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Abstract

In general, the starting point for the complex task of designing a robust and

efficient control system is the use of nominal models that allow to establish a

first set of parameters for the selected control scheme. Once the initial stage

of design is achieved, control engineers face the difficult task of Fine-Tuning

for a more realistic environment, where the environment conditions are as sim-

ilar as possible to the real system. For this reason, in the last decades the use

of Hardware-in-The-Loop (HiL) systems has been introduced. This simulation

technique guarantees realistic simulation environments to test the designs but

without danger of damaging the equipment. Also, in this iterative process of

Fine-Tuning, it is usual to use different (generally conflicting/opposed) criteria

that take into account the sensitivities that al- ways appear in every project,

such as economic, security, robustness, performance, for example. In this frame-

work, the use of multi-objective techniques are especially useful since they allow

to study the different design alternatives based on the multiple existing criteria.

Unfortunately, the combination of multi-objective techniques and verification
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schemes based on Hardware-In-The-Loop presents a high incompatibility. Since

obtaining the optimal set of solutions requires a high computational cost that

is greatly increased when using Hardware- In-the-Loop. For this reason, it is

often necessary to use less realistic but more computationally efficient verifica-

tion schemes such as Model in the Loop (MiL), Software in the Loop (SiL) and

Processor in the Loop (PiL). In this paper, a combined methodology is pre-

sented, where multi-objective optimisation and multi-criteria decision making

steps are sequentially performed to achieve a final control solution. The authors

claim that while going towards the optimisation sequence over MiL → SiL →

PiL→ HiL platforms, the complexity of the problem is unveiled to the designer,

allowing to state meaningful design objectives. In addition, safety in the step

between simulation and reality is significantly increased.

Keywords: multi-objective optimisation, controller tuning, hardware in the

loop, flight control system.
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1. Introduction

A controller tuning task typically starts with a certain nominal model of the

process under consideration. With such a nominal model, and with a previously

selected controller structure, the tuning process will seek a suitable controller,

fulfilling several requirements and performance specifications (hereafter design5

objectives) imposed by the designer. Such design objectives range from time to

frequency domain exigencies, requirements and/or constraints.

In spite of the usefulness of using a nominal model for controller tuning pur-

poses, for some applications further performance evaluation is required. There-

fore, with the aim of enhancing controller’s performance evaluation, different10

platforms could be used; for example, using a hardware in the loop (HiL) plat-

form has become an standard practice in order to evaluate embedded controllers,

with the goal of getting a more reliable measure of their performance [Lu et al.,

2007, White et al., 2011]. Such platforms are common in automotive [Choi and

Lee, 2012] and aeronautic/aerospace sectors [Jeon and Jung, 2012], where it is15

required to enhance the quality, safety and verification testing of their subsys-

tems [Samad and Stewart, 2013].

On the other hand, it is not unusual to state a controller tuning task as an op-

timisation problem. The designer’s task is to define one or more performance ob-

jectives to fulfil; afterwards, adjusting the tunable controller’s parameters using20

an optimisation algorithm in order to meet such design objectives. Nevertheless,

designs found with a pure-performance optimisation approach are often prone to

be highly sensitive to the parameters used in the nominal model [Panagopoulos

and Åström, 2000, Åström and Hägglund, 2001, Garpinger et al., 2014]; there-

fore, they might be useless in a practical sense. According to this, assessing25

robustness and relia- bility constraints (or objectives) has become the standard

in such optimisation instances. The former lead to robust design optimisa-

tion (RDO), where the aim is to optimise the performance of the controller in

the nominal model and simultaneously minimize its sensitivity; the latter leads

to reliability-based design optimisation (RBDO), commonly based on stochas-30
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tic analysis and its aim is to provide a measure of risk of failure [Frangopol

and Maute, 2003]. Different approaches for RBDO have been used, as monte-

carlo sampling, simulation techniques or first/second order reliability methods

[Valdebenito and Schuëller, 2010]

Therefore, the designer is, in general, dealing with a multi-objective prob-35

lem (MOP), where performance measures are in conflict with the reliability or

robustness indexes. Multi-objective optimisation (MOO) has shown to be a

valuable tool for controller tuning [Reynoso-Meza et al., 2014b] when multiple

and conflictive design objectives appear. It handles the simultaneous optimisa-

tion of several conflicting objectives, in order to provide what is known as the40

Pareto set [Miettinen, 1998], where all solutions are Pareto optimal i.e. they

have different trade-off between conflicting objectives.

The aim of this paper is to provide a systematic approach, using (succes-

sively) different platforms in order to evaluate the controller’s performance with

multi-objective optimisation techniques. Reliability methods have been merged45

before with multi-objective optimisation [Coelho, 2015] or HiL platforms within

the MOO process [Stewart et al., 2004, Woźniak, 2011] or within the MCDM

stage [Gladwin et al., 2010]; nevertheless new methodologies to integrate such

approach when the computational burden in the HiL is considerable, might be

useful for control engineers. This is because, although tuning controllers directly50

in a HiL set-up by means of MOO would be a perfect match, it is usually too

time-demanding in practice. This time cost leads to other difficulties that make

optimising from scratch in the HiL platform prohibitive.

Other less realistic (and less complex) platforms such as Model in the Loop

(MiL), Software in the Loop (SiL) and Processor in the Loop (PiL) can be pre-55

viously used in the multi-objective optimisation procedure. Thereby, in this pa-

per a methodology is presented, where multi-objective optimisation and multi-

criteria decision making steps are sequentially performed over those platforms,

going from the least to the most complex, in order to achieve a final control

solution. First, more meaningful objectives can be posed as the designer gets60

more knowledge about the interaction between the system and the control struc-
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ture. Also preferences on the objectives are more ”maturely” included. Second,

objectives and decision variables bounds can be better delimited.

The remainder of this paper is as follows: in Section 2 brief backgrounds on

controller’s performance and MOO are given; in Section 3 the methodological65

proposal of this work is presented and it is evaluated in an aircraft platform in

Section 4. The purpose will be to accomplish a certain flight mission via the

supervision of several way-points autonomously, which is reported in Section

5. Finally, some concluding remarks and further directions of this work are

commented.70
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2. Background

In this section a brief background on controller’s performance evaluation

in engineering design and MOO techniques will be given, in order to state a

common framework for the methodological proposal in this work.

2.1. Controllers’ evaluation in engineering design75

Figure 1: Basic control loop.

According to [Åström and Hägglund, 2001], any controller tuning procedure

should consider design objectives related with:

• Load disturbance response

• Measurement noise response

• Setpoint response80

• Robustness to model uncertainties

In agreement with the problem at hand, fulfilling one or some of them will

be more (or less) preferable by the designer. According to the basic control

loop of Fig. 1, some common choices in controller tuning [Reynoso-Meza et al.,

2014b] for design objectives are:85

• Maximum value of sensitivity function

JMs
(x) =

∥∥(I + P (s)C(s))−1
∥∥
∞ (1)
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• Integral of the absolute error value

JIAE(x) =

Tf∫
t=t0

|r(t)− y(t)| dt (2)

• Total variation of control action

JTV (x) =

Tf∫
t=t0

∣∣∣∣dudt
∣∣∣∣ (3)

where r(t), y(t), u(t) are the reference, measured variable and control ac-

tion in time t. Equations (2) and (3) are commonly used for setpoint response

and load disturbance, while for example Equation (1) has been used to guar-

antee a desired level of robustness. Time performance design objectives are

usually preferred in industrial applications over frequency domain, as industrial90

requirements are usually expressed in such terms [Moberg et al., 2009].

Different platforms are available to evaluate the performance of a controller.

Regarding proximity to the real set-up, the authors are using the following

division:

• Model in the loop (MiL): a classical approach, where a nominal model is95

used to calculate and evaluate the performance of a controller.

• Software in the loop (SiL): the approach where the controller is evalu-

ated as it will be embedded ; that is, using the coding/script as it will be

implemented in the embedded control device.

• Processor in the loop (PiL): the approach where the controller is executed100

in the processor/device where it will be embedded. Note that this is

normally a real-time simulation.

• Hardware in the loop (HiL): the platform where the interactions (includ-

ing physical communications) among processor, sensors and actuators are

placed inside the real-time simulation loop.105

7



The goal of using one platform over another, is on the one hand, getting a

more meaningful and deeper understanding of the controller’s performance to

be implemented; on the other hand, getting a certain grade of reliability on its

performance measure. Such measure can be expressed as risk of failure [Stengel

and Marrison, 1992] or with probabilistic indices [Alfi et al., 2015] Hereafter,110

this set of platforms will be denoted as XiL platforms.

In any case, the conflict between robustness and performance arises [Garpinger

et al., 2014], and therefore, MOO techniques might be an appealing tool to ad-

dress the controller tuning problem.

2.2. Multi-objective optimisation design review115

As referred in [Miettinen, 1998], a MOP 1, can be stated as follows:

min
x
J(x) = [J1(x), . . . , Jm(x)] (4)

subject to

K(x) ≤ 0 (5)

L(x) = 0 (6)

xi ≤ xi ≤ xi, ∀i = [1, . . . , n] (7)

where x = [x1, x2, . . . , xn] is defined as the decision vector; J(x) as the ob-

jective vector and K(x), L(x) as the inequality and equality constraint vectors

respectively; xi, xi are the lower and upper bounds in the decision (or search)120

space X.

It has been pointed out that there is not a single solution in MOPs, because

there is not (in general) a better solution in all the objectives. Therefore, a

1Any maximisation problem can be converted to a minimization one. For each of the

objectives that have to be maximised, the transformation: max Ji(x) = −min(−Ji(x)) could

be applied.
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set of solutions, the Pareto set ΘP , is defined. Each solution in the Pareto set

defines an objective vector in the Pareto front JP . All solutions in the Pareto125

front conform a set of Pareto optimal and non-dominated solutions (Fig. 2):

Definition (Pareto optimality [Miettinen, 1998]): An objective vector J(x1) is

Pareto optimal if there is not another objective vector J(x2) such that Ji(x
2) ≤

Ji(x
1) for all i ∈ [1, 2, . . . ,m] and Jj(x

2) < Jj(x
1) for at least one j, j ∈

[1, 2, . . . ,m].130

Definition (Dominance [Coello and Lamont, 2004]): An objective vector J(x1)

is dominated by another objective vector J(x2) iff Ji(x
2) ≤ Ji(x

1) for all i ∈

[1, 2, . . . ,m] and Jj(x
2) < Jj(x

1) for at least one j, j ∈ [1, 2, . . . ,m]. This is

denoted as J(x2) � J(x1).

Figure 2: Pareto optimality and dominance concepts. A Pareto front (dotted line in objective

space J) is approximated with a set solutions (depicted with stars) selected from the fesible

decision space X. Dark solutions are non-dominated solutions in the set and therefore, they

are used to build a Pareto front approximation (solid line). Remainder solutions are dominated

solutions.

It is important to notice that the Pareto front is usually unknown, and135

the designer can only rely on a Pareto front approximation J∗P and Pareto set
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approximation Θ∗P . In order to successfully embed the multi-objective optimi-

sation concept into a design process, three fundamental steps are required: the

MOP statement (measure); the MOO process (search); and the multi-criteria

decision making (MCDM) step (multicriteria analysis). This procedure will be140

named Multi-objective Optimisation Design (MOOD) procedure (Fig. 3).

Figure 3: Multi-objective Optimisation Design (MOOD) procedure.

MOOD procedures have shown to be a valuable tool for controller tuning

applications (see [Reynoso-Meza et al., 2014a, Meza et al., 2017], and references

therein). Such techniques have been used in different controller structures [Meza

et al., 2016]; for example PID controllers [Wang et al., 2016], fractional order145

controllers [Sánchez et al., 2017, Zamani et al., 2017] and state space controllers

[Hassani and Lee, 2016]. They enable the designer or decision maker (DM) to

have a close embedment into the design process; since it is possible to take into

account each design objective individually, they also enable comparing design

alternatives, in order to select a controller fulfilling the expected trade-off among150

conflicting objectives. Such procedures have been used with success when (1) it

is difficult to find a reasonable trade-off for a controller tuning fulfilling several

requirements; and (2) it is worthwhile analysing design objectives exchange

among design alternatives.

In spite of its success in controller tuning applications, few works focus on155

incorporating the XiL platforms (besides the HiL) in their procedures ([Stewart
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et al., 2004, Woźniak, 2011] in the MOO process or [Gladwin et al., 2010] in the

MCDM stage). Next, an integrative framework between XiL platforms and the

MOOD procedure for controller tuning will be presented. Here it is assumed

that:160

• Using directly the HiL is not always possible in the MOO process, due to

computational burden.

• While going towards the sequence MiL → SiL → PiL → HiL the efforts

required to evaluate a controller are gradually increased. This is because

(1) the more meaningful the objectives are the more complex they become165

(2) setup and analysis also increase in complexity and time.

• Not only robustness but also reliability of the controller’s performance will

be sought.
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3. XiL platforms within a MOOD framework for controller tuning

applications170

In this section, an integrative framework to enhance controller performance

evaluation in MOOD procedures is given. Such framework considers using dif-

ferent XiL platforms throughout the optimisation and decision making process.

Firstly, the MOP statement, the MOO process and the MCDM stage will be

stated for controller tuning; afterwards, a full integration with the XiL platforms175

will be proposed.

3.1. The MOOD process

3.1.1. MOP statement

According to Section 2, the general MOP that must be considered in con-

troller tuning applications is:180

min
x
J(x) = [JSR(x),JLR(x),JNR(x),

JRDO(x),JRBDO(x, φ)] (8)

Where x is now the vector of tunable parameters of the controller struc-

ture selected; JSR(x), JLR(x), JNR(x) are the set of design objectives related

with setpoint response, load disturbance response and measurement noise re-

sponse respectively (performance objectives); JRBO(x), JRBDO(x) are the set

of design objectives related with robust design optimisation and reliability-based185

design optimisation respectively (robustness/reliability objectives). RBDO de-

sign objectives will be related with the stochastic evaluation of the performance

objectives for different scenarios. That is, for example, given a set of scenar-

ios Φ and a performance objective for a given scenario J(x, ·), plausible design

objectives are (for example) the worst case performance (Equation (9)) or the190

variance on the performance (Equation (10))
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Jworst = max (ς) (9)

ς = J(x, φ),∀φ ∈ Φ

Jvar = σ (ς) (10)

ς = J(x, φ),∀φ ∈ Φ

While it is common to state the design objectives or constraints in a RDO

sense, stating them to get reliability (RBDO) and actively using them in the

optimisation process is less common. However, they are quite useful, since they

provide a deeper (more reliable) insight on controller performance, its risk of195

failures and its expected behaviour [Alfi et al., 2015, Yurchenko and Alevras,

2014, Moberg et al., 2009, Stengel and Marrison, 1992].

As a system might comprise several sub-processes and their interactions

(that is, a multi-variable process), several design objectives for each of the sub-

processes may appear. The designer might need to measure and optimise them200

all. In [Reynoso-Meza et al., 2013b] it was intended to provide a general frame-

work for controller tuning, dealing with such many-objective optimisation state-

ment (usually m > 3). Nevertheless, in spite of its usefulness, the approximated

Pareto front could contain a considerable amount of solutions, which could in

turn overwhelm the DM in the MCDM stage, even for a 2x2 multi-variable205

process. Therefore a different approach is needed.

A feasible approach in controller tuning can be found when incorporating

preferences in the optimisation process2. This is possible since (1), the designer

has an idea of the objectives which he/she needs to meet and/or (2), a reference

2Correlation analysis might be useful in order to reduce the dimensionality of the problem,

nevertheless they don’t embed information about the preferences that might be useful for the

designer.
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controller exists (manually tuned or using tuning rules)3. Lets assume that the210

designer can incorporate such preferences via the following function f:

f : x ⊆ X → (P ∨PC) (11)

That is, f(x) is a function which determines if a given solution is aligned with

the designer’s preferences (P) or not (PC), regarding the desired performance of

the control loop (time and/or frequency domain). Such function and preferences

4 can be incorporated numerically into the set of constraints previously stated215

in eq. (4). Hence, the MOP statement of eq. (8) will be subject to:

K(x) ≤ 0 (12)

L(x) = 0 (13)

f(x) ∈ P (14)

xi ≤ xi ≤ xi, ∀i = [1, . . . , n] (15)

Given the above, an algorithm to deal with this many-objectives optimisation

instance, as well as with preferences and constraints, is required.

3.1.2. MOO process

Several algorithms exist, and the selection of one over another should be220

pondered by the characteristics of the problem (for instance multimodality,

many-objectives, expensive optimisation) and the expected outcome (conver-

gence, diversity and pertinency).

The approach presented by [Reynoso-Meza et al., 2016b] using the sp-MODEII5

algorithm [Reynoso-Meza et al., 2014a] will be followed in this paper. Its main225

3If no reference controller is available, a preliminary analysis on a Pareto front approxima-

tion (calculated without preferences) might provide the required information in order to state

the preference matrix.
4Hereafter, fraktur style will be used to denote such input from the designer.
5Scripts and tutorials available at www.mathworks.com/matlabcentral/fileexchange/

authors/289050.
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characteristics are useful in order to deal with many-objective optimisation

statements, covering the basic properties of convergence, diversity and perti-

nency of the Pareto front. Such characteristics are:

• It uses Differential Evolution [Storn and Price, 1997] algorithm as opti-

misation engine, which has shown a good trade off between global search230

and convergence to the Pareto front [Das and Suganthan, 2010].

• The objective space is partitioned in spherical sectors [Reynoso-Meza

et al., 2010], in order to improve the spreading along the Pareto front.

• Preferences P are coded a priori in the form of a preference matrix m

by the designer (Table 1). For each design objective Ji(x), i ∈ [1, · · · ,m]235

six values (J0
i , · · · , J5

i ) are stated (in the original units for each design

objective) in order to define 5 preference ranges: highly desirable (HD),

desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).

• Preferability function f(·) is computed using the above commented ma-

trix m. With such preference matrix, the algorithm computes a global240

physical programming index (GPP) [Blasco et al., 2012] to evaluate the

preferability of one solution over another solution, which is a modified

form of the physical programming methods [Messac, 1996]. Such index

is used to prune the approximated Pareto front, in order to get a com-

pact and pertinent approximation, with the number of desired solutions245

imposed by the designer.

• This approach enables to state a difference between design objectives for

decision making and for optimisation. In the former case, they represent

the design objectives where de DM is willing to perform a decision making

and where the objective space is partitioned; the latter, are design objec-250

tives that are used in the optimisation stage, used to calculate the GPP

index, but are not used a priori in the design objective partitioning. For

example, in Fig. 4 such difference is depicted for a 3-objective problem

where two Pareto-optimal solutions lie. Assume that square solution has

15



Table 1: Typical preference matrix m for GPP index. Five preference ranges have been defined:

highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable

(HU).

Preference matrix m

← HD → ← D → ← T → ← U → ← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(x) [-] J0
1 J1

1 J2
1 J3

1 J4
1 J5

1

...
...

...
...

...
...

...

Jm(x) [-] J0
m J1

m J2
m J3

m J4
m J5

m

a better GPP index than the circle solution. In the 2D projection (design255

objective for decision making), seems that the circle solution should be se-

lected, since it dominates the square solution and both belong to the same

spherical sector; nevertheless when considering the overall objective space

in the 3D representation the selection of one over the another will rely on

the f(x) preferability function and thus, the square solution is selected.260

Such technique is helpful for many-objectives optimisation instances in

controller tuning purposes [Reynoso-Meza et al., 2016b]. Basically, we are

spread- ing solutions in a 2D space, where the designer might feel more

comfortable to analyse the Pareto front, but taking into account the m-

dimensional space with the GPP index, and therefore, all design objectives265

are considered.

3.1.3. MCDM step

The main goal in the MCDM step, is to (1) select one preferable solution

x ∈ Θ∗P or (2) select a subset X ⊆ Θ∗P of preferable and feasible solutions for

further evaluation. In any case, the DM needs to perform an accurate analysis270

of the Θ∗P approximation in a multidimensional and multicriteria environment.

It is widely accepted that visualization tools are valuable and provide to the DM

16



Figure 4: Difference between design objectives for optimisation (3-objective) and for decision

making (2-objective) using dominance and preferences. Square-solution has a better GPP

index for 3-objective than circle-solution.
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meaningful methods to analyse the Pareto front and take decisions [Bonissone

et al., 2009, Tušar and Filipič, 2014].

For two-dimensional problems (and sometimes for three-dimensional prob-275

lems) it is usually straightforward to make an accurate graphical analysis of the

Pareto front, but the difficulty increases with the dimension of the problem.

Common alternatives to tackle an analysis in higher dimensions are Scatter Di-

agrams, Parallel Coordinates [Inselberg, 1985, 2009] and Level Diagrams (LD)

[Blasco et al., 2008, Reynoso-Meza et al., 2013a]. Recently, hybrid tools merging280

Parallel Coordinates, Dendograms, and Cluster Maps have been proposed [Cela

and Bolláın, 2012].

Given that design objectives for decision making and for optimisation will be

stated, a reduced space for MCDM will be sought (up to 3 objectives); neverthe-

less, as auxiliary visualization, a LD tool will be used 6, due to its capabilities to285

propagate interpretability from J∗P to Θ∗P and due to its robustness, scalability

and simplicity properties [Tušar and Filipič, 2014]. They have been used before

for design applications [Perera et al., 2013, Pourzeynali et al., 2013] and con-

troller tuning [Hajiloo et al., 2012, Koetje et al., 2013]. Additionally, in order

to evaluate 2-5 design alternatives, radial plots7 are used due to their simplicity290

to depict few design options with several design objectives.

3.2. Integration to enhance controller’s performance evaluation

We will state a minimal example of an integrated MOOD using the MiL and

SiL platforms. Again, it is important to remember that, enhancing controller’s

performance evaluation is always possible with a HiL platform. What is not295

always possible, however, is to use such platform actively in the MOO process

(globally or locally) at least from scratch.

The general purpose, before getting into the SiL platform, is to get a suitable

set of solutions, as well as to improve the DM’s knowledge on the problem’s

6Available at http://www.mathworks.com/matlabcentral/fileexchange/24042
7Also known as star, rose, spider diagrams.
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trade-off by using the information extracted from the MiL platform. That is,300

the designer will define a MOP at the MiL platform:

min
x
J(x) |MiL

s.t.

K(x) |MiL ≤ 0

L(x) |MiL = 0

fMiL(x) ∈ P |MiL

xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

(16)

And starting from such MOP statement, a MOO process will output the

Pareto Set and Front approximations Θ∗P |MiL , J∗P |MiL respectively, with a

given mMiL.

A MCDM analysis on Θ∗P |MiL , J∗P |MiL might include the SiL platform.305

Design objectives could be evaluated in the SiL environment, or new indexes

might be calculated (different form the J(x) |MiL statement, but important to

consider). After such procedure at the MCDM stage, the designer will select a

set X ⊆ Θ∗P |MiL of preferable solutions; lets denote this subset as XMiL.

Nevertheless, if such additional indexes are important, the designer could310

also consider an active seeking in the SiL platform. Lets suppose this is the

case, then a new MOP can be stated:

min
x
J(x) |SiL

s.t.

K(x) |SiL ≤ 0

L(x) |SiL = 0

fSiL(x,XMiL) ∈ P |SiL

xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

(17)
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Again, after a MOO process based on the MOP from eq. (17), the designer

will obtain the Pareto Set and Front approximations Θ∗P |SiL , J∗P |SiL respec-

tively, with a given mSiL. It is important to notice that the fSiL(x,XMiL)315

function includes, besides preferences of the DM, the information gained in the

previous MCDM step (here represented by the subset XMiL). This is aligned

with the philosophy of innovization [Deb et al., 2014], where information from

the MOO stage is retrieved in order to gain a deeper knowledge on trade-off of

the current MOP and its design objectives (that is, innovation trough optimi-320

sation).

The advantage of following this process relies on two facts. First, from the

computational sense, evaluating performance of a controller in SiL platforms

could be more expensive than doing it in MiL platforms; this is due to the fact

that SiL platforms would include (for example) sampling rate effects (hence325

slowing down the simulations). Therefore, performing the MOO process from

scratch in a SiL platform is sometimes impractical. More practical could be

however, using previous information from the Θ∗P |MiL , J∗P |MiL in order to

refine the preference matrix mMiL and the objective space bounds xi and xi

∀i = [1, . . . , n]; furthermore, solutions XMiL might be used as initial popula-330

tion (initial candidate solution in the optimisation algorithm) to accelerate the

convergence in the SiL platform. Second, from the problem knowledge sense,

a progressive approximation to reality may help to gradually reduce the engi-

neer’s uncertainty about the problem. Note that an approach to reality usually

means an increase in complexity. In this way, the more information the designer335

gets from previous iterations, the more accurate is the request on the controller

performance.

Following this idea, the MOPs of Equations (18) and (19) could be defined.

Such elements are summarised in Fig. 5.
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min
x
J(x) |PiL (18)

s.t.

K(x) |PiL ≤ 0

L(x) |PiL = 0

fPiL(x,XMiL,XSiL) ∈ P |PiL

xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

min
x
J(x) |HiL (19)

s.t.

K(x) |HiL ≤ 0

L(x) |HiL = 0

fHiL (x,XMiL,XSiL,XPiL) ∈ P |HiL

xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

340

It is important to remark that sometimes using all the XiL platforms is not

possible nor even practical. As an example, the designer might use only two

of them: a SiL (comprising the MiL) and the HiL (comprising the PiL). This

election will highly depend on the facilities and infrastructures available for such

tests, as well as on the complexity of the problem. A case of study for which345

this methodology could be suitable will be presented next.
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Figure 5: The Multi-objective Optimisation Design Procedure (MOOD) for controller tuning

using XiL platforms.
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4. Methodology implementation

As commented before, XiL platforms are very useful for automotive and

aeronautic applications. Therefore, in order to validate the usability of this

methodology using MOOD procedures, the attitude and navigation control of350

an aircraft intended to perform way-points supervision tasks will be tuned.

Hence, MOPs increase in complexity not only because of the change of platform

but also because of the addition of new objectives.

4.1. System description

The aircraft for test and validation is presented in Fig. 6. The main com-355

ponent of the UAV flight system is a Kadett 2400 aircraft manufactured by

Graupner. The aircraft has a very lightweight frame and characteristics that

make it suitable for the purposes of this research. These characteristics in-

clude a 2.4 m wing span, 0.9 m2 of wing surface, 48.07 N/m2 wing loading, and

1.65× 10−2 m3 of available volume to house control hardware.360

During normal flight, the tail rudder, elevators, and ailerons serve as the con-

trol surfaces. Propulsion is provided by a brushless alternating current engine

supplied by two lithium-ion polymer (LiPo) batteries through a frequency varia-

tor. The variator and the servomotors are controlled by pulse width modulated

(PWM) command signals.365

The flight control station (FCS), housed in an ARM-based microcontroller,

hosts the control algorithms. The control loop is closed by a IG500N unit

from SBG Systems, that integrates a wide range of sensors, including the ac-

celerometers, gyroscopes, and magnetometers. A Kalman filter fuses the sensor

information to estimate position, orientation, linear and angular speed, and ac-370

celeration. This same platform was presented with more detail in [Velasco and

Nieto, 2014, Velasco-Carrau et al., 2015] together with the results of the first

flight tests.

The purpose of the aircraft (for this paper), is to perform a supervision

of several way-points. As general approach and without loss of generality, a375
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Figure 6: Hardware elements on board experimental platform, the aircraft Kadett 2400
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proportional-integral (PI) controller structure is selected to drive each control

variable to its set-point.

C(s) = kp

(
1 +

1

Tis

)
(20)

where kp is the proportional gain and Ti the integral time.

Figure 7: Kadett’s control loop structure. Control and guidance over a user-defined mission.

The complete control structure is a set of five PI regulators as the one shown

in Fig. 7. Three references (altitude, heading and velocity) are served to three of380

the five regulators. Those references are calculated by a reference manager based

on the mission plan (way-points through which the aircraft must pass) and the

aircraft current position. Thrust is directly applied to the motor as result of the

velocity’s PI, whereas pitch and roll references are respectively obtained from

altitude and heading regulators. Finally, pitch and roll PIs generate deflections385

to be applied on elevators and ailerons. A total of ten variables [x1, . . . , x10],

five pairs of the form (kp,Ti), must then be adjusted so that a set of user-defined

objectives becomes Pareto optimal.

4.2. The MOOD-XiL definition

Now, following the methodology, three XiL platforms are presented for this390

example:

MiL: A non-linear model has been identified according to [Velasco and Nieto,
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2014, Velasco-Carrau et al., 2015]8; roughly speaking, multi-objective op-

timisation techniques have been used to adjust several constants of a first

principle model of our aircraft.395

SiL: The same non-linear model is used, but here the controller’s scripts are

added as they will be coded in the FCS; this includes different sampling

rates (50 ms for outer loops and 20 ms for inner loops), together with

bumpless transfer and anti-windup mechanisms.

HiL: A National Instruments PXI with a real time running model substitutes400

most of the hardware components; those components are ”virtualized” so

that the FCS can be added to the loop without any software modification,

i.e. as it is programmed in a real flight (see Fig. 8).

Given these three platforms, a particularized version of the methodology

depicted in Fig. 5 can be posed for the problem at hand. As we can see, only MiL405

and SiL platforms are used actively in the MOO process whereas all three (MiL,

SiL, and HiL) are employed in the MCDM stage. This is because the current HiL

platform’s infrastructure does not allow for complete integration with the MOO

algorithm. The MIL platform will be used with a simple control test in order

to identify suitable controllers in the optimisation phase; afterwards, with such410

results a new optimisation process will be carried out in the SiL platform, where

a flight mission will be stated and used in order to evaluate the performance of

a given controller. Finally, after this optimisation phase using the simulation

model, a final decision making process will be carried out in the HiL platform.

Additionally, a reference controller xref , adjusted via pole placement, is415

available from previous works. A reference controller is useful for two main

reasons: (i) it provides a rough first idea of what preferences might be reasonable

to ask for; (ii) it can be taken as a starting point for the MOO process in the

first round.

8This model has been implemented in Simulink c© Matlab c© version R2013a, with

ode3(Bogacki-Shampine) solver with a fixed-step size of 1ms.
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Figure 8: HiL platform for Kadett aircraft.

4.2.1. MOOD at the MiL platform420

This MOOD statement will be named hereafter, TimePiL (time performance

in the loop) and it will be stated as a RDO instance. For this step the MOP

definition is:

min
x
J(x) |MiL = [JM1(x), . . . , JM7(x)] (21)

s.t.

fMiL(x) ∈ P |MiL

xi ≤ xi ≤ xi, i = [1, . . . , n]

with x = [kp1 , Ti1 , · · · , kp5 , Ti5 ] and |kp| ∈ [0, 5] and Ti ∈ ]0, 50] ∪ {+∞}; a

setpoint response is evaluated for a simultaneous change in heading and altitude.425

The design objectives are:

• JM1
(x): Settling time for yaw at ±2%.

• JM2
(x): Settling time for altitude at ±2%.

• JM3
(x): Throttle’s total variation of control action (Eq. (3)).
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• JM4(x): Aileron’s total variation of control action (Eq. (3)).430

• JM5(x): Elevator’s total variation of control action (Eq. (3)).

• JM6
(x): Roll’s total variation of control action (Eq. (3)).

• JM7
(x): Pitch’s total variation of control action (Eq. (3)).

Design objectives JM1(x) and JM2(x) are stated for performance (JSR(x))

while JM3
(x) to JM7

(x) for robustness (JRBO(x)), since total variation is a435

valid measure for robustness [Sanchez and Vilanova, 2013].

The preference matrix mMiL is depicted in Table 2. The idea behind pref-

erences JM3(x) to JM7(x) is to provide some meaning to the values obtained

from Eq. (3) by posing them relative to the reference controller xref . This

idea comes from the fact that the total variation of a control action by itself440

does not provide the same level of interpretability as, for example, time related

indexes JM1(x) and JM2(x), for which preferences are easy to state. This has

been previously exposed in [Reynoso-Meza et al., 2016a]. For example, for JM3

in Table 2 it has been defined as a tolerable value up to a 10% of additional

control effort of the reference controller xref . The desirable value ranges from445

a reduction of 10% and 20% of such control action, and the highly desirable

value for a reduction up to 30%.

Now JM1
(x) to JM7

(x) are used in the MOO process. Pareto set Θ∗P |MiL

and front J∗P |MiL are obtained for the seven design objectives, however only

JM1(x) and JM2(x) are analysed in the MCDM stage; this means that, while450

all the design objectives are considered in the evolution process, and used to

calculate the GPP index in the pruning mechanism of the spMODE-II algorithm,

only the first two (the most interpretable) are used to partition the objective

space. Optimisations were carried out in a desktop computer, with IntelR CorTM

i7-4790 processor, 3.60GHz and RAM memory 32GB; a total of 5000 function455

evaluations were computed in a time lapse of 6h27m.

The resulting Pareto set and front approximations Θ∗P |MiL and J∗P |MiL are

illustrated in Fig. 9. From such Figure, and with the help of the SiL platform, a
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Table 2: Preference matrix mMiL for the TimePiL (J(x) |MiL ) statement. Five preference

ranges have been defined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U)

and highly undesirable (HU). For readability purposes, JMi
(xref ) has been substituted by

ĴMi
.

Preference Matrix

← HD → ← D → ← T → ← U → ← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

JM1(x) [s] 10 15 20 25 50 100

JM2
(x) [s] 10 20 30 40 80 160

JM3
(x) [-] 0.7 · ĴM3

0.8 · ĴM3
0.9 · ĴM3

1.1 · ĴM3
1.2 · ĴM3

1.4 · ĴM3

...
...

...
...

...
...

...

JM7
(x) [-] 0.7 · ĴM7

0.8 · ĴM7
0.9 · ĴM7

1.1 · ĴM7
1.2 · ĴM7

1.4 · ĴM7

subset XMiL (depicted as©) is selected for the next step within the MOOD-XiL

procedure.460

4.2.2. MOOD definition at the SiL platform

The performance of the adjusted control structure with a given mission φ

will be evaluated in this round. For that reason, this MOOD statement will be

named hereafter, MissionPiL (mission performance in the loop). Such mission

comprises the supervision of five different way points in a bounded air space.465

MissionPiL statement is intended to be a RBDO instance, where reliability on

controller’s performance to fulfil different flight missions is evaluated. For this

purpose, a set Φ of 15 flight missions are defined. Each mission has five randomly

distributed and feasible (according to the characteristics of the aircraft) way-

points.470

Therefore, the MOP definition for this step stays as follows:

min
x
J(x) |SiL = [JS1

(x), . . . , JS9
(x)] (22)
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(a)

(b)

Figure 9: Pareto Front (a) and Pareto Set (b) for TimePiL statement at MiL platform.

Solutions marked with © are the subset XMiL from Θ∗
P |MiL selected for further analysis.
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(a)

(b)

Figure 10: Pareto Front (a) and Pareto Set (b) for MissionPiL statement at SiL platform.

Solutions marked with©,�,♦ are the subset XSiL from Θ∗
P |SiL selected for further analysis.
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s.t.

fSiL(x,XMiL) ∈ P |SiL

xi ≤ xi ≤ xi, i = [1, . . . , n]

with x = [kp1 , Ti1 , · · · , kp5 , Ti5 ] and kp ∈ [0, 5] and Ti ∈ ]0, 50] ∪ {+∞}; The

design objectives stated are:

• JS1(x): Median of time required to perform a flight mission ς[s] ∀φ ∈ Φ:475

JS1
(x) = median(ς) (23)

ς = MissionT ime(x, φ),∀φ ∈ Φ

• JS2
(x): Median absolute deviation (MAD) of time required [s] to perform

a flight mission ∀φ ∈ Φ

JS2
(x) = median(|ς − JS1

(x)|) (24)

ς = MissionT ime(x, φ),∀φ ∈ Φ

• JS3
(x) : Maximum time required [s] to perform a flight mission ∀φ ∈ Φ

(Eq. (9)).

• JS4(x) : (Negative) number of successful fight missions.480

• JS5
(x) : Median of roll’s total variation of control action per flight time

duration (Eq. (25)).

• JS6
(x) : Median of pitch’s total variation of control action per flight time

duration (Eq. (25)).

• JS7(x) : Median of elevator’s total variation of control action per flight485

time duration (Eq. (25)).
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• JS8(x) : Median of throttle’s total variation of control action per flight

time duration (Eq. (25)).

• JS9
(x) : Median of aileron’s total variation of control action per flight time

duration (Eq. (25)).490

JTV2(x) = median (υ) (25)

υ =

 Tf∫
t=t0

∣∣∣∣dudt
∣∣∣∣
 · [1

ς

]
,∀φ ∈ Φ

The preference matrix mSiL is depicted in Table 3. In this case, prefer-

ences values are in accordance with the values observed when testing XMiL

solutions in the SiL platform. Indeed, when controllers optimised for MiL plat-

form are confronted to the more realistic SiL platform, they reveal additional

information and trade-off among design objectives. When passing through this495

”experience”, the DM reaches better understanding on the capabilities of the

overall control structure for the problem at hand, and hence, he/she is able to

glimpse the limits, in terms of performance, that the control algorithm can be

led to. Therefore, mixing the observed trade-off in the preference matrix mSiL,

aligns with the search of a controller able to satisfy every preference simulta-500

neously. In the same way, initialization bounds are designed given the results

of the Θ∗P |MiL . Optimisations were carried out in a desktop computer, with

IntelR CorTM i7-4790 processor, 3.60GHz and RAM memory 32GB; a total of

528 function evaluations were computed in a time lapse of 33h03m.

Again the Pareto set and front approximations Θ∗P |SiL and J∗P |SiL result505

from the MOO process. They can be visualized in Fig. 10. For example,

circle solution has a better performance on JS1
when compared with the square

solution; nevertheless, this is at expenses of worsening JS2
. That is, a trade-

off between median performance and dispersion when evaluated with the flight

missions set. Similar analysis can be performed with the remainder plots in level510
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Table 3: Preference matrix mSiL for the MissionPiL statement. Five preference ranges have

been defined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly

undesirable (HU).

Preference Matrix mSiL

← HD → ← D → ← T → ← U → ← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

JS1
(x) [s] 60 85 90 95 120 150

JS2
(x) [s] 5 7 10 15 30 50

JS3(x) [s] 60 95 120 175 240 300

JS4
(x) [-] -15 -15 -15 -13 -10 -5

JS5
(x) [-] 0.10 0.15 0.18 0.20 0.25 0.30

JS6
(x) [-] 0.10 0.40 0.50 0.67 0.10 0.15

JS7
(x) [-] 0.05 0.08 0.10 0.12 0.15 0.20

JS8(x) [-] 0.02 0.05 0.08 0.12 0.15 0.20

JS9
(x) [-] 0.02 0.05 0.08 0.10 0.15 0.20

diagrams. After the MCDM analysis, a subset XSiL of three suitable controllers

(in their trade-off sense) is selected.

4.2.3. Final MCDM stage at the HiL platform

In order to help with the final decision making, the subset XSiL will be

analysed in the HiL platform. Although an active MOO is not possible at the515

moment (and could even be impractical from a computational point of view),

manually implementing those pre-selected controllers in the HiL might definitely

shed some light on which controller is the best final choice. Five random mis-

sions of eight way-points each have been generated for this purpose. The three

controllers x1, x2, x3 from XSiL, together with the reference controller, have been520

implemented in the aircraft FCS. To ensure the most similar initial conditions,
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each flight path comes preceded by three extra way-points that constitute de

initialisation track. Those way-points are only used for homogenisation pur-

poses and hence they are not considered in the performance analysis. Since five

sets of data are available for each controller, cost functions JSi
∀i = {1, ..., 9}525

can be now obtained.

Figure 11: Performance of the selected controllers together with the reference controller in

the HiL platform

Figure 11 is a radial representation of the values of JSi
functions with a

particularity. This radial representation gives an idea about the trade-off of a

particular solution when compared with others. A solution covering all the radial

space is a solution which is worsening all design objectives. The smaller the area,530

the closer to the ideal solution (center of the representation). All indices JSi
in

Fig.11 have been scaled over their worst value. This is, if a specific controller

shows a value of 1 in one cost index, it means that such controller has the worst

performance observed for that particular objective (see Eq. (26)). Additionally,
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objective 4 has been removed from this analysis because all controllers were535

able to complete the five flight missions successfully. When observing a radial

representation like the one in Fig. 11, the closeness to the nadir solution and

utopian solution are directly related to the vertices position of the polygon given

by one specific solution9. Hence, those controllers whose vertices are closer to

the center are to be preferred, since they fulfil each individual objective with a540

better performance. We can then conclude from Fig. 11 that XSiL controllers

outperform the reference one. They do not only show smaller costs for most of

the objectives, but also have a very similar value in those for which the reference

regulator is slightly better.

J∗Si
(x) = JSi

(x)/Jmax
Si

(26)

where545

Jmax
Si

= max{JSi
(x1), JSi

(x2), JSi
(x3),

JSi(xref.)}

Now, if the reference controller is removed from the analysis a new perspec-

tive is achieved. Thereby, the three controllers x1, x2 and x3, that result from

our MOO methodology are illustrated again in Fig. 12. The first fact we can

observe is that they are very similar in performance when the first six objectives

are taken into account. Differences appear though, when low-level actuators are550

analysed. As we see, x1 has its vertices closer to the center than the other two,

being much better when throttle total variation is considered, and with an inter-

mediate performance for elevators and ailerons. Note that smooth behaviours

in the engine are directly related to lower energy consumptions. Hence, x1 is

to be preferred as the final controller. x2 behaves very well with ailerons and555

turns out to be the worst in managing throttle and elevators. On the opposite,

9In an approximation set, nadir solution is the objective vector with the worst values in

the set; on the opposite, the utopian solution is the objective vector with the better values

contained in the set.
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Figure 12: Performance of the selected controllers in the HiL platform

x3 is smoother with elevators and throttle, but more aggressive when using the

ailerons. Controllers 1 and 2 have been tested in real flight. Since HiL platform

includes the aircraft FCS, controllers were tested exactly as they were coded

for the simulations. Results from both flights and some conclusions are now560

exposed in Section 5.
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Table 4: Parameter of the selected controllers
Altitude PI Heading PI Pitch PI Roll PI Velocity PI

Controller x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 0.0497 3.2483 −0.9604 8.4343 −0.9591 6.7427 −0.5409 15.1889 0.0179 7.5268

2 0.0398 4.4099 −0.9232 11.0291 −0.7739 7.8579 −0.6339 10.5024 0.2155 7.4387

5. Results and validation on Flight test

Controllers selected for further validation appear in Table 4. A mission of

six way-points (plus three from the initialisation track) has been programmed

and performed in real flight. A way-point is defined in the 3-D space by its565

latitude and longitude coordinates and its altitude above sea level. Around

each of them, a tolerance cylinder (defined by an altitude error and a plain

circle) is placed. Therefore, a way-point is considered to be passed when the

aircraft is targeting that way-point and enters its tolerance cylinder. Besides,

the flight path has been randomly generated to lie within the volume enclosed570

inside a 500 m diameter and 150 m height cylinder and does not share any of

the way-points previously used in simulations.

Figs. 13 and 14 and Tables 5 and 6 have been included in order to present

flight test’s results. On one side, Figs. 13 and 14 show the resulting trajectories

(cyan line) along the mission path (red line), obtained by controllers 1 and 2 re-

spectively. Reference tracking of altitude and velocity are also represented. The

tolerance cylinders are depicted by green circles around the way-points (graphs

on the top) and two green lines underneath and above the altitude references

(graphs in the middle). To support discussion, Table 5 includes the value of the

mean IAE (MIAE) got by each controller for every controlled variable. MIAE

gives a sense of the tracking error in average, and is easy to interpret since it

has the magnitude of the variable for which it is calculated. The expression to

calculate MIAE is

JMIAE(x) =
1

Tm

Tm∫
t=0

|rx(t)− yx(t)| dt (27)

where Tm is the mission time, rx(t) is the reference signal and yx(t) is the
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controlled variable value during a mission in which controller x is active. Finally,

Table 6 shows the values of the subset of SiL design objectives that can be575

calculated for a single real flight. They are:

• JR1
(x): time required to perform the flight mission (in representation of

[JS1
(x), JS2

(x), JS3
(x)]).

• JR2
(x): roll total variation of control action per flight time duration (in

representation of JS5
(x)).580

• JR3(x): pitch total variation of control action per flight time duration (in

representation of JS6
(x)).

• JR4
(x): elevators total variation of control action per flight time duration

(in representation of JS7(x)).

• JR5
(x): throttle total variation of control action per flight time duration585

(in representation of JS8
(x)).

• JR6
(x): ailerons total variation of control action per flight time duration

(in representation of JS9
(x)).

Now, going back to Figs. 13 and 14, we can see that both controllers are

able to successfully complete the mission, driving the aircraft through every590

way-point of the flight path. Every time the UAV enters the tolerance cylinder

of its targeted way-point, a new reference is imposed by the reference manager.

This process keeps going until the last way-point is reached and the mission

is finished. Although the reference manager also imposes different velocities

for each path section, accomplishing them is not a requirement of the mission.595

Several points can be highlighted from Figs. 13 and 14. First, x1 makes the

aircraft draw smother trajectories with more opened turns; this has an influence

in the trajectory length and consequently, in the mission time (for which x2

is slightly better). Second, every change in the aircraft orientation strongly

disturbs altitude tracking and even more velocity tracking; this is logic, since600

we are dealing with a coupled non-linear system. Third, while x1 is better in
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Table 5: Mean IAE indices for the five controlled variables achieved by controller 1 and 2 in

a real flight experiment

Mean IAE of the controlled variables

Objective J(x1) J(x2) Jmax J∗(x1) J∗(x2)

Mean IAE Roll 0.06 0.08 0.08 0.73 1.00

Mean IAE Pitch 0.03 0.04 0.04 0.91 1.00

Mean IAE Heading 0.71 0.68 0.71 1.00 0.96

Mean IAE Altitude 4.17 4.98 4.98 0.84 1.00

Mean IAE Velocity 2.94 1.51 2.94 1.00 0.51

sticking to the altitude reference, it is significantly worse than x2 when trying to

follow velocity references. Finally, the reader should note that velocity tracking

is not within the design objectives, and hence, no cost index explicitly accounts

for velocity tracking performance; even so, both controllers are able to drive605

the system towards the velocity references; this is interesting, and might be

explained under the assumption that it could be a correlation between velocity

tracking and the success in a flight mission.

If Fig. 7 is looked, three control flows are observed. On the top, the reference

manager proposes altitude references to be achieved by the altitude PI, which610

in turn proposes pitch references to be accomplished by the pitch PI acting over

elevators deflections. If we now return to Tables 5 and 6, it can be observed

that x1 is softer than x2 both managing elevators and proposing pitch references

(66% in the case of JR4
and 26% in the case of JR3

); and even so, x1 is capable

of outperforming x2 by obtaining 9% and 16% smaller MIAEs for pitch and615

altitude respectively. This last data confirms the better behaviour in altitude

tracking already observed in Figs. 13 and 14. The second control flow shown

in Fig. 7 is the lateral control, where the reference manager imposes heading
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Table 6: Objective function values achieved by controller 1 and 2 in a real flight experiment

Cost indices for real flight test

Objective J(x1) J(x2) Jmax J∗(x2) J∗(x2)

JR1
- Mission Time 110.13 104.84 110.13 1.00 0.95

JR2
- Roll Total Variation 0.17 0.21 0.21 0.80 1.00

JR3 - Pitch Total Variation 0.06 0.08 0.08 0.74 1.00

JR4
- Elevators Total Variation 0.15 0.33 0.33 0.44 1.00

JR5
- Throttle Total Variation 0.04 0.24 0.24 0.15 1.00

JR6
- Ailerons Total Variation 0.16 0.11 0.16 1.00 0.69

references to the heading PI, which in turn proposes roll references tracked by

the roll PI acting over ailerons deflections. In this case x2 is 31% smoother with620

the ailerons (J∗R6
(x2) = 0.69) and slightly better in heading tracking (4% smaller

heading MIAE), while x1 achieves a 26% smaller roll total variation JR3
, and

27% better roll MIAE; it means that the heading PI in x1 is softer proposing

control actions and, at the same time, x1’s roll PI is better in following them,

at the cost of a higher usage of the ailerons. This is again aligned with what625

was observed in Figs. 13 and 14, where controller 2 exhibits closer turns than

controller 1. Finally, Fig. 13 showed that x1 is slower in converging velocity to

its set-point; this fact is also supported by the values on Table 5 where velocity’s

MIAE of controller 2 is 49% smaller than that of controller 1. However, Table 6

evidences that the throttle total variation of x1 is 85% smaller (J∗R5
(x1) = 0.15)630

than the throttle total variation obtained by x2.

Fig. 15 has been included to derive final conclusions. Two radial graphs are

present in that figure. On the top, (Fig. 15 (a)) the values of the six cost indices

{JR1
, ..., JR6

} are represented both for x1 and x2. The values obtained from the

HIL platform for controllers 1 and 2 have been again represented in Fig. 15635

(b). Two remarks must be mentioned. First, note that only six over the nine
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indices are represented; this is because only the six SiL design objectives that

can be directly compared to the real flight indices JRi
, have been included in the

graph. Second, those indices have been re-scaled, taking now into account only

the values obtained by x1 and x2. Thus, Fig. 15 (b) can be seen as a version640

of Fig. 12 with a smaller amount of objectives and without x3. Something

remarkable from Fig. 15 is the resemblance among graphs (a) and (b). Although

obviously not equal, the shapes that one controller gets for the HiL platform

and for the real flight are quite similar. This is a significant fact because clearly

shows the importance of having an accurate model of the system and reliable645

XiL platforms for the RBDO statement in the MOOD procedure. And there is

where the strength of our methodology resides. With a good dynamic model, a

designer passing through every step gains real knowledge on the design problem

and is able to understand what should be optimised and how to do it. In

addition, a realistic HiL platform (only achievable with a good dynamic model)650

assures safety in the hop from simulation to real experimentation. All this is

finally translated in a controller that is well designed and behaves in reality

as expected from simulations. As a final comment, Fig. 15 (a) proves that x1

should be preferred over x2, as its vertices are closer to the center. This was

already concluded is Section 4, and evidences that a final MCDM stage with655

several simulations in the HiL platform is indeed a good practice.
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Figure 13: Performance of the Controller 1 in the Kadett in a real flight mission.
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Figure 14: Performance of the Controller 2 in the Kadett in a real flight mission.
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(a) Real flight

(b) HIL flights

Figure 15: Scaled Pareto front of the selected controllers during Real flight
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6. Conclusions and future work

A systematic approach to enhance controller performance evaluation and

design has been presented throughout this paper. Multi-objective optimisation

is used in conjunction with different simulation platforms in order to provide the660

integrative framework on which the methodology is based. Thereby, MiL, SiL,

PiL and HiL platforms (or a subset of them) can be employed in successive multi-

objective optimisations in order to gain better understanding of the problem as

the process moves forward. As we saw, the information obtained in previous

stages is used in two directions when a new optimisation is to be posed: (i) more665

meaningful objectives can be stated and (ii) preferences and solution constraints

can be better delimited. On one side, (i) generally leads to more complex MOPs,

what obviously increases the computational burden. On the other side, (ii)

reduces the search space helping, therefore, to decrease that complexity during

the optimisation stage. Both (i) and (ii) go in the direction of getting more670

adequate solutions (in the sense of what the designer prefers) for the problem

at hand.

As a demonstrator, a UAV system with a predefined control structure has

been presented. That structure is formed by a total of five PI controllers that

perform attitude control and navigation tasks. The ten PI parameters had to675

be tuned so that the resulting controller was able to drive the aircraft in the

supervision of several way-points. Section 4 showed how the methodology can

be adapted to this specific problem, in accordance to the available simulation

platforms. As the process moved forward, reliability objectives, where several

missions were actively accomplished inside the MOO, were posed. At the same680

time, a better understanding of the problem allowed the designer to refine prefer-

ences’ matrices, as well as optimisation limits. A final MCDM stage comprising

several missions inside the HiL platform has been performed. In that last phase,

a controller was chosen from the rest.

To validate the final choice, a real flight mission has been carried out. The685

chosen controller and a second one within the final Pareto set have been tested
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exactly as they were coded for HiL simulations. In Section 5 experimental

results confirmed that the selected controller was as good accomplishing flight

missions as the MCDM stage suggested. This evidenced that a realistic model

of the system is of great importance to obtain a controller that behaves as the690

designer expects. A second conclusion is that, even when the HiL platform

cannot be actively used in the MOO process, including it in the final MCDM

stage is a good practice.

Several new flight paths can be taken as future works. First, adapting the

HiL simulation platform so that it can be actively used in the MOO process695

could be of great interest (although practicality must be had in mind). Second,

the authors would like to study the applicability of the technique on the de-

sign of multi-variable controllers. Indeed, tuning weighting matrices for linear

quadratic regulators or adjusting design parameters in model based predictive

controllers can be something tricky when the system comprises many states and700

inputs. Third, applying this technique to systems with modelled parametric

uncertainties can be a good practice to achieve a certain level of robustness.
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