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Abstract

Erlang is a message-passing concurrent, functional programming language based
on the actor model. �ese and other features make it especially appropriate for
distributed, so� real-time applications. In the recent years, Erlang’s popularity has
increased due to the demand for concurrent services.

However, developing error-free systems in Erlang is quite a challenge. Although
Erlang avoids many problems by design (e.g., deadlocks), some other problems may
appear. Here, testing and debugging techniques based on formal methods may be
helpful to detect, locate and �x programming errors in Erlang.

In this thesis we propose several methods for testing and debugging in Erlang.
In particular, these methods are based on semantics models for concolic testing,
property-based testing, causal-consistent reversible debugging and causal-consistent
replay debugging of Erlang programs. We formally prove the main properties of our
proposals and design open-source tools that implement these methods.
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Resumen

Erlang es un lenguaje de programación funcional con concurrencia mediante paso
de mensajes basado en el modelo de actores. Éstas y otras caracterı́sticas lo hacen
especialmente adecuado para aplicaciones distribuidas en tiempo real acrı́tico. En
los últimos años, la popularidad de Erlang ha aumentado debido a la demanda de
servicios concurrentes.

No obstante, desarrollar sistemas Erlang libres de errores es un reto considerable.
A pesar de que Erlang evita muchos problemas por diseño (por ejemplo, puntos
muertos), algunos otros problemas pueden aparecer. En este contexto, las técnicas
de testing y depuración basadas en métodos formales pueden ser útiles para detectar,
localizar y arreglar errores de programación en Erlang.

En esta tesis proponemos varios métodos para testing y depuración en Erlang.
En particular, estos métodos están basados en modelos semánticos para concolic test-
ing, pruebas basadas en propiedades, depuración reversible con consistencia causal
y repetición reversible con consistencia causal de programas Erlang. Además, pro-
bamos formalmente las principales propiedades de nuestras propuestas y diseñamos
herramientas de código abierto que implementan estos métodos.
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Resum

Erlang és un llenguatge de programació funcional amb concurrència mitjançant pas
de missatges basat en el model d’actors. Estes i altres caracterı́stiques el fan especial-
ment adequat per a aplicacions distribuı̈des en temps real acrı́tic. En els últims anys,
la popularitat d’Erlang ha augmentat degut a la demanda de servicis concurrents.

No obstant, desenvolupar sistemes Erlang lliures d’errors és un repte conside-
rable. Encara que Erlang evita molts problemes per disseny (per exemple, punts
morts), alguns altres problemes poden aparéixer. En este context, les tècniques de
testing y depuració basades en mètodes formals poden ser útils per a detectar, loca-
litzar y arreglar errors de programació en Erlang.

En esta tesis proposem diversos mètodes per a testing i depuració en Erlang. En
particular, estos mètodes estan basats en models semàntics per a concolic testing,
testing basat en propietats, depuració reversible amb consistència causal i repetició
reversible amb consistència causal de programes Erlang. A més, provem formalment
les principals propietats de les nostres propostes i dissenyem ferramentes de codi
obert que implementen estos mètodes.
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Chapter 1
Introduction

1.1 �e Erlang Language

Over the last years, concurrent programming has become a common practice, mainly
due to the constantly growing number of smart devices around the world. Con-
current services such as telecommunications, broadcasting and cloud computing
require the design, implementation and maintenance of scalable, distributed and
highly-available systems [129]. �e demand for such concurrent services has forced
many companies to adopt new technologies (frameworks or languages, such as Er-
lang) in order to build this kind of systems.

Erlang [5] is a concurrent, functional programming language based on the ac-
tor model [62]. �is language has many distinguishing features (dynamic typing,
concurrency via asynchronous message passing or hot code loading) that make it
especially appropriate for distributed, fault-tolerant, so�-real time applications. For
instance, Erlang has been extensively used for WhatsApp [40], the most popular
messaging application in the world. To put it in perspective, WhatsApp has around
450 million active users that send 65 billion messages and make 100 million voice
calls on a daily basis—a true example of a large-scale system.

However, developing considerable, error-free systems in Erlang is generally re-
garded to be a challenge. Basically, programming errors in Erlang stem from com-
mon (functional) programming errors and concurrency. Even in a purely sequential
se�ing, Erlang’s typing discipline—strong/dynamic typing— does not help to detect
simple programming errors. In other programming languages, these errors would
be easily caught by the type checker at compile time, but in Erlang they will go
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4 1.2. Constraint-Based Testing

unnoticed and cause program crashes during runtime execution. Clearly, the case
for concurrent programs is even worse [66]. Although Erlang avoids some con-
currency bugs by design (e.g., deadlocks), other concurrency bugs such as message
order violations and livelocks can still show up in programs. Here, so�ware tools
based on formal methods may be helpful to detect, locate and �x errors in Erlang
programs, overall improving their code quality and achieving a higher con�dence
in the developed systems.

Formal methods [64] refers to mathematically based techniques used for the
speci�cation, design and veri�cation of so�ware and hardware systems. In the con-
text of so�ware development, formal methods are based on a mathematical founda-
tion (e.g., formal semantics) for describing and reasoning about complex systems.
For instance, formal semantics allow us to precisely de�ne the meaning of a pro-
gramming language and correctly reason about programs wri�en in that language
and their properties. In the case of Erlang, there is not a commonly accepted formal
semantics, though there have been some a�empts to de�ne exhaustive semantics
for the language [18, 130]. Only an outdated speci�cation of Core Erlang [25]—an
intermediate language used by the Erlang compiler—has been available since 2004.

In this thesis, we focus on de�ning semantics as the basis for testing and de-
bugging techniques for Erlang programs. Testing and debugging are two major
processes in so�ware development which can be used together for the purpose of
detection (testing) and localization (debugging) of programming errors. Typically,
programmers will �rst use a testing tool to �nd potential errors in their programs.
If this process reveals an unexpected result, a debugging tool will then be used for
examining the program execution and track down the error source within the pro-
gram. In the following, we introduce these techniques separately and describe the
main problems that cannot be handled by existing approaches.

1.2 Constraint-Based Testing

So�ware testing is one of the most widely used techniques for so�ware validation.
As mentioned earlier, the goal of testing is to detect programming errors. In gen-
eral, testing is an automatic process that may require some e�ort from programmers
in order to work properly. In this thesis, we explore new approaches to perform
constraint-based testing of Erlang programs. Constraint-based methods make use
of constraint solving techniques for di�erent purposes (testing in our case). In par-
ticular, we present two proposals based on symbolic execution to perform concolic
testing and property-based testing in Erlang.
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Symbolic execution [74] was an innovative technique introduced in the mid ’70s
as an alternative to random testing. Following this technique, input data is replaced
by symbolic values and then, at each branching point of the execution, all feasi-
ble paths are explored and its associated constraints on symbolic values are stored.
�erefore, symbolic states include a so-called path condition with the constraints
stored so far. As a result, test cases are produced by solving the constraints in the
leaves of the symbolic execution tree. Unfortunately, the path explosion problem
makes test case generation based on symbolic execution di�cult to scale. For in-
stance, as soon as a path condition cannot be proved satis�able, the execution of its
corresponding branch is terminated in order to ensure soundness, which translates
into poor coverage in many cases.

Concolic execution [56, 125] is a proposal that combines concrete and symbolic
execution to overcome some drawbacks of previous approaches. Concolic execu-
tion takes some (initially random) concrete input data and performs simultaneously
a concrete execution and a symbolic execution driven by the concrete one. �en, if
the path condition becomes too complex for the constraint solver to prove its sat-
is�ability, concrete data can be pushed from the concrete execution, thereby allow-
ing symbolic computation to continue. Concolic execution forms the basis of some
model checking and test-case generation tools (e.g., SAGE [57] and Java Path�nder
[115]). Test cases produced with this technique usually achieve be�er code coverage
than other approaches solely based on symbolic execution, and it scales up be�er to
complex or large programs.

Despite its popularity in the imperative programming paradigm, we can only
�nd a few preliminary approaches to concolic execution in the context of declara-
tive programming [54, 100]. Mostly, these approaches are based on augmented in-
terpreters capable of dealing with symbolic values. In contrast, we consider whether
concolic execution can be performed by program instrumentation.

Property-based testing [29] is another popular method for testing in functional
programming languages. Here, instead of supplying speci�c inputs, the developer
de�nes some properties to be satis�ed in terms of input-output pairs. �en, random
inputs are generated and the program is run with those input values. Finally, the out-
puts are then used to check whether the desired properties hold or not. �ickCheck
[29] is the �rst tool that implemented property-based testing for the functional lan-
guage Haskell, and a similar approach has been followed for other programming
languages—Erlang [7, 113], Java [72, 144] and Prolog [4] to name a few.

�e di�culty in property-based testing is that, when working with user-de�ned
types and �lters, users must provide a generator in addition to properties. Basically,
a generator is a program that randomly constructs proper input data for a given type
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(e.g., binary search trees). Unfortunately, writing generators is a time-consuming,
error-prone activity which may result in the generation of of non-valid or overly
restricted inputs. In our work, we explore an alternative approach based on symbolic
execution to relieve users from writing generators.

1.3 Reversible Debugging

Debugging is the process of locating and removing programming errors. Generally,
debugging is not an automatic process but rather performed by developers with the
assistance of debugging tools. �erefore, debugging tools mostly focus on repre-
senting as much information as possible regarding a program computation.

According to recent studies [17, 136], the annual cost of debugging so�ware is
$312 billions, and it is estimated that time spent in debugging accounts for 49.9%
of the total programming time. �is situation is not likely to improve in the near
future, given the increasing demand for concurrent so�ware [129]. In the context
of message-passing concurrent languages, most of the approaches to so�ware vali-
dation and debugging are based on some form of static analysis (e.g., Dialyzer [91],
McErlang [48], Soter [39]) or testing (e.g., �ickCheck [28], PropEr [113], CutEr
[54]). Nevertheless, these techniques are helpful only to �nd speci�c categories of
problems. In this se�ing, reversible debugging—inspired by principles of reversible
computation—may be useful to complement previous approaches.

Reversible computation [12, 46, 145] is an unconventional computing model
where computation is reversible. In other words, a reversible computation can go
forwards (i.e., the usual direction) or backwards (i.e., undoing a regular computa-
tion). Nowadays, reversible computation is a relevant concept in many di�erent
�elds like cellular automata [103] or quantum computing [143]. In fact, reversible
debugging [51] is a successful application of reversible computation which can be
trivially implemented on top of any reversible language or formalism. In this thesis,
we �rst study reversible computation in the context of term rewriting [9, 132], a
computational model that underlies most rule-based programming languages. We
consider that term rewriting provides an excellent framework to formally de�ne
reversible computation in a functional context. �en, we extend this notion to
message-passing concurrent languages, where causal consistency is additionally re-
quired to account for causality.

Hence, causal-consistent reversible debuggers allow users to run concurrent
programs in a controllably reversible manner. If something (potentially) incorrect
shows up, the user can stop the forward computation and go backwards—in a causal-
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consistent way—to look for the root cause of the problem. In this context, we say
that a backward step is causal consistent [35, 83] if an action cannot be undone
until all the actions that depend on it have already been undone. �erefore, causal-
consistent reversibility is particularly relevant for concurrent debugging because it
allows us to undo the actions of a given process in a stepwise manner while ignoring
the actions of the remaining processes, unless they are causally related. In a tradi-
tional reversible debugger, one can only go backwards in exactly the reverse order
of the forward execution. Essentially, this corresponds to linearizing a concurrent
computation, and it makes focusing on undoing the actions of a given process much
harder, since they can be interleaved with unrelated actions from other processes.

Furthermore, traditional debuggers (like the one included in Erlang/OTP) are
sometimes not particularly useful for debugging concurrent programs. �e reason is
that, when an unusual interleaving brings up an error, recompiling the program for
debugging may lead to a completely di�erent computation. �is problem is usually
tackled by so-called replay debugging, which allows the user to record a program ex-
ecution and replay it inside the debugger. However, in concurrent programs, part of
the program execution may not be relevant for the debugging session. For instance,
some processes may not have interacted with the one showing a misbehavior, or
they may have interacted only at the very beginning of their execution. Replaying
these actions is pointless as well as distracting for the user. In this thesis, we in-
troduce (controlled) causal-consistent replay and extend our reversible debugger to
enable causal-consistent replay debugging of previously logged computations.

1.4 Objectives and Contributions

�e main objective of this thesis is to improve so�ware quality in Erlang programs
through the usage of testing and debugging tools based on formal methods. To this
end, we design semantics-based techniques for concolic testing, property-based test-
ing, causal-consistent reversible debugging and causal-consistent replay debugging.
We provide mathematical proofs for the most interesting properties of the proposed
methods, in addition to so�ware tools that experimentally show these approaches
to be feasible and e�cient in practice.

�e main contributions of this thesis can be split into three categories:

1. Term Rewriting: Term rewriting is a computation model that underlies most
rule-based programming languages which, in general, is not reversible. We
consider term rewriting to be an excellent framework to de�ne reversible
computation in a functional context and prove its main properties. �is work
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may be useful in di�erent contexts: reversible debugging, parallel discrete
event simulation and bidirectional program transformation, to name a few.

(a) Reversible Extension of Term Rewriting: We present a general no-
tion of reversible term rewriting by de�ning a Landauer embedding.
Given a rewrite system R and its associated (standard) rewrite rela-
tion →R, we de�ne a reversible extension of rewriting composed of a
forward relation ⇀R and a backward relation ↽R, such that ⇀R is a
conservative extension of→R and, moreover, (⇀R)−1 =↽R. Given a
rewriting reduction s →∗R t, this reversible relation aims at computing
the term s from t and R in a decidable and deterministic way, which is
not possible using (→R)−1 since it is generally non-deterministic.

(b) Reversibilization of Rewrite Systems: A reversibilization procedure
transforms an irreversible computation device into a reversible one. We
introduce a reversibilization transformation for a quite general class of
rewrite systems and we present an improvement that removes labels
from traces (i.e., a memory optimization) by performing an injectivity
analysis on the rewrite system rules.

(c) Implementation of Reversibilization Transformations: �e afore-
mentioned reversibilization transformation is implemented as a tool that
reads an input TRS �le and then applies sequentially the following trans-
formations: �a�ening, simpli�cation of constructor conditions, injec-
tivization, and inversion. �e tools prints out the rewrite systems ob-
tained at each step and is publicly available through a web interface.

2. Reversible Debugging: Traditional debuggers are not particularly helpful
for debugging message-passing concurrent programs. In contrast, causal-
consistent reversible debugging is especially relevant to this end because it
allows to undo the actions of a given process while ignoring unrelated pro-
cesses. Similarly, causal-consistent replay debugging allows to reproduce a
previously logged computation while excluding unrelated actions from other
processes.

(a) Reversible Semantics for Erlang: A reversible semantics can go both
forward and backward. We introduce an uncontrolled reversible seman-
tics for Erlang and prove its most interesting properties, including its
causal consistency.

(b) Rollback Semantics for Erlang: In contrast to an uncontrolled seman-
tics, a controlled semantics drives backwards execution in the direction
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of speci�c checkpoints before resuming forward computation. We in-
troduce a controlled version of the backward semantics that essentially
models a rollback operator, and prove its main properties.

(c) Causal-Consistent Reversible Debugger for Erlang: An improved
version of the reversible semantics is implemented as a causal-consistent
reversible debugger for Erlang programs. We show its application in two
di�erent scenarios—message order violation and livelock—to show the
usefulness of the tool.

(d) Causal-Consistent Replay Semantics for Erlang: Unusual interleav-
ings that lead to an erroneous behavior during regular execution may
be hard to reproduce on a debugger. We introduce both an uncontrolled
and a controlled causal-consistent replay semantics for Erlang, which
allow to replay causally equivalent executions from a previously logged
computation, and we prove their basic properties.

(e) Causal-Consistent Replay Debugger for Erlang: �e controlled re-
play semantics is implemented in an adapted version of our reversible
debugger, resulting in a causal-consistent replay debugger for Erlang.
Additionally, we provide a tool for logging computations in a standard
environment so that they can be (causally) reproduced in our replay de-
bugger.

3. Constraint-Based Testing: Constraint-based testing techniques make use
of constraint solving techniques during symbolic execution for di�erent pur-
poses. In this thesis, we focus on concolic testing and property-based testing
for automatic test case generation.

(a) Concolic Execution by Program Instrumentation: We consider whether
concolic execution can be performed by program instrumentation. First,
we introduce an instrumented version of a semantics for Erlang. �en,
we propose a program transformation that instruments Erlang programs
so that its execution in a standard environment is equivalent to the ex-
ecution of the original program with the instrumented semantics.

(b) Implementation of a Concolic Testing Tool: �e previously men-
tioned program transformation is implemented as a tool that instru-
ments Erlang programs and enables the execution of the instrumented
programs to obtain the associated sequence of events.

(c) Automatic Test Case Generation: Property-based testing o�en re-
quires the speci�cation of data generators designed by developers. We
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explore an alternative approach that relieves developers from this task.
�is approach takes the data type and �lter speci�cations and automat-
ically generates data of the given type that satis�es the given �lter.

(d) Implementation of Test Case Generator Tool: �e previously men-
tioned approach is implemented in a fully automatic tool composed of
six modules that enables automatic test case generation from PropEr (a
popular property-based testing tool for Erlang) speci�cations in a more
e�cient way.

1.5 Structure of this �esis

�is thesis is wri�en as a collection of articles. �is format (as opposed to a mono-
graph thesis) is more suited for PhD theses where a signi�cant amount of contribu-
tions have already been published in international conferences or journals.

In Part I we have already introduced the motivation and objectives of this work.
�e remaining sections summarize the activities of the author over the course of his
PhD studies (publications, research projects and stays). Part II comprises a collection
of the main articles that support this thesis. In this part, each chapter is an adapted
version of an already-published work in a scienti�c conference or journal. In all
cases, the articles have been adapted from author versions and a link to the �nal
(published) version of the article is included, as established by the guidelines for
thesis writing from the Doctorate School. �en, Part III presents a general discussion
about the results obtained in this thesis. �e discussion is split into a few categories
where the results are discussed and compared with related work. Finally, Part IV
concludes this thesis with a �nal review of the main contributions of our work and
a discussion about future work.

1.6 Publications

Over the course of his PhD studies, the author has published several scienti�c arti-
cles which are listed in this section. Here, we distinguish between papers published
in high-impact journals and international conferences. An underlined title means
that the paper has been included in Part II.

Articles in journals listed in the Journal Citation Report (JCR):

• N. Nishida, A. Palacios and G. Vidal. Reversible computation in term rewriting.
Journal of Logical and Algebraic Methods in Programming, 94: 128–149, 2018.
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• I. Lanese, N. Nishida, A. Palacios and G. Vidal. A theory of reversibility for
Erlang. Journal of Logical and Algebraic Methods in Programming, 100: 71–97,
2018.

Full papers in international conferences:

• A. Palacios and G. Vidal. Towards Modelling Actor-Based Concurrency in
Term Rewriting. Proceedings of the 2nd International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE 2015), OASIcs
46: 12–29, 2015.

• A. Palacios and G. Vidal. Concolic Execution in Functional Programming by
Program Instrumentation. Proceedings of the 25th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR 2015), LNCS 9527:
277–292, 2015.

• N. Nishida, A. Palacios and G. Vidal. Reversible Term Rewriting. Proceedings
of the 1st International Conference on Formal Structures for Computation and
Deduction (FSCD 2016), LIPIcs 52: 28:1–28:18, 2016.

• N. Nishida, A. Palacios and G. Vidal. A Reversible Semantics for Erlang. Pro-
ceedings of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016), LNCS 10184: 259–274, 2017.

• I. Lanese, N. Nishida, A. Palacios and G. Vidal. CauDEr: A Causal-Consistent
Reversible Debugger for Erlang. Proceedings of the 14th International Sympo-
sium on Functional and Logic Programming (FLOPS 2018), LNCS 10818: 247–
263, 2018.

• E. De Angelis, F. Fioravanti, A. Palacios, A. Pe�orossi, M. Proie�i. Bounded
Symbolic Execution for Runtime Error Detection of Erlang Programs. Proceed-
ings of the 5th Workshop on Horn Clauses for Veri�cation and Synthesis (HCVS
2018), EPTCS 278: 19–26, 2018.

• I. Lanese, A. Palacios and G. Vidal. Causal-Consistent Replay Debugging for
Message Passing Programs. Proceedings of the 39th International Conference
on Formal Techniques for Distributed Objects, Components, and Systems (FORTE
2019), LNCS 11535: 167–184, 2019.

• E. De Angelis, F. Fioravanti, A. Palacios, A. Pe�orossi, M. Proie�i. Property-Based
Test Case Generators for Free. Proceedings of the 13th International Conference
on Tests and Proofs (TAP 2019), LNCS 11823: 186–206, 2019.
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1.7 Research Projects

�is thesis would not have possible without funding for research projects. �e main
contributions and derivative works of this thesis have been made in the context of
the following projects:

• CAVI-ROSE: National research project CAVI-ROSE: Computer assisted vali-
dation by using sound and rigorous methods, funded by the EU (FEDER) and
the Spanish Ministerio de Economı́a y Competitividad (MINECO) under grant
TIN2013-44742-C4-1-R, was part of a coordinated project with other Span-
ish universities whose main goals aimed at advancing the knowledge and
technology within the area of so�ware validation. Its lead applicants were
Germán Vidal and Josep Silva, and the project concluded a�er a period of 4
years (2014-2017). �e author of thesis was awarded a 4-year PhD scholar-
ship (associated to the CAVI-ROSE project) Ayudas para contratos predoctor-
ales para la formación de doctores, funded by the EU (FEDER) and the Spanish
MINECO under FPI grant BES-2014-069749.

• MERINET: National research project MERINET: Rigorous Methods for the Fu-
ture Internet, funded by the EU (FEDER) and the Spanish MINECO1 under
grant TIN2016-76843-C4-1-R, was part of a coordinated project with other
Spanish universities whose main goal is producing new (more competitive)
techniques, methods and tools for so�ware analysis and development, with
special emphasis in web systems and programming languages. Its lead appli-
cants were Germán Vidal and Josep Silva, and the project has been ongoing
since 2017.

• COST Action IC1405: COST Action is de�ned as a “network dedicated to sci-
enti�c collaboration, complementing national research funds” and therefore
cannot be considered a proper research project. But given the great in�uence
that this network has had on our research (in terms of collaboration, discus-
sion, etc.), we have decided to acknowledge it in this thesis anyway. COST Ac-
tion IC1405 on Reversible Computation - extending horizons of computing had
a duration of four years and held at least two meetings each year. In these
meetings, the participants were encouraged to present their latest works to
foster technical discussions on the related topics. �e author a�ended these
meetings in multiple occasions and applied for short-term scienti�c missions

1�e scienti�c and innovation competences were later transferred to the Spanish Ministerio de
Ciencia, Innovación y Universidades (MICINN).
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(i.e., travel grants) a couple of times. More importantly, thanks to these meet-
ings we were able to start our collaboration with Ivan Lanese, an expert on
reversible computation who has co-authored some works included in this the-
sis.

1.8 Research Stays

Research stays in international countries are essential for learning about other re-
search methodologies in foreign teams. Over the course of his PhD studies, the
author has carried out two research stays and one internship abroad. Below we
present a summary of these stays.

• Nagoya University — Nagoya, Japan: �e �rst research stay was carried
out from September 14, 2016 to December 14, 2016 (3 months) and supervised
by Naoki Nishida, a long-time collaborator of our research group. During this
stay, the author focused on the implementation of reversibilization transfor-
mations and other contributions in the context of reversible term rewriting.
A complementary grant Ayudas a la movilidad predoctoral para la realización
de estancias breves en centros de I+D españoles y extranjeros 2016, funded by
the EU (FEDER) and the Spanish MINECO under FPI grant EEBB-I-16-11469,
was awarded to the author in order to �nance this research stay.

• Consiglio Nazionale delle Ricerche — Rome, Italy: �is research stay
was conducted from September 14, 2017 to December 14, 2017 (3 months)
and supervised by Maurizio Proie�i. During this stay, the author worked
closely with Maurizio and other members of his research group to design a
CLP semantics for Erlang and develop the corresponding CLP interpreter. A
complementary grant Ayudas a la movilidad predoctoral para la realización de
estancias breves en centros de I+D españoles y extranjeros 2017, funded by the
EU (FEDER) and the Spanish MINECO under FPI grant EEBB-I-17-12101, was
awarded to the author in order to �nance this research stay.

• Amazon Web Services — Boston, United States of America: �is intern-
ship was carried out from April 15, 2019 to July 5, 2019 and supervised by
Kareem Khazeem and Mark R. Tu�le. Amazon Web Services hired the au-
thor as an intern of the Automated Reasoning Group, a team that focuses on
applying formal methods to industrial code.
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Chapter 2
Reversible Computation in Term
Rewriting

Naoki Nishida1, Adrián Palacios2, Germán Vidal2

1 Graduate School of Informatics, Nagoya University 2 MiST, DSIC, Universitat Politècnica de València
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan Camino de Vera, s/n, 46022 Valencia, Spain

nishida@i.nagoya-u.ac.jp {apalacios,gvidal}@dsic.upv.es

Abstract. Essentially, in a reversible programming language, for each for-
ward computation from state S to state S′, there exists a constructive method
to go backwards from state S′ to state S. Besides its theoretical interest, re-
versible computation is a fundamental concept which is relevant in many dif-
ferent areas like cellular automata, bidirectional program transformation, or
quantum computing, to name a few.
In this work, we focus on term rewriting, a computation model that underlies
most rule-based programming languages. In general, term rewriting is not

�is work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economı́a y Com-
petitividad (MINECO) under grants TIN2013-44742-C4-1-R and TIN2016-76843-C4-1-R, by the Generalitat Valen-
ciana under grant PROMETEO-II/2015/013 (SmartLogic), and by the COST Action IC1405 on Reversible Com-
putation - extending horizons of computing. Adrián Palacios was partially supported by the EU (FEDER) and
the Spanish Ayudas para contratos predoctorales para la formación de doctores and Ayudas a la movilidad predoc-
toral para la realización de estancias breves en centros de I+D, MINECO (SEIDI), under FPI grants BES-2014-069749
and EEBB-I-16-11469. Part of this research was done while the second and third authors were visiting Nagoya
University; they gratefully acknowledge their hospitality. �is chapter is an adapted author version of the pa-
per published in “Naoki Nishida, Adrián Palacios, Germán Vidal: Reversible computation in term rewriting. Jour-
nal of Logical and Algebraic Methods in Programming 94: 128–149 (2018)”. DOI: https://doi.org/10.1016/j.
jlamp.2017.10.003. © 2017. �is manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
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reversible, even for injective functions; namely, given a rewrite step t1 → t2,
we do not always have a decidable method to get t1 from t2. Here, we in-
troduce a conservative extension of term rewriting that becomes reversible.
Furthermore, we also de�ne two transformations, injectivization and inver-
sion, to make a rewrite system reversible using standard term rewriting. We
illustrate the usefulness of our transformations in the context of bidirectional
program transformation.

2.1 Introduction

�e notion of reversible computation can be traced back to Landauer’s pioneering
work [80]. Although Landauer was mainly concerned with the energy consumption
of erasing data in irreversible computing, he also claimed that every computer can
be made reversible by saving the history of the computation. However, as Landauer
himself pointed out, this would only postpone the problem of erasing the tape of a
reversible Turing machine before it could be reused. Benne� [11] improved the orig-
inal proposal so that the computation now ends with a tape that only contains the
output of a computation and the initial source, thus deleting all remaining “garbage”
data, though it performs twice the usual computation steps. More recently, Ben-
ne�’s result is extended in [32] to nondeterministic Turing machines, where it is
also proved that transforming an irreversible Turing machine into a reversible one
can be done with a quadratic loss of space. We refer the interested reader to, e.g.,
[12, 46, 145] for a high level account of the principles of reversible computation.

In the last decades, reversible computing and reversibilization (transforming an
irreversible computation device into a reversible one) have been the subject of in-
tense research, giving rise to successful applications in many di�erent �elds, e.g.,
cellular automata [103], where reversibility is an essential property, bidirectional
program transformation [97], where reversibility helps to automate the generation
of inverse functions (see Section 2.6), reversible debugging [51], where one can go
both forward and backward when seeking the cause of an error, parallel discrete
event simulation [124], where reversible computation is used to undo the e�ects of
speculative computations made on a wrong assumption, quantum computing [143],
where all computations should be reversible, and so forth. �e interested reader can
�nd detailed surveys in the state of the art reports of the di�erent working groups
of COST Action IC1405 on Reversible Computation [68].

In this work, we introduce reversibility in the context of term rewriting [9, 132], a
computation model that underlies most rule-based programming languages. In con-
trast to other, more ad-hoc approaches, we consider that term rewriting is an excel-
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lent framework to rigorously de�ne reversible computation in a functional context
and formally prove its main properties. We expect our work to be useful in di�erent
(sequential) contexts, like reversible debugging, parallel discrete event simulation
or bidirectional program transformation, to name a few. In particular, Section 2.6
presents a �rst approach to formalize bidirectional program transformation in our
se�ing.

To be more precise, we present a general and intuitive notion of reversible term
rewriting by de�ning a Landauer embedding. Given a rewrite systemR and its as-
sociated (standard) rewrite relation→R, we de�ne a reversible extension of rewrit-
ing with two components: a forward relation ⇀R and a backward relation ↽R,
such that ⇀R is a conservative extension of →R and, moreover, (⇀R)−1 =↽R.
We note that the inverse rewrite relation, (→R)−1, is not an appropriate basis for
“reversible” rewriting since we aim at de�ning a technique to undo a particular re-
duction. In other words, given a rewriting reduction s→∗R t, our reversible relation
aims at computing the term s from t and R in a decidable and deterministic way,
which is not possible using (→R)−1 since it is generally non-deterministic, non-
con�uent, and non-terminating, even for systems de�ning injective functions (see
Example 2.6). In contrast, our backward relation ↽R is deterministic (thus con�u-
ent) and terminating. Moreover, our relation proceeds backwards step by step, i.e.,
the number of reduction steps in s ⇀∗R t and t ↽∗R s are the same.

In order to introduce a reversibilization transformation for rewrite systems, we
use a �a�ening transformation so that the reduction at top positions of terms su�ces
to get a normal form in the transformed systems. For instance, given the following
rewrite system:

add(0, y) → y,
add(s(x), y) → s(add(x, y))

de�ning the addition on natural numbers built from constructors 0 and s( ), we
produce the following �a�ened (conditional) system:

R = { add(0, y) → y,
add(s(x), y) → s(z)⇐ add(x, y)� z }

(see Example 2.29 for more details). �is allows us to provide an improved notion
of reversible rewriting in which some information (namely, the positions where re-
duction takes place) is not required anymore. �is opens the door to compile the
reversible extension of rewriting into the system rules. Loosely speaking, given a
systemR, we produce new systemsRf andRb such that standard rewriting inRf ,
i.e.,→Rf , coincides with the forward reversible extension ⇀R in the original sys-
tem, and analogously→Rb is equivalent to ↽R. E.g., for the system R above, we
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would produce

Rf = { addi(0, y)→ 〈y, β1〉,
addi(s(x), y)→ 〈s(z), β2(w)〉 ⇐ addi(x, y)� 〈z, w〉 }

Rb = { add−1(y, β1)→ 〈0, y〉,
add−1(s(z), β2(w))→ 〈s(x), y〉 ⇐ add−1(z, w)→ 〈x, y〉 }

where addi is an injective version of function add, add−1 is the inverse of addi, and
β1, β2 are fresh symbols introduced to label the rules ofR.

In this work, we will mostly consider conditional rewrite systems, not only to
have a more general notion of reversible rewriting, but also to de�ne a reversibiliza-
tion technique for unconditional rewrite systems, since the application of �a�ening
(cf. Section 2.4) may introduce conditions in a system that is originally uncondi-
tional, as illustrated above.

�is paper is an extended version of [108]. In contrast to [108], our current paper
includes the proofs of technical results, the reversible extension of term rewriting is
introduced �rst in the unconditional case (which is simpler and more intuitive), and
presents an improved injectivization transformation when the system includes in-
jective functions. Furthermore, a prototype implementation of the reversibilization
technique is publicly available from http://kaz.dsic.upv.es/rev-rewriting.html.

�e paper is organized as follows. A�er introducing some preliminaries in Sec-
tion 2.2, we present our approach to reversible term rewriting in Section 2.3. Sec-
tion 2.4 introduces the class of pure constructor systems where all reductions take
place at topmost positions, so that storing this information in reversible rewrite
steps becomes unnecessary. �en, Section 2.5 presents injectivization and inversion
transformations in order to make a rewrite system reversible with standard rewrit-
ing. Here, we also present an improvement of the transformation for injective func-
tions. �e usefulness of these transformations is illustrated in Section 2.6. Finally,
Section 2.7 discusses some related work and Section 2.8 concludes and points out
some ideas for future research.

2.2 Preliminaries

We assume familiarity with basic concepts of term rewriting. We refer the reader
to, e.g., [9] and [132] for further details.
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2.2.1 Terms and Substitutions

A signature F is a set of ranked function symbols. Given a set of variables V with
F ∩ V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . . to de-
note functions and x, y, . . . to denote variables. Positions are used to address the
nodes of a term viewed as a tree. A position p in a term t, in symbols p ∈ Pos(t), is
represented by a �nite sequence of natural numbers, where ε denotes the root posi-
tion. We let t|p denote the subterm of t at position p and t[s]p the result of replacing
the subterm t|p by the term s. Var(t) denotes the set of variables appearing in t.
We also let Var(t1, . . . , tn) denote Var(t1) ∪ · · · ∪ Var(tn). A term t is ground if
Var(t) = ∅.

A substitution σ : V 7→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x 6= σ(x)} is its domain. A substitution σ is ground if
xσ is ground for all x ∈ Dom(σ). Substitutions are extended to morphisms from
T (F ,V) to T (F ,V) in the natural way. We denote the application of a substitution
σ to a term t by tσ rather than σ(t). �e identity substitution is denoted by id.
We let “◦” denote the composition of substitutions, i.e., σ ◦ θ(x) = (xθ)σ = xθσ.
�e restriction θ |̀V of a substitution θ to a set of variables V is de�ned as follows:
xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise.

2.2.2 Term Rewriting Systems

A set of rewrite rules l→ r such that l is a nonvariable term and r is a term whose
variables appear in l is called a term rewriting system (TRS for short); terms l and
r are called the le�-hand side and the right-hand side of the rule, respectively. We
restrict ourselves to �nite signatures and TRSs. Given a TRSR over a signature F ,
the de�ned symbols DR are the root symbols of the le�-hand sides of the rules and
the constructors are CR = F \ DR. Constructor terms of R are terms over CR and
V , denoted by T (CR,V). We sometimes omitR from DR and CR if it is clear from
the context. A substitution σ is a constructor substitution (of R) if xσ ∈ T (CR,V)
for all variables x.

For a TRSR, we de�ne the associated rewrite relation→R as the smallest binary
relation on terms satisfying the following: given terms s, t ∈ T (F ,V), we have
s→R t i� there exist a position p in s, a rewrite rule l→ r ∈ R, and a substitution
σ such that s|p = lσ and t = s[rσ]p; the rewrite step is sometimes denoted by
s→p,l→r t to make explicit the position and rule used in this step. �e instantiated
le�-hand side lσ is called a redex. A term s is called irreducible or in normal form
with respect to a TRS R if there is no term t with s →R t. A substitution is called
normalized with respect toR if every variable in the domain is replaced by a normal
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form with respect to R. We sometimes omit “with respect to R” if it is clear from
the context. A derivation is a (possibly empty) sequence of rewrite steps. Given a
binary relation→, we denote by→∗ its re�exive and transitive closure, i.e., s→∗R t
means that s can be reduced to t inR in zero or more steps; we also use s→n

R t to
denote that s can be reduced to t in exactly n steps.

We further assume that rewrite rules are labeled, i.e., given a TRSR, we denote
by β : l → r a rewrite rule with label β. Labels are unique in a TRS. Also, to relate
label β to �xed variables, we consider that the variables of the rewrite rules are not
renamed1 and that the reduced terms are always ground. Equivalently, one could
require terms to be variable disjoint with the variables of the rewrite system, but we
require groundness for simplicity. We o�en write s→p,β t instead of s→p,l→r t if
rule l→ r is labeled with β.

2.2.3 Conditional Term Rewrite Systems

In this paper, we also consider conditional term rewrite systems (CTRSs); namely
oriented 3-CTRSs, i.e., CTRSs where extra variables are allowed as long as Var(r) ⊆
Var(l) ∪ Var(C) for any rule l → r ⇐ C [101]. In oriented CTRSs, a conditional
rule l → r ⇐ C has the form l → r ⇐ s1 � t1, . . . , sn � tn, where each
oriented equation si � ti is interpreted as reachability (→∗R). In the following, we
denote by on a sequence of elements o1, . . . , on for some n. We also write oi,j for
the sequence oi, . . . , oj when i ≤ j (and the empty sequence otherwise). We write
o when the number of elements is not relevant. In addition, we denote a condition
o1 � o′1, . . . , on � o′n by on � o′n.

As in the unconditional case, we consider that rules are labeled and that labels
are unique in a CTRS. And, again, to relate label β to �xed variables, we consider that
the variables of the conditional rewrite rules are not renamed and that the reduced
terms are always ground.

For a CTRS R, the associated rewrite relation →R is de�ned as the smallest
binary relation satisfying the following: given ground terms s, t ∈ T (F), we have
s →R t i� there exist a position p in s, a rewrite rule l → r ⇐ sn � tn ∈ R, and
a ground substitution σ such that s|p = lσ, siσ →∗R tiσ for all i = 1, . . . , n, and
t = s[rσ]p.

In order to simplify the presentation, we only consider deterministic CTRSs (DC-
TRSs), i.e., oriented 3-CTRSs where, for each rule l → r ⇐ sn � tn, we have

1�is will become useful in the next section where the reversible extension of rewriting keeps a
“history” of a computation in the form of a list of terms β(p, σ), and we want the domain of σ to be a
subset of the le�-hand side of the rule labeled with β.
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Var(si) ⊆ Var(l, ti−1) for all i = 1, . . . , n (see Section 2.3.2 for a justi�cation of this
requirement and how it could be relaxed to arbitrary 3-CTRSs). Intuitively speak-
ing, the use of DCTRs allows us to compute the bindings for the variables in the
condition of a rule in a deterministic way. E.g., given a ground term s and a rule
β : l → r ⇐ sn � tn with s|p = lθ, we have that s1θ is ground. �erefore, one
can reduce s1θ to some term s′1 such that s′1 is an instance of t1θ with some ground
substitution θ1. Now, we have that s2θθ1 is ground and we can reduce s2θθ1 to
some term s′2 such that s′2 is an instance of t2θθ1 with some ground substitution θ2,
and so forth. If all equations in the condition hold using θ1, . . . , θn, we have that
s→p,β s[rσ]p with σ = θθ1 . . . θn.

Example 2.1. Consider the following DCTRS R that de�nes the function double
that doubles the value of its argument when it is an even natural number:

β1 : add(0, y)→ y β4 : even(0)→ true
β2 : add(s(x), y)→ s(add(x, y)) β5 : even(s(s(x)))→ even(x)
β3 : double(x)→ add(x, x)⇐ even(x)� true

Given the term double(s(s(0))) we have, for instance, the following derivation:

double(s(s(0)))→ε,β3 add(s(s(0)), s(s(0))) since even(s(s(0)))→∗R true
with σ = {x 7→ s(s(0))}

→ε,β2 s(add(s(0), s(s(0)))) with σ = {x 7→ s(0), y 7→ s(s(0))}
→1,β2 s(s(add(0, s(s(0))))) with σ = {x 7→ 0, y 7→ s(s(0))}
→1.1,β1s(s(s(s(0)))) with σ = {y 7→ s(s(0))}

2.3 Reversible Term Rewriting

In this section, we present a conservative extension of the rewrite relation which
becomes reversible. In the following, we use ⇀R to denote our reversible (forward)
term rewrite relation, and ↽R to denote its application in the reverse (backward)
direction. Note that, in principle, we do not require ↽R = ⇀−1

R , i.e., we provide
independent (constructive) de�nitions for each relation. Nonetheless, we will prove
that ↽R = ⇀−1

R indeed holds (cf. �eorems 2.9 and 2.20). In some approaches to
reversible computing, both forward and backward relations should be deterministic.
Here, we will only require deterministic backward steps, while forward steps might
be non-deterministic, as it is o�en the case in term rewriting.
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2.3.1 Unconditional Term Rewrite Systems

We start with unconditional TRSs since it is conceptually simpler and thus will help
the reader to be�er understand the key ingredients of our approach. In the next
section, we will consider the more general case of DCTRSs.

Given a TRSR, reversible rewriting is de�ned on pairs 〈t, π〉, where t is a ground
term and π is a trace (the “history” of the computation so far). Here, a trace inR is a
list of trace terms of the form β(p, σ) such that β is a label for some rule l→ r ∈ R,
p is a position, and σ is a substitution with Dom(σ) = Var(l)\Var(r) which will
record the bindings of erased variables when Var(l)\Var(r) 6= ∅ (and σ = id
if Var(l)\Var(r) = ∅).2 Our trace terms have some similarities with proof terms
[132]. However, proof terms do not store the bindings of erased variables (and, to
the best of our knowledge, they are only de�ned for unconditional TRSs, while we
use trace terms both for unconditional and conditional TRSs).

Our reversible term rewriting relation is only de�ned on safe pairs:

De�nition 2.2. LetR be a TRS. �e pair 〈s, π〉 is safe inR i�, for all β(p, σ) in π,
σ is a ground substitution with Dom(σ) = Var(l)\Var(r) and β : l→ r ∈ R.

In the following, we o�en omit R when referring to traces and safe pairs if the
underlying TRS is clear from the context.

Safety is not necessary when applying a forward reduction step, but will become
essential for the backward relation↽R to be correct. E.g., all traces that come from
the forward reduction of some initial pair with an empty trace will be safe (see
below). Reversible rewriting is then introduced as follows:

De�nition 2.3. LetR be a TRS. A reversible rewrite relation⇀R is de�ned on safe
pairs 〈t, π〉, where t is a ground term and π is a trace in R. �e reversible rewrite
relation extends standard rewriting as follows:3

〈s, π〉⇀R 〈t, β(p, σ′) : π〉

i� there exist a position p ∈ Pos(s), a rewrite rule β : l → r ∈ R, and a ground
substitution σ such that s|p = lσ, t = s[rσ]p, and σ′ = σ|̀Var(l)\Var(r). �e reverse
relation, ↽R, is then de�ned as follows:

〈t, β(p, σ′) : π〉↽R 〈s, π〉
2Note that if a rule l→ r is non-erasing, i.e., Var(l) = Var(r), then σ = id.
3In the following, we consider the usual in�x notation for lists where [ ] is the empty list and x : xs

is a list with head x and tail xs.
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i� 〈t, β(p, σ′) : π〉 is a safe pair in R and there exist a ground substitution θ
and a rule β : l → r ∈ R such that Dom(θ) = Var(r), t|p = rθ and s =
t[lθσ′]p. Note that θσ′ = σ′θ = θ ∪ σ′, where ∪ is the union of substitutions,
since Dom(θ) = Var(r), Dom(σ′) = (Var(l)\Var(r)) and both substitutions are
ground, so Dom(θ) ∩ Dom(σ′) = ∅.

We denote the union of both relations ⇀R ∪↽R by
R.

Example 2.4. Let us consider the following TRSR de�ning the addition on natural
numbers built from 0 and s( ), and the function fst that returns its �rst argument:

β1 : add(0, y) → y β3 : fst(x, y) → x
β2 : add(s(x), y) → s(add(x, y))

Given the term fst(add(s(0), 0), 0), we have, for instance, the following reversible
(forward) derivation:

〈fst(add(s(0), 0), 0), [ ]〉 ⇀R 〈fst(s(add(0, 0)), 0), [β2(1, id)]〉
⇀R 〈s(add(0, 0)), [β3(ε, {y 7→ 0}), β2(1, id)]〉
⇀R 〈s(0), [β1(1, id), β3(ε, {y 7→ 0}), β2(1, id)]〉

�e reader can easily check that 〈s(0), [β1(1, id), β3(ε, {y 7→ 0}), β2(1, id)]〉 is re-
ducible to 〈fst(add(s(0), 0), 0), [ ]〉 using the backward relation ↽R by performing
exactly the same steps but in the backward direction.

An easy but essential property of ⇀R is that it is a conservative extension of
standard rewriting in the following sense (we omit its proof since it is straightfor-
ward):

�eorem 2.5. LetR be a TRS. Given terms s, t, if s→∗R t, then for any trace π there
exists a trace π′ such that 〈s, π〉⇀∗R 〈t, π′〉.

Here, and in the following, we assume that←R= (→R)−1, i.e., s→−1
R t is de-

noted by s←R t. Observe that the backward relation is not a conservative extension
of←R: in general, t←R s does not imply 〈t, π′〉↽R 〈s, π〉 for any arbitrary trace
π′. �is is actually the purpose of our notion of reversible rewriting: ↽R should
not extend ←R but is only aimed at performing exactly the same steps of the for-
ward computation whose trace was stored, but in the reverse order. Nevertheless,
one can still ensure that for all steps t ←R s, there exists some trace π′ such that
〈t, π′〉↽R 〈s, π〉 (which is an easy consequence of the above result and �eorem 2.9
below).
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Example 2.6. Consider again the following TRS R = {β : snd(x, y) → y}.
Given the reduction snd(1, 2) →R 2, there are in�nitely many reductions for 2
using ←R, e.g., 2 ←R snd(1, 2), 2 ←R snd(2, 2), 2 ←R snd(3, 2), etc. �e rela-
tion is also non-terminating: 2 ←R snd(1, 2) ←R snd(1, snd(1, 2)) ←R · · · . In
contrast, given a pair 〈2, π〉, we can only perform a single deterministic and �nite
reduction (as proved below). For instance, if π = [β(ε, {x 7→ 1}), β(2, {x 7→ 1})],
then the only possible reduction is 〈2, π〉 ↽R 〈snd(1, 2), [β(2, {x 7→ 1})]〉 ↽R
〈snd(1, snd(1, 2)), [ ]〉 6↽R.

Now, we state a lemma which shows that safe pairs are preserved through re-
versible term rewriting (both in the forward and backward directions):

Lemma 2.7. LetR be a TRS. Let 〈s, π〉 be a safe pair. If 〈s, π〉
∗R 〈t, π′〉, then 〈t, π′〉
is also safe.

Proof. We prove the claim by induction on the length k of the derivation. Since the
base case k = 0 is trivial, consider the inductive case k > 0. Assume a derivation
of the form 〈s, π〉 
∗R 〈s0, π0〉 
R 〈t, π′〉. By the induction hypothesis, we have
that 〈s0, π0〉 is a safe pair. Now, we distinguish two cases depending on the last
step. If we have 〈s0, π0〉 ⇀R 〈t, π′〉, then there exist a position p ∈ Pos(s0), a
rewrite rule β : l → r ∈ R, and a ground substitution σ such that s0|p = lσ,
t = s0[rσ]p, σ′ = σ|̀Var(l)\Var(r), and π′ = β(p, σ′) : π0. �en, since σ′ is ground and
Dom(σ′) = Var(l)\Var(r) by construction, the claim follows straightforwardly. If
the last step has the form 〈s0, π0〉↽R 〈t, π′〉, then the claim follows trivially since
each step with ↽R only removes trace terms from π0.

Hence, since any pair with an empty trace is safe the following result, which
states that every pair that is reachable from an initial pair with an empty trace is
safe, straightforwardly follows from Lemma 2.7:

Proposition 2.8. LetR be a TRS. If 〈s, [ ]〉
∗R 〈t, π〉, then 〈t, π〉 is safe.

Now, we state the reversibility of ⇀R, i.e., the fact that (⇀R)−1 = ↽R (and
thus the reversibility of ↽R and
R, too).

�eorem 2.9. Let R be a TRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for all n ≥ 0,
〈s, π〉⇀n

R 〈t, π′〉 i� 〈t, π′〉↽n
R 〈s, π〉.

Proof. (⇒) We prove the claim by induction on the lengthn of the derivation 〈s, π〉⇀n
R

〈t, π′〉. Since the base case n = 0 is trivial, let us consider the inductive case n > 0.
Consider a derivation 〈s, π〉⇀n−1

R 〈s0, π0〉⇀R 〈t, π′〉. By Lemma 2.7, both 〈s0, π0〉
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and 〈t, π′〉 are safe. By the induction hypothesis, we have 〈s0, π0〉 ↽n−1
R 〈s, π〉.

Consider now the step 〈s0, π0〉⇀R 〈t, π′〉. �en, there is a position p ∈ Pos(s0), a
rule β : l → r ∈ R and a ground substitution σ such that s0|p = lσ, t = s0[rσ]p,
σ′ = σ |̀Var(l)\Var(r), and π′ = β(p, σ′) : π0. Let θ = σ |̀Var(r). �en, we have
〈t, π′〉 ↽R 〈s′0, π0〉 with t|p = rθ, β : l → r ∈ R and s′0 = t[lθσ′]p. Moreover,
since σ = θσ′, we have s′0 = t[lθσ′]p = t[lσ]p = s0, and the claim follows.

(⇐) �is direction proceeds in a similar way. We prove the claim by induction
on the length n of the derivation 〈t, π′〉↽n

R 〈s, π〉. As before, we only consider the
inductive case n > 0. Let us consider a derivation 〈t, π′〉↽n−1

R 〈s0, π0〉↽R 〈s, π〉.
By Lemma 2.7, both 〈s0, π0〉 and 〈s, π〉 are safe. By the induction hypothesis, we
have 〈s0, π0〉 ⇀n−1

R 〈t, π′〉. Consider now the reduction step 〈s0, π0〉 ↽R 〈s, π〉.
�en, we have π0 = β(p, σ′) : π, β : l → r ∈ R, and there exists a ground
substitution θ with Dom(θ) = Var(r) such that s0|p = rθ and s = s0[lθσ′]p.
Moreover, since 〈s0, π0〉 is safe, we have that Dom(σ′) = Var(l)\Var(r) and, thus,
Dom(θ) ∩ Dom(σ′) = ∅. Let σ = θσ′. �en, since s|p = lσ and Dom(σ′) =
Var(l)\Var(r), we can perform the step 〈s, π〉 ⇀R 〈s′0, β(p, σ′) : π〉 with s′0 =
s[rσ]p = s[rθσ′]p = s[rθ]p = s0[rθ]p = s0, and the claim follows.

�e next corollary is then immediate:

Corollary 2.10. LetR be a TRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for all n ≥ 0,
〈s, π〉
n

R 〈t, π′〉 i� 〈t, π′〉
n
R 〈s, π〉.

A key issue of our notion of reversible rewriting is that the backward rewrite
relation ↽R is deterministic (thus con�uent), terminating, and has a constructive
de�nition:

�eorem 2.11. LetR be a TRS. Given a safe pair 〈t, π′〉, there exists at most one pair
〈s, π〉 such that 〈t, π′〉↽R 〈s, π〉.

Proof. First, if there is no step using ↽R from 〈t, π′〉, the claim follows trivially.
Now, assume there is at least one step 〈t, π′〉 ↽R 〈s, π〉. We prove that this is
the only possible step. By de�nition, we have π′ = β(p, σ′) : π, p ∈ Pos(t),
β : l → r ∈ R, and there exists a ground substitution θ with Dom(θ) = Var(r)
such that t|p = rθ and s = t[lθσ′]p. �e only source of nondeterminism may come
from choosing a rule labeled with β and from the computation of the substitution θ.
�e claim follows trivially from the fact that labels are unique inR and that, if there
is some ground substitution θ′ with θ′ = Var(r) and t|p = rθ′, then θ = θ′.

�erefore,↽R is clearly deterministic and con�uent. Termination holds straight-
forwardly for pairs with �nite traces since its length strictly decreases with every
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backward step. Note however that even when ⇀R and ↽R are terminating, the
relation
R is always non-terminating since one can keep going back and forth.

2.3.2 Conditional Term Rewrite Systems

In this section, we extend the previous notions and results to DCTRSs. We note
that considering DCTRSs is not enough to make conditional rewriting deterministic.
In general, given a rewrite step s →p,β t with p a position of s, β : l → r ⇐
sn → tn a rule, and σ a substitution such that s|p = lσ and siσ →∗R tiσ for all
i = 1, . . . , n, there are three potential sources of non-determinism: the selected
position p, the selected rule β, and the substitution σ. �e use of DCTRSs can only
make deterministic the last one, but the choice of a position and the selection of a
rule may still be non-deterministic.

For DCTRSs, the notion of a trace term used for TRSs is not su�cient since we
also need to store the traces of the subderivations associated to the condition of the
applied rule (if any). �erefore, we generalize the notion of a trace as follows:

De�nition 2.12 (trace). Given a CTRS R, a trace in R is recursively de�ned as
follows:

• the empty list is a trace;

• if π, π1, . . . , πn are traces inR, n ≥ 0, β : l → r ⇐ sn � tn ∈ R is a rule, p
is a position, and σ is a ground substitution, then β(p, σ, π1, . . . , πn) : π is a
trace inR.

We refer to each component β(p, σ, π1, . . . , πn) in a trace as a trace term.

Intuitively speaking, a trace term β(p, σ, π1, . . . , πn) stores the position of a
reduction step, a substitution with the bindings that are required for the step to be
reversible (e.g., the bindings for the erased variables, but not only; see below) and
the traces associated to the subcomputations in the condition.

�e notion of a safe pair is now more involved in order to deal with conditional
rules. �e motivation for this de�nition will be explained below, a�er introducing
reversible rewriting for DCTRSs.

De�nition 2.13 (safe pair). LetR be a DCTRS. A trace π is safe inR i�, for all trace
termsβ(p, σ, πn) inπ, σ is a ground substitution withDom(σ) = (Var(l)\Var(r, sn, tn))∪⋃n
i=1 Var(ti)\Var(r, si+1,n), β : l → r ⇐ sn � tn ∈ R, and πn are safe too. �e

pair 〈s, π〉 is safe inR i� π is safe.
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Reversible (conditional) rewriting can now be introduced as follows:

De�nition 2.14 (reversible rewriting). Let R be a DCTRS. �e reversible rewrite
relation ⇀R is de�ned on safe pairs 〈t, π〉, where t is a ground term and π is a
trace in R. �e reversible rewrite relation extends standard conditional rewriting
as follows:

〈s, π〉⇀R 〈t, β(p, σ′, π1, . . . , πn) : π〉

i� there exist a position p ∈ Pos(s), a rewrite rule β : l → r ⇐ sn � tn ∈ R,
and a ground substitution σ such that s|p = lσ, 〈siσ, [ ]〉 ⇀∗R 〈tiσ, πi〉 for all i =
1, . . . , n, t = s[rσ]p, and σ′ = σ |̀(Var(l)\Var(r,sn,tn))∪

⋃n
i=1 Var(ti)\Var(r,si+1,n). �e

reverse relation, ↽R, is then de�ned as follows:

〈t, β(p, σ′, π1, . . . , πn) : π〉↽R 〈s, π〉

i� 〈t, β(p, σ′, πn) : π〉 is a safe pair in R, β : l → r ⇐ sn � tn ∈ R and there
is a ground substitution θ such that Dom(θ) = Var(r, sn)\Dom(σ′), t|p = rθ,
〈tiθσ′, πi〉 ↽∗R 〈siθσ′, [ ]〉 for all i = 1, . . . , n, and s = t[lθσ′]p. Note that θσ′ =
σ′θ = θ ∪ σ′ since Dom(θ) ∩ Dom(σ′) = ∅ and both substitutions are ground.

As in the unconditional case, we denote the union of both relations ⇀R ∪↽R
by
R.

Example 2.15. Consider again the DCTRSR from Example 2.1:

β1 : add(0, y)→ y β4 : even(0)→ true
β2 : add(s(x), y)→ s(add(x, y)) β5 : even(s(s(x)))→ even(x)
β3 : double(x)→ add(x, x)⇐ even(x)� true

Given the term double(s(s(0))), we have, for instance, the following forward deriva-
tion:

〈double(s(s(0))), [ ]〉
⇀R 〈add(s(s(0)), s(s(0))), [β3(ε, id, π)]〉
⇀R · · ·
⇀R 〈s(s(s(s(0)))), [β1(1.1, id), β2(1, id), β2(ε, id), β3(ε, id, π)]〉

where π = [β4(ε, id), β5(ε, id)] since we have the following reduction:

〈even(s(s(0))), [ ]〉⇀R 〈even(0), [β5(ε, id)]〉⇀R 〈true, [β4(ε, id), β5(ε, id)]〉

�e reader can easily construct the associated backward derivation:

〈add(s(s(0)), s(s(0))), [β1(1.1, id), β2(1, id), . . .]〉↽∗R 〈double(s(s(0))), [ ]〉
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Let us now explain why we need to store σ′ in a step of the form 〈s, π〉 ⇀R
〈t, β(p, σ′, πn) : π〉. Given a DCTRS, for each rule l→ r ⇐ sn � tn, the following
conditions hold:

• 3-CTRS: Var(r) ⊆ Var(l, sn, tn).

• Determinism: for all i = 1, . . . , n, we have Var(si) ⊆ Var(l, ti−1).

Intuitively, the backward relation ↽R can be seen as equivalent to the forward
relation ⇀R but using a reverse rule of the form r → l ⇐ tn � sn, . . . , t1 � s1.
�erefore, in order to ensure that backward reduction is deterministic, we need the
same conditions as above but on the reverse rule:4

• 3-CTRS: Var(l) ⊆ Var(r, sn, tn).

• Determinism: for all i = 1, . . . , n, Var(ti) ⊆ Var(r, si+1,n).

Since these conditions cannot be guaranteed in general, we store

σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪
⋃n
i=1 Var(ti)\Var(r,si+1,n)

in the trace term so that (r → l⇐ tn � sn, . . . , t1 � s1)σ′ is deterministic and ful-
�lls the conditions of a 3-CTRS by construction, i.e., Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′)
and for all i = 1, . . . , n, Var(tiσ

′) ⊆ Var(rσ′, si+1,nσ′); see the proof of �eo-
rem 2.21 for more details.

Example 2.16. Consider the following DCTRS:

β1 : f(x, y,m) → s(w)⇐ h(x)� x, g(y, 4)� w
β2 : h(0) → 0 β3 : h(1) → 1 β4 : g(x, y) → x

and the step 〈f(0, 2, 4), [ ]〉 ⇀R 〈s(2), [β1(ε, σ′, π1, π2)]〉 with σ′ = {m 7→ 4, x 7→
0}, π1 = [β2(ε, id)] and π2 = [β4(ε, {y 7→ 4})]. �e binding of variable m is
required to recover the value of the erased variable m, but the binding of variable x
is also needed to perform the subderivation 〈x, π1〉 ↽R 〈h(x), [ ]〉 when applying
a backward step from 〈s(2), [β1(ε, σ′, π1, π2)]〉. If the binding for x were unknown,
this step would not be deterministic. As mentioned above, an instantiated reverse
rule (s(w) → f(x, y,m) ⇐ w � g(y, 4), x � h(x))σ′ = s(w) → f(0, y, 4) ⇐
w � g(y, 4), 0� h(0) would be a legal DCTRS rule thanks to σ′.

4We note that the notion of a non-erasing rule is extended to the DCTRSs in [110], which results
in a similar condition.
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We note that similar conditions could be de�ned for arbitrary 3-CTRSs. How-
ever, the conditions would be much more involved; e.g., one had to compute �rst
the variable dependencies between the equations in the conditions. �erefore, we
prefer to keep the simpler conditions for DCTRSs (where these dependencies are
�xed), which is still quite a general class of CTRSs.

Reversible rewriting is also a conservative extension of rewriting for DCTRSs
(we omit the proof since it is straightforward):

�eorem 2.17. Let R be a DCTRS. Given ground terms s, t, if s →∗R t, then for any
trace π there exists a trace π′ such that 〈s, π〉⇀∗R 〈t, π′〉.

For the following result, we need some preliminary notions (see, e.g., [132]). For
every oriented CTRSR, we inductively de�ne the TRSsRk, k ≥ 0, as follows:

R0 = ∅
Rk+1 = {lσ → rσ | l→ r ⇐ sn � tn ∈ R, siσ →∗Rk tiσ for all i = 1, . . . , n}

Observe that Rk ⊆ Rk+1 for all k ≥ 0. We have→R=
⋃
i≥0 →Ri . We also have

s →R t i� s →Rk t for some k ≥ 0. �e minimum such k is called the depth of
s→R t, and the maximum depth k of s = s0 →Rk1

· · · →Rkm sm = t (i.e., k is the
maximum of depths k1, . . . , km) is called the depth of the derivation. If a derivation
has depth k and length m, we write s →m

Rk t. Analogous notions can naturally be
de�ned for ⇀R, ↽R, and
R.

�e next result shows that safe pairs are also preserved through reversible rewrit-
ing with DCTRSs:

Lemma 2.18. Let R be a DCTRS and 〈s, π〉 a safe pair. If 〈s, π〉 
∗R 〈t, π′〉, then
〈t, π′〉 is also safe.

Proof. We prove the claim by induction on the lexicographic product (k,m) of the
depth k and the length m of the derivation 〈s, π〉 
m

Rk 〈t, π
′〉. Since the base

case is trivial, we consider the inductive case (k,m) > (0, 0). Consider a deriva-
tion 〈s, π〉 
m−1

Rk 〈s0, π0〉 
Rk 〈t, π′〉. By the induction hypothesis, we have
that 〈s0, π0〉 is safe. Now, we distinguish two cases depending on the last step.
If the last step is 〈s0, π0〉 ⇀Rk 〈t, π′〉, then there exist a position p ∈ Pos(s0),
a rewrite rule β : l → r ⇐ sn � tn ∈ R, and a ground substitution σ such
that s0|p = lσ, 〈siσ, [ ]〉 ⇀∗Rki 〈tiσ, πi〉 for all i = 1, . . . , n, t = s0[rσ]p, σ′ =

σ |̀(Var(l)\Var(r,sn,tn))∪
⋃n
i=1 Var(ti)\Var(r,si+1,n), and π′ = β(p, σ′, π1, . . . , πn). �en,

since ki < k, i = 1, . . . , n, σ′ is ground and Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪⋃n
i=1 Var(ti)\Var(r, si+1,n) by construction, the claim follows by induction. Finally,
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if the last step has the form 〈s0, π0〉 ↽Rk 〈t, π′〉, then the claim follows trivially
since a step with ↽R only removes trace terms from π0.

As in the unconditional case, the following proposition follows straightforwardly
from the previous lemma since any pair with an empty trace is safe.

Proposition 2.19. LetR be a DCTRS. If 〈s, [ ]〉
∗R 〈t, π〉, then 〈t, π〉 is safe inR.

Now, we can already state the reversibility of ⇀R for DCTRSs:

�eorem 2.20. Let R be a DCTRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for all
k,m ≥ 0, 〈s, π〉⇀m

Rk 〈t, π
′〉 i� 〈t, π′〉↽m

Rk 〈s, π〉.

Proof. (⇒) We prove the claim by induction on the lexicographic product (k,m)
of the depth k and the length m of the derivation 〈s, π〉 ⇀m

Rk 〈t, π
′〉. Since the

base case is trivial, we consider the inductive case (k,m) > (0, 0). Consider a
derivation 〈s, π〉 ⇀m−1

Rk 〈s0, π0〉 ⇀Rk 〈t, π′〉 whose associated product is (k,m).
By Proposition 2.19, both 〈s0, π0〉 and 〈t, π′〉 are safe. By the induction hypothesis,
since (k,m − 1) < (k,m), we have 〈s0, π0〉 ↽m−1

Rk 〈s, π〉. Consider now the step
〈s0, π0〉 ⇀Rk 〈t, π′〉. �us, there exist a position p ∈ Pos(s0), a rule β : l →
r ⇐ sn � tn ∈ R, and a ground substitution σ such that s0|p = lσ, 〈siσ, [ ]〉⇀∗Rki
〈tiσ, πi〉 for all i = 1, . . . , n, t = s0[rσ]p, σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪

⋃n
i=1 Var(ti)\Var(r,si+1,n),

and π′ = β(p, σ′, π1, . . . , πn) : π0. By de�nition of ⇀Rk , we have that ki < k and,
thus, (ki,m1) < (k,m2) for all i = 1, . . . , n and for all m1,m2. Hence, by the
induction hypothesis, we have 〈tiσ, πi〉 ↽∗Rki 〈siσ, [ ]〉 for all i = 1, . . . , n. Let
θ = σ |̀Var(r,sn)\Dom(σ′), so that σ = θσ′ and Dom(θ) ∩ Dom(σ′) = ∅. �erefore,
we have 〈t, π′〉 ↽Rk 〈s′0, π0〉 with t|p = rθ, β : l → r ⇐ sn � tn ∈ R and
s′0 = t[lθσ′]p = t[lσ]p = s0, and the claim follows.

(⇐) �is direction proceeds in a similar way. We prove the claim by induction
on the lexicographic product (k,m) of the depth k and the length m of the con-
sidered derivation. Since the base case is trivial, let us consider the inductive case
(k,m) > (0, 0). Consider a derivation 〈t, π′〉↽m−1

Rk 〈s0, π0〉↽Rk 〈s, π〉whose as-
sociated product is (k,m). By Proposition 2.19, both 〈s0, π0〉 and 〈s, π〉 are safe. By
the induction hypothesis, since (k,m−1) < (k,m), we have 〈s0, π0〉⇀m−1

Rk 〈t, π
′〉.

Consider now the step 〈s0, π0〉↽Rk 〈s, π〉. �en, we haveπ0 = β(p, σ′, π1, . . . , πn) :
π, β : l → r ⇐ sn � tn ∈ R, and there exists a ground substitution θ with
Dom(θ) = Var(r, sn)\Dom(σ′) such that s0|p = rθ, 〈tiθσ′, πi〉 ↽∗Rki 〈siθσ

′, [ ]〉
for all i = 1, . . . , n, and s = s0[lθσ′]p. Moreover, since 〈s0, π0〉 is safe, we have that
Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n). By de�nition of
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↽Rk , we have that ki < k and, thus, (ki,m1) < (k,m2) for all i = 1, . . . , n and
for all m1,m2. By the induction hypothesis, we have 〈siθσ′, [ ]〉 ⇀∗Rki 〈tiθσ

′, πi〉
for all i = 1, . . . , n. Let σ = θσ′, with Dom(θ) ∩ Dom(σ′) = ∅. �en, since
s|p = lσ, we can perform the step 〈s, π〉 ⇀Rk 〈s′0, β(p, σ′, π1, . . . , πn) : π〉 with
s′0 = s[rσ]p = s[rθσ′]p; moreover, s[rθσ′]p = s[rθ]p = s0[rθ]p = s0 since
Dom(σ′) ∩ Var(r) = ∅, which concludes the proof.

In the following, we say that 〈t, π′〉↽R 〈s, π〉 is a deterministic step if there is no
other, di�erent pair 〈s′′, π′′〉with 〈t, π′〉↽R 〈s′′, π′′〉 and, moreover, the subderiva-
tions for the equations in the condition of the applied rule (if any) are deterministic,
too. We say that a derivation 〈t, π′〉 ↽∗R 〈s, π〉 is deterministic if each reduction
step in the derivation is deterministic.

Now, we can already prove that backward reversible rewriting is also determin-
istic, as in the unconditional case:

�eorem 2.21. Let R be a DCTRS. Let 〈t, π′〉 be a safe pair with 〈t, π′〉 ↽∗R 〈s, π〉
for some term s and trace π. �en 〈t, π′〉↽∗R 〈s, π〉 is deterministic.

Proof. We prove the claim by induction on the lexicographic product (k,m) of the
depth k and the length m of the steps. �e case m = 0 is trivial, and thus we let
m > 0. Assume 〈t, π′〉 ↽m−1

Rk 〈u, π′′〉 ↽Rk 〈s, π〉. For the base case k = 1, the
applied rule is unconditional and the proof is analogous to that of �eorem 2.11.

Let us now consider k > 1. By de�nition, if 〈u, π′′〉 ↽Rk 〈s, π〉, we have
π′′ = β(p, σ′, π1, . . . , πn) : π, β : l → r ⇐ sn � tn ∈ R and there exists a
ground substitution θ with Dom(θ) = Var(r) such that u|p = rθ, 〈tiθσ′, πi〉 ↽∗Rj
〈siθσ′, [ ]〉, j < k, for all i = 1, . . . , n, and s = t[lθσ′]p. By the induction hypothe-
sis, the subderivations 〈tiθσ′, πi〉 ↽∗Rj 〈siθσ

′, [ ]〉 are deterministic, i.e., 〈siθσ′, [ ]〉
is a unique resulting term obtained by reducing 〈tiθσ′, πi〉. �erefore, the only re-
maining source of nondeterminism can come from choosing a rule labeled with
β and from the computed substitution θ. On the one hand, the labels are unique
in R. As for θ, we prove that this is indeed the only possible substitution for
the reduction step. Consider the instance of rule l → r ⇐ sn � tn with σ′:
lσ′ → rσ′ ⇐ snσ′ � tnσ′. Since 〈u, π′′〉 is safe, we have that σ′ is a ground substi-
tution andDom(σ′) = (Var(l)\Var(r, sn, tn))∪

⋃n
i=1 Var(ti)\Var(r, si+1,n). �en,

the following properties hold:

• Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′), since σ′ is ground and it covers all the vari-
ables in Var(l)\Var(r, sn, tn).
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• Var(tiσ
′) ⊆ Var(rσ′, si+1,nσ′) for all i = 1, . . . , n, since σ′ is ground and it

covers all variables in
⋃n
i=1 Var(ti)\Var(r, si+1,n).

�e above properties guarantee that a rule of the form rσ′ → lσ′ ⇐ tnσ
′ �

snσ
′, . . . , t1σ

′ � s1σ
′ can be seen as a rule of a DCTRS and, thus, there exists a

deterministic procedure to compute θ, which completes the proof.

�erefore, ↽R is deterministic and con�uent. Termination is trivially guaran-
teed for pairs with a �nite trace since the trace’s length strictly decreases with every
backward step.

2.4 Removing Positions from Traces

Once we have a feasible de�nition of reversible rewriting, there are two re�nements
that can be considered: i) reducing the size of the traces and ii) de�ning a reversibi-
lization transformation so that standard rewriting becomes reversible in the trans-
formed system. In this section, we consider the �rst problem, leaving the second
one for the next section.

In principle, one could remove information from the traces by requiring certain
conditions on the considered systems. For instance, requiring injective functions
may help to remove rule labels from trace terms. Also, requiring non-erasing rules
may help to remove the second component of trace terms (i.e., the substitutions). In
this section, however, we deal with a more challenging topic: removing positions
from traces. �is is useful not only to reduce the size of the traces but it is also
essential to de�ne a reversibilization technique for DCTRSs in the next section.5
In particular, we aim at transforming a given DCTRS into one that ful�lls some
conditions that make storing positions unnecessary.

In the following, given a CTRS R, we say that a term t is basic [63] if it has
the form f(tn) with f ∈ DR a de�ned function symbol and tn ∈ T (CR,V) con-
structor terms. Furthermore, in the remainder of this paper, we assume that the
right-hand sides of the equations in the conditions of the rules of a DCTRS are con-
structor terms. �is is not a signi�cant restriction since these terms cannot be re-
duced anyway (since we consider oriented equations in this paper), and still covers
most practical examples.

Now, we introduce the following subclass of DCTRSs:
5We note that de�ning a transformation with traces that include positions would be a rather di�-

cult task because positions are dynamic (i.e., they depend on the term being reduced) and thus would
require a complex (and ine�cient) system instrumentation.
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De�nition 2.22 (pcDCTRS [105]). We say that a DCTRS R is a pcDCTRS (“pc”
stands for pure constructor) if, for each rule l → r ⇐ sn � tn ∈ R, we have that l
and sn are basic terms and r and tn are constructor terms.

Pure constructor systems are called normalized systems in [3]. Also, they are
mostly equivalent to the class IIIn of conditional systems in [13], where t1, . . . , tn
are required to be ground unconditional normal forms instead.6

In principle, any DCTRS with basic terms in the le�-hand sides (i.e., a constructor
DCTRS) and constructor terms in the right-hand sides of the equations of the rules
can be transformed into a pcDCTRS by applying a few simple transformations: �at-
tening and simpli�cation of constructor conditions. Let us now consider each of
these transformations separately. Roughly speaking, �a�ening involves transform-
ing a term (occurring, e.g., in the right-hand side of a DCTRS or in the condition)
with nested de�ned functions like f(g(x)) into a term f(y) and an (oriented) equa-
tion g(x)� y, where y is a fresh variable. Formally,

De�nition 2.23 (�a�ening). Let R be a CTRS, R = (l → r ⇐ sn � tn) ∈ R
be a rule and R′ be a new rule either of the form l → r ⇐ s1 � t1, . . . , si|p �
w, si[w]p � ti, . . . , sn � tn, for some p ∈ Pos(si), 1 6 i 6 n, or l → r[w]q ⇐
sn � tn, r|q � w, for some q ∈ Pos(r), wherew is a fresh variable.7 �en, a CTRS
R′ is obtained fromR by a �a�ening step ifR′ = (R\{R}) ∪ {R′}.

Note that, if an unconditional rule is non-erasing (i.e., Var(l) ⊆ Var(r) for a
rule l→ r), any conditional rule obtained by �a�ening is trivially non-erasing too,
according to the notion of non-erasingness for DCTRSs in [110].8

Fla�ening is trivially complete since any �a�ening step can be undone by bind-
ing the fresh variable again to the selected subterm and, then, proceeding as in the
original system. Soundness is more subtle though. In this work, we prove the cor-
rectness of �a�ening for arbitrary DCTRSs with respect to innermost rewriting. As
usual, the innermost rewrite relation, in symbols, i→R, is de�ned as the smallest
binary relation satisfying the following: given ground terms s, t ∈ T (F), we have
s

i→R t i� there exist a position p in s such that no proper subterms of s|p are re-
ducible, a rewrite rule l→ r ⇐ sn � tn ∈ R, and a normalized ground substitution
σ such that s|p = lσ, siσ

i→∗R tiσ, for all i = 1, . . . , n, and t = s[rσ]p.
6Given a CTRSR, we de�neRu = {l→ r | l→ r ⇐ sn � tn ∈ R}. A term is an unconditional

normal form inR, if it is a normal form inRu.
7�e positions p, q can be required to be di�erent from ε, but this is not strictly necessary.
8Roughly, a DCTRS is considered non-erasing in [110] if its transformation into an unconditional

TRS by an unraveling transformation gives rise to a non-erasing TRS.
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In order to prove the correctness of �a�ening, we state the following auxiliary
lemma:

Lemma 2.24. Let R be a DCTRS. Given terms s and t, with t a normal form, and a
position p ∈ Pos(s), we have s i→∗R t i� s|p

i→∗Rwσ and s[wσ]p
i→∗R t, for some fresh

variable w and normalized substitution σ.

Proof. (⇒) Let us consider an arbitrary position p ∈ Pos(s). If s|p is normalized,
the proof is straightforward. Otherwise, since we use innermost reduction (le�most
innermost, for simplicity), we can represent the derivation s i→∗R t as follows:

s[s|p]p
i→∗R s′[s|p]p

i→∗R s′[s′′]p
i→∗R t

where s′′ is a normal form and the subderivation s[s|p]p
i→∗R s′[s|p]p reduces the

le�most innermost subterms that are to the le� of s|p (if any). �en, by choosing
σ = {w 7→ s′′}we have s|p

i→∗Rwσ (by mimicking the steps of s′[s|p]p
i→∗R s′[s′′]p),

s[wσ]p
i→∗R s′[wσ]p (by mimicking the steps of s[s|p]p

i→∗R s′[s|p]p), and s′[wσ]p
i→∗R t

(by mimicking the steps of s′[s′′]p
i→∗R t), which concludes the proof.

(⇐) �is direction is perfectly analogous to the previous case. We consider an
arbitrary position p ∈ Pos(s) such that s|p is not normalized (otherwise, the proof
is trivial). Now, since derivations are innermost, we can consider that s[wσ]p

i→∗R t
is as follows: s[wσ]p

i→∗R s′[wσ]p
i→∗R t, where s[wσ]p

i→∗R s′[wσ]p reduces the
innermost subterms to the le� of s|p. �erefore, we have s[s|p]p

i→∗R s′[s|p]p (by
mimicking the steps of s[wσ]p

i→∗R s′[wσ]p), s′[s|p]p
i→∗R s′[s′′]p (by mimicking the

steps of s|p
i→∗R wσ, with σ = {w 7→ s′′}), and s′[s′′]p

i→∗R t (by mimicking the
steps of s′[wσ]p

i→∗R t).

�e following theorem is an easy consequence of the previous lemma:

�eorem 2.25. LetR be a DCTRS. IfR′ is obtained fromR by a �a�ening step, then
R′ is a DCTRS and, for all ground terms s, t, with t a normal form, we have s i→∗R t
i� s i→∗R′ t.

Proof. (⇒) We prove the claim by induction on the lexicographic product (k,m)

of the depth k and the length m of the derivation s i→∗Rk t. Since the base case is
trivial, we consider the inductive case (k,m) > (0, 0). Assume that s i→∗Rk t has the
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form s[lσ]u
i→Rk s[rσ]u

i→∗Rk t with l → r ⇐ sn � tn ∈ R and siσ
i→∗Rki tiσ,

ki < k, i = 1, . . . , n. If l → r ⇐ sn � tn ∈ R′, the claim follows directly
by induction. Otherwise, we have that either l → r ⇐ s1 � t1, . . . , si|p �
w, si[w]p � ti, . . . , sn � tn ∈ R′, for some p ∈ Pos(si), 1 6 i 6 n, or l →
r[w]q ⇐ sn � tn, r|q � w ∈ R′, for some q ∈ Pos(r), where w is a fresh variable.
Consider �rst the case l → r ⇐ s1 � t1, . . . , si|p � w, si[w]p � ti, . . . , sn �

tn ∈ R′, for some p ∈ Pos(si), 1 6 i 6 n. Since siσ
i→ ∗Rki tiσ, ki < k,

i = 1, . . . , n, by the induction hypothesis, we have siσ
i→ ∗R′ tiσ, i = 1, . . . , n.

By Lemma 2.24, there exists σ′ = {w 7→ s′} for some normal form s′ such that
si|pσ = si|pσσ′

i→∗Rki wσσ
′ = wσ′ and si[w]pσσ

′ = siσ[wσ′]p
i→∗Rki ti. Moreover,

since w is an extra variable, we also have sjσσ′ = sjσ
i→ ∗R′ tjσ = tjσσ

′ for
j = 1, . . . , i − 1, i + 1, . . . , n. �erefore, since lσσ′ = lσ and rσσ′ = rσ, we have
s[lσ]u

i→R s[rσ]u, and the claim follows by induction. Consider the second case. By
the induction hypothesis, we have s[rσ]u

i→∗R′ t and siσ
i→∗R′ tiσ for all i = 1, . . . , n.

By Lemma 2.24, there exists a substitution σ′ = {w 7→ s′} such that s′ is the normal
form of r|qσ and we have r|qσ

i→∗R′ wσ′ and s[rσ[wσ′]q]u
i→∗R′ t. Moreover, since

w is a fresh variable, we have siσσ′
i→∗R′ tiσσ′ for all i = 1, . . . , n. �erefore, we

have s[lσσ′]u = s[lσ]u
i→R′ s[rσ[wσ′]q]u, which concludes the proof.

(⇐) �is direction is perfectly analogous to the previous one, and follows easily
by Lemma 2.24 too.

Let us now consider the second kind of transformations: the simpli�cation of
constructor conditions. Basically, we can drop an equation s � t when the terms
s and t are constructor, called a constructor condition, by either applying the most
general uni�er (mgu) of s and t (if it exists) to the remaining part of the rule, or
by deleting entirely the rule if they do not unify because (under innermost rewrit-
ing) the equation will never be satis�ed by any normalized substitution. Similar
transformations can be found in [111].

In order to justify these transformations, we state and prove the following re-
sults. In the following, we let mgu(s, t) denote the most general uni�er of terms s
and t if it exists, and fail otherwise.

�eorem 2.26 (removal of uni�able constructor conditions). Let R be a DCTRS
and let R = (l → r ⇐ sn � tn) ∈ R be a rule with mgu(si, ti) = θ, for some
i ∈ {1, . . . , n}, where si and ti are constructor terms. Let R′ be a new rule of the form
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lθ → rθ ⇐ s1θ � t1θ, . . . , si−1θ � ti−1θ, si+1θ � ti+1θ, . . . , snθ � tnθ.9 �en
R′ = (R\{R})∪{R′} is a DCTRS and, for all ground terms s and t, we have s i→∗R t
i� s i→∗R′ t.

Proof. (⇒) First, we prove the following claim by induction on the lexicographic
product (k,m) of the depth k and the lengthm of the steps: if s i→m

Rk t, then s i→∗R′ t.
It su�ces to consider the case where R is applied, i.e., s = s[lσ]p

i→{R} s[rσ]p

with sjσ
i→∗Rkj tjσ for all j ∈ {1, . . . , n}. By de�nition, σ is normalized. Hence,

since si and ti are constructor terms, we have that siσ and tiσ are trivially normal
forms since the normalized subterms introduced by σ cannot become reducible in
a constructor context. �erefore, we have siσ = tiσ. �us, σ is a uni�er of si and
ti and, hence, θ is more general than σ. Let δ be a substitution such that σ = θδ.
Since σ is normalized, so is δ. Since kj < k for all j = 1, . . . , n, by the induction
hypothesis, we have that sjσ = sjθδ

i→∗R′ tjθδ = tjσ for j ∈ {1, . . . , i − 1, i +

1, . . . , n}. �erefore, we have that s[lσ]p = s[lθδ]p
i→{R′} s[rθδ]p = s[rσ]p.

(⇐) Now, we prove the following claim by induction on the lexicographic prod-
uct (k,m) of the depth k and the length m of the steps: if s i→m

R′k
t, then s i→∗R t.

It su�ces to consider the case where R′ is applied, i.e., s = s[lθδ]p
i→{R} s[rθδ]p

with sjθδ
i→ ∗R′kj

tjθδ for all j ∈ {1, . . . , i − 1, i + 1, . . . , n}. By the assump-
tion and the de�nition, θ and δ are normalized, and thus, siθδ and tiθδ are nor-
mal forms (as in the previous case, because the normalized subterms introduced
by θδ cannot become reducible in a constructor context), i.e., siθδ = tiθδ. Since
kj < k for all j ∈ {1, . . . , i− 1, i+ 1, . . . , n}, by the induction hypothesis, we have
that sjθδ

i→∗R tjθδ for j ∈ {1, . . . , i − 1, i + 1, . . . , n}. �erefore, we have that
s[lσ]p = s[lθδ]p

i→{R} s[rθδ]p = s[rσ] with σ = θδ.

Now we consider the case when the terms in the constructor condition do not
unify:

�eorem 2.27 (removal of infeasible rules). Let R be a DCTRS and let R = (l →
r ⇐ sn � tn) ∈ R be a rule with mgu(si, ti) = fail , for some i ∈ {1, . . . , n}.
�en R′ = R\{R} is a DCTRS and, for all ground terms s and t, we have s i→∗R t i�

s
i→∗R′ t.
9In [111], the conditionDom(θ)∩Var(l, r, s1, t1, . . . , sn, tn) = ∅ is required, but this condition

is not really necessary.
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Proof. SinceR ⊇ R′, the if part is trivial, and thus, we consider the only-if part. To
applyR to a term, there must exist a normalized substitutionσ such that siσ

i→∗Rtiσ.
Since si, ti are constructor terms and σ is normalized, siσ is a normal form (because
the normalized subterms introduced by σ cannot become reducible in a constructor
context). If siσ

i→∗R tiσ is satis�ed (i.e., siσ = tiσ), then si and ti are uni�able, and
thus, this contradicts the assumption. �erefore,R is never applied to any term, and
hence, s i→∗R t i� s i→∗R′ t.

Using �a�ening and the simpli�cation of constructor conditions, any construc-
tor DCTRS with constructor terms in the right-hand sides of the equations of the
rules can be transformed into a pcDCTRS. One can use, for instance, the follow-
ing simple algorithm. Let R be such a constructor DCTRS. We apply the following
transformations as much as possible:

(fla�ening-rhs) Assume thatR contains a rule of the formR = (l→ r ⇐ sn � tn)
where r is not a constructor term. Let r|q , q ∈ Pos(r), be a basic subterm
of r. �en, we replace rule R by a new rule of the form l → r[w]q ⇐
sn � tn, r|q � w, where w is a fresh variable.

(fla�ening-condition) Assume that R contains a rule of the form R = (l → r ⇐
sn � tn) where si is neither a constructor term nor a basic term, i ∈ {1, . . . , n}.
Let si|q , q ∈ Pos(s1), be a basic subterm of si. �en, we replace rule R by a
new rule of the form l→ r ⇐ s1 � t1, . . . , si|q � w, si[w]q � ti, . . . , sn �
tn, where w is a fresh variable.

(removal-unify) Assume thatR contains a rule of the formR = (l→ r ⇐ sn � tn)
where si is a constructor term, i ∈ {1, . . . , n}. If mgu(si, ti) = θ 6= fail ,
then we replace rule R by a new rule of the form lθ → rθ ⇐ s1θ �
t1θ, . . . , si−1θ � ti−1θ, si+1θ � ti+1θ, . . . , snθ � tnθ.

(removal-fail) Assume thatR contains a rule of the form R = (l→ r ⇐ sn � tn)
where si is a constructor term, i ∈ {1, . . . , n}. If mgu(si, ti) = fail , then we
remove rule R fromR.

Trivially, by applying rule fla�ening-rhs as much as possible, we end up with a
DCTRS where all the right-hand sides are constructor terms; analogously, the ex-
haustive application of rule fla�ening-condition allows us to ensure that the le�-
hand sides of all equations in the conditions of the rules are either constructor or
basic; �nally, the application of rules removal-unify and removal-fail produces a
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pcDCTRS by removing those equations in which the le�-hand side is a constructor
term. �erefore, in the remainder of this paper, we only consider pcDCTRSs.

A nice property of pcDCTRSs is that one can consider reductions only at topmost
positions. Formally, given a pcDCTRS R, we say that s →p,l→r⇐sn�tn t is a top
reduction step if p = ε, there is a ground substitution σ with s = lσ, siσ →∗R tiσ
for all i = 1, . . . , n, t = rσ, and all the steps in siσ →∗R tiσ for i = 1, . . . , n are
also top reduction steps. We denote top reductions with ε→ for standard rewriting,
and ε

⇀R,
ε
↽R for our reversible rewrite relations.

�e following result basically states that i→ and ε→ are equivalent for pcDCTRSs:

�eorem 2.28. Let R be a constructor DCTRS with constructor terms in the right-
hand sides of the equations and R′ be a pcDCTRS obtained from R by a sequence
of transformations of �a�ening and simpli�cation of constructor conditions. Given
ground terms s and t such that s is basic and t is normalized, we have s i→ ∗R t i�
s

ε→∗R′ t.

Proof. First, it is straightforward to see that an innermost reduction inR′ can only
reduce the topmost positions of terms since de�ned functions can only occur at
the root of terms and the terms introduced by instantiation are, by de�nition, ir-
reducible. �erefore, the claim is a consequence of �eorems 2.25, 2.26 and 2.27,
together with the above fact.

�erefore, when considering pcDCTRSs and top reductions, storing the reduced
positions in the trace terms becomes redundant since they are always ε. �us, in
practice, one can consider simpler trace terms without positions, β(σ, π1, . . . , πn),
that implicitly represent the trace term β(ε, σ, π1, . . . , πn).

Example 2.29. Consider the following TRSR de�ning addition and multiplication
on natural numbers, and its associated pcDCTRSR′:

R = { add(0, y)→ y,
add(s(x), y)→ s(add(x, y)),

mult(0, y)→ 0,
mult(s(x), y)→ add(mult(x, y), y)}

R′ = { add(0, y)→ y,
add(s(x), y)→ s(z)⇐ add(x, y)� z,

mult(0, y)→ 0,
mult(s(x), y)→ w ⇐ mult(x, y)� z, add(z, y)� w}
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For instance, given the following reduction inR:

mult(s(0), s(0))
i→R add(mult(0, s(0)), s(0))

i→R add(0, s(0))
i→R s(0)

we have the following counterpart inR′:

mult(s(0), s(0))
ε→R′ s(0) with mult(0, s(0))

ε→R′ 0

and add(0, s(0))
ε→R′ s(0)

Trivially, all results in Section 2.3 hold for pcDCTRSs and top reductions starting
from basic terms. �e simpler trace terms without positions will allow us to intro-
duce appropriate injectivization and inversion transformations in the next section.

2.5 Reversibilization

In this section, we aim at compiling the reversible extension of rewriting into the
system rules. Intuitively speaking, given a pure constructor system R, we aim at
producing new systems Rf and Rb such that standard rewriting in Rf , i.e.,→Rf ,
coincides with the forward reversible extension ⇀R in the original system, and
analogously→Rb is equivalent to ↽R. �erefore,Rf can be seen as an injectiviza-
tion ofR, andRb as the inversion ofRf .

In principle, we could easily introduce a transformation for pcDCTRSs that mim-
icks the behavior of the reversible extension of rewriting. For instance, given the
pcDCTRS R of Example 2.16, we could produce the following injectivized version
Rf :10

〈f(x, y,m), ws〉 → 〈s(w), β1(m,x,w1, w2) : ws〉
⇐ 〈h(x), [ ]〉� 〈x,w1〉, 〈g(y, 4), [ ]〉� 〈w,w2〉

〈h(0), ws〉 → 〈0, β2 : ws〉
〈h(1), ws〉 → 〈1, β3 : ws〉

〈g(x, y), ws〉 → 〈x, β4(y) : ws〉

For instance, the reversible step 〈f(0, 2, 4), [ ]〉 ε
⇀R 〈s(2), [β1(σ′, π1, π2)]〉with σ′ =

{m 7→ 4, x 7→ 0}, π1 = [β2(id)] and π2 = [β4({y 7→ 4})], has the following
counterpart inRf :

〈f(0, 2, 4), [ ]〉 ε→Rf 〈s(2), [β1(4, 0, [β2], [β4(4)])]〉
with 〈h(0), [ ]〉 ε→Rf 〈0, [β2]〉 and 〈g(2, 4), [ ]〉 ε→Rf 〈2, [β4(4)]〉

10We will write just β instead of β() when no argument is required.
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�e only subtle di�erence here is that a trace term like

β1({m 7→ 4, x 7→ 0}, [β2(id)], [β4({y 7→ 4})])

is now stored in the transformed system as

β1(4, 0, [β2], [β4(4)])

Furthermore, we could produce an inverseRb of the above system as follows:

〈s(w), β1(m,x,w1, w2) : ws〉−1→ 〈f(x, y,m), ws〉−1

⇐ 〈w,w2〉−1 � 〈g(y, 4), [ ]〉−1,
〈x,w1〉−1 � 〈h(x), [ ]〉−1

〈0, β2 : ws〉−1→ 〈h(0), ws〉−1

〈1, β3 : ws〉−1→ 〈h(1), ws〉−1

〈x, β4(y) : ws〉−1→ 〈g(x, y), ws〉−1

mainly by switching the le�- and right-hand sides of each rule and condition. �e
correctness of these injectivization and inversion transformations would be straight-
forward.

�ese transformations are only aimed at mimicking, step by step, the reversible
relations ⇀R and ↽R. Roughly speaking, for each step 〈s, π〉 ⇀R 〈t, π′〉 in a
system R, we have 〈s, π〉 →Rf 〈t, π′〉, where Rf is the injectivized version of R,
and for each step 〈s, π〉 ↽R 〈t, π′〉 in R, we have 〈s, π〉 →Rb 〈t, π′〉, where Rb is
the inverse of Rf . More details on this approach can be found in [108]. Unfortu-
nately, it might be much more useful to produce injective and inverse versions of
each function de�ned in a system R. Note that, in the above approach, the system
Rf only de�nes a single function 〈 , 〉 andRb only de�nes 〈 , 〉−1, i.e., we are com-
puting systems that de�ne the relations ⇀R and ↽R rather than the injectivized
and inverse versions of the functions in R. In the following, we introduce more
re�ned transformations that can actually produce injective and inverse versions of
the original functions.

2.5.1 Injectivization

In principle, given a function f , one can consider that the injectivization of a rule of
the form11

β : f(s0)→ r ⇐ f1(s1)� t1, . . . , fn(sn)� tn

11By abuse of notation, here we let s0, . . . , sn denote sequences of terms of arbitrary length, i.e.,
s0 = s0,1, . . . , s0,l0 , s1 = s1,1, . . . , s1,l1 , etc.
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produces the following rule

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉 . . . , fin(sn)� 〈tn, wn〉

where {y} = (Var(l)\Var(r, sn, tn))∪
⋃n
i=1 Var(ti)\Var(r, si+1,n) andwn are fresh

variables. �e following example, though, illustrates that this is not correct in gen-
eral.

Example 2.30. Consider the following pcDCTRSR:

β1 : f(x, y) → z ⇐ h(y)� w, first(x,w)� z
β2 : h(0) → 0
β3 : first(x, y) → x

together with the following top reduction:

f(2, 1)
ε→R 2 with σ = {x 7→ 2, y 7→ 1, w 7→ h(1), z 7→ 2}

where h(y)σ = h(1)
ε→∗R h(1) = wσ

and first(x,w)σ = first(2, h(1))
ε→R 2 = zσ

Following the scheme above, we would produce the following pcDCTRS

fi(x, y)→ 〈z, β1(w1, w2)〉 ⇐ hi(y)� 〈w,w1〉, firsti(x,w)� 〈z, w2〉
hi(0)→ 〈0, β2〉

firsti(x, y)→ 〈x, β3(y)〉

Unfortunately, the corresponding reduction for fi(2, 1) above cannot be done in this
system since hi(1) cannot be reduced to 〈hi(1), [ ]〉.

In order to overcome this drawback, one could complete the function de�nitions
with rules that reduce each irreducible term t to a tuple of the form 〈t, [ ]〉. Although
we �nd it a promising idea for future work, in this paper we propose a simpler
approach. In the following, we consider a re�nement of innermost reduction where
only constructor substitutions are computed. Formally, the constructor reduction
relation, c→, is de�ned as follows: given ground terms s, t ∈ T (F), we have s c→R t
i� there exist a position p in s such that no proper subterms of s|p are reducible, a
rewrite rule l → r ⇐ sn � tn ∈ R, and a ground constructor substitution σ such
that s|p = lσ, siσ

c→∗R tiσ for all i = 1, . . . , n, and t = s[rσ]p. Note that the results
in the previous section also hold for c→.

In the following, given a basic term t = f(s), we denote by ti the term fi(s).
Now, we introduce our injectivization transformation as follows:
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De�nition 2.31 (injectivization). Let R be a pcDCTRS. We produce a new CTRS
I(R) by replacing each rule β : l→ r ⇐ sn � tn ofR by a new rule of the form

li → 〈r, β(y, wn)〉 ⇐ sin � 〈tn, wn〉

in I(R), where {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n) and

wn are fresh variables. Here, we assume that the variables of y are in lexicographic
order.

Observe that now we do not need to keep a trace in each term, but only a single
trace term since all reductions �nish in one step in a pcDCTRS. �e relation between
the original trace terms and the information stored in the injectivized system is
formalized as follows:

De�nition 2.32. Given a trace term π = β({ym 7→ tm}, π1, . . . , πn), we de�ne π̂
recursively as follows: π̂ = β(tm, π̂1, . . . , π̂n), where we assume that the variables
ym are in lexicographic order.

Moreover, in order to simplify the notation, we consider that a a trace term π
and a singleton list of the form [π] denote the same object. �e correctness of the
injectivization transformation is stated as follows:

�eorem 2.33. Let R be a pcDCTRS and Rf = I(R) be its injectivization. �en
Rf is a pcDCTRS and, given a basic ground term s, we have 〈s, [ ]〉 c

⇀R 〈t, π〉 i�
si

c→Rf 〈t, π̂〉.

Proof. �e fact thatRf is a pcDCTRS is trivial. Regarding the second part, we pro-
ceed as follows:

(⇒) We proceed by induction on the depth k of the step 〈s, [ ]〉 c
⇀Rk 〈t, π〉.

Since the depth k = 0 is trivial, we consider the inductive case k > 0. �us, there
is a rule β : l → r ⇐ sn � tn ∈ R, and a substitution σ such that s = lσ,
〈siσ, [ ]〉 c

⇀Rki 〈tiσ, πi〉, i = 1, . . . , n, t = rσ, σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪
⋃n
i=1 Var(ti)\Var(r,si+1,n),

and π = β(σ′, π1, . . . , πn). By de�nition of ⇀Rk , we have that ki < k for all i =

1, . . . , n and, thus, by the induction hypothesis, we have (siσ)i
c→Rf 〈tiσ, π̂i〉 for all

i = 1, . . . , n. Consider now the equivalent rule in Rf : li → 〈r, β(y, wn)〉 ⇐ si1 �

〈t1, w1〉, . . . , sin � 〈tn, wn〉. �erefore, we have si c→Rf 〈t, β(yσ, π̂1, . . . , π̂n)〉
where {y} = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n) and, thus, we

can conclude that π̂ = β(yσ, π̂1, . . . , π̂n).
(⇐) �is direction is analogous. We proceed by induction on the depth k of the

step si c→Rfk 〈t, π̂〉. Since the depth k = 0 is trivial, we consider the inductive
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case k > 0. �us, there is a rule li → 〈r, β(y, wn)〉 ⇐ si1 � 〈t1, w1〉, . . . , sin �
〈tn, wn〉 in Rf and a substitution θ such that liθ = si, sii θ

c→Rfki 〈ti, wi〉θ, i =

1, . . . , n, and 〈r, β(y, wn)〉θ = 〈t, π̂〉. Assume that σ is the restriction of θ to the
variables of the rule, excluding the fresh variables wn, and that wiθ = π̂i for all
i = 1, . . . , n. �erefore, 〈si, [ ]〉θ = 〈siσ, [ ]〉 and 〈ti, wi〉θ = 〈tiσ, π̂i〉, i = 1, . . . , n.
�en, by de�nition of Rfki , we have that ki < k for all i = 1, . . . , n and, thus, by
the induction hypothesis, we have 〈siσ, [ ]〉 c

⇀R〈tiσ, πi〉, i = 1, . . . , n. Consider now
the equivalent rule inR: β : l→ r ⇐ sn � tn ∈ R. �erefore, we have 〈s, [ ]〉 c

⇀R
〈t, π〉, σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪

⋃n
i=1 Var(ti)\Var(r,si+1,n), and π = β(σ′, π1, . . . , πn).

Finally, since {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n), we can

conclude that π̂ = π.

2.5.2 Inversion

Given an injectivized system, inversion basically amounts to switching the le�- and
right-hand sides of the rule and of every equation in the condition, as follows:

De�nition 2.34 (inversion). Let R be a pcDCTRS and Rf = I(R) be its injec-
tivization. �e inverse system Rb = I−1(Rf ) is obtained from Rf by replacing
each rule12

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉, . . . , fin(sn)� 〈tn, wn〉

ofRf by a new rule of the form

f−1(r, β(y, wn))→ 〈s0〉 ⇐ f−1
n (tn, wn)� 〈sn〉, . . . , f−1

1 (t1, w1)� 〈s1〉

in I−1(Rf ), where the variables of y are in lexicographic order.

Example 2.35. Consider again the pcDCTRS of Example 2.16. Here, injectivization
returns the following pcDCTRS I(R) = Rf :

fi(x, y,m)→ 〈s(w), β1(m,x,w1, w2)〉
⇐ hi(x)� 〈x,w1〉, gi(y, 4)� 〈w,w2〉

hi(0)→ 〈0, β2〉
hi(1)→ 〈1, β3〉

gi(x, y)→ 〈x, β4(y)〉
12Here, we assume that s0, s1,. . . , sn denote arbitrary sequences of terms, i.e., s0 = s0,1, . . . , s0,l0 ,

s1 = s1,1, . . . , s1,l1 , etc. We use this notation for clarity.
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�en, inversion with I−1 produces the following pcDCTRS I−1(I(R)) = Rb:

f−1(s(w), β1(m,x,w1, w2))→ 〈x, y,m〉
⇐ g−1(w,w2)� 〈y, 4〉, h−1(x,w1)� 〈x〉

h−1(0, β2)→ 〈0〉
h−1(1, β3)→ 〈1〉

g−1(x, β4(y))→ 〈x, y〉

Finally, the correctness of the inversion transformation is stated as follows:

�eorem 2.36. Let R be a pcDCTRS, Rf = I(R) its injectivization, and Rb =
I−1(Rf ) the inversion ofRf . �en,Rb is a basic pcDCTRS and, given a basic ground
term f(s) and a constructor ground term t with 〈t, π〉 a safe pair, we have 〈t, π〉 c

↽R
〈f(s), [ ]〉 i� f−1(t, π̂)

c→Rb 〈s〉.

Proof. �e fact thatRf is a pcDCTRS is trivial. Regarding the second part, we pro-
ceed as follows.

(⇒) We proceed by induction on the depth k of the step 〈t, π〉 c
↽Rk 〈f(s), [ ]〉.

Since the depth k = 0 is trivial, we consider the inductive case k > 0. Let π =
β(σ′, πn). �us, we have that 〈t, β(σ′, πn)〉 is a safe pair, there is a rule β : f(s0)→
r ⇐ f1(s1) � t1, . . . , fn(sn) � tn and a substitution θ with Dom(θ) =
(Var(r, s1, . . . , sn)\Dom(σ′)) such that t = rθ, 〈tiθσ′, πi〉

c→Rki 〈f(si)θσ
′, [ ]〉 for

all i = 1, . . . , n, and f(s) = f(s0)θσ′. Note that s0, . . . , sn denote sequences of
terms of arbitrary length, i.e., s0 = s0,1, . . . , s0,l0 , s1 = s1,1, . . . , s1,l1 , etc. Since
〈t, π〉 is a safe pair, we have that Dom(σ′) = (Var(s0)\Var(r, s1, . . . , sn, tn)) ∪⋃n
i=1 Var(ti)\Var(r, si+1, . . . , sn). By de�nition of ↽Rk , we have that ki < k for

all i = 1, . . . , n and, by the induction hypothesis, we have f−1(tiσ, π̂i)
c→Rb〈siσ〉

for all i = 1, . . . , n. Let us now consider the equivalent rule inRb:

f−1(r, β(y, wn)))→ 〈s0〉 ⇐ f−1
n (tn, wn)� 〈sn〉, . . . , f−1

1 (t1, w1)� 〈s1〉

Hence, we have f−1(t, β(yσ, π̂1, . . . , π̂1))→Rb 〈s0σ〉 = 〈s〉, where

{y} = (Var(s0)\Var(r, s1, . . . , sn, tn)) ∪
n⋃
i=1

Var(ti)\Var(r, si+1, . . . , sn)

and, thus, we can conclude that π̂ = β(yσ, π̂1, . . . , π̂n).
(⇐) �is direction is analogous. We proceed by induction on the depth k of

the step f−1(t, π̂)
c→Rbk 〈s〉. Since the depth k = 0 is trivial, we consider the in-

ductive case k > 0. �us, there is a rule f−1(r, β(y, wn)))→ 〈s0〉 ⇐ f−1
n (tn, wn)�
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〈sn〉, . . . , f−1
1 (t1, w1)� 〈s1〉 inRb and a substitution θ such that f−1(r, β(y, wn))θ =

f−1(t, π̂), f−1
i (ti, wi)θ

c→Rbki 〈si〉θ, i = n, . . . , 1, and f−1(r, ws)θ = 〈s〉. Assume
that σ is the restriction of θ to the variables of the rule, excluding the fresh vari-
ables wn, and that wiθ = π̂i for all i = 1, . . . , n. �erefore, f−1(r, β(y, wn))θ =
f−1(rσ, β(yσ, π̂1, . . . , π̂n), f−1

i (ti, wi)θ = f−1
i (tiσ, π̂i) and 〈si〉θ = 〈siσ〉, i = 1, . . . , n.

�en, by de�nition of Rbki , we have that ki < k for all i = 1, . . . , n and, thus, by
the induction hypothesis, we have 〈tiσ, πi〉

c
↽R〈fi(siσ), [ ]〉, i = 1, . . . , n. Consider

now the equivalent rule inR: β : f(s0)→ r ⇐ f1(s1)� t1, . . . , fn(sn)� tn inR.
�erefore, we have 〈t, π〉 c

↽R 〈f(s), [ ]〉,

σ′ = σ|̀(Var(s0)\Var(r,s1,...,sn,tn))∪
⋃n
i=1 Var(ti)\Var(r,si+1,...,sn)

and π = β(σ′, π1, . . . , πn). Finally, since {y} = (Var(s0)\Var(r, s1, . . . , sn, tn)) ∪⋃n
i=1 Var(ti)\Var(r, si+1, . . . , sn), we can conclude that π̂ = π.

2.5.3 Improving the transformation for injective functions

When a function is injective, one can expect the injectivization transformation to be
unnecessary. �is is not generally true, since some additional syntactic conditions
might also be required. Furthermore, depending on the considered se�ing, it can be
necessary to have an injective system, rather than an injective function. Consider,
e.g., the following simple TRS:

R = { f1 → f2, f2 → 0, g1 → g2, g2 → 0 }

Here, all functions are clearly injective. However, given a reduction like f1 →R
f2 →R 0, we do not know which rule should be applied to 0 in order to go backwards
until the initial term (actually, both the second and the fourth rules are applicable
in the reverse direction).

Luckily, in our context, the injectivity of a function su�ces since reductions in
pcDCTRSs are performed in a single step. �erefore, given a reduction of the form
fi(sn)→R t, a backward computation will have the form f−1(t)→R 〈sn〉, so that
we know that only the inverse rules of f are applicable.

Now, we present an improvement of the injectivization transformation pre-
sented in Section 2.5.1 which has some similarities with that in [97]. Here, we con-
sider that the initial system is a TRSR since, to the best of our knowledge, there is
no reachability analysis de�ned for DCTRSs. In the following, given a term s, we
let

range(s) = {t | sσ →∗R t, σ : V 7→ T (C), and t ∈ T (C)}
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i.e., range(s) returns a set with the constructor normal forms of all possible ground
constructor instances of s. Although computing this set is generally undecidable,
there are some overapproximations based on the use of tree automata (see, e.g., [49]
and the most recent approach for innermost rewriting [50]). Let us consider that
rangeα(s) is such an approximation, with rangeα(s) ⊇ range(s) for all terms s.
Here, we are interested in determining when the right-hand sides, r1 and r2, of two
rules do not overlap, i.e., range(r1)∩range(r2) = ∅. For this purpose, we will check
whether rangeα(r1) ∩ rangeα(r2) = ∅. Since �nite tree automata are closed under
intersection and the emptiness of a �nite tree automata is decidable, checking the
emptiness of rangeα(r1)∩ rangeα(r2) is decidable and can be used to safely identify
non-overlapping right-hand sides, i.e., if rangeα(r1) ∩ rangeα(r2) = ∅, then r1

and r2 are de�nitely non-overlapping; otherwise, they may be overlapping or non-
overlapping.

Now, we summarize our method to simplify some trace terms. Given a construc-
tor TRSR and a rule β : l→ r ∈ R, we check the following conditions:

1. the right-hand side r of the rule does not overlap with the right-hand side of
any other rule de�ning the same function;

2. the rule is non-erasing, i.e., Var(l) = Var(r);

3. the right-hand side r contains a single occurrence of a de�ned function sym-
bol, say f ∈ D.

If these conditions hold, then the rule has the form l→ r[f(s)]p with l and f(s) basic
terms,13 and r[x]p and s constructor terms, where x is a fresh variable. In this case,
we can safely produce the following injective version:14

li → 〈r[x]p, w〉 ⇐ fi(s)� 〈x,w〉

instead of
li → 〈r[x]p, β(w)〉 ⇐ fi(s)� 〈x,w〉

Let us illustrate this improved transformation with a couple of examples.

13Note that l is a basic term since we initially consider a constructor TRS and, thus, all le�-hand
sides are basic terms by de�nition.

14Since l → r is non-erasing, the pcDCTRS rule l → r[x]p ⇐ f(s) � x is trivially non-erasing
too (according to [110], i.e., (Var(l)\Var(r[x]p, f(s), x)) ∪ Var(x)\Var(r[x]p) = ∅) and, thus, no
binding should be stored during the injectivization process.



2. Reversible Computation in Term Rewriting 49

Example 2.37. Consider the following TRS:

R = { f(s(x))→ g(x), f(c(x))→ h(x), g(x)→ s(x), h(x)→ c(x)}

Here, it can easily be shown that rangeα(g(x)) ∩ rangeα(h(x)) = ∅, the two rules
de�ning f are non-erasing, and both contain a single occurrence of a de�ned func-
tion symbol in the right-hand sides. �erefore, our improved injectivization applies
and we get the following pcDCTRSRf :

fi(s(x))→ 〈y, w〉 ⇐ gi(x)� 〈y, w〉 gi(x)→ 〈s(x), β3〉
fi(c(x))→ 〈y, w〉 ⇐ hi(x)� 〈y, w〉 hi(x)→ 〈c(x), β4〉

In contrast, the original injectivization transformation would return the following
system:

fi(s(x))→ 〈y, β1(w)〉 ⇐ gi(x)� 〈y, w〉 gi(x)→ 〈s(x), β3〉
fi(c(x))→ 〈y, β2(w)〉 ⇐ hi(x)� 〈y, w〉 hi(x)→ 〈c(x), β4〉

Finally, the inverse systemRb obtained fromRf using the original transformation
has the following form:

f−1(y, w)→ 〈s(x)〉 ⇐ g−1(y, w)� 〈x〉 g−1(s(x), β3)→ 〈x〉
f−1(y, w)→ 〈c(x)〉 ⇐ h−1(y, w)� 〈x〉 h−1(c(x), β4)→ 〈x〉

For instance, given the forward reduction fi(s(0))→Rf 〈s(0), β3〉, we can build the
corresponding backward reduction: f−1(s(0), β3)→Rb 〈s(0)〉.

Note, however, that the le�-hand sides of f−1 overlap and we should reduce the
conditions in order to determine which rule to apply. �erefore, in some cases, there
is a trade-o� between the size of the trace terms and the complexity of the reduction
steps.

�e example above, though, only produces a rather limited improvement since
the considered functions are not recursive. Our next example shows a much signi�-
cant improvement. Here, we consider the function zip (also used in [97] to illustrate
the bene�ts of an injectivity analysis).

Example 2.38. Consider the following TRSR de�ning the function zip:

zip([ ], ys)→ [ ]
zip(xs, [ ])→ [ ]

zip(x : xs, y : ys)→ pair(x, y) : zip(xs, ys)
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Here, since the third rule is non-erasing, its right-hand side contains a single occur-
rence of a de�ned function, zip, and it does not overlap with any other right-hand
side, our improved injectivization applies and we get the following pcDCTRSRf :

zipi([ ], ys)→ 〈[ ], β1(ys)〉
zipi(xs, [ ])→ 〈[ ], β2(xs)〉

zipi(x : xs, y : ys)→ 〈pair(x, y) : zs, w〉 ⇐ zipi(xs, ys)� 〈zs, w〉

In contrast, the original injectivization transformation would return the following
systemR′f :

zipi([ ], ys)→ 〈[ ], β1(ys)〉
zipi(xs, [ ])→ 〈[ ], β2(xs)〉

zipi(x : xs, y : ys)→ 〈pair(x, y) : zs, β3(w)〉 ⇐ zipi(xs, ys)� 〈zs, w〉

It might seem a small di�erence, but if we call zipi with two lists of n elements,
the system R′f would build a trace term of the form β3(. . . β3(β1(. . .)) . . .) with n
nested constructors β3, whileRf would just build the trace term β1(. . .). For large
values of n, this is a signi�cant improvement in memory usage.

2.6 Bidirectional Program Transformation

We illustrate a practical application of our reversibilization technique in the context
of bidirectional program transformation (see [34] for a survey). In particular, we
consider the so-called view-update problem. Here, we have a data structure (e.g., a
database) called the source, which is transformed to another data structure, called
the view. Typically, we have a view function, view : Source → View that takes
the source and returns the corresponding view, together with an update function,
upd : View × Source → Source that propagates the changes in a modi�ed view
to the original source. Two basic properties that these functions should satisfy in
order to be well-behaved are the following [45]:

∀s ∈ Source, ∀v ∈ View : view(upd(v, s)) = v
∀s ∈ Source: upd(view(s), s) = s

Bidirectionalization (�rst proposed in the database community [10]) basically con-
sists in, given a view function, “bidirectionalize” it in order to derive an appropriate
update function. For this purpose, �rst, a view complement function is usually de-
�ned, say viewc, so that the tupled function

view M viewc: Source → View × Comp
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becomes injective. �erefore, the update function can be de�ned as follows:

upd(v, s) = (view M viewc)−1(v, viewc(s))

�is approach has been applied to bidirectionalize view functions in a functional
language in [97].

In the following, we apply our injectivization and inversion transformations in
order to produce a bidirectionalization transformation that may be useful in the
context of the view-update problem (with some limitations). Let us assume that we
have a view function, view, that takes a source and returns the corresponding view,
and which is de�ned by means of a pcDCTRS. Following our approach, given the
original programR, we produce an injectivized versionRf and the corresponding
inverse Rb. �erefore, in principle, one can use Rf ∪ Rb, which will include the
functions viewi and view−1, to de�ne an update function as follows:

upd(v, s)→ s′ ⇐ viewi(s)� 〈v′, π〉, view−1(v, π)� 〈s′〉

where s is the original source, v is the updated view, and s′, the returned value, is
the corresponding updated source. Note that, in our context, the function viewi is
somehow equivalent to view M viewc above.

Let us now illustrate the bidirectionalization process with an example. Consider
a particular data structure, a list of records of the form r(t, v) where t is the type of
the record (e.g., book, dvd, pen, etc.) and v is its price tag. �e following system
de�nes a view function that takes a type and a list of records, and returns a list with
the price tags of the records of the given type:15

view(t, nil) → nil
view(t, r(t′, v) : rs) → val(r(t′, v)) : view(t, rs)⇐ eq(t, t′)� true
view(t, r(t′, v) : rs) → view(t, rs)⇐ eq(t, t′)� false

eq(book, book) → true eq(dvd, dvd) → true
eq(book, dvd) → false eq(dvd, book) → false

val(r(t, v)) → v

However, this system is not a pcDCTRS. Here, we use a �a�ening transformation
to produce the following (labeled) pcDCTRSR which is equivalent for constructor

15For simplicity, we restrict the record types to only book and dvd.
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derivations:

β1 : view(t, nil)→ nil
β2 : view(t, r(t′, v) : rs)→ p : r

⇐ eq(t, t′)� true, val(r(t′, v))� p, view(t, rs)� r
β3 : view(t, r(t′, v) : rs)→ r ⇐ eq(t, t′)� false, view(t, rs)� r

β4 : eq(book, book)→ true β5 : eq(dvd, dvd) → true
β6 : eq(book, dvd)→ false β7 : eq(dvd, book) → false

β8 : val(r(t, v))→ v

Now, we can apply our injectivization transformation which returns the following
pcDCTRSRf = I(R):

viewi(t, nil)→ 〈nil, β1(t)〉
viewi(t, r(t′, v) : rs)→ 〈p : r, β2(w1, w2, w3)〉
⇐ eqi(t, t′)� 〈true, w1〉, vali(r(t′, v))� 〈p, w2〉, viewi(t, rs)� 〈r, w3〉

viewi(t, r(t′, v) : rs)→ 〈r, β3(v, w1, w2)〉
⇐ eqi(t, t′)� 〈false, w1〉, viewi(t, rs)� 〈r, w2〉
eqi(book, book)→ 〈true, β4〉 eqi(dvd, dvd) → 〈true, β5〉

eqi(book, dvd)→ 〈false, β6〉 eqi(dvd, book) → 〈false, β7〉
vali(r(t, v))→ 〈v, β8(t)〉

Finally, inversion returns the following pcDCTRSRb = I(Rf ):

view−1(nil, β1(t))→ 〈t, nil〉
view−1(p : r, β2(w1, w2, w3))→ 〈t, r(t′, v) : rs〉
⇐ eq−1(true, w1)� 〈t, t′〉, val−1(p, w2)� 〈r(t′, v)〉, view−1(r, w3)� 〈t, rs〉

view−1(r, β3(v, w1, w2))→ 〈t, r(t′, v) : rs〉
⇐ eq−1(false, w1)� 〈t, t′〉, view−1(r, w2)� 〈t, rs〉

eq−1(true, β4)→ 〈book, book〉 eq−1(true, β5) → 〈dvd, dvd〉
eq−1(false, β6)→ 〈book, dvd〉 eq−1(false, β7) → 〈dvd, book〉
val−1(v, β8(t))→ 〈r(t, v)〉

For instance, the term view(book, [r(book, 12), r(dvd, 24)]), reduces to [12] in the
original system R. Given a modi�ed view, e.g., [15], we can compute the modi�ed
source using function upd above:

upd([r(book, 12), r(dvd, 24)], [15])
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Here, we have the following subcomputations:16

viewi(book, [r(book, 12), r(dvd, 24)])
→Rf 〈[12], β2(β4, β8(book), β3(24, β6, β1(book)))〉

view−1([15], β2(β4, β8(book), β3(24, β6, β1(book))))
→Rb 〈book, [r(book, 15), r(dvd, 24)]〉

�us upd returns the updated source [r(book, 15), r(dvd, 24)], as expected. We note
that the considered example cannot be transformed using the technique in [97], the
closer to our approach, since the right-hand sides of some rules contain functions
which are not treeless.17 Nevertheless, one could consider a transformation from
pcDCTRS to functional programs with treeless functions so that the technique in
[97] becomes applicable.

Our approach can solve a view-update problem as long as the view function
can be encoded in a pcDCTRS. When this is the case, the results from Section 2.5
guarantee that function upd is well de�ned. Formally analyzing the class of view
functions that can be represented with a pcDCTRS is an interesting topic for further
research.

2.7 Related Work

�ere is no widely accepted notion of reversible computing. In this work, we have
considered one of its most popular de�nitions, according to which a computation
principle is reversible if there is a method to undo a (forward) computation. More-
over, we expect to get back to an exact past state of the computation. �is is o�en
referred to as full reversibility.

As we have mentioned in the introduction, some of the most promising appli-
cations of reversibility include cellular automata [103], bidirectional program trans-
formation [97], already discussed in Section 2.6, reversible debugging [51], where
the ability to go both forward and backward when seeking the cause of an error
can be very useful for the programmer, parallel discrete event simulation [124],
where reversibility is used to undo the e�ects of speculative computations made
on a wrong assumption, quantum computing [143], where all computations should
be reversible, and so forth. �e interested reader can �nd detailed surveys in the

16Note that, in this case, the function view requires not only the source but also the additional
parameter book.

17A call is treeless if it has the form f(x1, . . . , xn) and x1, . . . , xn are di�erent variables.
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state of the art reports of the di�erent working groups of COST Action IC1405 on
Reversible Computation [68].

Intuitively speaking, there are two broad approaches to reversibility from a pro-
gramming language perspective:

Reversible programming languages. In this case, all constructs of the programming
language are reversible. One of the most popular languages within the �rst
approach is the reversible (imperative) language Janus [93]. �e language
was recently rediscovered [148, 147, 149] and has since been formalized and
further developed.

Irreversible programming languages and Landauer’s embedding. Alternatively, one can
consider an irreversible programming language, and enhance the states with
some additional information (typically, the history of the computation so far)
so that computations become reversible. �is is called Landauer’s embedding.

In this work, we consider reversibility in the context of term rewriting. To the
best of our knowledge, we have presented the �rst approach to reversibility in term
rewriting. A closest approach was introduced by Abramsky in the context of pat-
tern matching automata [2], though his developments could easily be applied to
rewrite systems as well. In Abramsky’s approach, biorthogonality was required to
ensure reversibility, which would be a very signi�cant restriction for term rewriting
systems. Basically, biorthogonality requires that, for every pair of (di�erent) rewrite
rules l→ r and l′ → r′, l and l′ do not overlap (roughly, they do not unify) and r and
r′ do not overlap too. Trivially, the functions of a biorthogonal system are injective
and, thus, computations are reversible without the need of a Landauer embedding.
�erefore, Abramsky’s work is aimed at de�ning a reversible language, in contrast
to our approach that is based on de�ning a Landauer embedding for standard term
rewriting and a general class of rewrite systems.

De�ning a Landauer embedding in order to make a computation mechanism
reversible has been applied in di�erent contexts and computational models, e.g., a
probabilistic guarded command language [150], a low level virtual machine [128],
the call-by-name lambda calculus [67, 75], cellular automata [135, 102], combinatory
logic [37], a �owchart language [147], etc.

In the context of declarative languages, we �nd the work by Mu et al. [104],
where a relational reversible language is presented (in the context of bidirectional
programming). A similar approach was then introduced by Matsuda et al. [97, 98] in
the context of functional programs and bidirectional transformation. �e functional
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programs considered in [97] can be seen as linear and right-treeless18 constructor
TRSs. �e class of functional programs is more general in [98], which would corre-
spond to le�-linear, right-treeless TRSs. �e reversibilization technique of [97, 98]
includes both an injectivization stage (by introducing a view complement function)
and an inversion stage. �ese methods are closely related to the transformations
of injectivization and inversion that we have presented in Section 2.5, although we
developed them from a rather di�erent starting point. Moreover, their methods
for injectivization and inversion consider a more restricted class of systems than
those considered in this paper. On the other hand, they apply a number of analy-
ses to improve the result, which explains the smaller traces in their approach. All
in all, we consider that our approach gives be�er insights to understand the need
for some of the requirements of the program transformations and the class of con-
sidered programs. For instance, most of our requirements come from the need to
remove programs positions from the traces, as shown in Section 2.4.

Finally, [133] considers the reversible language RFUN. Similarly to Janus, com-
putations in RFUN are reversible without the need of a Landauer embedding. �e
paper also presents a transformation from a simple (irreversible) functional lan-
guage, FUN, to RFUN, in order to highlight how irreversibilities are handled in
RFUN. �e transformation has some similarities with both the approach of [97] and
our improved transformation in Section 2.5.3; on the other hand, though, [133] also
applies the Benne� trick [11] in order to avoid some unnecessary information.

2.8 Discussion and Future Work

In this paper, we have introduced a reversible extension of term rewriting. In order
to keep our approach as general as possible, we have initially considered DCTRSs
as input systems, and proved the soundness and reversibility of our extension of
rewriting. �en, in order to introduce a reversibilization transformation for these
systems, we have also presented a transformation from DCTRSs to pure constructor
systems (pcDCTRSs) which is correct for constructor reduction. A further improve-
ment is presented for injective functions, which may have a signi�cant impact in
memory usage in some cases. Finally, we have successfully applied our approach in
the context of bidirectional program transformation.

We have developed a prototype implementation of the reversibilization transfor-
mations introduced in Section 2.5. �e tool can read an input TRS �le (format .trs

18�ere are no nested de�ned symbols in the right-hand sides, and, moreover, any term rooted by
a de�ned function in the right-hand sides can only take di�erent variables as its proper subterms.
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[1]) and then it applies in a sequential way the following transformations: �a�en-
ing, simpli�cation of constructor conditions, injectivization, and inversion. �e tool
prints out the CTRSs obtained at each transformation step. It is publicly available
through a web interface from http://kaz.dsic.upv.es/rev-rewriting.html,
where we have included a number of examples to easily test the tool.

As for future work, we plan to investigate new methods to further reduce the
size of the traces. In particular, we �nd it interesting to de�ne a reachability analysis
for DCTRSs. A reachability analysis for CTRSs without extra-variables (1-CTRSs)
can be found in [42], but the extension to deal with extra-variables in DCTRSs (since
a DCTRS is a particular case of 3-CTRS) seems challenging. Furthermore, as men-
tioned in the paper, a completion procedure to add default cases to some functions
(as suggested in Section 2.5.1) may help to broaden the applicability of the tech-
nique and avoid the restriction to constructor reduction. Finally, our injectivization
and inversion transformations are correct w.r.t. innermost reduction. Extending our
results to a lazy strategy is also an interesting topic for further research.
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based on the actor model. We present a formal semantics for reversible com-
putation in this language and prove its main properties, including its causal
consistency. We also build on top of it a rollback operator that can be used to
undo the actions of a process up to a given checkpoint.

3.1 Introduction

Let us consider that the operational semantics of a programming language is speci-
�ed by a state transition relationR such thatR(s, s′) holds if the state s′ is reachable—
in one step—from state s. �en, we say that a programming language (or formalism)
is reversible if there exists a constructive algorithm that can be used to recover the
predecessor state s from s′. In general, such a property does not hold for most
programming languages and formalisms. We refer the interested reader to, e.g.,
[12, 46, 145, 146] for a high level account of the principles of reversible computa-
tion.

�e notion of reversible computation was �rst introduced in Landauer’s seminal
work [80] and, then, further improved by Benne� [11] in order to avoid the gener-
ation of “garbage” data. �e idea underlying these works is that any programming
language or formalism can be made reversible by adding the history of the computa-
tion to each state, which is usually called a Landauer embedding. Although carrying
the history of a computation might seem infeasible because of its size, there are
several successful proposals that are based on this idea. In particular, one can re-
strict the original language or apply a number of analysis in order to restrict the
required information in the history as much as possible, as in, e.g., [97, 108, 133] in
the context of a functional language.

In this paper, we aim at introducing a form of reversibility in the context of a
programming language that follows the actor model (concurrency based on message
passing), a �rst-order subset of the concurrent and functional language Erlang [5].
Previous approaches have mainly considered reversibility in—mostly synchronous—
concurrent calculi like CCS [35, 36] and π-calculus [33]; a general framework for
reversibility of algebraic process calculi [117], or the recent approach to reversible
session-based π-calculus [134]. However, we can only �nd a few approaches that
considered the reversibility of asynchronous calculi, e.g., Cardelli and Laneve’s re-
versible structures [21], and reversible extensions of the concurrent functional lan-
guage µOz [90], of a higher-order asynchronous π-calculus [82], and of the coordi-
nation language µKlaim [52]. In the last two cases, a form of control of the backward
execution using a rollback operator has also been studied [81, 52]. In the case ofµOz,
reversibility has been exploited for debugging [51].
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To the best of our knowledge, our work is the �rst one that considers reversibil-
ity in the context of the functional, concurrent, and distributed language Erlang.
Here, given a running Erlang system consisting of a pool of interacting processes,
possibly distributed in several computers, we aim at allowing a single process to
undo its actions in a stepwise manner, including the interactions with other pro-
cesses, following a rollback fashion. In this context, we must ensure causal consis-
tency [35], i.e., an action cannot be undone until all the actions that depend on it
have already been undone. E.g., if a process p1 spawns a process p2, we cannot
undo the spawning of process p2 until all the actions performed by the process p2
are undone too. �is is particularly challenging in an asynchronous and distributed
se�ing, where ensuring causal consistency for backward computations is far from
trivial.

In this paper, we consider a simple Erlang-like language that can be seen as a
subset of Core Erlang [25]. We present the following contributions:

• First, we introduce an appropriate semantics for the language. In contrast to
previous semantics like that in [19] which were monolithic, ours is modular,
which simpli�es the de�nition of a reversible extension. Here, we follow some
of the ideas in [130], e.g., the use of a global mailbox (there called “ether”).
�ere are also some di�erences though. In the semantics of [130], at the ex-
pression level, the semantics of a receive statement is, in principle, in�nitely
branching, since their formulation allows for an in�nite number of possible
queues and selected messages (see [47, page 53] for a detailed explanation).
�is source of nondeterminism is avoided in our semantics.

• We then introduce a reversible semantics that can go both forward and back-
ward (basically, a Landauer embedding), in a nondeterministic fashion, called
an uncontrolled reversible semantics according to the terminology in [83].
Here, we focus on the concurrent actions (namely, process spawning, message
sending and receiving) and, thus, we do not de�ne a reversible semantics for
the functional component of the language; rather, we assume that the state
of the process—the current expression and its environment—is stored in the
history a�er each execution step. �is approach could be improved following,
e.g., the techniques presented in [97, 108, 133]. We state and formally prove
several properties of the semantics and, particularly, its causal consistency.

• Finally, we add control to the reversible semantics by introducing a rollback
operator that can be used to undo the actions of a given process until a given
checkpoint—introduced by the programmer—is reached. In order to ensure



60 3.2. Language Syntax

module ::= module Atom = fun1 . . . funn
fun ::= fname = fun (Var1, . . . ,Varn)→ expr

fname ::= Atom/Integer
lit ::= Atom | Integer | Float | Pid | [ ]

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call Op (expr1, . . . , exprn) | apply fname (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(fname, [expr1, . . . , exprn]) | expr ! expr | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Figure 3.1: Language syntax rules

causal consistency, the rollback action might be propagated to other, depen-
dent processes.

�is paper is an extended version of [109]. Compared to [109], we introduce an
uncontrolled reversible semantics and prove a number of fundamental theoretical
properties, including its causal consistency. �e rollback semantics, originally in-
troduced in [109], has been re�ned and improved (see Section 3.7 for more details).

�e paper is organized as follows. �e syntax and semantics of the considered
language are presented in Sections 3.2 and 3.3, respectively. Our (uncontrolled) re-
versible semantics is then introduced in Section 3.4, while the rollback operator is
de�ned in Section 3.5. A proof-of-concept implementation of the reversible seman-
tics is described in Section 3.6. Finally, some related work is discussed in Section 3.7,
and Section 3.8 concludes and points out some directions for future work.

3.2 Language Syntax

In this section, we present the syntax of a �rst-order concurrent and distributed
functional language that follows the actor model. Our language is equivalent to a
subset of Core Erlang [25].

�e syntax of the language can be found in Figure 3.1. Here, a module is a
sequence of function de�nitions, where each function name f/n (atom/arity) has an
associated de�nition of the form fun (X1, . . . , Xn)→ e. We consider that a program
consists of a single module for simplicity. �e body of a function is an expression,
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which can include variables, literals, function names, lists, tuples, calls to built-in
functions—mainly arithmetic and relational operators—, function applications, case
expressions, let bindings, and receive expressions; furthermore, we also include the
functions spawn, “!” (for sending a message), and self() that are usually considered
built-ins in the Erlang language. As is common practice, we assume thatX is a fresh
variable in a let binding of the form let X = expr1 in expr2.

As shown by the syntax in Figure 3.1, we only consider �rst-order expressions.
�erefore, the �rst argument in applications and spawns is a function name (instead
of an arbitrary expression or closure). Analogously, the �rst argument in calls is a
built-in operation Op.

In this language, we distinguish expressions, pa�erns, and values. Here, pat-
terns are built from variables, literals, lists, and tuples, while values are built from
literals, lists, and tuples, i.e., they are ground—without variables—pa�erns. Expres-
sions are denoted by e, e′, e1, e2, . . ., pa�erns by pat, pat′, pat1, pat2, . . . and values
by v, v′, v1, v2, . . . Atoms are typically denoted with roman le�ers, while variables
start with an uppercase le�er. As it is common practice, a substitution θ is a map-
ping from variables to expressions, and Dom(θ) = {X ∈ Var | X 6= θ(X)} is
its domain.1 Substitutions are usually denoted by sets of bindings like, e.g., {X1 7→
v1, . . . , Xn 7→ vn}. Substitutions are extended to morphisms from expressions to
expressions in the natural way. �e identity substitution is denoted by id. Com-
position of substitutions is denoted by juxtaposition, i.e., θθ′ denotes a substitution
θ′′ such that θ′′(X) = θ′(θ(X)) for all X ∈ Var . Also, we denote by θ[X1 7→
v1, . . . , Xn 7→ vn] the update of θ with the mapping {X1 7→ v1, . . . , Xn 7→ vn},
i.e., it denotes a new substitution θ′ such that θ′(X) = vi if X = Xi, for some
i ∈ {1, . . . , n}, and θ′(X) = θ(X) otherwise.

In a case expression “case e of pat1 when e1 → e′1; . . . ; patn when en →
e′n end”, we �rst evaluate e to a value, say v; then, we should �nd (if any) the �rst
clause pati when ei → e′i such that v matches pati (i.e., there exists a substitution σ
for the variables of pati such that v = patiσ) and eiσ—the guard—reduces to true;
then, the case expression reduces to e′iσ. Note that guards can only contain calls to
built-in functions (typically, arithmetic and relational operators).

As for the concurrent features of the language, we consider that a system is a
pool of processes that can only interact through message sending and receiving (i.e.,
there is no shared memory). Each process has an associated pid (process identi�er),
which is unique in a system. As in Erlang, we consider a speci�c type or domain
Pid for pids. Furthermore, in this work, we assume that pids can only be introduced

1Since we consider an eager language, variables are bound to values.
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in a computation from the evaluation of functions spawn and self (see below). By
abuse of notation, when no confusion can arise, we refer to a process with its pid.

An expression of the form spawn(f/n, [e1, . . . , en]) has, as a side e�ect, the cre-
ation of a new process, with a fresh pid p, initialized with the expression apply
f/n (v1, . . . , vn), where v1, . . . , vn are the evaluations of e1, . . . , en, respectively;
the expression spawn(f/n, [e1, . . . , en]) itself evaluates to the new pid p. �e func-
tion self() just returns the pid of the current process. An expression of the form
e1 !e2, where e1 evaluates to a pid p and e2 to a value v, also evaluates to the value v
and, as a side e�ect, the value v—the message—will be stored in the queue or mailbox
of process p at some point in the future.

Finally, an expression “receive pat1 when e1 → e′1; . . . ; patn when en → e′n end”
traverses the messages in the process’ queue until one of them matches a branch in
the receive statement; i.e., it should �nd the �rst message v in the process’ queue
(if any) such that case v of pat1 when e1 → e′1; . . . ; patn when en → e′n end can be
reduced; then, the receive expression evaluates to the same expression to which the
above case expression would be evaluated, with the additional side e�ect of deleting
the message v from the process’ queue. If there is no matching message in the queue,
the process suspends its execution until a matching message arrives.

Example 3.1. Consider the program shown in Figure 3.2, where the symbol “ ” is
used to denote an anonymous variable, i.e., a variable whose name is not relevant.
�e computation starts with “apply main/0 ().” �is creates a process, say p1. �en,
p1 spawns two new processes, say p2 and p3, and then sends the message hello to
process p3 and the message {p3,world} to process p2, which then resends world
to p3. Note that we consider that variables P2 and P3 are bound to pids p2 and p3,
respectively.

In our language, there is no guarantee regarding which message arrives �rst to
p3, i.e., both interleavings (a) and (b) in Figure 3.3 are possible (resulting in function
target/0 returning either {hello,world} or {world,hello}). �is is coherent with
the semantics of Erlang, where the only guarantee is that if two messages are sent
from process p to process p′, and both are delivered, then the order of these messages
is kept.2

3.3 �e Language Semantics

In order to precisely set the framework for our proposal, in this section we formalize
the semantics of the considered language.

2Current implementations only guarantee this restriction within the same node though.
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main/0 = fun ()→ let P2 = spawn(echo/0, [ ])
in let P3 = spawn(target/0, [ ])
in let = P3 ! hello
in P2 ! {P3,world}

target/0 = fun ()→ receive
A→ receive

B → {A,B}
end

end

echo/0 = fun ()→ receive
{P,M} → P !M

end

Figure 3.2: A simple concurrent program

De�nition 3.2 (Process). A process is denoted by a tuple 〈p, (θ, e), q〉 where p is
the pid of the process, (θ, e) is the control—which consists of an environment (a
substitution) and an expression to be evaluated—and q is the process’ mailbox, a
FIFO queue with the sequence of messages that have been sent to the process.

We consider the following operations on local mailboxes. Given a message v
and a local mailbox q, we let v : q denote a new mailbox with message v on top of
it (i.e., v is the newer message). We also denote with q\\v a new queue that results
from q by removing the oldest occurrence of message v (which is not necessarily
the oldest message in the queue).

A running system can then be seen as a pool of processes, which we formally
de�ne as follows:

De�nition 3.3 (System). A system is denoted by Γ; Π, where Γ, the global mailbox,
is a multiset of pairs of the form (target process pid,message), and Π is a pool of
processes, denoted by an expression of the form

〈p1, (θ1, e1), q1〉 | · · · | 〈pn, (θn, en), qn〉

where “ |” denotes an associative and commutative operator. Given a global mailbox
Γ, we let Γ∪{(p, v)} denote a new mailbox also including the pair (p, v), where we
use “∪” as multiset union.
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p1 p2 p3

p3 ! hello

++p2 ! {p3,world}
))
p3 ! world

&&

p1 p2 p3

p3 ! hello

//

p2 ! {p3,world}
))
p3 ! world

&&

(a) (b)

Figure 3.3: Admissible interleavings in Example 3.1

We o�en denote a system by an expression of the form Γ; 〈p, (θ, e), q〉 | Π to
point out that 〈p, (θ, e), q〉 is an arbitrary process of the pool (thanks to the fact that
“ | ” is associative and commutative).

Intuitively, Γ stores messages a�er they are sent, and before they are inserted
in the target mailbox, hence it models messages which are in the network. �e
use of Γ (which is similar to the “ether” in [130]) is needed to guarantee that all
message interleavings admissible in an asynchronous communication model (where
the order of messages is not preserved) can be generated by our semantics.

In the following, we denote by on a sequence of syntactic objects o1, . . . , on for
some n. We also write oi,j for the sequence oi, . . . , oj when i ≤ j (and the empty
sequence otherwise). We write o when the number of elements is not relevant.

�e semantics is de�ned by means of two transition relations: −→ for expres-
sions and ↪→ for systems. Let us �rst consider the labeled transition relation

−→ : (Env,Exp)× Label × (Env,Exp)

where Env and Exp are the domains of environments (i.e., substitutions) and ex-
pressions, respectively, and Label denotes an element of the set

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a/n, [vn]), self(κ)}

whose meaning will be explained below. We use ` to range over labels. For clarity,
we divide the transition rules of the semantics for expressions in two sets: rules for
sequential expressions are depicted in Figure 3.4, while rules for concurrent ones
are in Figure 3.5.3 Note, however, that concurrent expressions can occur inside se-
quential expressions.

3By abuse, we include the rule for self() together with the concurrent actions.
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(Var)
θ,X

τ−→ θ, θ(X)
(Tuple)

θ, ei
`−→ θ′, e′i

θ, {v1,i−1, ei, ei+1,n}
`−→ θ′, {v1,i−1, e′i, ei+1,n}

(List1 )
θ, e1

`−→ θ′, e′1

θ, [e1|e2]
`−→ θ′, [e′1|e2]

(List2 )
θ, e2

`−→ θ′, e′2

θ, [v1|e2]
`−→ θ′, [v1|e′2]

(Let1 )
θ, e1

`−→ θ′, e′1

θ, letX = e1 in e2
`−→ θ′, letX = e′1 in e2

(Let2 )
θ, letX = v in e

τ−→ θ[X 7→ v], e

(Case1 )
θ, e

`−→ θ′, e′

θ, case e of cl1; . . . ; cln end
`−→ θ′, case e′ of cl1; . . . ; cln end

(Case2 )
match(θ, v, cl1, . . . , cln) = 〈θi, ei〉
θ, case v of cl1; . . . ; cln end

τ−→ θθi, ei

(Call1 )
θ, ei

`−→ θ′, e′i i ∈ {1, . . . , n}
θ, call op (v1,i−1, ei, ei+1,n)

`−→ θ′, call op (v1,i−1, e′i, ei+1,n)

(Call2 )
eval(op, v1, . . . , vn) = v

θ, call op (v1, . . . , vn)
τ−→ θ, v

(Apply1 )
θ, ei

`−→ θ′, e′i i ∈ {1, . . . , n}
θ, apply a/n (v1,i−1, ei, ei+1,n)

`−→ θ′, apply a/n (v1,i−1, e′i, ei+1,n)

(Apply2 )
µ(a/n) = fun (X1, . . . , Xn)→ e

θ, apply a/n (v1, . . . , vn)
τ−→ θ ∪ {X1 7→ v1, . . . , Xn 7→ vn}, e

Figure 3.4: Standard semantics: evaluation of sequential expressions

Most of the rules are self-explanatory. In the following, we only discuss some
subtle or complex issues. In principle, the transitions are labeled either with τ (a se-
quential reduction without side e�ects) or with a label that identi�es the reduction
of a (possibly concurrent) action with some side-e�ects. Labels are used in the sys-
tem rules (Figure 3.6) to determine the associated side e�ects and/or the information
to be retrieved.

As in Erlang, we consider that the order of evaluation of the arguments in a
tuple, list, etc., is �xed from le� to right.

For case evaluation, we assume an auxiliary function match which selects the
�rst clause, cli = (pati when e′i → ei), such that v matches pati, i.e., v = θi(pati),
and the guard holds, i.e., θθi, e′i −→∗ θ′, true. As in Core Erlang, we assume that the
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(Send1 )
θ, e1

`−→ θ′, e′1

θ, e1 ! e2
`−→ θ′, e′1 ! e2

(Send2 )
θ, e2

`−→ θ′, e′2

θ, v1 ! e2
`−→ θ′, v1 ! e′2

(Send3 )
θ, v1 ! v2

send(v1,v2)−−−−−−−→ θ, v2

(Receive)

θ, receive cl1; . . . ; cln end
rec(κ,cln)−−−−−−→ θ, κ

(Spawn1 )
θ, ei

`−→ θ′, e′i i ∈ {1, . . . , n}
θ, spawn(a/n, [v1,i−1, ei, ei+1,n])

`−→ θ′, spawn(a/n, [v1,i−1, e′i, ei+1,n])

(Spawn2 )
θ, spawn(a/n, [vn])

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ, κ

(Self )
θ, self()

self(κ)−−−−→ θ, κ

Figure 3.5: Standard semantics: evaluation of concurrent expressions

pa�erns can only contain fresh variables (but guards might have bound variables,
thus we pass the current environment θ to function match). Note that, for simplicity,
we assume here that if the argument v matches no clause then the evaluation is
blocked.4

Functions can either be de�ned in the program (in this case they are invoked by
apply) or be a built-in (invoked by call). In the la�er case, they are evaluated using
the auxiliary function eval. In rule Apply2 , we consider that the mapping µ stores
all function de�nitions in the program, i.e., it maps every function name a/n to a
copy of its de�nition fun (X1, . . . , Xn)→ e, where X1, . . . , Xn are (distinct) fresh
variables and are the only variables that may occur free in e. As for the applications,
note that we only consider �rst-order functions. In order to extend our semantics
to also consider higher-order functions, one should reduce the function name to a
closure of the form (θ′, fun (X1, . . . , Xn) → e). We skip this extension since it is
orthogonal to our contribution.

Let us now consider the evaluation of concurrent expressions that produce some
side e�ect (Figure 3.5). Here, we can distinguish two kinds of rules. On the one
hand, we have rules Send1 , Send2 and Send3 for “!”. In this case, we know locally
what the expression should be reduced to (i.e., v2 in rule Send3 ). For the remaining
rules, this is not known locally and, thus, we return a fresh distinguished symbol,

4�is is not an issue in practice since, when an Erlang program is translated to the intermediate
representation Core Erlang, a catch-all clause is added to every case expression in order to deal with
pa�ern matching errors.
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(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′), q〉 |Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ ∪ (p′′, v); 〈p, (θ′, e′), q〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, v)

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′θi, e′{κ 7→ ei}), q\\v〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′{κ 7→ p′}), q〉 | 〈p′, (id, apply a/n (vn)), [ ]〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′{κ 7→ p}), q〉 |Π

(Sched)
Γ ∪ {(p, v)}; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ, e), v :q〉 |Π

Figure 3.6: Standard semantics: system rules

κ—by abuse, κ is dealt with as a variable—so that the system rules of Figure 3.6 will
eventually bind κ to its correct value:5 the selected expression in rule Receive and
a pid in rules Spawn and Self . In these cases, the label of the transition contains
all the information needed by system rules to perform the evaluation at the system
level, including the symbol κ. �is trick allows us to keep the rules for expressions
and systems separated (i.e., the semantics shown in Figures 3.4 and 3.5 is mostly
independent from the rules in Figure 3.6), in contrast to other Erlang semantics,
e.g., [19], where they are combined into a single transition relation.

Finally, we consider the system rules, which are depicted in Figure 3.6. In most of
the transition rules, we consider an arbitrary system of the form Γ; 〈p, (θ, e), q〉 | Π,
where Γ is the global mailbox and 〈p, (θ, e), q〉 |Π is a pool of processes that contains
at least one process 〈p, (θ, e), q〉. Let us brie�y describe the system rules.

Rule Seq just updates the control (θ, e) of the considered process when a se-
quential expression is reduced using the expression rules.

Rule Send adds the pair (p′′, v) to the global mailbox Γ instead of adding it
to the queue of process p′′. �is is necessary to ensure that all possible message
interleavings are correctly modeled (as discussed in Example 3.1). Observe that e′

5Note that κ takes values on the domain expr ∪ Pid, in contrast to ordinary variables that can
only be bound to values.
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is usually di�erent from v since e may have di�erent nested operators. E.g., if e has
the form “case p ! v of {. . .},” then e′ will be “case v of {. . .}” with label send(p, v).

In rule Receive , we use the auxiliary function matchrec to evaluate a receive
expression. �e main di�erence w.r.t. match is that matchrec also takes a queue q
and returns the selected message v. More precisely, function matchrec scans the
queue q looking for the �rst message v matching a pa�ern of the receive statement.
�en, κ is bound to the expression in the selected clause, ei, and the environment is
extended with the matching substitution. If no message in the queue q matches any
clause, then the rule is not applicable and the selected process cannot be reduced
(i.e., it suspends). As in case expressions, we assume that the pa�erns can only
contain fresh variables.

�e rules presented so far allow one to store messages in the global mailbox, but
not to remove messages from it. �is is precisely the task of the scheduler, which
is modeled by rule Sched . �is rule nondeterministically chooses a pair (p, v) in
the global mailbox Γ and delivers the message v to the target process p. Here, we
deliberately ignore the restriction mentioned in Example 3.1: “the messages sent—
directly—between two given processes arrive in the same order they were sent”,
since current implementations only guarantee it within the same node. In practice,
ignoring this restriction amounts to consider that each process is potentially run in
a di�erent node. An alternative de�nition ensuring this restriction can be found in
[109].

Example 3.4. Consider again the program shown in Example 3.1. Figures 3.7 and
3.8 show a derivation from “apply main/0 ()” where the call to function target
reduces to {world, hello}, as discussed in Example 3.1 (i.e., the interleaving shown
in Figure 3.2 (b)). Processes’ pids are denoted with p1, p2 and p3. For clarity, we label
each transition step with the applied rule and underline the reduced expression.

3.3.1 Erlang Concurrency

In order to de�ne a causal-consistent reversible semantics for Erlang we need not
only an interleaving semantics such as the one we just presented, but also a notion of
concurrency (or, equivalently, the opposite notion of con�ict). While concurrency is
a main feature of Erlang, as far as we know no formal de�nition of the concurrency
model of Erlang exists in the literature. We propose below one such de�nition.

Given systems s1, s2, we call s1 ↪→∗ s2 a derivation. One-step derivations are
simply called transitions. We use d, d′, d1, . . . to denote derivations and t, t′, t1, . . .
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{ }; 〈p1, (id, apply main/0 ()), [ ]〉
↪→Seq { }; 〈p1, (id, let P2 = spawn(echo/0, [ ]) in . . .), [ ]〉
↪→Spawn { }; 〈p1, (id, let P2 = p2 in . . .), [ ]〉

| 〈p2, (id, apply echo/0 [ ]), [ ]〉
↪→Seq { }; 〈p1, ({P2 7→ p2}, let P3 = spawn(target/0, [ ]) in . . .), [ ]〉

| 〈p2, (id, apply echo/0 [ ]), [ ]〉
↪→Spawn { }; 〈p1, ({P2 7→ p2}, let P3 = p3 in . . ., [ ])〉

| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq { }; 〈p1, ({P2 7→ p2, P3 7→ p3}, let = P3 ! hello in . . . , [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq { }; 〈p1, ({P2 7→ p2, P3 7→ p3}, let = p3 ! hello in . . . , [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Send {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, let = hello in . . ., [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, P2 ! {P3,world}, [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3},p2 ! {P3,world}, [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, p2 ! {p3,world}, [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Send {m1,m2}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, (id, apply echo/0 [ ]), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq {m1,m2}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, (id, receive {P,M} → P !M end), [ ]〉
| 〈p3, (id, apply target/0 [ ]), [ ]〉

↪→Seq {m1,m2}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, (id, receive {P,M} → P !M end), [ ]〉
| 〈p3, (id, receive A→ . . . end), [ ]〉

Figure 3.7: A derivation from “apply main/0 ()”, where m1 = (p3,hello), m2 =
(p2, {p3,world}), and m3 = (p3,world) (part 1/2)
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↪→Sched {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, (id, receive {P,M} → P !M end), [{p3,world}]〉
| 〈p3, (id, receive A→ . . . end), [ ]〉

↪→Receive {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, ({P 7→ p3,M 7→ world}, P !M), [ ]〉
| 〈p3, (id, receive A→ . . . end), [ ]〉

↪→Seq {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, ({P 7→ p3,M 7→ world}, p3 !M), [ ]〉
| 〈p3, (id, receive A→ . . . end), [ ]〉

↪→Seq {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, ({P 7→ p3,M 7→ world}, p3 ! world), [ ]〉
| 〈p3, (id, receive A→ . . . end), [ ]〉

↪→Send {m1,m3}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, (id, receive A→ . . . end), [ ]〉

↪→Sched {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, (id, receive A→ . . . end), [world]〉

↪→Receive {m1}; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])), [ ]〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, ({A 7→ world}, receive B → {A,B} end), [ ]〉

↪→Sched { }; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])), [ ]〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, ({A 7→ world}, receive B → {A,B} end), [hello]〉

↪→Receive { }; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])), [ ]〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, ({A 7→ world, B 7→ hello}, {A,B}), [ ]〉

↪→Seq { }; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])), [ ]〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, ({A 7→ world, B 7→ hello}, {world, B}), [ ]〉

↪→Seq { }; 〈p1, ({P2 7→ p2, P3 7→ p3}, {p3,world}, [ ])), [ ]〉
| 〈p2, ({P 7→ p3,M 7→ world},world), [ ]〉
| 〈p3, ({A 7→ world, B 7→ hello}, {world, hello}), [ ]〉

Figure 3.8: A derivation from “apply main/0 ()”, where m1 = (p3,hello), m2 =
(p2, {p3,world}), and m3 = (p3,world) (part 2/2)
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for transitions. We label transitions as follows: s1 ↪→p,r s2 where6

• p is the pid of the selected process in the transition or of the process to which
a message is delivered (if the applied rule is Sched);

• r is the label of the applied transition rule.

We ignore some labels when they are clear from the context.
Given a derivation d = (s1 ↪→∗ s2), we de�ne init(d) = s1 and final(d) = s2.

Two derivations, d1 and d2, are composable if final(d1) = init(d2). In this case, we let
d1; d2 denote their composition with d1; d2 = (s1 ↪→ s2 ↪→ · · · ↪→ sn ↪→ sn+1 ↪→
· · · ↪→ sm) if d1 = (s1 ↪→ s2 ↪→ · · · ↪→ sn) and d2 = (sn ↪→ sn+1 ↪→ · · · ↪→ sm).
Two derivations, d1 and d2, are said coinitial if init(d1) = init(d2), and co�nal if
final(d1) = final(d2).

We let εs denote the zero-step derivation s ↪→∗ s.

De�nition 3.5 (Concurrent transitions). Given two coinitial transitions, t1 = (s ↪→p1,r1

s1) and t2 = (s ↪→p2,r2 s2), we say that they are in con�ict if they consider the same
process, i.e., p1 = p2, and either r1 = r2 = Sched or one transition applies rule
Sched and the other transition applies rule Receive . Two coinitial transitions are
concurrent if they are not in con�ict.

We show below that our de�nition of concurrent transitions makes sense.

Lemma 3.6 (Square lemma). Given two coinitial concurrent transitions t1 = (s ↪→p1,r1

s1) and t2 = (s ↪→p2,r2 s2), there exist two co�nal transitions t2/t1 = (s1 ↪→p2,r2 s
′)

and t1/t2 = (s2 ↪→p1,r1 s
′). Graphically,

s �
� p1,r1 //� _

p2,r2
��

s1

s2

=⇒
s �
� p1,r1 //� _

p2,r2

��

s1� _

p2,r2
��

s2
� �

p1,r1
// s′

Proof. We have the following cases:

• Two transitions t1 and t2 where r1 6= Sched and r2 6= Sched . Trivially, they
apply to di�erent processes, i.e., p1 6= p2. �en, we can easily prove that by
applying rule r2 to p1 in s1 and rule r1 to p2 in s2 we have two transitions
t1/t2 and t2/t1 which are co�nal.

6Note that p, r in ↪→p,r are not parameters of the transition relation ↪→ but just labels with some
information on the reduction step. �is information becomes useful to formally de�ne the notion of
concurrent transitions.
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• One transition t1 which applies rule r1 = Sched to deliver message v1 to
process p1 = p, and another transition which applies a rule r2 di�erent from
Sched . All cases but r2 = Receive with p2 = p are straightforward. �is last
case, though, cannot happen since transitions using rules Sched and Receive
are not concurrent.

• Two transitions t1 and t2 with rules r1 = r2 = Sched delivering messages v1

and v2, respectively. Since the transitions are concurrent, they should deliver
the messages to di�erent processes, i.e., p1 6= p2. �erefore, we can see that
delivering v2 from s1 and v1 from s2 we get two co�nal transitions.

We remark here that other de�nitions of concurrent transitions are possible.
Changing the concurrency model would require to change the stored information in
the reversible semantics in order to preserve causal consistency. We have chosen the
notion above since it is reasonably simple to de�ne and to work with, and captures
most of the pairs of coinitial transitions that satisfy the Square lemma.

3.4 A Reversible Semantics for Erlang

In this section, we introduce a reversible—uncontrolled—semantics for the consid-
ered language. �anks to the modular design of the concrete semantics, the transi-
tion rules for the language expressions need not be changed in order to de�ne the
reversible semantics.

To be precise, in this section we introduce two transition relations: ⇀ and ↽.
�e �rst relation, ⇀, is a conservative extension of the standard semantics ↪→ (Fig-
ure 3.6) to also include some additional information in the states, following a typical
Landauer embedding. We refer to ⇀ as the forward reversible semantics (or sim-
ply the forward semantics). In contrast, the second relation, ↽, proceeds in the
backward direction, “undoing” actions step by step. We refer to ↽ as the backward
(reversible) semantics. We denote the union ⇀ ∪↽ by
.

In the next section, we will introduce a rollback operator that starts a reversible
computation for a process. In order to avoid undoing all actions until the begin-
ning of the process, we will also let the programmer introduce checkpoints. Syn-
tactically, they are denoted with the built-in function check, which takes an identi-
�er t as an argument. Such identi�ers are supposed to be unique in the program.
Given an expression, expr, we can introduce a checkpoint by replacing expr with
“let X = check(t) in expr”. A call of the form check(t) just returns t (see below).
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p1 p2 p3

p2 ! v

{{
p2 ! v

""

t1

t2

p1 p2 p3

p2 ! v

��

p2 ! v // t1

t2

(a) (b)

p1 p2

p2 ! v

((
p2 ! v

''

t1

t2

p1 p2

p2 ! v

  

p2 ! v // t1

t2

(c) (d)

Figure 3.9: Interleavings and the need for unique identi�ers for messages

In the following, we consider that the rules to evaluate the language expressions
(Figures 3.4 and 3.5) are extended with the following rule:

(Check)
θ, check(t)

check(t)−−−−−→ θ, t

In this section, we will mostly ignore checkpoints, but they will become relevant in
the next section.

�e most signi�cant novelty in the forward semantics is that messages now
include a unique identi�er (e.g., a timestamp λ). Let us illustrate with some exam-
ples why we introduce these identi�ers. Consider �rst diagram (a) in Figure 3.9,
where two di�erent processes, p1 and p3, send the same message v to process
p2. In order to undo the action p2 ! v in process p3, one needs to �rst undo all
actions of p2 up to t1 (to ensure causal consistency). However, currently, mes-
sages only store information about the target process and the value sent, therefore
it is not possible to know whether it is safe to stop undoing actions at t1 or at
t2 . Actually, the situations in diagrams (a) and (b) are not distinguishable. In
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this case, it would su�ce to add the pid of the sender to every message in order
to avoid the confusion. However, this is not always su�cient. Consider now dia-
gram (c). Here, a process p1 sends two identical messages to another process p2
(which is not unusual, say an “ack” a�er receiving a request). In this case, in or-
der to undo the �rst action p2 ! v of process p1 one needs to undo all actions of
process p2 up to t1 . However, we cannot distinguish t1 from t2 unless some
additional information is taken into account (and considering triples of the form
(source process pid, target process pid,message) would not help). �erefore,
one needs to introduce some unique identi�er in order to precisely distinguish case
(c) from case (d).

Of course, we could have a less precise semantics where just the message, v, is
observable. However, that would make the backward semantics unpredictable (e.g.,
we could o�en undo the “wrong” message delivery). Also, de�ning the correspond-
ing notion of con�icting transitions (see De�nition 3.12 below) would be challenging,
since one would like to have only a con�ict between the sending of a message v and
the “last” delivery of the same message v, which would be very tricky. �erefore, in
this paper, we prefer to assume that messages can be uniquely distinguished.

�e transition rules of the forward reversible semantics can be found in Fig-
ure 3.10. Processes now include a memory (or history) h that records the interme-
diate states of a process, and messages have an associated unique identi�er. In the
memory, we use terms headed by constructors τ , check, send, rec, spawn, and self
to record the steps performed by the forward semantics. Note that we could opti-
mize the information stored in these terms by following a strategy similar to that in
[97, 108, 133] for the reversibility of functional expressions, but this is orthogonal to
our purpose in this paper, so we focus mainly on the concurrent actions. Note also
that the auxiliary function matchrec now deals with messages of the form {v, λ},
which is a trivial extension of the original function in the standard semantics by just
ignoring λ when computing the �rst matching message.

Example 3.7. Let us consider the program shown in Figure 3.12 (a), together with
the execution trace sketched in Figure 3.12 (b). Figure 3.13 shows a high level ac-
count of the corresponding derivation under the forward semantics. For clarity, we
consider the following conventions:

• Processes client1, client2 and server are denoted with c1, c2 and s, respec-
tively.

• In the processes, we do not show the current environment. Moreover, we use
the notation C[e] to denote that e is the redex to be reduced next and C[ ] is
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(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, τ(θ, e) :h, (θ′, e′), q〉 |Π

(Check)
θ, e

check(t)−−−−−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, check(θ, e, t) :h, (θ′, e′), q〉 |Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identi�er
Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ ∪ (p′′, {v, λ}); 〈p, send(θ, e, p′′, {v, λ}) :h, (θ′, e′), q〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, {v, λ})
Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, rec(θ, e, {v, λ}, q) :h, (θ′θi, e′{κ 7→ ei}), q\\{v, λ}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, spawn(θ, e, p′) :h, (θ′, e′{κ 7→ p′}), q〉

| 〈p′, [ ], (id, apply a/n (vn)), [ ]〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, self(θ, e) :h, (θ′, e′{κ 7→ p}), q〉 |Π

(Sched)
Γ ∪ {(p, {v, λ})}; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, h, (θ, e), {v, λ} :q〉 |Π

Figure 3.10: Forward reversible semantics

(Seq) Γ; 〈p, τ(θ, e) :h, (θ′, e′), q〉 | Π ↽ Γ; 〈p, h, (θ, e), q〉 | Π

(Check) Γ; 〈p, check(θ, e, t) :h, (θ′, e′), q〉 | Π ↽ Γ; 〈p, h, (θ, e), q〉 | Π

(Send) Γ ∪ {(p′′, {v, λ})}; 〈p, send(θ, e, p′′, {v, λ}) :h, (θ′, e′), q〉 | Π ↽ Γ; 〈p, h, (θ, e), q〉 | Π

(Receive) Γ; 〈p, rec(θ, e, {v, λ}, q) :h, (θ′, e′), q\\{v, λ}〉 | Π ↽ Γ; 〈p, h, (θ, e), q〉 | Π

(Spawn)
Γ; 〈p, spawn(θ, e, p′) :h, (θ′, e′), q〉 | 〈p′, [ ], (id, e′′), [ ]〉 | Π

↽ Γ; 〈p, h, (θ, e), q〉 | Π

(Self ) Γ; 〈p, self(θ, e) :h, (θ′, e′), q〉 | Π ↽ Γ; 〈p, h, (θ, e), q〉 | Π

(Sched)
Γ; 〈p, h, (θ, e), {v, λ} :q〉 | Π ↽ Γ ∪ (p, {v, λ}); 〈p, h, (θ, e), q〉 | Π

if the topmost rec(. . .) item in h (if any) has the
form rec(θ′, e′, {v′, λ′}, q′) with q′\\{v′, λ′} 6= {v, λ} :q

Figure 3.11: Backward reversible semantics
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main/0 = fun ()→ let S = spawn(server/0, [ ])
in let = spawn(client/1, [S])
in apply client/1 (S)

server/0 = fun ()→ receive
{P,M} → let = P ! ack

in apply server/0 ()
end

client/1 = fun (S)→ let = S ! {self(), req}
in receive

ack→ ok
end

main/0

c1 spawn **

spawn

%%
s c2

receive s ! {c2, req}oo

c2 ! ack // receive

s ! {c1, req} // receive ok

receive c1 ! ackoo

ok . . .

(a) (b)

Figure 3.12: A simple client-server

an arbitrary (possibly empty) context. We also underline the selected redex
when there are more than one (e.g., a redex in each process).

• In the histories, some arguments are denoted by “ ” since they are not relevant
in the current derivation.

• Finally, we only show the steps performed with rules Spawn , Send , Receive
and Sched ; the transition relation is labeled with the applied rule.

We now prove that the forward semantics ⇀ is a conservative extension of the
standard semantics ↪→.

In order to state the result, we let del(s) denote the system that results from s
by removing the histories of the processes; formally, del(Γ; Π) = Γ; del′(Π), where

del′(〈p, h, (θ, e), q〉) = 〈p, (θ, e), q〉
del′(〈p, h, (θ, e), q〉 | Π) = 〈p, (θ, e), q〉 | del′(Π)

where we assume that Π is not empty.
We can now state the conservative extension result.

�eorem 3.8. Let s1 be a system of the reversible semantics without occurrences of
“check” and s′1 = del(s1) a system of the standard semantics. �en, s′1 ↪→∗ s′2 i�
s1 ⇀

∗ s2 and del(s2) = s′2.

Proof. �e proof is straightforward since the transition rules of the forward seman-
tics in Figure 3.10 are just annotated versions of the corresponding rules in Fig-
ure 3.6. �e only tricky point is noticing that the introduction of unique identi�ers
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{ }; 〈c1, [ ], (id, C[apply main/0 ()]), [ ]〉
⇀∗ { }; 〈c1, [ ], ( , C[spawn(server/0, [ ])]), [ ]〉
⇀Spawn { }; 〈c1, [spawn( , , s)], ( , C[spawn(client/1, [s])]), [ ]〉

| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉
⇀Spawn { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉

| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [ ], ( , C[s ! {c2, req}]), [ ]〉

⇀Send {(s,m1)}; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

⇀Sched { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [m1]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

⇀Receive { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [rec( , ,m1, [m1])], ( , C[c2 ! ack]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

⇀Send {(c2,m2)}; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

⇀Sched { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [m2]〉

⇀Receive { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

⇀Send {(s,m3)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

⇀Sched { }; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [m3]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

⇀Receive { }; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])], ( , C[c1 ! ack]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

⇀Send {(c1,m4)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

⇀Sched { }; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [m4]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

⇀Receive { }; 〈c1, [rec( , ,m4, [m4]), send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , ok), [ ]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

Figure 3.13: A derivation under the forward semantics, with m1 = {{c2, req}, 1},
m2 = {ack, 2}, m3 = {{c1, req}, 3}, and m4 = {ack, 4}.
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for messages does not change the behavior of rule Receive since function matchrec
always returns the oldest occurrence (in terms of position in the queue) of the se-
lected message.

�e transition rules of the backward semantics are shown in Figure 3.11. In
general, all rules restore the control (and, if it applies, also the queue) of the process.
Nevertheless, let us brie�y discuss a few particular situations:

• First, observe that rule Send can only be applied when the message sent is in
the global mailbox. If this is not the case (i.e., the message has been delivered
using rule Sched ), then we should �rst apply backward steps to the receiver
process until, eventually, the application of rule Sched puts the message back
into the global mailbox and rule Send becomes applicable. �is is required to
ensure causal consistency. In the next section, we will introduce a particular
strategy that achieves this e�ect in a controlled manner.

• A similar situation occurs with rule Spawn . Given a process p with a history
item spawn(θ, e, p′), rule Spawn cannot be applied until the history and the
queue of process p′ are both empty. �erefore, one should �rst apply a number
of backward steps to process p′ in order to be able to undo the spawn item. We
note that there is no need to require that no message targeting the process p′
(which would become an orphan message) is in the global mailbox: in order
to send such a message the pid p′ is needed, hence the sending of the message
depends on the spawn and, thus, it must be undone beforehand.

• Observe too that rule Receive can only be applied when the queue of the
process is exactly the same queue that was obtained a�er applying the cor-
responding (forward) Receive step. �is is necessary in order to ensure that
the restored queue is indeed the right one (note that adding the message to
an arbitrary queue would not work since we do not know the “right” position
for the message).

• In principle, there is some degree of freedom in the application of rule Sched
since it does not interfere with the remaining rules, except for Receive and
other applications of Sched . �erefore, the application of rule Sched can be
switched with the application of any other backward rule except for Receive
or another Sched . �e fact that two Sched (involving the same process) do not
commute is ensured since Sched always applies to the most recent message
of a queue. �e fact that a Sched and a Receive do not commute is ensured
since the side condition of Sched checks that there is no rec(. . .) item in the
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history of the process that can be used to apply ruleReceivewith the current
queue. Hence, their applicability conditions do not overlap.

Example 3.9. Consider again the program shown in Figure 3.12. By starting from
the last system in the forward derivation shown in Figure 3.13, we may construct
the backward derivation shown in Figure 3.14. Observe that it does not strictly fol-
low the inverse order of the derivation shown in Figure 3.13. Actually, a derivation
that undoes the steps in the precise inverse order exists, but it is not the only pos-
sibility. We will characterize later on (see Corollary 3.22) which orders are allowed
and which are not. In Figure 3.14, besides following the same conventions of Ex-
ample 3.7, for clarity, we underline the selected history item to be undone or the
element in the queue to be removed (when the applied rule is Sched ).

3.4.1 Properties of the Uncontrolled Reversible Semantics

In the following, we prove several properties of our reversible semantics, including
its causal consistency, an essential property for reversible concurrent calculi [35].

Given systems s1, s2, we call s1 ⇀
∗ s2 a forward derivation and s2 ↽

∗ s1 a
backward derivation. A derivation potentially including both forward and backward
steps is denoted by s1 
∗ s2. We label transitions as follows: s1 
p,r,k s2 where

• p, r are the pid of the selected process and the label of the applied rule, re-
spectively, as in Section 3.3.1,

• k is a history item if the applied rule was di�erent from Sched and Sched ,
and

• k = sched({v, λ}) when the applied rule was Sched or Sched , where {v, λ}
is the message delivered or put back into Γ. Note that this information is
available when applying the rule.

We ignore some labels when they are clear from the context.
We extend the de�nitions of functions init and final from Section 3.3.1 to re-

versible derivations in the natural way. �e notions of composable, coinitial and
co�nal derivations are extended also in a straightforward manner.

Given a rule label r, we let r denote its reverse version, i.e., if r = Send then
r = Send and vice versa (if r = Send then r = Send ). Also, given a transition t, we
let t = (s′ ↽p,r,k s) if t = (s ⇀p,r,k s

′) and t = (s′ ⇀p,r,k s) if t = (s ↽p,r,k s
′).

We say that t is the inverse of t. �is notation is naturally extended to derivations.
We let εs denote the zero-step derivation s
∗ s.
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{ }; 〈c1, [rec( , ,m4, [m4]), send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , ok), [ ]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

↽Receive { }; 〈c1, [rec( , ,m4, [m4]), send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , ok), [ ]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [m2]〉

↽Receive { }; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [m4]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [m2]〉

↽Sched {(c1,m4)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [m2]〉

↽Sched {(c2,m2), (c1,m4)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],

( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Send {(c2,m2)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])], ( , C[c1 ! ack]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Receive {(c2,m2)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [m3]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Sched {(s,m3), (c2,m2)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Send {(s,m3)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [rec( , ,m1, [m1])], ( , C[c2 ! ack]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Receive {(s,m3)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [m1]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Sched {(s,m1), (s,m3)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [send( , , s,m1)], ( , C[receive ack→ ok]), [ ]〉

↽Send {(s,m3)}; 〈c1, [send( , , s,m3), spawn( , , c2), spawn( , , s)], ( , C[receive ack→ ok]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [ ], ( , C[s ! {c2, req}]), [ ]〉

↽Send { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [ ], ( , C[s ! {c2, req}]), [ ]〉

↽Spawn { }; 〈c1, [spawn( , , s)], ( , C[spawn(client/1, [s])]), [ ]〉
| 〈s, [ ], ( , C[receive {P,M} → . . .]), [ ]〉

↽Spawn { }; 〈c1, [ ], ( , C[spawn(server/0, [ ])]), [ ]〉
↽∗ { }; 〈c1, [ ], ( , C[apply main/0 ()]), [ ]〉

Figure 3.14: A derivation under the backward semantics, withm1 = {{c2, req}, 1},
m2 = {ack, 2}, m3 = {{c1, req}, 3}, and m4 = {ack, 4}.
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In the following we restrict the a�ention to systems reachable from the execu-
tion of a program:

De�nition 3.10 (Reachable systems). A system is initial if it is composed by a single
process, and this process has an empty history and an empty queue; furthermore
the global mailbox is empty. A system s is reachable if there exists an initial system
s0 and a derivation s0 
∗ s using the rules corresponding to a given program.

Moreover, for simplicity, we also consider an implicit, �xed program in the tech-
nical results, that is we �x the function µ in the semantics of expressions.

�e next lemma proves that every forward (resp. backward) transition can be
undone by a backward (resp. forward) transition.

Lemma 3.11 (Loop lemma). For every pair of reachable systems, s1 and s2, we have
s1 ⇀p,r,k s2 i� s2 ↽p,r,k s1.

Proof. �e proof is by case analysis on the applied rule. We discuss below the most
interesting cases.

• Rule Sched : notice that the queue of a process is changed only by ruleReceive
(which removes messages) and Sched (which adds messages). Since, a�er the
last Receive at least one message has been added, then the side condition of
rule Sched is always veri�ed.

• Rule Seq : one has to check that the restored control (θ, e) can indeed per-
form a sequential step to (θ′, e′). �is always holds for reachable systems. An
analogous check needs to be done for all backward rules.

�e following notion of concurrent transitions allows us to characterize which
actions can be switched without changing the semantics of a computation. It extends
the same notion from the standard semantics (cf. De�nition 3.5) to the reversible
semantics.

De�nition 3.12 (Concurrent transitions). Given two coinitial transitions, t1 =
(s 
p1,r1,k1 s1) and t2 = (s 
p2,r2,k2 s2), we say that they are in con�ict if at
least one of the following conditions holds:

• both transitions are forward, they consider the same process, i.e., p1 = p2,
and either r1 = r2 = Sched or one transition applies rule Sched and the
other transition applies rule Receive .
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• one is a forward transition that applies to a process p, say p1 = p, and the
other one is a backward transition that undoes the creation of p, i.e., p2 =
p′ 6= p, r2 = Spawn and k2 = spawn(θ, e,p) for some control (θ, e);

• one is a forward transition that delivers a message {v, λ} to a process p,
say p1 = p, r1 = Sched and k1 = sched({v, λ}), and the other one is a
backward transition that undoes the sending {v, λ} to p, i.e., p2 = p′ (note
that p = p′ if the message is sent to its own sender), r2 = Send and k2 =
send(θ, e,p, {v, λ}) for some control (θ, e);

• one is a forward transition and the other one is a backward transition such
that p1 = p2 and either i) both applied rules are di�erent from both Sched
and Sched , i.e., {r1, r2} ∩ {Sched ,Sched} = ∅; ii) one rule is Sched and the
other one is Sched ; iii) one rule is Sched and the other one is Receive ; or iv)
one rule is Sched and the other one is Receive .

Two coinitial transitions are concurrent if they are not in con�ict. Note that two
coinitial backward transitions are always concurrent.

�e following lemma (the counterpart of Lemma 3.13 for the standard semantics)
is a key result to prove the causal consistency of the semantics.

Lemma 3.13 (Square lemma). Given two coinitial concurrent transitions t1 = (s
p1,r1,k1

s1) and t2 = (s
p2,r2,k2 s2), there exist two co�nal transitions t2/t1 = (s1 
p2,r2,k2

s′) and t1/t2 = (s2 
p1,r1,k1 s
′). Graphically,

s
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Proof. We distinguish the following cases depending on the applied rules:
(1) Two forward transitions. �en, we have the following cases:

• Two transitions t1 and t2 where r1 6= Sched and r2 6= Sched . Trivially, they
apply to di�erent processes, i.e., p1 6= p2. �en, we can easily prove that by
applying rule r2 to p1 in s1 and rule r1 to p2 in s2 we have two transitions t1/t2
and t2/t1 which produce the corresponding history items and are co�nal.
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• One transition t1 which applies rule r1 = Sched to deliver message {v1, λ1}
to process p1 = p, and another transition which applies a rule r2 di�erent
fromSched . All cases but r2 = Receive with p2 = p and k2 = rec(θ, e, {v2, λ2}, q)
are straightforward. Note that λ1 6= λ2 since these identi�ers are unique.
Here, by applying rule Receive to s1 and rule Sched to s2 we will end up with
the same mailbox in p (since it is a FIFO queue). However, the history item
rec(θ, e, {v2, λ2}, q′) will be necessarily di�erent since q 6= q′ by the appli-
cation of rule Sched . �is situation, though, cannot happen since transitions
using rules Sched and Receive are not concurrent.

• Two transitions t1 and t2 with rules r1 = r2 = Sched delivering messages
{v1, λ1} and {v2, λ2}, respectively. Since the transitions are concurrent, they
should deliver the messages to di�erent processes, i.e., p1 6= p2. �erefore,
we can easily prove that delivering {v2, λ2} from s1 and {v1, λ1} from s2 we
get two co�nal transitions.

(2) One forward transition and one backward transition. �en, we distinguish the
following cases:

• If the two transitions apply to the same process, i.e., p1 = p2, then, since they
are concurrent, we can only have r1 = Sched and a rule di�erent from both
Sched and Receive , or r1 = Sched and a rule di�erent from both Sched and
Receive . In these cases, the claim follows easily by a case distinction on the
applied rules.

• Let us now consider that the transitions apply to di�erent processes, i.e., p1 6=
p2, and the applied rules are di�erent from Sched ,Sched . In this case, the
claim follows easily except when one transition considers a process p and the
other one undoes the spawning of the same process p. �is case, however, is
not allowed since the transitions are concurrent.

• Finally, let us consider that the transitions apply to di�erent processes, i.e.,
p1 6= p2, and that one transition applies rule Sched to deliver a message {v, λ}
from sender p to receiver p′, i.e., p1 = p′, r1 = Sched and k1 = sched({v, λ}).
In this case, the other transition should apply a rule r2 di�erent from Send
with k2 = send(θ, e, p′, {v, λ}) for some control (θ, e) since, otherwise, the
transitions would not be concurrent. In any other case, one can easily prove
that by applying r2 to s1 and Sched to s2 we get two co�nal transitions.

(3) Two backward transitions. We distinguish the following cases:
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• If the two transitions apply to di�erent processes, the claim follows easily.

• Let us now consider that they apply to the same process, i.e., p1 = p2 and
that the applied rules are di�erent from Sched . �is case is not possible since,
given a system, only one backward transition rule di�erent from Sched is
applicable (i.e., the one that corresponds to the last item in the history).

• Let us consider that both transitions apply to the same process and that both
are applications of rule Sched . �is case is not possible since rule Sched can
only take the newest message from the local queue of the process, and thus
only one rule Sched can be applied to a given process.

• Finally, consider that both transitions apply to the same process and only one
of them applies rule Sched . In this case, the only non-trivial case is when
the other applied rule is Receive , since both change the local queue of the
process. However, this case is not allowed by the backward semantics, since
the conditions to apply rule Sched and rule Receive are non-overlapping.

Corollary 3.14 (Backward con�uence). Given two backward derivations s ↽∗ s1

and s ↽∗ s2 there exist s3 and two backward derivations s1 ↽
∗ s3 and s2 ↽

∗ s3.

Proof. By iterating the square lemma (Lemma 3.13), noticing that backward tran-
sitions are always concurrent. �is is a standard result for abstract relations (see,
e.g., [9] and the original work by Rosen [120]), where con�uence is implied by the
diamond property (the square lemma in our work).

�e notion of concurrent transitions for the reversible semantics is a natural
extension of the same notion for the standard semantics:

Lemma 3.15. Let t1 and t2 be two forward coinitial transitions using the reversible
semantics, and let t′1 and t′2 be their counterpart in the standard semantics obtained
by removing the histories and the unique identi�ers for messages. �en, t1 and t2 are
concurrent i� t′1 and t′2 are.

Proof. �e proof is straightforward since De�nition 3.5 and the �rst case of De�ni-
tion 3.12 are perfectly analogous.

�e next result is used to switch the successive application of two transition
rules. Let us note that previous proof schemes of causal consistency (e.g., [35]) did
not include such a result, directly applying the square lemma instead. In our case,
this would not be correct.
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Lemma 3.16 (Switching lemma). Given two composable transitions of the form t1 =
(s1 
p1,r1,k1 s2) and t2 = (s2 
p2,r2,k2 s3) such that t1 and t2 are concurrent,
there exist a system s4 and two composable transitions t′1 = (s1 
p2,r2,k2 s4) and
t′2 = (s4 
p1,r1,k1 s3).

Proof. First, using the loop lemma (Lemma 3.11), we have t1 = (s2 
p1,r1,k1 s1).
Now, since t1 and t2 are concurrent, by applying the square lemma (Lemma 3.13)
to t1 = (s2 
p1,r1,k1 s1) and t2 = (s2 
p2,r2,k2 s3), there exists a system s4 such
that t′1 = t1/t2 = (s3 
p1,r1,k1 s4) and t′2 = t2/t1 = (s1 
p2,r2,k2 s4). Using the
loop lemma (Lemma 3.11) again, we have t′1 = t1/t2 = (s4 
p1,r1,k1 s3), which
concludes the proof.

Corollary 3.17. Given two composable transitions t1 = (s1 ⇀p1,r1,k1 s2) and
t2 = (s2 ↽p2,r2,k2 s3), there exist a system s4 and two composable transitions
t′1 = (s1 ↽p2,r2,k2 s4) and t′2 = (s4 ⇀p1,r1,k1 s3). Graphically,

s1
p1,r1,k1 / s2

s3

p2,r2,k2
O =⇒

s1
p1,r1,k1 / s2

s4
p1,r1,k1

/
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O

s3
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Proof. �e corollary follows by applying the switching lemma (Lemma 3.16), notic-
ing that two backward transitions are always concurrent.

We now formally de�ne the notion of causal equivalence between derivations,
in symbols ≈, as the least equivalence relation between transitions closed under
composition that obeys the following rules:

t1; t2/t1 ≈ t2; t1/t2 t; t ≈ εinit(t)

Causal equivalence amounts to say that those derivations that only di�er for swaps
of concurrent actions or the removal of successive inverse actions are equivalent.
Observe that any of the notations t1; t2/t1 and t2; t1/t2 requires t1 and t2 to be
concurrent.

Lemma 3.18 (Rearranging lemma). Given systems s, s′, if d = (s
∗ s′), then there
exists a system s′′ such that d′ = (s ↽∗ s′′ ⇀∗ s′) and d ≈ d′. Furthermore, d′ is not
longer than d.

Proof. �e proof is by lexicographic induction on the length of d and on the number
of steps from the earliest pair of transitions in d of the form s1 ⇀ s2 ↽ s3 to s′.
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If there is no such pair we are done. If s1 = s3, then s1 ⇀ s2 = (s2 ↽ s3).
Indeed, if s1 ⇀ s2 adds an item to the history of some process then s2 ↽ s3 should
remove the same item. Otherwise, s1 ⇀ s2 is an application of rule Sched and s2 ↽
s3 should undo the scheduling of the same message. �en, we can remove these
two transitions and the claim follows by induction since the resulting derivation is
shorter and (s1 ⇀ s2 ↽ s3) ≈ εs1 . Otherwise, we apply Corollary 3.17 commuting
s2 ↽ s3 with all forward transitions preceding it in d. If one such transition is its
inverse, then we reason as above. Otherwise, we obtain a new derivation d′ ≈ d
which has the same length of d, and where the distance between the earliest pair of
transitions in d′ of the form s′1 ⇀ s′2 ↽ s′3 and s′ has decreased. �e claim follows
then by the inductive hypothesis.

An interesting consequence of the rearranging lemma is the following result,
which states that every system obtained by both forward and backward steps from
an initial system, is also reachable by a forward-only derivation:

Corollary 3.19. Let s be an initial system. For each derivation s 
∗ s′, there exists
a forward derivation of the form s ⇀∗ s′.

�e following auxiliary result is also needed for proving causal consistency.

Lemma 3.20 (Shortening lemma). Let d1 and d2 be coinitial and co�nal derivations,
such that d2 is a forward derivation while d1 contains at least one backward transition.
�en, there exists a forward derivation d′1 of length strictly less than that of d1 such
that d′1 ≈ d1.

Proof. We prove this lemma by induction on the length of d1. By the rearranging
lemma (Lemma 3.18) there exist a backward derivation d and a forward derivation
d′ such that d1 ≈ d; d′. Furthermore, d; d′ is not longer than d1. Let s1 ↽p1,r1,k1

s2 ⇀p2,r2,k2 s3 be the only two successive transitions in d; d′ with opposite direc-
tion. We will show below that there is in d′ a transition t which is the inverse of
s1 ↽p1,r1,k1 s2. Moreover, we can swap t with all the transitions between t and
s1 ↽p1,r1,k1 s2, in order to obtain a derivation in which s1 ↽p1,r1,k1 s2 and t are
adjacent.7 To do so we use the switching lemma (Lemma 3.16), since for all transi-
tions t′ in between, we have that t′ and t are concurrent (this is proved below too).
When s1 ↽p1,r1,k1 s2 and t are adjacent we can remove both of them using ≈. �e

7More precisely, the transition is not t, but a transition that applies the same rule to the same
process and producing the same history item, but possibly applied to a di�erent system.
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resulting derivation is strictly shorter, thus the claim follows by the inductive hy-
pothesis.

Let us now prove the results used above. �anks to the loop lemma (Lemma
3.11) we have the derivations above i� we have two forward derivations which are
coinitial (with s2 as initial state) and co�nal: d; d2 and d′. We �rst consider the case
where r1 6= Sched . Since the �rst transition of d; d2, (s1 ↽p1,r1,k1 s2), adds item
k1 to the history of p1 and such an item is never removed (since the derivation is
forward), then the same item k1 has to be added also by a transition in d′, otherwise
the two derivations cannot be co�nal. �e earliest transition in d′ adding item k1 is
exactly t.

Let us now justify that for each transition t′ before t in d′ we have that t′ and t
are concurrent. First, t′ is a forward transition and it should be applied to a process
which is di�erent from p1, otherwise the item k1 would be added by transition t in
the wrong position in the history of p1. We consider the following cases:

• If t′ applies rule Spawn to create a process p, then t should not apply to process
p since the process p1 to which t applies already existed before t′. �erefore,
t′ and t are concurrent.

• If t′ applies rule Send to send a message to some process p, then t cannot
deliver the same message since we know that t is not a Sched since it adds
item k1 to the history. �us t′ and t are concurrent.

• If t′ applies some other rule, then t′ and t are clearly concurrent.

Now, we consider the case r1 = Sched with k1 = sched({v, λ}), so that (s1 ↽p1,Sched ,k1
s2)

adds a message {v, λ} to the queue of p1. We now distinguish two cases according
to whether there is in d; d2 an application of rule Receive to p1 or not:

• If the forward derivation d; d2 contains no application of rule Receive to p1

then, in the �nal state, the queue of process p1 contains the message. Hence,
d′ needs to contain a Sched for the same message. �e earliest such Sched
transition in d′ is exactly t.
Let us now justify that for each transition t′ before t in d′ we have that t′ and t
are concurrent. Consider the case where t′ applies rule Sched to deliver a dif-
ferent message to the same process p1. Since no Receive would be performed
on p1 then the queue will stay di�erent, and the two derivations could not
be co�nal, hence this case can never happen. In all the other cases the two
transitions are concurrent.
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• If the forward derivation d; d2 contains at least an application of rule Receive
to p1, let us consider the �rst such application. �is creates a history item k2.
In order for the two derivations to be co�nal, the same history item needs to be
created in d′. �e queue stored in k2 has a su�x {v, λ} :q, hence also in d′ the
�rst Sched delivering a message to p1 should deliver message {v, λ}. Since
there are no other Sched nor Receive targeting p1 then the Sched delivering
message {v, λ} to p1 is concurrent to all previous transitions as desired.

Finally, we can state and prove the causal consistency of our reversible seman-
tics. Intuitively speaking, it states that two di�erent derivations starting from the
same initial state can reach the same �nal state if and only if they are causal consis-
tent. On the one hand, it means that derivations which are causal consistent lead to
the same �nal state, hence it is not possible to distinguish such derivations looking
at their �nal states (as a consequence, also their possible evolutions coincide). In
particular, swapping two concurrent transitions or doing and undoing a given tran-
sition has no impact on the �nal state. On the other hand, derivations di�ering in
any other way are distinguishable by looking at their �nal state, e.g., the �nal state
keeps track of any past nondeterministic choice. In other terms, causal consistency
states that the amount of history information stored is precisely what is needed to
distinguish computations which are not causal consistent, and no more.

�eorem 3.21 (Causal consistency). Let d1 and d2 be coinitial derivations. �en,
d1 ≈ d2 i� d1 and d2 are co�nal.

Proof. By de�nition of ≈, if d1 ≈ d2, then they are coinitial and co�nal, so this
direction of the theorem is veri�ed.

Now, we have to prove that, if d1 and d2 are coinitial and co�nal, then d1 ≈
d2. By the rearranging lemma (Lemma 3.18), we know that the two derivations
can be wri�en as the composition of a backward derivation, followed by a forward
derivation, so we assume that d1 and d2 have this form. �e claim is proved by
lexicographic induction on the sum of the lengths of d1 and d2, and on the distance
between the end of d1 and the earliest pair of transitions t1 in d1 and t2 in d2 which
are not equal. If all such transitions are equal, we are done. Otherwise, we have to
consider three cases depending on the directions of the two transitions:

1. Consider that t1 is a forward transition and t2 is a backward one. Let us
assume that d1 = d; t1; d′ and d2 = d; t2; d′′. Here, we know that t1; d′ is a
forward derivation, so we can apply the shortening lemma (Lemma 3.20) to
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the derivations t1; d′ and t2; d′′ (since d1 and d2 are coinitial and co�nal, so
are t1; d′ and t2; d′′), and we have that t2; d′′ has a strictly shorter forward
derivation which is causally equivalent, and so the same is true for d2. �e
claim then follows by induction.

2. Consider now that both t1 and t2 are forward transitions. By assumption,
the two transitions must be di�erent. Let us assume �rst that they are not
concurrent. �erefore, they should be applied to the same process and either
both rules are Sched , or one is Sched and the other one is Receive . In the �rst
case, we get a contradiction to the fact that d1 and d2 are co�nal since both
derivations are forward and, thus, we would either have a di�erent queue in
the process or di�erent items rec(. . .) in the history. In the second case, where
we have one rule Sched and one Receive , the situation is similar. �erefore,
we can assume that t1 and t2 are concurrent transitions.

We have two cases, according to whether t1 is an application of Sched or
not. If it is not, let t′1 be the transition in d2 creating the same history item
as t1. �en, we have to prove that t′1 can be switched back with all previous
forward transitions. �is holds since no previous forward transition can add
any history item to the same process, since otherwise the two derivations
could not be co�nal. Hence the previous forward transitions are applied to
di�erent processes and thus we never have a con�ict since the only possible
sources of con�ict would be rules Spawn and Sched , but this could not happen
since, in this case, t1 could not happen neither.

If t1 is an application of Sched then we can �nd the transition t′1 in d2 schedul-
ing the same message (otherwise the two derivations could not be co�nal), and
show that it can be switched with all the previous transitions. If the previous
transition targets a di�erent process then the only possible con�icts are with
rules Send or Spawn , but in this case t1 could not have been performed. If the
previous transition targets the same process then the only possible con�icts
are with rules Sched or Receive , but in this case the derivations could not be
co�nal.

�en, in all the cases, we can repeatedly apply the switching lemma (Lemma 3.16)
to have a derivation causally equivalent to d2 where t2 and t′1 are consecu-
tive. �e same reasoning can be applied in d1, so we end up with consecutive
transitions t1 and t′2. Finally, we can apply the switching lemma once more
to t1; t′2 so that the �rst pair of di�erent transitions is now closer to the end
of the derivation. Hence the claim follows by the inductive hypothesis.
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3. Finally, consider that both t1 and t2 are backward transitions. By de�nition,
we have that t1 and t2 are concurrent. Let us consider �rst that the rules ap-
plied in the transitions are di�erent from Sched . �en, we have that t1 and
t2 cannot remove the same history item. Let k1 be the history item removed
by t1. Since d1 and d2 are co�nal, either there is another transition in d1 that
puts k1 back in the history or there is a transition t′1 in d2 removing the same
history item k1. In the �rst case, t1 should be concurrent to all the backward
transitions following it but the ones that remove history items from the his-
tory of the same process. All the transitions of this kind have to be undone
by corresponding forward transitions (since they are not possible in d2). Con-
sider the last such transition: we can use the switching lemma (Lemma 3.16) to
make it the last backward transition. Similarly, the forward transition undo-
ing it should be concurrent to all the previous forward transitions (the reason
is the same as in the previous case). �us, we can use the switching lemma
again to make it the �rst forward transition. Finally, we can apply the simpli-
�cation rule t; t ≈ εinit(t) to remove the two transitions, thus shortening the
derivation. In the second case (there is a transition t′1 in d2 removing the same
history item k1), one can argue as in case (2) above. �e claim then follows
by the inductive hypothesis.
�e case when at least one of the rules applied in the transitions is Sched
follows by a similar reasoning by considering the respective queues instead
of the histories.

We now show that, as a corollary of previous results, a transition can be un-
done if and only if each of its consequences, if any, has been undone. Formally, a
consequence of a forward transition t is a forward transition t′ that can only happen
a�er t has been performed (assuming t has not been undone in between). Hence t′
cannot be switched with t. E.g., consuming a message from the queue of a process
(using rule Receive) is a consequence of delivering this message (using rule Sched ).
Similarly, every action performed by a process is a consequence of spawning this
process.

Corollary 3.22. Let d = (s1 
 · · · 
 sn ⇀ sn+1 
 · · · 
 sm) be a derivation,
with t = (sn ⇀p,r,k sn+1) a forward transition. �en, transition t can be applied to
sm, i.e., sm ↽p,r,k sm+1 i� each consequence of t in d, if any, has been undone in d.

Proof. If each consequence t′ of t in d has been undone in d then we can �nd d′ ≈ d
with no consequence of t, by moving each consequence t′ and its undoing t′ close
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to each other (they can be switched using the switching lemma (Lemma 3.16) with
all the transitions in between, but for further consequences which can be removed
beforehand) and then applying t′; t′ ≈ εinit(t′). �en we can �nd d′′ ≈ d′ where t is
the last transition, since t is concurrent to all subsequent transitions, hence we can
apply the switching lemma (Lemma 3.16) again. �e thesis then follows by applying
the loop lemma (Lemma 3.11).

Assume now that transition t can be applied to sm. �anks to the rearranging
lemma (Lemma 3.18) there is a derivation db; df ≈ d; t where db is a backward
derivation and df is a forward derivation. In order to transform d; t into db; df we
need to move t backward using the switching lemma (Lemma 3.16) until we �nd t.
However, neither t nor t can be switched with the consequences of t, hence the only
possibility is that all the consequences t′ of t can be removed using t′; t′ ≈ εinit(t′)
as above.

3.5 Rollback Semantics

In this section, we introduce a (nondeterministic) “undo” operation which has some
similarities to, e.g., the rollback operator of [81, 51]. Here, processes in “rollback”
mode are annotated using b cΨ, where Ψ is the set of requested rollbacks. A typical
rollback refers to a checkpoint that the backward computation of the process has to
go through before resuming its forward computation. To be precise, we distinguish
the following types of rollbacks:

• #t
ch, where “ch” stands for “checkpoint”: a rollback to undo the actions of a

process until a checkpoint with identi�er t is reached;

• #sp, where “sp” stands for “spawn”: a rollback to undo all the actions of a
process, �nally deleting it from the system;

• #λ
sch, where “sch” stands for “sched”: a rollback to undo the actions of a pro-

cess until the delivery of a message {v, λ} is undone.

In the following, in order to simplify the reduction rules, we consider that our se-
mantics satis�es the following structural equivalence:

(SC ) Γ; b〈p, h, (θ, e), q〉c∅ | Π ≡ Γ; 〈p, h, (θ, e), q〉 | Π

Note that only the �rst of the rollback types above targets a checkpoint. �is kind
of checkpoint is introduced nondeterministically by the rule below, where we de-
note by ↽↽ the new reduction relation that models backward moves of the rollback
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(Seq) Γ; b〈p, τ(θ, e) :h, (θ′, e′), q〉cΨ | Π ↽↽ Γ; b〈p, h, (θ, e), q〉cΨ | Π

(Check) Γ; b〈p, check(θ, e, t) :h, (θ′, e′), q〉cΨ | Π ↽↽ Γ; b〈p, h, (θ, e), q〉cΨ\{#t
ch
} | Π

(Send1 ) Γ ∪ {(p′, {v, λ})}; b〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉cΨ | Π ↽↽ Γ; b〈p, h, (θ, e), q〉cΨ | Π

(Send2 )

Γ; b〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉cΨ | b〈p′, h ′, (θ′′, e′′), q′〉cΨ′ | Π
↽↽ Γ; b〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉cΨ | b〈p′, h ′, (θ′′, e′′), q′〉cΨ′∪{#λ

sch
} | Π

if (p′, {v, λ}) does not occur in Γ and #λ
sch 6∈ Ψ′

(Receive) Γ; b〈p, rec(θ, e, {v, λ}, q) :h, (θ′, e′), q\\{v, λ}〉cΨ | Π ↽↽ Γ; b〈p, h, (θ, e), q〉cΨ | Π

(Spawn1 )
Γ; b〈p, spawn(θ, e, p′′) :h, (θ′, e′), q〉cΨ | b〈[ ], p′′, (θ′′, e′′), [ ]〉cΨ′ | Π

↽↽ Γ; b〈p, h, (θ, e), q〉cΨ | Π

(Spawn2 )
Γ; b〈p, spawn(θ, e, p′′) :h, (θ, e), q〉cΨ | b〈p′′, h ′′, (θ′′, e′′), q′′〉cΨ′ | Π
↽↽ Γ; b〈p, spawn(θ, e, p′′) :h, (θ, e), q〉cΨ | b〈p′′, h ′′, (θ′′, e′′), q′′〉cΨ′∪{#sp} | Π

if h ′′ 6= [ ] ∨ q′′ 6= [ ] and #sp 6∈ Ψ′

(Self ) Γ; b〈p, self(θ, e) :h, (θ′, e′), q〉cΨ | Π ↽↽ Γ; b〈p, h, (θ, e), q〉cΨ | Π

(Sched)

Γ; b〈p, h, (θ, e), {v, λ} :q〉cΨ | Π ↽↽ Γ ∪ (p, {v, λ}); b〈p, h, (θ, e), q〉cΨ\{#λ
sch
} | Π

if the topmost rec(. . .) item in h (if any) has the
form rec(θ′, e′, {v′, λ′}, q′) with q′\\{v′, λ′} 6= {v, λ} :q

Figure 3.15: Rollback semantics: backward reduction rules

semantics:

(Undo) Γ; b〈p, h, (θ, e), q〉cΨ | Π ↽↽ Γ; b〈p, h, (θ, e), q〉cΨ∪{#t
ch} | Π

if check(θ′, e′, t) occurs in h, for some θ′ and e′

Only a�er this rule is applied steps can be undone, since default computation in the
rollback semantics is forward.

�e backward rules of the rollback semantics are shown in Figure 3.15. Here,
we assume that Ψ 6= ∅ (but Ψ′ might be empty).

Note that, while rollbacks to checkpoints are generated nondeterministically by
ruleUndo, the two other kinds of checkpoints are generated by the backward reduc-
tion rules in order to ensure causal consistency (in the sense of Corollary 3.22). �is
is clari�ed by the discussion below, where we brie�y explain the main di�erences
w.r.t. the uncontrolled backward semantics:

• As in the uncontrolled semantics of Figure 3.11, the sending of a message
can be undone when the message is still in the global mailbox (rule Send1 ).
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Otherwise, one may need to �rst apply rule Send2 in order to “propagate” the
rollback mode to the receiver of the message, so that rules Sched and Send1
can be eventually applied.

• As for undoing the spawning of a process p′′, rule Spawn1 steadily applies
when both the history and the queue of the spawned process p′′ are empty,
thus deleting both the history item in p and the process p′′. Otherwise, we ap-
ply rule Spawn2 to propagate the rollback mode to process p′′ so that, even-
tually, rule Spawn1 can be applied.

• Finally, observe that rule Sched requires the same side condition as in the
uncontrolled semantics. �is is needed in order to avoid the commutation of
rules Receive and Sched .

�e rollback semantics is modeled by the relation#, which is de�ned as the union of
the forward reversible relation⇀ (Figure 3.10) and the backward relation↽↽ de�ned
in Figure 3.15. Note that, in contrast to the (uncontrolled) reversible semantics of
Section 3.4, the rollback semantics given by the relation# has less nondeterministic
choices: all computations run forward except when a rollback action demands some
backward steps to recover a previous state of a process (which can be propagated
to other processes in order to undo the spawning of a process or the sending of a
message).

Note, however, that besides the introduction of rollbacks, there is still some non-
determinism in the backward rules of the rollback semantics: on the one hand, the
selection of the process when there are several ongoing rollbacks is nondeterminis-
tic; also, in many cases, both rule Sched and another rule are applicable to the same
process. �e semantics could be made deterministic by using a particular strategy to
select the processes (e.g., round robin) and applying rule Sched whenever possible
(i.e., give to Sched a higher priority than to the remaining backward rules).

Example 3.23. Consider again the program shown in Figure 3.12. Let us assume
that function main/0 is now de�ned as follows:

main/0 = fun ()→ let S = spawn(server/0, [ ])
in let = spawn(client/1, [S])
in let X = check(t)
in apply client/1 (S)

so that a checkpoint has been introduced a�er spawning the two processes: the
server (s) and one of the clients (c2). �en, by repeating the same forward derivation



94 3.5. Rollback Semantics

shown in Figure 3.13 (with the additional step to evaluate the checkpoint), we get
the following �nal system:

{ }; 〈c1, [rec( , ,m4, [m4]), send( , , s,m3), check( , , t), spawn( , , c2),
spawn( , , s)], ( , ok), [ ]〉

| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2),
rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉

| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

Figure 3.16 shows the steps performed by the rollback semantics in order to undo
the steps of process c1 until the checkpoint is reached. In Figure 3.16 we follow the
same conventions as in Examples 3.7 and 3.9. Observe that we could also use the
relation “#” here in order to also perform some forward steps on process c2, as it
would happen in practice.

We state below the soundness of the rollback semantics. In order to do it, we
let rolldel(s) denote the system that results from s by removing ongoing rollbacks;
formally, rolldel(Γ; Π) = Γ; rolldel′(Π), with

rolldel′(〈p, h, (θ, e), q〉) = 〈p, h, (θ, e), q〉
rolldel′(b〈p, h, (θ, e), q〉cΨ) = 〈p, h, (θ, e), q〉
rolldel′(〈p, h, (θ, e), q〉 | Π) = 〈p, h, (θ, e), q〉 | rolldel′(Π)
rolldel′(b〈p, h, (θ, e), q〉cΨ | Π) = 〈p, h, (θ, e), q〉 | rolldel′(Π)

where we assume that Π is not empty. We also extend the de�nition of initial and
reachable systems to the rollback semantics.

De�nition 3.24 (Reachable systems under the rollback semantics).
A system is initial under the rollback semantics if it is composed by a single pro-
cess with an empty set Ψ of active rollbacks; furthermore, the history, the queue
and the global mailbox are empty too. A system s is reachable under the rollback
semantics if there exist an initial system s0 and a derivation s0 #∗ s using the rules
corresponding to a given program.

�eorem 3.25 (Soundness). Let s be a system reachable under the rollback semantics.
If s#∗ s′, then rolldel(s)
∗ rolldel(s′).

Proof. For forward transitions the proof is trivial since the forward rules are the
same in both semantics, and they apply only to processes which are not under roll-
back. For backward transitions the proof is by case analysis on the applied rule,
noting that the e�ect of structural equivalence is removed by rolldel:
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{ }; b〈c1, [rec( , ,m4, [m4]), send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , ok), [ ]〉c{#t
ch
}

| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

↽↽Receive { }; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , C[receive ack→ ok]), [m4]〉c{#t
ch
}

| 〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

↽↽Send2 { }; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],
( , C[receive ack→ ok]), [m4]〉c{#t

ch
}

| b〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],

( , C[receive {P,M} → . . .]), [ ]〉c{#3
sch
}

| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉
↽↽Send2 { }; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , C[receive ack→ ok]), [m4]〉c{#t
ch
,#4

sch
}

| b〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],
( , C[receive {P,M} → . . .]), [ ]〉c{#3

sch
}

| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉
↽↽Sched {(c1,m4)}; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , C[receive ack→ ok]), [ ]〉c{#t
ch
}

| b〈s, [send( , , c1,m4), rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])],

( , C[receive {P,M} → . . .]), [ ]〉c{#3
sch
}

| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉
↽↽Send1 { }; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , C[receive ack→ ok]), [ ]〉c{#t
ch
}

| b〈s, [rec( , ,m3, [m3]), send( , , c2,m2), rec( , ,m1, [m1])], ( , C[c1 ! ack]), [ ]〉c{#3
sch
}

| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉
↽↽Receive { }; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , C[receive ack→ ok]), [ ]〉c{#t
ch
}

| b〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [m3]〉c{#3
sch
}

| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉
↽↽Sched {(s,m3)}; b〈c1, [send( , , s,m3), check( , , t), spawn( , , c2), spawn( , , s)],

( , C[receive ack→ ok]), [ ]〉c{#t
ch
}

| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

↽↽Send1 { }; b〈c1, [check( , , t), spawn( , , c2), spawn( , , s)], ( , C[s ! {c1, req}]), [ ]〉c{#t
ch
}

| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

↽↽Check { }; 〈c1, [spawn( , , c2), spawn( , , s)], ( , C[check(t)]), [ ]〉
| 〈s, [send( , , c2,m2), rec( , ,m1, [m1])], ( , C[receive {P,M} → . . .]), [ ]〉
| 〈c2, [rec( , ,m2, [m2]), send( , , s,m1)], ( , ok), [ ]〉

Figure 3.16: A derivation under the backward reduction rules of Figure 3.15, with
m1 = {{c2, req}, 1}, m2 = {ack, 2}, m3 = {{c1, req}, 3}, and m4 = {ack, 4}.
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• Rule Undo: the e�ect is removed by rolldel, hence an application of this rule
corresponds to a zero-step derivation under the uncontrolled semantics;

• RulesSeq ,Check , Send1 ,Receive , Spawn1 , Self andSched : they are matched,
respectively, by rules Seq , Check , Send , Receive , Spawn , Self and Sched of
the uncontrolled semantics;

• Rules Send2 and Spawn2 : the e�ect is removed by rolldel, hence an appli-
cation of any of these rules corresponds to a zero-step derivation under the
uncontrolled semantics.

We can now show the completeness of the rollback semantics provided that the
involved process is in rollback mode:

Lemma 3.26 (Completeness in rollback mode). Let s be a reachable system. If s ↽ s′

then take any system sr such that rolldel(sr) = s and where the process that performed
the transition s ↽ s′ is in rollback mode for a non-empty set of rollbacks. �ere exists
s′r such that sr ↽↽ s′r and rolldel(s′r) = s′.

Proof. �e proof is by case analysis on the applied rule. Each step is matched by the
homonymous rule, but for Send and Spawn which are matched by rules Send1 and
Spawn1 .

�e following result illustrates the usefulness of the rollback semantics:

Lemma 3.27. Let us consider a forward derivation d of the form:

Γ; 〈p, h, (θ, let X = check(t) in e), q〉 |Π
⇀ Γ; 〈p, check(θ, let X = check(t) in e, t) :h, (θ, let X = t in e), q〉 |Π
⇀∗ Γ′; 〈p, h ′, (θ′, e′), q′〉 |Π′

�en, there is a backward derivation d′ under the rollback semantics restoring process
p:

Γ′; b〈p, h ′, (θ′, e′), q′〉c{#t
ch} |Π

′

↽↽∗ Γ′′; 〈p, h, (θ, let X = check(t) in e), q〉 |Π′′

Proof. Trivially (by �eorem 3.25) the forward derivation d can also be performed
under the uncontrolled reversible semantics. Now, by applying the loop lemma
(Lemma 3.11) to each step of d, we have a backward derivation d of the form:

Γ′; 〈p, h ′, (θ′, e′), q′〉 |Π′
↽∗ Γ; 〈p, h, (θ, let X = check(t) in e), q〉 |Π
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Consider the relation ≤ on transitions of d de�ned as the re�exive and transitive
closure of the following clauses:

• t1 ≤ t2 if both t1 and t2 undo actions in the same process p′, and the transition
undone by t2 is a direct consequence of the one undone by t1;

• t1 ≤ t2 if t1 undoes a spawn of process p2 and t2 undoes the �rst transition
of p2;

• t1 ≤ t2 if t1 undoes the send of a message λ and t2 undoes the scheduling of
the same message.

Let us show that≤ is a partial order. We only need to show that there are no cycles,
but this follows from the fact that the total order given by d is compatible with ≤.

We also notice that any two transitions which are not related by ≤ can be
swapped using the switching lemma (Lemma 3.16).

�en, there exists a derivation dr; du such that dr contains all transitions t such
that tl ≤ t where tl is the last transition in d, and only them. Since du contains no
transition on p we have that dr is of the form:

Γ′; 〈p, h ′, (θ′, e′), q′〉 |Π′
↽∗ Γ′′; 〈p, h, (θ, let X = check(t) in e), q〉 |Π′′

Using again the switching lemma (Lemma 3.16) one can transform dr into a deriva-
tion d′r obtained using the following execution strategy, where initially the active
process is p, the termination condition is “the checkpoint action t has been undone”,
and the stack is empty:

• transitions of the active process are undone if possible, until the termination
condition holds; if there is an occurrence of the active process in the stack and
the termination condition for this process is matched because of the current
transition undo, remove such occurrence from the stack (this remove does not
follow the usual FIFO strategy for stacks);

• if the termination condition holds, then pop a new active process from the
stack, if there are no processes on the stack then terminate;

• if no transition is possible for the active process then one of the two following
subconditions should hold:
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1. the active process needs to undo a spawn of a process which is not in the
initial state: push the active process on the stack, and set the spawned
process as new active process with termination condition “all actions
have been undone”;

2. the active process needs to undo a send of a message λ which is not
in the global mailbox: push the active process on the stack, and set the
process to which message λ has been scheduled as new active process
with termination condition “the scheduling of the message λ has been
undone”;

�e switching lemma can be applied since this execution strategy is compatible with
≤. Now we show that the same execution strategy can be performed using the roll-
back semantics. We only need to show that the active process is in rollback mode,
then the thesis will follow from the completeness in rollback mode (Lemma 3.26).
�is can be shown by inspection of the execution strategy, considering the follow-
ing invariant: the active process and all the processes on the stack are in rollback
mode, and they have one checkpoint for each occurrence in the stack, plus one
for the occurrence as active process. �e invariant holds at the beginning since p
has one checkpoint corresponding to its termination condition. When the termina-
tion condition holds, a checkpoint is removed by rule Check , Spawn1 , or Sched .
When a new active process is selected, a new checkpoint is added by rule Spawn2
or Send2 .

One can notice that in the lemma above only the process containing the check-
point is restored. We can restore the whole system to the original con�guration
only if we restrict the forward derivation to be a causal derivation, following the
terminology in [36].

De�nition 3.28. A forward derivation d is causal i� all the transitions are conse-
quences of the �rst one.

Hence, we have the following corollary:

Corollary 3.29. Let us consider a causal derivation d of the form:

Γ; 〈p, h, (θ, let X = check(t) in e), q〉 |Π
⇀ Γ; 〈p, check(θ, let X = check(t) in e, t) :h, (θ, let X = t in e), q〉 |Π
⇀∗ Γ′; 〈p, h ′, (θ′, e′), q′〉 |Π′
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�en, there is a backward derivation d′ under the rollback semantics restoring the sys-
tem to the original con�guration:

Γ′; b〈p, h ′, (θ′, e′), q′〉c{#t
ch} |Π

′

↽↽∗ Γ; 〈p, h, (θ, let X = check(t) in e), q〉 |Π

Proof. �e proof follows the same strategy as the one of Lemma 3.27, noticing that
du is empty hence Γ = Γ′′ and Π = Π′′.

While a derivation restoring the whole system exists, not all derivations do so.
More in general, given a set of rollbacks, it is not the case that there is a unique
system that is obtained by executing backward transitions as far as possible (without
executing any Undo). Indeed, the only nondeterminism is due to the fact that Sched
can commute with other transitions, e.g., withCheck , which ends the rollback. If we
establish a policy for Sched actions, and we use the dual policy for undoing them,
then the result is unique. A sample policy could be that Sched steps are performed
as late as possible, and dually undone as soon as possible. In such a se�ing we have
the following result:

Lemma 3.30. Let s be a reachable system. If s ↽↽ s1 and s ↽↽ s2, both transitions
use the same policy for Sched , and the rules are di�erent from Undo, then there exists
a system s′ such that s1 ↽↽

∗ s′ and s2 ↽↽
∗ s′.

Proof. Let us consider the case where both transitions are applied to the same pro-
cess p. In this case, only one backward rule is applicable and the claim follows
trivially. Note that the only case where more than one backward rule would be
applicable is when one of the rules is Sched and the other one is a di�erent rule,
but this case is excluded by the fact that we consider a �xed policy for Sched as
mentioned above.

Consider now the case where each transition is applied to a di�erent process, say
p1 and p2, so that we have s ↽↽ s1 and s ↽↽ s2. By the soundness of the backward
reduction rules of the rollback semantics (�eorem 3.25), we have rolldel(s) ↽∗

rolldel(s1) and rolldel(s) ↽∗ rolldel(s2). Note that each of the derivations above
has either length 1 or 0. We just consider the case where they have both length
1, since the others are simpler. By the square lemma (Lemma 3.13), there exists a
system s′′ such that rolldel(s1) ↽ s′′ and rolldel(s2) ↽ s′′. Now, we show that
processes p2 and p1 are still in rollback mode in s1 and s2, respectively. Here, the
only case where the application of a backward rule to a process removes a rollback
from a di�erent process is Spawn . Consider, e.g., that the rule applied to process p1

is Spawn and that the removed process is p2. In this case, however, no backward rule
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could be applied to process p2, so this case is not possible. �erefore, by applying
the completeness of the rollback semantics, we have s1 ↽↽ s′1 and s2 ↽↽ s′2 with
rolldel(s′1) = rolldel(s′2) = s′′. �e thesis follows by noticing that the rollbacks
in s′1 and s′2 coincide (in both the cases they are the rollbacks in s minus the ones
removed by the performed transitions, which are the same in both the cases) hence
s′1 = s′2 = s′.

�e following result is an easy corollary of the previous lemma:

Corollary 3.31. Let s be a reachable system. If s ↽↽∗ s1 6↽↽ and s ↽↽∗ s2 6↽↽, both
derivations use the same policy for Sched , and never use rule Undo, then s1 = s2.

Proof. Analogously to the proof of Corollary 3.14, using standard results for con-
�uence of abstract relations [9], we have that Lemma 3.30 implies that there exists
a system s′ such that s1 ↽↽

∗ s′ and s2 ↽↽
∗ s′. Moreover, since both s1 and s2 are

irreducible, we have s1 = s2.

3.6 Proof-of-concept Implementation of the Reversible
Semantics

We have developed a proof-of-concept implementation of the uncontrolled reversible
semantics for Erlang that we presented in Section 3.3. �is implementation is con-
veniently bundled together with a graphical user interface (we refer to this as “the
application”) in order to facilitate the interaction of users with the reversible seman-
tics. However, the application has been developed in a modular way, so that it is
possible to include the implementation of the reversible semantics in other projects
(e.g., it has been included in the reversible debugger CauDEr [85, 84]).

Let us recall that our semantics is de�ned for a language that is equivalent to
Core Erlang [25], a much simpler language than Erlang. Not surprisingly, the imple-
mentation of our reversible semantics is de�ned for Core Erlang as well. Prior to its
compilation, Erlang programs are translated to Core Erlang by the Erlang/OTP sys-
tem, so that the resulting code is simpli�ed. For instance, pa�ern matching can occur
almost anywhere in an Erlang program, whereas in Core Erlang, pa�ern matching
can only occur in case statements. Nevertheless, directly writing Core Erlang pro-
grams would not be comfortable for the user, since Core Erlang is only used as an
intermediate language. Hence, our implementation considers the Core Erlang code
translated from the Erlang program provided by the user.

�e application works as follows: when it is started, the �rst step is to select an
Erlang source �le. �e selected source �le is then translated into Core Erlang, and
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Figure 3.17: Screenshot of the application

the resulting code is shown in the code window. �en, the user can choose any of
the functions from the module and write the arguments that she wants to evaluate
the function with. An initial system state, with an empty global mailbox and a single
process performing the speci�ed function application, appears on the state window
when the user presses the start bu�on, as shown in Figure 3.17. Now, the user is
able to control the system state by selecting the rules from the reversible semantics
that she wants to �re.

We have de�ned two di�erent modes for controlling the reversible semantics.
�e �rst mode is a manual mode, where the user selects the rule to be �red for
a particular process or message. Here, the user is in charge of “controlling” the
reversible semantics, although this approach can rapidly become exhausting. �e
second mode is the automatic mode. Here, the user speci�es a number of steps and
chooses a direction (forward or backward), and the rules to be applied are selected at
random—for the chosen direction—until the speci�ed number of steps is reached or
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no more rules can be applied. Alternatively, the user can move the state forward up
to a normalized system. To normalize a system, one must ignore the Sched rule and
apply only the other rules. A normalized system is reached when no rule other than
Sched can be �red. Hence, in a normalized system, either all processes are blocked
(waiting for some message to arrive) or the system state is �nal. Normalizing a
system allows the user to perform all the reductions that do not depend on the
network. Reductions depending on the network can then be performed one by one
to understand their impact on the derivation.

�e release version (v1.0) of the application is fully wri�en in Erlang, and it is
publicly available from https://github.com/mistupv/rev-erlang under the
MIT license. Hence, the only requirement to build the application is to have Er-
lang/OTP installed. Besides, we have included some documentation and a few ex-
amples to easily test the application.

3.7 Related Work

First, regarding the semantics of Erlang presented in Section 3.3, we have some
similarities with both [19] and [130]. In contrast to [19], which presents a mono-
lithic semantics, our relation is split into expression-level rules and system-level
rules. �is division eases the presentation of a reversible semantics, since it only af-
fects the system-level rules. As for [130], we follow the idea of introducing a global
mailbox (there called “ether”) so that every message passing communication can
be decomposed into two steps: sending and scheduling. �eir semantics considers
other features of Erlang (such as links or monitors) but does not present the seman-
tics of expressions, as we do. Another di�erence lies in the fact that all side e�ects
are asynchronous in [130] (e.g., the spawning of a process is asynchronous), a de-
sign decision that allows for a simpler semantics. In our case, spawning a process
is dealt with in a synchronous manner, which is closer to the actual behavior of
Erlang. Finally, as mentioned in Section 3.3, we deliberately ignore the restriction
that guarantees the order of messages for any pair of given processes. �is may
increase the number of possible interleavings, but we consider that it models be�er
the behavior of current Erlang implementations.

Regarding reversibility, the approach presented in this paper is in the line of
work on causal-consistent reversibility [35, 117] (see [83] for a survey). In particu-
lar, our work is closer to [35], since we also consider adding a memory (a history in
our terminology) in order to make a computation reversible. Moreover, our proof of
causal consistency mostly follows the proof scheme in [35]. In contrast, we consider
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a di�erent concurrent language with asynchronous communication, while commu-
nication in [35] is synchronous. On the other hand, [117] does not introduce a mem-
ory but keeps the old actions marked with a “key”. As pointed out in [117], process
equivalence is easier to check than in [35] (where one would need to abstract away
from the memories). Like [35], also [117] considers synchronous communication.
Formalizing the Erlang semantics using a labeled transition relation as in [35, 117]
(rather than a reduction semantics, as we do in this paper), and then de�ning a
reversible extension would be an interesting and challenging approach for further
research.

Nevertheless, as mentioned in the Introduction, the closest to our work is the
debugging approach based on a rollback construct of [51, 52, 81, 82, 90], but it is
de�ned in the context of a di�erent language or formalism. Among the languages
considered in the works above, the closest to ours is µOz [90, 51]. A main di�erence
is that µOz is not distributed: messages move atomically from the sender to a chosen
queue, and from the queue to the receiver. Each of the two actions is performed by
a speci�c process, hence naturally part of its history. In our case, the scheduling
action is not directly performed by a process, and it is only potentially observed
when the target process performs the receive action (but not necessarily observed,
e.g., if the message does not match the pa�erns in the receive). �e de�nition of the
notions of con�ict and concurrency in this se�ing is, as a consequence, much trickier
than in µOz. �is di�culty carries over to the de�nition of the history information
that needs to be tracked, and to how this information is exploited in the reversible
semantics (actually, this was one of the main di�culties we encountered during our
work). Furthermore, in the case of µOz only the uncontrolled semantics has been
fully formalized [90], while the controlled semantics and the corresponding results
are only sketched [51].

Also, we share some similarities with the checkpointing technique for fault-
tolerant distributed computing of [43, 77], although the aim is di�erent (they aim at
de�ning a new language rather than extending an existing one).

On the other hand, [107] has very recently introduced a novel technique for
recovery in Erlang based on session types. Although the approach is di�erent, our
rollback semantics could also be used for rollback recovery. In contrast to [107], that
only considers recovery of processes as a whole, our approach could be helpful to
design a more �ne grained recovery strategy.

Finally, as mentioned in the Introduction, this paper extends and improves [109]
in di�erent ways. Firstly, [109] only presents a rollback semantics. Here, we have
introduced an uncontrolled reversible semantics and have proved a number of fun-
damental theoretical properties, including its causal consistency (no proofs of tech-
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nical results are provided in [109]). Secondly, the reversible semantics in [109] does
not consider messages’ unique identi�ers (λ), so that the problems mentioned in
Section 3.4 are not avoided. Moreover, the process’ histories also include items for
the applications of rule Sched, which makes the underlying notion of concurrency
unnecessarily restrictive. As for the rollback semantics of [109], besides the points
mentioned above, it only considered one rollback for each process, while sets of roll-
backs are accepted in this work. Consequently, we have now reduced the number
of rules required to undo the sending of a message or to undo the introduction of
a checkpoint, so that the rollback semantics is simpler. Furthermore, we have de-
signed and developed a proof-of-concept implementation in this paper that allowed
us to check the viability of the reversible semantics in practice.

3.8 Conclusion and Future Work

We have de�ned a reversible semantics for a �rst-order subset of Erlang that un-
does the actions of a process step by step in a sequential way. To the best of our
knowledge, this is the �rst a�empt to de�ne a reversible semantics for Erlang. In
this work, we have �rst introduced an uncontrolled, reversible semantics, and have
proved that it enjoys the usual properties (loop lemma, square lemma, and causal
consistency). �en, we have introduced a controlled version of the backward se-
mantics that can be used to model a rollback operator that undoes the actions of a
process up to a given checkpoint. A proof-of-concept implementation shows that
our approach is indeed viable in practice.

As future work, we consider the de�nition of mechanisms to control reversibility
so that history information is stored only when needed to perform a rollback. �is
could be essential to extend Erlang with a new construct for safe sessions, where all
the actions in a session can be undone if the session aborts. Such a construct could
have a great potential to automate the fault-tolerance capabilities of the language
Erlang.
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bugs, such as message order violations and livelocks, can still show up in pro-
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To the best of our knowledge, we present the �rst causal-consistent reversible
debugger for Erlang, which may help programmers to detect and �x various
kinds of bugs, including message order violations and livelocks.

4.1 Introduction

Over the last years, concurrent programming has become a common practice. How-
ever, it is also a di�cult and error-prone activity, since concurrency enables faulty
behaviors, such as deadlocks and livelocks, which are hard to avoid, detect and �x.
One of the reasons for these di�culties is that these behaviors may show up only
in some extremely rare circumstances (e.g., for some unusual scheduling).

A recent analysis [92] reveals that most of the approaches to so�ware valida-
tion and debugging in message-passing concurrent languages like Erlang are based
on some form of static analysis (e.g., Dialyzer [91], McErlang [48], Soter [39]) or
testing (e.g., �ickCheck [28], PropEr [113], Concuerror [61], CutEr [54]). How-
ever, these techniques are helpful only to �nd some speci�c categories of problems.
On the other hand, traditional debuggers (like the one included in the OTP Erlang
distribution) are sometimes not particularly useful when an unusual interleaving
brings up an error, since recompiling the program for debugging may give rise to a
completely di�erent execution behavior. In this se�ing, causal-consistent reversible
debugging [51] may be useful to complement the previous approaches. Here, one
can run a program in the debugger in a controlled manner. If something (potentially)
incorrect shows up, the user can stop the forward computation and go backwards—
in a causal-consistent way—to look for the origin of the problem. In this context, we
say that a backward step is causal consistent [35, 83] if an action cannot be undone
until all the actions that depend on it have already been undone. Causal-consistent
reversibility is particularly relevant for debugging because it allows us to undo the
actions of a given process in a stepwise manner while ignoring the actions of the
remaining processes, unless they are causally related. In a traditional reversible
debugger, one can only go backwards in exactly the reverse order of the forward
execution, which makes focusing on undoing the actions of a given process much
more di�cult, since they can be interleaved with completely unrelated actions from
other processes.

�e main contributions of this paper are the following. We have designed and
implemented CauDEr, a publicly available so�ware tool for causal-consistent re-
versible debugging of (a subset of) Erlang programs. �e tool builds upon some re-
cent developments on the causal-consistent reversible semantics of Erlang [109, 86],
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module ::= module Atom = fun1, . . . , funn
fun ::= fname = fun (X1, . . . , Xn)→ expr

fname ::= Atom/Integer
lit ::= Atom | Integer | Float | [ ]

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Figure 4.1: Language syntax rules

though we also introduce (in Section 4.3) a new rollback semantics which is espe-
cially tailored for reversible debugging. In this semantics, one can for instance run
a program backwards up to the sending of a particular message, the creation of a
given process, or the introduction of a binding for some variable. We present our
tool and illustrate its use for �nding bugs that would be di�cult to deal with using
the previously available tools (Section 4.4). We use a concurrent implementation of
the dining philosophers problem as a running example. CauDEr is publicly available
from https://github.com/mistupv/cauder.

4.2 �e Language

Erlang is a message passing concurrent and distributed functional programming
language. We de�ne our technique for (a subset of) Core Erlang [25], which is used
as an intermediate representation during the compilation of Erlang programs. In
this section, we describe the syntax and semantics of the subset of Core Erlang we
are interested in.

�e syntax of the language can be found in Figure 4.1. A module is a sequence
of function de�nitions, where each function name f/n (atom/arity) has an associ-
ated de�nition of the form fun (X1, . . . , Xn) → e. We consider that a program
consists of a single module for simplicity. �e body of a function is an expression,
which can include variables, literals, function names, lists, tuples, calls to built-in
functions—mainly arithmetic and relational operators—, function applications, case
expressions, let bindings, and receive expressions; furthermore, we also consider the

https://github.com/mistupv/cauder
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functions spawn, “!” (for sending a message), and self() that are usually considered
built-ins in the Erlang language. As is common practice, we assume thatX is a fresh
variable in a let binding of the form let X = expr1 in expr2.

In this language, we distinguish expressions, pa�erns, and values. In contrast to
expressions, pa�erns are built from variables, literals, lists, and tuples. Finally, values
are built from literals, lists, and tuples, i.e., they are ground (without variables) pat-
terns. Expressions are denoted by e, e′, e1, e2, . . ., pa�erns by pat, pat′, pat1, pat2,
. . . and values by v, v′, v1, v2, . . .Atoms are wri�en in roman le�ers, while variables
start with an uppercase le�er. A substitution θ is a mapping from variables to ex-
pressions, and Dom(θ) = {X ∈ Var | X 6= θ(X)} is its domain. Substitutions are
usually denoted by sets of bindings like, e.g., {X1 7→ v1, . . . , Xn 7→ vn}. Substitu-
tions are extended to morphisms from expressions to expressions in the natural way.
�e identity substitution is denoted by id. Composition of substitutions is denoted
by juxtaposition, i.e., θθ′ denotes a substitution θ′′ such that θ′′(X) = θ′(θ(X)) for
all X ∈ Var .

In a case expression “case e of pat1 when e1 → e′1; . . . ; patn when en →
e′n end”, we �rst evaluate e to a value, say v; then, we �nd (if it exists) the �rst
clause pati when ei → e′i such that v matches pati (i.e., there exists a substitution σ
for the variables of pati such that v = patiσ) and eiσ—the guard—reduces to true;
then, the case expression reduces to e′iσ. Note that guards can only contain calls to
built-in functions (typically, arithmetic and relational operators).

Concurrent features.

In this work, we consider that a system is a pool of processes that can only interact
through message sending and receiving (i.e., there is no shared memory). Each pro-
cess has an associated pid (process identi�er), which is unique in a system. Here,
pids are ordinary values. Formally, a process is denoted by a tuple 〈p, (θ, e), q〉where
p is the pid of the process, (θ, e) is the control—which consists of an environment
(a substitution) and an expression to be evaluated—and q is the process’ mailbox, a
FIFO queue with the sequence of messages that have been sent to the process.

A running system, which we denote by Γ; Π, is composed by Γ, the global mail-
box, which is a multiset of pairs of the form (target process pid,message), and
Π, which is a pool of processes. Π is denoted by an expression of the form

〈p1, (θ1, e1), q1〉 | · · · | 〈pn, (θn, en), qn〉

Here, “ | ” denotes an associative and commutative operator. We typically denote a
system by an expression of the form Γ; 〈p, (θ, e), q〉 |Π to point out that 〈p, (θ, e), q〉
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is an arbitrary process of the pool. Intuitively, Γ stores messages a�er they are sent,
and before they are inserted in the target mailbox. Here, Γ (which is similar to the
“ether” in [130]) is an arti�cial device used in our semantics to guarantee that all
admissible message interleavings can be modeled.

In the following, we denote by on a sequence of syntactic objects o1, . . . , on for
some n.

�e functions with side e�ects are self(), “!”, spawn, and receive. �e expression
self() returns the pid of a process, while p ! v sends a message v to the process with
pid p. New processes are spawned with a call of the form spawn(a/n, [vn]), so that
the new process begins with the evaluation of apply a/n (vn). Finally, an expres-
sion “receive patn when en → e′n end” traverses the messages in the process’ queue
until one of them matches a branch in the receive statement; i.e., it should �nd the
�rst message v in the process’ queue (if any) such that case v of pat1 when e1 →
e′1; . . . ; patn when en → e′n end can be reduced; then, the receive expression evalu-
ates to the same expression to which the above case expression would be evaluated,
with the additional side e�ect of deleting the message v from the process’ queue. If
there is no matching message in the queue, the process suspends its execution until
a matching message arrives.

Figure 4.2 shows an Erlang program implementing a simple client-server scheme
with one server and two clients (a), as well as its translation into Core Erlang (b),
where C , X and Y are anonymous variables introduced during the translation
process to represent sequences of actions using let expressions. �e execution starts
with a call to function main/0. It �rst spawns two processes that execute functions
server/0 and client/1, respectively, and then calls to function client/1 too. Client re-
quests have the form {P, req}, where P is the pid of the client. �e server receives
the message, returns a message ack to the client, and calls to function server/0 again
in an endless loop. A�er processing the two requests, the server will suspend wait-
ing for another request.

Following [86], the semantics of the language is de�ned in a modular way, so that
the labeled transition relation `−→models the evaluation of expressions and ↪→models
the reduction of systems. Relation `−→ follows a typical call-by-value semantics for
side-e�ect free expressions;1 in this case, reduction steps are labeled with τ . For
the remaining functions, the expression rules cannot complete the reduction of an
expression since some information is not locally available. In these cases, the steps
are labeled with the information needed to complete the reduction within the system

1Because of lack of space, we are not presenting the rules of `−→ here, but refer the interested reader
to [86].
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main() ->

S = spawn(server/0, []),

spawn(client/1, [S]),

client(S).

server() ->

receive

{P, req} ->

P ! ack,

server()

end.

client(S) ->

S ! {self(), req},

receive

ack -> ok

end.

main/0 = fun ()→ let S = spawn(server/0, [ ])
in let C = spawn(client/1, [S])
in apply client/1 (S)

server/0 = fun ()→ receive
{P, req} →

let X = P ! ack
in apply server/0 ()

end

client/1 = fun (S)→ let Y = S ! {self(), req}
in receive

ack→ ok
end

(a) Erlang (b) Core Erlang

Figure 4.2: A simple client server

rules of Figure 4.3. For sending a message, an expression p′′ ! v is reduced to v with
the side-e�ect of (eventually) storing the message v in the mailbox of process p′′.
�e associated label is thus send(p′′, v) so that rule Send can complete the step by
adding the pair (p′′, v) to the global mailbox Γ.

�e remaining functions, receive, spawn and self , are reduced to a fresh distin-
guished symbol κ (a sort of future) in the expression rules, since the value cannot
be determined locally. �erefore, in these cases, the labels also include κ. �en, the
system rules of Figure 4.3 will bind κ to its correct value: the selected expression in
rule Receive and a pid in rules Spawn and Self .

To be more precise, for a receive statement, the label has the form rec(κ, cln)
where cln are the clauses of the receive statement. In rule Receive, the auxiliary
function matchrec is used to �nd the �rst message in the queue that matches a
clause, then returning a triple with the matching substitution θi, the selected branch
ei and the selected message v. Here, q\\v denotes a new queue that results from q
by removing the oldest occurrence of message v.

For a spawn, the label has the form spawn(κ, a/n, [vn]), where a/n and [vn] are
the arguments of spawn. Rule Spawn then adds a new process with a fresh pid p′
initialized with the application apply a/n (v1, . . . , vn) and an empty queue.
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(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′), q〉 |Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ ∪ (p′′, v); 〈p, (θ′, e′), q〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(cln, q) = (θi, ei, v)

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′θi, e′{κ 7→ ei}), q\\v〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′{κ 7→ p′}), q〉 | 〈p′, (id, apply a/n (vn)), [ ]〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′{κ 7→ p}), q〉 |Π
(Sched)

Γ ∪ {(p, v)}; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ, e), v :q〉 |Π

Figure 4.3: Standard semantics: system rules

For a self, only κ is needed in the label. Rule Self then proceeds in the obvious
way by binding κ to the pid of the process.

�e rules presented so far allow one to store messages in the global mailbox,
but not to deliver them. �is is the task of the scheduler, which is modeled by rule
Sched . �is rule nondeterministically chooses a pair (p, v) in the global mailbox Γ
and delivers the message v to the target process p. Note also that Γ is a multiset, so
we use “∪” as multiset union.

4.3 Causal-Consistent Reversible Debugging

In this section, we present a causal-consistent reversible semantics for the consid-
ered language. �e semantics is based on the reversible semantics for Erlang intro-
duced in [109, 86]. In particular, [86] presents an uncontrolled reversible semantics,
which is highly non-deterministic, and a controlled semantics that performs a back-
ward computation up to a given checkpoint in a mostly deterministic way. Here, we
build on the uncontrolled semantics, and de�ne a new controlled semantics which
is more appropriate as a basis for a causal-consistent reversible debugger than the
one in [86].

First, following [86], we introduce an instrumented version of the standard se-
mantics. For this purpose, we exploit a typical Landauer’s embedding [80] and in-
clude a “history” h in the states. In contrast to the standard semantics, messages
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(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, τ(θ, e) :h, (θ′, e′), q〉 |Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identi�er
Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ ∪ (p′′, {v, λ}); 〈p, send(θ, e, p′′, {v, λ}) :h, (θ′, e′), q〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(cln, q) = (θi, ei, {v, λ})
Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, rec(θ, e, {v, λ}, q) :h, (θ′θi, e′{κ 7→ ei}), q\\{v, λ}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, spawn(θ, e, p′) :h, (θ′, e′{κ 7→ p′}), q〉

| 〈p′, [ ], (id, apply a/n (vn)), [ ]〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, self(θ, e) :h, (θ′, e′{κ 7→ p}), q〉 |Π

(Sched)
Γ ∪ {(p, {v, λ})}; 〈p, h, (θ, e), q〉 |Π ⇀ Γ; 〈p, h, (θ, e), {v, λ} :q〉 |Π

Figure 4.4: Forward reversible semantics

now include a unique identi�er (i.e., a timestamp λ). �ese identi�ers are required
to avoid mixing di�erent messages with the same value (and possibly also with the
same sender and/or receiver). More details can be found in [86].

�e transition rules of the forward reversible semantics can be found in Fig-
ure 4.4. �ey are an easy—and conservative—extension of the semantics in Figure 4.3
by adding histories to processes. In the histories, we use terms headed by construc-
tors τ , check, send, rec, spawn, and self to record the steps performed by the forward
semantics. Note that the auxiliary function matchrec now deals with messages of
the form {v, λ}, trivially extending the original function in the standard semantics
by ignoring λ when computing the �rst matching message.

Rollback Debugging Semantics.

Now, we introduce a novel rollback semantics to undo the actions of a given process.
Here, processes in “rollback” mode are annotated using b cΨ, where Ψ is a set with
the requested rollbacks. In particular, we consider the following rollbacks to undo
the actions of a given process in a causal-consistent way:

• s: one backward step;

• λ⇑: a backward derivation up to the sending of a message labeled with λ;
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• λ⇓: a backward derivation up to the delivery of a message labeled with λ;

• λrec: a backward derivation up to the receive of a message labeled with λ;

• spp: a backward derivation up to the spawning of the process with pid p;

• sp: a backward derivation up to the creation of the annotated process;

• X : a backward derivation up to the introduction of variable X .

In the following, in order to simplify the reduction rules, we consider that our se-
mantics satis�es the following structural equivalence:

(SC1 ) Γ; b〈p, h, (θ, e), q〉c∅ | Π ≡ Γ; 〈p, h, (θ, e), q〉 | Π
(SC2 ) Γ; b〈p, [ ], (θ, e), [ ]〉cΨ | Π ≡ Γ; 〈p, [ ], (θ, e), [ ]〉 | Π

�erefore, when the set of rollbacks is empty or the process is back to its initial state,
we consider that the required rollback has been completed.

Our rollback debugging semantics is modeled with the reduction relation ↽,
de�ned by the rules in Figure 4.5. Here, we assume that Ψ 6= ∅ (but Ψ′ might be
empty). Let us brie�y explain the rules of the rollback semantics:

• Some actions can be directly undone. �is is the case dealt with by rules
Seq , Send1 , Receive , Spawn1 , Self , and Sched . In every rule, we remove
the corresponding rollback request from Ψ. In particular, all of them remove
s (since a causal-consistent step has been performed). Rule Seq additionally
removes the variables whose bindings were introduced in the last step; rule
Send1 removes λ⇑ (representing the sending of the message with identi�er
λ); rule Receive removes λrec (representing the receiving of the message with
identi�er λ); rule Spawn1 removes spp′′ (representing the spawning of the
process with pid p′′); and rule Sched removes λ⇓ (representing the delivery
of the message with identi�er λ). Note also that rule Sched requires a side
condition to avoid the (incorrect) commutation of rules Receive and Sched
(see [86] for more details on this issue).

• Other actions require some dependencies to be undone �rst. �is is the case
of rules Send2 and Spawn2 . In the �rst case, rule Send2 applies in order to
“propagate” the rollback mode to the receiver of the message, so that rules
Sched and Send1 can be eventually applied. In the second case, rule Spawn2
applies to propagate the rollback mode to process p′′ so that, eventually, rule
Spawn1 can be applied. Observe that the rollback sp introduced by the rule
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(Seq)
Γ; b〈p, τ(θ, e) :h, (θ′, e′), q〉cΨ | Π ↽ Γ; b〈p, h, (θ, e), q〉cΨ\({s}∪V) | Π

where V = Dom(θ′)\Dom(θ)

(Send1 )
Γ ∪ {(p′, {v, λ})}; b〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉cΨ | Π

↽ Γ; b〈p, h, (θ, e), q〉cΨ\{s,λ⇑} | Π

(Send2 )
Γ; b〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉cΨ | b〈p′, h ′, (θ′′, e′′), q′〉cΨ′ | Π
↽ Γ; b〈p, send(θ, e, p′, {v, λ}) :h, (θ′, e′), q〉cΨ | b〈p′, h ′, (θ′′, e′′), q′〉cΨ′∪{λ⇓} | Π

if (p′, {v, λ}) does not occur in Γ and λ⇓ 6∈ Ψ′

(Receive)
Γ; b〈p, rec(θ, e, {v, λ}, q) :h, (θ′, e′), q\\{v, λ}〉cΨ | Π

↽ Γ; b〈p, h, (θ, e), q〉cΨ\{s,λrec} | Π

(Spawn1 )
Γ; b〈p, spawn(θ, e, p′′) :h, (θ′, e′), q〉cΨ | b〈p′′, [ ], (θ′′, e′′), [ ]〉cΨ′ | Π

↽ Γ; b〈p, h, (θ, e), q〉cΨ\{s,spp′′} | Π

(Spawn2 )
Γ; b〈p, spawn(θ, e, p′′) :h, (θ, e), q〉cΨ | b〈p′′, h ′′, (θ′′, e′′), q′′〉cΨ′ | Π
↽ Γ; b〈p, spawn(θ, e, p′′) :h, (θ, e), q〉cΨ | b〈p′′, h ′′, (θ′′, e′′), q′′〉cΨ′∪{sp} | Π

if h ′′ 6= [ ] ∨ q′′ 6= [ ] and sp 6∈ Ψ′

(Self ) Γ; b〈p, self(θ, e) :h, (θ′, e′), q〉cΨ | Π ↽ Γ; b〈p, h, (θ, e), q〉cΨ\{s} | Π

(Sched)
Γ; b〈p, h, (θ, e), {v, λ} :q〉cΨ | Π ↽ Γ ∪ (p, {v, λ}); b〈p, h, (θ, e), q〉cΨ\{s,λ⇓} | Π

if the topmost rec(. . .) item in h (if any) has the
form rec(θ′, e′, {v′, λ′}, q′) with q′\\{v′, λ′} 6= {v, λ} :q

Figure 4.5: Rollback debugging semantics

Spawn2 does not need to be removed from Ψ since the complete process is
deleted from Π in rule Spawn1 .

�e correctness of the new rollback semantics can be shown following a similar
scheme as in [86] for proving the correctness of the rollback semantics for check-
points.

We now introduce an operator that performs a causal-consistent backward deriva-
tion and is parameterized by a system, a pid and a set of rollback requests:

rb(Γ; 〈p, h, (θ, e), q〉 |Π, p,Ψ) = Γ′; Π′ if Γ; b〈p, h, (θ, e), q〉cΨ |Π ↽∗ Γ′; Π′ 6↽

�e operator adds a set of rollback requests to a given process2 and then performs
2Actually, in this work, we only consider a single rollback request at a time, so Ψ is always a

singleton. Nevertheless, our formalization considers that Ψ is a set for notational convenience and,
also, in order to accept multiple rollbacks in the future.
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as many steps as possible using the rollback debugging semantics.
By using the above parametric operator, we can easily de�ne several rollback

operators that are useful for debugging. Our �rst operator, rollback(Γ; Π, p), just
performs a causal-consistent backward step for process p:

rollback(Γ; Π, p) = rb(Γ; Π, p, {s})

Notice that this may trigger the execution of any number of backward steps in other
processes in order to �rst undo the consequences, if any, of the step in p.

�is operator can easily be extended to an arbitrary number of steps:

rollback(Γ; Π, p, n) =


Γ; Π if n = 0
rollback(Γ′; Π′, p, n− 1) if n > 0 and

rollback(Γ; Π, p) = Γ′; Π′

Also, we might be interested in going backward until a relevant action is undone.
For instance, we introduce below operators that go backward up to, respectively,
the sending of a message with a particular identi�er λ, the receiving of a message
with a particular identi�er λ, and the spawning of a process with pid p′:

rollback(Γ; Π, p, λ⇑) = rb(Γ; Π, p, {λ⇑})
rollback(Γ; Π, p, λrec) = rb(Γ; Π, p, {λrec})
rollback(Γ; Π, p, spp′) = rb(Γ; Π, p, {spp′})

Note that p is a parameter of the three operators, but it could also be automatically
computed (from λ in the �rst two rules, from p′ in the last one) by inspecting the
histories of the processes in Π. �is is actually what CauDEr does.

Finally, we consider an operator that performs backward steps up to the intro-
duction of a binding for a given variable:

rollback(Γ; Π, p,X) = rb(Γ; Π, p, {X})

Here, p cannot be computed automatically from X , since variables are local and,
hence, variable X may occur in several processes; thus, p is needed to uniquely
identify the process of interest.3

4.4 CauDEr: A Causal-Consistent Reversible Debugger

�e CauDEr implementation is conveniently bundled together with a graphical user
interface to facilitate the interaction of users with the reversible debugger.

3Actually, in CauDEr, uniqueness of variable names is enforced via renaming.



116 4.4. CauDEr: A Causal-Consistent Reversible Debugger

Figure 4.6: CauDEr screenshot

CauDEr works as follows: when it is started, the �rst step is to select an Erlang
source �le. �e selected source �le is then translated into Core Erlang, and the re-
sulting code is shown in theCode tab. �en, the user can choose any of the functions
from the module and write the arguments that she wants to evaluate the function
with. An initial system state, with an empty global mailbox and a single process
performing the speci�ed function application, appears in the State tab when the
user presses the START bu�on. Now, the user can explore possible program execu-
tions both forward and backward, according to three di�erent modes, correspond-
ing to the three tabs on the top right of the window in Figure 4.6. In the Manual
mode, the user selects a process or message identi�er, and bu�ons corresponding
to forward and backward enabled reductions for the chosen process/message are
available. Note that a backward reduction is enabled only if the action has no causal
dependencies that need to be undone (single backward reductions correspond to
applications of rules Seq , Send1 , Receive , Spawn1 , Self , and Sched in Figure 4.5,
see the uncontrolled reversible semantics in [86] for more details). In the Automatic
mode one can decide the direction (forward or backward) and the number of steps
to be performed. Actual steps are selected by a suitable scheduler. Currently, two
(random) schedulers are available, one of which gives priority to processes w.r.t.
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the scheduling of messages (as in the “normalization” strategy described in [86]),
while the other has a uniform distribution. None of these schedulers mimics the
Erlang/OTP scheduler. Indeed, it would be very hard to replicate this behavior, as
it depends on many parameters (threads, workload, etc). However, this is not nec-
essary, since we are only interested in reproducing the errors that occur in actual
executions, and we discuss in future work how to obtain this without the need of
mimicking the Erlang/OTP scheduler. �e Automatic tab also includes a Normal-
ize bu�on, that executes all enabled actions but message schedulings. �e last tab,
Rollback, implements the rollback operators described in Section 4.3.

While exploring the execution, two tabs are updated to provide information on
the system and its execution. �e State tab describes the current system, includ-
ing the global mailbox GM, and, for each process, the following components: the
local mailbox LM, the history H, the environment ENV, and the expression under
evaluation EXP. Identi�ers of messages are highlighted in color. �is tab can be
con�gured to hide any component of the process representation. Also, we consider
two levels of abstraction for both histories and environments: for histories, we can
either show all the actions or just the concurrent actions (send, receive and spawn);
for environments, we can either show all variable bindings (called the full environ-
ment) or only the bindings for those variables occurring in the current expression
(called the relevant environment).

�e Trace tab gives a linearized description of the concurrent actions performed
in the system, namely sends and receives of messages, and spawns of processes. �is
is aimed at giving a global picture of the system evolution, to highlight anomalies
that might be caused by bugs.

A further tab is available, Roll Log, which is updated in case of rollbacks. It
shows which actions have been actually undone upon a rollback request. �is tab
allows one to understand the causal dependencies of the target process of the roll-
back request, frequently highlighting undesired or missing dependencies directly
caused by bugs.

�e release version (v1.0) of CauDEr is fully wri�en in Erlang, and it is publicly
available from https://github.com/mistupv/cauder under the MIT license.
�e only requirement to build the application is to have Erlang/OTP installed and
built with wxWidgets. �e repository also includes some documentation and a few
examples to easily test the application.
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4.4.1 �e CauDEr Work�ow

A typical debugging session with CauDEr proceeds as follows. First, the user may
run the program some steps forward using the Automatic mode in order to exercise
the code. A�er each sequence of forward steps, she looks at the program output
(which is not on the CauDEr window, but in the console where CauDEr has been
launched) and possibly at the State and Trace tabs to check for abnormal behaviors.
�e State tab helps to identify these behaviors within a single process, while the
Trace tab highlights anomalies in the global behavior.

If the user identi�es an unexpected action, she can undo it by using any (or
a combination) of the available rollback commands. �e Roll Log tab provides in-
formation on the causal-consistent rollbacks performed (in some cases, this log is
enough to highlight the bug). From there, the user typically switches to the Man-
ual mode in order to precisely control the doing or undoing of actions in a speci�c
state. �is may involve performing other rollbacks to reach previous states. Our ex-
perience says that inspecting the full environment during the Manual exploration
is quite helpful to locate bugs caused by sequential code.

4.4.2 Finding Concurrency Bugs with CauDEr

We use as a running example to illustrate the use of our debugger the well-known
problem of dining philosophers. Here, we have a process for each philosopher and
for each fork. We avoid implementations that are known to deadlock by using an
arbitrator process, the waiter, that acts as an intermediary between philosophers
and forks. In particular, if a philosopher wants to eat, he asks the waiter to get the
forks. �e waiter checks whether both forks are free or not. In the �rst case, he asks
the forks to become used, and sends a message eat to the philosopher. Otherwise
he sends a message think to the philosopher. When a philosopher is done eating,
he sends a message eaten to the waiter, who in turn will release (i.e., set to free) the
corresponding forks. �e full Erlang code of the (correct) example, dining.erl, is
available from https://github.com/mistupv/dining-philos .

Message order violation scenario.

Here, we consider the buggy version of the program that can be found in �le dining -

simple bug.erl of the above repository. In this example, running the program
forward using the Automatic mode for about 600 steps is enough to discern some-
thing wrong. In particular, the user notices in the output that some philosophers
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are told to think when they should be told to eat, even at the beginning of the ex-
ecution. Since the bug appears so early, it is probably a local bug, hence the user
�rst focuses on the State tab. When the user considers the waiter process, she sees
in the history an unexpected sequence of concurrent events of the following form
(shown in reverse chronological order):

. . . ,send(’think’,10),rec(’free’,9),send({’get state’,2},8),
rec({’hungry’,12},6),send({’get state’,2},7),rec({’hungry’,9},2), . . .

Here, the waiter has requested the state of a fork with send({’get state’,2},7), where
2 is the process id of the waiter itself and 7 the message id. Unexpectedly, the waiter
has received a message hungry as a reply, instead of a message free or used. To
get more insight on this, the user decides to rollback the receive of {’hungry’,12},
which has 6 as message id. As a result, the rollback gets the system back to a state
where send({’get state’,2},7) is the last concurrent event for the waiter process. Fi-
nally, the user switches to the Manual mode and notices that the next available
action for the waiter process is to receive the message {’hungry’,12} in the receive
construct from the ask state function. Function ask state is called by the waiter
process when it receives a hungry request from a philosopher (to get the state of
the two forks). Obviously, a further message hungry should not be received here.
�e user easily realizes then that the pa�ern in the receive is too general (in fact, it
acts as a catch-all clause) and, as a result, the receive is matching also messages from
other forks and even philosophers. Indeed, a�er sending the message get state to
a fork, the programmer assumed that the next incoming message will be the state
of the fork. However, the function is being evaluated in the context of the waiter
process, where many other messages could arrive, e.g., messages hungry or eaten
from philosophers.

It would not be easy to �nd the same bug using a standard debugger. Indeed,
one would need to �nd where the wrong message hungry is sent, and put there a
breakpoint. However, in many cases, no scheduling error will occur, hence many at-
tempts would be needed. With a standard reversible debugger (like Actoverse [126])
one could look for the point where the wrong message is received, but it would be
di�cult to stop the execution at the exact message. Watch points do not help much,
since all such messages are equal, but only some of them are received in the wrong
receive operation. Indeed, in this example, the CauDEr facility of rollbacking a spe-
ci�c message receiving, coupled with the addition of unique identi�ers to messages,
is a key in ensuring the success of the debugging session.
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Livelock scenario.

Now, we consider the buggy version of the dining philosophers that can be found
in �le dining bug.erl of our repository. In this case, the output of the program
shows that, a�er executing some 2000 steps with theAutomaticmode, some philoso-
phers are always told to think, while others are always told to eat. In contrast to
the previous example, this bug becomes visible only late in the execution, possibly
only a�er some particular pa�ern of message exchanges has taken place (this is why
it is harder to debug). In order to analyze the message exchanges the user should
focus on the Trace tab �rst. By carefully examining it, the user realizes that, in some
cases, a�er receiving a message eaten from a philosopher, the waiter sends the two
messages {’set state’,’free’,2} to release the forks to the same fork:

Proc. 2 receives {’eaten’,10} (28)
Proc. 2 sends {’set state’,’free’,2} to Proc. 5 (57)
Proc. 5 receives {’set state’,’free’,2} (57)
Proc. 5 sends {’been set’,5} to Proc. 2 (58)
Proc. 2 receives {’been set’,5} (58)
Proc. 2 sends {’set state’,’free’,2} to Proc. 5 (59)
Proc. 5 receives {’set state’,’free’,2} (59)
Proc. 5 sends {’been set’,5} to Proc. 2 (60)
Proc. 2 receives {’been set’,5} (60)

�en, the user rollbacks the sending of the last message from the waiter process
(the one with message id 59) and chooses to show the full environment (a clever
decision). Surprisingly, the computed values for Le�ForkId and RightForkId are
equal. She decides to rollback also the sending of message with id 57, but she cannot
see anything wrong there, so the computed value for RightForkId must be wrong.
Now the user focuses on the corresponding line on the code, and she notices that
the operands of the modulo operator have been swapped, which is the source of the
erroneous behavior.

�is kind of livelocks are typically hard to �nd with other debugging tools. For
instance, Concuerror [61] requires a �nite computation, which is not the case in this
scenario where the involved processes keep doing actions all the time but no global
progress is achieved (i.e., some philosophers never eat).
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4.5 Related Work

Causal-consistent debugging has been introduced by CaReDeb [51], in the context
of language µOz. �e present paper improves on CaReDeb in many directions. First,
µOz is only a toy language where no realistic programs can be wri�en (e.g., it sup-
ports only integers and a few arithmetic operations). Second, µOz is not distributed,
since messages are atomically moved from the sender to a message queue, and from
the queue to the target process. �is makes its causality model, hence the de�nition
of a causal-consistent reversible semantics, much simpler. �ird, in [51] the precise
semantics of debugging operators is not fully speci�ed. Finally, the implementation
described in [51] is just a proof-of-concept.

More in general, our work is in the research thread of causal-consistent re-
versibility (see [83] for a survey), �rst introduced in [35] in the context of process
calculus CCS. Most of the works in this area are indeed on process calculi, but for
the work on µOz already discussed (the theory was introduced in [90]) and a line of
work on the coordination language µklaim [53]. However, µklaim is a toy language
too. Hence, we are the �rst ones to consider a mainstream programming language.
A �rst approach to the de�nition of a causal-consistent semantics of Erlang was pre-
sented in [109], and extended in [86]. While we based CauDEr on the uncontrolled
semantics therein (and on its proof-of-concept implementation), we provided in the
present paper an updated controlled semantics more suitable for debugging, and
a mature implementation with a complete interface and many facilities for debug-
ging. Moreover, our tool is able to deal with a larger subset of the language, mainly
in terms of built-in functions and data structures.

While CaReDeb is the only other causal-consistent debugger we are aware of,
two other reversible debuggers for actor systems exist. Actoverse [126] deals with
Akka-based applications. It provides many relevant features which are complemen-
tary to ours. �ese include a partial-order graphical representation of message ex-
changes that would nicely match our causal-consistent approach, message-oriented
breakpoints that allow one to force speci�c interleavings in message schedulings,
and facilities for session replay to ensure bugs reappear when executing forward
again. In contrast, Actoverse provides less facilities for state inspection and man-
agement than us (e.g., it has nothing similar to our Roll var command). Also, the
paper does not include any theoretical framework de�ning the behavior of the de-
bugger. EDD is a declarative debugger for Erlang (see [20] for a version dealing
with sequential Erlang). EDD tracks the concurrent actions of an execution and al-
lows the user to select any of them to start the questions. Declarative debugging is
essentially orthogonal to our approach.
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Causeway [127] is not a full-�edged debugger but a post-mortem trace analyzer,
i.e., it performs no execution, but just explores a trace of a run. It concentrates on
message passing aspects, e.g., it does not allow one to explore the state of single
processes (states are not in the logs analyzed by Causeway). On the contrary it
provides nice mechanisms to abstract and �lter di�erent kinds of communications,
allowing the user to decide at each stage of the debugging process which messages
are of interest. �ese mechanisms would be an interesting addition for CauDEr.

4.6 Discussion

In this work, we have presented the design of CauDEr, a causal-consistent reversible
debugger for Erlang. It is based on the reversible semantics introduced in [109,
86], though we have introduced in this paper a new rollback semantics which is
especially appropriate for debugging Erlang programs. We have shown in the paper
that some bugs can be more easily located using our new tool, thus �lling a gap in
the collection of debugging tools for Erlang.

Currently, our debugger may run a program either forward or backward (in the
la�er case, in a causal-consistent way). A�er a backward computation that undoes
some steps, we can resume the forward computation, though there are no guaran-
tees that we will reproduce the previous forward steps. Some debuggers (so-called
omniscient or back-in-time debuggers) allow us to move both forward and back-
ward along a particular execution. As a future work, we plan to de�ne a similar
approach but ensuring that once we resume a forward computation, we can follow
the same previous forward steps or some other causal-consistent steps. Such an ap-
proach might be useful, e.g., to determine which processes depend on a particular
computation step and, thus, ease the location of a bug.

Another interesting line of future work involves the possibility of capturing a
faulty behavior during execution in the standard environment, and then replaying
it in the debugger. For instance, we could instrument source programs so that their
execution in a standard environment writes a log in a �le. �en, when the program
ends up with an error, we could use this log as an input to the debugger in order to
explore this particular faulty behavior (as postmortem debuggers do). �is approach
can be applied even if the standard environment is distributed and there is no com-
mon notion of time, since causal-consistent reversibility relies only on a notion of
causality.

For the same reason we could also develop a fully distributed debugger, where
each process is equipped with debugging facilities, and a central console allows us
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to coordinate them. �is would strongly improve scalability, since most of the com-
putational e�ort (running and backtracking programs) would be distributed. How-
ever, this step requires a semantics without any synchronous interaction (e.g., rules
Send2 and Spawn2 would need to be replaced by a more complex asynchronous
protocol).
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Abstract. Debugging of concurrent systems is a tedious and error-prone ac-
tivity. A main issue is that there is no guarantee that a bug that appears in the
original computation is replayed inside the debugger. �is problem is usually
tackled by so-called replay debugging, which allows the user to record a pro-
gram execution and replay it inside the debugger. In this paper, we present a
novel technique for replay debugging that we call controlled causal-consistent
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replay. Controlled causal-consistent replay allows the user to record a pro-
gram execution and, in contrast to traditional replay debuggers, to reproduce
a visible misbehavior inside the debugger including all and only its causes. In
this way, the user is not distracted by the actions of other, unrelated processes.

5.1 Introduction

Debugging is a main activity in so�ware development. According to a 2014 study [136],
the cost of debugging is $312 billions annually. Another recent study [17] estimates
that the time spent in debugging is 49.9% of the total programming time. �e sit-
uation is not likely to improve in the near future, given the increasing demand of
concurrent and distributed so�ware. Indeed, distribution is inherent in current com-
puting platforms, such as the Internet or the Cloud, and concurrency is a must to
overcome the advent of the power wall [129]. Debugging concurrent and distributed
so�ware is clearly more di�cult than debugging sequential code [66]. Furthermore,
misbehaviors may depend, e.g., on the execution speed of the di�erent processes,
showing up only in some (sometimes rare) cases.

A particularly unfortunate situation is when a program exhibits a misbehavior
in its usual execution environment, but it runs smoothly when re-executed in the
debugger. �is problem is usually tackled by so-called replay debugging, which
allows the user to record a program execution and replay it inside the debugger.
However, in concurrent programs, part of the execution may not be relevant: some
processes may not have interacted with the one showing a misbehavior, or may
have interacted with it only at the very beginning of their execution, hence most of
their execution is not relevant for the debugging session. Having to replay all these
behaviors is both time and resource consuming as well as distracting for the user.

Our main contribution in this paper is a novel technique for replay debugging
that we call controlled causal-consistent replay. It extends the techniques in the lit-
erature as follows: given a log of a (typically faulty) concurrent execution, we do
not replay exactly the same execution step by step (as traditional replay debuggers),
but we allow the user to select any action in the log (e.g., one showing a misbehav-
ior) and to replay the execution up to this action, including all and only its causes.
�is allows one to focus on those processes where (s)he thinks the bug(s) might be,
disregarding the actual interleaving of processes. To the best of our knowledge, the
notion of controlled causal-consistent replay is new.

We fully formalize causal-consistent replay for (a subset of) a realistic functional
and concurrent programming language based on message-passing: Erlang. More-
over, we prove relevant properties, e,g., that misbehaviors in the original compu-
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program ::= fun1 . . . funn
fun ::= fname = fun (X1, . . . , Xn)→ expr

fname ::= Atom/Integer
lit ::= Atom | Integer | Float | [ ]

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2

pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Figure 5.1: Language syntax rules

tation are always replayed, and that we guarantee minimal replay of observable
behaviors. �is is in contrast with most approaches to replay in the literature,
that, beyond considering di�erent languages, are either fully experimental (like, e.g.,
[89, 96, 137, 8]), or present limited theoretical results, as in [106, 65, 70].

Causal-consistent replay can be seen as the dual of causal-consistent rollback, a
technique for reversible computing which allows one to select an action in a com-
putation and undo it, including all and only its consequences. Indeed, the two tech-
niques integrate well, giving rise to a framework to explore back and forward a
given concurrent computation, always concentrating on the actions of interest and
avoiding unrelated actions. By lack of space, we will only present causal-consistent
replay in this paper. More details, including the integration with causal-consistent
rollback, proofs of technical results, and a description of an implemented reversible
replay debugger for Erlang [87] that follows the ideas in this paper, can be found in
an accompanying technical report [88]. While not technically needed, printing the
paper in color may help the understanding.

5.2 �e Language

We present below the considered language: a �rst-order functional and concurrent
language based on message passing that mainly follows the actor model.
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Language Syntax.

�e syntax of the language is in Figure 5.1. A program is a sequence of function
de�nitions, where each function name f/n (atom/arity) has an associated de�ni-
tion fun (X1, . . . , Xn)→ e, whereX1, . . . , Xn are (distinct) fresh variables and are
the only variables that may occur free in e. �e body of a function is an expression,
which can include variables, literals, function names, lists (using Prolog-like nota-
tion: [ ] is the empty list and [e1|e2] is a list with head e1 and tail e2), tuples (denoted
by {e1, . . . , en}),1 calls to built-in functions (mainly arithmetic and relational op-
erators), function applications, case expressions, let bindings, receive expressions,
spawn (for creating new processes), “!” (for sending a message), and self . As is com-
mon practice, we assume that X is a fresh variable in let X = expr1 in expr2.

In this language, we distinguish expressions, pa�erns, and values, ranged over
respectively by e, e′, e1, . . ., by pat, pat′, pat1, . . . and by v, v′, v1, . . .. In contrast to
expressions, pa�erns are built from variables, literals, lists, and tuples. Pa�erns can
only contain fresh variables. Finally, values are built from literals, lists, and tuples.
Atoms (i.e., constants with a name) are wri�en in roman le�ers, while variables
start with an uppercase le�er. A substitution θ is a mapping from variables to ex-
pressions, and Dom(θ) is its domain. Substitutions are usually denoted by (�nite)
sets of bindings like, e.g., {X1 7→ v1, . . . , Xn 7→ vn}. �e identity substitution is
denoted by id. Composition of substitutions is denoted by juxtaposition, i.e., θθ′ de-
notes a substitution θ′′ such that θ′′(X) = θ′(θ(X)) for all X ∈ Var . Substitution
application σ(e) is also denoted by eσ.

In a case expression “case e of pat1 when e1 → e′1; . . . ; patn when en →
e′n end”, we �rst evaluate e to a value, say v; then, we �nd (if it exists) the �rst
clause pati when ei → e′i such that v matches pati, i.e., such that there exists a
substitution σ for the variables of pati with v = patiσ, and eiσ (the guard) reduces
to true; then, the case expression reduces to e′iσ.

In our language, a running system is a pool of processes that can only interact
through message sending and receiving (i.e., there is no shared memory). Received
messages are stored in the queues of processes until they are consumed; namely,
each process has one associated local (FIFO) queue. Each process is uniquely identi-
�ed by its pid (process identi�er). Message sending is asynchronous, while receive
instructions block the execution of a process until an appropriate message reaches
its local queue (see below).

In the paper, on denotes a sequence of syntactic objects o1, . . . , on.
1As in Erlang, the only data constructors in the language (besides literals) are the prede�ned func-

tions for lists and tuples.
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main/0 = fun ()→ let S = spawn(server/0, [ ])
in let P = spawn(proxy/0, [ ]) in apply client/2 (P, S)

server/0 = fun ()→ receive
{C,N} → receive

M → let X = C ! call + (N,M) in apply server/0 ()
end;

E → error
end

proxy/0 = fun ()→ receive {T,M} → let W = T !M in apply proxy/0 () end

client/2 = fun (P, S)→ let X = P ! {S, {self(), 40}} in let Y = S ! 2 in receive N → N end

Figure 5.2: A simple client/server program

We consider the following functions with side-e�ects: self , “!”, spawn, and receive.
�e expression self() returns the pid of a process, while p ! v sends a message
v to the process with pid p, which will be eventually stored in p’s local queue.
New processes are spawned with a call of the form spawn(a/n, [vn]), so that the
new process begins with the evaluation of apply a/n (vn). Finally, an expression
“receive patn when en → e′n end” should �nd the �rst message v in the process’
queue (if any) such that case v of patn when en → e′n end can be reduced to some
expression e′′; then, the receive expression evaluates to e′′, with the side e�ect of
deleting the message v from the process’ queue. If there is no matching message,
the process suspends until a matching message arrives.

Our language models a signi�cant subset of Core Erlang [25], the intermediate
representation used during the compilation of Erlang programs. �erefore, our de-
velopments can be directly applied to Erlang (as can be seen in the technical report
[88], where the development of a practical debugger is described).

Example 5.1. �e program in Figure 5.2 implements a simple client/server scheme
with one server, one client and a proxy. �e execution starts with a call to func-
tion main/0. It spawns the server and the proxy and �nally calls function client/2.
Both the server and the proxy then suspend waiting for messages. �e client makes
two requests {C, 40} and 2, where C is the pid of client (obtained using self()).
�e second request goes directly to the server, but the �rst one is sent through the
proxy (which simply resends the received messages), so the client actually sends
{S, {C, 40}}, where S is the pid of the server. Here, we expect that the server �rst
receives the message {C, 40} and, then, 2, thus sending back 42 to the client C (and
calling function server/0 again in an endless recursion). If the �rst message does
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not have the right structure, the catch-all clause “E → error” returns error and
stops.

A High-Level Semantics.

Now, we present an (asynchronous) operational semantics for our language. Fol-
lowing [130], we introduce a global mailbox (there called “ether”) to guarantee that
our semantics generates all admissible message interleavings. In contrast to previ-
ous semantics [86, 109, 130], our semantics abstracts away from processes’ queues.
We will see in Section 5.2 that this decision simpli�es both the semantics and the
notion of independence, while still modeling the same potential computations (see
the technical report [88]).

De�nition 5.2 (process). A process is a con�guration 〈p, θ, e〉, where p is its pid, θ
an environment (a substitution of values for variables), and e an expression.

In order to de�ne a system (roughly, a pool of processes interacting through
message exchange), we �rst need the notion of global mailbox.

De�nition 5.3 (global mailbox). We de�ne a global mailbox, Γ, as a multiset of
triples of the form (sender pid, target pid,message). Given a global mailbox Γ,
we let Γ∪{(p, p′, v)} denote a new mailbox also including the triple (p, p′, v), where
we use “ ∪” as multiset union.

In Erlang, the order of two messages sent directly from process p to process p′
is kept if both are delivered; see [41, Section 10.8].2 To enforce such a constraint, we
could de�ne a global mailbox as a collection of FIFO queues, one for each sender-
receiver pair. In this work, however, we keep Γ a multiset. �is solution is both
simpler and more general since FIFO queues serve only to select those computa-
tions satisfying the constraint. Nevertheless, if our logging approach is applied to a
computation satisfying the above constraint, then our replay computation will also
satisfy it, thus replay does not introduce spurious computations.

De�nition 5.4 (system). A system is a pair Γ; Π, where Γ is a global mailbox and Π
is a pool of processes, denoted as 〈p1, θ1, e1〉 | · · · | 〈pn, θn, en〉; here “ |” represents
an associative and commutative operator. We o�en denote a system as Γ; 〈p, θ, e〉|Π
to point out that 〈p, θ, e〉 is an arbitrary process of the pool.

A system is initial if it has the form { }; 〈p, id, e〉, where { } is an empty global
mailbox, p is a pid, id is the identity substitution, and e is an expression.

2Current implementations only guarantee this restriction within the same node.
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(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, θ, e〉 |Π ↪→p,seq Γ; 〈p, θ′, e′〉 |Π

(Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′ and ` is a fresh symbol
Γ; 〈p, θ, e〉 |Π ↪→p,send(`) Γ ∪ {(p, p′, {v, `})}; 〈p, θ′, e′〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p′, p, {v, `})}; 〈p, θ, e〉 |Π ↪→p,rec(`) Γ; 〈p, θ′θi, e′{κ 7→ ei}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and p′ is a fresh pid
Γ; 〈p, θ, e〉 |Π ↪→p,spawn(p′) Γ; 〈p, θ′, e′{κ 7→ p′}〉 | 〈p′, id, apply a/n (vn)〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, θ, e〉 |Π ↪→p,self Γ; 〈p, θ′, e′{κ 7→ p}〉 |Π

Figure 5.3: Logging semantics

Following the style in [109], the semantics of the language is de�ned in a mod-
ular way, so that the labeled transition relations −→ and ↪→ model the evaluation
of expressions and the reduction of systems, respectively. Given an environment θ
and an expression e, we denote by θ, e l−→ θ′, e′ a one-step reduction labeled with l.
�e relation l−→ follows a typical call-by-value semantics for side-e�ect free expres-
sions; for expressions with side-e�ects, we label the reduction with the information
needed to perform the side-e�ects within the system rules of Figure 5.3. We refer
to the rules of Figure 5.3 as the logging semantics, since the relation is labeled with
some basic information used to log the steps of a computation (see Section 5.3). For
now, the reader can safely ignore these labels (actually, labels will be omi�ed when
irrelevant). �e topics of this work are orthogonal to the evaluation of expressions,
thus we refer the reader to [88] for the formalization of the rules of l−→. Let us now
brie�y describe the interaction between the reduction of expressions and the rules
of the logging semantics:

• A one-step reduction of an expression without side-e�ects is labeled with τ .
In this case, rule Seq in Fig. 5.3 is applied to update correspondingly the envi-
ronment and expression of the considered process.

• An expression p′ ! v is reduced to v, with label send(p′, v), so that rule Send in
Fig. 5.3 can add the triple (p, p′, {v, `}) to Γ (p is the process performing the
send). �e message is tagged with some fresh (unique) identi�er `. �ese tags
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allow us to track messages and avoid confusion when several messages have
the same value (these tags are similar to the timestamps used in [106]).

• �e remaining functions, receive, spawn and self , pose an additional problem:
their value cannot be computed locally. �erefore, they are reduced to a fresh
distinguished symbol κ, which is then replaced by the appropriate value in
the system rules. In particular, a receive statement receive cln end is reduced
to κ with label rec(κ, cln). �en, rule Receive in Fig. 5.3 nondeterministically
checks if there exists a triple (p′, p, {v, `}) in the global mailbox that matches
some clause in cln; pa�ern matching is performed by the auxiliary function
matchrec. If the matching succeeds, it returns the pair (θi, ei) with the match-
ing substitution θi and the expression in the selected branch ei. Finally, κ is
bound to the expression ei within the derived expression e′.

• For a spawn, an expression spawn(a/n, [vn]) is also reduced to κ with label
spawn(κ, a/n, [vn]). Rule Spawn in Fig. 5.3 then adds a new process with
a fresh pid p′ initialized with an empty environment id and the application
apply a/n (v1, . . . , vn). Here, κ is bound to p′, the pid of the spawned process.

• Finally, the expression self() is reduced to κ with label self(κ) so that rule
Self in Fig. 5.3 can bind κ to the pid of the given process.

We o�en refer to reduction steps derived by the system rules as actions taken
by the chosen process.

Example 5.5. Let us consider the program of Example 5.1 and the initial system
{ }; 〈c, id, apply main/0 ()〉, where c is the pid of the process. A possible (faulty)
computation from this system is shown in Fig. 5.4 (the selected expression at each
step is underlined).3 Here, we ignore the labels of the relation ↪→. Moreover, we
skip the steps that just bind variables and we do not show the bindings of variables
but substitute them for their values for clarity.

Independence.

In order to de�ne a causal-consistent replay semantics we need not only an inter-
leaving semantics such as the one we just presented, but also a notion of causality
or, equivalently, the opposite notion of independence. To this end, we use the labels

3 Roughly speaking, the problem comes from the fact that the messages reach the server in the
wrong order. Note that this faulty derivation is possible even by considering Erlang’s policy on the
order of messages, since they follow a di�erent path.
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{ }; 〈c, , apply main/0 ()〉
↪→ { }; 〈c, , let S = spawn(server/0, [ ]) in . . .〉
↪→ { }; 〈c, , let P = spawn(proxy/0, [ ]) in apply client/2 (P, s)〉 | 〈s, , apply server/0 ()〉
↪→ { }; 〈c, , apply client/2 (p, s)〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {self(), 40}} in . . .〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , apply server/0 ()〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , receive . . .〉 | 〈p, , apply proxy/0 ()〉
↪→ { }; 〈c, , let X = p ! {s, {c, 40}} in . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c,p, {{s, {c, 40}}, `1})}; 〈c, , let Y = s ! 2 in . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c,p, {{s, {c, 40}}, `1}), (c, s, {2, `2})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , receive . . .〉
↪→ {(c, s, {2, `2})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , let W = s ! {c, 40} in . . .〉
↪→ {(c, s, {2, `2}), (p, s, {{c, 40}, `3})}; 〈c, , receive . . .〉 | 〈s, , receive . . .〉 | 〈p, , apply proxy/0 ()〉
↪→ {(p, s, {{c, 40}, `3})}; 〈c, , receive . . .〉 | 〈s, , error〉 | 〈p, , apply proxy/0 ()〉

Figure 5.4: Faulty derivation with the client/server of Example 5.1

of the logging semantics (see Figure 5.3). �ese labels include the pid p of the pro-
cess that performs the transition, the rule used to derive it and, in some cases, some
additional information: a message tag ` in rules Send and Receive, and the pid p′ of
the spawned process in rule Spawn.

Before formalizing the notion of independence, we need to introduce some nota-
tion and terminology. Given systems s0, sn, we call s0 ↪→∗ sn, which is a shorthand
for s0 ↪→p1,r1 . . . ↪→pn,rn sn, n ≥ 0, a derivation. One-step derivations are sim-
ply called transitions. We use d, d′, d1, . . . to denote derivations and t, t′, t1, . . . for
transitions. Given a derivation d = (s1 ↪→∗ s2), we de�ne init(d) = s1. Two
derivations, d1 and d2, are said coinitial if init(d1) = init(d2).

For simplicity, in the following, we consider derivations up to renaming of bound
variables. Under this assumption, the semantics is almost deterministic, i.e., the
main sources of non-determinism are the selection of a process p and of the message
to be retrieved by p in ruleReceive . Choices of the fresh identi�er ` for messages and
of the pid p′ of new processes are also non-deterministic. Note that each process can
perform at most one transition for each label, i.e., s ↪→p,r s1 and s ↪→p,r s2 trivially
implies s1 = s2.

We now instantiate to our se�ing the well-known happened-before relation [78],
and the related notion of independent transitions:4

4Here, we use the term independent, instead of concurrent as in [78], since the la�er has a slightly
di�erent meaning in the literature of causal-consistency.
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De�nition 5.6 (happened-before, independence). Given transitions t1 = (s1 ↪→p1,r1

s′1) and t2 = (s2 ↪→p2,r2 s
′
2), we say that t1 happened before t2, in symbols t1  t2,

if one of the following conditions holds:

• they consider the same process, i.e., p1 = p2, and t1 comes before t2;

• t1 spawns a process p, i.e., r1 = spawn(p), and t2 is performed by process p,
i.e., p2 = p;

• t1 sends a message `, i.e., r1 = send(`), and t2 receives the same message `,
i.e., r2 = rec(`).

Furthermore, if t1  t2 and t2  t3, then t1  t3 (transitivity). Two transitions t1
and t2 are independent if t1 6 t2 and t2 6 t1.

Switching consecutive independent transitions does not change the �nal state:

Lemma 5.7 (switching lemma). Let t1 = (s1 ↪→p1,r1 s2) and t2 = (s2 ↪→p2,r2

s3) be consecutive independent transitions. �en, there are two consecutive transitions
t2〈〈t1 = (s1 ↪→p2,r2 s4) and t1〉〉t2 = (s4 ↪→p1,r1 s3) for some system s4.

�e happened-before relation gives rise to an equivalence relation equating all
derivations that only di�er in the switch of independent transitions. Formally,

De�nition 5.8 (causally equivalent derivations). Let d1 and d2 be derivations under
the logging semantics. We say that d1 and d2 are causally equivalent, in symbols
d1 ≈ d2, if d1 can be obtained from d2 by a �nite number of switches of pairs of
consecutive independent transitions.

Causal equivalence is an instance of the trace equivalence in [99].

5.3 Logging Computations.

In this section, we introduce a notion of log for a computation. Basically, we aim to
analyze in a debugger a faulty behavior that occurs in some execution of a program.
To this end, we need to extract from an actual execution enough information to
replay it inside the debugger. Actually, we do not want to replay necessarily the
exact same execution, but a causally equivalent one. In this way, the programmer
can focus on some actions of a particular process, and actions of other processes are
only performed if needed (formally, if they happened-before these actions). As we
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will see in the next section, this ensures that the considered misbehaviors will still
be replayed.

In a practical implementation (see the technical report [88]), one should instru-
ment the program so that its execution in the actual environment produces a col-
lection of sequences of logged events (one sequence per process). In the following,
though, we exploit the logging semantics and, in particular, part of the informa-
tion provided by the labels. �e two approaches are equivalent, but the chosen one
allows us to formally prove a number of properties in a simpler way.

One could argue (as in, e.g., [106]) that logs should only store information about
the receive events, since this is the only nondeterministic action (once a process is
selected). However, this is not enough in our se�ing, where:

• We need to log the sending of a message since this is where messages are
tagged, and we need to know its (unique) identi�er to be able to relate the
sending and receiving of each message.

• We also need to log the spawn events, since the generated pids are needed
to relate an action to the process that performed it (spawn events are not
considered in [106] and, thus, their set of processes is �xed).

We note that other nondeterministic events, such as input from the user or from ex-
ternal services, should also be logged in order to correctly replay executions involv-
ing them. One can deal with them by instrumenting the corresponding primitives
to log the input values, and then use these values when replaying the execution. Es-
sentially, they can be dealt with as the receive primitive. Hence, we do not present
them in detail to keep the presentation as simple as possible.

In the following, (ordered) sequences are denoted by w = (r1, r2, . . . , rn), n ≥
1, where () denotes the empty sequence. Concatenation is denoted by +. We write
r+w instead of (r)+w for simplicity.

De�nition 5.9 (log). A log is a (�nite) sequence of events (r1, r2, . . .) where each
ri is either spawn(p), send(`) or rec(`), with p a pid and ` a message identi�er. Logs
are ranged over by ω. Given a derivation d = (s0 ↪→p1,r1 s1 ↪→p2,r2 . . . ↪→pn,rn sn),
n ≥ 0, under the logging semantics, the log of a pid p in d, in symbols L(d, p), is
inductively de�ned as follows:

L(d, p) =


() if n = 0 or p does not occur in d
r1+L(s1 ↪→∗ sn, p) if n > 0, p1 = p, and r1 6∈ {seq, self}
L(s1 ↪→∗ sn, p) otherwise
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�e log of d, wri�en L(d), is de�ned as: L(d) = {(p,L(d, p)) | p occurs in d}. We
sometimes call L(d) the global log of d to avoid confusion with L(d, p). Note that
L(d, p) = ω if (p, ω) ∈ L(d) and L(d, p) = () otherwise.

Example 5.10. Consider the derivation shown in Example 5.5, here referred to as
d. If we run it under the logging semantics, we get the following logs:

L(d, c) = (spawn(s), spawn(p), send(`1), send(`2))
L(d, s) = (rec(`2)) L(d,p) = (rec(`1), send(`3))

In the following we only consider �nite derivations under the logging semantics.
�is is reasonable in our context where the programmer wants to analyze in the
debugger a �nite (possibly incomplete) execution showing a faulty behavior.

An essential property of our semantics is that causally equivalent derivations
have the same log, i.e., the log depends only on the equivalence class, not on the
selection of the representative inside the class. �e reverse implication, namely
that (coinitial) derivations with the same global log are causally equivalent, holds
provided that we establish the following convention on when to stop a derivation:

De�nition 5.11 (fully-logged derivation). A derivation d is fully-logged if, for each
process p, its last transition s1 ↪→p,r s2 in d (if any) is a logged transition, i.e.,
r 6∈ {seq, self}. In particular, if a process performs no logged transition, then it
performs no transition at all.

Restricting to fully-logged derivations is needed since only logged transitions
contribute to logs. Otherwise, two derivations d1 and d2 could produce the same
log, but di�er simply because, e.g., d1 performs more non-logged transitions than
d2. Restricting to fully-logged derivations, we include the minimal amount of tran-
sitions needed to produce the observed log.

Finally, we present a key result of our logging semantics. It states that two
derivations are causally equivalent i� they produce the same log.

�eorem 5.12. Let d1, d2 be coinitial fully-logged derivations. L(d1) = L(d2) i�
d1 ≈ d2.

5.4 A Causal-Consistent Replay Semantics

In this section, we introduce an uncontrolled replay semantics. It takes a program
and the log of a given derivation, and allows us to replay any causally equivalent
derivation. �is semantics constitutes the kernel of our replay framework. �e
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(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, ω, θ, e〉 |Π ⇀p,seq,{s} Γ; 〈p, ω, θ′, e′〉 |Π

(Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′

Γ; 〈p, send(`)+ω, θ, e〉 |Π ⇀p,send(`),{s,`⇑} Γ ∪ {(p, p′, {v, `})}; 〈p, ω, θ′, e′〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p′, p, {v, `})}〈p, rec(`)+ω, θ, e〉 |Π
⇀p,rec(`),{s,`⇓} Γ; 〈p, ω, θ′θi, e′{κ 7→ ei}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ and ω′ = L(d, p′)

Γ; 〈p, spawn(p′)+ω, θ, e〉 |Π ⇀p,spawn(p′),{s,spp′} Γ; 〈p, ω, θ′, e′{κ 7→ p′}〉
| 〈p′, ω′, id, apply a/n (vn)〉 |Π

(Self )
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, ω, θ, e〉 |Π ⇀p,self,{s} Γ; 〈p, ω, θ′, e′{κ 7→ p}〉 |Π

Figure 5.5: Uncontrolled replay semantics

term uncontrolled indicates that the semantics speci�es how to perform replay, but
there is no policy to select the applicable rule when more than one is enabled. �e
uncontrolled semantics is suitable to set the basis of our replay mechanism, but does
not allow one to focus on the causes of a given action. For this reason, in Section 5.5,
we build on top of this semantics a controlled one, where the selection of actions is
driven by the queries from the user.

In the following, we introduce a transition relation ⇀ to specify replay. Tran-
sition ⇀ is similar to the logging semantics ↪→ (Figure 5.3) but it is now driven by
the considered log. �us, processes have the form 〈p, ω, θ, e〉, with ω a log.

�e uncontrolled causal-consistent replay semantics is shown in Figure 5.5. For
technical reasons, labels of the replay semantics contain the same information as
the labels of the logging semantics. Moreover, the labels now also include a set of
replay requests. �e reader can ignore these elements until the next section. For
simplicity, we also consider that the log L(d, p) of each process p in the original
derivation d is a �xed global parameter of the transition rules (see rule Spawn).

�e rules for expressions are the same as in the logging semantics (an advantage
of the modular design). �e replay semantics is similar to the logging semantics,
except that logs �x some parameters: the fresh message identi�er in rule Send , the
message received in rule Receive , and the fresh pid in rule Spawn .

Example 5.13. Consider the logs of Example 5.10. �en, we have, e.g., the replay
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{ }; 〈c, (spawn(s), spawn(p), send(`1), send(`2)), , apply main/0 ()〉
⇀ { }; 〈c, (spawn(s), spawn(p), send(`1), send(`2)), , let S = spawn(server/0, [ ]) in . . .〉
⇀ { }; 〈c, (spawn(p), send(`1), send(`2)), , let P = spawn(proxy/0, [ ]) in

apply client/2 (P, s)〉 | 〈s, (rec(`2)), , apply server/0 ()〉
⇀ { }; 〈c, (spawn(p), send(`1), send(`2)), , let P = spawn(proxy/0, [ ]) in

apply client/2 (P, s)〉 | 〈s, (rec(`2)), , receive . . .〉
⇀ { }; 〈c, (send(`1), send(`2)), , apply client/2 (p, s)〉

| 〈s, (rec(`2)), , receive . . .〉 | 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ { }; 〈c, (send(`1), send(`2)), , let X = p ! {s, {self(), 40}} in . . .〉

| 〈s, (rec(`2)), , receive . . .〉 | 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ { }; 〈c, (send(`1), send(`2)), , let X = p ! {s, {c, 40}} in . . .〉

| 〈s, (rec(`2)), , receive . . .〉 | 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ {(c,p, {{s, {c, 40}}, `1})}; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (rec(`1), send(`3)), , apply proxy/0 ()〉
⇀ {(c,p, {{s, {c, 40}}, `1})}; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (rec(`1), send(`3)), , receive . . .〉
⇀ { }; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (send(`3)), , let s ! {c, 40} in . . .〉
⇀ {(p, s, {{c, 40}, `3})}; 〈c, (send(`2)), , let Y = s ! 2 in . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (), , apply proxy/0 ()〉
⇀ {(p, s, {{c, 40}, `3}), (c, s, {2, `2})}; 〈c, (), , receive . . .〉 | 〈s, (rec(`2)), , receive . . .〉

| 〈p, (), , apply proxy/0 ()〉
⇀ {(p, s, {{c, 40}, `3})}; 〈c, (), , receive . . .〉 | 〈s, (), , error〉 | 〈p, (), , apply proxy/0 ()〉

Figure 5.6: Uncontrolled replay derivation with the traces of Example 5.10

derivation in Fig. 5.6. �e actions performed by each process are the same as in
the original derivation in Example 5.5, but the interleavings are slightly di�erent.
Moreover, a�er ten steps, the server is waiting for a message, the global mailbox
contains a matching message but, in contrast to the logging semantics, receive can-
not proceed since the message identi�er in the log does not match (`2 vs `3).

Basic Properties of the Replay Semantics.

Here, we show that the uncontrolled replay semantics is consistent and we relate it
with the logging semantics. We need the following auxiliary functions:

De�nition 5.14. Let d = (s1 ↪→∗ s2) be a derivation under the logging semantics,
with s1 = Γ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉. �e system corresponding to s1 in the
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replay semantics is de�ned as follows:

addLog(L(d), s1) = Γ; 〈p1,L(d, p1), θ1, e1〉 | . . . | 〈pn,L(d, pn), θn, en〉

Conversely, given a system s = Γ; 〈p1, ω1, θ1, e1〉 | . . . | 〈pn, ωn, θn, en〉 in the re-
play semantics, we let del(s) be the system obtained from s by removing logs, i.e.,
del(s) = Γ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉, and similarly for derivations.

In the following, we extend the notions of log and coinitial derivations, as well
as function init, to replay derivations in the obvious way. Furthermore, we now call
a system s′ initial under the replay semantics if there exists a derivation d under the
logging semantics, and s′ = addLog(L(d), init(d)).

We extend the notion of fully-logged derivations to our replay semantics:

De�nition 5.15 (fully-logged replay derivation). A derivation d under the replay
semantics is fully-logged if, for each process p, the log is empty and its last transition
(if any) is a logged transition.

Note that, in addition to De�nition 5.11, we now require that processes consume
all their logs.

We will only consider systems reachable from the execution of a program:

De�nition 5.16 (reachable systems). A system s is reachable if there exists an initial
system s0 such that s0 ⇀

∗ s.

Since only reachable systems are of interest (non-reachable systems are ill-formed),
in the following we assume that all systems are reachable.

Now, we can tackle the problem of proving that our replay semantics preserves
causal equivalence, i.e., that the original and the replay derivations are always causally
equivalent.

�eorem 5.17. Let d be a fully-logged derivation under the logging semantics. Let d′

be any �nite fully-logged derivation under the replay semantics such that init(d′) =
addLog(L(d), init(d)). �en d ≈ del(d′).

Usefulness for Debugging.

Now, we show that our replay semantics is indeed useful as a basis for designing a
debugging tool. In particular, we prove that a (faulty) behavior occurs in the logged
derivation i� any replay derivation also exhibits the same faulty behavior, hence
replay is correct and complete.
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In order to formalize such a result we need to �x the notion of faulty behavior
we are interested in. For us, a misbehavior is a wrong system, but since the sys-
tem is possibly distributed, we concentrate on misbehaviors visible from a “local”
observer. Given that our systems are composed of processes and messages in the
global mailbox, we consider that a (local) misbehavior is either a wrong message in
the global mailbox or a process with a wrong con�guration.

�eorem 5.18 (Correctness and completeness). Let d be a fully-logged derivation
under the logging semantics. Let d′ be any fully-logged derivation under the uncon-
trolled replay semantics such that init(d′) = addLog(L(d), init(d)). �en:

1. there is a system Γ; Π in dwith a con�guration 〈p, θ, e〉 in Π i� there is a system
Γ′; Π′ in d′ with a con�guration 〈p, θ, e〉 in del(Γ′; Π′);

2. there is a system Γ; Π in dwith a message (p, p′, {v, `}) in Γ i� there is a system
Γ′; Π′ in d′ with a message (p, p′, {v, `}) in Γ′.

�e result above is very strong: it ensures that a misbehavior occurring in a
logged execution is replayed in any possible fully-logged derivation. �is means
that any scheduling policy is �ne for replay. Furthermore, this remains true what-
ever actions the user takes: either the misbehavior is reached, or it remains in any
possible forward computation.

One may wonder whether more general notions of misbehavior make sense.
Above, we consider just “local” observations. One could ask for more than one local
observation to be replayed. By applying the result above to multiple observations
we get that all of them will be replayed, but, if they concern di�erent processes or
messages, we cannot ensure that they are replayed at the same time or in the same
order. For instance, in the derivation of Figure 5.4, process c sends the message with
identi�er `2 before process p receives the message with identi�er `1, while in the
replay derivation of Figure 5.6 the two actions are executed in the opposite order.
Only a super user able to see the whole system at once could see such a (mis)behavior,
which are thus not relevant in our context.

5.5 Controlled Replay Semantics

In this section, we introduce a controlled version of the replay semantics. �e se-
mantics in the previous section allows one to replay a given derivation and be guar-
anteed to replay, sooner or later, any local misbehavior. In practice, though, one
normally knows in which process p the misbehavior appears, and thus (s)he wants
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Γ; Π ⇀p,r,Ψ′ Γ′; Π′ ∧ ψ ∈ Ψ′

[[Γ; Π]]{p,ψ}+Ψ  [[Γ′; Π′]]Ψ

Γ; Π ⇀p,r,Ψ′ Γ′; Π′ ∧ ψ 6∈ Ψ′

[[Γ; Π]]{p,ψ}+Ψ  [[Γ′; Π′]]{p,ψ}+Ψ

Γ; 〈p, rec(`)+ω, θ, e〉 |Π 6⇀p,r,Ψ′ ∧ sender(`) = p′

[[Γ; 〈p, rec(`)+ω, θ, e〉 |Π]]{p,ψ}+Ψ  [[Γ; 〈p, rec(`)+ω, θ, e〉 |Π]]({p′,`⇑},{p,ψ})+Ψ

6 ∃p in Π ∧ parent(p) = p′

[[Γ; Π]]{p,ψ}+Ψ  [[Γ; Π]]({p′,spp},{p,ψ})+Ψ

Figure 5.7: Controlled replay semantics

to focus on a process p or even on some of its actions. However, to correctly re-
play these actions, one also needs to replay the actions that happened before them.
We present in Figure 5.7 a semantics where the user can specify which actions (s)he
wants to replay, and the semantics takes care of replaying them. Replaying an action
requires to replay all and only its causes. Notably, the bug causing a misbehavior
causes the action showing the misbehavior.

Here, given a system s, we want to start a replay until a particular action ψ is
performed on a given process p. We denote such a replay request with [[s]]({p,ψ}).
In general, the subscript of [[ ]] is a stack of requests, where the �rst element is the
most recent one. In this paper, we consider the following replay requests:

• {p, s}: one step of process p (the extension to n steps is straightforward);

• {p, `⇑}: request for process p to send the message tagged with `;

• {p, `⇓}: request for process p to receive the message tagged with `;

• {p, spp′}: request for process p to spawn the process p′.

Variable creations as not valid targets for replay requests, since variable names are
not known before their creation (variable creations are not logged). �e requests
above are satis�ed when a corresponding uncontrolled transition is performed. In-
deed, the third element labeling the relations of the replay semantics in Figure 5.5
is the set of requests satis�ed in the corresponding step.

Let us explain the rules of the controlled replay semantics in Fig. 5.7. Here, we
assume that the computation always starts with a single request.

• If the desired process p can perform a step satisfying the request ψ on top of
the stack, we do it and remove the request from the stack (�rst rule).
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• If the desired process p can perform a step, but it does not satisfy the request
ψ, we update the system but keep the request in the stack (second rule).

• If a step on the desired process p is not possible, then we track the depen-
dencies and add a new request on top of the stack. We have two rules: one
for adding a request to a process to send a message we want to receive and
another one to spawn the process we want to replay if it does not exist. Here,
we use the auxiliary functions sender and parent to identify, respectively, the
sender of a message and the parent of a process. Both functions sender and
parent are easily computable from the logs in L(d).

�e relation can be seen as a controlled version of the uncontrolled replay seman-
tics in the sense that each derivation of the controlled semantics corresponds to a
derivation of the uncontrolled one, while the opposite is not generally true. Notions
for derivations and transitions are easily extended to controlled derivations. We
also need a notion of projection from controlled systems to uncontrolled systems:
uctrl([[Γ; Π]]Ψ) = Γ; Π. �e notion of projection trivially extends to derivations.

�eorem 5.19 (Soundness). For each controlled derivation d, uctrl(d) is an uncon-
trolled derivation.

While simple, this result allows one to recover many relevant properties from
the uncontrolled semantics. For instance, by using the controlled semantics, if start-
ing from a system s = addLog(L(d), init(d)) for some logging derivation d we �nd
a wrong message (p, p′, {v, `}), then we know that the same message exists also in
d (from �eorem 5.18).

Our controlled semantics is not only sound but also minimal: causal-consistent
replay redoes the minimal amount of actions needed to satisfy the replay request.

Here, we need to restrict the a�ention to requests that ask to replay transitions
which are in the future of the process.

De�nition 5.20. A controlled system c = [[s]]({p,ψ}) is well initialized i� there are a
derivation d under the logging semantics, a system s0 = addLog(L(d), init(d)), an
uncontrolled derivation s0 ⇀

∗ s, and an uncontrolled derivation from s satisfying
{p, ψ}.

�e existence of a derivation satisfying the request can be e�ciently checked.
For replay requests {p, s} it is enough to check that process p can perform a step,
for other replay requests it is enough to check the process log.
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�eorem 5.21 (Minimality). Let d be a controlled derivation such as init(d) = [[s]]({p,ψ})
is well-initialized. Derivation uctrl(d) has minimal length among all uncontrolled
derivations d′ with init(d′) = s including at least one transition satisfying the request
{p, ψ}.

5.6 Related Work and Conclusion

In this work, we have introduced (controlled) causal-consistent replay. It is strongly
related (indeed dual) to the notion of causal-consistent reversibility, and its instance
on debugging, causal-consistent reversible debugging, introduced in [51] for the
toy language µOz. Beyond this, it has only been used so far in the CauDEr [85, 84]
debugger for Erlang, which we took as a starting point for our prototype implemen-
tation (see [88]). Causal-consistent rollback has also been studied in the context of
the process calculus HOπ [81] and the coordination language Klaim [53]. We refer
to [51] for a description of the relations between causal-consistent debugging and
other forms of reversible debugging.

�e basic ideas in this paper are also applicable to other message-passing lan-
guages and calculi. In principle, the approach could also be applied to shared mem-
ory languages, yet it would require to log all interactions with shared memory
(which may give rise, in principle, to an ine�cient scheme).

An approach to record and replay for actor languages is introduced in [8]. While
we concentrate on the theory, they focus on low-level issues: dealing with I/O, pro-
ducing compact logs, etc. Actually, we could consider some of the ideas in [8] to
produce more compact logs and thus reduce our instrumentation overhead.

At the semantic level, the work closest to ours is the reversible semantics for Er-
lang in [86]. However, all our semantics abstract away local queues in processes and
their management. �is makes the notion of independence much more natural, and
it avoids some spurious con�icts between deliveries of di�erent messages present
in [86]. Moreover, our replay semantics is driven by the log of an actual execution,
while the one in [86] is not. Finally, our controlled semantics, built on top of the
uncontrolled reversible semantics, is much simpler than the low-level controlled se-
mantics in [86] which, anyway, is based on undoing the actions of an execution up
to a given checkpoint (rollback requests appeared later, in [85]).

None of the works above treats causal-consistent replay and, as far as we know,
such notion has never been explored. For instance, no reference to it appears in a
recent survey [26]. �e survey classi�es our approach as a message-passing multi-
processor scheme (the approach is studied in a single-processor multi-process set-
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ting, but it makes no use of the single-processor assumption). It is in between
content-based schemes (that record the content of the messages) and ordering-based
schemes (that record the source of the messages), since it registers just unique iden-
ti�ers for messages. �is reduces the size of the log (content of long messages is not
stored) w.r.t. content-based schemes, yet di�erently from ordering-based schemes it
does not necessarily require to replay the system from a global checkpoint (but we
do not yet consider checkpoints).

A related ordering-based scheme is [106]: it uses race detection to avoid logging
all message exchanges, and we may try to integrate it in our approach in the future
(though it considers only systems with a �xed number of processes). A content-
based work is [96] for MPI programs, which does not replay calls to MPI functions,
but just takes the values from the log. By applying this approach in our case, the
state of Γ would not be replayed, and causal-consistent replay would not be possible
since no relation between send and receive is kept.

Our work is also related to slicing, and in particular to [116], since it also deals
with concurrent systems. Both approaches are based on causal consistency, but
slicing considers the whole computation and extracts the fragment of it needed to
explain a visible behavior, while we instrument the computation so to be able to go
back and forward. Other di�erences include the considered languages—pi calculus
vs Erlang—, the style of the semantics—labeled transitions vs reductions—, etc.
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6.1 Introduction

So�ware testing is one of the most widely used approaches for program validation.
In this context, symbolic execution [74] was introduced as an alternative to random
testing —which usually achieves a poor code coverage— or the complex and time-
consuming design of test-cases by the programmer or so�ware tester. In symbolic
execution, one replaces the input data by symbolic values. �en, at each branching
point of the execution, all feasible paths are explored and the associated constraints
on symbolic values are stored. Symbolic states thus include a so called path condition
with the constraints stored so far. Test cases are �nally produced by solving the con-
straints in the leaves of the symbolic execution tree, which is typically incomplete
since the number of states is o�en in�nite.

Unfortunately, both the huge search space and the complexity of the constraints
make test case generation based on symbolic execution di�cult to scale. For in-
stance, as soon as the path condition cannot be proved satis�able, the execution of
this branch is terminated in order to ensure soundness, giving rise to a poor cover-
age in many cases.

Concolic execution [56, 125] is a recent proposal that combines concrete and
symbolic execution, and overcomes some of the drawbacks of previous approaches.
Essentially, concolic execution takes a program and some (initially random) concrete
input data, and performs both a concrete and a symbolic execution that mimics
the steps of the concrete execution. In this context, symbolic execution is simpler
since we know the execution path that must be followed (the same of the concrete
execution). Moreover, if the path condition becomes too complex and the constraint
solver cannot prove its satis�ability, we can still push some concrete data from the
concrete execution, thus simplifying it and o�en allowing the symbolic execution
to continue. �is technique forms the basis of some model checking and test-case
generation tools (see, e.g., SAGE [57] and Java Path�nder [115]). Test cases produced
with this technique usually achieve a be�er code coverage than previous approaches
based solely on symbolic execution. Moreover, it scales up be�er to complex or large
programs.

Despite its popularity in the imperative and object-oriented programming paradigms,
we can only �nd a few preliminary approaches to concolic execution in the con-
text of functional and logic programming. To the best of our knowledge, the �rst
approach for a high-level declarative programming language is [139], which pre-
sented a concolic execution scheme for logic programs, which was only aimed at a
simple form of statement coverage. �is approach was later extended and improved
in [100]. In the context of functional programming, [138] introduced a formalization
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of both concrete and symbolic execution for a simple subset of the functional and
concurrent language Erlang [6], but the concolic execution procedure was barely
sketched. More recently, [54] presented the design and implementation of a con-
colic testing tool for a complete functional subset of Erlang (i.e., the concurrency
features are not considered in the paper). �e tool, called CutEr, is publicly avail-
able from https://github.com/aggelgian/cuter.

However, the essential component of all these approaches is an interpreter aug-
mented to also deal with symbolic values. In contrast, in this paper, we consider
whether concolic execution can be performed by program instrumentation. We an-
swer positively this question by introducing an stepwise approach based on �a�en-
ing the initial program so that the return value of every expression is a pa�ern, and
then instrumenting the resulting program so that its execution outputs a stream of
events which su�ce to reconstruct the associated symbolic execution. �e main ad-
vantage w.r.t. the traditional approach to concolic execution is that the instrumented
program can be run in any environment, even non-standard ones. For instance, one
could run the instrumented program in a model checking environment like Con-
cuerror [61] so that its execution would produce the sequences of events for all
relevant interleavings, which might be useful for combining concolic testing and
model checking.

�e paper is organized as follows. Section 6.2 presents the considered language.
�en, in Section 6.3, we present the instrumented semantics that outputs a sequence
of events for each concrete execution. Section 6.4 introduces a program instrumen-
tation that produces the same sequence of events but using the standard semantics.
Section 6.5 presents a Prolog procedure for reconstructing the associated symbolic
execution from the sequence of events. Finally, Section 6.6 concludes and points out
some directions for further research.

6.2 �e Language

In this section, we introduce the language considered in this paper. Our language
is inspired in the concurrent functional language Erlang [6], which has a number of
distinguishing features, like dynamic typing, concurrency via asynchronous mes-
sage passing or hot code loading, that make it especially appropriate for distributed,
fault-tolerant, so� real-time applications. Erlang’s popularity is growing today due
to the demand for concurrent services. But this popularity will also demand the
development of powerful testing and veri�cation techniques, thus the opportunity
of our research.
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pgm ::= a/n = fun (X1, . . . , Xn)→ e. | pgm pgm

Exp 3 e ::= a | X | [ ] | [e1|e2] | {e1, . . . , en} | apply e0 (e1, . . . , en)
| case e of clauses end | let p = e1 in e2 | do e1 e2

clauses ::= p1 → e1; . . . ; pn → en

Pat 3 p ::= [p1|p2] | [ ] | {p1, . . . , pn} | a | X
Value 3 v ::= [v1|v2] | [ ] | {v1, . . . , vn} | a

Figure 6.1: Core Erlang Syntax

Despite the fact that we plan to deal with full Erlang in the future, in this paper
we only consider a functional subset of Core Erlang [24], an intermediate language
used internally by the compiler.

�e basic objects of the language are variables (denoted by X,Y, . . . ∈ Var),
atoms (denoted by a, b, . . . ) and constructors (which are �xed in Erlang to lists,
tuples and atoms); de�ned functions are named using atoms too (we will use, e.g.,
f/n, g/m, . . .). �e syntax for Core Erlang programs and expressions obeys the rules
shown in Figure 6.1. Programs are sequences of function de�nitions. Each function
f/n is de�ned by a rule fun (X1, . . . , Xn) → e. where X1, . . . , Xn are distinct
variables and the body of the function, e, can be an atom, a process identi�er, a
variable, a list, a tuple, a function application, a case distinction, a let expression or
a do construct (i.e., do e1 e2 evaluates sequentially e1 and, then, e2, so the value of
e1 is lost). Pa�erns are made of lists, tuples, atoms, and variables. Values are similar
to pa�erns but cannot contain variables.

Example 6.1. Consider the Erlang function (le�) and its translation to Core Erlang
(right) shown in Figure 6.2, where some minor simpli�cations have been applied.
Observe that Erlang’s sequence operator “,” is translated to a do operator when no
value should be passed (using pa�ern matching) to the next elements in the se-
quence, and to a let expression otherwise. Note also that, despite the fact that this
is not required by the syntax, some function applications are �a�ened in order to
avoid nested applications. For this purpose, some additional let expressions are in-
troduced. Moreover, additional default alternatives are added to each case expres-
sion in order to catch pa�ern matching errors, so it is common to have overlapping
pa�erns in the clauses of a case construct.

As we will see later, for our instrumentation to be correct, we require some ad-
ditional constraints on the syntax of programs. Basically, we require the following:
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f(X,Y ) → g(X),
case h(X) of

a→ A = h(Y ),
g(A);

b→ g(h([ ]))
end.

f/2 = fun (X,Y )→ do apply g/1 (X),
case apply h/1 (X) of

a→ let Z = apply h/1 (Y )
in apply g/1 (Z);

b→ let V = apply h/1 ([ ])
in apply g/1 (V );

W → fail
end.

Figure 6.2: Erlang function and its translation to Core Erlang

pgm ::= a/n = fun (X1, . . . , Xn)→ let X = e in X. | pgm pgm

Exp 3 e ::= a | X | [ ] | [p1|p2] | {p1, . . . , pn} | let p = e1 in e2 | do e1 e2

| let p = apply p0 (p1, . . . , pn) in e | let p1 = case p2 of clauses end in e

clauses ::= p1 → e1; . . . ; pn → en

Pat 3 p ::= [p1|p2] | [ ] | {p1, . . . , pn} | a | X
Value 3 v ::= [v1|v2] | [ ] | {v1, . . . , vn} | a

Figure 6.3: Flat language syntax

• both the name and the arguments of a function application must be pa�erns,

• the return value of a function must be a pa�ern,

• the argument of a case expression must be a pa�ern, and

• both function applications and case expressions can only occur in the right-
hand side of a let expression.

�e new constraints are needed in order to keep track of the intermediate values
returned by expressions. �ese values are stored in a pa�ern, which can then be
used by other expressions or returned as the result of a function application.

�e restricted syntax is shown in Figure 6.3. In the following, we call the pro-
grams ful�lling this syntax �at programs. In practice, one can transform (purely
functional) Core Erlang programs to our �at syntax using a simple pre-processing
transformation. Furthermore, in the �at language we also require the bound vari-
ables in the body of the functions to have unique, fresh names. �is is not strictly
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necessary, but it simpli�es the presentation by avoiding the use of context scopes
associated to every let expression, etc. (as in [73], where the last binding of a variable
in the environment should be considered to ensure that the right scope is used). We
denote with on a sequence of objects o1, . . . , on. Var(e) denotes the set of variables
appearing in an expression e, and we say that e is ground if Var(e) = ∅.

In the following, we use the function bv to gather the bound variables of an
expression:

De�nition 6.2 (bound variables, bv). Let e be an expression. �e function bv(e)
returns the set of bound variables of e as follows:

bv(e) =



{ } if e ∈ Pat

Var(p) ∪ bv(e′) if e ≡ let p = apply p0 (p1, . . . , pn) in e′

Var(p0) ∪ . . . ∪ Var(pn) if e ≡ let p0 = case p of pn → en end in e′

∪ bv(e1) ∪ . . . ∪ bv(e′)

Var(p) ∪ bv(e1) ∪ bv(e2) if e ≡ let p = e1 in e2

bv(e1) ∪ bv(e2) if e ≡ do e1 e2

where, in the fourth case, we assume that e1 is neither an application nor a case
expression (i.e., it is a pa�ern or another let expression).

6.3 Instrumented Semantics

In this section, we present an instrumented semantics for �at programs that pro-
duces a sequence of events that will su�ce to reconstruct the associated symbolic
execution. Essentially, we need to keep track of function calls, returns, let bindings
and case selections.

First, let us note that the produced events will not show the actual run time
values of the program variables, since they will not help us to reconstruct the as-
sociated symbolic execution. Rather, the events always include the static variable
names. �erefore, in order to avoid variable name clashes, we will consider that
variable names are local to every event. As a consequence, the two �rst elements of
all events are params and vars denoting the list of parameters and the list of bound
variables in the current function, respectively. �ese elements will be matched with
the current values in the symbolic execution built so far in order to set the right
environment for the operation represented by the event. See Section 6.5 for more
details.
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We consider the following events, which will su�ce to reconstruct the symbolic
execution:

• �e �rst event, call(params, vars, p, [p1, . . . , pn]), is associated to a function
application let p = apply p0 (p1, . . . , pn) in e. Here, [p1, . . . , pn] are the argu-
ments of the function call, and p will be used to store the return value of the
function call.

• �e second event is exit(params, vars, p), where p is the pa�ern used to store
the return value of the function body. We will produce an exit event at the
end of every function.

• �e next event is bind(params, vars, p, p′), which binds the pa�ern p from
a generic let expression (i.e., a let expression whose argument is neither an
application nor a case expression) to the return value p′ of that expression
(see function ret below).

• Finally, for each expression of the form

let p = case p0 of p1 → e1; . . . ; pn → en end in e

we have two associated events. �e �rst one is

case(params, vars, i, p0, pi, [(1, p0, p1), . . . , (n, p0, pn)])

Here, we store the position of the selected branch, i, the case argument p0,
the selected pa�ern pi, as well a list with all case branches, which will become
useful for producing alternative input data in the context of concolic testing.
�e second event is exitcase(params, vars, p, p′), where p′ is the return value
of the selected branch (see below).

Before presenting the instrumented semantics, we need the following auxiliary func-
tion that identi�es the return value of an expression:

De�nition 6.3 (return value, ret). Let e be an expression. We let ret(e) denote the
return value of e as follows:

ret(e) =


e if e ∈ Pat
ret(e′) if e ≡ let p = apply p0 (p1, . . . , pn) in e′

ret(e′) if e ≡ let p0 = case p of pn → en end in e′

ret(e2) if e ≡ let p = e1 in e2

ret(e2) if e ≡ do e1 e2
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where, in the fourth case, we assume that e1 is neither an application nor a case
expression (i.e., it is a pa�ern or another let expression).

Note that function ret is not well de�ned for arbitrary programs, e.g., ret(let p =
e in apply e0 (e1, . . . , en)) is unde�ned. Extending the de�nition to cover this
case would not help too since returning an expression which is not a pa�ern —like
apply e0 (e1, . . . , en)— would not be useful to reconstruct the symbolic execution
(where the program is not available, only the sequence of events). �is is why we
transform the original programs to the �at form. In this case, it is immediate to see
from the syntax in Fig. 6.3 that ret would always return a pa�ern for all program
expressions.

�e instrumented semantics for �at programs is formalized in Figure 6.4 follow-
ing the style of a natural (big-step) semantics [73]. Observe that we do not need
closures (as it is common in the natural semantics) since we do not allow fun expres-
sions in the body of a function in this paper. Here, we use an environment θ —i.e., a
mapping from variables to pa�erns— because we need to know the static values of
the variables for the instrumentation (e.g., we use the case argument that appears
statically in the program, rather than the instantiated run time value). �e main
novelty is that, for the instrumentation, we also need to keep track of the function
where an expression occurs. For this purpose, we also introduce a simple context
π that stores this information, i.e., for a given function fun (X1, . . . , Xn) → e we
store a tuple 〈[X1, . . . , Xn], [bv(e)]〉. �e environment is only updated in function
applications, where [bv(e)] denotes a list with the variables returned by bv(e).

Let us brie�y explain the rules of the semantics. Statements have the form π, θ `
e ⇓τ p, where π is the aforementioned context, θ is a substitution (the environment),
e is an expression, τ is a sequence of events, and p is a pa�ern —the value of e.

�e �rst rule deals with pa�erns (including variables, atoms, tuples and lists).
Here, the evaluation just proceeds by applying the current environment θ to the pat-
tern p to bind its variables (if any), which is denoted by pθ. �e associated sequence
of events is ε denoting an empty sequence.

�e next rule deals with function applications. In this case, the context is nec-
essary for se�ing the �rst and second parameters of call and exit events. Note that
since we only consider �at programs, both the function name and the arguments are
pa�erns; thus, their evaluation amounts to binding their variables using the current
environment, which explains why the associated sequences of events are ε. Note
also that, when recursively evaluating the body of the function, we update the con-
text with the information of the function called. �e bound variables are collected
using the function bv; and, as mentioned before, in the �at language we assume that
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π, θ ` p ⇓ε pθ

〈vs, ps〉, θ ` p0 ⇓ε f/m . . . 〈vs, ps〉, θ ` pm ⇓ε p′m
〈[Ym], [bv(e2)]〉, θ ∪ σ ` e2 ⇓τ1 p′ 〈vs, ps〉, θ ∪ σ′ ` e ⇓τ2 p′′

〈vs, ps〉, θ ` let p = apply p0 (pm) in e ⇓call(vs,ps,p,[pm])+τ1+exit([Ym],[bv(e2)],p′′2 )+τ2
p′′

if f/m = fun (Ym)→ e2 ∈ pgm, ret(e2) = p′′2,

match(Ym, p′m) = σ, match(p, p′) = σ′

〈vs, ps〉, θ ` p0 ⇓ε p′0 〈vs, ps〉, θ ∪ σ ` ei ⇓τ1 p′i 〈vs, ps〉, θ ∪ σ′ ` e ⇓τ2 p′

〈vs, ps〉, θ ` let p = case p0 of clauses end in e ⇓case(vs,ps,i,p0,pi,alts)+τ1+exitcase(vs,ps,p,p′i)+τ2
p′

if clauses = p1 → e1; . . . ; pm → em, cmatch(p′0, clauses) = (i, pi, σ),
alts = [(1, p0, p1), . . . , (m, p0, pm)], ret(ei) = p′i, match(p, p′i) = σ′

π, θ ` e1 ⇓τ1 p′1 π, θ ∪ σ ` e2 ⇓τ2 p
π, θ ` let p1 = e1 in e2 ⇓τ1+bind(vs,ps,p1,ret(e1))+τ2 p

if match(p1, p
′
1) = σ

π, θ ` e1 ⇓τ1 p1 π, θ ` e2 ⇓τ2 p2

π, θ ` do e1 e2 ⇓τ1+τ2 p2

Figure 6.4: Flat language instrumented semantics

they all have di�erent, fresh names. Observe that the subcomputation for evaluating
the body of the function called is preceded by the call event and followed by an exit
event. Here, we use the auxiliary function match to compute the matching substi-
tution (if any) between two pa�erns, i.e., match(p1, p2) = σ if Dom(σ) ⊆ Var(p1)
and p1σ = p2, and fail otherwise. In this rule, match(Ym, p′m) just returns the sub-
stitution {Y1 7→ p′1, . . . , Ym 7→ p′m}. �e update of an environment θ using σ is
denoted by θ ∪ σ. Formally, θ ∪ σ = δ such that Xδ = σ(X) if X ∈ Dom(σ)
and Xδ = Xθ otherwise (i.e., σ has higher priority than θ). Observe that we use
the evaluated pa�erns p′1, . . . , p′m to update the environment, but the original, static
pa�erns p1, . . . , pm in the call event.

�e next rule is used to evaluate case expressions. Here, we produce case and
exitcase events that also include the parameter variables of the function and the
bound variables. For selecting the matching branch of the case expression, we use
the auxiliary function cmatch that is de�ned as follows: cmatch(p, p1 → e1; . . . ; pn →
en) = (i, pi, σ) if match(p, pi) = σ for some i ∈ {1, . . . , n} and match(p, pj) = fail



154 6.3. Instrumented Semantics

for all j < i. Informally speaking, cmatch selects the �rst matching branch of the
case expression, which follows the usual semantics of Erlang. As in the previous
rule, note that we use p′0 in cmatch but the original, static pa�ern p0 in the case
event.

�e following rule is is used to evaluate let expressions. It produces a single
bind event which includes, as usual, the parameter variables of the function and the
bound variables. Finally, the last rule deals with do expressions. Here, we proceed
as expected and return the concatenation of the sequences of events produced when
evaluating the subexpressions.

In the following, without loss of generality, we assume that the entry point to
the program is always the distinguished function main/n.

De�nition 6.4 (instrumented execution). Given a �at program pgm and an ini-
tial expression, apply main/n (p1, . . . , pn), with main/n = fun (X1, . . . , Xn) →
e ∈ pgm, its evaluation is denoted by 〈[Xn], [bv(e)]〉, θ ` e ⇓τ v, where θ =
{X1 7→ p1, . . . , Xn 7→ pn} is a substitution, v is the computed value and τ +
exit([Xn], [bv(e)], ret(e)) is the associated sequence of events.

Example 6.5. Let us consider the �at program shown in Figure 6.5. An example
computation for apply main/1 ([a]) with the instrumented semantics is shown in
Figure 6.6. �erefore, the associated sequence of events1 is the following:

call([X], [W ],W, [X,X])
case([X,Y ], [W1, H, T,W2], 2, X, [H|T ], [(1, X, [ ]), (2, X, [H|T ])])
call([X,Y ], [W1, H, T,W2],W2, [T, Y ])
case([X,Y ], [W1, H, T,W2], 1, X, [ ], [(1, X, [ ]), (2, X, [H|T ])])
exitcase([X,Y ], [W1, H, T,W2],W1, Y )
exit([X,Y ], [W1, H, T,W2],W1)
exitcase([X,Y ], [W1, H, T,W2],W1, [H|W2])
exit([X,Y ], [W1, H, T,W2],W1)
exit([X], [W ],W )

Let us remind that variable names are local to each event. Also, observe that the
events do not need to store the names of the invoked functions since we are only
interested in the sequence of pa�ern matching operations, as we will see in Sec-
tion 6.5.

1Note that the �at program is not syntactically correct according to Fig. 6.3 since the right-hand
side of the functions do not have the form let X = e in X with e a pa�ern, a let binding or a do
expression. Here, we keep this simpler formulation for clarity, and it also simpli�es the sequence of
events by avoiding some redundant bind events.
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main/1 = fun (X)→ let W = apply app/2 (X,X) in W

app/2 = fun (X,Y )→ let W1 = case X of
[ ]→ Y
[H|T ]→ let W2 = apply app/2 (T, Y ) in [H|W2]

end
in W1

Figure 6.5: Example �at program

Note that the semantics is a conservative extension of the standard semantics
in the sense that the generation of events does not a�ect the evaluation, i.e., if we
remove the context information and the events labeling the arrows, we are back
to the standard semantics of an eager functional language essentially equivalent to
that in [73].

We will show a method for constructing the associated symbolic execution (as
well as its potential alternatives) in Section 6.5.

6.4 Program Instrumentation

In this section, we present a program transformation that instruments a program so
that its standard execution will return the same sequence of events produced with
the original program and the instrumented semantics of Figure 6.4.

For this purpose, we introduce the prede�ned function out, which outputs its
�rst argument (e.g., to a given �le or to the standard output) and returns its second
argument. �is function is implemented as a function call (i.e., not as a function
application) so that there is no con�ict when performing the instrumentation.

De�nition 6.6 (program instrumentation). Let pgm be a �at program. We instru-
ment pgm by replacing each function de�nition:

f/k = fun (X1, . . . , Xk)→ let X = e in X

with a new function de�nition of the form

f/k = fun (X1, . . . , Xk)→ [[let X = e in out(“exit(vs, bs,X)”, X)]]vs,psF
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π2, θ4 ` Y ⇓ε [a] π2, θ5 `W1 ⇓ε [a]

π2, θ4 ` letW1 = case . . . ⇓τ1 [a] π2, θ6 ` [H|W2] ⇓ε [a, a]

π2, θ3 ` letW2 = apply . . . ⇓τ2 [a, a] π2, θ7 `W1 ⇓ε [a, a]

π2, θ2 ` letW1 = case . . . ⇓τ3 [a, a] π1, θ8 `W ⇓ε [a, a]

π1, θ1 ` letW = apply app/2 (X,X) inW ⇓τ4 [a, a]

with
π1 = 〈[X], [W ]〉 and π2 = 〈[X,Y ], [W1,W2H,T ]〉

θ1 = {X 7→ [a]} θ2 = {X 7→ [a], Y 7→ [a]}
θ3 = {X 7→ [a], Y 7→ [a], H 7→ a, T 7→ [ ]} θ4 = {X 7→ [ ], Y 7→ [a]}
θ5 = {X 7→ [ ], Y 7→ [a],W1 7→ [a]} θ6 = {X 7→ [a], Y 7→ [a], H 7→ a, T 7→ [ ],W2 7→ [a]}
θ7 = {X 7→ [a], Y 7→ [a],W1 7→ [a, a]} θ8 = {X 7→ [a],W 7→ [a, a]}

τ1 = case([X,Y ], [W1,W2], 1, X, [ ], [(1, X, [ ]), (2, X, [H|T ])])
+exitcase([X,Y ], [W1,W2],W1, Y )

τ2 = call([X,Y ], [W1,W2],W2, [T, Y ]) + τ1 + exit([X,Y ], [W1,W2],W1)

τ3 = case([X,Y ], [W1,W2], 2, X, [H|T ], [(1, X, [ ]), (2, X, [H|T ])]) + τ2
+exitcase([X,Y ], [W1,W2],W1, [H|W2])

τ4 = call([X], [W ],W, [X,X]) + τ3 + exit([X,Y ], [W1,W2],W1)

Figure 6.6: Example computation with the instrumented semantics

where vs = [Xk], ps = [bv(e)], F is a �ag to determine if an exitcase event should
be produced when a pa�ern is reached (see below), and the auxiliary function [[ ]] is
shown in Figure 6.7.

Let us brie�y explain the rules of the instrumentation. First, we add an exit
event at the end of each function. An additional bind event is also required when
the expression e is neither a function application nor an case expression in order to
explicitly bind X to the return expression of e (for function applications and case
expressions this is already done in the exit and exitcase events, respectively). �en,
we also add call and case events in each occurrence of a function application and
a case expression, respectively. Finding the value returned by a case expression is
a bit more subtle. For this purpose, we introduce a �ag that is propagated through
the di�erent cases so that only when the expression is the last expression in a case
branch (a pa�ern) we produce an exitcase event. For let expressions, we produce a
bind event and continue evaluating both the expression in the right-hand side of the
binding and the result. Finally, the default case —the last equation in Figure 6.7— is
only used to ignore the call to the prede�ned function out/2.
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[[e]]
vs,ps
F = e if e ∈ Pat

[[e]]
vs,ps
T(p) = out(“exitcase(vs, ps, p, e)”, e) if e ∈ Pat

[[let p = apply p0 (pn) in e]]vs,psb = let p = out(“call(vs, ps, p, [p1, . . . , pn])”,
apply p/0 (p1, . . . , pn) )

in [[e]]
vs,ps
b

[[let p = case p0 of = let p = case p0 of
p1 → e1; p1 → out(“case(vs, ps, 1, p0, p1, alts)”,

[[e1]]
vs,ps
T(p) )

. . . . . .
pn → en pn → out(“case(vs, ps, n, p0, pn, alts)”,

[[en]]
vs,ps
T(p) )

end end
in e]]vs,psb in [[e]]

vs,ps
b

[[let p = e1 in e2]]
vs,ps
b = let p = [[e1]]

vs,ps
F in out(“bind(vs, ps, p, ret(e1))”,

[[e2]]
vs,ps
b )

[[do e1 e2]]
vs,ps
b = do [[e1]]

vs,ps
F [[e2]]

vs,ps
b

[[e]]
vs,ps
b = e otherwise

where alts = [(p0, 1, p1), . . . , (p0, n, pn)]

Figure 6.7: Program instrumentation

Example 6.7. Consider again the �at program of Example 6.5. �e instrumented
program is shown in Figure 6.8.

It can easily be shown that the instrumented program produces the same se-
quence of events of Example 6.5, e.g., by executing the program in the standard
environment of Erlang (together with an appropriate de�nition of out/2).

�e correctness of the program instrumentation is stated in the next result:

�eorem 6.8. Let pgm be a �at program and pgmI its instrumented version according
to De�nition 6.6. Given an initial expression, apply main/n (p1, . . . , pn), its execution
using pgm and the instrumented semantics (according to De�nition 6.4) produces the
same sequence of events as its execution using pgmI and the standard semantics.

Proof. We prove that for all program expressions, e, we have that 〈vs, ps〉, θ ` e ⇓τ
p implies θ ` [[e]]vs,psF ⇓ p with the standard semantics2 and, moreover, it outputs

2Here, we consider that the standard semantics is that of Figure 6.4 without the events labeling the
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main/2 = fun (X)→ letW = out(“call([X], [W ],W, [X,X])”,
apply app/2 (X,X))

in out(“exit([X], [W ],W )”,W )

app/2 = fun (X,Y )→
letW1 = caseX of

[ ]→ out(“case([X,Y ], [W1,W2, H, T ], 1, X, [ ], alts)”,
out(“exitcase([X,Y ], [W1,W2, H, T ],W1, Y )”,Y ))

[H|T ]→ out(“case([X,Y ], [W1,W2, H, T ], 2, X, [H|T ], alts)”,
letW2 = out(“call([X,Y ], [W1,W2, H, T ],W2, [T, Y ])”,

apply app/2 (T, Y )))
in out(“exitcase([X,Y ], [W1,W2, H, T ],W1, [H|W2])”,

[H|W2])
in out(“exit([X,Y ], [W1,W2, H, T ],W1)”,W1)

where alts = [(1, X, []), (2, X, [H|T ])].

Figure 6.8: Instrumented program

the same sequence of events τ . �e claim of the theorem is an easy consequence of
this property. We prove the claim by induction on the depth k of the proof tree with
the instrumented semantics.

Since the base case k = 0 is trivial (the rule to evaluate a pa�ern is the same in
both cases), we now consider the inductive case k > 0. We distinguish the following
cases depending on the applied rule from the semantics of Fig. 6.4:

• �e �rst rule of the semantics is not applicable since the depth of the proof is
k > 0.

• If the applied rule is the second one (to evaluate a function call), then the
considered transition has the form

〈vs, ps〉, θ ` let p = apply p0 (pm) in e ⇓τ p′′

with τ = call(vs, ps, p, [pm]) + τ1 + exit([Ym], [bv(e2)], p′′2) + τ2. �e instru-
mented expression expression is thus

[[let p = apply p0 (pm) in e]]vs,psb

Following the rules of Fig. 6.7, this is transformed to

let p = out(“call(vs, ps, p, [pm])”, apply p0 (pm)) in [[e]]vs,psb

transitions.
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such that the execution of this instrumented code will �rst output the event
call(vs, ps, p, [pm]) similarly to the instrumented semantics. By the induction
hypothesis, the evaluation of p0, . . . , pm and e with the instrumented seman-
tics produces the same values and outputs the same events than with their
instrumented versions with the standard semantics. Let us now consider that
p0 evaluates to function f/m, whose de�nition is as follows: f/m = funYm →
letX = e inX . In the instrumented program, the same function has the form

f/m = fun (X1, . . . , Xm)→ [[let X = e in out(“exit(vs, bs,X)”, X)]]vs
′,ps′

F

vs′ = [Ym] and ps′ = [bv(e)]. By the induction hypothesis, we know that the
sequence of events for let X = e in X in the instrumented semantics, is the
same as that of [[let X = e in X]]vs

′,ps′

F , therefore the claim follows.

• If the applied rule is the second one (to evaluate a function call), then the
considered transition has the form

〈vs, ps〉, θ ` let p = case p0 of clauses end in e ⇓τ p′0

with clauses = pl → el and

τ = case(vs, ps, i, p0, pi, alts) + τ1 + exitcase(vs, ps, p, p′i) + τ2

�e instrumented expression expression is thus

[[let p = case p0 of clauses end in e]]vs,psb

which is transformed to

let p = case p0 of clauses ′ end in [[e]]vs,psb

with clauses ′ = out(“case(vs, ps, l, p0, pl, alts)′′, [[el]]
vs,ps
T(p) ). By the induc-

tion hypothesis, we have that 〈vs, ps〉, θ∪σ ` ei ⇓τ1 p′i implies [[ei]]
vs,ps
F ⇓ p′i

outputs the sequence of events τ1. �erefore, [[ei]]
vs,ps
T(p) ⇓ p

′
i outputs and addi-

tional event exitcase, and the claim follows by induction.

• Proving the claim for the two remaining rules is straightforward by the in-
duction hypothesis.
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A prototype implementation of the program instrumentation can be found at
http://kaz.dsic.upv.es/instrument.html. Here, one can introduce a (re-
stricted) Erlang program that is �rst transformed to the �at syntax and, then, in-
strumented (several input examples are provided). Moreover, it is also possible to
run the instrumented program and obtain the corresponding sequence of events.

6.5 Concolic Execution

�e relevance of the computed sequences of events is that one can easily reconstruct
a symbolic execution that mimics the steps of the concrete execution that produced
the sequence of events, as well as to produce alternative bindings for the initial
variables so that a di�erent execution path will be followed.

Let us �rst formalize the reconstruction of the symbolic execution from a se-
quence of events using the Prolog program shown in Fig. 6.9. As mentioned before,
we should ensure that the elements of τ are renamed apart. In our implementation,
the sequence of events is wri�en to a �le, that is then consulted as a sequence of
facts and, thus, their variables are always renamed apart. For simplicity, we do not
show these low level details in Fig. 6.9 but just assume the events in τ have been
renamed apart.

sym(τ,Res,Vars)← eval(τ, [(Res,Vars,BVars)]).

eval([ ], [ ]).

eval([call(Vars,BVars,NRes,NVars)|Tau], [(Res,Vars,BVars)|Env])←
eval(Tau, [(NRes,NVars,NBVars), (Res,Vars)|Env]).

eval([case(Vars,BVars, N,Arg,Pat , Alts)|Tau], [(Res,Vars,BVars)|Env])←
Arg = Pat , eval(Tau, [(Res,Vars,BVars)|Env]).

eval([exitcase(Vars,BVars, Arg,Pat)|Tau], [(Res,Vars,BVars)|Env])←
Arg = Pat , eval(Tau, [(Res,Vars,BVars)|Env]).

eval([bind(Vars,BVars, Pat1, Pat2)|R], [(Res,Vars,BVars)|Env])←
Pat1 = Pat2, eval(R, [(Res,Vars,BVars)|Env]).

eval([exit(Vars,BVars,Pat)|Tau], [(Res,Vars,BVars)|Env])←
Res = Pat , eval(Tau,Env).

Figure 6.9: Prolog procedure for symbolic execution

Let us brie�y explain the rules of the procedure. �e �rst clause just calls eval
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and initializes an stack of function environments with (Res,Vars,BVars), where
Res is the result of the evaluation, Vars are the variables of the main function, and
BVars are the bounded variables of the main function. When calling sym, all these
three variables are unbound.

�e �rst rule of eval/2 just �nishes the computation when there are no events
to be processed.

�e next rule deals with call events and just pushes a new environment (NRes,
NVars,NBVars) into the stack of environments. Observe that the names of vari-
ables Vars and BVars occurs twice in the head of the clause —as arguments of the
event and as in the current environment— which makes them unify and thus set
the right values for them in the current symbolic execution. �is is done in all the
clauses.

�e next rule deals with case events and it main purpose is to unify Arg and
Pat , which represent the case argument and the selected pa�ern, respectively.

�e next rule takes an exitcase event and proceeds similarly to the previous
one by matching Arg and Pat , now denoting the pa�ern of a let expression and the
result of the evaluation of a case branch.

�e next rule deals with a bind event in the obvious way by unifying the given
pa�erns Pat1 and Pat2 .

Finally, the last rule matches Res in the current environment (used to store the
output of the current function call) with the pa�ern Pat and, moreover, pops the
environment (Res,Vars,BVars) from the stack of environments.

For example, given the sequence of events of Example 6.5 and the initial call
sym(τ,Res,Vars), the above program returns:

Res = [X ,X ], Vars = [X ]

which obviously produces less instantiated values than the concrete execution (where
we had Res = [a, a], Vars = [a]).

For concolic testing, though, one is not interested in computing the symbolic ex-
ecution associated to the concrete execution, but in alternative symbolic executions
so that the produced data will give rise to di�erent concrete executions. Luckily, it
is easy to extend the previous procedure in order to compute alternative symbolic
executions by just replacing the clause for case events as follows:

eval([case(Vars,BVars, N,Arg,Pat , Alts)|Tau], [(Res,Vars,BVars)|Env])
← member((M,Arg′,Pat ′), Alts),
N 6= M, Arg′ = Pat ′,
eval(Tau, [(Res,Vars,BVars)|Env]).
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By using the call member((M,Arg′,Pat ′), Alts), this rule nondeterministically
chooses all the alternative selections in case expressions, thus producing alternative
bindings for the initial call. For instance, for the sequence of events of Example 6.5,
we get three (nondeterministic) answers:

Vars = [ ] ; Vars = [X ] ; Vars = [X ,Y |R]

An implementation of the concolic testing tool has been undertaken. �e �rst stage,
�a�ening and instrumenting the source program has been implemented in Erlang
itself, and can be tested at http://kaz.dsic.upv.es/instrument.html. In con-
trast, the concolic testing algorithm is being implemented in Prolog, since the facil-
ities of this language —uni�cation and nondeterminism— make it very appropriate
for dealing with symbolic executions.

6.6 Discussion

In this paper, we have introduced a transformational approach to concolic execution
that is based on �a�ening and instrumenting the source program —a simple �rst or-
der, eager functional language—. �e execution of the instrumented program gives
rise to a stream of events that can then be easily processed in order to compute the
variable bindings of the associated symbolic executions, as well as possible alterna-
tives. To the best of our knowledge, our paper proposes the �rst approach to con-
colic execution by program instrumentation in the context of functional (or logic)
programming. In contrast to using an interpreter-based design, in our approach
the instrumented program can be run in any environment, even non-standard ones,
which opens the door, for instance, to run the instrumented program in a model
checking environment like Concuerror [61] so that its execution would produce the
sequences of events for all relevant interleavings.

As a future work, we plan to extend our approach in order to cover a larger
subset of Erlang as well as to design a fully automatic procedure for concolic test-
ing (currently, one should manually run the instrumented program and the Prolog
procedure for generating alternative bindings). Here, we expect that our transfor-
mational approach will be useful to cope with concurrent programs, as mentioned
above.
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allows the automatic, e�cient generation of input test values that satisfy a
given speci�cation. In particular, we have considered the case when the in-
put values are data structures satisfying complex constraints. �at generation
is performed via the symbolic execution of the speci�cation using constraint
logic programming.

7.1 Introduction

Over the years, Property-Based Testing (PBT), as proposed by Claessen and Hughes [29],
has been established as one of the favorite methods for testing so�ware. �e idea
behind PBT is as follows: instead of supplying speci�c inputs, i.e., test cases, to a
program under test, the developer de�nes properties to be satis�ed by the program
inputs and outputs. �en, random inputs are generated and the program is run with
those input values, thereby producing output values and checking whether or not
the input-output pairs satisfy the desired property. If the output associated with a
particular input does not satisfy the property, the counterexample to the property
reveals an undesirable behavior. �en, the developer can modify the program under
test so that the counterexample is no longer generated. �e fact that input values
are generated in a random way plays a key role in the PBT techniques, because ran-
domicity enables the generation of valid inputs which originally could have escaped
the a�ention of the developer.

�ickCheck [29] is the �rst tool that implemented Property-Based Testing and
it works for the functional language Haskell. �en, a similar approach has been fol-
lowed for various programming languages, and among many others, let us mention:
(i) Erlang [7, 113], (ii) Java [72, 144], (iii) Scala [123], and (iv) Prolog [4].

In this paper we will focus on the dynamically typed functional programming
language Erlang and, in particular, we will refer to the PropEr framework [113, 119].
Typically, in PropEr the set of valid input data is de�ned through: (i) a type speci�ca-
tion, and (ii) a �lter speci�cation (that is, a constraint), which should be satis�ed by
the valid inputs. When working with user-de�ned types and �lters, the developer
must provide a generator, that is, a program that constructs input data of the given
type satisfying the given �lter. PropEr supports writing generators by providing a
mechanism for turning type speci�cations into data generators, and also providing
primitives for constraining data size and assigning frequencies to guide data gener-
ation. However, the task of writing a generator that satis�es all constraints de�ned
by a �lter is le� to the developer. Unfortunately, writing and maintaining generators
is a time-consuming and error-prone activity. In particular, hand-wri�en generators
may result in the generation of sets of non-valid inputs or, even worse, sets of inputs
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which are too restricted.
In this paper we explore an approach that relieves the developer from the task of

writing data generators of valid inputs. We assume that the data generation task is
speci�ed by providing: (i) a data type speci�cation, using the Erlang language for that
purpose, and (ii) a �lter speci�cation provided by any boolean-valued Erlang func-
tion. We have constructed a symbolic interpreter, wri�en in the Constraint Logic
Programming (CLP) language [69], which takes the data type and the �lter speci�-
cation, and automatically generates data of the given type satisfying the given �lter.
Our interpreter is symbolic, in the sense that it is able to run Erlang programs (in
particular, the �lter functions) on symbolic values, represented as CLP terms with
possibly variable occurrences.

�e symbolic interpreter works by exploiting various computational mecha-
nisms which are speci�c to CLP, such as: (i) uni�cation, instead of matching, which
enables the use of predicate de�nitions for generating terms satisfying those predi-
cates, (ii) constraint solving, which allows the symbolic computation of sets of data
satisfying given constraints, and (iii) coroutining between the process of generat-
ing the data structures and the process of applying the �lter. By using the above
mechanisms we realize an e�cient, automated data generation process following
a constrain-and-generate computation pa�ern, which �rst generates data structure
skeletons with constraints on its elements, and then generates random concrete val-
ues satisfying those constraints. Finally, these concrete data are translated back into
inputs for the Erlang program under test.

�e paper is structured as follows. In Sect. 7.2, we recall some basic notions on
the Erlang and CLP programming languages. In Sect. 7.3, we present the framework
for Property-Based Testing based on PropEr [113]. In Sect. 7.4, we show how from
any given data type de�nition, wri�en in the type language of Erlang, we derive a
CLP generator for such data type. In Sect. 7.5, we describe our CLP interpreter for a
sequential fragment of Erlang. In Sect. 7.6, we show the use of coroutining and, in
Sect. 7.7, we present some experimental results obtained by the ProSyT tool, which
implements our PBT technique. Finally, in Sect. 7.8, we compare our approach with
related work in constraint-based testing.

7.2 Preliminaries

In this section we present the basic notions of the Erlang and CLP languages.
�e Erlang language. Erlang is a concurrent, higher-order, functional program-
ming language with dynamic, strong typing [5]. Its concurrency is based on the
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Actor model [62] and it allows asynchronous communications among processes.
�ese features make the Erlang language suitable for distributed, fault-tolerant, and
so� real-time applications. An Erlang program is a sequence of function de�nitions
of the form: f(X1, . . . , Xn) -> e, where f is the function name, X1, . . . , Xn are
variables, and e is an Erlang expression, whose syntax is shown in the box below,
together with that of values and pa�erns. For reasons of simplicity, we have con-
sidered a subset of Core Erlang, that is, the intermediate language to which Erlang
programs are translated by the Erlang/OTP compiler language [25]. �is subset, in
particular, does not include letrec expressions, nor commands for raising or catching
exceptions, nor primitives for supporting concurrent computations.

Values 3 v ::= l | c (v1, . . . , vn) | fun (X1, . . . , Xn) -> e

Patterns 3 p ::= p′ when g

p′ ::= l | X | c (X1, . . . , Xn)

Expressions 3 e ::= l | X | f | c (e1, . . . , en) | e0 (e1, . . . , en) | let X = e1 in e

| case e of (p1 -> e1) ; . . . ; (pn -> en) end | fun (X1, . . . , Xn) -> e

In these syntactic de�nitions: (i) by ‘ Values 3 v’ we mean that v (possibly with sub-
scripts) is a meta-variable ranging over Values, and analogously for Pa�erns and
Expressions, (ii) l ranges over literals (such as integers, �oats, atoms, and the empty
list [ ]), (iii) c is either the list constructor [ | ] or the tuple constructor { , . . . , },
(iv)X (possibly with subscripts) ranges over variables, (v) fun (X1, . . . , Xn) -> e de-
notes an anonymous function (we stipulate that the free variables in the expression
e belong to {X1, . . . , Xn}), (vi) g ranges over guards, that is, boolean expressions
(such as comparisons of terms using =<, ==, etc.) (vii) f ranges over function names.

�e evaluation of an expression is performed in the call-by-value regime and
returns a value. Variables are bound to values via the usual pa�ern matching mech-
anism. In Erlang each variable is bound to a value only once (this feature is known
as single assignment). During the evaluation of a function call, the pa�erns of the
case-of expression are considered, one a�er the other, in le�-to-right order. �e
�rst pa�ern for which the pa�ern matching succeeds with a true guard, determines
the corresponding expression to be evaluated. If there is no matching pa�ern with
a true guard, a match fail run-time error occurs.
�e running example : a faulty insertion program. Below we show an Erlang function
which is intended to insert an integer I in a list L of integers sorted in ascending
order, thereby producing a new, extended sorted list. �at function has an error as
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we have indicated in the line ERR. In what follows we will show how to automatically
generate input values for detecting that error.

insert(I,L) -> case L of

[] -> [I];

[X|Xs] when I=<X -> [X,I|Xs]; % ERR: [X,I|Xs] should be [I,X|Xs]

[X|Xs] -> [X] ++ insert(I,Xs) % ‘++’ denotes list concatenation

end.

Constraint Logic Programming. By CLP(X) we denote the CLP language based
on constraints in the domain X , where X is: either (i) FD (the domain of integer
numbers belonging to a �nite interval), or (ii) R (the domain of �oating point num-
bers), or (iii) B (the domain of boolean values) [69].

A constraint is a quanti�er free, �rst-order formula whose variables range over
the domain X . A user-de�ned predicate is a predicate symbol not present in the
constraint language. An atom is an atomic formula p(t1, ..., tk), where p is a user-
de�ned predicate and t1, ..., tk are �rst-order terms constructed out of constants,
variables, and function symbols. A CLP(X) program is a set of clauses of the form
either A. or A :- c, A1,..., An., where A, A1,..., An are atoms and c is a
constraint on the domainX . A query is wri�en as ?- c, A1,..., An. A term, or
an atom, is said to be ground if it contains no variables. As an example, below we
list a CLP(FD) program for computing the factorial function (‘#>’ and ‘#=’ denote
the greater-than and equality relations, respectively):
factorial(0,1).

factorial(N,FN) :- N #> 0, M #= N-1, FN #= N*FM, factorial(M,FM).

For the operational semantics of CLP(X), we assume that, in the normal execution
mode, constraints and atoms in a query are selected from le� to right. In Sect. 7.6
we will see how the selection order is altered by using coroutining constructs (in
particular, by using when declarations). When a constraint is selected, it is added
to the constraint store, which is the conjunction of all constraints derived so far,
thereby deriving a new constraint store. �en, the satis�ability of the new store is
checked. �e search for a clause whose head is uni�able with a given atom is done
by following the textual top-down order of the program and, as usual for Prolog
systems, the search tree is visited in a depth-�rst manner.

7.3 A Framework for PBT of Erlang Programs

In this section we introduce the fragment of the PropEr framework developed by
Papadakis and Sagonas [113], which we use to specify PBT tasks. PropEr relies on
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a set of prede�ned functions for specifying the properties of interest for the Erlang
programs. We consider the following PropEr functions.

• ?FORALL(Xs, XsGen, Prop), which is the main function used for property
speci�cation. Xs is either a variable, or a list of variables, or a tuple of vari-
ables. XsGen is a generator that produces a value for Xs. Prop is a boolean
expression specifying a property that we want to check for the program under
test. We assume that Xs includes all the free variables occurring in Prop. For
instance, ?FORALL(X, integer(), mult1(X) >= X) (i) uses the prede�ned
generator integer(), which generates an integer, and (ii) speci�es the prop-
erty mult1(X) >= X for the function mult1(X) -> X*(X+1).

• ?LET(Xs, XsGen, InExpr), which allows the de�nition of a dependent gen-
erator. Xs and XsGen are like in the ?FORALL function, and InExpr is an
expression whose free variables occur in Xs. ?LET(Xs, XsGen, InExpr)

generates a value obtained by evaluating InExpr using the value of Xs pro-
duced by XsGen. For instance, ?LET(X, integer(), 2*X) generates an even
integer.

• ?SUCHTHAT(Xs, XsGen, Filter), which allows the de�nition of a genera-
tor of values satisfying a given �lter expression. Xs and XsGen are like in the
?FORALL function, and Filter is a boolean expression whose free variables
occur in Xs. ?SUCHTHAT(Xs, XsGen, Filter) generates a value, which is a
value of Xs produced by XsGen, for which the Filter expression holds true.
For instance, ?SUCHTHAT(L, list(integer()), L=/=[]) generates non-
empty lists of integers.

In PropEr a generator is speci�ed by using: (i) type expressions, (ii) ?LET functions,
and (iii) ?SUCHTHAT functions. We consider generators of �rst-order values only.
However, higher-order functions may occur in Prop, InExpr, and Filter.

A type expression (whose semantics is a set of �rst-order values) is de�ned by
using either the following PropEr prede�ned types:

• any(): all �rst-order Erlang values;

• integer(L,H): the integers between L and H (these bounds can be omi�ed);

• float(L,H): the �oats between L and H (these bounds can be omi�ed);

• atom(): all Erlang atoms;

• boolean(): the boolean values true and false;
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or PropEr user-de�ned types, which are de�ned by using type parameters and recur-
sion, as usual. For instance, the type of binary trees with elements of a parameter
type T can be de�ned as follows:

-type tree(T) :: ’leaf’ | {’node’,tree(T),T,tree(T)}.
Compound type expressions can be de�ned by the following type constructors:

• {T1, . . . , TN}: the tuples of N elements of types T1, . . . , TN, respectively;

• list(T): the lists with elements of type T;

• [T1, . . . , TN]: the lists of N elements of types T1, . . . , TN, respectively;

• union([T1, . . . , TN]): all elements x such that x is of type either T1or. . .orTN;

• exactly(lt): the singleton consisting of the literal lt.
Types can be used for specifying a contract 1 for an Erlang function Func by writing
a declaration of the form:

-spec Func(ArgType1, ..., ArgTypeN) -> RetType.

A property is speci�ed by declaring a nullary function (whose name, by convention,
starts with prop ) of the form:

prop name() -> ?FORALL(Xs, XsGen, Prop)

Here is an example of a property speci�cation, which we will use for testing the
insert function presented in Sect. 7.2.

prop_ordered_insert() -> % property_spec

?FORALL({E,L}, {integer(),ne_ordered_list()}, ordered(insert(E,L))).

ne_ordered_list() -> % generator_1

?SUCHTHAT(L, non_empty(list(integer())), ordered(L)).

non_empty(T) -> ?SUCHTHAT(L, T, L=/=[]). % generator_2

ordered(L) -> case L of % filter

[A,B|T] -> A =< B andalso ordered([B|T]);

_ -> true

end.

In order to run the prop ordered insert() function, PropEr needs an ad-hoc
implementation of the function ne ordered list() that generates a non-empty
ordered list. If such a function is not provided by the user, PropEr executes the
ne ordered list() generator in a very ine�cient way by randomly generating
non-empty lists of integers until it produces a list which is ordered [113, Sect. 4.2].

1More detailed information about types and contract speci�cations can be found at http://

erlang.org/doc/reference_manual/typespec.html.

http://erlang.org/doc/reference_manual/typespec.html
http://erlang.org/doc/reference_manual/typespec.html
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�e main contribution of this paper is a technique that relieves the programmer
from implementing generator functions and, instead, it derives e�cient generators
directly from their speci�cations. By doing so, we mitigate the problem of ensuring
that the implementation of the generator is indeed correct, and we also avoid, in
most cases, the ine�ciency of a generate-and-test behavior by a suitable interleav-
ing (via coroutining) of the process of data structure generation with the process of
checking the constraint satisfaction (that is, �lter evaluation). �e implementation
of our technique consists of the following six components.

1. A translator from PropEr to CLP, which translates the property speci�cation,
together with the de�nitions of Erlang/PropEr types and functions that are
used, to a CLP representation.

2. A type-based generator, which implements a CLP predicate typeof(X,T) that
generates datum X of any given (prede�ned or user-de�ned) type T. typeof
queries can be run in a symbolic way, thereby computing for X a term con-
taining variables, possibly subject to constraints.

3. A CLP interpreter for �lter functions, that is, functions occurring in �lter ex-
pressions. �e interpreter handles the subset of the Core Erlang language
presented in Sect. 7.2. In particular, it de�nes a predicate eval(In,Env,Out)
such that, for an Erlang expression In whose variables are bound to values in
an environment Env, eval computes, according to the semantics of Erlang,
an output expression Out. �e evaluation of eval is performed in a symbolic
way, as the values in the bindings in Env may contain CLP variables, possibly
subject to constraints. �us, by running a query consisting of the conjunction
of a typeof atom and an eval atom, we get as answer a term whose ground
instances are values of the desired type, satisfying a given �lter.

4. A value generator, which takes as input a term produced by running the type-
based generator (Component 2) and then the interpreter (Component 3). �e
value generator can also be run immediately a�er the type-based generator,
if no �lter is present. Term variables, if any, may be subject to constraints.
Concrete instances of the term (i.e., ground terms) satisfying these constraints
are generated by choosing values (in a deterministic or random way) from the
domains of the variables.

5. A translator from CLP to Erlang, which translates the values produced by the
value generator (Component 4) to Erlang values.
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6. A property evaluator, which evaluates, using the Erlang system, the boolean
Erlang expression Prop whose inputs are the values produced by the trans-
lator (Component 5). �en the property evaluator checks whether or not one
of the following three cases occurs: (i) Prop holds, (ii) Prop does not hold, or
(iii) the evaluation of Prop crashes, that is, produces a runtime error.

�e above six components have been implemented in a fully automatic tool, called
ProSyT2 (Property-Based Symbolic Testing).

7.4 Type-Based Value Generation

Type-based generation (Component 2 of our ProSyT tool) is achieved through the
implementation of the typeof predicate. Given a type T, the predicate typeof(X,T)
holds i� X is a CLP term encoding an Erlang value of type T. If T is a prede�ned type,
typeof invokes a T-speci�c predicate for generating the term X. For example, for
the type list(A), that is, the type of the lists whose elements are of type A, typeof
is implemented by the following clause:

typeof(X,list(A)) :- list(X,A).

where the binary predicate list is de�ned by the following two clauses:
list(nil,T).

list(cons(X,Xs),T) :- typeof(X,T), list(Xs,T).

where nil and cons are the CLP representations of the Erlang empty list and list
constructor, respectively. If T is a user-de�ned type, typeof invokes the clause:

typeof(X,T) :- typedef(T,D), typeof(X,D).

where typedef(T,D) holds i� D is the (CLP representation of the Erlang) de�ni-
tion of type T. �e clauses for typedef are generated during the translation from
Erlang to CLP. For example, for the de�nition of the type tree(T) of binary trees,
introduced in Sect. 7.3, we have the following clause:

typedef(tree(T), union([

exactly(lit(atom,leaf)),

tuple([exactly(lit(atom,node)),tree(T),T,tree(T)]) ])).

where: (i) union([T1,T2]) denotes the union of the two types T1 and T2, (ii) exactly(E)
denotes a type consisting of the term E only, and (iii) tuple(L) denotes the type
of the tuples {t1, . . . , tn} of terms such that ti has the type speci�ed by the i-th
element of the list L of types.

2https://fmlab.unich.it/testing/

https://fmlab.unich.it/testing/
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Apart from the case when the type T is exactly(lit(...)), the query
?- typeof(X,T) returns answers of the form X=t, where t is a non-ground term,
whose variables may be subject to constraints. Here follow some examples of use
of the typeof predicate. If we run the query ?- typeof(X,integer) we get a
single answer of the form X=lit(int, 1320), 1320 in inf..sup, where -

1320 is a variable that can take any integer value in the interval inf..sup, where
inf and sup denote the minimum and the maximum integer, respectively. We
can explicitly specify a range for integers. For instance, the answer to the query
?- typeof(X,integer(10,20)) is X=lit(int, 1402), 1402 in 10..20.

�e query ?- typeof(X,list(integer)) produces a �rst answer of the form
X=nil. If we compute an additional answer for that query, then we get X=cons
(lit(int, 1618), nil), 1618 in inf..sup denoting the nil terminated list
containing a single integer value. If we continue asking for additional answers, then
by the standard Prolog execution mechanism, based on backtracking and depth-�rst
search, we get answers with lists of increasing length.

When dealing with recursively de�ned data types, we have to care about the size
of the generated terms, with the objective of avoiding the possible non-termination
of the evaluation of the typeof predicate. �e size of a term is de�ned to be the
number of list or tuple constructors occurring in it. �us, for instance, the term
lit(X,integer) encoding an integer, has size 0, and the size of a list of integers is
equal to its length. �e size of any term generated by typeof is constrained to be in
the interval min size..max size, where min size and max size are con�gurable
non-negative integers.

As an alternative to the built-in mechanisms for size management, we also pro-
vide the predicate typeof(X,T,S) which holds if X is a term of type T and size S.
By using speci�c values of S or providing constraints on S, the user can specify the
term size he desires and can control the answer generation process.

�e user can also generate terms of random size, instead of terms of increasing
size, as obtained by standard Prolog execution. For this purpose, we provide con�g-
uration options allowing typeof to generate data structures whose size is randomly
chosen within the interval min size..max size.

It is also possible to use randomness during the generation of tuples and unions.
For instance, every run of the query ?- typeof(X,tree(integer),2) using stan-
dard Prolog execution, produces the same �rst answer, which is a tree consisting of
the root and its right child. In order to modify such a behavior, we have introduced
the random tuple option that makes typeof generate tuples by randomly choos-
ing one of its elements. (Recall that non-empty trees are indeed de�ned as tuples.)
By doing so, the �rst answer to the above query is the tree consisting of the root
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and either its right child or its le� child.
Similarly, for union types, we can introduce randomness through the use of

the random union option. For example, suppose that the type color has the two
values black and white only. �us, its translation into CLP is as follows:

typedef(color,union([exactly(’black’),exactly(’white’)])).

�en, if we run the query ?- typeof(X,color) using the standard Prolog exe-
cution mechanism, we will always obtain black as the �rst answer. However, if
we use the random union option we may get either black or white with equal
frequency. More in general, we provide a weighted union type, which allows the
association of frequencies with types using non-negative integers, so that elements
of types with higher frequencies are generated more o�en.

Random generation of ground terms (Component 4 of ProSyT) is achieved through
the use of the rand elem(X) predicate. For example, the clauses used for the gen-
eration of (possibly, non-�at) lists of integers are the following ones:
rand_elem(nil).

rand_elem(cons(X,L)) :- rand_elem(X), rand_elem(L).

rand_elem(lit(int,V)) :- rand_int(V).

rand_int(V) :- int_inf(V,Inf), int_sup(V,Sup), random_between(Inf,Sup,V).

where rand int(V) holds i� V is a random integer value in the range Inf..Sup,
Inf and Sup being the minimum and maximum values that V can take, subject to
the constraints that are present in the constraint store. For instance, the query:
?- typeof(X,list(integer(1,10)),3), rand elem(X). may return the answer:
X = cons(lit(int,6), cons(lit(int,4), cons(lit(int,9), nil))).

A similar mechanism is used for generating ground terms containing �oats.
Finally, ground CLP terms are translated to Erlang values (Component 5 of

ProSyT) by using the write elem predicate. For instance, if we append write -

elem(X) to the above query, we get the Erlang list [6,4,9].

7.5 �e Interpreter of Filter Functions

�e CLP interpreter, which is Component 3 of ProSyT, provides the predicate eval
(In,Env,Out) that computes the output value Out of the input expression In in
the environment Env. �e environment Env, which maps variables to values, is
represented by a list of pairs of the form (’X’,V), where ’X’ is the CLP constant
representing the Erlang variable X and V is the CLP term representing its value.
By means of a symbolic representation of Erlang expressions and values occurring
in the environment (by using possibly non-ground CLP terms subject to suitable
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constraints), the evaluation of any input expression via the interpreter allows the
exhaustive exploration of all program computations without explicitly enumerating
all the concrete input values.

In the interpreter, a function de�nition is represented by a CLP term of the form
fun(Pars,Body), where Pars and Body are the formal parameters and the function
body, respectively. As an example of how the interpreter is de�ned, Fig. 7.1 lists the
CLP implementation of the semantic rule for function application, represented by a
term of the form apply(Func,IExps), where Func is the name of the function to
be applied to the actual parameters IExps.

eval(apply(Func,IExps),Env,Out) :-

fundef(Func,fun(Pars,Body)), % 1

eval_args(IExps,Env,AExps), % 2

zip_binds(Pars,AExps,Binds), % 3

constrain_output_exp(Func,Out), % 4

eval(Body,Binds,Out). % 5

Figure 7.1: CLP interpreter for applying the
function Func to the actual parameters IExps.

�e behavior is as follows.
First, the interpreter retrieves
(at line 1) the de�nition of the
function Func. �en, it eval-
uates (at line 2) the actual pa-
rameters IExps in the environ-
ment Env, thereby deriving the
list of expressions AExps. �en,
the interpreter binds (at line 3)
the formal parameters Pars to the actual parameters AExps, thereby deriving the
new environment Binds. If a contract for Func has been provided (see Sect. 7.3)
and the --force-spec option of ProSyT has been used, then (at line 4) a con-
straint is added on the CLP variables occurring in the output expression Out. For
instance, let us suppose that the programmer speci�es the following contract for the
listlength function that computes the length of a list:

-spec listlength(list(any())) -> non neg integer().

where the non neg integer() type requires the output of listlength on lists
of any type to be a non-negative integer. �us, the constraint M#>=0 is imposed
on the CLP variable M occurring in the output expression lit(int,M) computed
by listlength. Finally, the interpreter evaluates (at line 5), the Body of the func-
tion Func in the new environment Binds, thereby deriving the output expression Out.

Now, let us consider the �lter function ordered list of Sect. 7.3. In order to
generate symbolic ordered lists, which will be used for producing the test cases for
insert, we run the following query:
?- typeof(I,non_empty(list(integer))),

eval(apply(var(’ordered’,1),[var(’L’)]),[(’L’,I)],lit(atom,true)).

In the above query eval calls ordered in an environment where the ’L’ parameter
is bound to I, and outputs an expression denoting the atom true. As a result of
query evaluation, typeof binds the CLP variable I to a nonempty list of integers and
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eval adds constraints on the elements of the list enforcing them to be in ascending
order. Among the �rst answers to the query we obtain:
I = cons(lit(int,_54),cons(lit(int,_55),nil)), _55#>=_54 ;

I = cons(lit(int,_51),cons(lit(int,_52),cons(lit(int,_53),nil))),

_52#>=_51, _53#>=_52

�en, by running the predicates rand elem and write elem, for each non-ground
list whose elements are in ascending order, we can (randomly) generate one or more
ordered Erlang lists, without backtracking on the generation of lists whose elements
are not ordered. �e following command runs ProSyT on the �le ord insert -

bug.erl that includes the bugged insert function and the prop ordered insert()

property speci�cation.
$ ./prosyt.sh ord_insert_bug.erl prop_ordered_insert

By default, ProSyT runs 100 tests by generating non-ground ordered lists of in-
creasing length, which are then instantiated by choosing integers from the inter-
val -1000..1000. �e 100 tests produce as output a string of 100 characters such
as (we show an initial part of that string only):

x.x.xxxxxxx...xxxx.xxxxxxx.xxxxx.xxxx..

Each character represents the result of performing a test case: (i) the character ‘.’
means that the desired property prop ordered insert holds, and (ii) the charac-
ter ‘x’ means that it does not hold, hence revealing a bug.

�e generation of the ordered lists for the 100 test cases takes 42ms (user time)
on an Intel® CoreTM i7-8550U CPU with 16GB running Ubuntu 18.04.2.

7.6 Coroutining the Type-Based Generator and the Fil-
ter Interpreter

�e process of symbolic test case generation described in the previous section has
a good performance when the �lter does not specify constraints on the skeleton of
the data structure, but only on its elements. For instance, in the case of ordered lists,
the �lter ordered(L) does not enforce any constraint on the length of the symbolic
list L generated by the type-based generator, but only on its elements.

Now, let us consider the following �lter function avl, which checks whether or
not a given binary tree is an AVL tree, that is, a binary search tree that satis�es the
constraint of being height-balanced [31].
avl(T) -> case T of

leaf -> true;
{node,L,V,R} ->
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B = height(L)-height(R) andalso B >= -1 andalso B =< 1 andalso % 1
ltt(L,V) andalso gtt(R,V) andalso % 2
avl(L) andalso avl(R);
_ -> false

end.

�e recursive clause of the case-of checks whether or not any tree {node,L,V,R}
rooted in V (the value of the node) is height-balanced (line 1), all the values in the le�
subtree L are smaller than V, and all the values in the right subtree R are larger than
V (line 2). avl uses the following utility functions: (i) height(T), which returns
the height of the tree T, (ii) ltt(T,V), and (iii) gtt(T,V), which return true if the
value of each node n in the tree T is less than, or greater than V, respectively. In
order to generate AVL trees, we run the following query:

?- typeof(X,tree(integer)),

eval(apply(var(’avl’,1),[var(’T’)]),[(’T’,X)],lit(atom,true)),

rand_elem(X).

However, unlike the case of ordered lists, among the answers to the query typeof(X,
tree(integer)) just a few instances of X turn out to be AVL trees. Hence, eval
repeatedly fails until typeof generates a binary tree satisfying the constraints spec-
i�ed by the �lter. As an example, for trees of size 10, eval �nds 10 AVL trees out of
9000 trees generated by typeof.

In order to make the generation process more e�cient, we use the coroutin-
ing mechanism to implement a data-driven cooperation [76], thereby interleaving
the execution of the type-based generator typeof and that of the interpreter eval.
Coroutining is obtained by interchanging the order of the typeof and eval atoms in
the query, so that the eval call is selected before the typeof call. However, the exe-
cution of eval is suspended on inputs of the �lter function that are not instantiated
enough to decide which clauses of a case-of expression can be used to proceed in
the function evaluation. �e execution of eval is then resumed whenever the input
to the �lter function gets further instantiated by the typeof execution. By doing
so, during the generation of complex data structures, typeof must comply with
the constraints enforced by eval. �is mechanism can dramatically improve e�-
ciency, because the unsatis�ability of the given constraints may be detected before
the entire data structure is generated.

Coroutining is implemented by using the when(Cond,Goal) primitive provided
by SWI-Prolog [131], which suspends the execution of Goal until Cond becomes
true. In particular, when declarations are used in the rule of the interpreter shown
below, which de�nes the operational semantics of case-of expressions.
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eval(case(CExps,Cls),Env,Exp) :-

eval(CExps,Env,EExps),

suspend_on(Env,EExps,Cls,Cond),

when(Cond,( match(Env,EExps,Cls,MEnv,Cl), eval(Cl,MEnv,Exp) )).

�e evaluation of expressions of the form ‘case CExps of Cls end.’, encoded as
case(CExps,Cls), in the environment Env behaves as follows. �e expressions
CExps are evaluated in the environment Env, thereby ge�ing the expressions EExps
to be matched against one of the pa�erns of the clauses Cls. �en, suspend -

on(Env,EExps,Cls,Cond) generates a condition Cond of the form ( nonvar(V1),
. . . , nonvar(Vn) ), where V1, . . . , Vn are the CLP variables occurring in EExps that
would get bound to either a list or a tuple while matching the expressions EExps
against the pa�erns of the clauses Cls. Such a condition forces the suspension of the
evaluation of the goal occurring as a second argument of the when primitive until all
of these variables get bound to a non-variable term. If the evaluation of the case-of
binds all the variables to terms which are neither lists nor tuples, then suspend on

produces a Cond that holds true. �us, when the goal of the when primitive is ex-
ecuted: (i) match(Env,EExps,Cls,MEnv,Cl) selects a clause Cl from Cls whose
pa�ern matches EExps, hence producing the environment MEnv that extends Env
with the new bindings derived by matching, and (ii) eval(Cl,MEnv,Exp) evalu-
ates Cl in MEnv and produces the output expression Exp. Now, if we run the follow-
ing query:

?- eval(apply(var(’avl’,1),[var(’T’)]),[(’T’,X)],lit(atom,true)),

typeof(X,tree(integer)),

rand_elem(X).

the CLP variable X, shared between typeof and eval, forces the type-based gener-
ator and the �lter to cooperate in the generation of AVL trees. Indeed, as soon as the
typeof (partially) instantiates X to a binary tree, the evaluation of the �lter function
adds constraints on the skeleton of X (corresponding to the properties at lines 1 and
2 of the de�nition of the avl function). �e advantage of this approach is that the
constraints on X restrict the possible ways in which its le� and right subtrees can be
further expanded by recursive calls of typeof. As an example, suppose we want to
test the following function avl insert that inserts the integer element E into the
AVL tree T:

avl_insert(E,T) -> case T of

{node,L,V,R} when E < V -> re_balance(E,{node,avl_insert(E,L),V,R});

{node,L,V,R} when E > V ->

re_balance(E,{node,L,V,avl_insert(E,R)});
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{node,L,V,R} when E == V -> {node,L,V,R};

leaf -> {node,leaf,E,leaf}

end.

�is function uses the following utility functions shown below: (i) re balance,
which given an integer element E and a binary search tree T, performs suitable
rotations on T so as to make it height-balanced, and (ii) right rotation, and
(iii) left rotation, which perform a right rotation, and a le� rotation on T, re-
spectively. �e de�nition of re balance has two errors: (1) at line ERR 1, where
‘<’ should be ‘>’, and (2) at line ERR 2, where ‘>’ should be ‘<’.

re_balance(E,T) ->
{node,L,V,R} = T,
case height(L) - height(R) of
2 -> {node,_,LV,_} = L, % Left unbalanced tree
if E < LV -> right_rotation(T);

E > LV -> right_rotation({node,left_rotation(L),V,R})
end;
-2 -> {node,_,RV,_} = R, % Right unbalanced tree
if E < RV -> left_rotation(T); % ERR_1

E > RV -> left_rotation({node,L,V,right_rotation(R)}) % ERR_2
end;
_ -> T

end.

right_rotation({node,{node,LL,LV,LR},V,R}) ->
{node,LL,LV,{node,LR,V,R}}.

left_rotation({node,L,V,{node,RL,RV,RR}}) ->
{node,{node,L,V,RL},RV,RR}.

�e following test case speci�cation states that a�er inserting an integer element E
in an AVL tree, we get again an AVL tree:

avl() -> ?SUCHTHAT(T, tree(integer()), avl(T)).

prop_insert() ->

?FORALL({E,T}, {integer(),avl()}, avl(avl_insert(E,T))).

�e following command runs ProSyT on the �le avl insert bug.erl that includes
the above bugged avl insert function and the test case speci�cation.

$ ./prosyt.sh avl_insert_bug.erl prop_insert --force-spec\

--min-size 3 --max-size 20 --inf -10000 --sup 10000 --tests 200
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In this command we have used the following options:
(i) --min-size and --max-size specify the values of min size and max size,
respectively, determining the size of the data structure (see Sect. 7.3), (ii) --inf
and --sup specify the bounds of the interval where integer elements are taken from
(see Sect. 7.3), and (iii) --tests N speci�es the number of tests to be run.

Here is an initial part of the string of characters we get:
..x...x...cx..x.xxc....x..c.x..x..x.c..

�e generation of the 200 test cases takes 550ms (user time). Several ‘x’ characters
are generated, corresponding to runs of avl insert that do not return an AVL tree,
and hence reveal bugs. Moreover, the ‘c’ characters in the output string correspond
to crashes of the execution, due to the fact that the right rotation or left -

rotation functions threw a match fail exception when applied to a tree on which
those rotations cannot be performed.

7.7 Experimental evaluation

In this section we present the experimental evaluation we have performed for as-
sessing the e�ectiveness and the e�ciency of the test case generation process we
have presented in this paper and we have implemented in ProSyT.
Benchmark suite. �e suite consists of 10 Erlang programs: (1) ord_insert, whose
input is an integer and an ordered list of integers (see Sect. 7.2); (2) up_down_seq,
whose input is a list of integers of the form: [w1, . . . , wm, z1, . . . , zm], with w1 ≤
. . . ≤ wm and z1 ≥ . . . ≥ zm; (3) n_up_seqs, whose input is a list of ordered lists of
integers of increasing length; (4) delete, whose input is a triple 〈w, u, v〉 of lists of
integers such thatw is the ordered permutation of the list obtained by concatenating
the ordered lists u and v; (5) stack, whose input is a pair 〈s, n〉, where s is a stack
encoded as a list of integers, and n is the length of that list; (6) matrix_mult, whose
input is a pair of matrices encoded as a pair of lists of lists, (7) det_tri_matrix,
whose input is a lower triangular matrix encoded as a list of lists of increasing length
of the form: [[v11], [v21, v22], . . . , [vn1, . . . , vnn]], (8) balanced_tree, whose input
is a height-balanced binary tree [31]; (9) binomial_tree_heap, whose input is a
binomial tree satisfying the minimum-heap property [31]; (10) avl_insert, whose
input is an AVL tree (see Sect. 7.6). �e benchmark suite is available online as part of
the ProSyT tool (the su�xes _bug.erl and _ok.erl denotes the buggy and correct
versions of the programs, respectively).
Experimental processes. We have implemented the following two experimental pro-
cesses. (i) Generate-and-Test, which runs PropEr for randomly generating a value
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Program
PropEr ProSyT

Time N Time N
1. ord_insert 300.00 0 300.00 67,083
2. up_down_seq 300.00 0 300.00 22,500
3. n_up_seqs 300.00 0 300.00 24,000
4. delete 300.00 0 9.21 100,000
5. stack 143.71 100,000 19.57 100,000
6. matrix_mult 300.00 0 300.00 76,810
7. det_tri_matrix 300.00 304 32.28 13,500
8. balanced_tree 300.00 121 21.54 100,000
9. binomial_tree_heap 300.00 0 43.45 4,500

10. avl_insert 300.00 0 300.00 23,034

Table 7.1: Column Time reports the seconds needed to generate N (≤100,000) test
cases of size in the interval [10, 100] within the time limit of 300 seconds.
of the given data type, and then tests whether or not that value satis�es the given
�lter; this process uses the prede�ned generator for lists and a simple user-de�ned
generator for trees. (ii) Constrain-and-Generate, which runs ProSyT by coroutining
the generation of the skeleton of a data structure and the evaluation of the �lter
expression (see Sect. 7.6), and then randomly instantiating that skeleton.
Technical resources. �e experimental evaluation has been performed on a machine
equipped with an Intel® CoreTM i7-8550U CPU @ 1.80GHz × 8 processor and 16GB
of memory running Ubuntu 18.04.2 LTS. �e timeout limit for each run of the test
cases generation process has been set to 300 seconds.
Results. We have run PropEr and ProSyT for generating up to 100,000 test cases
whose size is in the interval [10, 100], and we made the random generator for integer
and real values to take values in the interval [−10000, 10000]. ProSyT has been
con�gured so that the random instantiation phase can produce at most 1500 concrete
test cases for every data structure skeleton found. �e results of the experimental
evaluation are summarized in Table 7.1.

�e experiments show that the Constrain-and-Generate process used by ProSyT
performs much be�er than the Generate-and-Test process used by PropEr. Indeed,
Generate-and-Test is able to �nd valid test cases only when the �lter is very simple.
Actually, in some examples, PropEr generates test cases with very small size only
(less than the minimum speci�ed size limit of 10). In particular, for the ord_insert
program, PropEr generates ordered lists of length at most 8, while ProSyT is able
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to generate lists of length up to 53. Also for the programs det_tri_matrix and
balanced_tree, the size of the largest data structure generated by PropEr (a 5×5
matrix and a 15 node balanced tree) is much smaller than the largest data structure
generated by ProSyT (a 12×12 matrix and a 22 node balanced tree). Finally, note
that for the programs det_tri_matrix and binomial_tree_heap, ProSyT halted
before the time limit of 300 seconds because no more skeletons exist within the
given size interval.

7.8 Related Work

Automated test generation has been suggested by many authors as a means of re-
ducing the cost of testing and improving its quality [122]. Property-Based Testing,
and in particular the �ickCheck approach [29], is one of the most well-established
methods for automating test case generation (see also the references cited in the
Introduction).

PropEr [113, 119] is a popular Property-Based Testing tool for Erlang programs
that follows the �ickCheck approach. PropEr was proposed as an open-source
alternative to �viq �ickCheck [7], a proprietary, closed-source tool for Property-
Based Testing of Erlang programs. In addition, PropEr was designed to be integrated
with the Erlang type speci�cation language.

However, a critical point of PropEr (and of other PBT frameworks) is that the
user bears most of the burden of writing correct, e�cient generators of test data.
Essentially, PropEr only provides an automated way for converting type speci�ca-
tions into generators of free data structures, but very limited support is given to
automatically generate data structures subject to constraints, such as the sorted lists
and AVL-trees we have considered in this paper. In this respect, the main contri-
bution of our work is a technique for the automated generation of test data from
PropEr speci�cations. Indeed, our approach, based on a CLP interpreter for (a sub-
set of) Erlang, allows the automated generation of test data in an e�cient way. Test
data are generated by interleaving, via coroutining, the data structure generation,
the �ltering of those data structures based on constraint solving, and the random
instantiation of variables. �is mechanism, implemented in the ProSyT tool, has
demonstrated good e�ciency on some non-trivial examples.

�e work closest to ours is the one implemented by the FocalTest tool [23]. Fo-
calTest is a PBT tool designed to generate test data for programs and properties writ-
ten in the functional language Focalize. Its main feature is a translation of Focalize
programs into CLP(FD) programs extended with the constraint combinators apply
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and match, which encode function application and pa�ern matching, respectively.
apply and match are implemented by using freeze and wake-up mechanisms based
on the instantiation of logical variables, and in particular, the evaluation of apply
and match is waken up when their arguments are bound to non-variable terms.

A di�erence between FocalTest and ProSyT comes from the fact that, Focalize is
a statically typed language and Erlang is a dynamically typed language. Static type
information is used by FocalTest for instantiating variables, while in ProSyT type-
based instantiation is performed through the typeof data structure generator. Static
typing is also exploited in the proof of correctness of FocalTest, whose operational
semantics has been formalized in Coq [22]. In contrast, we handle Erlang’s dynamic
typing discipline by writing an interpreter of (a subset of) the language, which also
models failure due to runtime typing errors.

�e development of the CLP interpreter for Erlang and, more in general, for
the PropEr framework, is indeed the most signi�cant and distinctive feature of our
approach. From a methodological point of view, a direct implementation of the
operational semantics in a rule-based language like CLP, requires a limited e�ort
for the proof of correctness with respect to a formal semantics (we did not deal with
this issue in the present paper, but we tested our interpreter on several examples).
From a practical point of view, the use of the interpreter avoids the need of extending
CLP with special purpose constraint operators like apply and match. Moreover, our
interpreter-based approach lends itself to possible optimizations for improving the
e�ciency of test case generation, such as partial evaluation [71], for automatically
deriving specialized test case generators.

�e freeze and wake-up mechanisms used by FocalTest are quite related to the
coroutining mechanism implemented by ProSyT, which, however, is realized by the
interpreter, rather than by the constraint solving strategy.

Other di�erences between FocalTest and ProSyT concern numerical variables
and random instantiation. FocalTest handles integer numerical variables using the
CLP(FD) constraint solver and randomly instantiates those variables using a strategy
called random iterative domain spli�ing. ProSyT handles integer and �oat numerical
variables using CLP(FD) and CLP(R), respectively, for solving constraints on those
variables, and their random instantiation is done by using CLP(FD) and CLP(R) built-
ins. ProSyT is also able to perform random generation of data structures, by using
a randomized version of the predicate typeof (see Sect. 7.4), possibly specifying a
distribution for the values of a given type.

�e idea of interleaving, via coroutining, the generation of a data structure with
the test of consistency of the constraints that the data structure should satisfy, is
related to the lazy evaluation strategy used by Lazy SmallCheck [121], a PBT tool for



7. Property-Based Test Case Generators for Free 183

Haskell. Lazy SmallCheck checks properties for partially de�ned values and lazily
evaluates parallel conjunction to enable early pruning of the set of candidate test
data. Lazy SmallCheck does not use symbolic constraint solving, and exhaustively
generates all values up to a given bound.

Besides functional programming languages, PBT has also been applied to Pro-
log [4]. Similarly to ProSyT, the PrologCheck tool [4] implements randomized test
data generation for Prolog. However, when the test data speci�cation contains con-
straints, PrologCheck follows a generate-and-test approach, and no mechanism is
provided by the tool for coroutining data generation and constraint solving (unless
this is coded directly by the programmer).

�e use of constraint-based reasoning techniques for test-case generation is
a well-established approach [38, 58, 60, 94], which has been followed for the im-
plementation of several tools in various contexts. Among them, we would like
to mention: GATeL [95], a test sequence generator for the synchronous data�ow
language LUSTRE, AUTOFOCUS [118], a model-based test sequence generator for
reactive systems, JML-TT [15], a tool for model-based test case generation from
speci�cations wri�en in the Java Modeling Language (JML), Euclide [59], a tool
for testing safety-critical C programs, and �nally, tools for concolic testing, such as
PathCrawler [141], CUTE [125], and DART [56], which combine concrete execution
with constraint-based path representations of C programs.

Our work is also related to approaches and tools proposed in the context of
languages for specifying and testing meta-logic properties of formal systems. In
particular, αCheck [27] follows an approach very much inspired by PBT for per-
forming bounded model-checking of formal systems speci�ed in αProlog, which is
a Horn clause language based on nominal logic. Related concepts are at the ba-
sis of �ickChick, a PBT tool for the Coq proof assistant [114]. Lampropoulos et
al. [79] also address the problem of deriving correct generators for data satisfying
suitable inductive invariants on top of �ickChick. In that work, the mechanism
for data generation makes use of the narrowing technique, which similarly to our
resolution-based approach, builds upon the uni�cation algorithm.

Declarative approaches for test data generation have been proposed in the con-
text of bounded-exhaustive testing (BET) [30], whose goal is to test a program on
all input data satisfying a given invariant, up to a �xed bound on their size. One
of the most well-known declarative frameworks for BET is Korat [16], which is a
tool for testing Java programs. Given a Java predicate specifying a data structure,
subject to a given invariant and a size bound on its input, Korat uses backtracking
to systematically explore the bounded input space of the predicate by applying a
generate-and-test strategy. JMLAutoTest [142] implements a technique, based on
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statistical methods, for avoiding the generation of many useless test cases by ex-
ploiting JML speci�cations.

A di�erent domain-speci�c language for BET of Java programs is UDITA [55]. It
provides non-deterministic choice operators and an interface for generating linked
structures. UDITA improves e�ciency with respect to the generate-and-test ap-
proach by applying the delayed choice principle, that is, postponing the instantiation
of a variable until it is �rst accessed.

It has been shown that CLP-based approaches, which exploit built-in uni�cation
and special purpose constraint solving algorithms, can be very competitive with
respect to domain-speci�c tools for BET [44].

7.9 Conclusions

We have presented a technique for automated test case generation from test case
speci�cations. We have considered the Erlang functional programming language
and a test case speci�cation language based on the PropEr framework [113, 119].

In this paper we have shown how we can relieve the programmer from writing
generators of test data by using constraint logic programming (CLP). However, even
if our approach to automated PBT is based on CLP, the programmer is not required
to deal with any concept related to logic programming, and Prolog code is fully
transparent to the programmer. Indeed, we provide both (i) a translator from PropEr
and Erlang speci�cations and programs to CLP, and (ii) a translator of the generated
test data from CLP syntax to Erlang syntax.

At present, the ProSyT tool, which implements our PBT technique, does not
provide any shrinking mechanism to try to generate an input of minimal size in
case the program under test does not satisfy the property of interest. However,
we think that this mechanism can e�ciently be realized by using the primitives
for controlling term size provided by our tool, together with Prolog default search
strategy based on backtracking.

Finally, we would like to notice that, even if we developed our technique in the
context of PBT of Erlang programs, the approach we followed is to a large extent
independent of the speci�c programming language, as it is based on writing a CLP
interpreter of the programming language under consideration. �us, as future work,
we plan to apply a similar scheme to other programming languages by providing
suitable CLP interpreters.
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Chapter 8
Discussion

In this chapter, we discuss the main results achieved in this thesis. We have split
this discussion into three categories, corresponding to the main topics covered in
our work. In particular, Section 8.1 summarizes the (mostly, theoretical) results on
reversible term rewriting. Section 8.2 discusses the combination of theoretical and
practical results achieved in the context of reversible debugging (reversibility theory,
causal-consistent reversible debugging and causal-consistent replay debugging). Fi-
nally, in Section 8.3 we discuss our results in the area of constraint-based testing,
namely concolic testing and property-based testing.

8.1 Reversible Term Rewriting

�e beginning of Chapter 2 presents a conservative extension of term rewriting that
is reversible. First, we de�ne reversible term rewriting for the case of unconditional
term rewriting, which is conceptually simpler and helps to understand the main at-
tributes of our approach. �en, we extend this notion and results to DCTRSs. Here,
we prove theorems 2.5 and 2.17 which state that reversible rewriting is a conserva-
tive extension of standard rewriting for both cases. �en, we prove the reversibility
of our reversible forward relation ⇀R (stated in theorems 2.9 and 2.20) and the fact
that our reversible backward relation ↽R is deterministic and con�uent (stated in
theorems 2.11 and 2.21). Termination is trivially guaranteed since the trace length
decreases with every backward step.

�en, we consider two re�nements of our approach. �e �rst one is an im-
provement that reduces the size of the traces by removing positions from traces

189
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(Section 2.4). We introduce a subclass of DCTRs, namely pcDCTRSs, which makes
storing positions unnecessary since reduction in pcDCTRSs only takes place at top-
most reductions. �en, we propose a set of transformations that we prove to be
correct for transforming a DCTRS into a pcDCTRS: �a�ening (theorem 2.25) and
simpli�cation of constructor conditions (theorems 2.26 and 2.27). We conclude this
section with a proof for theorem 2.28 which basically states that innermost and top
reductions are equivalent for pcDCTRSs.

�e second re�nement, described in Section 2.5, aims at compiling the reversible
extension of rewriting into the system rules. Given a pcDCTRS R, we aim at pro-
ducing two new systemsRf andRb such that standard rewriting inRf (i.e.,→Rf ),
is equivalent to the forward reversible extension ⇀R in the original system, and
analogously→Rb is equivalent to the backward reversible extension ↽R. �e cor-
rectness of our transformations (with respect to the original reversible relation) is
proven for theorem 2.33 (injectivization) and theorem 2.36 (inversion). Moreover,
we present an improvement of the injectivization transformation based on an injec-
tivity analysis for removing labels in trace terms associated with injective functions.

In Section 2.6, we show the application of our reversibilization technique to
solve the view-update problem. Basically, we produce a bidirectional transforma-
tion by means of our injectivization and inversion transformations. We note that the
example considered in [97] cannot be handled by our approach. However, an addi-
tional transformation from pcDCTRSs to functional programs with treeless func-
tions could allow us to apply the technique in [97]. In summary, our approach
can solve the view-update problem as long as the view function can be encoded
in a pcDCTRS. Recently, [112] introduced a syntactic bidirectionalization technique
based on a combination of our approach with other approaches in syntactic bidi-
rectionalization [97] and semantic bidirectionalization [140]. In fact, we expect our
approach to be applied on more occasions in the context of bidirectional program
transformation, as well as in other contexts like reversible debugging or parallel
discrete event simulation.

Finally, we present an implementation of the reversibilization transformations
introduced in Section 2.5. �e tool can read an input TRS �le [1] and then it applies
sequentially the following transformations: �a�ening, simpli�cation of constructor
conditions, injectivization, and inversion. �e tool prints out the CTRSs obtained
at each transformation step, and it is publicly available through a web interface
from http://kaz.dsic.upv.es/rev-rewriting.html, where we have included
a number of examples to easily test the tool.

http://kaz.dsic.upv.es/rev-rewriting.html
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8.2 Reversible Debugging

In Section 3.4 we propose an uncontrolled version of a reversible semantics for Er-
lang. We prove the reversible forward semantics to be a conservative extension of
the standard semantics (stated in theorem 3.8). Moreover, we prove other properties
of this semantics: the loop lemma (lemma 3.11), the square lemma (lemma 3.13), the
switching lemma1 (lemma 3.16), the rearranging lemma (lemma 3.18) and the short-
ening lemma (lemma 3.20). �ese lemmas are then used to prove causal consistency
of the reversible semantics (theorem 3.21).

In Section 3.5, we propose a rollback semantics for Erlang. We �rst prove the
soundness of the rollback semantics as stated in theorem 3.25, and then its com-
pleteness (lemma 3.26).

Finally, Section 3.6 presents a proof-of-concept implementation of the uncon-
trolled reversible semantics for Erlang (Section 3.3). �e implementation is bundled
together with a graphical user interface (shown in Figure 8.1) in order to facilitate
the interaction of users with the reversible semantics (in the following, we refer to
this as “the application”). Nonetheless, the application was developed in a modular
way so that parts of it could be included in other projects.

�e implementation of our reversible semantics considers a language equivalent
to a subset of Core Erlang. In short, Core Erlang is an intermediate language used
by the Erlang compiler. Generally, Erlang programs are translated to Core Erlang
by the Erlang/OTP system before their compilation, so that the resulting code is
simpli�ed. For instance, pa�ern matching can occur almost anywhere in an Erlang
program, whereas in Core Erlang, pa�ern matching can only occur in case state-
ments. Nevertheless, we remark that our implementation considers Core Erlang
code translated from the Erlang programs provided by the user.

When the application is started, the �rst step is to select an Erlang source �le.
�e source �le is then translated to Core Erlang, and the resulting code is shown
in the Code window. �en, the user is able to select any of the functions from
the module and write the arguments that she wants to evaluate the function with.
When the START bu�on is pressed, an initial system (composed of an empty global
mailbox and a single process performing the speci�ed function application) appears
on the State window (shown in Figure 8.1). At this point, the user is able to control
the evaluation of the system by selecting the rules from the reversible semantics
that she wants to �re.

�e application includes two di�erent modes for controlling the evaluation of

1Not included in other proof schemes [35], but necessary in our case.
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Figure 8.1: Screenshot of the application

the reversible semantics. �e �rst one is a Manual mode, where the user selects
the rule to be �red for a particular process or message. Here, the user is in charge
of controlling the reversible semantics in a stepwise manner, although this mode
can become exhausting a�er some time. �e second mode is the Automatic mode.
Here, the user speci�es a number of steps and chooses a direction (i.e., forward
or backward). �en, the rules to be applied are randomly selected—for the chosen
direction—until the speci�ed number is reached or no more rules can be applied.
Alternatively, the user can move the state forward up to a normalized system. A
normalized system is reached when no rule other than Sched can be applied. Hence,
in a normalized system, either all processes are blocked (waiting for some message
to arrive) or the system state is �nal. �is option allows the user to perform all
reductions that do not depend on the network. �en, reductions that depend on the
network can be applied one by one for easier understanding of their impact on the
computation.
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An updated release version (v1.1, with �xes and GUI improvements) of the ap-
plication is publicly available from https://github.com/mistupv/rev-erlang

under the MIT license. �e linked repository also includes some documentation
and a few examples to easily test the application. Furthermore, the application is
completely wri�en in Erlang, therefore the only requirement to build it is to have
Erlang/OTP installed in your system and built with wxWidgets.

In Chapter 4, we �rst de�ne a new controlled semantics which is more appro-
priate for a causal-consistent reversible debugger than the one in Chapter 3.

In Section 4.4, we present CauDEr, our causal-consistent reversible debugger
for Erlang. In the same way that the implementation described earlier, CauDEr is
conveniently bundled together with a graphical user interface (shown in Figure 8.2).
�e release version (v1.0) of CauDEr is publicly available from https://github.

com/mistupv/cauder under the MIT license. As in the previous implementation,
the only requirement is to have Erlang/OTP installed and built with wxWidgets, and
we include documentation and examples for testing it.

Figure 8.2: CauDEr screenshot

Although CauDEr is heavily based on the proof-of-concept implementation de-
scribed in Section 3.6, we add a number of features that make CauDEr more sophis-

https://github.com/mistupv/rev-erlang
https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
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ticated when it comes to debugging in Erlang. In the following, we summarize the
extra features of CauDEr with respect to the previous implementation:

• �e reversible semantics embedded inCauDEr allows one to focus on undoing
the actions of a speci�c process. In contrast, the previous rollback semantics
targeted a particular checkpoint—introduced by the user. Moreover, this al-
lows us to de�ne several rollback operators for undoing:

– the sending of a message with a particular identi�er,
– the receiving of a message with a particular identi�er,
– the spawning of a process with a particular pid, or
– the introduction of a binding for a given variable.2

Hence, the new reversible semantics is more useful for debugging because it
allows one to focus on undoing speci�c actions, instead of undoing actions
up to a checkpoint introduced by the user before the debugging process.

• �e option to choose between two random schedulers in the Automatic mode:

– a scheduler with a uniform distribution, and
– a scheduler which gives priority to process actions (as in the normaliza-

tion strategy described in Section 3.6).

Of course, none of these schedulers is able to replicate the behavior of the
Erlang/OTP scheduler (since it depends on many factors), but the normaliza-
tion strategy allows the user to focus on actions that depend on the network
(sending and receiving).

• An additional Rollback mode that lets users start o� any of the rollback oper-
ators previously discussed.

• A large number of GUI improvements to the State tab, where the system state
can be inspected. In particular, we added these features:

– Message and process identi�ers are highlighted in color.
– �e option to hide any component of the process representation (local

mailbox, environment, history or expression).
– �e option to show all actions or just concurrent actions in histories.

2renaming in CauDEr enforces unique variable names
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– �e option to show all variable bindings or just relevant ones3 in envi-
ronments.

• A new Trace tab which gives a linearized description of the concurrent actions
performed in the system. �is tab aims at providing a global picture of the
system state, possibly highlighting anomalies in process communications.

• A further Roll Log tab which is updated in case of rollbacks. Basically, it shows
which actions have been undone upon a rollback request. �is tab allows the
user to understand the causal dependencies of the process targeted by the
rollback request, frequently highlighting undesired or missing dependencies
caused by a bug.

�en, we show how to use our debugger to �nd concurrency bugs in the well-
know problem of the dining philosophers (Erlang code available from https://

github.com/mistupv/dining-philos). First, we describe the usage of our de-
bugger in the context of a message order violation scenario. We note that it would
not be easy to �nd the same bug using a standard debugger (i.e., using breakpoints)
or a reversible debugger (like Actoverse [126]). In fact, the CauDEr facility for roll-
backing a particular message receiving, in addition to unique identi�ers for mes-
sages, is shown to be key in ensuring the localization of this concurrency bug. �en,
we also describe the usage of our debugger in the context of a livelock scenario. Live-
locks are hard-to-�nd bugs since no global progress is achieved but local progress
(between a few processes) keeps the program alive. Again, the rollback facilities of
CauDEr are essential in �nding the present bug. We note that this kind of bugs are
typically hard to �nd with other debugging tools. For instance, it is not possible to
use Concuerror [61] since it requires a �nite computation.

In Chapter 5, we �rst introduce the notion of logged computations. We provide
a logging semantics and discuss that, in a practical implementation, one should aim
at performing a program instrumentation so that the execution of the program in an
actual environment produces the sequence of events required for replay debugging.

�en, we introduce an uncontrolled version of causal-consistent replay seman-
tics in Section 5.4. We state the correctness and completeness of our semantics in
theorem 5.18, which ensures that a misbehavior occurring in logged computation is
replayed in any possible fully-logged derivation.

In Section 5.5, we propose a controlled version of the replay semantics. In con-
trast to the uncontrolled version, which allows one to replay a given derivation and

3We consider a variable binding to be relevant for a particular expression if the variable occurs
within the expression

https://github.com/mistupv/dining-philos
https://github.com/mistupv/dining-philos
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be guaranteed to replay eventually any local misbehavior, this semantics allows one
to focus on a speci�c process or even some of its actions.

Finally, the implementation of a logger and an implementation of a causal-
consistent replay debugger following the ideas in Chapter 5 (based on CauDEr) can
be found in [87]. More details and results related to Chapter 5 can be found in [88].

8.3 Constraint-based Testing

In Chapter 6, we �rst introduce an instrumented semantics for Erlang so that the
execution of an Erlang program with this semantics produces a sequence of events.
�en, we present a program instrumentation for generating the same sequence of
events with the instrumented program during standard execution in any environ-
ment. Moreover, the instrumentation is proved to be equivalent to running the orig-
inal program with the instrumented semantics (theorem 6.8). �en, we formalize a
procedure using Prolog for reconstructing a symbolic execution that mimicks the
concrete execution corresponding to the generated sequence of events. �e imple-
mentation of the instrumenting program is made in Erlang and can be tested at
http://kaz.dsic.upv.es/instrument.html.

In Chapter 7, we �rst describe the core components of our tool for automated test
case generation: Section 7.4 for type-based value generation (second component),
Section 7.5 for the interpreter of �lter functions (third component), and Section 7.6
for coroutining, the mechanism that interleaves the previous components for more
e�cient results.

Finally, in Section 7.7 we present an experimental evaluation to assess the ef-
fectiveness and e�ciency of the test case generation method proposed in Chapter 7
and implemented in ProSyT, which is publicly available from: https://fmlab.

unich.it/testing/. �is evaluation compares our tool against PropEr, a popular
property-based testing tool for Erlang.

�e benchmark suite consists of 10 di�erent Erlang programs (more details in
Section 7.7) and is available online as part of the ProSyT tool. We implement two
experimental processes:

Generate-and-Test Runs PropEr for randomly generating a value of the given data
type, and then tests whether or not that value satis�es the given �lter; this
process uses the prede�ned generator for lists and a simple user-de�ned gen-
erator for trees.

Constrain-and-Generate RunsProSyT by coroutining the generation of the skele-

http://kaz.dsic.upv.es/instrument.html
https://fmlab.unich.it/testing/
https://fmlab.unich.it/testing/
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Program
PropEr ProSyT

Time N Time N
1. ord_insert 300.00 0 300.00 67,083
2. up_down_seq 300.00 0 300.00 22,500
3. n_up_seqs 300.00 0 300.00 24,000
4. delete 300.00 0 9.21 100,000
5. stack 143.71 100,000 19.57 100,000
6. matrix_mult 300.00 0 300.00 76,810
7. det_tri_matrix 300.00 304 32.28 13,500
8. balanced_tree 300.00 121 21.54 100,000
9. binomial_tree_heap 300.00 0 43.45 4,500

10. avl_insert 300.00 0 300.00 23,034

Table 8.1: Column Time reports the seconds needed to generate N (≤100,000) test
cases of size in the interval [10, 100] within the time limit of 300 seconds.

ton of a data structure and the evaluation of the �lter expression (see Sec-
tion 7.6), and then randomly instantiating that skeleton.

PropEr and ProSyT were run for generating up to 100,000 test cases of size
within the interval [10, 100], and the random generator for integer and real values
were set to take values in the interval [−10000, 10000]. �e timeout limit for each
run of the test case generation process was set to 300 seconds.

�e results of the experimental evaluation are summarized in Table 8.1 (data
about test case size not shown). �e experiments con�rm that the Constrain-and-
Generate process used by ProSyT performs much be�er than the Generate-and-Test
process used by PropEr, both in terms of e�ciency and test case quality. In fact, the
Generate-and-Test strategy followed by PropEr is able to �nd valid test cases only
when the �lter is quite simple and, even in those cases, it generates test cases of small
size (less than the speci�ed minimum size of 10). For instance, for the ord_insert
program, PropEr generates ordered lists of at most 8 elements, while ProSyT is able
to generate lists of up to 53 elements. Similarly, for programs det_tri_matrix and
balanced_tree, the size of the largest data structure generated by ProSyT (a 12×12
matrix and a 22 node balanced tree) is much bigger than the one generated by PropEr
(a 5×5 matrix and a 15 node balanced tree). Finally, note that for some programs
(e.g., det_tri_matrix), ProSyT halted before the time limit of 300 seconds because
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no more skeletons exist within the given size interval.
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Chapter 9
Conclusions and Future Work

In this thesis, we have proposed several techniques based on formal methods for
constraint-based testing and reversible debugging in Erlang. In particular, we have
designed methods for concolic testing, property-based testing, causal-consistent
reversible debugging and causal-consistent replay debugging of Erlang programs.
Moreover, we have provided formal proofs for the most interesting properties of
our proposals, in addition to publicly-available so�ware tools that experimentally
show these approaches to be feasible and e�cient in practice. In this chapter, we
perform a �nal review of our contributions and we present a discussion about future
work.

9.1 Conclusions

Below we highlight the main contributions in this thesis.

• In Chapter 2, we introduced a conservative extension of term rewriting that
is reversible. First, our approach is presented for the case of unconditional
term rewriting for easier understanding. We then extended this notion to the
more general case of DCTRSs, and proved the soundness and reversibility
of our extension of rewriting. �en, in order to introduce a reversibilization
transformation for these systems, we also presented a transformation from
DCTRSs to pure constructor systems (pcDCTRSs) which is correct for con-
structor reduction. A further improvement is presented for injective func-
tions, which may have a signi�cant impact in memory usage in some cases.

201
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�en, we showed how to successfully apply our approach in the context of
bidirectional program transformation. Finally, we developed a prototype im-
plementation of the reversibilization transformations that was made publicly
available through a web interface.

• In Chapter 3, we �rst introduced an uncontrolled version of a reversible se-
mantics for Erlang, and we proved its most interesting properties (loop lemma,
square lemma and causal consistency). �en, we proposed a controlled ver-
sion of the backward semantics that can be used to model a rollback operator
which undoes the actions of a process up to a given checkpoint. Finally, we
presented a proof-of-concept implementation of the reversible semantics that
shows our approach to be feasible in practice.

• In Chapter 4, we presented the design of CauDEr, a causal-consistent re-
versible debugger for Erlang. �e tool is based on the reversible semantics
introduced in Chapter 3, though we introduced in Chapter 4 a new rollback
semantics especially tailored for reversible debugging. We showed its appli-
cation in two di�erent scenarios to demonstrate that some bugs can be more
easily located using our tool, thus �lling a gap in the collection of debugging
tools for Erlang.

• In Chapter 5, we introduced causal-consistent replay, a concept that is strongly
related to causal-consistent reversibility, and its instance on debugging (causal-
consistent reversible debugging). We proposed both an uncontrolled and a
controlled semantics for causal-consistent replay in Erlang. �en, CauDEr
was adapted to work with controlled version of the replay semantics, result-
ing in the implementation of a causal-consistent replay debugger for Erlang.

• In Chapter 6, we introduced a transformational approach to concolic execu-
tion based on �a�ening and instrumenting the source program. �e execution
of the instrumented program generates a sequence of events that can be eas-
ily processed in order to compute the concrete values of the associated sym-
bolic execution, as well as possible alternatives—to produce new test cases. In
contrast to interpreter-based approaches, the main advantage is that the in-
strumented program can be run in any environment, including non-standard
ones. �is allows one to run the instrumented program in, for instance, a
model checking environment like Concuerror [61] so that its execution would
produce the sequences of events for all relevant interleavings. �erefore, it
might be useful to combine concolic execution with other techniques (e.g.,
model checking).
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• In Chapter 7, we presented a technique for automated test case generation in
Erlang. Our technique relieves the user from writing data generators, a well-
known drawback of property-based testing. �e technique was implemented
in ProSyT, a tool composed of six modules, that takes both a data type and
a �lter speci�cation (wri�en in speci�cation language of the PropEr frame-
work [113, 119]) and generates concrete data of the given type that satis�es
the given �lter. �e core component of ProSyT is a symbolic interpreter that
exploits various mechanisms which are speci�c to constraint logic program-
ming (uni�cation, constraint solving and coroutining). Nonetheless, the user
is not required to have prior knowledge of constraint logic programming in
order to use ProSyT.

We conclude this section with a discussion about how these works are related.
As mentioned in Chapter 2, we expected our work on reversible term rewriting to be
useful in the context of reversible debugging. In fact, we simply applied a Landauer
embedding in the reversible semantics proposed in Chapter 3, which was enough
to deal with the sequential expressions of the language. On the other hand, its con-
current features required us to ensure causal consistency in order to guarantee the
reversibility of this semantics. �en, in Chapter 4 we introduced a new rollback se-
mantics particularly intended for reversible debugging, which was clearly inspired
by the reversible semantics from Chapter 3. Moreover, we exploited the proof-of-
concept implementation introduced in Chapter 3 for the development of CauDEr,
the causal-consistent reversible debugger presented in Chapter 4. Later, we realized
that we could improve the usage of our reversible debugger by adding a replay mech-
anism to it. �erefore, we introduced causal-consistent replay debugging in Chap-
ter 5, which is very related to the notion of causal-consistent reversibility (Chapter 3)
and causal-consistent reversible debugging (Chapter 4). Not surprisingly, we used
CauDEr as the starting point of our implementation for causal-consistent replay
debugging. Finally, although the work presented in Chapter 6 did not have a direct
impact on Chapter 7, we note that the experience acquired in the development of our
concolic execution method was quite bene�cial for the design and implementation
of ProSyT, the automated test case generation tool presented in Chapter 7.

9.2 Future Work

In this section, we discuss promising directions for future research along the lines
of our work. As in Chapter 8, we have split the discussion into a few categories
corresponding to the main topics covered in this thesis.
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9.2.1 Reversible Term Rewriting

�e �rst branch for future work to consider in reversible term rewriting is to re-
search new methods to further reduce the size of traces. In principle, it would be
interesting to de�ne a reachability analysis for DCTRSs. In fact, a reachability anal-
ysis for CTRSs without extra variables can be found in [42], but the extension to
deal with extra variables in DCTRSs seems challenging. Furthermore, as mentioned
in Section 2.5.1, a completion procedure to add default cases to some functions may
help to broaden the applicability of the technique and avoid the restriction to con-
structor reduction. Also, we have proved our reversibilization transformations to be
correct with respect to innermost reduction, but it would be interesting to extend
these results to other reduction strategies. Finally, we could explore the applicability
of our approach in new contexts, as we have done in Section 2.6.

9.2.2 Reversible Debugging

An interesting addition to our work on reversibility would be to de�ne a mechanism
to control it so that history information is stored only when we expect to perform
a rollback. �is feature would allow us to extend Erlang with a new construct for
safe sessions, where all actions can be undone if the session aborts. In fact, such a
construct could greatly improve the fault-tolerance capabilities of Erlang.

Regarding our causal-consistent reversible debugger CauDEr, we consider the
following topics for future work:

• A�er undoing some steps in a backward computation, we can resume the for-
ward computation, but there is no guarantee that we will reproduce the pre-
vious forward steps. Some debuggers (so-called omniscient or back-in-time
debuggers) allow us to move both forward and backward along a particular
execution. Here, we could de�ne a similar approach for moving along forward
causal-consistent steps in the same way that we de�ned a causal-consistent
notion for replay debugging. Such an approach might be useful to determine
which processes depend on particular computation step, thereby easing the
localization of bugs.

• Instead of debugging systems as a whole, we could develop a fully distributed
debugger where each process is equipped with debugging facilities. �is would
greatly improve the scalability of our debugger, since most of the computa-
tional e�ort would be distributed. However, this approach would require a
semantics without any synchronous interaction. For instance, rules Send2
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and Spawn2 of the rollback debugging semantics (Figure 4.5) should be re-
placed by a more complex asynchronous protocol.

• An approach to record & replay for languages based on the actor model is
introduced in [8]. In our work, we concentrate on the theory, while they
focus on low-level issues (dealing with I/O, producing compact logs, etc.). We
could consider some of the ideas in [8] and apply them in our work to reduce
the size of logged computations and our instrumentation overhead.

Nevertheless, there are two major improvements for CauDEr that we could con-
sider in order to achieve its adoption in industrial environments. As mentioned ear-
lier, CauDEr translates input programs to Core Erlang, a much simpler language
than Erlang. Hence, there is not a direct correspondence between the program used
as input and the program being shown in CauDEr. �is confuses users and com-
plicates the process of debugging. To this end, we could redesign CauDEr so that
programs are not translated to Core Erlang. However, this would require us to for-
malize a much more complicated semantics for Erlang. Another problem is that the
system state representation of our debugger is text-based, but we could replace this
interface with a visual one more appropriate for debugging. For instance, we could
make use of the visualization engine from [14], which would greatly help to identify
causal dependencies thanks to the display of happens-before relations. However, we
recognize that both improvements would require a huge implementation e�ort.

9.2.3 Constraint-Based Testing

Regarding our approach to concolic execution, we could extend our approach in
order to cover a larger subset of Erlang. However, we consider that the main draw-
back of our technique is that it is not fully automatic (currently, one should run
the instrumented program and then the Prolog procedure for generating alternative
bindings). �erefore, we plan to design an automated tool for test case generation
by connecting both components. Here, we expect our transformational approach to
be useful to cope with concurrent programs.

Regarding the ProSyT tool, we consider to add a shrinking mechanism which
allows us to generate an input of minimal size as a counterexample to the property
speci�ed by the user. �is mechanism could be realized by using the primitives for
controlling term size in our tool, together with Prolog default search strategy based
on backtracking.

Finally, it is worth noticing that, even though our technique has been developed
in the context of property-based testing of Erlang programs, the approach we fol-
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lowed is quite independent of the speci�c programming language since it is based
on writing a constraint logic programming interpreter of the language under con-
sideration. �erefore, we could apply a similar approach to other programming
languages with suitable interpreters.
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[92] C. T. Lopez, S. Marr, H. Mössenböck, and E. G. Boix. A study of concurrency bugs
and advanced development support for actor-based programs. CoRR, abs/1706.07372,
2017.

[93] C. Lutz and H. Derby. Janus: A time-reversible language, 1986. A le�er to R. Landauer.
URL: http://tetsuo.jp/ref/janus.pdf.

[94] B. Marre. Toward automatic test data set selection using algebraic speci�cations and
logic programming. In K. Furukawa, editor, Logic Programming, Proceedings of the 8th
International Conference, Paris, France, June 24–28, 1991, pages 202–219. MIT Press,
1991.

[95] B. Marre and A. Arnould. Test sequences generation from LUSTRE descriptions:
GATeL. In Proceedings of the 15th IEEE International Conference on Automated So�-
ware Engineering, ASE 2000, Grenoble, France, September 11–15, 2000, page 229. IEEE
Computer Society, 2000.

[96] M. Maruyama, T. Tsumura, and H. Nakashima. Parallel program debugging based on
data-replay. In S.-Q. Zheng, editor, Proceedings of the IASTED International Confer-
ence on Parallel and Distributed Computing and Systems (PDCS 2005), pages 151–156.
IASTED/ACTA Press, 2005.

[97] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions. In
R. Hinze and N. Ramsey, editors, Proc. of the 12th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2007, pages 47–58. ACM, 2007.

[98] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalizing pro-
grams with duplication through complementary function derivation. Computer So�-
ware, 26(2):56–75, 2009. In Japanese.

[99] A. W. Mazurkiewicz. Trace theory. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Petri Nets: Central Models and �eir Properties, Advances in Petri Nets 1986, Part II,
Proceedings of an Advanced Course, 1986, volume 255 of Lecture Notes in Computer
Science, pages 279–324. Springer, 1987.

http://tetsuo.jp/ref/janus.pdf


BIBLIOGRAPHY 217
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functional language RFUN. In R. Lämmel, editor, Proc. of the 27th Symposium on the
Implementation and Application of Functional Programming Languages (IFL’15), pages
8:1–8:13. ACM, 2015.

[134] F. Tiezzi and N. Yoshida. Reversible session-based pi-calculus. J. Log. Algebr. Meth.
Program., 84(5):684–707, 2015.

[135] T. To�oli. Computation and construction universality of reversible cellular automata.
Journal of Computer and System Sciences, 15(2):213–231, 1977.

http://www.scalacheck.org/
http://www.scalacheck.org/
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html
http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html
http://www.swi-prolog.org/


220 BIBLIOGRAPHY

[136] Undo So�ware. Increasing so�ware development productivity with reversible
debugging, 2014. URL: https://undo.io/media/uploads/files/Undo_

ReversibleDebugging_Whitepaper.pdf.

[137] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn, and
S. Narayanasamy. Doubleplay: Parallelizing sequential logging and replay. ACM
Trans. Comput. Syst., 30(1):3:1–3:24, 2012.

[138] G. Vidal. Towards Symbolic Execution in Erlang (short paper). In Proc. of the 9th In-
ternational Andrei Ershov Memorial Conference on Perspectives of Systems Informatics
(PSI’14), pages 351–360. Springer LNCS 8974, 2014.

[139] G. Vidal. Concolic Execution and Test Case Generation in Prolog. In M. Proie�i and
H. Seki, editors, Proc. of the 24th International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR’14), pages 167–181. Springer LNCS 8981, 2015.

[140] J. Voigtländer. Bidirectionalization for free! (pearl). In Z. Shao and B. C. Pierce,
editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages
165–176. ACM, 2009.

[141] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation of
path tests by combining static and dynamic analysis. In M. D. Cin, M. Kaâniche, and
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