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Characterisation of the consistent completion of AHP

comparison matrices using graph theory

J. Beńıtez∗, S. Carpitella†, A. Certa‡, J. Izquierdo§

Abstract

Decision-making is frequently affected by uncertainty and/or incomplete information,
which turn decision-making into a complex task. It is often the case that some of the ac-
tors involved in decision-making are not sufficiently familiar with all of the issues to make
the appropriate decisions. In this paper, we are concerned about missing information.
Specifically, we deal with the problem of consistently completing an AHP comparison
matrix, and make use of graph theory to characterise such a completion. The charac-
terization includes the degree of freedom of the set of solutions, a linear manifold; and,
in particular, characterizes the uniqueness of the solution, a result already known in the
literature, for which we provide a completely independent proof. Additionally, in the case
of non-uniqueness, we reduce the problem to the solution of non-singular linear systems.
In addition to obtaining the priority vector, our investigation, also focus on building the
complete pairwise comparison matrix, a crucial step in the necessary process (between
synthetic consistency and personal judgment) with the experts. The performance of the
obtained results is confirmed.

Keywords: Decision-making; incomplete information; AHP; graph theory; layout
reorganisation

Mathematics Subject Classification: 90B50, 90C35

1 Introduction and literature review.

Decision-making is intimately linked to the human condition. The need to make decisions
pervades human life at virtually any level (individual, social, entrepreneurial, political, etc.)
and conditions human behaviour. In the literature (Homenda, Jastrzebska, & Pedrycz, 2016;
Liu, Chan, & Ran, 2016) a decision-maker (DM) is defined as an actor who makes and influ-
ences decisions with his/her evaluation of arguments and his/her personal and professional
background. Decisions usually derive from a combination of descriptive and experiential
information (Weiss-Cohen, Konstantinidis, Speekenbrink, & Harvey, 2016).

Decision-making driven by a well-defined decision structure and integrated by objective
elements may be relatively easy. However, when subjectivity permeates the decision-making
environment, things become harder. If, in addition, the decision-making context is plagued
with uncertainty and/or incomplete information, then decision-making may become a complex
task.
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As underlined by Floricel, Michela, & Piperca, 2016, complexity is an intrinsic factor
in any field and environment. The authors approach this factor both in its structural and
dynamic shape, and stress the need to model complexity with the aim of better managing
project planning and strategies. In fact, complexity is usually determined and impacted by
the presence of uncertain or incomplete information regarding the process under analysis.
Significant losses, especially in terms of costs and time (Qazi, Quigley, Dickson, & Kirytopou-
los, 2016), may derive when the main complex aspects are not faced or considered. However,
frequently, it is natural that some of the DMs are not sufficiently familiar with all the issues to
make an appropriate judgment. There are several reasons for an actor to provide incomplete
information. Three such reasons are provided by Harker (1987), namely, insufficient time to
make a judgment, unwillingness to issue an opinion, and lack of certainty about an opinion.

In this paper we are concerned about the calculation of missing information. It is necessary
to formulate decisional models with a solid scientific basis that is capable of managing the
intrinsically subjective and partially informed nature of decisions. This formulation should
aim to make decisions as objective as possible, even if the decision-making process cannot
be totally objective. Flexible decision-making methods are required that consider a wide
variety of aspects, i.e. various criteria and alternatives, since a decision on one alternative
with the best objective value is affected by various and frequently conflicting criteria. The
final selection of the alternative is usually made with the help of inter and intra-attribute
comparisons, which may involve explicit or implicit trade-offs (Huang & Yung, 1981). Specific
techniques may be needed that can quantify human behaviour related to perceptual and
cognitive processes. Quantification is then fundamental in this endeavour and closely related
to so-called mathematical psychology. Among various multi-criteria decision-making methods,
one of the most used in decision-making is the Analytic Hierarchy Processes (AHP), developed
by Saaty (1994), in which decisions are driven by eliciting judgments from the DMs about
the importance of a given set of decision elements. As asserted by Vargas et al. (2017), the
AHP is particularly suitable for group decision-making scenarios, as considered by the case
study of the present paper. The authors also assert that this method provides an effective
framework for structuring a decision problem, relating the main elements of the problem to
the general goal, weighting criteria and alternatives, and resolving conflicts. In AHP, local
comparison matrices at the various levels of a well-defined hierarchy are created (Saaty and
Vargas, 1994). According to Saaty (1980, 2008), the eigenvector (EV) method is used for
deriving weights from local matrices. That is, the EV is the prioritisation method used, and
the computational procedure is thus called prioritisation. After calculating the local weights
at all levels of the hierarchy, a priority aggregation process is performed by multiplying the
criterion-specific weights of the alternatives with the corresponding weights for the criteria
and then summing the results to obtain composite weights of the alternatives with respect to
the objective. This procedure is unique for all alternatives and all criteria.

The AHP has been successfully applied in many fields and problems, especially to support
industrial processes, as for instance shown by Lolli et al. (2017) in the sector of electrical
resistor manufacturing and by Seiti et al. (2017) in the field of steel rolling production.
Given the possibility of integrating the AHP with other techniques (Ho, 2008; Ortiz-Barrios
et al., 2017), a plethora of applications is discussed in the literature. Vaidya and Kumar
(2006) present a wide literature review related to the AHP technique and, after revising a
sample of 150 papers on AHP, provide a wide number of AHP applications. Referring to
the uncertainty of data or judgments, a state-of-the-art survey was conducted by Kubler,
Robert, Derigent, Voisin and Le Traon (2016) on the fuzzy development of the AHP – the
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FAHP method (Van Laarhoven & Pedrycz, 1983). The authors reviewed 192 papers and
classified them into the following categories: selection; evaluation; development; priority;
decision-making; and resource allocation. The FAHP method is considered helpful in various
applications, as shown by Hsu, Huang and Tseng (2016). However, as assumed by Wang and
Chen (2008), this method presents some weaknesses in relation to the number of pairwise
judgments expressed with respect to a given criterion, that is, the difficulty in obtaining
consistent pairwise comparison matrices.

The literature presents multiple efforts to improve consistency (Pandeya & Kumar, 2016;
Wang & Tong, 2016), and AHP is no exception. It is necessary to guarantee the coherence of
judgments expressed by decision-makers in terms of consistency. As underlined by Karanik,
Wanderer, Gomez-Ruiz and Pelaez (2016), this aspect is fundamental for reliably applying
the AHP method. As many authors affirm (Massanet, Riera, Torrens, & Herrera-Viedma,
2016; Xu, Chen, Rodŕıguez, Herrera, & Wang, 2016; Zhang, 2016a), the lack of consistency is
generally because decision-makers express their preferences by means of preference relations
and sometimes fail to make judgments. According to Zhang (2016b), these relations may
not satisfy reciprocity properties, especially when expressed by a decision-group. Moreover,
Wang and Xu (2016) clarify that incomplete preference relations can be rarely avoided in
group decision-making problems. For this reason, the aim is to support experts in expressing
their preferences by means of consistency-based interactive algorithms to estimate the missing
matrices entries (Beńıtez, Delgado-Galván, Gutiérrez-Pérez, & Izquierdo, 2011)

Many authors have expressed opinions regarding incomplete information characterising
matrices in AHP applications. In (Srdjevic, Srdjevic, & Blagojevic, 2014) a method to com-
plete gaps in matrices is proposed. Starting from the knowledge of two consolidated method-
ologies (Harker, 1987; van Uden, 2002) that are used to generate missing data in comparisons
matrices, the authors propose the first-level transitive rule (FLTR) method. This consists
in, firstly, screening matrix entries in the neighbourhood of a missing entry; and, secondly,
the scaling and geometric averaging of screened entries to fill the gap. In (Bozóki, Fülöp,
& Rónyai, 2010), for both the EV method (Saaty, 1977) and the logarithmic least squares
method (LLSM) (Crawford & Williams, 1985), the uniqueness of the completion of a pairwise
comparison matrix (PCM) is characterized in terms of the connectedness of a graph. In (Ergu,
Kou, Peng, & Zhang, 2016) the need to improve the consistency ratio of matrices related to
emergency management is stressed. To this end, they propose a model that quickly estimates
missing comparisons in an incomplete matrix by extending the geometric mean induced bias
matrix method (Ergu, Kou, Peng, Li, & Shi, 2012). In (Bozóki, Csató, & Temesi, 2016)
the authors address a ranking of professional tennis players over the last 40 years using an
obviously incomplete history of match results between top tennis players. The literature also
proposes estimating incomplete judgments by focusing on uncertainty management. With
this perspective, as emphasized in (Certa, Enea, Galante, & La Fata, 2013), Hua, Gong, and
Xu (2008) propose an innovative approach to solve multi-attribute decision-making problems
with incomplete information. They integrate the AHP method with the Dempster-Shafer
(DS) theory of evidence (Shafer, 1976) using a mixed DS-AHP approach (Beynon, Curry, &
Morgan, 2000). This method enables coping with the uncertainty of experts and determining
preference relations among all the decision alternatives by comparing their belief intervals.
Dong, Li and Zhang (2015) estimate missing preference information using a consistent recov-
ery method. The authors focus on multi-criteria group decision-making problems in which
preference alternatives are expressed using fuzzy triangular numbers.

Given the importance in the literature of the issue of incomplete judgments that could
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characterise AHP pairwise comparison matrices, in this paper, we follow the line initiated by
the authors in (Beńıtez, Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2015; Beńıtez, Carrión,
Izquierdo, & Pérez-Garćıa, 2014) for building consistent information from an incomplete body
of pairwise comparisons.

The purpose of this paper is to study the system obtained in Theorem 1 of (Beńıtez,
Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2015) in terms of a graph related to an incom-
plete pairwise comparison matrix. We compute the degree of freedom of the set of solutions,
a linear manifold, in terms of the number of connected components of this graph. In partic-
ular, we will prove that the solution to the problem is unique if, and only if, this graph is
connected. For this result, previously given in (Bozóki, Fülöp, & Rónyai, 2010), we provide a
proof that follows a completely independent approach. Furthermore, when the solution is not
unique, we always obtain non-singular linear systems, in contrast with the linear systems ob-
tained in (Beńıtez, Delgado-Galván, Izquierdo, & R. Pérez-Garćıa, 2015). More importantly,
in addition to get the priority vector and level of consistency based on the known entries,
we are also interested in building the complete PCM, since optimal values of the unknown
entries may be informative as well (Bozóki, Fülöp, & Rónyai, 2010). This step is crucial in the
necessary trade-off process (between synthetic consistency and personal judgment) with the
experts. Let us finally observe that even though the number of missing entries in an elicited
comparison matrix is small in practical problems (frequently reduced to one or two above the
main diagonal), we calculate the general situation and so obtain a result of wide generality.
To show the performance of the results obtained we first use a theoretical matrix with a large
number of missing entries and an associated graph with two non-connected components that
exhibits the generality we claim, and various other matrices corresponding to a real case of
decision-making with one or two missing entries. If possible, we compare the results obtained
with other approaches found in the literature.

The paper is organised as follows. After this introduction and the literature review,
Section 2 presents the necessary prerequisites. Section 3 develops the main results of this
research – including proofs of various theorems, a synthetic example and two illustrative
comparisons with other methods. Section 4 presents a case study and the solution obtained.
Finally, conclusions close the work.

2 Prerequisites.

2.1 Notation and basic definitions.

One of the necessary steps in AHP theory is performing pairwise comparisons between n
elements thus forming an n × n matrix A = (aij). The reader is encouraged to consult
(Saaty, 1994; Saaty, 2008) to see the fundamentals of AHP theory. The entry aij measures
the relative importance of element i over element j. To extract priority vectors from the
comparison matrices, the eigenvector method, which was first proposed by Saaty (2008), is
used in this paper.

A comparison matrix is always reciprocal. A positive n × n matrix A is reciprocal when
aijaji = 1 for all 1 ≤ i, j ≤ n. In addition to the reciprocity property, another property,
consistency, should theoretically be desirable for a comparison matrix. A positive n × n
matrix is consistent if aijajk = aik for all 1 ≤ i, j, k ≤ n.

Consistency expresses the coherence that may exist between judgements about the ele-
ments of a set. Since preferences are expressed in a subjective manner, it is reasonable for
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some kind of incoherence to exist. For a consistent matrix A, the leading eigenvalue and
the principal (Perron) eigenvector of A provide information to deal with complex decisions
(Saaty, 2008). In the general case, however, A is not consistent. For non-consistent matrices,
the problem to solve is the eigenvalue problem Aw = λmaxw, where λmax is the unique largest
eigenvalue of A that gives the Perron eigenvector as an estimate of the priority vector. As a
measurement of inconsistency, Saaty proposed the consistency index: CI = (λmax−n)/(n−1)
and the consistency ratio: CR = CI/RI, where RI is the random index (Saaty, 2008). If
CR < 0.1, the estimation is accepted; otherwise, a new comparison matrix is solicited until
CR < 0.1.

The set of n ×m real matrices is denoted by Mn,m. We write M+
n,m = {(aij) ∈ Mn,m :

aij > 0 for all i, j}. If A is a matrix, then tr(A) and AT will denote the trace and the
transpose of A, respectively. We will write 0n,m for the zero matrix in Mn,m and 0n for the
zero vector in Rn. When there is no danger of confusion, we will write simply 0 and 0 for the
zero matrix and the zero vector, respectively.

2.2 Problem setting.

The following problem was solved in (Beńıtez, Delgado-Galván, Izquierdo, & Pérez-Garćıa,
2015): Given an incomplete reciprocal matrix A ∈ M+

n,n, find a reciprocal completion of A,
say X, such that

d(X,Cn) ≤ d(X ′,Cn)

for any X ′ ∈ M+
n,n reciprocal completion of A, where Cn denotes the subset of Mn,n composed

of consistent matrices. Here d(·, ·) is the following distance defined in M+
n,n:

d(X,Y ) = ‖LOG(X)− LOG(Y )‖F ,

where LOG : M+
n,n → Mn,n is such that if aij is the (i, j)-entry of A, then the (i, j)-entry of

LOG(A) is log(aij). Furthermore, ‖·‖F is the Frobenius norm (i.e., ‖A‖2F = tr(ATA)). Let us
observe that A is reciprocal if and only if LOG(A) is skew-symmetric. Observe that the rule
〈A,B〉 = tr(ATB) defines an inner product in Mn,n and that the aforementioned Frobenius
norm is induced by this inner product.

We shall be more precise: the stated problem can be formulated as follows.

Problem 1 Let A ∈ Mn,n be an incomplete reciprocal matrix. Let (i1, j1), . . . , (ik, jk) the
unknown entries of A above the main diagonal of A. Let X(λ1, . . . , λk) ∈ Mn,n be a comple-
tion of A and such that Xir ,jr = exp(λr), Xjr ,ir = exp(−λr) for r = 1, . . . , k. Find λ1, · · · , λk

such that
d(X(λ1, . . . , λk),Cn) ≤ d(X(λ′

1, . . . , λ
′
k),Cn)

for any λ′
1, . . . , λ

′
k ∈ R.

The solution of Problem 1 was given in the next result, see Theorem 4 in (Beńıtez,
Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2015). From now on, we will consider any vector
of Rn as a column and we will denote 1n = [1 · · · 1]T ∈ Mn,1. The standard basis of Rn will
be denoted by {e1, . . . , en}.
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Theorem 1 Let A ∈ M+
n,n be an incomplete reciprocal matrix and (i1, j1), . . . , (ik, jk) its

unknown entries above its main diagonal. Any solution of Problem 1 satisfies

λ = Sm,

(
D − 1

n
STS

)
m = b, (1)

where λ = [λ1 · · · λk]
T , m = [µ1 · · · µn−1]

T , S is the k × (n − 1) matrix whose (r, s)-
entry is dT

irjrys, D is the diagonal (n − 1) × (n − 1) matrix whose (s, s)-entry is ‖ys‖2, and
b = [wTy1 · · · wTyn−1]

T , being w = 1
n

∑
i<j cijdij . Here

cij =

{
log aij if we know the (i, j)-entry of A,

0 if we do not know the (i, j)-entry of A,
(2)

{y1, . . . ,yn−1} is an orthogonal basis of (span{1n})⊥ and dij = ei − ej.

The purpose of this paper is to study system (1) in terms of certain graph related to the
incomplete matrix A. In particular, we will prove that the solution of Problem 1 is unique if,
and only if, this graph is connected.

The meaning of the values λ1, . . . , λk in the above Theorem 1 is clear: the missing entry
(ir, jr) of A must be filled with exp(λr). One can see µ1, . . . , µn−1 as auxiliary values useful
to find λ. But, we will give here the meaning of µ.

If A is an incomplete reciprocal matrix, then

A = {LOG(X) : X is a reciprocal completion of A}

is a linear manifold because if X is any reciprocal completion of A, then

LOG(X) = LOG(X0) +

k∑

r=1

λr(eire
T
jr − ejre

T
ir), (3)

where in this last equality, X0 is the reciprocal completion of A with 1s on its missing entries.

A

Ln
LOG(Z)

LOG(X)

Figure 1: The matrices
LOG(X) and LOG(Z) mini-
mize the distance between A

and Ln.

Also,

Ln = {LOG(Z) : Z ∈ Mn,n, Z is consistent}

is a linear subspace of Mn,n. In fact, it can be proved (see
Theorems 2.2 and 2.4 (Beńıtez, Delgado-Galván, Izquierdo,
& Pérez-Garćıa, 2011)) that if we define the linear map-
ping φn : Rn → Mn,n by φn(v) = v1Tn − 1nv

T , then
imφn = Ln, ker φn = span{1n}, and a basis of Ln is
{φn(y1), . . . , φn(yn−1)}. Here, as in Theorem 1, {ys}n−1

s=1

is an orthogonal basis of (span{1n})⊥.
With these preparatives, if LOG(X) ∈ A and

LOG(Z) ∈ Ln are the matrices such that minimize
d(X ′, Z ′) = ‖LOG(X ′) − LOG(Z ′)‖F for LOG(X ′) ∈ A

and LOG(Z ′) ∈ Ln, then

LOG(Z) = µ1φn(y1) + · · ·+ µn−1φn(yn−1) = φn(µ1y1 + · · · + µn−1yn−1).
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See Theorem 4 in (Beńıtez, Delgado-Galván, Izquierdo, & Pérez-Garćıa, 2015) for a deeper
explanation. Therefore, Theorem 1 also gives the consistent matrix closest to the best com-
pletion of A. Furthermore, if we define Y = [y1 · · · yn−1] ∈ Mn,n−1 and θ = Ym, then
LOG(Z) = φn(θ). In other words, vector θ gives the consistent matrix closest to the best
completion of A.

The following theorem is important because to fill matrix A, we can forget the scalars
λ1, . . . , λr and fix our attention to θ.

Theorem 2 Let A ∈ M+
n,n be an incomplete reciprocal matrix and (i1, j1), . . . , (ik, jk) its

unknown entries above its main diagonal. Let X be a reciprocal completion of A and Y be
a consistent matrix of order n such that d(X,Z) ≤ d(X ′, Z ′) for all X ′ reciprocal consistent
completion of A and Z ′ a consistent matrix. Then for r = 1, . . . , k, the entry (ir, jr) of X
equals to the entry (ir, jr) of Z.

Proof. Let us denote Bi,j = eie
T
j − eje

T
i . If M = (mij) ∈ Mn,n, then by using that

tr(PQ) = tr(QP ) holds for any pair of matrices P,Q such that PQ and QP are meaningful,

〈Bi,j ,M〉 = tr(BT
i,jM) = tr(eje

T
i M)−tr(eie

T
j M) = tr(eTi Mej)−tr(eTj Mei) = mij−mji. (4)

By (3), the support subspace of A is the subspace spanned byBi1,j1 , . . . , Bir ,jr Since LOG(X)−
LOG(Z) is orthogonal to the support subspace of A , by using (4) for M = LOG(X) −
LOG(Z), one has that the (ir, jr) entry of L(X) equals to the (ir, jr) entry of L(Z) for
r = 1, . . . , k. �

2.3 Some review of graph theory.

Here we shall review some basic facts of graph theory. The reader is encouraged to consult
(Bapat, 2011) for a further insight. In the forthcoming we shall assume that any graph has
no loops.

We recall the concepts of the Laplacian matrix and the incidence matrix of a graph G
with vertices {1, 2, . . . , n}, edges {e1, e2, . . . , em} and no loops. The Laplacian matrix of G is
the n× n matrix, denoted by L(G), defined as follows: if i 6= j, then the (i, j)-entry of L(G)
is 0 if vertices i and j are not adjacent, and it is −1 if i and j are adjacent. The (i, i)-entry
of L(G) is the degree of vertex i (i.e., the number of edges incident to vertex i).

Suppose that each edge of G has assigned an orientation, which is arbitrary but fixed.
The incidence matrix of G, denoted by Q(G), is the n×m matrix defined as follows: the rows
and the columns of Q(G) are indexed by vertices and edges, respectively. The (i, j)-entry of
Q(G) is 0 if vertex i and edge ej are not incident, and otherwise it is 1 or −1 depending if ej
begins or finishes at i, respectively. For a graph G one has the following equalities:

L(G) = Q(G)Q(G)T , 1

T
nQ(G) = 0. (5)

A basic property of the Laplacian and incidence matrices is that

rk(L(G)) = rk(Q(G)) = n− p,

where p is the number of connected components of G and n is the number of vertices of G.
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If G is a graph with vertices {1, . . . , n}, then the complement of G, denoted by G, is the
graph with the same vertices and the edges are defined by the following rule: i and j are
adjacent in G if and only if i and j are not adjacent in G. It is easy to see that

L(G) + L(G) = nIn − 1n1
T
n . (6)

The proof is simple: if i 6= j, then only one of the two following possibilities can occur: “i
and j are adjacent” or “i and j are not adjacent”, hence L(G)ij +L(G)ij = −1, which equals
the (i, j)-entry of nIn−1n1Tn . Since vertex i can be adjacent to the n− 1 remaining vertices,
then L(G)ii + L(G)ii = n− 1, which again equals the (i, i)-entry of nIn − 1n1

T
n .

3 Main results.

Next, we shall study system (1) appearing in Theorem 1. To this end, we associate an
incomplete reciprocal matrix A = (aij) ∈ M+

n,n to a directed graph in the following way. We
have i → j when i < j and the entries aij and aji are known. This graph will be denoted
GA. Recall that the Laplacians of GA and GA are independent on the orientation of the
edges. However, the incidence matrices of GA and GA depend on the chosen orientation and
thus, we need to order the edges. To order the edges, we will use the lexicographical order,
(i1 → j1) ≺ (i2 → j2) when i1 < i2 or (i1 = j1)&(j1 < j2). We can see an example in Figure 2.

A =




1 a ∗
a−1 1 b
∗ b−1 1




1

2

3

Q(GA) =




1 0
−1 1
0 −1


 L(GA) =




1 −1 0
−1 2 −1
0 −1 1




Figure 2: Example of an incomplete reciprocal matrix, its associated directed graph, the
incidence matrix, and the Laplacian

To understand the third item of the next theorem, let us observe that by (3) and Theo-
rem 1, the values λ1, . . . , λk provide the set of solutions of Problem 1.

Theorem 3 Let A ∈ M+
n,n be an incomplete reciprocal matrix and GA its associate graph.

Let p be the number of connected components of GA. Under the notation of Theorem 1, one
has

(i) The rank of nD − STS is n− p.

(ii) The solutions [λT mT ]T of system (1) is a linear manifold whose dimension is p− 1.

(iii) The set

S =

{
Sm :

(
D − 1

n
STS

)
m = b

}

is a linear manifold whose dimension is p− 1.
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Proof. We express matrices D and S in another way. Define Y = [y1 · · · yn−1] ∈ Mn,n−1,
where the meaning of the vectors yi is written in Theorem 1: they form an orthogonal basis
of (span{1n})⊥. Since {y1, . . . ,yn−1} is an orthogonal system, we have

D =




‖y1‖2 0 · · · 0

0 ‖y2‖2 · · · 0
...

...
. . .

...

0 0 · · · ‖yn−1‖2



=




yT
1

yT
2
...

yT
n−1




[
y1 y2 · · · yn−1

]
= Y TY. (7)

Observe that the matrix [di1j1 · · · dikjk ] ∈ Mn,k is the incidence matrix of the graph GA.
Therefore,

S =




dT
iij1

y1 · · · dT
i1j1

yn−1

...
. . .

...

dT
ikjk

y1 · · · dT
ikjk

yn−1


 =




dT
iij1
...

dT
ikjk



[
y1 · · · yn−1

]
= Q(GA)

TY. (8)

Hence,

D − 1

n
STS =

1

n

[
nY TY − Y TQ(GA)Q(GA)

TY
]
=

1

n
Y T

[
nIn − L(GA)

]
Y. (9)

Another useful equality is
1

T
nY = 0, (10)

because the columns of Y are orthogonal to 1n. Therefore, we obtain by (6), (9), and (10)

D − 1

n
STS =

1

n
Y T

(
L(GA) + 1n1

T
n

)
Y =

1

n
Y TL(GA)Y. (11)

Let us define Z = [Y 1n] ∈ Mn,n. Obviously, Z is a nonsingular matrix because the n− 1
first columns of Z form an orthogonal basis of (span{1n})⊥. Observe that from (5) we obtain

ZTL(GA)Z =

[
Y T

1

T
n

]
L(GA)

[
Y 1n

]

=

[
Y TL(GA)Y Y TL(GA)1n

1

T
nL(GA)Y 1

T
nL(GA)1n

]
=

[
Y TL(GA)Y 0

0 0

]
.

Since Z is nonsingular, by (11) and the previous computation,

rk(nD − STS) = rk(Y TL(GA)Y ) = rk(ZTL(GA)Z) = rk(L(GA)) = n− p, (12)

where p is the number of connected components of GA. This proves (i).
If d is the dimension of the manifold {[λTmT ]T : λ,m satisfy (1)}, then d is the dimension

of the null space of the matrix

[
Ik −S

0 D − 1
nS

TS

]
∈ Mk+n−1,k+n−1.

9



Thus, by the previous item (i)

d = k + n− 1− rk

[
Ik −S

0 D − 1
nS

TS

]
= k + n− 1− (k + rk(nD − STS)) = p− 1.

This proves (ii).
Let us prove (iii). The dimension of S equals dimS1, where S1 = {Sm : (nD−STS)m =

0}. But S1 is the image of the linear mapping Φ : N → R

k, where N is the null space of
nD − STS and Φ(v) = Sv. Thus,

dimS1 = dim imΦ = dimN − dimker Φ.

Since nD − STS is a square (n − 1)× (n − 1) matrix, by using item (i), one obtains

dimN = n− 1− rk(nD − STS) = n− 1− (n− p) = p− 1.

Thus, to finish the proof, we must prove kerΦ = {0}. Let x ∈ Rn−1 such that Φ(x) = 0,
i.e., Sx = 0 and (nD − STS)x = 0. Hence Dx = 0. The nonsingularity of D (as one can
easily see from (7)), leads to x = 0. �

We get the following two corollaries:

Corollary 1 There exists at least one solution to Problem 1.

Corollary 2 Under the notation of Theorem 3, the following three conditions are equivalent:

(i) GA is connected.

(ii) The matrix nD − STS is nonsingular.

(iii) The solution of Problem 1 is unique.

The equivalence of statements (i) and (iii) of Corollary 2 was proven in (Bozóki, Fülöp,
Rónyai, 2010). Observe that Theorem 3 also characterizes the degree of freedom of the set of
solutions.

Next, we shall express system (1) in a simpler way making more explicit the role of the
graph GA. We shall use the following lemma.

Lemma 1 Let G be a graph with n vertices and m edges. Let {y1, . . . ,yn−1} be any basis of
(span{1n})⊥ and Y = [y1 · · · yn−1]. If v ∈ Rm, then Y TQ(G)v = 0 ⇔ Q(G)v = 0.

Proof. The ‘⇐’ part is trivial. We will prove the ‘⇒’ part: the vector Q(G)v is orthogonal
to y1, . . . ,yn−1. By the second equality of (5), also Q(G)v is orthogonal to 1n. Hence
Q(G)v ∈ Rn is orthogonal to a basis of Rn, and thus, Q(G)v = 0. �

From now on, we will denote by m the number of edges of the graph GA. Therefore, the
incidence matrix of the graph GA, namely Q(GA), is an n×m matrix.

Theorem 4 Let A ∈ M+
n,n be an incomplete reciprocal matrix and (i1, j1), . . . , (ik, jk) its

unknown entries. Any solution λ = [λ1 · · · λk]
T of Problem 1 satisfies

λ = Q(GA)
Tθ, L(GA)θ = Q(GA)ρ, (13)

where ρ = [log(ai1,j1) · · · log(aim,jm)]
T .

10



Proof. We will use the notation of Theorem 1. Also, we denote Y = [y1 · · · yn−1] ∈ Mn,n−1,
and θ = Ym. By (8), the first equality of (1) reduces to λ = Q(GA)

Tθ. Let us prove the
second equality of (13). We have

b =




yT
1 w
...

yT
n−1w


 =




yT
1
...

yT
n−1


w = Y Tw =

1

n
Y T

∑

i<j

cijdij. (14)

Observe that by the definition of the numbers cij (see (2)), in the summation appearing in
(14), the indices can be restricted with no problem to the edges of the graph GA. Thus, we
have ∑

i<j

cijdij = Q(GA)ρ.

Therefore, b = 1
nY

TQ(GA)ρ, and the second equality of (1) becomes (nD − STS)m =
Y TQ(GA)ρ. Now, it is enough to recall expression (11) to get Y TL(GA)θ = Y TQ(GA)ρ.
From here and the first equality of (5), we get Y TQ(GA)(Q(GA)

Tθ − ρ) = 0. From Lemma
1, we get Q(GA)(Q(GA)

Tθ−ρ) = 0. Therefore, the second equality of (13) has been proven.
�

A drawback associated to the second equality of system (13) is that matrix L(GA) is
always nonsingular since L(GA) is an n × n matrix and rk(L(GA)) = n − p, where p is the
number of connected components of GA.

In (Beńıtez, Carrión, Izquierdo, & Pérez-Garćıa, 2014) it was characterised when an in-
complete, positive, and reciprocal matrix can be completed to become a consistent matrix.
Concretely, it was stated in Theorems 7 and 10 of (Beńıtez, Carrión, Izquierdo, & Pérez-
Garćıa, 2014) that, under the notation of Theorem 1 of this paper, A can be completed to
be consistent if and only if there exists x ∈ Rn such that Q(GA)

Tx = ρ, and in this case, we
have λ = Q(GA)

Tx. We can observe that, precisely, the second system in (13) corresponds
to the least squares system related to Q(GA)

Tx = ρ.
Next, we study system (13) by decomposing it in simpler systems.

3.1 The structure of the system (13).

For the sake of readability, we provide Table 1 indicating the notation for some parameters
of the graph GA.

Table 1: Used notation for the parameters of a graph

n No. of points

p No. of connected components

m No. of edges

s No. of isolated points

G1, . . . , Gq Connected components of GA with more than 2 points

ni No. of points of the connected component Gi

mi No. of edges of the connected component Gi

11



Rearranging the points of GA, the matrix Q(GA) has the following structure

Q(GA) =

[
0s,m

Q1

]
∈ Mn,m,

where
Q1 = Q(G1)⊕ · · · ⊕Q(Gq) ∈ Mn−s,m, Q(Gi) ∈ Mni,mi

,

G1, . . . , Gq being the connected components of G composed of more than two points. The
ideas to study system (13) are: a) “Forget” the isolated points and b) Study each connected
component separatedly.

Observe that the number of isolated points plus q equals the number of connected compo-
nents of GA, i.e., s+ q = p. Since ni is the number of points of Gi for i = 1, . . . , q, evidently,
we have

s+ n1 + · · ·+ nq = n.

Also, observe that rk(Q(Gi)) = ni−1 because Gi is connected. This is in full agreement with
the fact that n− p = rk(Q(GA)) = rk(Q1) = rk(Q(G1)) + · · ·+ rk(Q(Gq)).

Also, the Laplacian of GA has a block structure:

L(GA) = Q(GA)Q(GA)
T =

[
0s,m

Q1

] [
0m,s QT

1

]
=

[
0s,s 0

0 Q1Q
T
1

]
(15)

and
Q1Q

T
1 = L(G1)⊕ · · · ⊕ L(Gq). (16)

Let us study system (13). First, with the notation of Theorem 4, we shall simplifyQ(GA)ρ.

Q(GA)ρ =

[
0s,m

Q1

]
ρ =

[
0s

Q1ρ

]
.

Recall that we have denoted by m the number of edges of GA and by mi the number of edges
of Gi for i = 1, · · · , q. Let us note m1 + · · ·+mq = m. We partition ρ ∈ Mm,1 as follows:

ρT =
[
ρT
1 · · · ρT

q

]
, ρi ∈ Mmi,1.

Therefore

Q1ρ =




Q(G1)ρ1

...

Q(Qq)ρq


 .

Now, let us recall that θ ∈ Mn,1. We decompose

θT =
[
θT
0 θT

1 · · · θT
q

]
,

where θ0 ∈ Ms,1 and θi ∈ Mni,1 for i = 1, · · · , q. Now, (13), (15), and (16) lead to

L(Gi)θi = Q(Gi)ρi, i = 1, · · · , q. (17)

12



To solve system (13), we must think on the connected components of GA. However, let us
note that the systems (17) are always singular since the Laplacian of any graph is always a
singular matrix.

So, what is the general solution of (17)? First, the systems (17) are solvable because these
systems are the least square systems of Q(Gi)

Tθi = ρi. Let θ̂i be a solution of (17). We
know that the general solution of (17) is θ̂i + N (L(Gi)), where N (·) stands for the null
space of a matrix. Since rk(L(Gi)) = ni− 1 and L(Gi) ∈ Mni,ni

(recall that Gi is a connected
component of the graph GA), then

dimN (L(Gi)) = ni − rk(L(Gi)) = 1.

Thus, to find N (L(Gi)), it is enough to find a nonzero vector in N (L(Gi)). But from (5)
one gets L(Gi)1ni

= 0. Hence

N (L(Gi)) = {α1ni
: α ∈ R}.

Therefore, the general solution of (17) is

θ̂i + α1ni
, α ∈ R,

where θ̂i is a particular solution of (17).
Now, we will show how to find a particular solution of (17). Let Yi be a matrix in Mni,ni−1

whose ni − 1 columns form a basis of (span{1ni
})⊥ and let m̂i be the unique solution of the

linear system
Y T
i L(Gi)Yim̂i = Y T

i Q(Gi)ρi. (18)

This system has a unique solution because Y T
i L(Gi)Yi ∈ Mni−1,ni−1, (11), and (12) imply

that Y T
i L(Gi)Yi is nonsingular. Lemma 1 leads to Yim̂i is a solution of (17). Hence the

general solution of (17) is
Yim̂i + α1ni

, αi ∈ R.
Hence, we can solve the right system in (13). Since θ0 ∈ R

s is arbitrary, then if θ is any
solution of the right linear system in (13), then

θ =




θ0

Y1m̂1 + α11n1

...

Yqm̂q + αq1nq



, θ0 ∈ Rs, α1, · · · , αq ∈ R are arbitrary. (19)

We have arrived to the following theorem. Recall that the mapping φn : Rn → Mn,n is
defined by φn(v) = v1Tn − 1vT . Also, it is useful to recall Theorem 2.

Theorem 5 Let A ∈ M+
n,n be an incomplete reciprocal matrix whose unspecified entries above

its main diagonal are (i1, j1), . . . , (ik, jk). Let GA be its associate graph whose parameters are
specified in Table 1. Let Yi ∈ Mni,ni−1 a matrix whose ni − 1 columns form a basis of
(span{1ni

})⊥, let m̂i be the unique vector satisfying (18), and let θ be any vector of Rn

given by (19). If X is a reciprocal completion of A such that d(X,Cn) ≤ d(X ′,Cn) for any
reciprocal completion X ′ of A, then the (ir, jr) entry of X is the (ir, jr) entry of Y , where
LOG(Y ) = φn(θ).
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3.2 Synthetic example.

Let A be the following incomplete reciprocal matrix:

A =




1 2 4 ∗ ∗ ∗
1/2 1 5 ∗ ∗ ∗
1/4 1/5 1 2 ∗ ∗
∗ ∗ 1/2 1 ∗ ∗
∗ ∗ ∗ ∗ 1 3
∗ ∗ ∗ ∗ 1/3 1



.

Let us observe that if we delete the 4th, 5th, and 6th rows and columns of matrix A, we
get a nonsingular matrix. Hence, rk(A) ≥ 3 and, in view of Theorem 3 of (Beńıtez, Delgado-
Galván, Izquierdo, & Pérez-Garca, 2012), A cannot be completed to be consistent. It is easy
to check that the associated graph GA has two connected components, G1 = {1, 2, 3, 4} and
G2 = {5, 6}. Since GA is not connected, by Corollary 2, the solution of problem 1 is not
unique (in fact, the solutions of system (1) constitute a one-dimensional linear manifold, in
view of Theorem 3).

Let us find m̂1: since the number of points of G1 is n1 = 4 and Y1 is a matrix whose
n1 − 1 columns are a basis of (span{1n1

})⊥, then we can pick

Y1 =




1 1 1

−1 1 1

0 −2 1

0 0 −3



.

Furthermore, one can easily see that the Laplacian of G1 is the following matrix:

L(G1) =




2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1



.

To construct Q(GA) and ρ1 we employ the lexicographical order.

Q(G1) =




1 1 0 0

−1 0 1 0

0 −1 −1 1

0 0 0 −1




ρ1 =




log a12

log a13

log a23

log a34



=




log 2

log 4

log 5

log 2



.

The solution of the system Y T
1 L(G1)Y1m̂1 = Y T

1 Q(G1)ρ1 is m̂1 ≃ [0.194, 0.499, 0.423]T . Now,
Y1m̂1 ≃ [1.116, 0.728,−0.576,−1.269]T . Let us now find m̂2 and Y2m̂2. Since n2 = 2 is the
number of points of G2,

Y2 =

[
1

−1

]
, L(G2) =

[
1 −1

−1 1

]
, Q(G2) =

[
1

−1

]
, ρ2 =

[
log a35

]
=

[
log 3

]
.
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The system Y T
2 L(G2)Y2m̂2 = Y T

2 Q(G2)ρ2 is 4m̂2 = 2 log 3. Hence m̂2 = (log 3)/2 and

Y2m̂2 =

[
(log 3)/2

−(log 3)/2

]
≃

[
0.549

−0.549

]
.

Therefore, by (19),

θ ≃ [1.116 + α1, 0.727 + α1,−0.5756 + α1,−1.2669 + α1, 0.5493 + α2,−0.5493 + α2]
T .

Since LOG(Y ) = φn(θ) and Theorem 5, the (ir, jr) entry of the optimal completion of A is
the (ir, jr) entry of Y , which is exp(θir)/ exp(θjr) = exp(θir −θij ). Thus, if Xir ,jr is the (ir, jr)
entry of the optimal completion of A, then a14 = exp(θ1 − θ4) ≃ 10.858, a15 = exp(θ1 − θ5) ≃
1.763 exp(α1−α2), and so on. Finally, we get (we denote K = exp(α1−α2)) that the optimal
completion of A is




1 2 4 10.858 K1.763 K5.288

1/2 1 5 7.368 K1.196 K3.588

1/4 1/5 1 2 K0.325 K0.974

0.092 0.136 1/2 1 K0.162 K0.487

K−10.567 K−10.836 K−13.080 K−16.160 1 3

K−10.189 K−10.279 K−11.027 K−12.053 1/3 1




.

3.3 Comparison with other methods.

In this subsection we compare our approach with two well-know PCM completion methods,
namely, Van Uden’s rule (van Uden, 2002) and Harker’s method (Harker, 1987).

Let A be an incomplete reciprocal n × n matrix (n > 2). If only one entry aik above
the diagonal is missing, van Uden proposes the following equality for calculating the missing
element

aik = n−2
√

X/Y , X =
∏

j 6=k

aij, Y =
∏

j 6=i

akj . (20)

The intuitive idea for this proposal is the following: if we consider only the fixed indices i,
k, and a third index j (varying in {1, . . . , n} \ {i, k}), we get an incomplete 3× 3 submatrix
and to achieve the consistency of this submatrix, we should set aik = aijajk = aij/akj. Since
index j can take n− 2 possible values, then we have n− 2 possible values of aik. It is natural
to consider the geometric mean of these values. We shall see that our Theorem 5 includes
van Uden’s rule. We introduce the notation R(·) for indicating the range space of a matrix.

Rearranging the indices, we can assume that the missing entries are a12 and a21. Observe
that the associate graph GA is connected, and thus, the solution of Problem 1 is unique
(Corollary 2). To find this solution, in view of Theorem 5 and (18), we must study the
system Y TL(GA)θ = Y TQ(GA)ρ, where Y is an n× (n− 1) matrix whose columns form an
orthogonal basis of span{1n}⊥, θ ∈ Rn,

ρ = [log a13 · · · log a1n log a23 · · · log a2n l1 · · · lr]
T ,

and any lm is of the form log aimjm with 3 ≤ im < jm. In view of Lemma 1, the equation
Y TL(GA)θ = Y TQ(GA)ρ is equivalent to L(GA)θ = Q(GA)ρ. It is evident, by the definition
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of the Laplacian matrix of the graph GA, that

L(GA) =

[
(n − 2)In−2 −U2,n−2

−Un−2,2 nIn−2 − Un−2

]
.

Since GA is the complete graph of order n without the edge connecting vertices 1 and 2,
if we denote by {e1, . . . , en} the standard basis of Rn, then we can write

Q(GA) = [ e1 − e3 | · · · | e1 − en | e2 − e3 | · · · | e2 − en | f1 | · · · | fr ] ,

where the vectors f1, . . . , fr have the form ei − ej , where 3 ≤ i < j, since in the graph
GA, if i, j ∈ {3, . . . , n}, then i and j are connected. If we define s1 =

∑n
j=3 log a1j and

s2 =
∑n

j=3 log a2j, then

Q(GA)ρ =

n∑

j=3

log a1j(e1 − ej) +

n∑

j=3

log a2j(e2 − ej) +

r∑

j=1

ljfj

= s1e1 + s2e2 −
n∑

j=3

(log a1j + log a2j) ej +
r∑

j=1

ljfj.

Observe that f1, . . . , fr ∈ span{e3, . . . , en}. Thus, exists v ∈ Rn−2 such that

Q(GA)ρ =




s1

s2

v


 .

Since Q(GA)ρ ∈ R[Q(GA)] = R[Q(GA)Q(GA)
T ] = R[L(GA)], there exists θ ∈ Rn such that

L(GA)θ = Q(GA)ρ. Hence, denoting s = [s1 s2]
T and decomposing θT = [θT

1 θT
2 ]

T , θ1 ∈ R

2

and θ2 ∈ Rn−2, we have

[
(n− 2)I2 −U2,n−2

−Un−2,2 nIn−2 − Un−2

][
θ1

θ2

]
=

[
s

v

]
.

Therefore, (n− 2)θ1 − U2,n−2θ2 = s. If θ1 = [ξ1, ξ2]
T and θ2 = [ξ3, . . . , ξn]

T , then

(n − 2)ξ1 − (ξ3 + · · · + ξn) = s1 and (n− 2)ξ2 − (ξ3 + · · ·+ ξn) = s2.

By subtracting these two equalities, (n − 2)(ξ1 − ξ2) = s1 − s2. Now, since s1 − s2 =∑n
j=3(log a1j − log a2j) = log(

∏n
j=3 a1j/a2j), we get

a12 = eξ1−ξ2 = e(s1−s2)/(n−2) =
n−2
√
es1−s2 = n−2

√√√√
n∏

j=3

a1j/a2j ,

which is van Uden’s rule (20) for i = 1 and k = 2.
There are other methods to deal with an incomplete reciprocal matrix when only one

entry above the main diagonal is missing. We can cite the one proposed by Shiraishi, Obata,
and Daigo (1998) and the heuristic approach given by Harker (1987). The foundation of the
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method proposed by Shiraishi, Obata, and Daigo (1998) is based on the following theorem:
let A be a reciprocal n×n matrix (n > 2), if pA(λ) = det(λIn−A) = λn+ c1λ

n−1+ c2λ
n−2+

c3λ
n−3 + · · · + cn, then c1 = −n, c2 = 0, and c3 ≤ 0. Furthermore, c3 = 0 if and only if A is

consistent. So, it is natural to maximize c3 in this kind of problems. As one can see in section
3 in (Shiraishi, Obata, & Daigo, 1998), the van Uden’s rule follows a different approach.

To better show the performance and validity of the method we propose, we finally compare,
in an empirical way, Harker’s method and ours. Let A be the following reciprocal matrix

A =




1 2 3 1

1/2 1 4 2

1/3 1/4 1 1/2

1 1/2 2 1



,

with priorities given by the eigenvector (0.361, 0.318, 0.097, 0.224)T . By using Theorem 3
in (Beńıtez, Izquierdo, Pérez-Garćıa, & Ramos-Mart́ınez, 2014), we get that the consistent
matrix closest to A is

XA ≃




1 1.107 3.464 1.565

0.9036 1 3.130 1.414

0.2887 0.3194 1 0.4518

0.6389 0.7071 2.213 1



.

Let us proceed to delete some entries of A obtaining, as an example,

Â =




1 2 3 ⋆

1/2 1 4 ⋆

1/3 1/4 1 1/2

⋆ ⋆ 2 1



.

Note that the rank of the 3×3 upper left block of Â is 3; hence, the rank of Â is greater than
1 and, as a result, Â cannot be completed to be a consistent matrix.

We will estimate the missing data by Harker’s rule. To this end, we build the derived
reciprocal matrix:

Ã =




2 2 3 0

1/2 2 4 0

1/3 1/4 1 1/2

0 0 2 3




By using Octave, we find that the largest normalised eigenvalue is λmax ≃ 4.083, with associ-
ated eigenvector v ≃ (0.4243, 0.2927, 0.09939, 0.1836)T , the priority vector found by Harker’s
method. With this vector one can get the matrix H = (Hij), where Hij = vi/vj . In this
example,

H ≃




1 1.449 4.269 2.311

0.6900 1 2.945 1.595

0.2343 0.3400 1 0.5414

0.4327 0.6272 1.847 1



,
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which, obviously, is not a completion of Â.
Let us now use the method proposed in this paper (we omit the complete set of details).

First of all, since the associated graph is connected, the optimal completion is unique. Let

X(a, b) =




1 2 3 a

1/2 1 4 b

1/3 1/4 1 1/2

1/a 1/b 2 1




be this solution. By Theorem 2, the entries (1, 4) and (2, 4) of X(a, b) (and their respective
symmetrical entries) coincide with the corresponding entries of Z, where Z is the consistent
matrix such that d(X(a, b), Z) = d(X(a, b),C4), and C4 is the set of 4× 4 consistent matrices
(recall that d(·, ·) is the distance defined as d(M,N) = ‖LOG(M) − LOG(N)‖F ). By the
previous consideration of Theorem 2, one has Z = E(φ4(θ)). This vector θ can be obtained
by equalities (18) and (19) getting θ ≃ (0.6310, 0.2648,−0.7945,−0.1014)T , and thus,

Z = E(φ4(θ)) ≃




1 1.443 4.160 2.080

0.6933 1 2.884 1.443

0.2404 0.3467 1 0.5000

0.4808 0.6933 2.000 1



.

Accordingly, the optimal completion of Â is

X(Z14, Z24) =




1 2 3 Z14

1/2 1 4 Z24

1/3 1/4 1 1/2

Z41 Z42 2 1



=




1 2 3 2.080

1/2 1 4 1.443

1/3 1/4 1 1/2

0.4808 0.6933 2 1



.

We can see that matrices Z and H are similar. We can also check that d(XA, Z) =
0.6355 < 0.7988 = d(XA,H), which shows that, in this example, the matrix Z obtained by
our method is closer to XA than the matrix H obtained by Harker’s rule.

Observe that our method gives the optimal completion of matrix Â (evidently, X(Z14, Z24)
is a completion of Â), while Harker’s rule only gives a priority vector v, and the matrix H
such that Hij = vi/vj , is not, in general, a completion of Â.

Additionally, it can be checked (by using Octave, for example) that the largest eigenvalue
ofX(Z14, Z24) is λmax ≃ 4.081, from which we easily find the consistency index of X(Z14, Z24),
which equals CI = (λmax − 4)/(4 − 1) ≃ 0.02714. Finally, since CR = CI/RI = 0.03050 <
0.1 = 10%, according to Saaty’s criterion, the consistency of X(Z14, Z24) is acceptable and
a priority vector is the normalised eigenvector of X(Z14, Z24) associated to λmax, which is
w ≃ (0.4164, 0.2890, 0.1001, 0.1949)T .

This example shows that given an incomplete matrix which cannot be completed to be
consistent, we can get a completion whose consistency is acceptable.

4 Case Study.

The present case study refers to an industrial layout reorganisation problem involving materi-
als handling – specifically the reorganisation of storage space in a factory. This reorganisation
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concerns the best arrangement (using various criteria) for shelving to store pallets of finished
products and cardboards. Moreover, a path for the transit of people and forklifts (i.e., lines
to transport the goods) must be defined by considering the available space inside the storage
facility. The AHP technique is applied to select the best option from a set of three layout
proposals (LP1,LP2,LP3), evaluated on the basis of five criteria (C1,C2,C3,C4,C5). The con-
sidered and mutually independent criteria are: safety & security; cost; innovation; transport;
and placement.

The first criterion considers the aspect of safety and security at the workplace for the
stakeholders of the storage facility. The second criterion refers to the cost of implementing
a specific layout. The third criterion regards the innovative character of each alternative in
terms of broad flexibility for enhancing the storage conditions (for example, by creating spaces
for the employees to communicate and so better integrate operations). The fourth criterion is
related to the movement of goods in the storage area on forklifts and managing the pedestrian
areas crossed by employees and visitors inside the facility. The fifth criterion considers how a
specific layout alternative may facilitate the placement of materials on shelves with the aim
of distributing pallets of finished products and cardboard in different sectors of the shelves
on the basis of their uses (and thus avoiding mixing materials).

The hierarchical structure of the problem is shown in Figure 3.

Figure 3: Hierarchical structure

Figure 4 shows the (feasible) schemes of the three layout proposals. The shelves to be
arranged are highlighted as grey blocks numbered from one to five. Others blocks represent
fixed elements in the facility. The topmost parts of the plants are the production areas of the
firm that communicate with the storage and so more than two shelves cannot be allocated in
this area (e.g. shelves 1 and 5 in LP2 in Figure 4). Observe that shelf 2 may be divided into
two halves.

Table 2 shows the relative evaluations of the alternatives with respect to the criteria. In
each table, the last two columns give, respectively, the normalised local priorities (the Perron
vectors of the matrices calculated via the power method), and the consistency indices (CR).

Note that all the relative judgments are consistent because none of the CR indices exceed
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Figure 4: Layout proposals LP1, LP2, LP3

the value of 0.05 (the threshold for matrices of size 3× 3, (Saaty, 1977)).
In addition to the calculation of the local priorities of alternatives, it is necessary to

evaluate the vector of criteria weights. A decision group composed of three experts (D1, D2,
D3) was involved to this purpose. We will assume that the experts have the same weight
in the decision process. Their roles are the following: consultant; chief of health and safety,
and an employee representative. These decision-makers are involved in the management of
the storage area from different – but complementary – perspectives. However, in formulating
the judgements, the experts prefer not to express some evaluations. Since the presence of
missing information often affects these kind of practical problems, the main difficulty of
consistent completion regards the achievement of reliable values reflecting experts’ opinions
and preferences. Specifically, the experts were unwilling to give their judgements about the
following pairwise comparison: C2/C5. In other terms, they preferred not to express any
opinion comparing cost and placement. Moreover, experts D2 and D3 did not give their
judgements about another pairwise comparison, C2/C3. In fact, they did not wish to express
a judgement comparing cost and the pursuance of innovation. With relation to this last
missing comparison, although the decision maker D1 expressed his opinion by assigning a
numerical value, he could not be totally exhaustive for evaluating the mentioned comparison.
Indeed opinions of each single decision maker need to be balanced with the others and, to
such an aim, the relative missing judgments must be calculated. Table 3 shows the incomplete
pairwise comparisons judgments.

It is simple to check that the graphs corresponding to these matrices have only one con-
nected component. According to Corollary 2, the completions of these matrices are unique in
the sense of Theorem 1.

Van Uden’s rule can be used for the first matrix, since only one upper-diagonal entry is
unknown. The completion obtained is

a25 = 3

√
a21a23a24
a51a53a54

.
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Table 2: Evaluation of alternatives with respect to criteria, local priorities and CR value

C1 LP1 LP2 LP3 Local Priorities CR

LP1 1 4 4 0.667

LP2 1/4 1 1 0.167 0

LP3 1/4 1 1 0.167

C2 LP1 LP2 LP3 Local Priorities CR

LP1 1 1/2 1/5 0.122

LP2 2 1 3 0.23 0.0035

LP3 5 3 1 0.648

C3 LP1 LP2 LP3 Local Priorities CR

LP1 1 6 6 0.75

LP2 1/6 1 3 0.125 0

LP3 1/6 1 1 0.125

C4 LP1 LP2 LP3 Local Priorities CR

LP1 1 1/2 1/4 0.136

LP2 2 1 1/3 0.238 0.0176

LP3 4 3 1 0.625

C5 LP1 LP2 LP3 Local Priorities CR

LP1 1 2 5 0.582

LP2 1/2 1 3 0.309 0.0036

LP3 1/5 1/3 1 0.109

The value of θ for the second matrix is θ = [0.900,−0.297,−0.099,−0.578, 0.074]T . This
vector gives the best completion of the second matrix: a23 = exp(θ2−θ3) = 0.82019 and a25 =
exp(θ2−θ5) = 0.68980. For the third matrix we get θ = [0.461,−1.014,−0.194, 0.220, 0.528]T ,
a23 = exp(θ2 − θ3) = 0.44068 and a25 = exp(θ2 − θ5) = 0.21394.

By using these values, we can build the respective completions with the calculated entries
in bold (shown in Table 4). The completed matrices were then shared with the team of
decision makers, who did not show reasons to disagree with the assigned values, confirming
the coherence of the found results.

To build a blend of these matrices we use the aggregation of individual judgments (AIJ)
technique in which the individual comparison matrices are merged into one, so that the group
normally becomes a ‘new individual’, in contrast to the aggregation of individual priorities
(AIP) technique (in which individuals act with different value systems – producing alternative
individual priorities (Forman & Peniwati, 1998) that are eventually merged into one priority
vector). This approach agrees with (Guitouni & Martel, 1998), since the experts in our
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Table 3: Criteria evaluation matrices provided by the experts

D1 C1 C2 C3 C4 C5

C1 1 7 1 4 5

C2 1/7 1 1/3 1/3 ∗
C3 1 3 1 4 3

C4 1/4 3 1/4 1 2

C5 1/5 ∗ 1/3 1/2 1

D2 C1 C2 C3 C4 C5

C1 1 5 3 3 2

C2 1/5 1 ∗ 2 ∗
C3 1/3 ∗ 1 3 1/2

C4 1/3 1/2 1/3 1 1

C5 1/2 ∗ 2 1 1

D3 C1 C2 C3 C4 C5

C1 1 5 1 2 1

C2 1/5 1 ∗ 1/3 ∗
C3 1 ∗ 1 1/2 1/3

C4 1/2 3 2 1 1

C5 1 ∗ 3 1 1

case study act together in a complementary manner and so combining individual judgments
into a group judgment is recommended. To aggregate the individual priorities into group
priorities, the geometric mean method (GMM) is used. Following these observations, the
blended comparison matrix of criteria is shown in Table 5, in which the last column shows
the priority vector, calculated via the power method.

Once the priority vectors for criteria and alternatives have been built, we aggregate the
results through the distributive method and the final ranking of layout proposals is obtained
(see Table 6).

The layout proposal LP1 was recognised to be the best trade-off among all considered
criteria, and the involved decision group, having previously agreed concerning completed
matrices, eventually backed the selection as well. In particular, the application of the graph
theory supports the goodness of the solution, this method being particularly advantageous in
the manufacturing field (Rao Venkata, 2013). By adopting this solution, four of the five shelves
(1 to 4) are arranged into the storage area, and the fifth shelf is placed in the production area.
This solution permits a safe management of the available spaces and is well-balanced between
the two departments. In fact, this arrangement enables an optimisation of the placement
of pallets of finished products and cardboards according to the logistic strategies adopted
by the organisation. At the same time, transport can be improved by establishing dedicated
paths for people (employees and visitors) and forklifts (materials transport) inside the storage
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Table 4: Completed matrices

D1 C1 C2 C3 C4 C5

C1 1 7 1 4 5

C2 1/7 1 1/3 1/3 0.78090

C3 1 3 1 4 3

C4 1/4 3 1/4 1 2

C5 1/5 1.28058 1/3 1/2 1

D2 C1 C2 C3 C4 C5

C1 1 5 3 3 2

C2 1/5 1 0.82019 2 0.68980

C3 1/3 1.21922 1 3 1/2

C4 1/3 1/2 1/3 1 1

C5 1/2 1.44991 2 1 1

D3 C1 C2 C3 C4 C5

C1 1 5 1 2 1

C2 1/5 1 0.44068 1/3 0.21394

C3 1 2.26923 1 1/2 1/3

C4 1/2 3 2 1 1

C5 1 4.67609 3 1 1

department. Lastly, the selected layout proposal creates a special area (box) between the two
doors in the upper right side of the storage area. This box can be used for employee meetings
aimed at integrating the workforce and enhancing the level of communication inside the
organisation.

5 Conclusions

Decision-making processes are connected with multiple aspects of human life and involve
many levels and kinds of business activities. The multi-criteria decision-making method
AHP is considered to be a particularly helpful tool in supporting decision-making, as well
as in situations characterised by uncertainty in formulating opinions. When experts are
asked to formulate pairwise comparison judgments, they may not be totally sure about one
or more factors and may prefer not to express a preference. In this situation, the AHP
is characterised by incomplete matrices of pairwise comparison judgments. With the aim
of consistently building a complete PCM, which could enter the trade-off process between
synthetic consistency and the judgments from the experts involved, this paper highlights that
graph theory may be used to deal with the treatment of incomplete comparison matrices –
and thanks to the described approach all the cases can be characterised and classified in terms
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Table 5: Aggregated matrix and criteria weights

C1 C2 C3 C4 C5 Weights

C1 1 5.593 1.442 2.884 2.154 38.4 %

C2 0.179 1 0.494 0.606 0.487 8.43 %

C3 0.693 2.025 1 1.817 0.794 20.61 %

C4 0.347 1.651 0.550 1 1.260 14.82 %

C5 0.464 2.055 1.260 0.794 1 17.73 %

Table 6: Ranking of layout alternatives

Position Alternative Score

1st LP1 0.5442

2nd LP3 0.2564

3rd LP2 0.1993

of matrix graph connectedness. Moreover, completion solutions are developed for all those
cases and the solution for a quite synthetic general case with a two-component associated
graph is produced.

The proposed approach is applied to a case study that refers to the storage layout reor-
ganisation in a factory. In this case, three experts are involved and they decide not to express
judgments about several pairs of criteria. Three incomplete matrices capture their opinions.
One matrix presents just one unknown upper-diagonal entry, and the other two matrices have
two gaps. In the first case, van Uden’s rule may be used and provides the same result; whereas
in the second case, the approach provided in this paper enables a consistent completion of
the matrices and the production of a final ranking of alternatives.
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Saaty, T.L. & Vargas, L.G. (1994). Decision Making in Economic, Political, Social and Tech-
nological Environments with the Analytic Hierarchy Process. The Analytic Hierarchy 
Process Series, 7, 1st Edition.

Seiti, H., Tagipour, R., Hafezalkotob, A., & Asgari, F. (2017). Maintenance strategy selection
with risky evaluations using RAHP. Journal of Multi-Criteria Decision Analysis, 24(5-6), 
257–274.

Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press.

Shiraishi, S., Obata, T., & Daigo, M (1998). Properties of a positive reciprocal matrix and
their application to AHP. Journal of the Operation Research Society of Japan, 41,
404–414.

Srdjevic, B., Srdjevic, Z., & Blagojevic, B. (2014). First-Level Transitivity Rule Method for
Filling in Incomplete Pair-Wise Comparison Matrices in the Analytic Hierarchy Pro-
cess., Applied Mathematics & Information Sciences, 8, 459–467.

Vaidya, O.S. & Kumar, S. (2006). Analytic hierarchy process: An overview of applications.
European Journal of Operational Research, 169, 1–29.

Van Laarhoven, P. & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy
Sets and Systems, 11, 199–227.

Van Uden, E. (2002). Estimating missing data in pairwise comparison matrices. In Texts in
Operational and Systems Research in the Face to Challenge the XXI Century, Meth-
ods and Techniques in Information Analysis and Decision Making. Academic Printing
House, Warsaw.

Vargas, L., De Felice, F., & Petrillo, A. (2017). Editorial journal of multicriteria decision anal-
ysis special issue on “Industrial and Manufacturing Engineering: Theory and Applica-
tion using AHP/ANP”. Journal of Multi-Criteria Decision Analysis, 24(5-6), 201–202.

Wang, T.-C. & Chen, Y.-H. (2008). Applying fuzzy linguistic preference relations to the im-
provement of consistency of fuzzy AHP. Information Sciences 178, 19, 3755–3765.

27



Wang, Z.-J. & Tong, X. (2016). Consistency analysis and group decision making based on
triangular fuzzy additive reciprocal preference relations. Information Sciences, 361-362,
29–47.

Weiss-Cohen, L., Konstantinidis, E., Speekenbrink, M., & Harvey, N. (2016). Incorporating con-
flicting descriptions into decisions from experience. Organizational Behavior and Human
Decision Processes, 135, 55–69.
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