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Abstract 27 

Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is the latest exotic mealybug 28 

species introduced in citrus in the Mediterranean basin. It causes severe distortion and size 29 

reduction on developing fruits. Due to it is its first interaction with citrus, D. aberiae economic 30 

thresholds are still unknown for this crop and the current Integrated Pest Management programs 31 

have been disrupted. The objectives of this study were to determine the aggregation patterns of 32 

D. aberiae in citrus, develop an efficient sampling plan to assess its population density and 33 

calculate its Economic and Economic Environmental Injury Levels (EIL and EEIL, 34 

respectively). Twelve and 19 orchards were sampled in 2014 and 2015, respectively. At each 35 

orchard, population densities were monitored fortnightly in leaves, twigs and fruit and fruit 36 

damage was determined at harvest. Our results showed a clumped aggregation of D. aberiae in 37 

all organs with no significant differences between generations on fruit. Fruit damage at harvest 38 

was strongly correlated with fruit occupation in spring. Based on these results and using 39 

chlorpyrifos as the insecticide of reference, the EIL and EEIL were calculated as 7.1% and 40 

12.1% of occupied fruit in spring, respectively. With all this, we recommend sampling 275 41 

fruits using a binomial sampling method or alternatively, 140 fruits with an enumerative method 42 

bimonthly between petal fall and July.  43 

  44 
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Introduction 45 

The introduction of alien species in Europe has increased over the last decades (Roques et al. 46 

2009, Bellard et al. 2016). One of the main causes is the establishment of the international trade 47 

across continents as well as the globalization process (Meyerson and Mooney 2007, Hulme 48 

2009, MacDonald et al. 2015). In this regard, the number of biological invasive species is 49 

expected to rise in the near future (Pimentel et al. 2005, Mainka and Howard 2010, Sutherland 50 

et al. 2011).The impact of non-native species may trigger not just an environmental damage 51 

upon indigenous species, but also important economic losses, especially in agriculture (Pimentel 52 

et al. 2000, Gaertner et al. 2009, Sujay et al. 2010). Within this context, mealybugs (Hemiptera: 53 

Pseudococcidae) are considered one of the main primary pests all over the world (Williams and 54 

Miller 2002) and represent one of the groups with a major number of alien insects in Europe 55 

(Pellizzari and Germain 2010).    56 

Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is the latest invasive mealybug 57 

pest introduced in Mediterranean citrus. The genus Delottococcus is common in South Africa 58 

and recent studies have demonstrated that invasive populations of D. aberiae are native to 59 

Limpopo province (NE within South Africa) where citrus is irregularly distributed (Paul 2006, 60 

Beltrà et al. 2015). There, D. aberiae is also found in wild olive trees (homogeneously 61 

distributed at low densities) and on the roots of the flowering shrub Chrysanthemoides 62 

monilifera (L.) T. Norl (Miller and Giliomee 2011). This mealybug is not considered a pest in 63 

South Africa, remaining unnoticeable over decades (Hatting et al. 1998, Miller and Giliomee 64 

2011). Contrarily, since the first individuals of D. aberiae were discovered in the core center of 65 

the main citrus producing area in the Mediterranean basin (northern part of Valencia province) 66 

in 2009 (Beltrà et al. 2013a), damage became noticeable on citrus fruit. Distinctively to other 67 

species of citrus mealybugs, D. aberiae causes severe direct effects such as distortions and size 68 

reduction in fruit which fosters a high depreciation of its commercial value (Beltrà et al. 2013a). 69 

This mealybug it also triggers indirect effects arisen from the excretion of honeydew, mainly 70 

due to the growth of sooty mold fungi Capnodium citri Berk (Capnodiales: Capnodiaceae). In 71 
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addition, it can give shelter to other secondary pests such as pyralid moths, mites or scale 72 

insects. Due to all these negative effects, in those orchards with the presence of D. aberiae, the 73 

integrated pest management has been partially disrupted by the urgency of the farmers to apply 74 

chemical treatments against this new pest, which in most cases are not compatible with a system 75 

based on conservation biological control (Franco et al. 2004, Wajnberg et al. 2004, Jacas and 76 

Urbaneja, 2010).  77 

Delottococcus aberiae has many generations throughout the year but contrary to other citrus 78 

species in the Mediterranean growing conditions, it remains active during the winter. 79 

Populations tend to reach the maximum peak between June and July and decrease during the 80 

summer period (Martínez-Blay et al. submitted). Fruit distortion and size reduction occurs from 81 

the flowering period to July and all citrus varieties are sensitive to D. aberiae attack (herein and 82 

Martínez-Blay et al. submitted). 83 

At the present, due to the lack of effective natural enemies against D. aberiae in the 84 

Mediterranean basin, its management relies on the application of broad-spectrum insecticides 85 

such as chlorpyrifos (Tena 2017). For optimal control, insecticides must be applied once fruit 86 

set begins. However, there is no criterion based on pest abundance or damage to determine 87 

whether the application may be necessary or not.  The estimation of Economic Injury Levels 88 

(EIL) defined as the lowest population density that will cause economic damage for this pest 89 

would therefore ease the integration of its management in the current Integrated Pest 90 

Management (IPM) strategies of citrus crops. Economic damage begins to occur at the pest 91 

density in which the monetary cost of suppressing pest-caused injury equals the potential loss 92 

resulting from this pest density (Stern et al. 1959, Pedigo et al. 1986, Pedigo and Rice 2009). 93 

However, in IPM, environmental costs must be taken into account, producing sustainable 94 

solutions to pest problems. For this reason, another intervention threshold that incorporates both 95 

economic criteria and environmental risks is preferred: the Economic Environmental Injury 96 

Level (EEIL) (Higley and Wintersteen 1996, Groffman et al. 2006).  97 
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In order to implement both EIL and EEIL, a methodology of sampling able to accurately 98 

estimate pest populations at the minimum cost is required. The selection of a sampling method 99 

mainly depends on the spatial distribution of the sampled population (Kuno 1991).  100 

EILs have been established for other species of pseudococcids in citrus such as Planococcus 101 

citri (Risso) (Martinez-Ferrer 2006), as well as for Pseudococcus viburni (Signoret) in pome 102 

fuits (Mudavanhu et al. 2011). However, due to the recent arrival of D. aberiae, EILs have not 103 

yet been developed.  104 

Herein, we sampled between 12 and 19 citrus orchards during two consecutive years to 105 

determine the distribution pattern of the new citrus pest D. aberiae on canopies. Based on these 106 

results, we developed an accurate sampling plan and established the EIL and EEIL. These 107 

results will be used to integrate this pest within the current IPM program.   108 

 109 

Materials and methods 110 

Sampled orchards 111 

The study was conducted in the region of Les Valls (Valencian Community, eastern Spain). A 112 

total of 12 orchards were sampled in 2014 and 19 in 2015, including eight from the previous 113 

year. Seven orchards belonged to four different varieties of sweet orange, Citrus sinesis (L.) 114 

Osbeck: Sanguinelli (three orchards) and Powell Navel (four orchards). Eleven orchards 115 

consisted of Citrus reticulata Blanco, including the varieties: Oroval (four orchards), Marisol 116 

(one orchard) and Clemenules (six orchards). The remaining four orchards consisted of the 117 

hybrid varieties Ortanique (three orchards), Moncada and Orri (one orchard each one). Sampled 118 

orchards ranged from 0.4 to 3 ha and all of them were drip-irrigated. The selected orchards were 119 

under several ground cover management strategies (Supp. Table S1). Within each orchard, the 120 

area where the evaluations were done was not sprayed with pesticides. 121 

 122 

 123 
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Sampling procedure 124 

To determine the dispersion pattern of D. aberiae and the sampling protocol, 12 orchards were 125 

sampled in 2014 and 19 in 2015 (Supp. Table S1). In each orchard, between six and ten trees 126 

were sampled bimonthly during the two years of the study. Four 30-cm long twigs with flowers 127 

and/or fruits were collected randomly from the canopy of each tree (each twig belonged to a 128 

different cardinal orientation). It means one twig randomly selected in each orientation. All 129 

samples of a tree were placed in individual plastic bags, enclosed, and transported to the 130 

laboratory. Within the next 24 hours, twigs and four leaves and a maximum of eight flowers or 131 

fruits per twig were examined under a stereomicroscope. Leaves and flowers or fruits were 132 

selected at random within the twig. All post-embryonal development stages of D. aberiae were 133 

counted: from first nymph instar to the third (N1, N2, N3), adult males (M) and adult females 134 

(F1) including females with ovisac (F2). 135 

To determine the economic injury levels (EIL), the percentage of damaged fruit was assessed at 136 

harvest in the same sampled trees. Orchards where fruit thinning operations were conducted in 137 

the summer were excluded from these analyses. We sampled 40 fruits per tree, ten per 138 

orientation (N, S, E, and W) of the tree canopy. We considered that a fruit was damaged when 139 

distortion and size reduction could trigger commercial depreciation.  140 

 141 

 142 

Aggregation indices 143 

In order to calculate the spatial distribution of D. aberiae, Taylor´s power law (Taylor 1961) 144 

index was determined. This index establishes a correlation between a population’s density and 145 

variance by the power function: s 2 = a mb where s 2 is the sample variance, m is the sample mean 146 

density and “a” and “b” are Taylor’s coefficients. In order to estimate both coefficients, the 147 

model was fit as a linear regression in logarithms (log s2 = log a + b log m). Coefficient “a” is a 148 

sampling factor that depends on sample’s size and it lacks ecological meaning and “b” is the 149 
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Taylor’s aggregation index. Coefficient “b” is regarded as a species characteristic, which 150 

provides a basis for a sampling program and describes the aggregation pattern. When b = 0, the 151 

population is distributed uniformly, b = 1 indicates a random distribution, and b > 1 is an 152 

indication of a clustered distribution (Taylor 1984).  153 

Taylor´s coefficient was calculated for each sampled tree organ: trunk, twig, leaf and fruit. 154 

Flowers were not included because of the low number of D. aberiae specimens. Aggregation 155 

coefficients were calculated separately for the first (April-May) and second generations (June-156 

July) of D. aberiae. To simplify the analysis and because of the difficulty differentiating some 157 

instars, N1 and N2 were combined and N3 and adult immature females (F1) were also 158 

combined. The gravid females (F2) were analyzed as a separate group. 159 

MANCOVAs (multivariate analysis of covariance) were used to determine if aggregation 160 

patterns differed between generations, taking the mean as the quantitative factor and variance as 161 

the dependent variable. These analyses were conducted for each citrus organ (twig, fruit and 162 

leaf) and developmental group. For the following analyses (sampling protocols and EILs), we 163 

examined all possible regressions and selected the sample unit (among leaf, twig and fruit) 164 

where all the instar groups aggregated similarly in both generations. 165 

Sampling protocol 166 

To develop the sampling protocol we only considered the fruits because: i) aggregation in this 167 

organ did not differ between generations and ii) fruit is already sampled during the spring to 168 

determine the population levels of another important citrus pest, Pezothrips kellyanus Bagnall 169 

(Thysanoptera: Thripidae) (Navarro-Campos et al. 2012, Planes et al. 2015). Therefore, farmers 170 

can use the same organ to sample both pests.  171 

Binomial sampling 172 

This sampling method estimates densities from occupied and unoccupied organs by the insect. It 173 

is used when insect populations show a high aggregation pattern and when there is a correlation 174 

between the proportion of sample units infested with the insect (p) and their mean number per 175 
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sample unit (m). It also enables one to make decisions at less cost than with the enumerative 176 

sampling in IPM (Wilson and Room 1983). 177 

 178 

Wilson and Room´s (1983) model relates m and p according to Taylor’s indices a and b: 179 

p = 1 – exp [-m ln (a m b-1) / a m b-1 -1)] 180 

The sample size (N) required to estimate D. aberiae mean density (m) for a fixed precision (D) 181 

in the binomial sampling was calculated using the expression of variance proposed by Kuno 182 

(1986): 183 

N = D -2 (1-p0) p0 – (2/k)-1 [k (p0 -1/k -1)]-2  184 

Where p0 is the proportion of non-occupied sample units and k was calculated from the mean 185 

and the Taylor’s indices by the equation: 186 

k = m2 / (am b – m) 187 

Although D = 0.25 is the value commonly used in research studies of insects’ populations 188 

(Southwood and Henderson 2000) D = 0.30 and D = 0.35 also were considered as our sampling 189 

protocol is designed to be implemented by farmers. For each level of precision, sample size was 190 

calculated at different population means. 191 

 192 

Enumerative sampling 193 

In order to calculate the minimum sample size (n) required for a known mean density (m) to 194 

achieve prefixed levels of precision (D = 0.25, D = 0.30 and D = 0.35), Green´s method (1970) 195 

was used. It establishes that the standard error (s/√𝑛𝑛) is a fixed proportion (D) of the sample 196 

mean. The variance was substituted by its expression according to Taylor’s indices: 197 

 n = a m (b-2) / D2  198 

Economic injury levels 199 
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The economic injury level (EIL) for D. aberiae was calculated using the formula of Pedigo et al. 200 

(1986): 201 

EIL = C / VIDK 202 

Where C is the D. aberiae management costs per production unit (€ ha-1), V is the price of the 203 

fruit in origin (€ ha-1), I is the injury unit per insect per production unit [proportion damaged 204 

fruits / (insect ha-1)], D is the damage per injury unit [kg reduction ha-1)/proportion fruits 205 

damaged], and K is the proportional reduction in injury with treatment (i.e. the efficacy of the 206 

treatment). I*D is the yield loss per pest and it is obtained from the slope b of the damage 207 

function: y = a + bx, where y is the percentage of damaged fruits at harvest, and x is the 208 

percentage of sample units (fruits) occupied by D. aberiae. Consequently:  209 

EIL= C / VIDK = C / VbK 210 

In the damage function, percentage of damaged fruit was obtained by dividing the number of 211 

damaged fruits by the total number of fruits sampled per tree at harvest. Percentage of 212 

occupation was obtained by dividing the highest number of occupied fruits by the total number 213 

of sampled fruits in each sampling date and then calculating the maximum percentage of 214 

occupied fruit during the season (first and second generation). We considered damaged fruit 215 

those with a size reduction or deformation that completely depreciated them from a commercial 216 

view.  217 

The EEIL, which takes into account environmental costs, was calculated by multiplying the EIL 218 

by 1.7 (Higley and Wintersteen 1996). 219 

Results 220 

During the sampling period, a total of 6,801 specimens were collected on twigs, 13,714 on 221 

leaves and 87,895 on fruits.  222 

 223 

 224 
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Aggregation index  225 

The aggregation pattern of the first and second instar (analyzed together) on twigs was similar 226 

in both generations (F = 3.6; df = 1, 133; P = 0.06; R2 = 95.12) (Table 1). However, the 227 

aggregation pattern of the rest of the developmental groups on twigs differed between 228 

generations (third instar and adult females: F = 4.41; df = 1, 135; P = 0.04; gravid females and 229 

ovisacs: F = 7.58; df = 1, 98; P = 0.0071). When we pooled all the developmental groups, the 230 

aggregation pattern of D. aberiae on twigs was similar in both generations (F = 0.71; df = 1, 231 

168; P = 0.4). 232 

The aggregation pattern of the first and second instars (analyzed together) on leaves was similar 233 

in both generations (F = 1.44; df = 1, 137; P = 0.23) (Table 1). However, the aggregation 234 

pattern of the rest of the developmental groups on leaves differed between generations (third 235 

instar and adult females: F = 7.39; df = 1, 114; P = 0.01; gravid females and ovisacs: F = 12.13; 236 

df = 1, 123; P = 0.0007). When we pooled all the developmental groups, the aggregation pattern 237 

of D. aberiae on leaves was similar in both generations (F = 0.98; df = 1, 175; P = 0.32). 238 

The aggregation pattern of all the developmental groups on fruits was similar in both 239 

generations (first and second instar: F = 0.02; df = 1, 146; P = 0.9; third instar and adult 240 

females: F = 0.71; df = 1, 130; P = 0.4; gravid females and ovisacs: F = 0.03; df = 1, 103; P = 241 

0.87) (Table 1). When we pooled all the developmental groups, the aggregation pattern of D. 242 

aberiae on fruit was similar in both generations (F = 0.07; df = 1, 157; P = 0.8) (Fig. 1).  243 

Enumerative sampling plan 244 

The sample size was calculated for all the instars and generations together as there were not 245 

significant differences between generations. For a mean population level of 0.1 insects per fruit, 246 

which represents a mean population value during the sampling process,  250, 210 and 150 fruits 247 

are required with a D = 0.25, 0.30 and 0.35 respectively (Fig. 2). 248 

Binomial sampling plan 249 
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The model by Wilson and Room (1983) adequately fits the correlation between the number of 250 

D. aberiae (insect density) per fruit (sample unit) and the percentage of occupied fruits (Fig. 3). 251 

Using these data and Kuno’s method (1986), for a mean density of 0.1 insects per fruit in a 252 

binomial sampling, 470, 330 and 260 fruits are needed for a D = 0.25, 0.30 and 0.35 253 

respectively (Fig. 4). Compared to the enumerative sampling method, more samples are 254 

required. 255 

Economic injury level 256 

Delotococcus aberiae management costs (C = 285 € ha-1) were estimated as the sum of the 257 

product (135 € ha-1) and application (150 € ha-1) costs. Most of the applications against this pest 258 

are done with chlorpyrifos and therefore it was selected for this model. The treatment price was 259 

established from published assays with chlorpyrifos (96 g l-1 of water) (Coloff et al., 2003; Tena 260 

et al., 2009).  261 

 Fruit price (V) was fixed according to official national statistics about prices on origin for navel 262 

oranges (MARM, 2016; Navarro-Campos et al. 2012) as:  263 

V = 0, 22 € kg-1 x 30 000 kg ha-1 =6 600 € ha-1  264 

The efficacy (K) of chlorpyrifos was taken as K= 0.70 (Tena et al. in prep). The estimated value 265 

of b was 0.87 (Fig. 5). Consequently, EIL= 285 € ha-1/ (6 600 € ha-1 x 0.87 x 0.70) = 7.1 % fruits 266 

infested by D. aberiae. All varieties of mandarins and oranges are included as they showed a 267 

similar trend and good fit along the regression line (R2 = 0.85).   268 

Higley and Wintersteen (1996) proposed to estimate the EEIL for chlorpyrifos multiplying EIL 269 

x 1.7. As a result, EEIL= 12.1% of fruits occupied by D. aberiae. This percentage corresponds 270 

to a 0.24 insects per fruit (Figure 3). 271 

Sample size  272 

The number of samples required to achieve the prefixed precision levels (D = 0.25, 0.30 and 273 

0.35) at the estimated D. aberiae density of 0.24 insects per fruit for the obtained EEIL were 274 
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210, 140 and 105 fruits respectively for the enumerative method and 390, 275 and 200 fruits for 275 

the binomial plan.  276 

 277 

 278 

 279 

Discussion 280 

All Delottococcus aberiae instars tended to aggregate in fruits, leaves and twigs of citrus trees. 281 

Other mealybugs, like P. citri (Nestel et al. 1995, Martínez-Ferrer et al. 2006) also aggregate on 282 

citrus. In addition, other mealybugs are known to aggregate on their hosts, including 283 

Rastrococcus invadens Williams on mango leaves (Boavida et al. 1992), Saccharicoccus 284 

sacchari (Cockerell) on sugarcane stalks (Allsopp 1991), Pseudococcus maritimus (Ehrhorn) on 285 

vines (Geiger and Daane 2001) and Phenacoccus peruvianus Granara de Willink on ornamental 286 

plants (Beltrà et al. 2013b). Among the different instars of D. aberiae, the aggregation index 287 

decreased with mealybug age. D. aberiae crawlers (first instar), as occurs in other species when 288 

conditions are favorable (Greathead 1997), settled close to the ovisac after hatching. As they 289 

grew and space became limited on fruits, nymphs tended to disperse during the first and second 290 

generation.  291 

Mealybugs are multivoltine under mild Mediterranean conditions. D. aberiae has between five 292 

and six generations per year on citrus (Martínez-Blay et al. submitted). In spring, D. aberiae has 293 

the two first and homogeneous generations (Martínez-Blay et al. submitted). The aggregation 294 

pattern of the young instars was similar in both generations. This result is in accordance with the 295 

observations of other mealybug species such as P. citri also on citrus or P. peruvianus on 296 

ornamental plants (Martínez-Ferrer et al. 2006, Beltrà et al. 2013b). Third instar nymphs and 297 

adult females behaved similar in the first and second generation when settled on fruits. 298 

However, this pattern changed when these instars were settled on leaves and twigs, as 299 

individuals of the second generation had higher Taylor’s indices that those of the first. 300 
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Generally, these differences within the same species are explained by environmental variations 301 

such as temperature or the presence of natural enemies (Taylor et al. 1988).In the case of D. 302 

aberiae in citrus, no effective predator or parasitoid attacks these two generations as parasitoids 303 

do not develop on D. aberiae (Tena et al. 2017) and the density of its main predator 304 

Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinelidae) is very low until June (Pérez-305 

Rodríguez et al. in prep).  306 

According to our data, the EEIL for D. aberiae in citrus is 12.58% of infested fruits after petal 307 

fall. Economic thresholds of D. aberiae could be obtained because the aggregative pattern on 308 

fruit was similar for both generations. It also is worth mentioning that these values have been 309 

calculated considering only direct damage: fruit reduction and distortion. Indirect damage 310 

produced by honeydew excretion was not considered because they were much lower. For 311 

example in some of our orchards, 90 per cent of the fruit was damaged by D. aberiae whereas 312 

sooty mold was scarce. In the case of P. citri, the main mealybug pest in citrus worldwide, 313 

economic thresholds were calculated considering indirect damage due to the lack of the direct 314 

ones. Although Cavalloro and Prota (1983) proposed thresholds for P. citri between 5% to 15% 315 

of infested fruit in summer, Martinez (2006) established the EEIL in 20% of infested fruit. 316 

Following this study, the IPM of citrus in Spain recommends spraying when 20-30% of fruits 317 

are infested. As expected, these thresholds are much higher than the ones obtained for D. 318 

aberiae. Finally, it is noticeable that our thresholds are similar to those obtained for P. kellyanus 319 

and Scirtothrips citri Moulton (Thysanoptera: Thripidae), other citrus pests which cause serious 320 

direct damage on young fruits after petal fall (Navarro-Campos et al. 2012, Planes et al. 2015). 321 

These species produce a scar ring between petal fall and 4-6 weeks later (Planes et al. 2015), the 322 

same period of D. aberiae. Therefore, the same sampling plan can be used to sample both citrus 323 

pests and decide whether spraying is necessary.   324 

Here we propose a binomial sampling of 275 fruits randomly selected per orchard with a 325 

precision of D = 0.30. According to our results, the enumerative sampling needs a lower number 326 

of fruits and provides more accurate results but it is more time-consuming. Fruits have to be 327 
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collected and examined with a stereomicroscope to count the number of D. aberiae nymphs 328 

under the sepals. All this process could last around six hours considering that the citrus producer 329 

has a stereomicroscope in the sampled orchard. By contrast, binomial sampling does not require 330 

fruit harvest and D. aberiae presence can be determined with a magnifying glass. Moreover, the 331 

reduced visibility of first instars is balanced by their high aggregation patterns. Taking all into 332 

consideration, the binomial sampling process could last around fifteen minutes and two hours 333 

(considering that 30 sec are necessary to sample a fruit). Monitoring techniques based on direct 334 

observations of fruit and counting individuals have been widely used in IPM of other mealybug 335 

species (Cavalloro 1983, Ripollés 1990, Barbagallo et al. 1993, Roltsch et al. 2006, Mgocheki 336 

and Addison 2009). However, the use of plant material is a laborious and time consuming task 337 

compared to alternative monitoring techniques based on passive sampling (Geiger and Daane 338 

2001, Waterworth et al. 2011). In this sense, we have recently shown that D. aberiae density on 339 

plant is highly related with pest level in corrugated cardboard bands in trunks (Martínez-Blay et 340 

al. submitted). Further research might determine whether this technique can be used as a 341 

sampling method making it simpler and less time-consuming. In fact, these techniques have 342 

already been used in several biological control programs in order to monitor population 343 

densities of mealybugs and also to evaluate the impact of their natural enemies, mainly 344 

predators (Browning 1959, Furness 1976, Goolsby et al. 2002). 345 

Monitoring processes should be carried out fortnightly after petal fall according to our results 346 

and the seasonal trend of D. aberiae presented in a companion manuscript (Martínez-Blay et al. 347 

submitted). Sampling should start just after petal fall because spraying is forbidden during the 348 

flowering period. D. aberiae density increases exponentially between April and July and fruit 349 

damage is caused mainly during this period. When populations reach the EEIL, four insecticides 350 

are currently recommended against mealybugs in citrus in Spain: chlorpyrifos, chlorpyrifos-351 

methyl, mineral oils and spirotetramat (Tena 2017). More information is needed to evaluate the 352 

efficacy of these insecticides but it is worth mentioning that some D. aberiae adult females 353 

descend to the trunk and soil where they lay their ovisacs in spring (Martínez-Blay et al. 354 
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submitted). Therefore, the application should reach at least the base of the trunk. After 355 

insecticide application, the monitoring process should continue because D. aberiae can reach 356 

the EEIL again as occurs with P. kellyanus (Planes et al. 2015). Finally, it should not be 357 

overlooked that fruit of the previous year might have not been harvested during the damaging 358 

period, in some late varieties like Valencia oranges. . Therefore, farmers should be cautious with 359 

insecticide residuals in the fruits of the previous year.  360 
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Table 1. Taylor’s indices for each sample unit, generation and life instar of D. aberiae. (N1= 545 
first nymphal instar; N2= second nymphal instar; N3= third nymphal instar; H1= adult female; 546 
H2= gravid adult female). 547 

 548 

Sample 
unit Life stage Generation Samples 

(n)   a b SE(b) R2 
t-Value 

for 
slope=1 

Twigs N1-N2 1 73 5.714 1.504 0.03 96.61 -18,665 

  

2 61 8.091 1.612 0.05 95.14 -16,573 

  

Total 134 6.653 1.548 0.03 95.64 -21,512 

 
N3-F1 1 76 2.63 1.31 0.03 95.92 -12,167 

  

2 60 3.873 1.406 0.03 97.03 -16,22 

 
F2-ovisac 1 55 1.517 1.138 0.05 90.82 -3,671 

  

2 44 3.055 1.321 0.04 96.39 -11,284 

 

All 
instars 

1 89 4.508 1.512 0.03 96.05 -18,668 

  

2 80 6.561 1.552 0.03 96.45 -19,957 

    Total 169 5.37 1.525 0.02 95.92 -23,705 

Leaves N1-N2 1 72 14.997 1.569 0.04 95.18 -16,655 

  
2 66 19.953 1.656 0.06 91.93 -13,455 

  
Total 133 16.982 1.6 0.04 93.61 -18,491 

 
N3-F1 1 62 3.733 1.26 0.03 95.71 -9,772 

  
2 53 6.823 1.425 0.05 94.63 -11,787 

 
F2-ovisac 1 69 1.607 1.091 0.03 94.98 -3,708 

  
2 55 3.266 1.248 0.03 96.32 -13,279 

 

All 
instars 1 90 11.83 1.567 0.04 94.64 -16,981 

  
2 86 15.241 1.627 0.04 93.56 -16,145 

    Total 162 13.459 1.597 0.03 93.9 -20,423 

Fruits N1-N2 1 56 7.551 1.411 0.05 94.19 -11,213 

  
2 91 5.546 1.418 0.03 95.51 -15,249 

  
Total 147 6.252 1.398 0.03 94.87 -16,419 

 
N3-F1 1 44 2.761 1.21 0.03 97.53 -9,711 

  
2 87 2.506 1.245 0.03 96.34 -11,168 

  
Total 131 2.547 1.214 0.02 97.13 -13,135 

 
F2-ovisac 1 33 0.925 0.98 0.005 99.93 4,835 

  
2 71 1.096 0.99 0.03 93.59 0,4541 

  
Total 104 1.109 1.01 0.02 96.42 -0,7221 

 

All 
instars 1 61 7.079 1.41 0.04 94.75 -12,104 

  
2 97 4.677 1.42 0.03 95.78 -16,223 

    Total 158 5.495 1.39 0.03 95.12 -17,094 
 549 
1 Indicates t-value for slope = 1 (P > 0.05). 550 

  551 
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Figure legends 552 

Figure 1. Taylor´s power law regression for Delottococcus aberiae on developing fruits during 553 

the damaging period (between petal fall and July) (R2 = 95.12).  554 

Figure 2. Enumerative sampling for Delottococcus aberiae in citrus. Number of fruits required 555 

based on the mean number of mealybugs pre fruit based on Green’s method (1970) to achieve a 556 

precision level of D = 0.25, 0.30 and 0.35. The vertical line represents the obtained EEIL (0.24 557 

insects per fruit).  558 

Figure 3. Relationship between the percentage of occupied fruits and the mean population 559 

density of Delottococcus aberiae in citrus. Solid line represents Wilson and Room´s theoretical 560 

model.   561 

Figure 4.  Binomial sampling for Delottococcus aberiae in citrus. Number of fruits required 562 

based on the percentage of occupied fruit based on Kuno’s method (1986) to achieve a precision 563 

level of D = 0.25, 0.30 and 0.35. The vertical line represents the obtained EEIL (0.24 insects per 564 

fruit). 565 

 Figure 5. Relationship between the maximum fruit occupation throughout the damaging period 566 

(petal fall until July) and the percentage of damaged fruit by Delottococcus aberiae at harvest 567 

(R2 = 0.85; P < 0.001; n = 28). Each point represents an orchard during one year (the maximum 568 

percentage of occupied fruits throughout the damaging period was considered only if more than 569 

12 fruits were counted per tree). 570 

 571 

  572 
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Supplemental material 573 

Supp. Table S1. Sampled sites and years, number of trees sampled per orchard, citrus variety and cover crop.  574 

Sampling year Locality Number 
of trees Citrus variety Ground 

cover Used for 

2014-2015 Algimia 8 Clemenules clementine wild weed  EIL(2014), aggregation pattern 
2015 Almenara 8 Ortanique poaceae grass EIL, aggregation pattern 

2014-2015 Benifairó de les Valls 8 Clemenules clementine wild weed  EIL(2014), aggregation pattern 
2014 Benifairó de les Valls 6  Oroval clementine wild weed  EIL, aggregation pattern 
2015 Benifairó de les Valls 8 Marisol clementine poaceae grass EIL, aggregation pattern 
2015 Benifairó de les Valls 10 Sanguinello bare soil EIL, aggregation pattern 
2015 Benifairó de les Valls 10 Oroval clementine wild weed EIL, aggregation pattern 
2015 Faura 8 Clemenules clementine poaceae grass EIL, aggregation pattern 

2014-2015 Quart de les Valls 8 Clemenules clementine bare soil EIL, aggregation pattern 
2014 Quart de les Valls 8 Powell Navel poaceae grass EIL, aggregation pattern 

2014-2015 Quart de les Valls 10 Oroval clementine bare soil EIL, aggregation pattern 
2014-2015 Quart de les Valls 10 Oroval clementine bare soil EIL, aggregation pattern 

2015 Quart de les Valls 8 Orri poaceae grass EIL, aggregation pattern 
2015 Quart de les Valls 8 Ortanique bare soil EIL, aggregation pattern 
2015 Quart de les Valls 8 Powell Navel poaceae grass EIL, aggregation pattern 
2015 Quart de les Valls 8 Clemenules clementine poaceae grass EIL, aggregation pattern 

2014-2015 Quartell 10 Powell Navel wild weed  EIL, aggregation pattern 
2014-2015 Quartell 10 Sanguinello wild weed  EIL(2015), aggregation pattern 
2014-2015 Quartell 10 Powell Navel wild weed  EIL, aggregation pattern 

2015 Quartell 8 Sanguinello  wild weed EIL, aggregation pattern 
2015 Quartell 8 Ortanique poaceae grass EIL, aggregation pattern 
2014 Vall d´Uixó 8 Moncada      bare soil EIL 
2014 Quart de les Valls  8 Clemenules clementine wild weed  EIL, aggregation pattern 
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