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Abstract New numerical integrators specifically designed for solving the two-body
gravitational problem with a time-varying mass are presented. They can be seen
as a generalization of commutator-free quasi-Magnus exponential integrators and
are based on the compositions of symplectic flows. As a consequence, in their
implementation they use the mapping that solves the autonomous problem with
averaged masses at intermediate stages. Methods up to order eight are constructed
and shown to be more efficient that other symplectic schemes on numerical exam-
ples.

Keywords Kepler problem · time-dependent mass · symplectic integrators ·
Hamiltonian systems

1 Introduction

The problem of determining the motion of two bodies under their mutual gravita-
tional attraction (the so-called Kepler problem) is one of the most studied dynam-
ical systems in classical mechanics. It not only constitutes a paradigmatic example
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Spain
E-mail: serblaza@imm.upv.es

F. Casas
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of an integrable system [4], but in addition it is also used as one of the first test
bench for illustrating the main features of whatever numerical integration methods
for differential equations are proposed, ranging from classical embedded Runge–
Kutta schemes with adaptive step size, to multistep methods [16]. Moreover, given
all its geometric properties, it has received great attention for checking the recent
class of structure-preserving numerical methods, such as energy-preserving and
symplectic integrators [15,25].

Even in the long-time integration of planetary systems involving several bod-
ies, the Kepler problem plays a fundamental role. This is so because, using an
appropriate set of coordinates (e.g., heliocentric or Jacobi coordinates [17]), the
equations of motion can be shown to derive from a Hamiltonian function of the
form

H(q, p) = HK(q, p) + εHI(q, p), (1)

where HK corresponds to the Keplerian motion of each planet, HI is a (small)
perturbation given by the interaction between the planets, and ε denotes a small
parameter. An early reference in this respect is [27], where a symmetric second
order symplectic scheme was successfully used to study the chaotic behaviour of the
Solar System. Since then, many other highly efficient symplectic integrators have
been designed taking into account this near-integrable structure of the problem
(see, e.g [8,13,18,20] and references therein).

All these schemes require, at each intermediate stage, solving one or several
times a transcendental equation to determine with great accuracy the position
in phase space of each body subjected to the Hamiltonian HK . This is done in
practice by numerical iteration as follows. If we write the Hamiltonian function
describing the Kepler problem as

H(q, p) =
1

2
pT p− µ1

r
, (2)

where µ = GM , G is the gravitational constant, M is the reduced mass and
q, p ∈ R3, r = ‖q‖ =

√
qT q, the map advancing the solution in time from t0

to t can be expressed as

(q(t), p(t)) ≡ Φ(q0, p0; t, µ) = (f q0 + g p0, fp q0 + gp p0) (3)

in terms of functions f, fp, g, gp that are determined through (see, e.g. [6,11])

r0 = r(t0) = ‖q0‖; u = qT0 p0; E =
1

2
pT0 p0 − µ

1

r0
; a = − µ

2E
; w =

√
µ

a3
;

σ = 1− r0
a

; ψ =
u

wa2
; wt = x− σ sinx+ ψ(1− cosx) (4)

f = 1 +
(cosx− 1)a

r0
, g = t+

sinx− x
w

,

fp = − aw sinx

r0(1− σ cosx+ ψ sinx)
, gp = 1 +

cosx− 1

1− σ cosx+ ψ sinx
,

where x is evaluated by numerical iteration. As a matter of fact, this can be done
very efficiently with only 2-5 iterations, depending on the time step and the values
of q0, p0, to reach round off accuracy.

There are other astronomical problems that can be also modeled as (5), but, as
they frequently involve some loss of mass, the corresponding Hamiltonian system
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depends explicitly on time. Examples are the evolution of planetary systems with
time-dependent stellar loss of mass [2], evolution of exoplanets around binary star
systems [23] with stellar mass loss [26], and the two-body problem with varying
mass [12,24], among others [19]. The Hamilton systems to be solved are still near
integrable, but non-autonomous

H̃(t, q, p) = HK(t, q, p) + εHI(t, q, p), (5)

where now HK corresponds to the Keplerian motion of each planet (with time-
dependent mass). If one takes t as a new coordinate, say qt = t, and its associated
momentum, pt, the equations obtained from the autonomous Hamiltonian

K(qt, q, pt, p) ≡ (HK(qt, q, p) + pt) + εHI(qt, q, p) (6)

have the same solution for q, p, as the original non-autonomous problem. In those
situations one has to solve in an accurate and efficient way the dynamics of the
Hamiltonian HK(t, q, p) or, equivalently, each of the independent Hamiltonians,
i.e.

H(t, q, p) ≡ T + V (t) =
1

2
pT p− µ(t)

1

r
, (7)

where now µ(t) is a time-dependent function, and the perturbed part εHI(t, q, p)
has to be solved with the time frozen since this part does not depend on pt. Then,
splitting symplectic integrators for near-integrable problems can be used. The
natural question arising here is whether the procedure (3-4) can be conveniently
adapted to deal with this problem. In this work we show that this is actually the
case and present several numerical algorithms with different orders of accuracy
that use the map Φ in (3) with properly averaged values of the time-dependent
mass µ(t) that are more efficient than other numerical integrators in short- and
long-time integrations. The new algorithms can be seen as a specially tuned class
of schemes called commutator-free quasi-Magnus (CFQM) exponential integrators,
originally intended for linear non-autonomous problems [3,9,10]. They are based
on compositions of the symplectic flows corresponding to certain linear combina-
tions of the time-dependent Hamiltonian (7) evaluated at appropriately chosen
times. For illustration, the map

(q0, p0) = (q(t0), p(t0)) 7−→ (q1, p1)

given by the composition

(q1/2, p1/2) = Φ(q0, p0;
h

2
, µ̂1), µ̂1 = a1µ(c1h) + a2µ(c2h),

(q1, p1) = Φ(q1/2, p1/2;
h

2
, µ̂2), µ̂2 = a2µ(c1h) + a1µ(c2h),

(8)

where c1 = 1
2 −

√
3
6 , c2 = 1

2 +
√
3
6 , a1 = 1

2 +
√
3
3 , a2 = 1

2 −
√
3
3 , provides a 4th-order

approximation to the exact solution of (7) at time t1 = t0 + h, in the sense that

(q1, p1) = (q(t1), p(t1)) +O(h5).

In the following, we show how the scheme (8) is obtained and also construct
similar approximations of higher orders. Then, we illustrate the advantages of the
new procedures in comparison to other numerical algorithms on some examples.
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2 Construction of the schemes

2.1 Hamiltonian vector fields and Poisson brackets

The derivation process of the new schemes can be carried out in a suitable way by
introducing the formalism of Lie derivatives and Lie transformations [1,4]. Thus,
starting from the equations of motion for the autonomous case (2)

q̇ = p, ṗ = −µ q
r3
, (9)

and the corresponding Hamiltonian vector XH = (∇pH,−∇qH)T , one introduces
the Lie derivative LXH , whose action on a differentiable function G(q, p) is

LXHG = (J∇xH)T∇xG = −(∇xH)T J∇xG = −{H,G} = {G,H}. (10)

Here x = (q, p)T , J is the basic canonical symplectic matrix

J =

(
0 I

−I 0

)
and {H,G} denotes the Poisson bracket of the two scalar functions H(q, p) and
G(q, p),

{G,H} =
∑
i

(
∂G

∂qi

∂H

∂pi
− ∂G

∂pi

∂H

∂qi

)
,

so that, in terms of the Poisson bracket, equations (9) can be written simply as

ẋi = {xi, H}. (11)

In case G is a vector function, LXH in (10) acts on any of its components.
If ϕt denotes the flow corresponding to (9), for each infinitely differentiable

map G, the Taylor series of G(ϕt(x0)) at t = t0 is given by

G(ϕt(x0)) =
∑
k≥0

(t− t0)k

k!
(LkXHG)(x0) ≡ exp((t− t0)LXH )[G](x0), (12)

where exp(tLXH ) is the so-called Lie transformation. If we introduce the operator
Θt acting on differentiable functions as G(ϕt(x)) = Θt[G](x), then we can write

G(ϕt(x)) = Θt[G](x) = exp((t− t0)LXH )[G](x),

so that the solution of (9) is obtained by replacing G(x) in (12) by the identity
map Id(x) = x:

ϕt(x0) =
∑
k≥0

(t− t0)k

k!
(LkXH Id)(x0) = exp((t− t0)LXH )[Id](x0).

Lie transformations obey the following important property for any pair of arbi-

trary vector fields. Given the flows ϕ
[1]
t1

and ϕ
[2]
t2

corresponding to the differential

equations ẋ = f [1](x) and ẋ = f [2](x), respectively, then(
ϕ
[2]
t2
◦ ϕ[1]

t1

)
(x0) = exp(t1Lf [1]) exp(t2Lf [2])[Id](x0).
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Notice where the indices 1 and 2 appear depending on whether one is dealing with
maps or with exponentials of operators. This relation generalizes by induction to
any number of flows [15].

In the non-autonomous problem one can still formally write the operator Θt
associated with the exact flow as the Lie transformation corresponding to an un-
known function Ω(t, t0),

ϕt(x0) = Θt[Id](x0) = exp(LXΩ(t,t0)
)[Id](x0), (13)

which can be approximated for sufficiently small time intervals [t0, t] by truncating
the corresponding Magnus expansion [5,22]. This is done by the infinite series

Ω(t, t0) =
∞∑
m=1

Ωm(t, t0) (14)

which involves multiple integrals of nested Poisson brackets:

Ω1(t, t0) =

∫ t

t0

H(s, q0, p0)ds

Ω2(t, t0) = −1

2

∫ t

t0

ds1

∫ s1

t0

ds2 {H(s1, q0, p0), H(s2, q0, p0)}.

Recursive procedures to generate the terms in the Magnus series are found e.g. in
[7].

2.2 Derivation of the new methods

The methods we propose for approximating the operator Θt up to order r in

the general non-autonomous case (7) have the form x1 = Ψ
[r]
J [Id]x0 for the step

x0 7−→ x1, with

Ψ
[r]
J = exp(B̂1(h)) exp(B̂2(h)) · · · exp(B̂J (h)) (15)

and

B̂j(h) ≡ LXBj , Bj = h

s∑
k=1

ajkHk(h), j = 1, . . . , J

Hk(h) = H(t0 + ckh), ck ∈ [0, 1] k = 1, . . . s

x1 = x(t1) +O(hr+1).

(16)

Alternatively, in terms of maps, the approximation reads

x1 =
(
ϕ
[J]
h ◦ ϕ

[J−1]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ
[1]
h

)
(x0), (17)

where ϕ
[j]
h denotes the flow corresponding to the Lie transformation exp(B̂j(h)).

Eventually, in the setting of the non-autonomous Kepler problem, the particu-
larly simple algebraic structure of the problem will allow us to include additional
Poisson brackets in the linear combinations Bj to reduce the number of flows. In
this way, the computational cost is reduced and the overall efficiency is improved.
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Note that, by construction, these schemes preserve the symplectic character of the
exact flow.

The requirement that the scheme (15) provides an approximation to the exact
solution up to a given order r implies that the coefficients ajk, ck have to satisfy
a certain number of conditions. These can be derived by reproducing the exact
solution provided by the Magnus expansion (13) with (15) up to order r.

For simplicity in the presentation, we take t0 = 0 and the Gauss-Legendre
quadrature rule, ci, i = 1, . . . , s of order 2s, although the schemes can be easily
adapted to any other quadrature rule. Then, Theorem 2.1 in [5] applied to a non-
autonomous Hamiltonian system (11) leads to the following

Theorem 1 If ci, i = 1, . . . , s are the s nodes of the Gauss–Legendre quadrature rule

of order 2s, Li(t) denotes the Lagrange polynomial

Li(t) =
s∏

j=1,j 6=i

t− cj
ci − cj

, t ∈ [0, 1],

and x(h) is the exact solution of (11) at t = t0 +h, then the solution of the differential

equation

ẏi = {yi, H̃(2s)(t, y, h)}, y(0) = x0, (18)

with

H̃(2s)(t, y, h) =
s∑
i=1

Li
(
t

h

)
H(cih, y) (19)

verifies ‖x(h)− y(h)‖ = O(h2s+1).

Since H̃(2s)(t, y, h) is a polynomial in t of degree s−1, we can compute analytically
all the terms in the Magnus expansion corresponding to the initial value problem
(18) and get an approximation to the exact solution x(h) of (11) up to a given
order r by computing the first terms of the series (14).

Specifically, for the the non-autonomous Kepler problem one has

H̃(2s)(t, y, h) =
1

2
pT p− µ(2s)(t, h)

1

r
,

where µ(2s)(t, h) is the interpolating polynomial of µ(t) in the interval t ∈ [0, h]. If
a Taylor expansion of H̃(2s) around h

2 is considered, then

H̃(2s)(t, y, h) = H̃(2s)

(
h

2
+ τ, y, h

)
=

1

h

s∑
i=1

(
τ

h

)i−1

αi, τ ∈
[
−h

2
,
h

2

]
,

αi = hi
1

(i− 1)!

∂i−1

∂τ i−1

∣∣∣∣
τ=0

H̃(2s)

(
h

2
+ τ, y, h

)
.

Here αi(y), i = 1, . . . , s, are linear combinations of Hj = H(cjh, y), j = 1, . . . , s,
and αi(y) = O(hi), αi(y)αj(y) = O(hi+j), etc. Now, the corresponding truncation
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of the Magnus series (14) up to order h2s, Ω̃[2s] = Ω+O(h2s+1), with 2s = 2, 4, 6, 8
gives

Ω̃[2] = α1

Ω̃[4] = α1 +
1

12
{12} (20)

Ω̃[6] = α1 +
1

12
α3 +

1

12
{12} − 1

240
{23}+

1

360
{113} − 1

240
{212} − 1

720
{1112}

Ω̃[8] = α1 +
1

12
α3 +

1

12
{12} − 1

240
{23}+

1

360
{113} − 1

240
{212} − 1

720
{1112}

+
1

80
{14}+

1

1344
{34} − 1

2240
{124}+

1

6720
{223}+

1

6048
{313} − 1

840
{412}

− 1

6720
{1114}+

1

7560
{1123} − 1

4032
{1312} − 11

60480
{2113}+

1

6720
{2212}

− 1

15120
{11113} − 1

30240
{11212}+

1

7560
{21112}+

1

30240
{111112}

where {ij . . . k`} represents the nested Poisson bracket {αi, {αj , {. . . , {αk, α`} . . .}}}.
Since Ω̃[2] = α1 = hH(h2 ), then

Ψ
[2]
1 = exp(B̂(h)), with B = hH(h/2),

agrees with the operator Θh up to order O(h2). In terms of the map Φ, the scheme
is nothing but the well known 2nd-order midpoint rule

x1 = ϕ
[2]
h (x0) = Φ(x0;h, µ(h/2)). (21)

We next apply the same strategy to construct higher order approximations.

Order four. The quadrature rule with s = 2 has nodes and weigths

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
, w1 = w2 =

1

2
,

respectively, and the interpolating polynomial reads

H̃(4)(
h

2
+ τ, y, h) =

1

2
(H1 +H2) + τ

√
3

h
(H2 −H1) =

1

h
α1 +

τ

h2
α2

with Hi ≡ H(cih, y). Now the Lie transformation associated with Ω̃[4] (and there-
fore the exact flow) can be correctly reproduced up to order O(h4) by

Ψ
[4]
2 = exp

(
1

2
α̂1 −

1

6
α̂2

)
exp

(
1

2
α̂1 +

1

6
α̂2

)
.

Here and in the sequel, for simplicity, we denote by α̂i the Lie derivative associated
with the vector field corresponding to αi, i.e., α̂i = LXαi . Finally, expressing α1,
α2 in terms of the evaluations H1, H2 results in

Ψ
[4]
2 = exp(B̂1(h)) exp(B̂2(h)) = exp(ha11Ĥ1 + ha12Ĥ2) exp(ha21Ĥ1 + ha22Ĥ2)

a = (aij) =

(
1
4 +

√
3
6

1
4 −

√
3
6

1
4 −

√
3
6

1
4 +

√
3
6

)
(22)
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or, in a more compact way

Ψ
[4]
2 = exp

(
h

2
(T̂ + V̄1)

)
exp

(
h

2
(T̂ + V̄2)

)
,

where

V̄1 ≡ 2(a11V̂1 + a12V̂2), V̄2 ≡ 2(a21V̂1 + a22V̂2).

The map corresponding to this operator is precisely the scheme given in (8).

Order six. In this case one has to use the nodes and weights of the sixth-order
Gauss–Legendre quadrature,

c1 =
1

2
−
√

15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10

w1 =
5

18
, w2 =

4

9
, w3 = w1.

Then
α1 = hH2 = h(T + V2),

α2 =

√
15h

3
(H3 −H1) =

√
15h

3
(V3 − V1)

α3 =
10h

3
(H3 − 2H2 +H1) =

10h

3
(V3 − 2V2 + V1)

or, equivalently,

α1 = h

(
T − µ̃1

1

r

)
, αi = −hµ̃i

1

r
, i > 1

with

µ̃1 = µ2, µ̃2 =

√
15

3
(µ3 − µ1), µ̃3 =

10

3
(µ3 − 2µ2 + µ1),

and µi = µ(cih).
Notice that, since only α1 depends on momenta (through T ), then {α2, α3} = 0,

and thus the number of conditions required to approximate exp(LX
Ω̃[6]

) is six
instead of seven. Moreover, a simple calculation shows that

h3V
(m)
ij ≡

{
αi, {α1, αj}

}
= −h3µ̃iµ̃j

1

r4
, i, j > 1. (23)

As already illustrated by the previous 4th-order approximation, a linear combina-
tion of αi, i = 1, 2, . . ., gives rise to a Hamiltonian function which corresponds to
a scaled autonomous Kepler problem with a modified (but constant) mass µ̃, i.e.,

F =
∑
i

xi αi = x1h

(
1

2
pT p− µ̃1

r

)
with x1 6= 0, whose exact flow can be determined with the map Φ given in (3). On
the other hand, and according with (23), the flow of

G =
∑
i>1

xiαi + b
{
αi, {α1, αj}

}
= −hµ̃1

r
− h3bµ̃iµ̃j

1

r4
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can also be trivially obtained, since it only depends on coordinates. In consequence,
we propose the following composition

Ψ
[6]
2 = exp (−x1α̂2 + x2α̂3 + x3 [α̂2, α̂1, α̂2]) exp (x4α̂1 − x5α̂2 + x6α̂3)

× exp (x4α̂1 + x5α̂2 + x6α̂3) exp (x1α̂2 + x2α̂3 + x3 [α̂2, α̂1, α̂2]) (24)

to approximate exp(LX
Ω̃[6]

) up to order 6. Here [α̂2, α̂1, α̂2] ≡ [α̂2, [α̂1, α̂2]] is the Lie
bracket corresponding to the Hamiltonian vector field of the function {α1, α2, α1}.

It turns out that there is only one solution for the coefficients xi, namely

x1 =
1

60
, x2 =

1

60
, x3 =

1

43200
, x4 =

1

2
, x5 =

2

15
, x6 =

1

40
.

In consequence, the scheme can be expressed in a compact way as

Ψ
[6]
2 = exp

(
h(V̄1 + h2V̂

(m)
22 )

)
exp

(
a2h(T̂ +

1

a2
V̄2)

)
exp

(
a3h(T̂ +

1

a3
V̄3)

)
× exp

(
h(V̄4 + h2V̂

(m)
22 )

)
, (25)

with

V̂
(m)
22 = −x3

5

3
(µ3 − µ1)2

1

r4
,

V̄i =
3∑
j=1

aij V̂j , (a)ij =


10+
√
15

180 −1
9

10−
√
15

180
15+8

√
15

190
1
3

15−8
√
15

180

a23 a22 a21
a13 a12 a11

 (26)

and

a2 =
3∑
j=1

a2j =
1

2
, a3 =

3∑
j=1

a3j =
1

2
.

The step (qn, pn) 7→ (qn+1, pn+1) with this scheme can be obtained with Algorithm
1. It requires basically the same computational effort as the 4th-order method
(8),(22), since the evaluation of r in the last map, r = ‖Q2‖, can be reused in
the first map in the next step as well as in the next map Φ. Accordingly, the
computational cost of evaluating the first and fourth flows in (25) can be neglected.

Order eight. The same strategy can be applied to construct 8th-order methods.
Thus, for the Gauss–Legendre quadrature with nodes and weights

c1 =
1

2
− v1, c2 =

1

2
− v2, c3 =

1

2
+ v2, c4 =

1

2
+ v1

w1 =
1

4

(
1− 1

3

√
5

6

)
, w2 =

1

4

(
1 +

1

3

√
5

6

)
, w3 = w2, w4 = w1,

where

v1 =
1

2

√
3 + 2

√
6/5

7
, v2 =

1

2

√
3− 2

√
6/5

7
,
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Algorithm 1: Sixth-order method Ψ
[6]
2 for the time step tn 7→ tn+1 = tn+h

1 c1 = 1
2
−
√
15

10
; c2 = 1

2
; c3 = 1

2
+
√
15

10
;

2 µi = µ(tn + cih), i = 1, 2, 3;
3 (a)ij from (26);

4 a2 =
∑3

i=1 a2i; a3 =
∑3

i=1 a3i
5 Mi =

∑3
j=1 aijµj , i = 1, 2, 3, 4;

6 Q0 = qn, P̂0 = pn;
7 r = ‖Q0‖;
8 P0 = P̂0 − hM1

Q0
r3
− h3 1

6480
(µ3 − µ1)2 Q0

r6
;

9 (Q1, P1) = Φ(Q0, P0, a2h,M2/a2);
10 (Q2, P2) = Φ(Q1, P1, a3h,M3/a3);
11 r = ‖Q2‖
12 P̂2 = P2 − hM4

Q2
r3
− h3 1

6480
(µ3 − µ1)2 Q2

r6
;

13 qn+1 = Q2, pn+1 = P̂2.

one can express the functions αi in terms of T and the potential V evaluated at
the nodes. Then one arrives at

α1 = h

(
T − µ̃1

1

r

)
; αi = −hµ̃i

1

r
, i = 2, 3, 4

in terms of the scalars

µ̃i =
4∑
j=1

Di,j µ(tn + cjh), i = 1, . . . , 4

and

D =


3
4 (3− 20v21)w1

3
4 (3− 20v22)w2 D1,2 D1,1

−15v1(5− 28v21)w1 −15v2(5− 28v22)w2 −D2,2 −D2,1

15(12v21 − 1)w1 15(12v22 − 1)w2 D3,2 D3,1

140v1(3− 20v21)w1 140v2(3− 20v22)w2 −D4,2 −D4,1

 . (27)

In approximating exp(LX
Ω̃[8]

), we have to take into account that, in addition
to {α2, α3}, the following Poisson brackets

{34}, {124}, {223}, {1123}, {2212}

also vanish, and that the exact flow determined by Hamiltonian functions V
(m)
ij ,

i, j > 1, in (23) can also be incorporated into the scheme.

We have analyzed several time-symmetric compositions with enough parame-
ters to satisfy the 16 conditions required to achieve order 8 with a reduced number
of exponentials associated to the Kepler map, since this is the most expensive part.
It turns out that at least five maps for the scaled autonomous Kepler problem are
then necessary.
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The following composition is first considered

Ψ
[8]
5a = exp(x12α̂2 + x13α̂3 + x14α̂4 + y1[212] + y2[313]− y3[213])

× exp(x21α̂1 + x22α̂2 + x23α̂3 + x24α̂4)

× exp(x31α̂1 + x32α̂2 + x33α̂3 + x34α̂4)

× exp(x41α̂1 + x42α̂2 + x43α̂3 + x44α̂4)

× exp(x51α̂1 + x52α̂2 + x53α̂3 + x54α̂4)

× exp(x61α̂1 + x62α̂2 + x63α̂3 + x64α̂4)

× exp(x72α̂2 + x73α̂3 + x74α̂4 + y1[212] + y2[313] + y3[213])

(28)

with
x8−i,j = (−1)j+1xi,j , i = 1, 2, . . . , 7, j = 1, 2, 3, 4

so that x42 = x44 = 0. Here, for simplicity, we denote [212] ≡ [α̂2, [α̂1, α̂2]], etc.
This time-symmetric composition has 16 parameters, and thus we only obtain
isolated solutions. Among the existing four real-valued solutions, we have found
that the best performance corresponds to

x12 = −0.00555568980262764452,

x13 = 0.00555568980262764452,

x14 = −1/240,

x21 = 0.68950541744223940910,

x22 = −0.25026363219104445815,

x23 = 0.08554863426356533930,

x24 = −0.02681405328515645869,

x31 = −0.37954073447150980080,

x32 = −0.13614187654421823422,

x33 = −0.15090176939685028822,

x34 = −0.01455946006743838627,

x41 = 0.38007063405854078339,

x43 = 0.20292822399464794213,

y1 = 1.10312311627353636882 · 10−6,

y2 = 1.10312311627353636882 · 10−6,

y3 = 2.20624623254707273764 · 10−6.

(29)

Algorithm 2 shows how to advance one step using this scheme.

Algorithm 2: Eighth-order method Ψ
[8]
5a for one step tn 7→ tn+1 = tn + h

1 ci, µi = µ(tn + cih), i = 1, 2, 3, 4;

2 (a)ij =
∑4

k=1 xikDkj , i = 1, 2, . . . , 7, j = 1, 2, 3, 4;

3 ai =
∑4

j=1 aij , i = 2, 3, 4, 5, 6

4 Mi =
∑4

j=1 aijµj , i = 1, 2, . . . , 7;

5 µ̃i =
∑4

j=1Dijµj , i = 1, 2, 3;

6 Q0 = qn, P̂0 = pn;
7 r = ‖Q0‖;
8 P0 = P̂0 − hM1

Q0
r3
− h3

(
y1µ̃22 + y2µ̃23 − y3µ̃2µ̃3

) Q0
r6

;

9 for i = 1 : 5
10 (Qi, Pi) = Φ(Qi−1, Pi−1, ai+1h,Mi+1/ai+1);
11 end
12 r = ‖Q5‖
13 P̂5 = P5 − hM7

Q5
r3
− h3

(
y1µ̃22 + y2µ̃23 + y3µ̃2µ̃3

) Q5
r6

;

14 qn+1 = Q5, pn+1 = P̂5.
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We have analyzed other compositions with additional exponentials and free
parameters that do not increase the overall computational cost. Thus, in particular,
the following scheme only contains 5 exponentials involving α̂1 (corresponding to
5 Kepler maps):

Ψ
[8]
5b = exp(x11α̂1 + x12α̂2 + x13α̂3 + x14α̂4)

× exp(x22α̂2 + x23α̂3 + x24α̂4 + y1[212] + y2[313]− y3[213])

× exp(x31α̂1 + x32α̂2 + x33α̂3 + x34α̂4)

× exp(x42α̂2 + x43α̂3 + x44α̂4)

× exp(x51α̂1 + x52α̂2 + x53α̂3 + x54α̂4)

× exp(x62α̂2 + x63α̂3 + x64α̂4)

× exp(x71α̂1 + x72α̂2 + x73α̂3 + x74α̂4)

× exp(x82α̂2 + x83α̂3 + x84α̂4 + y1[212] + y2[313] + y3[213])

× exp(x91α̂1 + x92α̂2 + x93α̂3 + x94α̂4)

(30)

with
x10−i,j = (−1)j+1xi,j , i = 1, 2, . . . , 9, j = 1, 2, 3, 4

so that x52 = x54 = 0. This time-symmetric composition has 19 variables and
thus one can choose three of them as free parameters (in particular, x42, x43 and
x44). We have observed in practice that the performance of the resulting methods
obtained according with different criteria depends on the particular problem to be
solved. For example, if we take x42 = x43 = x44 = 0, there are 4 real solutions,
and the best results correspond to

x11 = 0.67021911442375565293,

x12 = −0.30489450012840577813,

x13 = 0.13733972152246686489,

x14 = −0.06188986232513868655,

x22 = 0.01866599192742999253,

x23 = 0.00635461723145621044,

x24 = 0.00277508795607386825,

x31 = −0.51091155800763200004,

x32 = 0.13826011537357010705,

x33 = −0.11767798784238284723,

x34 = 0.05194266855738371205,

x51 = 0.68138488716775269420,

x53 = 0.03130063151025287711,

y1 = −0.00041667449766856421,

y2 = −0.00004829181912427352,

y3 = 0.00028370385598442495.

(31)

Alternatively, if in the composition (28) we take x31 = x51 = 0 the cost of the
scheme is reduced from 5 to 3 maps, but we end up with only 15 parameters to
solve the 16 order conditions. The composition is given by

Ψ
[6opt]
3 = exp(x12α̂2 + x13α̂3 + x14α̂4 + y1[212] + y2[313]− y3[213])

× exp(x21α̂1 + x22α̂2 + x23α̂3 + x24̂̂α4)

× exp(x32α̂2 + x33α̂3 + x34α̂4)

× exp(x41α̂1 + x43α̂3)

× exp(x52α̂2 + x53α̂3 + x54α̂4)

× exp(x61α̂1 + x62α̂2 + x63α̂3 + x64α̂4)

× exp(x72α̂2 + x73α̂3 + x74α̂4 + y1[212] + y2[313] + y3[213]).

(32)
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With this, obviously, not all 8th-order conditions can be satisfied. We have con-
sidered two possibilities: either we discard the equation corresponding to [111112]
or [21112]. The second choice provided a more efficient scheme where the best set
of coefficients verifying all order conditions except the one coming from [21112] is

x12 = −0.00875272911675017931,

x13 = 0.00532392866235813492,

x14 = −0.00445041428955796499,

x21 = 0.76802328276815076614,

x22 = −0.23974038157306672058,

x23 = 0.09600754885409189252,

x24 = −0.02619347453596043617,

x32 = 0.03538203344774120138,

x33 = 0.00703376000453473661,

x34 = 0.00368122771707276869,

x41 = −0.53604656553630153228,

x43 = −0.13339714170863619479,

y1 = 0.00002265286150964850,

y2 = 0.00008645533641299756,

y3 = −0.00005034876640314789.

(33)

This scheme can be considered as an optimized sixth-order method that uses an
8th-order quadrature rule and satisfies many order conditions at order 8.

3 Numerical illustrations

3.1 Other symplectic integrators to compare

It is worth comparing the mentioned time-symmetric symplectic integration algo-
rithms specifically designed for the non-autonomous Kepler problem with other
well established symplectic schemes such as splitting and composition methods.
It is not our purpose here to provide a full treatment of this class of methods,
but just to indicate how they can be applied to the particular problem we are
considering here. For further details, we refer e.g. to [5,6,15,21].

As indicated in the introduction, if one takes t as a new coordinate, say qt = t,
and its associated momentum, pt, the equations obtained from the autonomous
Hamiltonian

K(qt, q, pt, p) ≡ K1 +K2 =

(
1

2
pT p− µ(qt)

1

r

)
+ pt (34)

have the same solution for q, p, as the original non-autonomous problem. Since
the Hamiltonian K1 = 1

2p
T p − µ(qt)

1
r can be considered as one describing an

autonomous Kepler problem (qt does not change), and the dynamics of K2 = pt is
trivial (it only advances qt, that is, time), we can use splitting methods defined by
a set of coefficients {ai, bi}mi=1 for the numerical integration of (34). This results in
the following algorithm for advancing from (qn, pn) to (qn+1, pn+1):

Q0 = qn, P0 = pn
(Q1, P1) = Φ(Q0, P0, b1h, µ1)

...
(Qm, Pm) = Φ(Qm−1, Pm−1, bmh, µm)

qn+1 = Qm, pn+1 = Pm,

(35)
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where µi = µ(tn + dih) and di =
∑i
j=1 aj .

On the other hand, we can use the 2nd-order midpoint rule (21) as a basic
integrator of m-stage symmetric composition methods of order r [6,15,21],

SS
[r]
m ≡ ϕ

[2]
αmh

◦ · · · ◦ ϕ[2]
α2h
◦ ϕ[2]

α1h
(36)

with αm+1−i = αi. It turns out that the same algorithm (35) can be applied to
implement the scheme (36) with

α0 = 0; bi = αi, ai =
1

2
(αi−1 + αi), i = 1, . . . ,m.

Methods of orders r = 4, 6, 8 and 10 involving up to m = 35 basic integrators ϕ
[2]
αih

have been obtained in the literature (see [15] and references therein).
Splitting and composition methods of order higher than two necessarily involve

some negative coefficients, and therefore a backward integration in time at some
inner stages. If, in the specific problem we are considering, µ(t) is a decreasing
function, this represents a non-physical effect of an increment of the mass.

Commutator-free exponential integrators, originally proposed for the numerical
integration of linear problems [3,9,10], can also be adapted to the nonlinear setting,
eventually resulting in schemes of the form (15). Time-symmetric methods of order
four with J = 2, 3, of order six with J = 5, 6, and of order eight with J = 11 can be
found in [3]. We should notice that, whereas scheme (22) belongs to this class, this
is not the case of the new integrators of order 6 and 8, which have been specifically
designed taking into account the special structure of the non-autonomous Kepler
problem.

3.2 A pair of numerical examples

Next we compare the performance of the methods proposed in this work with
some of the schemes mentioned before. Specifically, we consider m-stage symmetric
compositions of order r of the form

SS
[r]
m ≡ ϕ

[2]
α1h
◦ ϕ[2]

α2h
◦ · · · ◦ ϕ[2]

αkh
◦ ϕ[2]

αk+1h
◦ ϕ[2]

αkh
◦ · · · ◦ ϕ[2]

α2h
◦ ϕ[2]

α1h

with the midpoint rule (21) as basic integrator ϕ
[2]
h and m = 2k+ 1. In particular,

we take

– SS
[4]
5 : the 5-stage fourth-order Suzuki composition,

– SS
[6]
9 : the 9-stage sixth-order composition,

– SS
[8]
17 : the 17-stage eighth-order composition,

whose coefficients can be found e.g. in [15].
Within the class of commutator-free (quasi-)Magnus exponential integrators,

we select, in addition to CF
[4]
2 given by (8), the following schemes presented in [3]:

– CF
[4opt]
3 : the 3-stage optimized fourth-order composition,

– CF
[6]
5 : the 5-stage optimized sixth-order composition,

– CF
[8]
11 : the 11-stage eighth-order composition.
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In all cases, the computational cost is counted as the number of evaluations of the
map Φ. Finally, for the sake of completeness, we also compare with a pair of ODE
solvers provided by Matlab, namely

– RK[4(5)]: ode45 Runge–Kutta solver, based on the embedded Dormand–Prince
4(5) pair.

– AB[13]: variable-step and variable-order ode113 Adams–Bashforth–Moulton
solver, designed to be more efficient than ode45 at problems with stringent
error tolerances.

In this last case it is less obvious how to estimate the computational cost in
comparison with the previous algorithms. We have counted the number of times
the solver calls to the vector field. However, to take into account the relative cost
with respect to the cost of the map Φ, one should know the computational cost
for estimating the local and global errors and to change either the time step or
the order of the method as well as the cost of evaluating the mass µ(t) (for some
problems this could be the most costly part, depending on the model used). For
these reasons we have decided to count two evaluations of the vector field (and
the cost to change the order and/or time step) as the cost to evaluate one map Φ.
Obviously, different choices for the relative cost would result in a (small) shift of
the corresponding curves, although the overall conclusions remain valid.

Example 1. We illustrate the performance of the new schemes on the classical
Eddington–Jeans law for the secular evolution of mass in binary systems [14],

µ̇ = −γµδ, µ(0) = µ0

or, equivalently

µ(t) =
(
µ1−δ0 + γ(δ − 1)t

) 1
1−δ

.

Note that, for non-integer values of δ, the computational cost of evaluating µ(t)
cannot be neglected. We consider the 2-dimensional case with δ = 1.4, µ0 = 1,
γ = 10−2, initial conditions

q0 = (1− e, 0), p0 = (0,
√

(1 + e)/(1− e),

with e = 0.2 and e = 0.8 and final time tf = 20. We compute the solution at the
final time, (q(tf ), p(tf )), numerically to high precision and plot the two-norm error
of (q, p) at the final time versus the computational cost (measured as the number
of times the Kepler map φ is called) for different choices of the time step.

Fig. 1 shows the results obtained for methods of each order: 4th-order in the
top, 6th-order in the second, 8th-order in the third row. The graphs for the smaller
value of the eccentricity are given in the left column. The best method of each
order, along with the classic reference methods, ode45 and ode113 of Matlab, are
summarized in the last row.

From the graphs we conclude that the symplectic methods have better general
performance than the classical adaptive methods. Moreover, the adaptation of
methods by the inclusion of cheap Poisson brackets leads to a notable performance
gain compared to the general-purpose CF methods.

Among the new schemes and for this type of problems, Ψ
[6]
2 is the method

of choice for low and medium accuracies, while Ψ
[8]
5b should be chosen for high

accuracies.



16 Philipp Bader et al.

e = 0.2 e = 0.8

Fig. 1: Efficiency plots for Example 1 (the smaller value of e on the left). First line – 4th order
methods, second line – 6th order methods, third line – 8th order methods. The bottom line
summarizes the best methods of each order and the classical reference methods.



Symplectic propagators for the Kepler problem with time-dependent mass 17

Example 2. As a second illustration we consider the 2-dimensional case with a
decreasing function given by

µ(t) = 1 + exp

(
−1

5
(t+

1

4
sin2(4t))

)
, (37)

and the same initial conditions as in the previous example for the time interval,
t ∈ [0, 20].

Fig. 2 supports the results of Ex. 1. In this case, with a faster decaying mass, the
symplectic methods perform better than the classical methods. The main change

we see is that in this example the difference between the 6th-order methods, Ψ
[6]
2

and Ψ
[6opt]
3 , is more notable, depending on the value of e. In addition, the second

8th-order methods is marginally better in this problem.

4 Conclusions

In this work we have considered the numerical integration of the two-body gravi-
tational problem with a time-varying mass. The exact flow corresponds to a sym-
plectic transformation, and different symplectic integrators from the literature can
be adapted to solve the non-autonomous systems. However, none of these sym-
plectic methods were designed to solve Hamiltonian systems with this particular
structure. This is a relevant problem and new specifically designed symplectic inte-
grators have been built. These new schemes can be seen as a generalization of the
commutator-free quasi-Magnus exponential integrators and are based on composi-
tions of symplectic flows corresponding to linear combinations of the Hamiltonian
function and certain Poisson brackets. The implementation makes use of the map-
ping that solves the autonomous problem for averaged masses at each intermediate
stage. In the autonomous case the schemes provide the exact solution, so they also
show a high performance in the adiabatic limit.

We have built time-symmetric methods of order four, six and eight that can
be used with any quadrature rule of the order of the method or higher. Some of
the proposed methods are optimized using a quadrature rule of higher order than
the order of the method as well as by adding free parameters into the scheme in
order to satisfy certain order conditions at higher orders.

Since the proposed methods provide the exact solution in the limit when the
mass is constant, it is clear that the performance of the algorithm will improve
if a time step control is used. For instance, one could take into account the time
derivative of the mass in applications that involve very slowly varying mass.

The new methods have shown to be more efficient that other symplectic schemes
to all desired accuracies on several numerical examples.
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e = 0.2 e = 0.8

Fig. 2: The same as Fig. 1 for Example 2.
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