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Management of uncertain pairwise comparisons in AHP
through probabilistic concepts

J. Benítez ∗ S. Carpitella † A. Certa ‡ J. Izquierdo §

Abstract

Fast and judicious decision-making is paramount for the success of many activities and
processes. However, various degrees of difficulty may affect the achievement of effective and
optimal solutions. Decisions should ideally meet the best trade-off among as many of the
involved factors as possible, especially in the case of complex problems. Substantial cogni-
tive and technical skills are indispensable, while not always sufficient, to carry out optimal
evaluations. One of the most common causes of wrong decisions derives from uncertainty
and vagueness in making forecasts or attributing judgments. The literature shows numerous
efforts towards the optimization and modeling of uncertain contexts by means of probabilis-
tic approaches. This paper proposes the use of probability theory to estimate uncertain ex-
pert judgments within the framework of the analytic hierarchy process and, more specifically,
within a linearization scheme developed by the authors. After describing the necessary proba-
bilistic concepts of interest, the main results are developed. These results can be summarized
as using various kinds of random variables with uncertainty embodied in undecided pairwise
comparisons. A case study focused on the maintenance management of an industrial water
distribution system exemplifies the approach.

Keywords: Decision making; uncertainty; probability; industrial management

1 Introduction and literature review

The output of a generic decision-making process consists in selecting and implementing the most
appropriate solution to achieve the best level of performance. That decision is expected to be
conducted in the most reliable way, seeking to maximize the effects derived from positive factors,
and to simultaneously minimize the negative factors.

Broadly speaking, decision-making processes are continuously accomplished in problem-solving
contexts to positively contribute to activities in business and in non-business fields. Results, es-
pecially in the case of competitive business processes, need to be continuously improved by un-
dertaking faster and better decision-making. This is true, for instance, in the case of investment
processes [22], for which advanced management methods should be studied and implemented
with the aim of strengthening competitiveness and innovation. With this perspective, various de-
grees of difficulty may characterize the achievement of an effective solution. Indeed, the most
important problems to be resolved are often the most complex as well.
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When facing a highly complex problem, making a decision that represents the best trade-off
among all the involved factors is not straightforward. Substantial cognitive and technical skills are
needed to carry out optimal evaluations [24]. According to [27], one of the most common causes
of such complexity derives from uncertainty and vagueness in making forecasts, or in attributing
judgments concerning certain aspects of the decision to be made. The author underlines that
contradictory conclusions may appear after changing methods and paradigms.

As asserted by Yager and Kreinovich [41], benefits related to a certain decision frequently
depend on situations beyond our control, even when rigorous and reliable decision-making pro-
cedures are followed. Johnson et al. [23] accept that decisions are not often derived from a
condition when the evidence is available. In fact, decision-makers may infer the most likely solu-
tion while being ignorant about relevant features concerning the problem under analysis.

Regarding this aspect, Shah et al. [38] observe that the literature mainly stresses how hu-
man judgment usually tends to underestimate the probability of negative consequences, being
sometimes unrealistically overoptimistic. However, the authors apply five tests to observe this
phenomenon without noticing traces of bias due to a general human tendency to optimism, thus
confirming the vast complexity of human cognition. Proper methodologies should support this
cognition, especially in the presence of missing information [3]. For example, Soroudi et al. [39]
face a problem of renewable electricity supply and highlight uncertainties due to the extremely
volatile nature of wind power. In particular, they develop the Information Gap Decision Theory
to properly handle unknown events.

With respect to problems of multi-criteria nature, Pereira et al. [34] state the absolute need to
formally model uncertainty with the support of a mathematical perspective, in contrast to the tra-
ditional and deterministic approach of many multi-criteria methods. Durbach et al. [14] perform
a literature review on applications of multi-criteria decision making methods with attribution of
uncertain evaluations. The authors carry out a study to explore and understand existing formats
representing uncertainty in decision-making processes, synthetizing the existing approaches into
the following five main groups: probabilities, decision weights, explicit risk measures, fuzzy num-
bers and scenarios. For example, Liu et al. [25] suggest undertaking decision-making problems
by representing the relative attributes by means of uncertain linguistic variables in terms of fuzzy
numbers. They develop a decision support method to solve practical problems with interval prob-
abilities. Yan et al. [42] undertake a probabilistic interpretation of weights by implementing a
linguistic decision rule through the concepts of random preference and stochastic dominance.

More generally, the literature shows plenty of efforts towards the optimization and modeling
of uncertain contexts using various probabilistic approaches [17, 26, 29, 43, 44]. In a vast number
of real situations and practical problems, it would be more appropriate to speak of “a probably
good solution” rather than “the best solution”. As stressed by Biedermann et al. [9], a proba-
bilistic approach helps to show decision-maker uncertainty about an unknown quantity or event,
even if the personal interpretation of probability cannot be avoided. In this regard, Costello and
Watts [11] develop a model to represent how people estimate conditional probabilities. More-
over, Izhakian [21] underlines the factor of ambiguity, whose degree may be interpreted as the
volatility of probability. The author proposes a model to deal with uncertain event probabilities.
Regarding judgments of pairwise comparisons given by experts, Dede et al. [12] treat the theme
of quantifying uncertainty level of such attributions by estimating the related probability of rank
reversal. Starting from the consideration that the central problem in decision-making methods is
often to evaluate the importance of a set of alternatives or criteria by weighting them, the authors
provide readers with a proper characterization of the impact of pairwise comparisons’ uncertainty,
since it directly influences the credibility of the outcome of any decision making process. They
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demonstrate that the probability of rank reversal in pairwise comparisons decreases by increasing
the number of involved experts within the decision-making process, despite this number should
be kept within the limit of 15. In a posterior study [13], the same authors analyse the case in
which experts may produce inconsistent pairwise comparison matrices or their opinions may be
significantly different. Specifically, an alternative approach to the Montecarlo simulation is pro-
posed to numerically estimate the probability of rank reversal in a more effective way in terms of
theoretical precision and computational time required.

This paper proposes the use of probability theory to estimate uncertain expert judgments
within the framework of the Analytic Hierarchy Process (AHP), [36, 37], an established technique
for supporting various types of decision-making processes, as widely recognized in the literature
([19, 28, 33]). As underlined by Durbach et al. [15], the standard version of the AHP method
does not take into account uncertainty of input data, so that various proposals of extension have
been advanced. To address the mentioned issue, these authors propose a variant of the stochastic
multicriteria acceptability analysis (SMAA) to be integrated within the framework of the AHP by
introducing a simulation-based method with the aim of dealing with vague pairwise comparison
information. The main idea on which such an SMAA-AHP-based approach is grounded is that
experts may express their preference judgments both on a discrete scale as precise values, or as
intervals, by using arbitrary positive values. As shown by Hughes [20], the probability theory fun-
damentals perfectly fit the properties of the AHP. By using suitable probabilistic concepts herein
developed we provide a framework, within the linearization scheme developed by the authors
[5], to treat uncertainty embodied by pairwise comparisons as expressed through various kinds
of random variables.

The research is organized as follows. Section 2 presents a brief review of the linearization
process in AHP. Section 3 describes probabilistic concepts of interest in AHP and provides the main
results of the paper. Section 4 illustrates a case study focused on maintenance management of an
industrial water distribution system. Section 5 closes the work and provides some conclusions.

2 A brief review of the linearization process in AHP

LetMn be the set of square n×n matrices andM+
n the subset ofMn composed of matrices whose

entries are positive. A matrix A = (ai j) ∈ M+
n is reciprocal when ai ja ji = 1 for all indices i, j. A

matrix A∈M+
n is consistent when ai ja jk = aik for all indices i, j, k. It is evident that any consistent

matrix is reciprocal. The trace and the transpose of a matrix A will be denoted by tr(A) and AT ,
respectively. We assume that any vector of Rn is a column vector.

An important problem in AHP theory is the following: given a reciprocal matrix (which can be
easily issued by an expert), find its closest consistent matrix. Consistent matrices in AHP theory are
important because they provide a way to rank (also to give weights to) the several alternatives in
hand. This is achieved by the Perron vector of the consistent matrix, i.e., the eigenvector associated
to λmax, where λmax is the largest (in modulus) eigenvalue. The reader is encouraged to consult
[36, 37] for a deeper insight of AHP theory.

To define precisely “the closest consistent matrix to another matrix”, we previously must give
a distance. We define inM+

n the distance

d(X , Y ) = ‖L(X )− L(Y )‖F , (1)

where L :M+
n →Mn is the mapping defined as L(A)i j = log(ai j) and ‖ · ‖F is the Frobenius norm

(i.e., ‖A‖F =
p

tr(AAT )). The inverse of the mapping L will also play a fundamental role in the
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sequel; this mapping E :Mn →M+
n is the component-wise exponential, i.e., E(A)i j = exp(ai j).

An obvious consequence from the above definitions is that A is reciprocal if and only if L(A) is
skew-Hermitian. We define Ln = {L(A) : A ∈ M+

n , A is consistent}. It can be proved (see [5])
that Ln is a linear subspace ofMn whose dimension equals n− 1. Evidently, X ∈ Ln if and only
if E(X ) is consistent.

The closest consistent matrix to a given reciprocal matrix A (according to the aforementioned
distance) is given by E(pn(L(A))), where pn :Mn→Ln is the orthogonal projection onto Ln. Of
course, when we use the word “orthogonal” in the setMn, we must specify the considered inner
product: for A, B ∈Mn, we set 〈A, B〉 = tr(ABT ). Of course, ‖A‖2F = 〈A, A〉. We have the following
scheme:

M+
n

L //Mn
pn // Ln

E //M+
n

As one can infer from the above diagram, in AHP theory, only projections of matrices of the
form L(A), A being reciprocal, are needed. Such projections may be easily obtained from a result
provided in [7], where a simple formula for pn(M) is given for any skew-Hermitian matrix M .
Given a consistent matrix B = (bi j) ∈ M+

n , its Perron vector x = [x1, . . . , xn]T ∈ Rn —which,
as said, is paramount in AHP theory— must satisfy x i/x j = bi j for any pair of indices i, j. The
equality x i/x j = bi j for arbitrary indices can be written in a shorter way by xJ(x)T = B, where
the mapping J : Rn → R

n is given by (J(x))i = 1/x i —defined only when x i 6= 0, i = 1, . . . , n.
The next theorem enables finding the priority vector of the closest consistent matrix to a given
reciprocal matrix (see [7]).

Theorem 1 Let A= (ai j) ∈ M+
n be a reciprocal matrix and x ∈ Rn Then xJ(x)T = E(pn(L(A))) if

and only if there exists C > 0 such that x= C[x1, . . . , xn]T , where x i = npai1 · · · ain.

3 AHP and probabilistic related concepts

When an expert has doubts in assigning a specific value to an entry in a reciprocal matrix, then,
among other alternatives [15] including fuzzy logic (see, for example [10]), the idea of using
random entries is appealing. Consequently, we will consider matrices A= (ai j)whose components
can be random variables. Another use of random variables in AHP can be the following: imagine
that two experts express their judgements and thus form two reciprocal matrices, say A= (ai j) and
B = (bi j). If there exists i 6= j with ai j 6= bi j , then one can consider a discrete random variable X
such that pr(X = ai j) = wA and pr(X = bi j) = wB, where wA, wB are the respective weights given
to the experts (of course, 0≤ wA, wB ≤ 1, wA+wB = 1).

A random reciprocal matrix is an n × n matrix A = (ai j) whose entries are positive random
variables whose expectation and variances are finite and ai ja ji = 1, see [40].

Let B = (bi j) be the closest consistent matrix to A (in the sense of the distance defined in (1)).
What can be said about bi j? And about the priority vector? These questions will be dealt with in
this section.

The expectation and variance of a random variable X will be denoted by E(X ) and Var(X ),
respectively. The covariance of the random variables X and Y will be denoted by Cov(X , Y ).
Throughout this article, when we write E, Var, or Cov we will assume that these numbers are
finite. To deal with random reciprocal matrices, in view of Theorem 1, it is plausible that the
geometric mean is more natural than the arithmetic mean. Another reason is the following: if
A = (ai j) is a positive random matrix, since ai j = 1/a ji , then it is natural that “mean of (ai j) =
1/mean of (a ji)” holds. However, this property does not hold when the mean is the expectation E.
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Since the function x 7→ 1/x is convex, then, by Jensen’s inequality, one has E(X )−1 ≤ E(X−1), and
the equality holds if, and only if Var(X ) = 0. Therefore, we shall use another kind of expectation,
which is defined next.

3.1 The geometric expectation and AHP

Given a positive random variable X , we define the geometric expectation by

G(X ) = exp(E(log X )).

Equivalently, log[G(X )] = E[log(X )]. This expectation has found several applications in eco-
nomics, see, e.g., [2, 31]. From the very well-known properties of the expectation, one can give
the following result.

Theorem 2 Let X , Y be positive random variables. Then

(i) G(aX b) = aG(X )b, for constants a > 0 and b ∈ R.

(ii) G(X Y ) = G(X )G(Y ).

In particular, if X is positive, then G(X−1) = G(X )−1. By Jensen’s inequality, since x 7→ log x
is a concave function, we have log[E(X )] ≥ E[log X ] = log[G(X )], i.e., G(X ) ≤ E(X ), and the
inequality becomes an equality if and only if there exists c ∈ R such that pr(X = c) = 1.

Theorem 3 Let A= (ai j) be an n× n reciprocal random matrix. Let B = (bi j) the closest consistent
matrix in the sense of the distance defined in (1). If x = [x1, . . . , xn]T is a random priority vector of
the matrix B, then

G(bi j) =
G(x i)
G(x j)

and there exists C ∈ R such that

G(x i) = C n
Æ

G(ai1) · · ·G(ain).

PROOF: The expression for G(x i) follows from Theorems 1 and 2. The expression for G(bi j)
follows from B = xJ(x)T and Theorem 2. �

Observe that in the above theorem there is no need to assume that the judgements in matrix
A have to be independent.

3.2 The geometric variance, the geometric covariance and AHP

Measures of deviation from the geometric expected value G(X ) analogous to the variance of X can
be defined. For a given positive random variable X , we define the geometric variance as follows:

Varg(X ) = Var(log X ). (2)

In some textbooks, the expression exp(Var(log X )) can be found as the definition for the geo-
metric variance; however, (2) is easier to handle. Obviously, Varg(X )≥ 0 and Varg(X ) = 0 if and
only if there exists c ∈ R+ such that pr(X = c) = 1.

We shall give two examples to show why we will not use the “usual” variance and why we
suggest using the geometric variance.
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1. Let us consider the following two situations:

(i) a12 is the discrete random variable such that pr(a12 = 1) = pr(a12 = 2) = 1/2.

(ii) b12 is the discrete random variable such that pr(b12 = 8) = pr(b12 = 9) = 1/2.

In the first situation, the expert has doubts between “equal importance” and “weak im-
portance” (in [37] one can find the fundamental scale in AHP proposed by Saaty). In the
second situation, the expert’s doubts are much smaller (his/her doubts vary between “major
importance” and “extreme importance”).

However, Var(a12) = Var(b12) —as one can trivially deduce from the expression Var(X +
k) = Var(X ), where X is a random variable and k ∈ R is a constant. This fact is not intuitive
since the expert’s doubts in the first situation are greater than in the second situation. In
contrast, one has Varg(a12) = 0.12011 and Varg(b12) = 0.00347.

2. In AHP theory, if A = (ai j) is a reciprocal matrix, then ai j = 1/a ji . Therefore, it must
be intuitive that “variance of 1/X = variance of X ”. However, the “usual variance” does
not satisfy this property (a trivial example is the random variable X such that pr(X = 1) =
pr(X = 2) = 1/2). Instead, we will see that the geometric variance does satisfy this property
(see item (i) of Theorem 4).

The following is a step further in the same line of definitions. Given two positive random
variables X and Y , the geometric covariance of X and Y is defined as

Covg(X , Y ) = Cov(log X , log Y ).

We next prove several properties of the geometric variance and geometric covariance.

Theorem 4 Let X and Y be positive random variables.

(i) Varg(X r) = r2 Varg(X ), where r ∈ R is a constant.

(ii) Varg(X Y ) = Varg(X ) +Varg(Y ) + 2Covg(X , Y ).

(iii) If X and Y are independent, Varg(X Y ) = Varg(X ) +Varg(Y ).

(iv) If X1, . . . , Xn and Y1, . . . , Ym are positive random variables, and a1, . . . , an, b1, . . . , bm are real

constants, then Covg(
∏n

i=1 X ai
i ,
∏m

j=1 Y
b j

j ) =
∑

i, j ai b j Covg(X i , Yj).

(v) If A is a positive constant, then Varg(AX ) = Varg(X ) and Covg(A, X ) = 0.

PROOF: (i): We use that if Z is a random variable and a ∈ R, then Var(aZ) = a2 Var(Z).

Varg(X
r) = Var(log X r) = Var(r log X ) = r2 Var(log X ) = r2 Varg(X ).

(ii): By the pevious definitions and known properties of the variance, we have

Varg(X Y ) = Var[log(X Y )]

= Var(log X + log Y )

= Var(log X ) +Var(log Y ) + 2Cov(log X , log Y )

= Varg(X ) +Varg(Y ) + 2Covg(X , Y ).
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(iii): Since X and Y are independent, log X and log Y are also independent, hence the covari-
ance of log X and log Y is zero. The conclusion follows from the computation made in the proof
of (ii).

(iv): It follows from the definition of the geometric covariance and the property

Cov

 

∑

i

aiX i ,
∑

j

b jYj

!

=
∑

i, j

ai b j Cov(X i , Yj),

which is valid for arbitrary random variables X i , Yj and constants ai , b j .
(v): Since A is a constant, using the properties of the expectation,

Covg(A, X ) = Cov(log A, log X )

= E(log A log X )−E(log A)E(log X ) = (log A)E(log X )− (log A)E(log X ) = 0.

The theorem is proved. �
Property (ii) above can be generalized by applying the formula of the variance of the sum of

n random variables. If X1, . . . , Xn are positive random variables, then

Varg(X1 · · · Xn) =
n
∑

i=1

Varg(X i) + 2
∑

i< j

Covg(X i , X j) (3)

and if X1, . . . , Xn are pairwise independent, then

Varg(X1 · · · Xn) =
n
∑

i=1

Varg(X i).

Now we give the geometric variance of the closest consistent matrix to a given random recip-
rocal matrix.

Theorem 5 Let A= (ai j) be an n×n reciprocal random matrix. Let B = (bi j) be the closest consistent
matrix in the sense of the distance defined in (1). If x = [x1, . . . , xn]T is a random vector which is a
priority vector of the matrix B, then

Varg(bi j) = Varg(x i) +Varg(x j)− 2Covg(x i , x j),

Covg(bi j , brs) = Covg(x i , xr)−Covg(x i , xs)−Covg(x j , xr) +Covg(x j , xs),

Varg(x i) =
1
n2





n
∑

j=1

Varg(ai j) + 2
∑

j<k

Covg(ai j , aik)



 ,

and
Covg(x i , x j) =

1
n2

∑

r,s

Covg(air , a js). (4)

PROOF: Since bi j = x i/x j , it follows from Theorem 4 that

Varg(bi j) = Varg(x i x
−1
j )

= Varg(x i) +Varg(x
−1
j ) + 2Covg(x i , x−1

j ) = Varg(x i) +Varg(x j)− 2Covg(x i , x j).

In an analogous way, we can prove the expression of Covg(bi j , brs). If, in addition, we use (3)
and Theorem 1, the remaining expressions can be similarly proved. �

Given a random reciprocal matrix A= (ai j), it is reasonable to assume that ai j are independent
for 1≤ i < j ≤ n (see [35]).
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Corollary 1 Under the notation of Theorem 5, if ai j are pairwise independent for 1 ≤ i < j ≤ n,
then

Varg(x i) =
1
n2

n
∑

j=1

Varg(ai j), i = 1, . . . , n,

and
Covg(x i , x j) = −

1
n2

Varg(ai j), i, j = 1, . . . , n, i 6= j.

PROOF: By the independence hypothesis, if Covg(air , a js) 6= 0, then (i, r) = ( j, s) or (i, r) = (s, j).
The expression for the geometric variance follows from Theorem 5. To complete the proof, if i 6= j,
then the unique non vanishing term on the right hand side of (4) corresponds to (i, r) = (s, j),
which is Covg(air , a js) = Covg(ai j , a ji) = Covg(ai j , a−1

i j ) = −Covg(ai j , ai j) = −Varg(ai j). �
If x = [x1, . . . , xn]T is a vector of random variables, we define the matrix whose (i, j)-entry

is Covg(x i , x j). This matrix will be named as the geometric variance-covariance matrix of x and
denoted from now on by Σg(x). Notice that Covg(x i , x i) = Varg(x i). Observe that the geo-
metric variance of bi j can be computed by using the geometric variance-covariance matrix and
Theorem 5. If di j denotes the column vector of Rn whose ith component is 1 and whose jth
component is −1, and its remaining components are 0, then Covg(bi j , brs) = dT

i jΣg(x)drs.
The importance of the random variables bi j comes from the fact that these random variables

are useful to rank the priorities. Recall that if a priority vector of the consistent matrix B = (bi j)
is x = [x1, . . . , xn]T , then bi j = x i/x j . Hence, bi j > 1 if and only if x i > x j and, thus, pr(bi j > 1)
is the probability of the ith alternative being preferred to the jth alternative. Also, the random
variables bi j are useful to rank a complete order of preferences: for example, x i > x j > xk ⇐⇒
bi j > 1 and b jk > 1; thus, that rank order can be evaluated by finding pr(bi j > 1 and b jk > 1).

3.3 Chebyshev’s inequalities and their applications in AHP

There are basic inequalities in probability theory used to give bounds for certain probabilities.
These inequalities are important because they provide useful information about arbitrary random
variables. Chebyshev’s inequality says that the probability that a random variable X is outside the
interval [E(X )−ε,E(X )+ε] is negligible if Var(X )/ε2 is small enough. Precisely, we have that for
any ε > 0,

pr(|X −E(X )| ≥ ε)≤
Var(X )
ε2

.

We give now a similar inequality concerning the geometric expectation and variance.

Theorem 6 Let X be a positive random variable. For any u> 0 one has

pr(e−u < X/G(X )< eu)≥ 1−
Varg(X )

u2
.

PROOF: Since log is an increasing function,

pr(e−u < X/G(X )< eu) = pr(e−u G(X )< X < eu G(X ))

= pr(−u+ logG(X )< log X < u+ logG(X ))

= pr (|log X − logG(X )|< u)

= pr (|log X −E(log X )|< u) = 1− pr (|log X −E(log X )| ≥ u) .
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From Chebyshev’s inequality, one has

pr (|log X −E(log X )| ≥ u)≤
Var(log X )

u2
=

Varg(X )

u2
.

Therefore, the conclusion of the theorem follows. �
In [1] it is proven the following two dimensional version of Chebyshev’s inequality.

Theorem 7 Let X and Y be two random variables and ε > 0. Then

pr(|X −µx | ≥ εσx or |Y −µy | ≥ εσy)≤
1+

p

1−ρ2

ε2
,

where µx = E(X ), µy = E(Y ), σ2
x = Var(X ), σ2

y = Var(Y ), and ρ is the correlation between X and

Y , i.e., ρ = Cov(X , Y )/
p

Var(X )
p

Var(Y ).

We include in the appendix the proof of this theorem for the sake of readability. We now give
a related theorem (in the context of this paper) that gives bounds for some probabilities.

Theorem 8 Let X e Y be positive random variables. If ε > 0, then

pr
�

e−εVarg (X ) <
X

G(X )
< eεVarg (X ) and e−εVarg (Y ) <

Y
G(Y )

< eεVarg (Y )
�

≥ 1−
1+

p

1−ρ2

ε2
,

where ρ is the correlation between log X and log Y .

PROOF: Let ωx = Varg(X ) and ωy = Varg(Y ). Since x 7→ log x is a non decreasing function, then

e−εωx < X/G(X )< eεωx ⇐⇒ −εωx +E(log X )< log X < εωx +E(log X )

⇐⇒ | log X −E(log X )|< εωx

and, similarly for Y /G(Y ). Therefore,

pr
�

e−εωx <
X

G(X )
< eεωx and e−εωy <

Y
G(Y )

< eεωy

�

= pr
�

| log X −E(log X )|< εωx and | log Y −E(log Y )|< εωy

�

= 1− pr
�

| log X −E(log X )| ≥ εωx or | log Y −E(log Y )| ≥ εωy

�

.

Recall thatωx = Varg(X ) = Var(log X ) andωy = Var(log Y ); hence the conclusion of the theorem
follows from Theorem 7. �

Example. Let us consider the following random reciprocal matrix

A=





1 a12 2
a−1

12 1 3
1/2 1/3 1



 ,

where a12 is a positive random variable. For the sake of conciseness, we denote γ = G(a12) and
ω = Varg(a12). Note that by Theorem 2, one has that G(a−1

12 ) = 1/γ. Let x = [x1 x2 x3]T be the
priority vector of the closest consistent matrix to A. By Theorem 3, exists C > 0 such that

G(x1) = C 3
p

2γ, G(x2) = C 3
Æ

3/γ, G(x3) = C 3
Æ

1/6. (5)
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Let B = xJ(x)T = (bi j) be the closest consistent matrix to A. If G denotes the 3× 3 matrix whose
(i, j) entry is G(bi j), then by Theorem 3, G(bi j) = G(x i)/G(x j), hence

G =





1 3
p

2γ2/3 3
p

12γ
3
p

3/2γ2 1 3
p

18/γ
3
p

1/12γ 3
p

γ/18 1



 . (6)

By Theorems 4 and 5, one has that

Varg(x1) =
1
9
Varg(a12) =

ω

9
, Varg(x2) =

1
9
Varg(a

−1
12 ) =

1
9
Varg(a12) =

ω

9
, Varg(x3) = 0.

Now we write the variance-covariance geometric matrix of the random vector x, denoted
by Σg(x). From the previous computations we know the entries of the main diagonal of Σg(x)
because Covg(x i , x i) = Varg(x i). By property (v) of Theorem 4, the unique non vanishing term
in the left hand side of Covg(x1, x2) = n−2

∑

r,s Covg(a1r , a2s) is Covg(a12, a21). But

Covg(a12, a21) = Covg(a12, a−1
12 ) = −Covg(a12, a12) = −Varg(a12) = −ω.

Since Σg(x) is symmetric, Covg(a21, a12) = −ω. Finally, since the third row of A is composed of
constants, then the third row and the third column of Σg(x) must be filled with zeroes, because
from item (v) of Theorem 4 and Theorem 5,

Covg(x3, x i) =
1
32

∑

r,s

Covg(a3r , ais) = 0.

Thus,

Σg(x) =
1
9





ω −ω 0
−ω ω 0
0 0 0



 . (7)

If V is the 3× 3 matrix whose (i, j) entry is Varg(bi j), again by Theorem 5, we have

V12 = Varg(b12) =
�

1 −1 0
�

Σg(x)





1
−1

0



=
4ω
9

.

The remaining entries of V can be similarly computed and we can obtain

V =
ω

9





0 4 1
4 0 1
1 1 0



 . (8)

Finally, we will find Covg(bi j , brs) for 1 ≤ i < j ≤ n, 1 ≤ r < s ≤ n, and (i, j) 6= (r, s). By
Theorem 5 and (7),

Covg(b12, b13) = dT
12Σg(x)d13 =

�

1 −1 0
�

Σg(x)





1
0
−1



=
2ω
9

.
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Similarly, we obtain Covg(b12, b23) = −2ω/9 and Covg(b13, b23) = −ω/9. Observe that
there is no need to compute more covariances because Covg(X , X ) = Varg(X ), Covg(X , Y−1) =
−Covg(X , Y ), and Covg(k, X ) = 0 when X , Y are positive random variables and k ∈ R is a con-
stant.

We will use Theorem 6 to study the random variable b12 (recall that this random variable is
the (1,2) entry of B, which is the closest consistent matrix to the given reciprocal matrix A). Let
u> 0. We know that

pr
�

e−u · 3
Æ

2γ2/3< b12 < eu · 3
Æ

2γ2/3
�

≥ 1−
4ω/9

u2
. (9)

To fix ideas, let us assume that the expert has no preference between a12 = 5 or a12 = 6. Thus,
it is natural to say that a12 is a random variable such that pr(5 ≤ a12 ≤ 6) = 1 and G(a12) is the
geometric mean of 5 and 6, i.e., γ= G(a12) =

p
5 · 6=

p
30' 5.477.

To give a value to Varg(a12), let us consider that the larger the variance of a random variable,
the worse the behaviour of X . Moreover, since pr(log 5 ≤ log a12 ≤ log 6) = 1, then Varg(a12) =
Var(log a12) ≤ (log6− log5)2/4 ' 0.00831 (see [8]). We will assume the worst situation: ω =
Varg(a12) = 0.00831.

We use (5) to get that the random (non normalised) vector x of priorities satisfies

C[G(x1) G(x2) G(x3)]' C[2.221 0.8182 0.5503].

The geometric variance-covariance matrix of x is given in (7). If B is the nearest consistent matrix
to A, then the geometric mean of the entries of B is given by (6); especifically, in this example we
have

G '





1 2.714 4.036
0.3684 1 1.487
0.2478 0.6727 1



 ,

and the matrix of the variances (Varg(bi j)) is given in (8).
We will use Theorem 6 to exemplify about the preference order between the first and the

second alternative (the remaining orders can be dealt with analogously). From (9) we have for
any u> 0 that

pr(2.714 · e−u ≤ b12 ≤ 2.714 · eu)≥ 1−
0.003693

u2
.

We list some concrete values of u to see the goodness of these the bounds.

Value of u Interval of b12 Lower bound of the probability

0.7 [1.347,5.466] 0.99246

0.3 [2.011,3.664] 0.95896

0.15 [2.336,3.153] 0.83585

We can see that pr(x1 < x2) = pr(x1 x−1
2 < 1) = pr(b12 < 1) < pr(b12 /∈ [1.347,5, 466]), hence

pr(x1 < x2) is very small. What is more, pr(x1 < 2x2) = pr(b12 < 2)< pr(b12 /∈ [2.011,3.644])<
1− 0.95896' 0.041, almost negligible.

Now we study the probability of certain preference order, for example, x1 < x2 < x3. Observe
that x1 < x2 < x3 if and only if x1 x−1

2 < 1 and x2 x−1
3 < 1, i.e., b12 < 1 and b23 < 1. By Theorem 8

we have that for all ε > 0 one has

pr
�

e−εω12 <
b12

G(b12)
< eεω12 and e−εω23 <

b23

G(b23)
< eεω23

�

≥ 1−
1+

p

1−ρ2

ε2
, (10)

11



whereω12 = Varg(b12),ω23 = Varg(b23), and ρ is the correlation between log(b12) and log(b23).
Since

ρ =
Covg(b12, b23)

Æ

Varg(b12)
Æ

Varg(b23)
=

−2ω/9
p

4ω/9
p

ω/9
= −1,

then we obtain from (10) the following table for several values of ε.

Value of ε Interval of b12 Interval of b23 Lower bound of the probability

ε = 1.5 [2.699, 2.729] [1.485,1.489] 0.56

ε = 2 [2.694, 2.734] [1.484,1.490] 0.75

ε = 3 [2.685, 2.745] [1.483,1.491] 0.89

ε = 5 [2.665, 2.765] [1.480,1.493] 0.96

ε = 10 [2.616, 2.817] [1.473,1.501] 0.99

As we can see, we get good bounds for these probabilities.
Remark 1. Observe that this subsection is useful only for a continuous distribution. If an entry

ai j followed a discrete, finite distribution, then there would exist x1, . . . , xr such that pr(ai j =
xk) = pk and p1 + · · · + pr = 1. In this case, it would be straightforward to obtain r consistent
matrices (from the r reciprocal matrices) to check all of them for a decision, instead of obtaining
bounds for the involved random entries of the matrix.

Remark 2. Subsections 3.1, 3.2 and 3.3 are completely general. This means that they work
for arbitrary random variables with finite mean and finite variance (continuous or discrete). In the
next subsection we consider, as a paradigmatic case, the log-normal distribution. The idea is that,
as we deal with reciprocal matrices, it is natural that both X and 1/X follow a same distribution
(although with different parameters); the log-normal distribution satisfies this condition, and in
addition is continuous.

3.4 The log-normal distribution and AHP

We say that the random variable X follows a log-normal distribution with parameters µ and σ
(denoted as X ∼ logN (µ,σ)) if X is positive and log X follows a normal distribution such that
E(log X ) = µ and Var(log X ) = σ2. Evidently,

G(X ) = exp(E(log X )) = eµ, Varg(X ) = Var(log X ) = σ2

The importance in AHP of this distribution lies in the following fact: if X ∼ logN (µ,σ), then 1/X
also follows a log-normal distribution. More concretely, 1/X ∼ logN (−µ,σ).

We will use the following two results, which can be found in any textbook dealing with mul-
tivariate normal distributions.

Theorem 9 The random vector x ∈ Rk is multivariate normal if and only if aT x is univariate normal
for all a ∈ Rk.

Theorem 10 If the random variables X1, . . . , Xm are independent and if X i has a normal distribution
(i = 1, . . . , m), then a1X1+· · ·+amXm has a normal distribution for arbitrary constants a1, . . . , am ∈
R.

12



When the judgements are independent and follow a log-normal distribution, we can give the
following theorem.

Theorem 11 Let A= (ai j) ∈M+
n be a reciprocal random matrix. Assume that ai j are independent

for 1≤ i < j ≤ n and ai j ∼ logN (µi j ,σi j). Let B = (bi j) be the closest consistent matrix to A in the
sense of the distance defined in (1) and x= [x1, . . . , xn]T be a priority vector of B. Then the random
vectors y= [log x1, . . . , log xn]T and

b= [log b12, . . . , log b1n, log b23, . . . , log b2n, . . . , log bn−1,n]
T

follow a multivariate normal distribution.

PROOF: We use Theorem 9 to prove that y has a multivariate normal distribution. Let a =
[ξ1, . . . ,ξn]T ∈ Rn. From x i = C npai1 · · · ain for some fixed constant C > 0, if we denote
li j = log(ai j) for all indices i, j, then

aT y=
n
∑

i=1

ξi log x i =
C
n

n
∑

i=1

ξi(li1 + · · ·+ lin). (11)

Since ai j are independent for 1≤ i < j ≤ n, from Theorems 9 and 10, the vector

l= [l12, . . . , l1n, l23, . . . , l2n, . . . , ln−1,n]
T ∈ Rp

(here p = n(n−1)/2) has a multivariate normal distribution. In addition, using li j = −l ji , lii = 0,
and (11), we can see that there exists c ∈ Rp such that aT y = cT l. By Theorem 9, aT y has a
univariate normal distribution. Since a is arbitrary, again by Theorem 9, the random vector y has
a multivariate normal distribution.

Let d= [d12, . . . , dn−1,n]T ∈ Rp. By using bi j = x i/x j we have

dT b=
∑

i< j

di j log bi j =
∑

i< j

di j(log x i − log x j) =
C
n

∑

i< j

n
∑

k=1

di j(lik − l jk)

Using again lrs = −lsr and lr r = 0, there exists a vector e ∈ Rp such dT b= eT l. A similar argument
as before can be used to prove that b follows a multivariate normal distribution. �

We do not specifiy the parameters of the multivariate distributions of the foregoing theorem
as they can be easily found in Theorem 3, Theorem 5, and Corollary 1.

Example. Let us consider the following reciprocal random matrix

A=





1 a12 a13
1/a12 1 2
1/a13 1/2 1



 .

The expert considers 3≤ a12 ≤ 4 and 4≤ a13 ≤ 5. Therefore, it is natural to set G(a12) =
p

12
andG(a13) =

p
20. The expert assumes that a12 and a13 follow a log-normal distribution and these

variables are independent. To set the geometric variance of a12, several random samples from the
log-normal distribution with G(a12) =

p
12 and Varg(a12) = 0.52 were generated. In Octave, ten

samples can be easily obtained by executing exp(normrnd(log(sqrt(12)),0.5,10,1)). By
performing this, we can observe that there are samples outside [3, 4], which is not admissible by
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the expert, and therefore, we must decrease the variance. After several tries, the expert says that
the value of Varg(a12) = 0.052 is adequate. In a similar way, G(a13) =

p
20 and Varg(a13) = 0.052

will be considered.
We denote γ12 = G(a12), γ13 = G(a13), and ω = Varg(a12) = Varg(a13). Let B = (bi j) the

consistent matrix closest to A and let [x1 x2 x3]T be a priority vector of B. By Theorem 3, there
exists C > 0 such that

G(x1) = C 3
p

γ12γ13, G(x2) = C 3
Æ

2/γ12, G(x3) = C 3
Æ

1/(2γ13), G(bi j) = G(x i)/G(x j).

As an example we shall find pr(x1 < 2x2) and pr(x1 < 3x2 & x1 < 5x3). Observe first that

pr(x1 < x2) = pr(x1/x2 < 2) = pr(b12 < 2) = pr(log b12 < log2).

By Theorem 11, log b12 follows a normal distribution. To find its parameters, we apply Theorem 3:

E(log b12) = log(G(b12)) = log(G(x1)/G(x2)) =
1
3
[2 logγ12 + logγ13 − log 2]' 1.097. (12)

By Theorem 5, one gets Var(log b12) = Varg(b12) = Varg(x1) + Varg(x2) − 2Covg(x1, x2). But
Corollary 1 leads to

Varg(x1) =
1
9

�

Varg(a11) +Varg(a12) +Varg(a13)
�

=
2ω
9

,

Varg(x2) =
1
9

�

Varg(a21) +Varg(a22) +Varg(a23)
�

=
ω

9
,

and

Covg(x1, x2) = −
1
9
Varg(a12) = −

ω

9
.

Therefore, Var(log b12) = 5ω/9 ' 0.00139. Now, it is simple to compute pr(log b12 < log2),
obtaining that this probability is approximately 0.

To find pr(x1 < 3x2 & x1 < x3) = pr(b12 < 3 & b13 < 1), we need to know the parameters
of the joint distribution of (b12, b13). By Theorems 9 and 11, (log b12, log b13) follows a bivariate
normal distribution. The mean of log b12 was computed in (12). Similarly, we have

E(log b13) = log(G(b13)) = log(G(x1)/G(x3)) =
1
3
[log2+ logγ12 + 2 logγ13]' 1.644.

The covariance matrix of (log b12, log b13) is

Σ=

�

Var(log b12) Cov(log b12, log b13)
Cov(log b12, log b13) Var(log b13)

�

,

which can be computed by using Theorem 5 and Corollary 1. Observe that Var(log b12) was
computed before. Since

Var(log b13) = Varg(b13) = Varg(x1) +Varg(x3)− 2Covg(x1, x3)

=
1
9

��

Varg(a11) +Varg(a12) +Varg(a13)
�

+

+
�

Varg(a31) +Varg(a32) +Varg(a33)
�

+ 2Varg(a13)
�

=
5ω
9
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and

Cov(log b12, log b13) = Covg(b12, b13)

= Covg(x1, x1)−Covg(x1, x3)−Covg(x2, x1) +Covg(x2, x3)

= Varg(x1) +
1
9
Varg(a13) +

1
9
Varg(a21)−

1
9
Varg(a23) =

4ω
9

,

we get

Σ=
ω

9

�

5 4
4 5

�

.

Observe that in this example, matrix Σ is not singular.
If Σ were singular, then there would exist constants α,β ∈ R such that log b12 = α log b13+β .

This constants can be easily obtained from Theorem 1 and bi j = x i/x j . In this case (which recall
it is not satisfied by the example), one can find pr(b12 < 3 & b13 < 5).

Finally, to find pr(b12 < 3 & b13 < 5) = pr(log b12 < log3 & log b13 < 0), we will use the
Octave program. By executing

g12=sqrt(12); g13=sqrt(20);
e1=(2*log(g12)+log(g13)-log(2))/3; % Mean of log(b12)
e2=(2*log(g13)+log(g12)+log(2))/3; % Mean of log(b13)
mu = [e1 e2];
om=0.05^2; % Omega
Sigma= [5 4; 4 5]*om/9; % Covariance matrix of (log b12,log b13)
mvncdf([log(3) log(5)],mu,Sigma) % pr(log b12 < log 3 & log b13 < log 5)

we obtain pr(b12 < 3 & b13 < 5)' 0.172.

4 Case study

This case study refers to a manufacturing firm that must decide about implementing one or more
of five maintenance actions (MA1, MA2, MA3, MA4, MA5) aimed at keeping an industrial water
distribution system (IWDS), which feeds the company factories, under suitable operational con-
ditions. Consequently, the aim is to minimize the plant shutdown risk. These actions must be
prioritized for the purpose of finding a suitable trade-off between improving the plant condition,
while not shouldering the simultaneous implementation of numerous interventions. The AHP
technique is applied to obtain the final ranking of actions. These maintenance actions belong
to the following categories of maintenance policies: preventive, corrective, and predictive. The
description of the actions focused on the IWDS in relation to their policy categories is provided in
Table 1.

Those maintenance actions are evaluated by means of four criteria (C1, C2, C3, C4). The
evaluation criteria considered are, respectively: security; cost; productivity; and hygiene.

The first criterion refers to the plant’s compliance with the regulations in force. The second
criterion regards the cost for implementing an action and facing a possible plant shutdown. The
third criterion is related to the fulfilment of production standards and then to the need to keep
the system available. Lastly, the fourth criterion evaluates the hygienic conditions for drinking
water supply to the personnel and plant sanitation. The hierarchical structure of the problem is
represented in Figure 1.

The vector of criteria weights is obtained by involving a decision group formed by three in-
dependent experts (D1, D2, D3) with different weights in the decision process. Table 2 shows
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Policy ID Alternative Maintenance action description

Preventive MA1 Electric pump redundancy

MA2 Preliminary supply of “special parts” (such as valves, fittings,
and pipes), to make eventual substitution interventions faster

Corrective MA3 Intensifying plant flexibility by increasing the number of dis-
connection points in the water network for closing those parts
to be maintained, and avoiding plant shutdown

MA4 Creation of water storage, in case of sudden interruption of the
water service

Predictive MA5 Implementation of a tele-surveillance system for the water
feeding, to monitor parameters such as temperature, flow rate,
and pressure

Table 1: Description of the maintenance actions to be ranked.

the roles of each expert and their weights. As these experts have relatively uniform character-
istics from a business perspective [18], we apply the aggregation of individual judgments (AIJ)
approach [16]. Consequently, each of them was independently prompted to provide their PCM.

Expert Role Weight

D1 Technician 40%

D2 Quality manager 35%

D3 Productivity manager 25%

Table 2: Roles and weights of the experts.

In formulating their judgements, the experts had doubts in assigning some evaluations. Specif-
ically, in an independent way, experts D1 and D3 doubted in expressing a clear opinion about the
pairwise comparisons C1/C4, that is to say, between security and hygiene. Exactly, D1 doubted be-
tween the values of 1 and 2, whereas D3 doubted between 0.20 and 0.25 (specifically, D3 doubted
between 4 and 5 when considering the reverse relation C4/C1). Moreover, expert D2 doubted be-
tween the values 2 and 3 to be assigned to the pairwise comparison C2/C3, related to the aspects
of cost and productivity. After elucidation, the three random reciprocal matrices in Table 3 were
produced. Two of them with random entry a14 and the other with random entry a23, in addition
to their relative reciprocal entries a−1

14 and a−1
23 . These entries are positive random variables. Let

Ai be the reciprocal matrix provided by the ith expert and let X1, X2, and X3 be the random vari-
ables a14, a23, and a14 for the experts D1, D2, and D3, respectively. We assume that these random
variables are continuous and uniformly distributed on the aforementioned intervals, specifically,
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Figure 1: Hierarchical structure.

D1 C1 C2 C3 C4

C1 1 5 4 X1

C2 1/5 1 3 1/5

C3 1/4 1/3 1 1/5

C4 X−1
1 5 5 1

D2 C1 C2 C3 C4

C1 1 3 3 1

C2 1/3 1 X2 1/5

C3 1/3 X−1
2 1 1/4

C4 1 5 4 1

D3 C1 C2 C3 C4

C1 1 1/3 1/6 X3

C2 3 1 1/3 2

C3 6 3 1 3

C4 X−1
3 1/2 1/3 1

Table 3: Experts’ random reciprocal matrices of criteria evaluations. The first matrix is A1, the
second is A2, and the third is A3.

X1 ∼U (1, 2), X2 ∼U (2, 3), and X3 ∼U (0.2,0.25). It is simple to check (see the appendix) that

Random variable Geom. Expectation Geom. Variance

X1 G(X1)' 1.472 Varg(X1) = 0.0391

X2 G(X2)' 2.483 Varg(X2) = 0.0136

X3 G(X3)' 0.225 Varg(X3) = 0.00414

(13)

We apply Theorem 3 to calculate the geometric expectations, and Theorems 4 and 5 to obtain
the geometric variances and covariances. Let Bi be the closest consistent matrix to Ai and let xi
be a priority vector of Bi . We have that there exists C1 > 0 such that

G(x1) = C1











4
p

1 · 5 · 4 ·G(X1)
4
p

1/5 · 1 · 3 · 1/5
4
p

1/4 · 1/3 · 1 · 1/5
4
q

G(X−1
1 ) · 5 · 5 · 1











' C1











2.329

0.5886

0.3593

2.030










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and analogously,

G(x2)' C2 [1.732 0.6379 0.4280 2.115]T , G(x3)' C3 [0.3342 1.189 2.711 0.9282]T

for some C2, C3 > 0.
Furthermore, for each expert, as shown in subsection 3.1, we can obtain matrices Gi (given

by (14), (15), and (16)) representing, respectively, the geometric means for the entries of the
consistent matrices that are closer to the given reciprocal random matrices Ai . In other words, the
entry (r, s) of Gi is the geometric expectation of the entry (r, s) of Bi . For the next equations, it is
worth remembering the mapping J : Rn→ R

n defined in Section 2.

D1 → G1 = G(x1)J(G(x1))
T =







1 3.9573 6.4824 1.1472
0.2527 1 1.6381 0.2899
0.1543 0.6105 1 0.1770
0.8717 3.4494 5.6504 1






, (14)

D2 → G2 = G(x2)J(G(x2))
T =







1 2.7154 4.0468 0.8190
0.3683 1 1.4903 0.3016
0.2471 0.6710 1 0.2024
1.2209 3.3153 4.9509 1






, (15)

and

D3 → G3 = G(x3)J(G(x3))
T =







1 0.2810 0.1233 0.3601
3.5584 1 0.4387 1.2812
8.1114 2.2796 1 2.9205
2.7774 0.7805 0.3424 1






. (16)

The resemblance of these figures with the respective original judgments is very noticeable.
This emphasizes the fact that the judgments issued by the three experts when eliciting their opin-
ions were close to be consistent.

We will compute the matrices of variances, one for each expert. We denote by ωi = Varg(X i),
values that are computed in (13). For expert D1,

Varg(x1) =













Varg(
4
p

20X1)

Varg(
4
p

3/25)

Varg(
4
p

1/60)

Varg(
4
p

25/X1)













=













ω1/16

0

0

ω1/16













,

and analogously, for D2 and D3,

Varg(x2) =
h

0
ω2

16
ω2

16
0
iT

, Varg(x3) =
hω3

16
0 0

ω3

16

iT
.

Let Σg(xi) be the geometric variance-covariance matrix of the random vector xi . By doing similar
computations as in the example of the subsection 3.3,

Σg(x1) =
ω1

16







1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1






, Σg(x2) =

ω2

16







0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0






,
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and

Σg(x3) =
ω3

16







1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1






.

Finally, if we denote by Vi the matrix whose (r, s) entry is the geometric variance of the (r, s) entry
of Bi , then again by performing similar computations as in the example of subsection 3.3,

V1 =
ω1

16







0 1 1 4
1 0 0 1
1 0 0 1
4 1 1 0






, V2 =

ω2

16







0 1 1 0
1 0 4 1
1 4 0 1
0 1 1 0






, V3 =

ω3

16







0 1 1 4
1 0 0 1
1 0 0 1
4 1 1 0






.

By considering ω1 = 0.0391, ω2 = 0.0136, and ω3 = 0.00414, (these values were shown in
(13)) and using some specific values of u (as in the numerical example of subsection 3.3), we can
use Theorem 6 to calculate the lower bounds of the probability for each considered variable. This
is shown in Table 4. The probabilities that the considered variables do not belong to the indicated
intervals are almost negligible. For example, the probability that X2 (corresponding to b23 for
expert D2) does not belong to the interval [1.1041, 2.0117] is lower than 1 − 0.962 = 0.0377.
This confirms the goodness of the evaluations.

Note that, although the study has been performed only for those variables originally intro-
ducing randomness in the original matrices Ai , similar calculations should be performed for all
the random entries of matrices Bi that can be identified by the non-vanishing positions of the
corresponding matrices Vi .

Reference ran-
dom matrix

Random variable
of the closest
consistent matrix Value of u Interval of variable

Lower bound of
the probability

0.7 [0.5697, 2.3103] 0.980

A1 b14 0.3 [0.8499, 1.5449] 0.891

0.15 [0.9874, 1.3329] 0.565

0.7 [0.7400, 3.0011] 0.993

A2 b23 0.3 [1.1041, 2.0117] 0.962

0.15 [1.2827, 1.7315] 0.849

0.7 [0.1789, 0.7251] 0.998

A3 b14 0.3 [0.2667, 0.4860] 0.988

0.15 [0.3099, 0.4183] 0.954

Table 4: Lower bounds of the probability.

After having shared results with the experts, who agreed with the final composition of the
three matrices shown in (14), (15), and (16), their entries are aggregated in a single matrix (17)
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using the geometric mean. The corresponding priority vector is given in the last column of (17).

C1 C2 C3 C4 Priorities
C1 1 1.791 2.041 0.763 29.77%
C2 0.558 1 1.140 0.426 16.63%
C3 0.490 0.877 1 0.374 14.59%
C4 1.310 2.346 2.675 1 39.01%

(17)

Table 5 gives the evaluations of the problem alternatives related to the considered criteria.
The last two columns, respectively, give the local priorities, given by their corresponding Perron
vectors, and the values of the consistency ratios CR. In particular, the consistency of the judgment
is verified, because the CR values do not surpass the threshold of 0.1 (see, for example, [36, 37]).

On the basis of criteria priorities, the global score for each alternative has been obtained by
applying the weighted sum of the respective local priorities, and the final ranking is shown in
(18).

Position Alternative Score
1st MA5 0.4424
2nd MA1 0.2248
3rd MA3 0.1254
4th MA4 0.1130
5th MA2 0.0944

(18)

The ranking gives the prioritization values for the five maintenance actions starting from the
MA5 alternative, which corresponds to the predictive maintenance policy. Moreover, it is inter-
esting to note that the corrective policies (MA3, MA4 and MA2) have no relevant priorities in
minimizing the plant shutdown risk, and the relative interventions may be postponed.

5 Conclusions

Decision-making in problem-solving contexts seeks to select and implement the most appropriate
solution with the aim of optimizing the generally broad range of available possibilities. The most
common difficulty is represented by a condition of uncertainty, in which experts may be immersed
in the task of attributing their evaluations and making suitable selections by facing various factors
or criteria. We claim that a probabilistic approach can be considered a good support for this type
of situation. For this reason, the use of the probability theory is herein proposed in integration
with the Analytic Hierarchy Process, which is one of the most widespread methods used to carry
out decision-making processes.

The case in which an expert or a group of experts have doubts in assigning crisp judgments,
but can provide probabilistic values, is considered. In this context, the pairwise comparison ma-
trices of AHP are treated as random reciprocal matrices with one or more random entries, which
are random positive variables that capture expert uncertainty. We have developed the necessary
theory to handle AHP-based decisions under the umbrella of the probability theory. In addition,
lower bounds of probability in terms of confidence intervals for the various variables involved are
estimated. The obtained results confirm the goodness of proposal.

A case study focused on a decision-making process to be undertaken in a manufacturing firm
is approached and resolved as a real-world case-study. Specifically, the AHP technique is applied
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C1 MA1 MA2 MA3 MA4 MA5 Local priorities CR

MA1 1 5 4 2 1/3 0.2383

MA2 1/5 1 1 1/3 1/6 0.0579

MA3 1/4 1 1 1/3 1/3 0.0755 0.0748

MA4 1/2 3 3 1 1/6 0.1387

MA5 3 6 3 6 1 0.4896

C2 MA1 MA2 MA3 MA4 MA5 Local priorities CR

MA1 1 1/3 1/2 1/4 7 0.2283

MA2 3 1 2 1 9 0.2897

MA3 2 1/2 1 2 7 0.1747 0.0708

MA4 4 1 1/2 1 9 0.2843

MA5 1/7 1/9 1/7 1/9 1 0.0230

C3 MA1 MA2 MA3 MA4 MA5 Local priorities CR

MA1 1 6 5 4 1/4 0.2672

MA2 1/6 1 1/2 1/2 1/7 0.0461

MA3 1/5 2 1 3 1/5 0.1011 0.0838

MA4 1/4 2 1/3 1 1/6 0.0640

MA5 4 7 5 6 1 0.5217

C4 MA1 MA2 MA3 MA4 MA5 Local priorities CR

MA1 1 7 3 7 1/5 0.2449

MA2 1/7 1 1/4 1 1/7 0.0430

MA3 1/3 4 1 3 1/5 0.1143 0.0809

MA4 1/7 1 1/3 1 1/7 0.0448

MA5 5 7 5 7 1 0.5530

Table 5: Evaluation of alternatives respect to the criteria, local priorities and CR value.
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to prioritize five maintenance actions tailored to the industrial water distribution system feeding
the industrial plants of the firm. The aim is to pursue technological innovation and structure a
long-term strategy of maintenance for the organization.
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Appendix

For the sake of general readability, in this appendix we provide the proof of Theorem 7 presented
in [1], a source which is not in English. The following lemma is needed.

Lemma 1 If X and Y are random variable such that E(X ) = E(Y ) = 0 and Var(X ) = Var(Y ) = 1,
then E(max{X 2, Y 2})≤ 1+

p

1−ρ2, where ρ is the correlation between X and Y .

PROOF: By the hypotheses,

ρ =
Cov(X , Y )

p

Var(X )
p

Var(Y )
= E(X Y )−E(X )E(Y ) = E(X Y ).

Furthermore, 1 = Var(X ) = E(X 2) − E(X )2 = E(X 2), and 1 = E(Y 2). Since 2 max{X 2, Y 2} =
|X 2 − Y 2|+ X 2 + Y 2, we have

2E(max{X 2, Y 2}) = E(|X 2 − Y 2|) +E(X 2) +E(Y 2) = E(|X 2 − Y 2|) + 2,

Therefore, it is enough to prove E(|X 2 − Y 2|)≤ 2
p

1−E(X Y )2.
Now we use the Cauchy-Schwartz inequality for random variables, i.e., if U and V are random

variables, then [E |UV |]2 ≤ E(U2)E(V 2).
�

E |X 2 − Y 2|
�2
= [E(|X + Y | · |X − Y |)]2

≤ E(X 2 + Y 2 + 2X Y )E(X 2 + Y 2 − 2X Y )

= [E(X 2) +E(Y 2) + 2E(X Y )][E(X 2) +E(Y 2)− 2E(X Y )]

= (2+ 2ρ)(2− 2ρ) = 4(1−ρ2).

Therefore, E(|X 2 − Y 2|)≤ 2
p

1−ρ2. �
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PROOF OF THEOREM 7: Let Z = max{X , Y }. It is clear that Z2 = max{X 2, Y 2}. Now we have, by
Markov’s inequality and the previous lemma,

pr(|X −µx | ≥ εσx or |Y −µy | ≥ εσy) = pr(|X −µx |/σx ≥ ε or |Y −µy |/σy ≥ ε)

= pr(max{|X −µx |2/σ2
x , |Y −µy |2/σ2

y} ≥ ε
2)

≤
1
ε2

E(max{|X −µx |2/σ2
x , |Y −µy |2/σ2

y})

≤
1+

p

1−ρ2

ε2
. �

Next, we shall compute the geometric expectation and variance of a continuous uniformly
distribution X on the interval [a, b]. Since log(G(X )) = E(log X ) and Varg(X ) = Var(log X ), it is
convenient to study the distribution of Y = log(X ). Let FY be the cumulative distribution function
of Y .

FY (y) = pr(Y ≤ y) = pr(log X ≤ y) = pr(X ≤ ey) =







0 if y < log a,
(ey − a)/(b− a) if log a ≤ y ≤ log b,

1 if log b < y.

By differentiating we get the density funtion of Y :

fY (y) =

�

ey/(b− a) if y ∈ [log a, log b],
0 if y /∈ [log a, log b].

From E(Y ) =
∫

R
y fY (y)dy we can get G(X ) = exp(E(Y )). From E(Y 2) =

∫

R
y2 fY (y)dy and

Var(Y ) = E(Y 2)−E(Y )2 we get the variance of Y = log X .
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