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Splitting and composition methods with embedded

error estimators

Sergio Blanes∗, Fernando Casas†, Mechthild Thalhammer‡

Abstract

We propose new local error estimators for splitting and composition meth-

ods. They are based on the construction of lower order schemes obtained at each

step as a linear combination of the intermediate stages of the integrator, so that

the additional computational cost required for their evaluation is almost insignif-

icant. These estimators can be subsequently used to adapt the step size along the

integration. Numerical examples show the efficiency of the procedure.

1 Introduction

Splitting and composition methods are of particular interest in the numerical integra-

tion of differential equations when the vector field is separable into solvable parts or

when a low order basic method is known, and the goal is to construct higher order

schemes by composing the basic method with fractional time steps [25, 26].

Although integrators of this class have a long history in numerical mathematics and

have been applied, sometimes with different names, in many different contexts (par-

tial differential equations [32], quantum statistical mechanics [34], chemical physics

[16, 18], molecular dynamics [36], celestial mechanics [11, 23], etc.), it has been with

the advent of the so-called Geometric Numerical Integration that the interest in split-

ting and composition has revived and new and very efficient schemes have been de-

signed in the simulation of physical systems. The goal in Geometric Numerical Inte-

gration is to construct schemes in such a way that the numerical approximation shares

with the exact solution many of its relevant qualitative (very often, geometrical) prop-

erties, such as symplecticity, unitarity, orthogonality, etc. [5, 19]. If the basic method

possesses (some of) these geometric properties, so do the schemes obtained by com-

posing them. In addition, when they are used with a constant time step, they show a

more favorable error growth behavior than standard integrators, especially in long term

integrations. Symplectic integration schemes for Hamiltonian dynamical systems con-

stitute a classical example of geometric numerical integrators [30].

Even in problems where no qualitative properties have to be preserved and/or only

short time integrations are required, splitting and composition methods have shown to
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be an excellent option (see e.g. [17] and references therein), even when compared with

other standard integrators.

As is well known, some of the most popular and efficient standard schemes are

embedded methods: the numerical procedure contains, besides the numerical approxi-

mation xn, a second approximation x̃n (usually of a lower order) obtained from inter-

mediate outputs, so that the difference is used as an estimate of the local error for the

less precise result and can subsequently be used for step size control [20]. Well known

examples in this area are the class of high order embedded Runge–Kutta methods con-

structed by Verner [37] (implemented as the DVERK code) and Prince & Dormand

[29], giving rise to the code DOP853 [20].

Since splitting and composition methods also provide intermediate outputs when

computing the numerical approximation at every step, it seems then natural to analyze

whether these intermediate outputs can also be used along the same lines as standard

embedded methods to endow the schemes with a step size control. We will see that this

is indeed the case as long as the splitting scheme involves a sufficiently large number

of stages and, furthermore, we will show how to construct explicitly the lower order

approximation x̃n from these intermediate outputs at virtually cost free.

It is important to remark that, whereas splitting and composition methods imple-

mented with a constant step size are specially well suited in geometric numerical inte-

gration for long time integrations, this is not the case of the variable step size schemes

constructed by applying the strategy proposed here [10]. In any case, the second ap-

proximation x̃n is only used to estimate the local error and this is not propagated along

the integration interval.

Of course, the idea of endowing splitting methods with a local error estimator is

not new. We can mention in particular references [13, 14], where a embedded splitting

method is constructed for the second-order Strang splitting for stiff evolutionary partial

differential equations, and [2, 3, 35], where a controller splitting method of order r+1
is selected and then an integrator of order r is constructed for which a maximal number

of compositions coincide with those of the controller. The methods thus built are

then applied for the numerical solution of nonlinear parabolic problems with periodic

boundary conditions.

By contrast, the approach we follow here allows one, given a splitting or compo-

sition method of order r, to construct a second, lower order approximation as a linear

combination of the outputs generated at the intermediate stages. This is essentially

similar to the procedure presented in [8] for computing cheap approximations to the

optimal postprocessor in composition methods with processing, and can be done vir-

tually cost-free. The lower order methods thus designed can be used to endow some

of the most popular splitting and composition schemes with a reliable and easy-to-

evaluate error estimator [9, 12, 28]

The plan of the paper is the following. In section 2 we briefly summarize the

mathematical formalism to be used in the subsequent analysis. Then, in section 3

we proceed to obtain estimators for symmetric compositions of second order basic

schemes and of a first order method with its adjoint, whereas an analogous treatment

is discussed in section 4. The relationship between composition and splitting methods,

together with their respective estimators, is treated in section 5. The new estimators are

illustrated in section 6 in comparison with other well established techniques. Finally,

section 7 contains some concluding remarks.
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2 Flows and Lie derivatives

The analysis of splitting and composition methods can be conveniently carried out with

the formalism of Lie derivatives. In that case both the exact flow and the numerical

flow corresponding to an integrator, as well as compositions of this integrator, can

be associated to the exponential (or products of exponentials) of operators, just as in

the linear case, so that the order conditions can be obtained by applying the familiar

Baker–Campbell–Hausdorff formula.

To be more specific, given the initial value problem

ẋ = f(x), x0 = x(0) ∈ R
D (1)

with f : RD −→ R
D and flow ϕt, we can associate with f the first order differential

operator (the Lie derivative) Lf , whose action on differentiable functions G : Rd −→
R is (see [1, Chap. 8])

LfG(x) =

d∑

i=1

fi(x)
∂G

∂xi
,

so that formally

Lf =
d∑

i=1

fi
∂

∂xi
. (2)

Moreover, one can also introduce an operator Φt acting on functions G as [27]

Φt[G](x) = (G ◦ ϕt)(x). (3)

Then, the Taylor series of G(ϕt(x0)) at t = 0 is given by [19, 5]

G(ϕt(x0)) =
∑

k≥0

tk

k!
(Lk

fG)(x0) ≡ exp(tLf )[G](x0), (4)

and so

Φt[G](x) = exp(tLf )[G](x) ≡ exp(tF )[G](x), (5)

where, for the sake of simplicity in the notation, we write F ≡ Lf . If we replace G in

(5) by the identity map Id(x) = x, we get for the exact solution of (1)

ϕt(x0) = exp(tF )[Id](x0). (6)

In the same way as for the exact flow ϕt, we can associate to each numerical integrator

for a time step h, χh : Rd −→ R
d, the operator

X(h) = I +
∑

n≥1

hnXn, (7)

where I denotes the identity operator and each Xn acts on smooth functions G as

Xn[G](x) =
1

n!

dn

dhn

∣∣∣∣
h=0

G(χh(x)), (8)
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so that X(h)[G](x) = (G ◦ χh)(x). It is then possible to write X(h) formally as the

exponential of another operator Y (h),

(G ◦ χh)(x) = X(h)[G](x) = exp(Y (h))[G](x), (9)

where

Y (h) =
∑

n≥1

hnYn = log(X(h)). (10)

Clearly, the integrator χh is of order r if exp(Y (h)) = exp(hF ) up to terms hr, or

equivalently, if

Y1 = F, and Yn = 0 for 2 ≤ n ≤ r.

Thus, in particular, if r = 1, then

exp(Y (h)) = exp
(
hF + h2Y2 + h3Y3 +O(h4)

)
,

whereas for its adjoint method χ∗
h ≡ χ−1

−h, one has analogously

(G ◦ χ∗
h)(x) = exp(−Y (−h))[G](x)

with

exp(−Y (−h)) = exp
(
hF − h2Y2 + h3Y3 +O(h4)

)
.

A second-order method S [2]
h is (time-)symmetric if and only if (S [2]

h )∗ = S [2]
h , or equiv-

alently, if its corresponding operator has the form Y (h) = hF+h3Y3+h
5Y5+O(h7).

3 Estimators for composition methods

3.1 Composition of symmetric second order methods

Suppose now that, starting with a basic symmetric second order integrator S [2]
h , we

form the composition

ψh = S [2]
hαs

◦ · · · ◦ S [2]
hα2

◦ S [2]
hα1

. (11)

If the coefficients α1, . . . , αs satisfy some requirements (the order conditions), then

ψh provides an approximation of order r to the exact solution. The number of order

conditions is considerably reduced for symmetric compositions, i.e.,

αj = αs−j+1, for all j (12)

in (11). In that case its associated series of differential operators reads

Ψ(h) = exp(Y (hα1)) exp(Y (hα2)) · · · exp(Y (hα2)) exp(Y (hα1)),

where

exp(Y (hαk)) = exp
(
hαkF + h3α3

kY3 + h5α5
kY5 +O(h7)

)
(13)

is the operator associated with S [2]
h . By requiring that

Ψ(h) = exp(hF +O(hr+1)),
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one gets the order conditions to be satisfied by the coefficients α1, . . . , αs in the com-

position (11). Up to order r = 6 these conditions read explicitly

s∑

j=1

αj = 1,

s∑

j=1

α3
j = 0 (14)

s∑

j=1

α5
j = 0,

s∑

j=1

α3
j



(

j−1∑

ℓ=1

αℓ

)2

+ αj

j−1∑

ℓ=1

αℓ


 = 0.

Notice that, when computing the numerical approximation xn+1 = ψh(xn) ≈ x(tn+1) =
x(tn+h) with (11), the procedure also provides s−1 intermediate outputs in addition

to xn, i.e.,

xn,k = S [2]
hαk

◦ · · · ◦ S [2]
hα1

xn, k = 1, . . . , s− 1,

and the question we pose is whether one can obtain another approximation x̃n+1 of

x(tn+1) by a linear combination

x̃n+1 =
s−1∑

k=0

wk xn,k (15)

of these intermediate values xn,k, with xn,0 = xn. It turns out that this is indeed pos-

sible, but the highest order of approximation that can be achieved in this way depends

on the number of intermediate stages s. The procedure is similar to the technique used

in [7, 8] to construct cheap postprocessors for composition methods with processing.

One should note that ws is not included in the linear combination (15). Otherwise,

only the trivial solution

ws = 1, wk = 0, k = 0, 1, . . . , s− 1

is obtained.

Our goal is then to find coefficients wk so that, given a number of stages s, the

linear combination (15) is an approximation to x(tn+1) of order ℓ, or equivalently,

w0 I +
s−1∑

k=1

wk

k∏

i=1

exp(Y (hαi)) = exp(hF ) +O(hℓ+1), (16)

where exp(Y (hαk)) is given by (13) and ℓ is as large as possible. Since a linear

combination of exponential operator is not, in general, a exponential operator, the

conditions to be satisfied by wk can be derived by expanding both terms in (16) in

powers of h and equating their respective coefficients. Thus, in particular, up to order

ℓ = 4, one has explicitly

exp(hF ) = I + hF +
h2

2
F 2 +

h3

3!
F 3 +

h4

4!
F 4 +O(h5)

and

w0 I +
s−1∑

k=1

wk

k∏

i=1

exp(Y (hαi)) = f0I + hf1F +
h2

2
f2F

2

+ h3
(
1

3!
f3,1F

3 + f3,2Y3

)
+ h4

(
1

4!
f4,1F

4 +
1

2
f4,2F Y3 +

1

2
f4,3Y3 F

)
+O(h5),

5



Order ℓ 1 2 3 4 5 6

SS 1 2 4 7 12 20

method-adjoint 1 3 7 15 31 63

splitting 2 6 14 30 62 126

Table 1: Number of order conditions, in additional to the trivial one for w0, required

by a linear combination of intermediate outputs to achieve order ℓ for symmetric com-

positions of 2nd-order symmetric schemes (SS), compositions of a first order method

with its adjoint (28) (method-adjoint) and a splitting method (36) (splitting).

whence the following system of linear equations results:

f0 ≡ w0 +

s−1∑

k=1

wk = 1

f1 ≡
s−1∑

k=1

wk

k∑

j=1

αj = 1

f2 ≡
s−1∑

k=1

wk

( k∑

j=1

αj

)2
= 1

f3,1 ≡
s−1∑

k=1

wk

( k∑

j=1

αj

)3
= 1

f3,2 ≡
s−1∑

k=1

wk

( k∑

j=1

α3
j

)
= 0

f4,1 ≡
s−1∑

k=1

wk

( k∑

j=1

αj

)4
= 1

f4,2 ≡
s−1∑

k=1

wk

( k∑

j=1

α4
j + 2

k−1∑

j=1

α3
j

k∑

ℓ=j+1

αℓ

)
= 0

f4,3 ≡
s−1∑

k=1

wk

( k∑

j=1

α4
j + 2

k∑

j=2

α3
j

j−1∑

ℓ=1

αℓ

)
= 0.

(17)

Notice that the first equation is trivially solved in w0, so to achieve an approximation

x̃n+1 of order 4, we have to verify 7 linear equations. More generally, the total num-

ber of equations (in addition to the trivial one) required to achieve a given order ℓ is

collected in Table 1 for orders ℓ = 1, . . . 6. Strictly speaking, this number is the sum

of the dimensions mk, k ≥ 1, of the subspaces Ak of the universal enveloping algebra

A =
⊕

k≥0Ak associated to the graded Lie algebra of operators corresponding to the

composition method, with A0 = span(I) [8].

Next we analyze in detail the construction of numerical schemes of orders 3, 4 and

5 within this approach to be used as error estimators for symmetric compositions of

the form (11).
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Third-order estimators. Only the first five equations in (17) have to be satisfied to

get order three. This can be achieved if the composition (11) has at least s = 5. For

s = 5, when the symmetry of the coefficients (12) (i.e., α5 = α1, α4 = α2) and the

order conditions of a 4th-order composition (i.e., equations in the first line of (14)) are

taken into account, then the unique solution of the system is given by

w1 = w4 =
g2(1− g2)

g1(g1 − 1)− g2(g2 − 1)
, w2 = w3 = 1− w1

g1 = α1, g2 = α1 + α2

(18)

so that w0 = −1. A popular (and efficient) 4th-order composition method within this

class is the one devised by Suzuki [33], with coefficients

α1 = α2 =
1

4− 41/3
, α3 =

1

1− 42/3
, (19)

so that its third-order estimator reads

x̃n+1 = −xn + w1(xn,1 + xn,4) +w2(xn,2 + xn,3). (20)

Another widely used 4th-order method involving s = 7 stages is due to McLachlan

[24], with coefficients

α1 = α2 = α3 =
1

6− 61/3
, α4 =

1

1− 62/3
.

Its corresponding estimator now involves a free parameter, which can be taken to be

w3, and reads

x̃n+1 = −xn + w1(xn,1 + xn,6) + w2(xn,2 + xn,5) + w3(xn,3 + xn,4).

Here

w1 =
g2(1− g2) + w3(g2(g2 − 1)− g3(g3 − 1))

g1(g1 − 1)− g2(g2 − 1)

w2 =
g1(g1 − 1)− w3(g1(g1 − 1) + g3(g3 − 1))

g1(g1 − 1)− g2(g2 − 1)
,

with g1 = α1, gi = gi−1 + αi, i = 2, 3.

The same strategy can also be applied to the popular 4th-order 3-stage Yoshida’s

method [38]

φ
[4]
h = S [2]

hα1
◦ S [2]

hα2
◦ S [2]

hα1
, (21)

with

α1 =
1 + 2−5/3

2 + 21/3 + 2−1/3
± i

4

√
3

1 + 22/3 + 2−2/3
, α2 = 1− 2α1

which is known to lead to small errors when complex coefficients are taken [6]. Since

only three intermediate outputs per step are available, one needs at least two steps of it

as if it were one single method, i.e., one can take as integrator the composition

φ
[4]
h = S [2]

hα1/2
◦ S [2]

hα2/2
◦ S [2]

hα1/2
◦ S [2]

hα1/2
◦ S [2]

hα2/2
◦ S [2]

hα1/2
. (22)
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In this case the corresponding estimator reads

x̃n+1 = −xn + w1(xn,1 + xn,5) +w2(xn,2 + xn,4),

with

w1 =
1− α2

1

α2
, w2 = 1−w1.

We can adopt the terminology of embedded Runge–Kutta methods [20] and denote the

previous compositions with their respective estimators as methods of order 4(3).

Compositions of order 6(4). To get linear combinations (15) of order four one has to

solve the whole set of equations (17). Although in principle this would require s = 8
stages, it turns out that if the underlying time-symmetric composition (11) satisfies

the order conditions up to order 6 given by (14) with the minimum number of stages

(s = 7), one gets a unique solution of the form

x̃n+1 = xn +w1(xn,1 − xn,6) + w2(xn,2 − xn,5) + w3(xn,3 − xn,4),

where wi can be expressed analytically in terms of the αi coefficients of the composi-

tion. For the particular method found by Yoshida [38], with coefficients

α1 = 0.78451361047755726382, α2 = 0.23557321335935813369

α3 = −1.17767998417887100695, α4 = 1− 2(α1 + α2 + α3)

one has
w1 = −0.90983233007647709242,

w2 = 2.16331188722978237305,

w3 = 0.55695580387159066608.

The same strategy can be applied of course if 6th-order compositions with more stages

are considered. For instance, we have found an estimator within this class for the

symmetric method proposed by Kahan & Li [21], with s = 9 stages.

Compositions of order 6(5) and 8(5). A system of 13 linear equations has to be

solved for getting an estimator of order five. Although not all of them are independent

when the time-symmetry and the order conditions for the underlying composition are

introduced, at least s = 11 stages are necessary. Starting from the 6th-order symmetric

composition obtained by Sofroniou & Spaletta [31] with coefficients

α1 = 0.21375583945878254555, α2 = 0.18329381407425713911

α3 = 0.17692819473098943795, α4 = −0.44329082681170215849

α5 = 0.11728560432865935385, α6 = 1− 2(α1 + α2 + α3 + α4 + α5),

(23)

there is just one set of coefficients satisfying all the order conditions. The resulting

method of order 6(5) is of the form

x̃n+1 = −xn +

5∑

i=1

wi (xn,i + xn,11−i), (24)
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with

w1 = −4.70925883588386976399 w2 = 24.61043285614692442695
w3 = −19.39218824966918044634 w4 = 6.17441462307605721006
w5 = −5.68340039366993142668

The same strategy can be applied to compositions (11) of order 8. A well known

example within this class is the symmetric method proposed by Kahan & Li [21] with

s = 17 and coefficients

α1 = 0.13020248308889008088, α2 = 0.56116298177510838456
α3 = −0.38947496264484728641, α4 = 0.15884190655515560090
α5 = −0.39590389413323757734, α6 = 0.18453964097831570709
α7 = 0.25837438768632204729, α8 = 0.29501172360931029887
α9 = 1− 2(α1 + · · ·+ α8),

(25)

the estimator reads

x̃n+1 = −xn +

8∑

i=1

wi (xn,i + xn,17−i), (26)

with

w1 = −2.77811433347582461058, w2 = 1.43336350604816157334
w3 = −2.35490307436226712937, w4 = 0.27249477875971647996
w5 = 3.09204406313073660493, w6 = 1.33511505989947708172
w7 = 0, w8 = 0.

The DOP853 algorithm based on a 12-stage RK8(6) method by Dormand & Prince

(announced but not published in [15]), where the embedded 6th-order method is re-

placed by a pair of embedded methods of order five and three by Hairer & Wanner

[20]), is one of the most efficient schemes within this framework. In comparison, the

previous composition method involves more stages, but on the other hand does not

require to keep up to 12 vectors in memory.

As a matter of fact, we can apply the same strategy to the 8th-order composition

method considered here and construct a second estimator of order 3 to avoid any pos-

sible over-estimation of the error. One possible 3th-order estimator is given by

x̃
[3]
n+1 = −xn + w1(xn,1 + xn,16) +w7(xn,7 + xn,10), (27)

with w1, w7 verifying

w1 + w7 = 1

g1(g1 − 1)w1 + g7(g7 − 1)w7 = 0

where g1 = α1, g7 = α1 + · · · + α7, i.e.

w1 = 1.828514038642564624, w7 = −0.828514038642564624.

We then have two error estimators for the scheme (11) with coefficients (25),

err5 = ‖x̃[5]n − xn‖ = O(h6), err3 = ‖x̃[3]n − xn‖ = O(h4).

9



Applying now the same strategy as in [20], we consider

err = err5 ·
err5√

err25 + 0.01 · err23

= O(h8)

as an error estimator that behaves asymptotically like the global error of the method.

Notice that we can obtain error estimators for other composition schemes in a

similar way. For example, at order eight one can find in the literature methods with

up to 21 stages [19, 21, 31], and their relative performance depend on the particular

problem to solve as well as on the symmetric second order scheme used as the basic

scheme for the composition.

3.2 Composition of a first order method with its adjoint

Higher order methods can also be obtained by composing a first order basic method

χh and its adjoint χ∗
h = χ−1

−h,

ψh = χα2sh ◦ χ∗
α2s−1h ◦ · · · ◦ χα2h ◦ χ∗

α1h, (28)

with appropriately chosen real coefficients (α1, . . . , α2s). The associated series of

differential operators is of the form

Ψ(h) = e−Y (−hα1) eY (hα2) · · · e−Y (−hα2s−1) eY (hα2s), (29)

where Y (hαk) = hαkF + h2α2
kY2 + h3α3

kY3 + O(h4). Again, by requiring that

Ψ(h) = exp(hF + O(hr+1)), one gets the order conditions to be satisfied by the

coefficients to achieve order r. These order conditions are considerably simplified if

α2s−j+1 = αj for all j. In that case the composition (28) is time-symmetric.

As with symmetric compositions of symmetric second order schemes, here we can

also take a linear combination

x̃n+1 = w0 xn +

2s−1∑

k=1

wk xn,k (30)

of intermediate outputs

xn,2i−1 = χ∗
α2i−1

(xn,2i−2), xn,2i = χα2i(xn,2i−1),

to produce an approximation of order ℓ < r to be used as an error estimator for the

composition (28). The coefficients wk can be determined by requiring that

w0I + w1 e
−Y (−hα1) + w2 e

−Y (−hα1)eY (hα2) + · · · = exp(hF ) +O(hℓ+1).

By expanding the product of exponentials we get the number of conditions the wk

have to satisfy at a given order in a similar way as with compositions of 2nd-order

symmetric methods. This number is collected in Table 1.

In particular, 8 linear equations are required to get a 3rd-order approximation in

this way. Since several efficient 4th-order methods of this class with up to 6 stages (or

12 intermediate outputs) are available in the literature, it is in principle possible to get

10



third order estimators for them (even with free parameters for optimization). As an

illustration, for the symmetric 4th-order method (28) with s = 6 and coefficients

α1 = 0.08298440641740484666, α2 = 0.16231455076686615333
α3 = 0.23399525073150184666, α4 = 0.37087741497957699562
α5 = −0.40993371990192559562, α6 = 0.05976209700657575333

(31)

we propose the linear combination (30) with w0 = −1 and

w1 = 1.48889386198802799037, w2 = −0.03049911761922725390
w3 = −0.32603028933442750875, w4 = −0.05468276894167474320
w5 = −0.02746220037522580999, w6 = −0.10043897143494534902
w12−i = wi, i = 1, . . . , 5.

(32)

4 Estimators for splitting methods

If f in equation (1) can be split as f =
∑m

i=1 f
[i] for certain functions f [i] : RD −→

R
D, in such a way that the equations

ẋ = f [i](x), x0 = x(0) ∈ R
D, i = 1, . . . ,m (33)

can be integrated exactly, with solutions x(h) = ϕ
[i]
h (x0) at t = h, then the basic

first-order method in the composition (28) can be taken simply as

χh = ϕ
[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ[1]
h , (34)

whereas its adjoint is just the reversed composition

χ∗
h = ϕ

[1]
h ◦ ϕ[2]

h ◦ · · · ◦ ϕ[m]
h . (35)

For m = 2, i.e., when f(x) is decomposed in just two pieces,

f = f [1] + f [2],

one could also consider a time-symmetric composition

ψh = ϕ
[2]
bs+1h

◦ ϕ[1]
ash

◦ ϕ[2]
bsh

◦ · · ·ϕ[2]
b2h

◦ ϕ[1]
a1h

◦ ϕ[2]
b1h

(36)

with appropriately chosen coefficients ai, bi verifying

as+1−j = aj , bs+2−j = bj, j = 1, 2, . . .

to achieve a prescribed order. Here it is also possible to take advantage of the interme-

diate outputs to construct a lower order approximation which may be used as an error

estimator for the integrator (36). In this case it has the form

x̃n+1 = w0 xn +
2s∑

k=1

wk xn,k, (37)

with

xn,2i−1 = ϕ
[2]
bih

(xn,2i−2), xn,2i = ϕ
[1]
aih

(xn,2i−1).

11



As before, the analysis can be carried out with the associated series of differential

operators, which in this case reads

Ψ(h) = exp(b1hB) exp(a1hA) · · · exp(bshB) exp(ashA) exp(bs+1hB),

where A and B denote the Lie derivatives corresponding to f [1] and f [2], respectively:

A ≡
D∑

i=1

f
[1]
i (x)

∂

∂xi
, B ≡

D∑

i=1

f
[2]
i (x)

∂

∂xi
.

Analogously, the conditions to be satisfied by the wi are determined by expanding the

exponentials in

w0I + w1e
b1hB + w2e

b1hBea1hA + · · · = exp(hF ) +O(hℓ+1).

The number to achieve a given order is collected in Table 1 (last line).

Now a system of 15 equations have to be satisfied by the coefficients wi in the

linear combination (37) to achieve order 3. As in the preceding cases, we can take

several efficient splitting methods of the form (36) involving enough intermediate steps

and construct estimators for them. In particular, for the 4th-order symmetric splitting

scheme designed by Blanes & Moan [9], with 12 intermediate outputs

ψh = ϕ
[2]
b1h

◦ ϕ[1]
a1h

◦ · · ·ϕ[1]
a3h

◦ ϕ[2]
b4h

◦ ϕ[1]
a3h

· · ·ϕ[1]
a1h

◦ ϕ[2]
b1h

(38)

and coefficients

b1 = 0.07920369643119565, a1 = 0.209515106613361
b2 = 0.35317290604977372, a2 = −0.143851773179818
b3 = −0.04206508035771952, a3 = 1/2 − (a1 + a2)
b4 = 1− 2(b1 + b2 + b3)

we propose the linear combination

x̃n+1,k = −xn,0 +
5∑

i=1

wi(xn,i + xn,13−i) (39)

solving all order conditions with

w1 = 1, w2 = 0.43458657385433203071,
w3 = −w2, w4 = 0.27273581001405423884, w5 = −w4.

(40)

Another particularly efficient 4th-order splitting method designed for systems of the

form

ÿ = g(y), y ∈ R
D (41)

when written as a first order system

d

dt

(
y
ẏ

)
=

(
ẏ
0

)

︸ ︷︷ ︸
f [1]

+

(
0

g(y)

)

︸ ︷︷ ︸
f [2]

12



corresponds to the composition (38) with

b1 = 0.082984406417404, a1 = 0.245298957184271
b2 = 0.396309801498368, a2 = 0.604872665711078
b3 = −0.039056304922348, a3 = 1/2 − (a1 + a2)
b4 = 1− 2(b1 + b2 + b3).

(42)

In this case the estimator has also the form (39) with

w1 = 1, w2 = 0.43541552923952936004,
w3 = −w2, w4 = −0.17978889668391821731, w5 = −w4.

(43)

This splitting method, as well as the error estimator, can also be used to integrate in

time the Schrödinger equation

i
∂

∂t
ψ =

(
− 1

2m
∆+ V (x)

)
ψ,

where m is the reduced mass, ∆ is the Laplacian operator and V (x) is the potential.

After spatial discretisation one has to solve a linear system of ODEs

iu̇ = (A+B)u, u0 ∈ C
D,

whereA corresponds to the spatial discretization of the kinetic part andB to the poten-

tial part. Here B is a diagonal matrix in the coordinates space, whereas A is diagonal

in the momentum space, so fast Fourier transform (FFT) algorithms F can be used to

compute the action of a A on a vector, Au = F−1DAFu, with DA a diagonal matrix.

5 Connection between splitting and composition

Splitting and composition methods for system ẋ = f [1](x) + f [2](x) are closely con-

nected. On the one hand, if S [2]
h = ϕ

[2]
h/2 ◦ ϕ

[1]
h ◦ ϕ[2]

h/2 or S [2]
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ[1]

h/2,

then the composition scheme (11) can be written as (36), although the opposite is not

true in general. On the other hand, if χh = ϕ
[2]
h ◦ ϕ[1]

h , then χ∗
h = ϕ

[1]
h ◦ ϕ[2]

h and the

composition (28) reads

ψh =
(
ϕ
[2]
α2sh

◦ϕ[1]
α2sh

)
◦
(
ϕ
[1]
α2s−1h

◦ϕ[2]
α2s−1h

)
◦· · ·◦

(
ϕ
[2]
α2h

◦ϕ[1]
α2h

)
◦
(
ϕ
[1]
α1h

◦ϕ[2]
α1h

)
. (44)

Since ϕ
[i]
h (i = 1, 2) are exact flows, then they verify1 ϕ

[i]
βh ◦ ϕ[i]

δh = ϕ
[i]
(β+δ)h, and the

method can be rewritten as the splitting scheme

ψh = ϕ
[2]
bs+1h

◦ ϕ[1]
ash

◦ ϕ[2]
bsh

◦ · · · ◦ ϕ[2]
b2h

◦ ϕ[1]
a1h

◦ ϕ[2]
b1h
, (45)

if b1 = α1 and

aj = α2j + α2j−1, bj+1 = α2j+1 + α2j , j = 1, . . . , s (46)

1This property is not satisfied, in general, if the exact flows are replaced by numerical approximations.
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(with α2s+1 = 0). Conversely, any integrator of the form (45) with
∑s

i=1 ai =∑s+1
i=1 bi can be expressed in the form (28) with χh = ϕ

[2]
h ◦ ϕ[1]

h and

α2s = bs+1,
α2j−1 = aj − α2j , α2j−2 = bj − α2j−1, j = s, s− 1, . . . , 1,

with α0 = 0 for consistency. Nevertheless, the intermediate outputs are different in

each implementation as well as the number of order conditions for the estimators.

In general this number grows faster with the order for splitting methods. Moreover,

implementing the splitting scheme ψh as a composition method is in general more

costly because explicitly obtaining the intermediate values requires the computation

of additional basic flows. In more detail, suppose we write (45) as a composition:

ψh = · · · ◦ ϕ[2]
b2h

◦ ϕ[1]
a1h

◦ ϕ[2]
b1h

= · · · ◦ ϕ[2]
(b2−(a1−b1))h

◦ ϕ[2]
(a1−b1)h

◦ ϕ[1]
(a1−b1)h︸ ︷︷ ︸

χ(a1−b1)h

◦ϕ[1]
b1h

◦ ϕ[2]
b1h︸ ︷︷ ︸

χ∗
b1h

.

Then, for the first intermediate output we have

xn+1,1 = χ∗
b1h(xn,0) = ϕ

[1]
b1h

◦ ϕ[2]
b1h

(xn,0).

However, whereas obviously ϕ
[1]
(a1−b1)h

◦ϕ[1]
b1h

= ϕ
[1]
a1h

, the computational cost of com-

puting z = ϕ
[1]
b1h

(y) and then ϕ
[1]
(a1−b1)h

(z) can be in many cases up to twice more

costly than directly evaluating ϕ
[1]
a1h

(y).
For example, taking this composition for solving the Schrödinger equation requires

the computation of s additional inverse FFTs with respect to the same scheme written

as a splitting method. Similarly, taking a composition with the symmetric second

order scheme S [2]
h = ϕ

[2]
h/2 ◦ ϕ[1]

h ◦ ϕ[2]
h/2 requires the same number of FFTs as the

corresponding splitting composition, but taking instead S [2]
h = ϕ

[1]
h/2 ◦ϕ

[2]
h ◦ϕ[1]

h/2 as the

basic scheme, requires s additional inverse FFTs for the intermediate outputs because

ϕ
[1]
h carries the costly part of the scheme.

A noteworthy exception is the case in which f [1] and f [2] originate from a parti-

tioned ordinary differential equation of the form

q̇ = g(p), ṗ = f(q). (47)

The system can then be written as

d

dt

(
q
p

)
=

(
g(p)
0

)

︸ ︷︷ ︸
f [1]

+

(
0

f(q)

)

︸ ︷︷ ︸
f [2]

and

ϕ
[1]
b1h

(
qn
pn

)
=

(
qn + b1hg(pn)

pn

)
, ϕ

[1]
(a1−b1)h

(
qn
pn

)
=

(
qn + (a1 − b1)hg(pn)

pn

)
,

14



where the same evaluation g(pn) is used in both cases.

The algorithm corresponding to the splitting method (45) for the step (q0, p0) 7→
(q1, p1) reads

Q0 = q0, P0 = p0

for i = 1, . . . , s

Q2i−1 = Q2i−2

P2i−1 = P2i−2 + hbif(Q2i−1)

Q2i = Q2i−1 + haig(P2i−1)

P2i = P2i−1

q1 = Q2s, p1 = P2s + hbs+1f(Q2s),

so that it can be seen as an explicit partitioned Runge–Kutta method. On the other

hand, the composition (28) with (44) leads to the algorithm

Q0 = q0, P0 = p0

for i = 1, . . . , s

P2i−1 = P2i−2 + hα2i−1f(Q2i−2)

Q2i−1 = Q2i−2 + hα2i−1g(P2i−1)

Q2i = Q2i−1 + hα2ig(P2i−1)

P2i = P2i−1 + hα2if(Q2i)

q1 = Q2s, p1 = P2s

requiring exactly the same evaluations of f and g. If in addition g(p) = p (i.e., if we

are solving the second order differential equation q̈ = f(q)), then the estimator for

(47) takes the form (for appropriate choices of the parameters wi)

(
q̃n+1

p̃n+1

)
= w0

(
qn
pn

)
+

s∑

i=1

(
w2i−1

(
Q2i−1

P2i−1

)
+ w2i

(
Q2i

P2i

))

+w2s−1

(
Q2s−1

P2s−1

)
=




qn + hpn + h2
s∑

i=1

δif(Q2i−2)

pn + h

s∑

i=1

γif(Q2i−2)




in a similar way as for embedded Runge–Kutta–Nyström methods. In any case, other

choices of δi, γi can also lead to estimators associated to a given s-stage composition

scheme [10], and that can not be obtained by taking intermediate outputs.

6 Numerical examples

In this section we analyze the accuracy and reliability of the estimators presented in

this work in comparison with other well established schemes for a simple example.

Specifically, the methods (and notation) we consider are the following:

15



• RKN 643: The 6-stage 4th-order splitting method (38) for systems of the form

(41) with the 3rd-order estimator (43).

• PRK643: The 6-stage 4th-order splitting (38), with the 3rd-order estimator (39)

and coefficients given by (40).

• S643: The 6-stage 4th-order method-adjoint symmetric composition (28) with

coefficients (31) and 3rd-order estimator (32).

• SS543: The 5-stage 4th-order symmetric composition (11) with coefficients

(19) and 3rd-order estimator (20).

• SS1165: The 11-stage 6th-order symmetric composition (11) with coefficients

(23) and 5th-order estimator (24).

• SS17853: The 17-stage 8th-order symmetric composition (11) with coefficients

(25) with the 5th- and 3rd-order estimators (26) and (27).

These are compared with:

• eRKN443: the non-symmetric 4-stage 4th-order Runge–Kutta–Nyström (RKN)

method with a 3rd-order estimator presented in [10]. This method has an error

estimator that is only valid for equations of the form (41), so that it cannot be

used in particular for the Schrödinger equation.

• ePRK543: The 5-stage 4th-order splitting method given by the composition

ψh = ϕ
[2]
b5h

◦ϕ[1]
a5h

◦ϕ[2]
b4h

◦ϕ[1]
a4h

◦ϕ[2]
b3h

◦ϕ[1]
a3h

◦ϕ[2]
b2h

◦ϕ[1]
a2h

◦ϕ[2]
b1h

◦ϕ[1]
a1h

(48)

with the symmetry b6−i = ai, i = 1, 2, . . . , 5, and the 3rd-order estimator given

by a similar composition sharing the first stages2

ψ̃h = ϕ
[2]

b̃5h
◦ϕ[1]

ã5h
◦ϕ[2]

b̃4h
◦ϕ[1]

ã4h
◦ϕ[2]

b̃3h
◦ϕ[1]

ã3h
◦ϕ[2]

b2h
◦ϕ[1]

a2h
◦ϕ[2]

b1h
◦ϕ[1]

a1h
(49)

with ãi, b̃i, i = 3, 4, 5 chosen appropriately. The estimator requires three new

evaluations. We take in particular the scheme3 Emb 4/3 AK p, in which case

ã3 = 0, so that only two new evaluations are required and the overall cost is

taken as 7 evaluations per step.

• RK6(5): the well known 8-stage Verner’s method of order 6(5) (see Table 5.4 in

[20], page 181) that is implemented in the routine DVERK.

• DOP853: the 12-stage embedded Runge–Kutta method of order 8(5) by Dor-

mand & Prince [15] and improved as the routine DOP853 in [20].

Specifically, we consider as a test bench the two-dimensional Kepler problem with

Hamiltonian

H(q, p) = T (p) + V (q) =
1

2
pT p− µ

1

r
. (50)

2The idea to consider estimators using a second composition sharing some of the stages was first

proposed in [22]
3The corresponding coefficients are available at http://www.asc.tuwien.ac.at/˜winfried/splitting
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Here q = (q1, q2), p = (p1, p2), µ = GM , G is the gravitational constant and M is

the sum of the masses of the two bodies. Taking µ = 1 and initial conditions

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e

1− e
, (51)

if 0 ≤ e < 1, then the total energy is H = H0 = −1/2, the solution is periodic with

period 2π, and the trajectory is an ellipse of eccentricity e.
The performance of an embedded Runge–Kuta method depends on the perfor-

mance of the high order method used to propagate the solution, but also on the accu-

racy of the lower order one as well as how the error estimator approaches the true error

of the high order method. Some times the error estimator is much larger than the true

error and the algorithm uses smaller time steps than necessary to reach a given accu-

racy. Some other times, however, this error can be considerably smaller than the true

error (usually due to cancellations because the methods share internal stages) and the

algorithm takes longer time steps than required which lead to undesirable large errors.

In this example we integrate with a constant time step and compute the maximum

true error

E1 = max
n

‖x(tn)− xn‖
and the maximum error estimator

E2 = max
n

‖x̃n − xn‖.

An efficient method should give E2 ∼ E1, while being both as small as possible at a

given computational cost.

The integration is carried out in the time interval t ∈ [0, 20] with a constant time

step, and this integration is repeated for different values of the time step and for several

values of the eccentricity, in particular for e = 1
5 ,

2
5 ,

3
5 ,

4
5 . This is done first for

RK6(5) (or DVERK subroutine) and the composition scheme SS1165.

Figure 1 shows in double logarithmic scale the error E1 (thin lines) and the esti-

mate E2 (thick lines) versus the computational cost measured as the number of force

evaluations. Dashed lines are obtained with RK6(5), whereas solid lines correspond to

SS1165.

We notice from the figure that the composition method is not only more accurate

at the same cost (even for such a short time integration) but also the error estimator is

much closer to the true error. The error estimator of DVERK is very optimistic: E2
is much smaller that E1, especially when the eccentricity takes large values (and thus

adjusting the step size is increasingly relevant). The reason lies in the fact that both xn
and x̃n are computed using very similar procedures, since they share the intermediate

stages. This is not the case for the error estimators proposed here, and thus the error

E2 is reasonably close to the true error of the method, even when the coefficients for

this specific method are not particularly small.

Next the same numerical experiment is carried out again, but this time with DOP853

and the composition scheme SS17853. Figure 2 shows the results obtained.

We observe that, for this example, the symplectic composition method is as effi-

cient as the 8th-order RK method even for such a short time integration. In addition,

our error estimator for the composition method is closer to the true error providing a

better error estimator and as a result allowing to choose more appropriate time steps.
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Figure 1: Methods of order 6(5). Maximum error in positions, E1 (thin lines), and

maximum error estimator, E2 (thick lines), versus the computational cost measured as

the number of force evaluations in double logarithmic scale: (dashed lines) DVERK;

and (solid lines) SS1165.

Next we compare the results achieved by methods of order 4(3) that are valid for

general splitting methods and symmetric-symmetric compositions. This is shown in

Figure 3 for eccentricity e = 1/2 in eq. (51): PRK643 (dashed lines); ePRK543
(dot-dashed lines); and SS543 (solid lines). We observe that the embedded scheme

ePRK543 provides an exceedingly optimistic error estimator as well as a lower per-

formance due to its higher cost per step.

Finally, Figure 4 shows the same results as Figure 3 for the RKN methods of order

4(3) and the composition method-adjoint obtained from the coefficients of the 6-stage

RKN method and the relation (47). It provides the same results for the 4th-order

method, but different outputs for the estimator. Specifically, we collect the results

obtained with S643 (dashed lines), eRKN443 (dot-dashed lines), and RKN 643 (solid

lines). We observe that the scheme eRKN443 provides an optimistic error estimator

as well as a lower performance.
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Figure 2: Methods of order 8(5)(3). Maximum error in positions, E1 (thin lines), and

maximum error estimator, E2 (thick lines), versus the computational cost measured as

the number of force evaluations in double logarithmic scale: (dashed lines) DOP853;

and (solid lines) SS17853.

7 Concluding remarks

In this work we have proposed a procedure to estimate the local error of splitting and

composition methods based on the construction of a second lower order integrator by

linear combinations of the intermediate outputs of the original scheme. The difference

can then be combined with standard strategies of automatic step size control [20] to

use the original splitting and composition methods with adaptive step size along the

integration. In contrast with other approaches, the proposed strategy does not increase

the computational cost of the overall scheme and provides a reliable estimate of the er-

ror, so that it can be safely used in problems where keeping the step size constant is not

of paramount importance, such as it is the case in certain partial differential equations

of evolution. In any event, in that case one should use a very precise discretization in

space to guarantee that the main source of error originates when integrating in time.

We should remark in particular the good properties exhibited by the estimator con-

structed for the 17-stage 8th-order composition scheme (11) with coefficients (25) in
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Figure 3: General methods of order 4(3). Comparison of the true error (thin lines)

and the estimator (thick lines) for e = 1/2 and the following schemes: PRK643
(dashed lines); ePRK543 (dot-dashed lines); and SS543 (solid lines).

comparison with the well known routine DOP853. Taking into account that even more

efficient composition methods involving 19 and 21 stages do exist within this class,

we conclude that these can constitute a worthwhile alternative for integrating prob-

lems when high accuracy is required.

The error estimator proposed here coupled with a variable step size strategy could

be most useful for the application of splitting methods for solving the Schrödinger

eigenvalue problem with the imaginary time propagation technique, in order to reduce

the overall computational cost, as illustrated e.g. in [4].

Although only several representative schemes have been considered, it is clear that

the same strategy can be applied to any other splitting and composition method. In

particular, we can also construct estimators for the high-order methods with complex

coefficients collected in [6] and schemes involving double commutators, such as those

presented in [12, 23, 28], as long as they involve a sufficiently large number of inter-

mediate stages to form the required linear combinations.
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Figure 4: RKN methods of order 4(3). Same as Figure 3 for the following methods:

S643 (dashed lines); eRKN443 (dot-dashed lines); and RKN 643 (solid lines).
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