random heat diffusion
problem (7.1) in some probabilistic sense. Theorem 3.2 in ref. [16] proves that
under square integrability of φ, A and B, there is a unique solution stochastic
process in the a.s. and m.s. senses [125]. Notice that, in this probabilistic
scenario, we do not require φ(0) = A and φ(1) = B.

Proposition 7.2 ([16, Th. 3.2]) The following statements hold:

i) Almost sure (a.s.) solution: Suppose that φ ∈ L2([0, 1] × Ω) and A,B ∈
L2(Ω). Then

ut(x, t)(ω) = α2(ω)uxx(x, t)(ω)

a.s. for x ∈ (0, 1) and t > 0, where the derivatives are understood in the
classical sense; u(0, t)(ω) = A(ω) and u(1, t)(ω) = B(ω) a.s. for t ≥ 0;
and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e. x ∈ [0, 1]. Moreover, the process
u(x, t)(ω) satisfying these conditions is unique.

ii) Mean square (m.s.) solution: Suppose that φ ∈ L2([0, 1] × Ω), A,B ∈
L2(Ω) and 0 < a ≤ α2(ω) ≤ b, a.e. ω ∈ Ω, for certain a, b ∈ R. Then

ut(x, t)(ω) = α2(ω)uxx(x, t)(ω)

a.s. for x ∈ (0, 1) and t > 0, where the derivatives are understood in
the m.s. sense; u(0, t)(ω) = A(ω) and u(1, t)(ω) = B(ω) a.s. for t ≥ 0;
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and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e. x ∈ [0, 1]. Moreover, the process
u(x, t)(ω) satisfying these conditions is unique.

In addition, under the assumptions of Proposition 7.2, the solution to (7.1) is
given by

u(x, t)(ω) = v(x, t)(ω) + xB(ω) + (1− x)A(ω), (7.2)

where

v(x, t)(ω) =
∞∑
k=1

Ak(ω)e−k
2π2α(ω)t sin(kπx), (7.3)

Ak(ω) = 2

∫ 1

0

ψ(y)(ω) sin(kπy) dy, ψ(y)(ω) = φ(y)(ω)−yB(ω)−(1−y)A(ω).

(7.4)

The integral that defines Ak(ω) is understood in the sample path sense [125,
Appendix A]. The convergence of the last series is considered a.s. or in L2(Ω),
depending on whether we want u(x, t) to be an a.s. or a m.s. solution, respec-
tively.

As we are interested in computational uncertainty quantification, the existence
of a solution in a probabilistic sense will not be a major concern. In contrast,
our main goal is to construct reliable approximations of the probability den-
sity function to the solution stochastic process, u(x, t), of the random heat
diffusion problem (7.1). To achieve this goal, we take advantage of a ran-
dom numerical scheme together with a key probabilistic result that will be
introduced later, to construct a sequence of approximating density functions.
Afterwards, the proposed method will be presented in an algorithm. We will
present numerical experiments aimed to show the capability of the proposed to
approach to quantify uncertainty in the random heat diffusion problem (7.1)
via the computation of approximations to its probability density function.

7.2 Method

Consider the backward Euler method to formally approximate the solution
process u(x, t), [132]. We divide the spatial domain [0, 1] into equidistant
points as {x0, . . . , xM+1}, where xi = ih and h = 1/(M + 1). We discretize
the time domain [0, T ] as {t0, . . . , tn}, where tn = nk and k = T/N . The finite
difference scheme corresponding to the backward Euler method is expressed
via the following difference equation:

uN,Mn+1,i = uN,Mn,i + ν(uN,Mn+1,i+1 − 2uN,Mn+1,i + uN,Mn+1,i−1),
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where ν = αk/h2 is a.s. positive. The term uN,Mn,i approximates u(xi, tn). In
matrix form,

uN,Mn+1 = (IM − νL)−1(uN,Mn + νc), (7.5)

where uN,Mn = (uN,Mn,1 , . . . , uN,Mn,M )>, c = (A, 0, . . . , 0, B)> (> denotes the trans-
pose operator for vectors and matrices), IM is the M ×M identity matrix
and

L =


−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2


is also an M ×M matrix.

This numerical method is stable for all ν. The random difference equation (7.5)
approximates the partial differential equation (7.1) with order O(k) +O(h2).
We will take N = NM = (M+1)2, so that the local truncation error is given by
O(h2). Therefore, we may drop the superscript N from the random difference
equation (7.5):

uMn+1 = (IM − νL)−1(uMn + νc). (7.6)

This linear recurrence (7.6) has an explicit solution:

uMn = AnφM +

(
n−1∑
k=0

Ak

)
b, (7.7)

where φM = (φ(x1), . . . , φ(xM))>, A = (IM − νL)−1 and b = ν(IM − νL)−1c,
and from (7.7), we can compute explicitly each component uMn,i:

uMn,i = (AnφM)i +

(
n−1∑
k=0

Ak

)
(i, :)b

= (AnφM)i + ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)A+ ν

(
n−1∑
k=0

Ak

)
(i, :)A(:,M)B,

(7.8)

where A(i, :) denotes the i-th row of A and A(:, j) refers to the j-th column
of A.

From (7.8), we will derive the probability distribution of uMn,i on account of

the distributions of A, B and φM . We will distinguish two scenarios:
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• Case 1: A is an absolutely continuous random variable which is indepen-
dent of the random vector (α,B,φM).

• Case 2: B is absolutely continuous and is independent of (α,A,φM).

Since the analysis of Case 2 is analogous to the one of Case 1, we will detail
the study corresponding to Case 1, and for the Case 2 we summarize the main
conclusions.

The following lemma allows computing the probability density function of
uMn,i. The result is an extension of the Random Variable Transformation tech-
nique (which has been extensively used [46, 52, 72]) when the transformation
mapping consists of sums and products. Regarding notation, the probability
density function of a random variable/vector X will be denoted as fX here-
after, and its probability law will be written as PX = P ◦X−1.

Lemma 7.3 Let U be an absolutely continuous random variable, independent
of the random vector (Z1, Z2), where Z1 6= 0 a.s. Then Z1U +Z2 is absolutely
continuous, with density function fZ1U+Z2

(z) = E[fU((z − Z2)/Z1)/|Z1|].

Proof. Let C be a Borel set in R. Then

P(Z1U + Z2 ∈ C) =

∫
R2

P(Z1U + Z2 ∈ C|Z1 = z1, Z2 = z2)P(Z1,Z2)(dz1, dz2)

=

∫
R2

P(z1U + z2 ∈ C)P(Z1,Z2)(dz1, dz2) =

∫
R2

∫
(C−z2)/z1

fU (u) duP(Z1,Z2)(dz1,dz2)

=

∫
R2

∫
C
fU

(
u− z2

z1

)
1

|z1|
duP(Z1,Z2)(dz1, dz2)

=

∫
C

∫
R2

fU

(
u− z2

z1

)
1

|z1|
P(Z1,Z2)(dz1,dz2) du =

∫
C
E
[
fU

(
u− z2

z1

)
1

|z1|

]
du.

�

By using this key lemma, we are able to compute, for the Case 1, the proba-
bility density function of uMn,i by taking into account the representation given
in (7.8). Take

U =A,

Z1 =ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1),

Z2 =(AnφM)i + ν

(
n−1∑
k=0

Ak

)
(i, :)A(:,M)B.
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Let us justify that Z1 6= 0 a.s. The matrix IM − νL is an M-matrix, in the
sense of ref. [99, p.10]: IM − νL has its offdiagonal entries nonpositive and,
for the vector r = (sin(πj/(M + 1))Mj=1 with positive components, the image
(IM − νL)r is written as λr, where λ > 0, so that (IM − νL)r has positive
components. Moreover, IM − νL is an irreducible matrix, because its entries
on the superdiagonal and on the subdiagonal are nonzero. By Theorem 2.7 in
ref. [5], the entries of A = (IM − νL)−1 are positive. Thus, Z1 > 0.

The assumption of independence between A and (α,B,φM) implies the inde-
pendence between U and (Z1, Z2), by [65, p. 93]. By applying Lemma 7.3, we
obtain

fuMn,i
(u) =

E

fA
u− (AnφM )i − ν

(
n−1∑
k=0

Ak

)
(i, :)A(:,M)B

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)

 1

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)

 . (7.9)

For the Case 2, that is, if B is absolutely continuous and is independent of
(α,A,φM), proceeding analogously we derive an alternative density function
for uMn,i:

fuMn,i
(u) =

E

fB
u− (AnφM )i − ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)A

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:,M)

 1

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:,M)

 .

We approximate the density function of u(x, t) as follows. Let x0 ∈ (0, 1) and
t0 ∈ (0, T ). Consider a sequence of points in both partitions, {iM/(M+1)}∞M=1

and {nMT/NM}∞M=1, where iM ∈ {1, . . . ,M}, nM ∈ {0, . . . , NM} and NM =
(M + 1)2, such that iM/(M + 1) → x0 and nMT/NM → t0 as M → ∞. For
example, take iM = bx0(M + 1)c and nM = bt0NM/T c, where b·c stands for
the integer part. Then, the density function of u(x0, t0) is

fu(x0,t0)(u) = lim
M→∞

fuMnM,iM
(u). (7.10)

At this point, we would like to remark that other finite difference schemes
could be possible: forward Euler method, Crank-Nicholson method, etc. Our
choice for the backward Euler method is due to its simplicity and being stable
for all ν.
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The case in which A and B are not absolutely continuous remains pending.
One could think of performing the same analysis as before but isolating φ(xj)
in (7.8), instead of A or B. In such a case, one assumes that φ(xj) is absolutely
continuous and independent of (α,A,B, φ(x1), . . . , φ(xj−1), φ(xj+1), . . . , φ(xM)).
To achieve this independence, one may require φ(y1), . . . φ(ym) to be indepen-
dent, for every y1, . . . , ym ∈ [0, 1], m ≥ 1. A process φ of this type exists
by Kolmogorov’s Extension Theorem [8, Th. 36.2, p. 486]. However, by [92,
Example 1.2.5, p. 10], this process φ is not jointly measurable on [0, 1]×Ω, so
that φ cannot belong to L2([0, 1]×Ω). Hence, Proposition 7.2 on the existence
of solution does not apply.

7.3 Computational aspects and algorithm

In this section we comment on computational aspects regarding the imple-
mentation of the probability density function (7.9).

The computation of the powers Ak is especially demanding. Thus, it is better
to consider the spectral decomposition of A. The set of eigenvalues, µl, and
eigenvectors, sl, of A is well-known [123]:

µl =
1

2ν(1− cos(lπh)) + 1
, sl = (sin(lπjh))Mj=1, (7.11)

for l = 1, . . . ,M . Let D be the diagonal matrix with Dll = µl, and let
P = [s1 . . . sM ] be the matrix whose column vectors are s1, . . . , sM . Define
R =

√
2/(M + 1) P. Then R is an orthogonal M × M matrix, and the

decomposition A = RDR> holds. Hence, the powers of A can be computed
as Ak = RDkR>, which reduces notably the computational load.

On the other hand, the theoretical expression of the expectation from (7.9) is
the following:

fuMn,i(u) =

∫
RM+2

fA

u− (AnφM)i − ν
(
n−1∑
k=0

Ak

)
(i, :)A(:,M)B

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)


× 1

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)

P(α,B,φM )(dα,dB, dφ
M).

However, from a practical point of view, it is better to turn to Monte Carlo
simulation to address the computation of (7.9), [60]. Let α(j), B(j) and φM(j),
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j = 1, . . . ,m, be m realizations of the random variables/vectors α, B and φM .
Then we approximate (7.9) as

fuMn,i(u) ≈ 1

m

m∑
j=1

fA

u− (An
(j)φ

M
(j))i − ν(j)

(
n−1∑
k=0

Ak
(j)

)
(i, :)A(j)(:,M)B

ν(j)

(
n−1∑
k=0

Ak
(j)

)
(i, :)A(j)(:, 1)


× 1

ν(j)

(
n−1∑
k=0

Ak
(j)

)
(i, :)A(j)(:, 1)

. (7.12)

When m→∞, this approximation becomes an a.s. limit by the Law of Large
Numbers.

Based on this proposed computational method, we provide Algorithm 1 for
uncertainty quantification for the solution stochastic process u(x, t) of the
random heat partial differential equation (7.1).

Once we obtain F (u) in Algorithm 1, we can perform uncertainty quantifica-
tion with the density function F (u), because F (u) ≈ fu(x0,t0)(u). For example,
the expectation and variance of u(x0, t0) may be approximated as

E[u(x0, t0)] ≈
∫
R
uF (u) du, V[u(x0, t0)] ≈

∫
R
u2F (u) du−

(∫
R
uF (u) du

)2

.

(7.13)

In the next section, we will illustrate the use of the proposed Algorithm 1 with
two examples.

7.4 Numerical examples

Here, we show two numerical examples for (7.1) by considering a variety of
probability distributions for each random input. Thus, we will demostrate
the capability of the proposed approach to quantify uncertainty in the ran-
dom diffusion model (7.1). Take T = 3, so that the domain of the partial
differential equation becomes (0, 1) × (0, 3), and let u(x, t) be the solution
stochastic process to (7.1), whose existence is guaranteed by [16, Th. 3.2]. We
will approximate its probability density function at a point (x0, t0) by utilizing
(7.10). Consider iM = bx0(M + 1)c, nM = bt0NM/T c. These points satisfy
iM/(M + 1)→ x0 in the partitions, and nMT/NM → t0 as M →∞.
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7.4 Numerical examples

Algorithm 1 Approximation for the density function of the solution u(x0, t0).

1: procedure F(u(x0, t0))
2: x0

3: t0
4: T
5: A . probability distribution
6: B . probability distribution
7: α . probability distribution
8: φ(x) . stochastic process
9: M

10: NM = (M + 1)2

11: i = bx0(M + 1)c
12: n = bt0NM/T c
13: D = diag(µ1, . . . , µM), . where the entry µl is defined by (7.11)
14: R =

√
2/(M + 1) [s1 . . . sM ] . where the vector sl is defined by (7.11)

15: A = RDR>

16: An = RDnR>

17:

n−1∑
k=0

Ak = R(
n−1∑
k=0

Dk)R>

18:

F (α,B,φM) =fA

u− (AnφM)i − ν
(
n−1∑
k=0

Ak

)
(i, :)A(:,M)B

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)


× 1

ν

(
n−1∑
k=0

Ak

)
(i, :)A(:, 1)

19: for j = 1 to m do . obtain m realizations for α,B, φM

20: α[j]
21: B[j]
22: φM [j]
23: end for
24: F (u) = 1

m

∑m
j=1 F (α[j], B[j],φM [j]) . compute the sample mean

25: end procedure
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We will set particular distributions for α, A, B and φ. It will be assumed that
A is absolutely continuous and independent of (α,B, φ), so that Lemma 7.3
is applicable. The expectation (7.9) will be approximated via Monte Carlo
simulations, with m = 20, 000 realizations of each random variable. This m
value has been checked to be enough in order to ensure a good approximation
of (7.9).

In both examples, we observe fast convergence of (7.9) as M increases, al-
though the error may not be monotonically decreasing.

To validate our results, we compare our computations of the expectation and
variance (7.13) to the method proposed in ref. [47]. Suppose that α, A, B and
φ are independent. The idea in ref. [47] is as follows: from (7.2)–(7.3)–(7.4),
the expectation of u(x, t) may be approximated as

E[u(x, t)] = E[v(x, t)] + xE[B] + (1− x)E[A], (7.14)

being

E[v(x, t)] ≈
K∑
k=1

E[Ak]E[e−k
2π2αt] sin(kπx) (7.15)

and

E[Ak] = 2

∫ 1

0

E[ψ(y)] sin(kπy) dy, E[ψ(y)] = E[φ(y)]− yE[B]− (1− y)E[A],

(7.16)
where the order of truncation K must be sufficiently large to achieve the
desired accuracy. Notice that the independence hypothesis between α and φ
has been used in (7.15). Concerning the variance of u(x, t), we compute

V[u(x, t)] = V[v(x, t)] + x2V[B] + (1− x)2V[A], (7.17)

V[v(x, t)] ≈
K∑

k1,k2=1

Cov[Ak1
, Ak2

]E[e−(k2
1+k2

2)π2αt] sin(k1πx) sin(k2πx)

+
K∑

k1,k2=1

E[Ak1
]E[Ak2

]Cov[e−k
2
1π

2αt, e−k
2
2π

2αt] sin(k1πx) sin(k2πx),

(7.18)

Cov[Ak1
, Ak2

] = 4

∫ 1

0

∫ 1

0

Cov[ψ(y1), ψ(y2)] sin(k1πy1) sin(k2πy2) dy1 dy2,

(7.19)
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Cov[ψ(y1), ψ(y2)] = Cov[φ(y1), φ(y2)]+y1y2V[B]+(1−y1)(1−y2)V[A], (7.20)

for a large order of truncation K. The independence assumptions have been
used in (7.17), (7.18) and (7.20). The approximations obtained with these
expressions from [47] must be similar to the those calculated with our density
functions.

Example 7.4 Let A ∼ Gamma(3, 1), B = −1, α ∼ Triangular(1, 2) and

φ(x) = D cosx+ esin(Ex2), where D ∼ Binomial(20, 0.2), E ∼ Uniform(−1, 0).
By Proposition 7.2, there exists a unique solution stochastic process u(x, t),
both in the a.s. and m.s. senses, which is given by (7.2)–(7.3)–(7.4). It
is assumed that A, B, α, D and E are independent random variables. Let
(x0, t0) = (0.25, 2.4). In Figure 7.1, we plot the approximations (7.9) for M =
9, 11, 13, 15, 17, 19, 21. We observe non-monotone convergence. Moreover, the
density function obtained for M = 19 coincides visually with the density
function of limt→∞ u(x, t) = xB + (1 − x)A = −0.25 + 0.75A, which is given
by

fA

(
x+ 0.25

0.75

)
1

0.75
. (7.21)

This is because of limt→∞ u(x, t) = xB + (1− x)A holds exponentially in t, so
for t = 2.4 we have u(0.25, 2.4) ≈ u(0.25,∞) = −0.25 + 0.75A.

2 4 6 8 10
u

0.05

0.10

0.15

0.20

0.25

0.30

0.35

f

M=21

M=19

M=17

M=15

M=13

M=11

M=9

Density of u(0.25,∞)

Figure 7.1: Example 7.4: plot of fuMnM,iM

(u) given by (7.9), and the asymptotic density

(7.21).

Table 7.1 shows the approximations for E[u(x0, t0)] and V[u(x0, t0)]. Table 7.2
presents these computations by means of the procedure in ref. [47] (see (7.14)–
(7.20)). The agreement of the results demonstrates the validity of the proba-
bility density functions plotted in Figure 7.1. Moreover, notice that the results
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coincide with the asymptotic limit E[u(0.25,∞)] = E[−0.25 + 0.75A] = 2 and
V[u(0.25,∞)] = V[−0.25 + 0.75A] = 1.6875.

M 9 11 13 15 17 19 21
E[uMnM ,iM ] 2.199 2 2.142 2 2.110 2 2.090
V[uMnM ,iM ] 1.912 1.688 1.845 1.688 1.809 1.688 1.786

Table 7.1: Example 7.4: approximations for E[u(x0, t0)] and V[u(x0, t0)] obtained with
(7.13).

K 1 2 3 4 5
E[u(x0, t0)] 2 2 2 2 2
V[u(x0, t0)] 1.688 1.688 1.688 1.688 1.688

Table 7.2: Example 7.4: approximations for E[u(x0, t0)] and V[u(x0, t0)] as in ref. [47] (see
(7.14)–(7.20)).

Thus, the best choice for uncertainty quantification for u(0.25, 2.4) is M = 19,
or even the density function of u(0.25,∞) given by (7.21).

Example 7.5 Let us consider α ∼ Triangular(1, 2), A ∼ Normal(−1, 1), B =
−1 and

φ(x) =
∞∑
j=1

√
2

j3/2
√

1 + log j
sin(jπx)ξj, (7.22)

where ξ1, ξ2, . . . are independent and identically distributed random variables,
with density function

fξ1(ξ) =

√
2

π(1 + ξ4)
, ξ ∈ R.

Since ξ1, ξ2, . . . have zero expectation and unit variance, and {
√

2 sin(jπx)}∞j=1

is an orthonormal basis of L2([0, 1]), the series in (7.22) corresponds to a
Karhunen-Loève expansion [89, Th. 5.28]. The convergence of the series is
understood in L2([0, 1] × Ω). Proposition 7.2 tells us that there is a unique
solution stochastic process u(x, t), both in the a.s. and m.s. senses, which is
given by (7.2)–(7.3)–(7.4).

In order to sample from φ(x), we need to truncate the series in (7.22). Trun-
cating up to order N = 5, we are accounting for more than 99.5% of the total

146



7.4 Numerical examples

variance of φ(x),
∫ 1

0
V[φ(x)] dx =

∑∞
j=1 1/(j3(1 + log j)), [89, p. 204]. Thus,

we will use

φ(x) =
5∑
j=1

√
2

j3/2
√

1 + log j
sin(jπx)ξj,

It is assumed that A, B, α, ξ1, . . . , ξ5 are independent random variables. Let
(x0, t0) = (0.25, 0.3). Figure 7.2 shows the approximations (7.9) for values of
M = 9, 11, 13, 15, 17, 19, 21, 23. Convergence is achieved, so that the density
function of u(x0, t0) has been accurately approximated.

-4 -2 2
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Figure 7.2: Example 7.5: plot of fuMnM,iM

(u) given by (7.9).

Table 7.3 shows the approximations for E[u(x0, t0)] and V[u(x0, t0)] obtained
with (7.13). Notice that the convergence is non-monotone. We compare these
estimates to the procedure in ref. [47] (see (7.14)–(7.20)), whose values are
shown in Table 7.4. Again, the agreement of the results demonstrates the
validity of the probability density functions plotted in Figure 7.2.

M 9 11 13 15 17 19 21 23

E[uMnM ,iM
] −0.979 −0.977 −0.981 −0.981 −0.984 −0.984 −0.986 −0.985

V[uMnM ,iM
] 0.624 0.546 0.603 0.549 0.599 0.551 0.586 0.552

Table 7.3: Example 7.5: approximations for E[u(x0, t0)] and V[u(x0, t0)] obtained with
(7.13).

Thereby, the best truncation order for uncertainty quantification for u(0.25, 0.3)
is M = 23.
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K 1 2 3 4 5
E[u(x0, t0)] −0.987 −0.987 −0.987 −0.987 −0.987
V[u(x0, t0)] 0.563 0.563 0.563 0.563 0.563

Table 7.4: Example 7.5: approximations for E[u(x0, t0)] and V[u(x0, t0)] as in ref. [47] (see
(7.14)–(7.20)).

7.5 Conclusions

In this chapter, we have proposed a computational method to quantify the
uncertainty of the random heat partial differential equation on a bounded
domain via the approximation of its probability density function. The method
is based on constructing a sequence of approximating density functions via a
finite difference scheme. The numerical examples show that the convergence is
achieved quickly, although with non-monotone decreasing error. Our approach
improves the published contributions on heat transfer stochastic modeling, in
which the approximation of the expectation and variance was the main goal.
Moreover, our method could be applied to other relevant random ordinary
and partial differential equations, in which the computation of the probability
density function is a major goal.
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Chapter 8

Improvement of random
differential models of growth
of anaerobic photosynthetic

bacteria by combining
Bayesian inference and gPC

The time evolution of microorganisms, such as bacteria, is of great
interest in biology. In the article by D. Stanescu et al. [Electronic Trans-
actions on Numerical Analysis, 34, 44–58 (2009)], a logistic model was
proposed to model the growth of anaerobic photosynthetic bacteria. In the
laboratory experiment, actual data for two species of bacteria were consid-
ered: R. capsulatus and C. vibrioforme. In this chapter, we suggest a new
nonlinear model by assuming that the population growth rate is not propor-
tional to the size of the bacteria population, but to the number of interac-
tions between the microorganisms, and by taking into account the beginning
of the death phase in the kinetic curve. Stanescu et al. evaluated the effect
of randomness into the model coefficients by using generalized Polynomial
Chaos (gPC) expansions, by setting arbitrary distributions without taking
into account the likelihood of the data. By contrast, we utilize a Bayesian
inverse approach for parameter estimation to obtain reliable posterior dis-
tributions for the random input coefficients in both the logistic and our
new model. Since our new model does not possess an explicit solution, we
use gPC expansions to construct the Bayesian model and to accelerate the
Markov Chain Monte Carlo algorithm for the Bayesian inference.
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8.1 Introduction

The time evolution of microorganisms, such as bacteria, has been of great
interest in biology for decades [56, 101, 105]. In this regard, mathematical
models are important to understand and generalize laboratory experiments
and to make predictions [61, 69, 79, 87, 93, 102, 148]. These models are usu-
ally continuous systems that involve ordinary or partial differential equations,
which depend on input parameters (initial conditions, forcing term and/or
coefficients, etc.) often with a biological interpretation (carrying capacity,
growth rate, birth or death rate, concentration of nutrients, etc.). If experi-
mental values are available for the model coefficients, we have a forward model
to describe and forecast the main features of the biological system. But in gen-
eral, to determine the model parameters, experimental data needs to be used.
The process of adjusting the coefficients in virtue of collected data is called an
inverse problem.

Deterministic differential equations have been widely studied from a theoreti-
cal and numerical point of view. To solve the inverse problem in this setting,
one usually turns to optimization algorithms, for instance a least squares fit-
ting.

However, deterministic models do not take into account the inherent uncer-
tainty associated to biological processes. Inaccuracies in the measurements
often arise due to errors in the laboratory experiments (human, mechanical,
etc.), lack of information, missed data, etc. It thus becomes necessary to treat
the input parameters in a random sense. This gives rise to random ordinary
and partial differential equations [106, 125, 129].

The primary objective when dealing with random models is uncertainty quan-
tification, i.e., understanding the main statistical features of the forward ran-
dom model predictions. There are different techniques in the existing litera-
ture to handle stochastic systems. When a closed form solution of the random
model is not available, one of the best and computationally cheapest methods
for uncertainty quantification is the gPC technique: the solution stochastic
process is expressed as a mean square limit of Galerkin projections onto sub-
spaces of orthogonal polynomials [142, 143].

To solve an inverse problem in a random setting, gPC by itself cannot deter-
mine suitable model coefficients. The Bayesian approach allows making sta-
tistical inference from prior probabilistic information of the parameters and
the likelihood associated to the data. The output of Bayesian inference is a
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posterior probability distribution for each of the parameters, which permits
quantifying uncertainty via the posterior predictive distribution [38, 86, 100].

When the solution of the random differential equation does not have a closed
form expression, each sampling point of the Markov Chain Monte Carlo algo-
rithm requires a numerical solution of the differential equation, which might
be time consuming. The gPC and Galerkin projection techniques give approx-
imations of the solution stochastic process, which may be used in the Bayesian
model to accelerate the numerical simulation [96, 97, 142].

In this chapter, we apply this technique to model the growth of anaerobic
photosynthetic bacteria. The population of bacteria increases in size by us-
ing light energy to reduce CO2. In the laboratory experiment, two species of
bacteria were considered: Rhodobacter capsulatus (R. capsulatus) and Chloro-
bium vibrioforme (C. vibrioforme). Direct cell counts were made every two
or three days until a stationary phase was achieved. This measurements give
two sets of data for each one of the two populations under study. In [127], the
authors considered a logistic model to explain bacterial growth in both pop-
ulations, based on Malthusian exponential growth model (first-order kinetics
equation) and competitiveness when there is scarcity of nutrients (mainly light
and CO2). We suggest a new nonlinear model equation by assuming that the
population growth rate is not proportional to the size of the bacteria pop-
ulation, but to the number of interactions between the microorganisms (the
squared abundance), and by taking into account the start of the decline phase.
In [127], uncertainty is put into the model by using arbitrary distributions for
the coefficients. By contrast, we have utilized a Bayesian inverse approach for
parameter estimation. Since our model does not have an explicit solution, we
have combined gPC expansions together with the stochastic Galerkin projec-
tion technique to accelerate the Bayesian inference. Thus, we assess the effect
of randomness and quantify the uncertainty in a rigorous way.

The structure of the chapter is the following. In Section 8.2, we show and
explain the experimental data, and we analyze empirically which should be a
good differential equation model. In Section 8.3, we provide a comprehensive
analysis of the logistic model and show its associated Bayesian model. In
Section 8.4, we expose the main theoretical features of the combination of gPC
expansions and Bayesian inference. We extend its applicability to models with
random variance of the errors, and we use the logistic model as a test example.
In Section 8.5, we expose the theoretical ideas to improve the modeling from
[127]. Section 8.6 is devoted to numerical experiments for deterministic fittings
and uncertainty quantification. Finally, Section 8.7 draws the conclusions.
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8.2 Data on anaerobic photosynthetic bacterial growth

We will use experimental data from the growth of anaerobic photosynthetic
bacteria under infrared lightning conditions. The population of bacteria in-
creases in size by using light energy to reduce CO2 (photosynthesis). In the
laboratory experiment, two species of bacteria were considered: Rhodobacter
capsulatus (R. capsulatus) and Chlorobium vibrioforme (C. vibrioforme). For
further details about the experiment, we refer the reader to [127]. Table 8.1
shows laboratory data on the population sizes of R. capsulatus and C. vibrio-
forme under infrared lightning conditions in different mediums. The number
of cells/mL has been rescaled by dividing by 106. Figure 8.1 plots the cell
counts from Table 8.1.

R. capsulatus C. vibrioforme
Time
(days)

Population
(cells/mL, scale 106)

Time
(days)

Population
(cells/mL, scale 106)

0 0.583 0 0.986
2 0.635 14 2.41
4 1.08 16 2.24
7 3.20 18 4.21
9 5.23 21 5.72
11 5.28 23 5.99
14 5.30 25 7.86

28 6.52

Table 8.1: Bacteria population sizes [127].

At the first days, when there is no competition between bacteria and no lim-
itation of resources (light and CO2), the population seems to increase with
exponential growth. This was the model proposed by Thomas Malthus in
1798 in his essay [95]. A more modern formulation of the Malthusian growth
model can be read at the introductory text [102]. The importance of the
Malthusian model is evident as in the field of population ecology it is con-
sidered as the first law of population dynamics [133]. In his written essay,
Malthus already described how non-abundance of sustenance would affect the
growth of species. This contribution was developed by Verhulst in 1838 [136]:
as time passes and the number of microorganisms augments, there is more
competition for the limited food, so that the growth rate decreases with the
size of the population. This fact is the basis of the so-called logistic model.
Its modern formulation can be consulted in [102], for instance. In principle,
the logistic model corresponds to the observed s-shape in Figure 8.1. This
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Figure 8.1: Population size of R. capsulatus (first plot) and C. vibrioforme (second plot).

applies especially for R. capsulatus. By contrast, C. vibrioforme presents a
drop of the amount of bacteria at the end, so the logistic model may not fit as
expected. This descent might come from the commence of the death phase.

We will see that, in both groups of R. capsulatus and C. vibrioforme, better
results are obtained if we consider that, for the first days, the rate of change
is not proportional to the population size, but to the total number of interac-
tions between the microorganisms, i.e., to the squared abundance. Also, the
introduction of the death rate in the modeling will play a key role. Taking
into account the competition for the limited resources as time goes on, we will
obtain a variation of the logistic model that will allow a better modeling for
the data from Figure 8.1. This sort of model formulation has not been widely
used in the biological modeling literature, and the unique reference on utilizing
squared abundance for the modeling of the growth rate that we have found
has been [112, pp. 17–18]. Its justification from a dynamics standpoint is not
as clear as the exponential or logistic growth models. However, in our partic-
ular database and from a mathematical point of view, this idea of employing
squared abundance works better than the logistic model.
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8.3 Logistic model

Let y(t) be the total population at time t measured in days. If there is no com-
petition or there is sustenance for life, and the rate of change is proportional
to the total abundance, the Malthusian exponential model describes the pop-
ulation growth [95, 102]: y′(t) = ry(t). Given an initial condition y(t0) = y0,
the unique solution of this model is given by y(t) = y0ert. In Figure 8.1, this
model seems suitable for the first 9 days in the R. capsulatus group and for
the first 21 days in the C. vibrioforme population. However, at the 9th and
21st days, respectively, an inflection point in the bacterial growth is observed,
due to the limited abundance of resources (light and CO2). If we take into
account this scarcity of substances as time passes, then we obtain the logistic
model [102, 136]:

y′(t) = ry(t)

(
1− y(t)

K

)
. (8.1)

The term K is the carrying capacity. In the logistic equation, it is assumed
that the growth rate lags linearly with the population size. Under the initial
condition y(t0) = y0, the ordinary differential equation (8.1) has a unique
solution:

y(t) =
y0K

y0 + (K − y0)e−rt
. (8.2)

In the following subsections, we will review the fit of model (8.1)–(8.2) to
the data from Table 8.1 done in [127]. Later, the coefficients in (8.1) will be
randomized. In [127], a gPC approach was used to evaluate the effect of ran-
domness in the coefficients. Distributions for the coefficients were set by the
authors just from an empirical point of view, without using the information
given by the data, i.e., the likelihood. By contrast, we will determine appro-
priate posterior distributions for the input coefficients of (8.1), by utilizing
Bayesian inference.

8.3.1 Deterministic curve fitting

Given the data from Table 8.1, the authors in [127] calculated deterministic
coefficients r, y0 and K in (8.2) such that the squared error is minimized. This
method is usually called least squares fitting. Given a set of collected data
d1, . . . , dN at times t1, . . . , tN and given the output of a model M(ζ, t), where
ζ are the input parameters and t is the time, the squared error is expressed as

N∑
i=1

(di −M(ζ, ti))
2.
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A least squares fitting consists in finding the set of parameters ζ0 such that

min
ζ

N∑
i=1

(di −M(ζ, ti))
2 =

N∑
i=1

(di −M(ζ0, ti))
2. (8.3)

This last expression (8.3) is called residual squared error. The best model
should minimize the residual squared error. In Table 8.2, the estimates for the
coefficients and the residual squared error are shown. In Figure 8.2, we plot
the least squares fitting together with the measured data. These computations
have been already done in [127]. We observe that the deterministic logistic
model approximates well the data, although the last data from C. vibrioforme
presents problems due to its unexpected decreasing behavior.

Parameters for R. capsulatus
r y0 K residual

0.6157 0.1244 5.5623 0.600

Parameters for C. vibrioforme
r y0 K residual

0.3184 0.0292 7.4242 3.3127

Table 8.2: Parameters for R. capsulatus and C. vibrioforme under the logistic model.
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Figure 8.2: Least squares fitting of R. capsulatus (first plot) and C. vibrioforme (second
plot) under the logistic model. The real data is denoted by ◦ and the fitting is given by the
black continuous line.
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8.3.2 Random coefficients and Bayesian inference

Due to the variability involved in the measurements (errors in the collection
of data, lack of information, etc.) and the inherent uncertainty associated
to population dynamics phenomena, it would be better to treat the input
coefficients in a random sense. That is, we suppose that the parameters r, y0

and K from the logistic model (8.1) depend on an experiment ω: r = r(ω),
y0 = y0(ω) and K = K(ω). We denote by Ω the set of all experiments ω,
equipped with a σ-algebra F and a probability measure P, so that we have
an underlying probability space (Ω,F ,P) [142, Def. 2.4]. In this context, the
solution y(t) given by (8.2) becomes a stochastic process y(t, ω). The main
objective thus becomes to quantify the uncertainty of y(t, ω), for example, with
the computation of its mean and variance. When no analytical expression can
be obtained, a computational approach needs to be used.

In [127], some probability distributions are given to r, y0 and K, to assess
the effect of randomness into the input parameters. The distributions are set
empirically, without utilizing the information given by the data, that is to
say, the likelihood. Thus, in order to improve the methodology from [127], we
propose a Bayesian model to determine reliable (posterior) distributions for
r, y0 and K. Let (t1, . . . , tN) be the times of interest: for R. capsulatus they
are (t1, t2, t3, t4, t5, t6, t7) = (0, 2, 4, 7, 9, 11, 14), and for C. vibrioforme they
are (t1, t2, t3, t4, t5, t6, t7) = (0, 14, 16, 18, 21, 23, 25, 28), respectively (see Ta-
ble 8.1). Let yi be the random variable that models the size of the population
at time ti. The Bayesian model takes the following form:

(y1, . . . , yN)|(r, y0,K, σ) ∼ π(y1, . . . , yN |r, y0,K, σ) =
N∏
i=1

π(yi|r, y0,K, σ),

(8.4)
π(r, y0,K, σ) = π(r)π(y0)π(K)π(σ), (8.5)

r ∼ π(r), y0 ∼ π(y0), K ∼ π(K), σ ∼ π(σ). (8.6)

Here, π denotes the corresponding probability density function. In (8.4), it
is assumed that the errors caused by the logistic model for t1, . . . , tN are in-
dependent random variables, with zero expectation and variance σ2. In fact,
bearing in mind expression (8.2) for the solution of the logistic equation, we
will set

π(yi|r, y0,K, σ) ∼ Normal

(
y0K

y0 + (K − y0)e−rti
, σ

)
,

i.e., the errors are taken Gaussian. In (8.5), we reflect the fact that the param-
eters are independent a priori. We have set this prior independence because we
do not have any prior information about the covariances, and the forthcoming
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gPC theory will be exposed for independent random inputs. When computing
the joint posterior distribution, the values of the posterior covariances will
adapt to the data, so there will possibly be no independence. Finally, in (8.6),
we set the prior distributions for r, y0, K and σ.

The distributions for y0 and K must be positive, as they measure bacteria
abundance. The distribution for σ is also positive by definition of variance.
Concerning r, looking at Figure 8.1 we deduce that r should be positive as
well. Nonetheless, in practice, it could be possible to set prior probability
distributions with support intersecting negative numbers, provided that we
put a positive mean value and a very small variance.

On the other hand, the distributions of r, y0 and K should have as mean value
the deterministic estimates from Table 8.2. From an intuitive point of view,
these deterministic estimates are the unique information available to set the
prior distributions π(r), π(y0) and π(K). While from a mathematical stand-
point, we know that, when the sample size N is large, the posterior distribution
follows approximately a normal law with mean value given by the maximum
likelihood estimator (combine [85, Th. 3.10] for the asymptotic behavior of the
maximum likelihood estimator and [85, Th. 8.3] for the asymptotic limit of the
Bayesian estimator). In this case, as the errors are supposed to be Gaussian
and independent, the maximum likelihood estimator coincides with the least
squares fitting performed in Table 8.2. Notice that, taking the deterministic
estimates from Table 8.2 as the mean values for the prior distributions, we are
employing the collected data to set the priors, so that we are actually using
the so-called empirical Bayes method [86, Ch. 9], [31, 25].

The formula for the joint posterior density function of the parameters is given
by

π(r, y0,K, σ|y1, . . . , yN ) =
π(y1, . . . , yN |r, y0,K, σ)π(r, y0,K, σ)∫∫∫∫

π(y1, . . . , yN |r, y0,K, σ)π(r, y0,K, σ)dr dy0 dK dσ
.

To compute the posterior density function of a subset of the random vector
(r, y0,K, σ), just marginalize by integrating. The posterior predictive distri-
bution is expressed as

π(ỹ1, . . . , ỹN |y1, . . . , yN )=

∫∫∫∫
π(ỹ1, . . . , ỹN |r, y0,K, σ)π(r, y0,K, σ|y1, . . . , yN )drdy0dKdσ.

These formulas and more information on Bayesian inference are available in
the standard reference book [86]. Usually, the posterior distribution of the
model parameters is not analytically tractable, therefore simulation algorithms
must be carried out to sample from the posterior distribution. This class
of algorithms is encompassed under the name Markov Chain Monte Carlo
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simulation [86, Ch. 6–7], [131]. An algorithm for Bayesian simulation has
been implemented in WinBUGS [86, Ch. 8], [91]. Other possible software are
JAGS [86, p. 214], [50, 78, 108]; SAS (SAS Institute, Cary NC) [86, Ch. 8],
[128]; etc.

In Section 8.6, we will specify prior distributions for the parameters r, y0 and
K. We will thus assess the effect of randomness into the inputs of the random
logistic model.

8.4 Combining Bayesian inference and gPC

In this section we will show how gPC expansions can be used to perform
Bayesian inference when the solution of the differential equation model does
not have an explicit expression. There are results in the extant literature
that combine Bayesian inference and gPC expansions when the error from the
model is assumed to be Gaussian, with zero expectation and constant variance
[96, 97], [142, Ch. 8]. We will extend these results to a random variance, so
that one does not have to make point estimate guesses on the variability of
the model error. We will show how these theoretical results work with the
random logistic model. This will be a test example, since we saw in the
previous section that the logistic equation has a closed form solution, to which
Bayesian inference can be directly applied. By contrast, in Section 8.5, in
which we improve the logistic equation to a more suitable model, we will need
gPC expansions to carry out accelerated Bayesian inference, since the solution
of the new model equation will not be explicitly known.

8.4.1 Theoretical results

Consider an ordinary differential equation model y′(t) = F (t, y(t)). Suppose
that both F and the solution y(t) depend on some random input parame-
ters ζ1, . . . , ζs (the initial condition is among these inputs). The probabilistic
properties of these random inputs are: mutual independence, absolute conti-
nuity and finiteness of all moments. Let ζ = (ζ1, . . . , ζs) be the joint vector
of coefficients. Suppose that we have times of interest, t1, . . . , tN , in which
we have collected data d1, . . . , dN . We suppose that y′(t) = F (t, y(t)) is the
suitable deterministic model to explain d1, . . . , dN , and from it we construct
the following Bayesian model: if we denote by yi the random variable that
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models di, then

(y1, . . . , yN)|ζ ∼
N∏
i=1

Normal(y(ti), σ), (8.7)

ζ ∼ π(ζ) =
N∏
i=1

π(ζi), σ ∼ π(σ). (8.8)

We are assuming that σ is either absolutely continuous with density function
π(σ) or a constant. In the case of being a constant, the subsequent develop-
ment is applicable by considering a Dirac delta function as its density function.
Let

π(ζ, σ|d1, . . . , dN) =
π(d1, . . . , dN |ζ, σ)π(ζ, σ)∫∫
π(d1, . . . , dN |ζ, σ)π(ζ, σ) dζ dσ

be the joint posterior density function of the parameters. This Bayesian model
was proposed in the previous section for the random logistic model, and it
makes sense when the explicit solution y(t) of the differential equation model
is available.

When y(t) does not have a closed form expression and one has to use Markov
Chain Monte Carlo algorithms [86, Ch. 6–7], [131], the main computational
drawback is that each sampling point requires a solution of the underlying
stochastic system y′(t) = F (t, y(t)). The idea to speed up the Bayesian infer-
ence is to approximate y(t) via another function in an L2(Ω) sense, and then
to put the approximation in the mean of the normal distribution from (8.7).

To approximate y(t), we use the gPC technique. We work in the Hilbert space
(L2(Ω), 〈, 〉) of random variables with finite variance, where the inner product
is defined as 〈X,Y 〉 = E[XY ]. Suppose that the random inputs ζ1, . . . , ζs are
independent and absolutely continuous random variables with finite moments
and density functions π(ζ1), . . . , π(ζs) (the prior density functions defined in
(8.8)). There are different gPC approaches, which are kept to a minimum
below:

(i) (Classical) gPC: Suppose that ζ1, . . . , ζs are functions of random vari-
ables with distributions that belong to the Askey-Wiener scheme. That
is, ζ = h(ξ), where h : Rr → Rs is a Borel measurable function and
ξ = (ξ1, . . . , ξr) is a random vector with independent components, such
that ξi is Gaussian, Gamma, Beta or uniform distributed. Take the uni-
variate orthogonal polynomials from the Askey-Wiener scheme associated
to the distribution of ξi, 1 ≤ i ≤ r, and compute a simple tensor product
to obtain multivariate orthogonal polynomials in ξ. Let {φi(ξ)}∞i=1 be
the sequence of orthogonal polynomials with respect to 〈, 〉. As y(t) is
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a function of ξ, we can expand y(t) =
∑∞

i=1 ỹi(t)φi(ξ) in L2(Ω), where
ỹi(t) = E[y(t)φi(ξ)]/E[φi(ξ)

2] is the i-th Fourier coefficient. This ap-
proach is based on [142, 143].

(ii) Adaptive gPC: In this case, the distributions of ζ1, . . . , ζs do not neces-
sarily belong to the Askey-Wiener scheme. Let Cpi = {1, ζi, . . . , ζpi } be the
canonical basis of polynomials in ζi up to degree p. We orthonormalize
this basis with respect to 〈, 〉 and thus get Ξpi = {φi0(ζi), . . . , φ

i
p(ζi)}.

Using a simple tensor product, we define an orthonormal basis with
respect to 〈, 〉 in the space of multivariate polynomials in ζ up to de-
gree p: Ξ = {φ1(ζ), . . . , φP (ζ)}, where P = (p + s)!/p!s!. If we let
p, P → ∞, we obtain an orthonormal sequence {φi(ζ)}∞i=1. We expand
y(t) as y(t) =

∑∞
i=1 ỹi(t)φi(ζ), where ỹi(t) = E[y(t)φi(ζ)] is the i-th

Fourier coefficient. This approach is based on [33, 46] and is referred to as
adaptive gPC. An advantage of this strategy is that we are not restricted
to standard probability distributions, because of the Random Variable
Transformation technique [29]. However, using the Gram-Schmidt proce-
dure may lead to a loss of orthogonality for large p [62], which may ruin
the computations. Nonetheless, adaptive gPC usually converges in an
algebraic or exponential rate (spectral convergence), so a small p usually
suffices and no loss of orthogonality problems appear.

For convergence issues on the (classical) gPC and adaptive gPC expansions,
we refer the reader to [58, Th. 3.6], which completely determines the problem
of convergence: (i) if y(t) ∈ L2(Ω), then y(t) =

∑∞
i=1 ỹi(t)φi(ξ) if the moment

problem is uniquely solvable for each random variable ξ1, . . . , ξr; (ii) if y(t) ∈
L2(Ω), then y(t) =

∑∞
i=1 ỹi(t)φi(ζ) if the moment problem is uniquely solvable

for each random variable ζ1, . . . , ζs.

We will adopt the adaptive gPC approach (ii), as it allows more general
probability distributions for ζ1, . . . , ζs for the stochastic Galerkin projection
technique, without having to compute the inverse of their cumulative distri-
bution functions, see [142, expr. (5.15) (5.16)], [127, expr. (4.8) (4.9)]. The
stochastic Galerkin projection technique is based on approximating y(t) ≈∑P

i=1 ŷ
P
i (t)φi(ζ) = ŷP (t), by imposing ŷP (t) to be a solution of the differential

equation. Using the orthonormality of φ1(ζ), . . . , φP (ζ), we obtain a determin-
istic system of differential equations for the coefficients ŷP1 (t), . . . , ŷPP (t):

d

dt
ŷPk (t) = 〈F

(
t,

P∑
i=1

ŷPi (t)φi(ζ)

)
, φk(ζ)〉,

ŷPk (0) = E[y0φk(ζ)],
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for k = 1, . . . , P . Under certain conditions, the Galerkin projection ŷP (t)
tends in L2(Ω) as P →∞ to y(t), see [121].

Consider the Bayesian model

(y1, . . . , yN)|ζ ∼
N∏
i=1

Normal(ŷP (ti), σ), (8.9)

ζ ∼ π(ζ) =
N∏
i=1

π(ζi), σ ∼ π(σ). (8.10)

Let

πP (ζ, σ|d1, . . . , dN) =
πP (d1, . . . , dN |ζ, σ)π(ζ, σ)∫∫
πP (d1, . . . , dN |ζ, σ)π(ζ, σ) dζ dσ

be the joint posterior density of the parameters, where πP (d1, . . . , dN |ζ, σ) is
the likelihood from (8.9) and π(ζ, σ) is the prior from (8.10) which coincides
with (8.8). In [97], the authors proved that, if ŷP (t)→ y(t) in L2(Ω) as P →∞
and σ is constant, then πP (ζ|d1, . . . , dN) tends to π(ζ|d1, . . . , dN) as P → ∞
in the sense of the Kullback-Leibler divergence:

D(πP ||π) =

∫
πP (ζ|d1, . . . , dN) log

πP (ζ|d1, . . . , dN)

π(ζ|d1, . . . , dN)
dζ

P→∞−→ 0.

Moreover, if ŷP (t) → y(t) in L2(Ω) algebraically/exponentially, then we have
D(πP ||π)→ 0 algebraically/exponentially.

Let us see that this result can be extended to a random σ that possesses a
prior distribution π(σ). In [97, Lemma 4.2, expr. (4.11)], we need to add an
integration with respect to π(σ). If we impose

Eπ(σ)

[
1

σ3N

]
=

∫ ∞
0

π(σ)

σ3N
dσ <∞,

then the same conclusion from [97, Lemma 4.2] holds:

D(πP ||π) =

∫∫
πP (ζ, σ|d1, . . . , dN) log

πP (ζ, σ|d1, . . . , dN)

π(ζ, σ|d1, . . . , dN)
dζ dσ

P→∞−→ 0.

Thus, under general assumptions, πP (ζ, σ|d1, . . . , dN) → π(ζ, σ|d1, . . . , dN) in
the sense of the Kullback-Leibler divergence. Formally, the posterior predictive
distribution computed from the Galerkin projection (8.9)–(8.10) tends to the
posterior predictive distribution from (8.7)–(8.8):

πP (d̃1, . . . , d̃N |d1, . . . , dN) =

∫∫
πP (d̃1, . . . , d̃N |ζ, σ)πP (ζ, σ|d1, . . . , dN) dζ dσ
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P→∞−→ π(d̃1, . . . , d̃N |d1, . . . , dN) =

∫∫
π(d̃1, . . . , d̃N |ζ, σ)π(ζ, σ|d1, . . . , dN) dζ dσ.

8.4.2 Application to the random logistic model

Consider the Bayesian model (8.4)–(8.6). Instead of using the solution (8.2)
from the logistic differential equation (8.1), we approximate it via a stochas-
tic Galerkin procedure as a test of the previous theory. Let ζ = (r, y0,K)

and ŷP (t) =
∑P

i=1 ŷ
P
i (t)φi(ζ). The system of differential equations for the

coefficients ŷP1 (t), . . . , ŷPP (t) is

d

dt
ŷPk (t) =

P∑
i=1

ŷPi (t)E[rφi(ζ)φk(ζ)]−
P∑

i,j=1

ŷPi (t)ŷPj (t)E
[ r
K
φi(ζ)φj(ζ)φk(ζ)

]
,

ŷPk (0) = E[y0φk(ζ)], k = 1, . . . , P.

Using standard numerical techniques, the Galerkin coefficients ŷP1 (t), . . . , ŷPP (t)
can be computed at the times of interest t1, . . . , tN . To do statistical inference,
we use the model (8.9)–(8.10). In Section 8.6, we show numerical experiments.
We will see that the posterior distribution πP (ζ, σ|d1, . . . , dN) is similar to the
true posterior π(ζ, σ|d1, . . . , dN) from (8.4)–(8.6), even for small p and P , due
to the spectral convergence.

8.5 Improvement of the logistic model

Suppose that, under non-scarcity of nourishment, the growth rate y′(t) is not
proportional to the population size y(t), but to the total number of interac-
tions, i.e., to the squared abundance y(t)2. In this case, the model becomes
a variation of the Malthusian growth model: y′(t) = ry(t)2. If we take into
account competition inside the test tubes because of limited resources, mainly
light and CO2, then the growth rate constant decays linearly with the popu-
lation size:

y′(t) = ry(t)2

(
1− y(t)

K

)
. (8.11)

The coefficient K is the carrying capacity. Unlike the logistic differential equa-
tion, given an initial condition y(t0) = y0, the ordinary differential equation
(8.11) does not have an explicit form for the solution.

This model formulation (8.11) has not been extensively used in the biological
modeling literature, and the unique reference on squared abundance for the
modeling of the growth rate that we have found has been [112, pp. 17–18].
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Its biological justification is debatable, nonetheless, in our particular database
and from a mathematical standpoint, (8.11) works better than the logistic
model.

Model (8.11) may be improved if we take into account the death rate:

y′(t) = ry(t)2

(
1− y(t)

K

)
− δy(t). (8.12)

After the stationary phase, bacteria population enters into the so-called death
phase. Due to the lack of nutrients, the population size starts to decline. In
this model, K is interpreted as the carrying capacity under no mortality.

At this point, we can compare models (8.1), (8.11) and (8.12) from the fol-
lowing mathematical point of view. Consider a general model y′(t) = f(y(t)).
If we assume that f is sufficiently smooth, then we can express f as a Taylor
power series: f(x) = a0 +a1x+a2x

2 +a3x
3 + . . .. If we suppose that there is no

spontaneous generation in the population, then a0 = 0. Therefore, the model
equation becomes y′(t) = a1y(t) + a2y(t)2 + a3y(t)3 + . . .. If we truncate at
the first term, then we obtain Malthus model. If we keep the first and second
term, the logistic equation appears. If we put a1 = 0 and keep a2 and a3,
we get model (8.11). Finally, if we take the first three terms, the differential
equation becomes (8.12). This provides an intuition on why (8.12) should
make the most significant improvement. Indeed, we will see that model (8.12)
improves the fitting of both the logistic equation (8.1) and model (8.11).

8.5.1 Deterministic curve fitting

Given the data from Table 8.1, we get deterministic estimates for r, y0, K
and δ in (8.11) and (8.12) via a least squares procedure (8.3). In this case,
the least squares fitting has to be performed without an explicit solution of
the differential equation model. In Section 8.6, we will show the least squares
fitting and the residual squared error. We will observe that the error is much
smaller for (8.11) and (8.12) than for the logistic model (8.1), especially for
the R. capsulatus population. Therefore, from a deterministic point of view,
taking into account interactions instead of total population allows a better
modeling. The best modeling will be achieved with (8.12). This highlights the
importance of adding the effect of mortality in the equation.
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8.5.2 Random coefficients and combination of Bayesian
inference and gPC

To randomize both (8.11) and (8.12), we consider that the output depends
on an experiment ω, which belongs to the sample space Ω of an underlying
probability space (Ω,F ,P). Thereby, the parameters are random variables:
r = r(ω), y0 = y0(ω), K = K(ω), δ = δ(ω); and the solution y(t) becomes
a stochastic process y(t, ω). The goal is to quantify its uncertainty computa-
tionally, by approximating its mean and variance statistics.

We model the bacterial growth with Bayesian model (8.7)–(8.8). As no ex-
plicit solution of (8.11) is available, we approximate y(t) in L2(Ω) using the
stochastic Galerkin projection technique. Let {φi(ζ)}Pi=1 be the orthonor-
mal sequence from the adaptive gPC approach, where ζ = (r, y0,K). Let

ŷP (t) =
∑P

i=1 ŷ
P
i (t)φi(ζ) be the Galerkin projection. The deterministic coeffi-

cients are computed by solving numerically the following system of determin-
istic differential equations:

d

dt
ŷPk (t) =

P∑
i,j=1

ŷPi (t)ŷPj (t)E[rφi(ζ)φj(ζ)φk(ζ)]

−
P∑

i,j,l=1

ŷPi (t)ŷPj (t)ŷPl (t)E
[ r
K
φi(ζ)φj(ζ)φl(ζ)φk(ζ)

]
,

ŷPk (0) = E[y0φk(ζ)], k = 1, . . . , P.

In the case of model (8.12), letting ζ = (r, y0,K, δ) and using a similar rea-
soning, we get the following system of deterministic differential equations:

d

dt
ŷPk (t) =

P∑
i,j=1

ŷPi (t)ŷPj (t)E[rφi(ζ)φj(ζ)φk(ζ)]

−
P∑

i,j,l=1

ŷPi (t)ŷPj (t)ŷPl (t)E
[ r
K
φi(ζ)φj(ζ)φl(ζ)φk(ζ)

]
−

P∑
i=1

ŷPi (t)E[δφi(ζ)φk(ζ)],

ŷPk (0) = E[y0φk(ζ)], k = 1, . . . , P.

Bayesian model (8.9)–(8.10) permits assessing the effect of randomness in
(8.11) and (8.12) using the likelihood of the data.

We remark that the prior distributions for r, y0, K, δ and σ must be posi-
tive, although in practice it could be possible to set prior distributions taking
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negative values as long as we put a positive mean value and a very small
variance.

In the numerical experiments, the prior distributions will be strongly centered
around the deterministic value obtained in the least squares fitting. As we
already explained, this is because for a large sample size N , the posterior
distribution follows approximately a normal law with mean value given by the
maximum likelihood estimator. In Section 8.6, we show the simulation results
from WinBUGS.

8.6 Numerical experiments

In this section, we perform numerical experiments of the models presented
before. First, we will specify prior distributions for r, y0 and K to carry out
Bayesian inference in the logistic model (8.1). As a checking performance, we
will see that expressing the solution (8.2) of the logistic equation (8.1) via gPC
expansions gives good approximations of the posterior and posterior predic-
tive distributions. On the other hand, we will fit the new models proposed,
(8.11) and (8.12), in a deterministic manner to compare the results with those
achieved in [127]. Finally, we will combine Bayesian inference and gPC expan-
sions to simulate from the posterior distributions of the random parameters
with a cheap computational expense.

8.6.1 Random logistic model

Consider the logistic model (8.1) and its solution (8.2) in a randomized setting.
To model the data from Table 8.1 using the Bayesian approach (8.4)–(8.6), we
have set

r ∼ Gamma(αr, βr), y0 ∼ Gamma(αy0 , βy0), K ∼ Gamma(αK , βK), σ ∼ Unif(aσ, bσ)
(8.13)

(recall that these four parameters are positive), where we have employed the
shape-rate notation for the gamma distribution. As we want the mean of
these random variables to be equal to the least square estimates (maximum
likelihood estimators) from Table 8.2, we impose:

R. capsulatus :
αr
βr

= 0.6157,
αy0

βy0

= 0.1244,
αK
βK

= 5.5623,

C. vibrioforme :
αr
βr

= 0.3184,
αy0

βy0

= 0.0292,
αK
βK

= 7.4242.
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For the R. capsulatus group, we suppose that approximately 68% of the vari-
ability of r, y0 and K is 0.05, 0.05 and 0.2, respectively (this is the subjective
part of the modeling), and we take this as the typical deviation (by the 68-95-
99.7 rule [109]). Then

R. capsulatus :
αr
β2
r

= 0.0025,
αy0

β2
y0

= 0.0025,
αK
β2
K

= 0.04.

For the C. vibrioforme population, we take

C. vibrioforme :
αr
β2
r

= 0.0009,
αy0

β2
y0

= 0.0009,
αK
β2
K

= 0.01.

This gives, for the R. capsulatus population, the values αr = 151.6346, βr =
246.28, αy0

= 6.190144, βy0
= 49.76, αK = 773.4795 and βK = 139.0575; and

for the C. vibrioforme population, the parameters αr = 112.64, βr = 353.78,
αy0

= 0.947, βy0
= 32.44, αK = 5511.87 and βK = 742.42. For σ, assuming

that the error in the modeling is at most 1, we set σ ∼ Unif(0, 1).

With this information, we have the prior distributions for the parameters. The
posterior distribution of the model parameters is not analytically tractable, so
simulation algorithms must be carried out to sample from the posterior dis-
tribution (Markov Chain Monte Carlo simulation) [86, Ch. 6–7], [131]. The
Bayesian model has been implemented in WinBUGS [86, Ch. 8], [91]. We
fixed a burnin period of 75,000 iterations and simulated 150,000 samples of
the parameters. We executed two chains with different initial values to assess
convergence. The computer timing was 47 seconds for the burnin period, plus
94 seconds for the later 150,000 samples. In Table 8.3, we show a descriptive
analysis of the posterior distributions. In Figure 8.3 and Figure 8.4, the poste-
rior density function is plotted for each of the parameters. Figure 8.5 presents
the means and credible intervals from the posterior predictive distributions at
times t1, . . . , tN . We observe that the means provide good estimations for the
data. Moreover, the credible intervals contain all data points.

8.6.2 Random logistic model and gPC expansions

Consider the logistic model (8.1) and its randomized solution (8.2). We use
Bayesian model (8.9)–(8.10) as an approximation of the Bayesian approach
(8.4)–(8.6), with the same prior distributions as in (8.13), just as a test exam-
ple of the theory exposed. As before, the posterior distribution of the model
parameters is not analytically tractable, so we have used WinBUGS to simu-
late samples from the posterior distributions. We simulated 150,000 samples of
the model parameters, after having removed the first 75,000 iterations (burnin
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Posterior distributions for R. capsulatus
Parameter Mean sd 0.95 interval

r 0.619 0.039 (0.544, 0.699)
y0 0.126 0.034 (0.069, 0.203)
K 5.560 0.164 (5.243, 5.888)

Posterior distributions for C. vibrioforme
Parameter Mean sd 0.95 interval

r 0.321 0.025 (0.274, 0.373)
y0 0.031 0.015 (0.010, 0.069)
K 7.421 0.098 (7.229, 7.614)

Table 8.3: Descriptive table for the posterior distributions of the parameters for R. capsu-
latus and C. vibrioforme under the random logistic model (8.1).
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Figure 8.3: Posterior distributions for the model parameters of R. capsulatus under the
random logistic model (8.1).
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Figure 8.4: Posterior distributions for the model parameters of C. vibrioforme under the
random logistic model (8.1).
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Figure 8.5: Model fitting for R. capsulatus (first plot) and C. vibrioforme (second plot)
under the random logistic model (8.1). The real data is denoted by ◦, the fitting is given by
the black continuous line and the 0.95 credible interval is drawn with dashed lines.
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period). We executed two chains with distinct initial iterates to evaluate con-
vergence. The execution timing was 47 seconds for the burnin period, plus
94 seconds for the later 150,000 samples. In Table 8.4, Figure 8.6, Figure 8.7
and Figure 8.8, we show the results from the Bayesian inference with p = 2.
Observe that the estimates are similar to those from Table 8.3, Figure 8.3,
Figure 8.4 and Figure 8.5, although p = 2 is a small order of truncation. This
is due to the spectral convergence of the stochastic Galerkin projection.

Posterior distributions for R. capsulatus
Parameter Mean sd 0.95 interval

r 0.6215 0.04073 (0.5431, 0.7028)
y0 0.1262 0.03524 (0.06632, 0.2043)
K 5.557 0.1652 (5.238, 5.888)
Posterior distributions for C. vibrioforme

Parameter Mean sd 0.95 interval
r 0.3338 0.02593 (0.2837, 0.3842)
y0 0.02825 0.01403 (0.003839, 0.05829)
K 7.418 0.0989 (7.226, 7.613)

Table 8.4: Descriptive table for the posterior distributions of the parameters for R. capsu-
latus and C. vibrioforme under the random logistic model (8.1) with gPC expansions.

8.6.3 Improvement of the logistic model

Consider the new model (8.11), in which the Malthusian growth rate is substi-
tuted by taking into account squared abundance. We perform a least squares
fitting (8.3) to find the optimal estimates for r, y0 and K. In Table 8.5, we
show the estimates and the residual squared error. We observe that the error
is much smaller for (8.11) than for the logistic model (8.1), especially for the
R. capsulatus population. Figure 8.9 shows how accurate is the approxima-
tion with model (8.11). Hence, from a deterministic standpoint, taking into
account interactions instead of total abundance allows a better modeling.

Concerning the new model (8.12), in which we take into account the death rate,
we also perform a least squares fitting (8.3) to get the optimal estimates for r,
y0, K and δ. Table 8.6 and Figure 8.10 present the results. The deterministic
fitting improves that of model (8.11).
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Figure 8.6: Posterior distributions for the model parameters of R. capsulatus under the
random logistic model (8.1) with gPC expansions.
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Figure 8.7: Posterior distributions for the model parameters of C. vibrioforme under the
random logistic model (8.1) with gPC expansions.
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Figure 8.8: Model fitting for R. capsulatus (first plot) and C. vibrioforme (second plot)
under the random logistic model (8.1) with gPC expansions. The real data is denoted by ◦,
the fitting is given by the black continuous line and the 0.95 credible interval is drawn with
dashed lines.

Parameters for R. capsulatus
r y0 K residual

0.327079 0.479572 5.3322 0.0238877
Parameters for C. vibrioforme
r y0 K residual

0.0847533 0.690599 7.0967 1.85554

Table 8.5: Parameters for R. capsulatus and C. vibrioforme under the new model (8.11).
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Figure 8.9: Least squares fitting of R. capsulatus (first plot) and C. vibrioforme (second
plot) under the new model (8.11). The real data is denoted by ◦ and the fitting is given by
the black continuous line.

171



Chapter 8.

Parameters for R. capsulatus
r y0 K δ residual

0.43931 0.557972 5.60822 0.126042 0.0099536
Parameters for C. vibrioforme

r y0 K δ residual
0.116177 0.961639 7.6808 0.0694181 1.81952

Table 8.6: Parameters for R. capsulatus and C. vibrioforme under the new model (8.12).
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Figure 8.10: Least squares fitting of R. capsulatus (first plot) and C. vibrioforme (second
plot) under the new model (8.12). The real data is denoted by ◦ and the fitting is given by
the black continuous line.
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8.6.4 Random new model and gPC expansions

Consider the new model (8.11) with random input coefficients. Using the
Galerkin projection technique, we use Bayesian model (8.9)–(8.10) to quan-
tify the uncertainty of the solution process. We have set the prior distribu-
tions (8.13) for the parameters, with the values αr = 42.7927, βr = 130.8316,
αy0

= 91.99572, βy0
= 191.8288, αK = 710.8089 and βK = 133.305 for the

R. capsulatus population; αr = 2.873249, βr = 33.90132, αy0
= 190.7708,

βy0
= 276.2396, αK = 1259.079 and βK = 177.4175 for the C. vibrioforme

population; and the error σ ∼ Unif(0, 1). These values may be calculated as
in the logistic model, by imposing the mean of the gamma distribution, α/β,
to be the least squares fitting estimate from Table 8.5, and the variance of the
gamma distribution, α/β2, to be the desired dispersion for the parameter (this
is more subjective). With a burnin period of 75,000 iterations, plus 150,000
samples for the model coefficients, and with two chains to assess convergence,
the computational time was 47 seconds for the burnin period, plus 94 seconds
for the latter 150,000 samples. In Table 8.7, Figure 8.11, Figure 8.12 and Fig-
ure 8.13, we show the results from the Bayesian inference with p = 2. Observe
that the solid lines from the figures behave similarly to the deterministic fit-
tings from Figure 8.9. Moreover, the credible regions contain all data points,
therefore the Bayesian model is appropriate for our data set.

Finally, consider the new model (8.12) with uncertainty. We combine the
stochastic Galerkin projection technique and the Bayesian model (8.9)–(8.10)
to quantify the uncertainty for the solution stochastic process. As prior
distributions for r, y0, K, δ and σ, we have set (8.13) for r, y0, K and
σ, and δ ∼ Gamma(αδ, βδ). For the numerical experiments, we have set
αr = 77.19731, βr = 175.724, αy0

= 124.5331, βy0
= 223.1888, αK = 786.3033,

βK = 140.2055, αδ = 6.354634 and βδ = 50.4168 for the R. capsulatus pop-
ulation; αr = 5.398838, βr = 46.4708, αy0

= 369.8998, βy0
= 384.6556,

αK = 1474.867, βK = 192.02, αδ = 48.18873 and βδ = 694.181 for the C. vib-
rioforme population; and the error σ ∼ Unif(0, 1). As usual, we set a burnin
period of 75,000 iterations, plus 150,000 samples for the model parameters,
and with two chains to check convergence. The computational time was 47
seconds for the burnin period, plus 94 seconds for the latter 150,000 samples
(the same time as the previous models, despite having one more parameter).
In Table 8.8, Figure 8.14, Figure 8.15 and Figure 8.16, we present the results
from the Bayesian inference with order of truncation p = 2. Observe that the
credible intervals contain all data measurements.
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Posterior distributions for R. capsulatus
Parameter Mean sd 0.95 interval

r 0.3468 0.03955 (0.2661, 0.3993)
y0 0.4404 0.03182 (0.4037, 0.4867)
K 5.352 0.162 (5.253, 5.733)

Posterior distributions for C. vibrioforme
Parameter Mean sd 0.95 interval

r 0.05636 0.01112 (0.03632, 0.07967)
y0 0.7038 0.05447 (0.602, 0.815)
K 7.369 0.1535 (7.008, 7.608)

Table 8.7: Descriptive table for the posterior distributions of the parameters for R. capsu-
latus and C. vibrioforme under the new model (8.11) with gPC expansions.
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Figure 8.11: Posterior distributions for the model parameters of R. capsulatus under the
new model (8.11) with gPC expansions.
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Figure 8.12: Posterior distributions for the model parameters of C. vibrioforme under the
new model (8.11) with gPC expansions.
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Figure 8.13: Model fitting for R. capsulatus (first plot) and C. vibrioforme (second plot)
under the new model (8.11) with gPC expansions. The real data is denoted by ◦, the fitting
is given by the black continuous line and the 0.95 credible interval is drawn with dashed
lines.
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Figure 8.14: Posterior distributions for the model parameters of R. capsulatus under the
new model (8.12) with gPC expansions.
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Figure 8.15: Posterior distributions for the model parameters of C. vibrioforme under the
new model (8.12) with gPC expansions.
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Posterior distributions for R. capsulatus
Parameter Mean sd 0.95 interval

r 0.4291 0.03444 (0.3621, 0.4986)
y0 0.5322 0.05639 (0.467, 0.6763)
K 5.618 0.121 (5.339, 5.815)
δ 0.1068 0.04146 (0.04051, 0.1954)

Posterior distributions for C. vibrioforme
Parameter Mean sd 0.95 interval

r 0.07133 0.01208 (0.04899, 0.09645)
y0 0.9604 0.04884 (0.8672, 1.058)
K 7.908 0.1513 (7.554, 8.152)
δ 0.06487 0.008284 (0.04913, 0.08149)

Table 8.8: Descriptive table for the posterior distributions of the parameters for R. capsu-
latus and C. vibrioforme under the new model (8.12) with gPC expansions.
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Figure 8.16: Model fitting for R. capsulatus (first plot) and C. vibrioforme (second plot)
under the new model (8.12) with gPC expansions. The real data is denoted by ◦, the fitting
is given by the black continuous line and the 0.95 credible interval is drawn with dashed
lines.
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8.7 Conclusions

Mathematical models for biological population growth are important to under-
stand and generalize the results to other situations and to make predictions.
Due to the inherent uncertainty associated to biological phenomena (errors
in the laboratory experiments, lack of information, missed data, etc.), ran-
domness must be introduced in the model. In this chapter, we have studied
a random differential model of growth of anaerobic photosynthetic bacteria.
In the laboratory experiment, actual measurements for two species of bacte-
ria were collected: R. capsulatus and C. vibrioforme. A previous article by
D. Stanescu et al. [Electronic Transactions on Numerical Analysis, 34, 44–58
(2009)] considered a logistic model to explain bacterial growth in both popu-
lations, based on Malthusian exponential growth model and competitiveness
when there is scarcity of nutrients (mainly light and CO2). In this chapter, we
have improved the fit of the deterministic logistic model by assuming that the
growth rate is proportional to the squared abundance of microorganisms, and
by taking into account the start of the death phase in the kinetic curve. Instead
of introducing uncertainty into the model by using arbitrary distributions for
the coefficients, we have utilized a Bayesian inverse approach for parameter
estimation. Since our model does not have an explicit solution, one would
need to solve it for each sampling point of the Markov Chain Monte Carlo
algorithm. However, gPC expansions together with the stochastic Galerkin
projection technique have allowed accelerating the Bayesian inference. Spec-
tral convergence of the Galerkin projection implies exponential convergence
rate for the corresponding prior distributions in the sense of the Kullback-
Leibler divergence, even when the variance of the error is supposed random
with a prior distribution. This fact has permitted obtaining reliable results
for the posterior distributions of the coefficients and the posterior predictive
distribution, so that it is possible to computationally quantify the uncertainty
for the bacteria population growth.
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Chapter 9

Conclusions

In this thesis, we have studied mathematical models with randomness, namely
random ordinary and partial differential equations. The models have random
input parameters and the solution is a stochastic process. In general, ran-
domness is motivated by incomplete knowledge of the underlying true physics
and error measurements. In this context, uncertainty quantification consists
in analyzing the propagation of uncertainty from the inputs to the system
output. One aims at calculating the main statistics of the solution, say the
expectation and the variance, and even the probability density function.

The statistics of the solution can be estimated by employing Monte Carlo
simulation. Another method, relying on spectral expansions, is the gPC-
based Galerkin projection method. For the computation of the probability
density function, the RVT method gives the exact representation of the den-
sity function when a simple closed-form solution exists. Otherwise, stochastic
approximations of the solution are constructed to derive a sequence of density
functions that tends to the target density. In this regard, Karhunen-Loève
and gPC expansions and finite difference discretizations give approximations
of the solution and allow for approximating its density function. The conver-
gence analysis is not straightforward, in general, and different mathematical
tools must be employed to prove rigorously the convergence of the sequence
of density functions.
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Chapter 9. Conclusions

For different mathematical models that arise in Physics, Biology, Epidemiol-
ogy, etc. we have studied their random counterparts and we have computed
faithful approximations to the probability density function of the solution. In
Chapter 2, we dealt with the damped pendulum random differential equa-
tions. In Chapter 3, we addressed the logistic growth random differential
equation. Chapter 4 was devoted to a comprehensive analysis of the random
Bertalanffy model. These three chapters used Karhunen-Loève expansions as
the approximations tool. In Chapter 5, we employed gPC expansions for the
approximation of the density function, in the context of epidemic models with
one input random parameter. In Chapters 6 and 7, we considered the heat
partial differential equation with random Dirichlet boundary conditions; den-
sity approximations were constructed from Karhunen-Loève expansions and a
finite difference numerical method, respectively.

In all of the previous cases, it was assumed that the input random parameters
had a probability distribution already set. But in modeling, an important
problem is to determine the probability distribution of the parameters from
the collected data. This is an inverse problem. In Bayesian inference, from a
prior distribution of the parameters (noninformative, or based on experience
or other studies) and from the data (its likelihood), simulations from the
posterior distribution of the parameters are obtained. When a simple closed-
form expression of the model solution is not available, a hybrid method that
combines Bayesian inference and gPC expansions accelerates the simulation
from the posterior distribution. Chapter 8 used these ideas to model bacteria
growth.

Uncertainty quantification for stochastic systems is an active field under study,
as they allow for more reliable models of complex phenomena. In the future,
we will devote effort on the study of new randomized mathematical models.
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